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ABSTRACT

Switched mode power converters are being used extensively
for the purpose of efficient power conversion. Such converters are
nonlinear, time variant systems. In the past such converters were
being modelled using the state space averaging method. The theory
of variable structure systems (VSS), and sliding mode control form a
mutually complementary analysis and design tools for the control of
switched mode power converters. The application of sliding mode
control is presented for dec-to-dc converters and electrical motor
drives in this thesis. The concept of sliding mode control is brought
out through exhaustive examples of second order systems. The
equivalent control, an analysis method of VSS, is applied to obtain
transfer function description of dc-to-dc power converters. The
sliding mode control is applied to the conirol problem of dec-to-dc
power converters and speed controlled electrical drives to develop
practical design techniques. The practical design methods are

confirmed through experimental results.
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CHAPTER 1

INTRODUCTION

This thesis deals with the principles of sliding mode control
and their application to power converters. The power converters that
are taken up for the application are dc-to-dc electrical power
converters, and electromechanical power converters.

In power converiers a high premium is placed on the
efficiency of power conversion, besides the steady state and dynamic
performance requirements. As a result the topologies used in power
conversion applications rely on high speed switches for efficient
cperation. Chapter 2 contrasts the power conversion topologies with
sigrnal processing systems, and brings out the most important feature
of power comnverters, namely dynamic structural changes brought
about because of their switching nature. Such systems are nonlinear
and time variant. The switching property makes the power converters
prime candidates for the application of the theory of Variable
Structure Systems (VSS).

Y3S theory results in a time domain description of switching
converters. Sliding mode control complements VSS as an effective
analysis and design tool. The concept of sliding mode control relies
cn a firm understanding of the system in terms of system states and

the state space or the phase space. In order to appreciate
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thoroughly the basic principles involved, Chapter 3 treats simple
second order systems exhaustively, and brings out the relevant
features of sliding mode control. These concepts are then extended
to general higher order systems.

In the pasit the switching converters had been analyzed
using the technique of state space averaging. State space averaging
method essentially developed linear, small signal, irequency domain
models of the nonlinear power converters. Chapter 4 briefly reviews
the state space averaging method. The power converters are then
analyzed using the theory of VSS. The sliding mode control principles
are then applied to develop practical design criteria for the control
of dec-to-dc converters. Experimental results are then presented.

Another major area of power processing application is the
electromechanical power conversion. Such systems consist of
switching power converter and electromechanical actuators (dec or ac
motor). In the past such systems have been analyzed separately — a
model for the power converter and a model for the motor. Sliding
mode control can be used as an integrated control approach for
such composite systems. Chapter 5 reviews the general theory of
electirical machines. It is seen that all elecirical machines can be
described as quaiitatively identical systems. Chapter 6 goes on to
apply the sliding mode control to two representative machines,
namely the dc motor and the permanent magnet synchronous motor.
Practical design criteria for the speed control of these machines are
develcped. Experimental results verifying the design strategy are

presented.



Chapter 7 discusses the extension of the sliding mode
control to synchronous motors. The possibility of loss optimization

under different operating conditions is then presented.






CHAPTER 2

VARIABLE STPUCTURE SYSTEMS

In this chapter some of the characteristics definining
variable structure systems (VSS) are explained. This is done by
contrasting the natures of power processing systems and signal
processing systems. Examples of a few of the VSS often encountered

in power processing requirements are highlighted.

2.1 Power Processing Vs Signal Processing

The essential features of signal processing systems and
power processing systems are shown in Fig.2.1 [1].

Figure 2.1(a) shows a signal processing system. The input is
analog or digital information and so is the output. The system
carries out one or more of the signal processing functions. The
various processing functions include amplification, coding, decoding,
analog to digital, and digital to analog conversion. The most
important concern during the processing is to preserve the integrity
of the information content. Classical concepts of linear control
theory, sampled data control, etc., provide the necessary tools for
the design of signal processing systems. The power required tc
process the signals is incidental (This statement, though strong, is
iiTid I

justified because ome can think of alt least a couple of signal

processing functions that do mnot require external power.) and
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considerations of efficiency rarely become critical. Size, cost and the
consequent demand to integrate large signal processing functions into
ever smaller packages lead the choice of system components limited to
resistors, active devices, and occasionally capacitors. Magnetic
elements are, as a rule, avoided.

Figure 2.1(b) shows a power processing system. In comparison
to the signal processing system, the "power” and "information” inputs
are interchanged. The objective is to process power under readily
available conditions at the input, and deliver it at the output under
conditions suitable for convenient utilization. Typical electrical power
processing functions are controlled rectification (conversion of ac
power to dc power), inversion (conversion of de power to ac power),
cyclocohversion (conversion of ac power at one frequency to ac power
at a different frequency), and so on. Frequently power processing
systems also include appropriate actuators to convert electirical power
into other forms of power, namely mechanical, thermal, and hydraulic.
The major concern during power processing is to conserve the total
power from input to output. This preoccupation with efficiency limits
the choice of the system components to switches and lossless reactive
elements. There is one more major difference between the two systems:
whereas the power required for a signal processing system is only
incidental, the information required — or the control strategy to be

adopted — is crucial for the performance of the power processing

system.
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Figure 2.2 shows the contentis of a typical electrical power
processing system. Il ccensists of inductors, capacitors and switches.
With the elements of the system so limited, it is not hard to see
that the only way of achieving the power processing objectives is to
dynamically vary the structure of the system in an intelligent way. In
order to develop proper control sirategies for the power processing
systems, il is neccesary to understand, analyze, and develop models
for the purpose. Such dynamically varying structures result in
nonlinear and timevariant description. The theory of VSS [2]
provides a mathematical framework to define such systems and are
well suited to define, analyze and to develop control strategies for
power processing systems. It may be mentioned here that there are
also other tools available for this purpose such as state space

averaging [3], and describing equations {4].

2.2 Variable Structure sysiems (VSS)

VSS are systems whose physical structure or network
topology is changed intentionally during the transient in accordance
with a preset structure contirol law [5]. The instants of time, at which
the control action of changing the structure occurs, are not
determined by a fixed program, but in accordance with the current
state of the system. This property distinguishes VSS {from
programmed controllers. However, as will be seen in some later
sections, programmed controllers may be considered as a subset of

VSS, by suitable mathematical manipulations.



In general we may state that VSS comnsist of a number of
well defined elements, linear or nonlinear. Under contrel action the
clements may be configured into a number ol possible well defined
substructures. Out of the total number of all such well defined
substructures, there will be a minimum set of independent
substiructiures. This minimum number of independent substructures
available in the sysiem is comsidered as the number of contirol inputs
to the system. The theory of VSS provides a systematic method of
defining such systems using discontinuous variables — known as
switching variables — and selecting a rational control law to pick out
the substructure used at any instant in order to achieve the control
objective. Before we go on tc see these aspects of VSS in the
following chapter, two examples — a single input VSS and a multiple
input VSS — of VSS encountered in power conversion application are

presented now.

2.3 Some Examples of VSS

Figure 2.3(a) shows a flyback dc-to-dc converter consisting
of a single pole double throw switech S, an inductor L, and a
capacitor C. The two substructures of the system are shown in Fig.
2.3(b) and 2.3(c). When the system is connected as in Fig. 2.3(b),
energy is absorbed into the inductor from the input battery. When
the system is connected as in Fig. 2.3(c), part of the energy from the
inductor is transferred to the load R. Although there are two
substructures available, the presence of the inductor on the pole of

ithe switch forces the throws of the switch to be mutually dependent.
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Fig. 2.3 An exzample of o single control input wvericble structure

system.

fig. 24 An example of o multiple control input wvariable structure

system.
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This is an example of a single input VSS.

Figure 2.4 shows an induction motor drive — an application
of electrical to mechanical power conversion. Elecirical power from
the battery is switched sequentially into the three phase windings of
the induction motoer in order to produce mechanical torque at the
shaft of the motor. This is an example of a three input VSS as is
evident from the three single pole double throw switches present in

the system.
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CHAPTER 3

SLIDING HODE CONTROL

The theory of Variable Structure Systems (VSS) is the
analysis and synthesis of systems, whose structures are changed
intentionally during the transient, according to a preset structure-
control law, to achieve the control objectives. The utilization of
control hardware is most effective in such systems. Furthermore, it
is possible in VSS to obtain overall system properties that are
qualitatively different from the constituent substructures. These
aspects of VSS are best seen through the phase plane description of
the constituent substructures. Section 3.1 explains the phase plane
description of systems and describes the different types of phase
trajectories encountered in second order systems.

On the foundation of the phase trajectories described for
simple second order systems in Section 3.1, the important features
of sliding mode control are built up in Section 3.2. The concept of
sliding regimes is formally defined.

Graphical visualization of phase trajectories is tedious, if
not impossible, for higher order systems. In such instances it is
necessary to resort +to formel mathematical methods. The
mathematical description of a general dynamic VSS of order = is

given in Section 3.3 along with the scope of the theory of VSS.
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The analysis problem of VSS consists of tests for the
existence of sliding regimes, system description under sliding mode
contirol, and the pericrmance of the overall system. These aspects
are dealt with in detail in Sections 3.4 through 3.6. The second
aspect of the theory of VSS, namely the design methods, are
described in Section 3.7. At the end in Sections 3.8 and 3.8, other
applications of sliding mode control such as state estimation and

static optimization are indicated.

3.1 Phase Plane Descriptiomn of Systems

The control action in VSS is the change of the system
structure following a preset structure-control law. As a result, VSS
are time varying systems. In order to study such systems, it is
advantageous to select a system description where time information
is suppressed or implicit [6]. The phase plane description satisfies
this condition and provides valuable insight into the various aspects
pertaining to VSS. The phase plane description is very handy for
second order systems and brings out the features of sliding meode
control remarkably well. For systems of order higher than two, the
phase plane description is clumsy if not impossible. In those
instances, the graphical ideas obtained for second order systems are
extended mathematically.

The phase plane description is used widely to characterize
second order systems. The axes oi the phase plane are the system
states. The instantaneous state of the system is represented on the

phase plane by a Representative Point (RP) whose coordinates on the
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phase plane are the present states oi the system. The study' of the
system involves the motion of the RP on the phase plane under
different input and initial conditions. The evolution of the system
states with respect to time on the phase plane, referred to as the
phase tirajectories or the state trajectories, represent the dynamic
properties of the system. For a given sysiem, the phase irajectories
are a family of curves satisiying the dynamic properties of the
system. The axes of the phase plane are the system states and
hence, the time information is implicit in the state trajectories.

In the case of VSS, the phase plane description consists cf a
set of a {family of phase trajectories, one for each of the
substructures used. The analysis problem of VSS is to study the
overall system behavior under a given structure-control law. The
design problem in VSS is to develop a rationale to synthesize a
structure-control law in order to achive the performance objectives

of the overall system.

3.1.1 Properties of Phase Trajectories

The study of VSS, and the techniques of sliding mode
control for dynamic systems, are intimately related with the phase
plane description of the system. The concept of sliding regimes
introduced subsequently relies on the phase plane description to get
a good intuitive grasp. Therefore it is worthwhile to study the phase
itrajectories for simple second order systems and become fully

familiar with these ideas.
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Consider a second order systiem described by the following

homogeneous differential equation.

dRz
dt?

dx
+2<’&)QE‘+O)022 =0 (c 1)

The above equation may be ncrmalized to obtain

d?z dx

By defining =z, = z and z, = dz/d7, the above equation may be written

as a set of first order differential equations.

dzl
dr = T2
dzz

Let g, and g, be the characteristic roots of the Eq. (3.2). Then

g,+gs = —2¢

g.9z = 1
z, and z, are the dynamic states of the system and are the axes of
the phase plane. The differential equation between z, and =z, dictating

the properties of the phase trajectories is obtained from Eq. (3.3).

dzz _ _ .'L'1+2('.'z:2
dzl =m == Zo (3.4)

m is the slope of the phase trajectory passing through the point

(z,.z2). z, and z, are related to the slope by

- 1
L2 = —_m.+2g‘zl (3.5)

The phase trajectories are constructed satisfying Eq. (3.4) in the

phase plane. The following properties of the phase trajectories are
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used to construct them.
i) The straight lines z, = g;z; and z; = g,z,, when they exist, are
phase trajectories. This property is seen by substituting m = g, and

m = g, in Eq. (3.5).

1 1
ZTp = —————x. = —2x, = z
2 g +o¢ ! gz} 912,
S S
2 q2+2<— 1 9, 1 gaT,

The straight lines z, = g,z, and z, = g,z,, exist only when g; and g,

are real.

ii) The phase trajectories intersect the z, axis with a slope of -2¢.
[ dz, -
dzl zy = 4] - g‘

iii) The phase trajectories intersect the z, axis at right angles.
[dz, N
Idzl 22 = 0 -

iv) The zero slope of the phase trajectories occurs along the

straight line z, = —(1/2¢)z,. This property is found by solving for
m = 0 in Eq. (3.58).

v) The trajectories ccnverée ior siable systems (eigenvalues with
negative real paris), and diverge for unstable systems (eigenvalues
with positive real parts). For marginally stable systems (purely
imaginary eigen values), the irajectories are closed curves.

vi) Individual phase trajectories do not cross each other. This
property is owing to the fact that, the present state uniquely

determines the past history of the system.
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All iree second order systems exhibit the above properties
in their phase tirajectories. Depending on the mnature of the
eigenvalues g, and g, the phase trajectories have qualitatively

different shapes.

3.1.2 Siable Systems with Negalive Real Eigemvalues

The eigenvalues g, and g, being real, the straight lines with
slopes g, and g, are phase trajectories. Other representative
trajectories are constructed with the properties given in the last

Section. The phase trajectories in the parametric form are given by

I, = — [(92310"320)€q1T—(91310—320)9%7]
gz2—9,

]

Zz ——(Z10—q1Z20)e 7V —(Z 10— 2Z20)e??"]
gz2—9,

z,0 and zpy are the coordinates of any point on a given trajectory. g,
and g, are negative. As 7 tends to +=, z; and z; tend to =zero.
Therefore the equilibrium point for all the trajectories is the origin.
Figure 3.1 shows the phase trajectories for this class of systems with
distinct, negative, and real eigenvalues. In the case of negative, real,
repeated eigenvalues the phase trajectories in the parametric form
are given by

z, = 210297+ (Zgp+x,0)TEY”
Tp = Tppe? —(Zpo+Z,0)T297

T3 and zp, are the coordinates of any point on a given irajectory. g

is equal to —1. As 7 tends to +=, z; and z, tend to zero. Therefore
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X
2 SLOPE=m=-2¢

\ .

\\K:Q:;\gé=—x$/2¢
\

Fig. 3.1 The phase trajectories of a normalized
(g, = —-0.5.g; = —2,¢( = 1.25) second order system with

distinct, negalive real eigenvalues. The system 1is stable
end all the trajectories conwverge to the origin.

A Xz
Xo=aX, SLOPE=m=-2¢
SLOPE=m=e - AN
~_. \ - X,
XE="Xg /2{
Frg. 3.2 The phose trajectories of a normalized
second order sysiem with

(qv = g2 = ¢ = -1.L = 1)
repeatied, megalive reeal eigenvalues.
end all ithe trajectories converge fo the origin.

The sysiem s stable
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the equilibrium point for all the trajectories is the origin. Figure 3.2
shows the phase irajectories when the eigenvalues are real, negative,

and repeated.

3.1.3 <Stable Systems with Complex Eigenvalues

The eigenvalues g, and g, are complex conjugates. There
are no straight line irajectories. All the other properties of the
trajectories hold. The system may be solved to ocbilain the phase
trajectories in the following parametric form.

{Zi10+Z20
e {"[z,gcosQT+ —Q——sinQ'r]

x,

$Ta0+Z10

Q

zp = e {"[zogcos T~ sin Q7]

Q=Vi-¢

z,0 and z,y are the coordinates of any point on a given trajectory.
As 7 tends to +=, z; and =z; tend to zero. The trajectories all
therefore converge towards the origin, which is the equilibrium point.
Figure 3.3 shows typical trajectories for this class of systems. They

have the shape of converging logarithmic spirals.

3.1.4 Marginally Stable Systems

Marginally stable systems do not have any damping (¢ = 0).
The eigenvalues are purely imaginary. The system is conservative
and the phase trajectories are closed circles of radius 7.

T = \/2102+2202

z,5 and zyy are the coordinates of any point on a given trajectory.

The system is asymptotically stable and has no equilibrium point.



- SLOPE=m=-2¢

SLOPE=m=<
Fig. 3.3 The phase trajeclories of a nnormalized
(9192 = 1.9,+9p = —2¢ = ~0.4) second order systemn with

stable, complex conjugate eigenvalues. The system is
stable end the trajectories oare converging logarithmic

spirals.
T %,
SLOPE=m=2c
SLOPE=m=0o
X
Xa—xi /2a

Fig. 3.4 The phase trajeclories of a normalized
sysiem with

(92 = 1.g,+g9, = —2¢ = 0.4) second order
unsteble, complez conjugate eigenvalues. The system 1s
unstable and the irajectories are diverging logerithmic

spirals.
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3.1.5 Unstable Systems with Complex Eigenvalues

The eigenvalues are complex conjugates with positive real

parts. The phase trajectory is given by the following parametric

equations.
Lo —8T10
z; = e®[x,gcosQT+ —Q—SIDQT]
QZpg—Z1p .
Zy = e®[zyocos QT+ o sin Q7]

Q=VI1-¢, a=—¢

z;5 and zz; are the coordinates of any point on a given trajectory.
As 7 is traced back in time to -, z, and z, are zero. Therefore all
the trajectories emerge from the origin and diverge towards = as
time evolves. The phase trajectories for this class of systems are

shown in Fig. 3.4. They are diverging logarithmic spirals.

3.1.86 Unstable Systems with Positive Real Eigenvalues

The eigenvalues are real. The straight lines with slopes g,

and gp are also phase trajectories. The phase trajectories in

parametric form are given by

z; = — [(Q2210’220)9q11"(q1210—1’20)‘3qu]
g2—9;

e g2—9q, [(Z10—91%20)e """ —(Z10—92F20)e **"]

z,; and zz, are the coordinates of any point on a given trajectory. g,
and g, are positive. As 7 is traced back in time to -, z, and z, tend
to zero. Therefore all the trajectories emerge from the origin and

grow with time. Figure 3.5 shows representative phase trajectories.
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A
SLOPE=m=2c 7 e
Ha=qgXq
SLOPE=m=s L
2 x
Xo=Xq/ o _ /
Fig. 3.5 The phase trajectories of a normalized

(g, = 0.5,g, = 2,¢ = —1.25) second order system with
distinct, positive 7real eigenvalues. The sysiem 1is unstable
and all the trajectories diverge to .

A

Fig. 3.6 The phase trajectories of
(g; = 1.9, = =1,¢& = 0) second order systems with distinct

eigenvalues of wunlike polerily. The trajeclories eventuclly

diverge i0 oo,

X2=0aX4

h
p)

() normalized
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They diverge indicating unstable eigenvalues and are the mirror
image of the trajectories obtained jor systems with negative, real

eigenvalues.

3.1.7 Unstable Systems wilth Eigenvalues Real amd Unlike
Sign
The eigenvalues are real. The straight lines of slopes g, and

ge are also phase trajectories. The phase trajeciories in parametric

form are given by

I, [(‘szlo—zzo)eqﬂ‘(q1210—220)9‘127]

g92—9,

1
Gz2—q1

]

Zp [(z10—91T20)e 7 —(z10—g2Z20)2 %]

z,0 and zp; are the coordinates of any point on a given trajectory. q,
and g, are of unlike polarity. Therefore the phase trajectories are
not uniformly divergent. They emerge from = and evolve towards ==.

Figure 3.6 shows typical trajectories. The overall behavior is

divergent.

The nature of the phase trajectories for iree second order
systems given by Eq. (3.1) is consolidated in Fig. 3.7. It is plotted
between damping factor ¢ and natural frequency wy2. The different
regions are numbered and typical trajectories hinted. Some of these
trajectories are wused in the {following section to highlight the

properties of VSS and the concept of sliding regimes.
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R+2¢R+uEX=0
I STABLE REAL ROOTS

II STABLE COMPLEX
ROOTS

III UNSTABLE COMPLEX
ROOTS

IV, ¥V UNSTABLE REAL
ROOTS

Fig. 3.7 The qualitative difference in the phese lrejectories of o
second order syslem as o funclion of the natural

Jregquency wg; and damping ¢ Sysiems located in region [
and Il in the wy ¢ plane are stable systems, Systemns

locatled in rTegions Iil, IV, and V are wunstable systerns.
Systems localed on {ne positive wg azis do mnot have
daemping and are conservelive sysiems.
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3.2 Sliding Regimes im VSS

It was asserted that, in the case ol VSS, phase trajectories
that are qualitatively different from those of the substructures can
be obtained. This point and other ifeatures of VSS are now
illustrated. Consider the following two substructures (from Section
3.1.5 and 3.1.7 respectively).

Substructure I is given by

Z.l = Zp

£, = —2¢zp—x, Tl<g<O

The eigenvalues of substructure ] are complex with positive real
parts. The phase trajectories of this substructure are shown in Fig.
3.8a and is the same as shown in Fig. 3.4. The trajeciories are
diverging logarithmic spirals and the substructure I is unstable.
Substructure I is given by

Z; = Zp

g; = —¢+V1+8 gy = ~¢-V1i+

T, = —Rézxp+z,

The eigenvalues of substructure Il are real and of unlike polarity.
The phase trajectories of substructure II are given in Fig. 3.8b. They
diverge to = indicating instability and are the same as shown earlier

in Fig. 3.6.

3.2.1 Simple VSS

It may be observed that the trajectories of substructure I
are bounded in every quadrant. The trajectories of substructure II

are bounded in quadrants 2 and 4. A VSS may be synthesized



(a) SUBSTRUCTURE I

(b) SUBSTRUCTURE II

Fig. 3.8 The phase trajectories of two second order subsystems
employed {o illusirate Varicble Structure Systems (VSS).

Subsystern I is or wunstable systern with complex
eigenvalues (a). Subsystern II is wlso en wunstable system
with Teal eigenvalues of wunlike polarity (b).
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A Xz

/ J S S S S
SUBSTRUCTURE I

SUBSTRUCTURE

A (X“, xag) XE.‘
B (X32, Xo2) \

{b)

Fig. 39 A simple VSS mode wup of the lwo subsiructures given
earlier in Fig. 3.8. The swubstructures active in the
different regions of the phase plone are shown. The
resullant overall irajectory of the overall VSS is shown
in (a) Typical trajectories starting from orbitrary initicl
condilions A(z,,.Zz) end B(z,s.Ty;) ere shown in (b). The
VSS made wup of wunstable swubstructures is seen to be
stable.
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composing of these desirable portions of the trajectories of the
substructures I and II. The structure-control law may be stated as

Substructure I holds for =z,{(zz—g,z,) >0

Substructure II hoids for =z,(zp—g,z,) <0
According to the structure-control law the phase plane is divided into
several regions, as shown in Fig. 3.8a. The substructures active in
each of these regions are labeled. The overall phase trajectory is
composed of the trajectories of cach of the substructures in the
appropriate regions. The phase trajectories for the composite VSS
are shown in Fig. 3.8a. The trajectories of the system starting from
arbitrary initial conditions A(z,;,.z5,) and B(z,z,z'zz) are shown in Fig.
3.9b. Starting from any initial condition the states of the VSS
converge to zero and so the overall system is stable.

In the above example it was assumed that the structure-
control law was realized perfectly. In other words the change of
structure from one substructure to the other acted whenever the
system RP crossed the boundaries set up by the structure-control
law. In practice such perfect sensing of the location of the RP with
respect to the various boundaries is impossible. There will always be
nonidealities such as delay, hysteresis etc, inherent in physical
hardware used for changing the structure. We now see the effect of
such nonideal realization of the structure-control law. Let the real
structure-control law be

Substructure I holds for =z,(zz—g:z,) > A
Substructure II holds for =z,(z;—g,z,) < A

A is a small positive quantity introduced to refiect the nonidealities
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Fig. 3.10 Swilching boundaries in a real V5SS (o). The boundaries

eztend over a smell A neighbourhood of the switching
lines. 7he effect of the nonideal swifching boundary on
the overall trajectory (b) is seen to be sensitive to the
fvysieresis in the switching boundary.
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oi the VSS hardware and goes to zero as these nomnidealities vanish.
¥igure 3.10a shows the partitioning of the phase plane into various
regions and the substructures that are actiive in each of these
regions according to the structure-control law. The switching
boundaries are shown extended to include the hysteresis zone.
System trajectories starting from an arbitrary initial conditien
A(x,,.z2,) are shown in TFig. 3.10b. The effect of the switching
nonidealities results in trajectories that are different from the ideal
case. However the overall system continues to be stable. It may also
be observed that as A approaches zero, the real trajectory

approaches the ideal trajectory.

3.2.2 Sliding Modes imn VSS

In the above examples, desirable sections of the phase trajectories
of unsatisfactory systems are pieced together to obtain a VSS with a
desirable property (stability in these examples). A more fundamental
aspect of VSS is the possibility to obtain resultant phase trajectories
that are not inherent in any of the substructures used. This aspect
is brought out in the extension of the same example.
Consider the VSS that consists of the same substructures 1

and II as before. The structure-control law is now modified.

Substructure I holds for =z(zgz+cz;) > A

Substructure I1 holds for =z,(zz+cz;) < A

e >0 Je| <|g,i
The idealized switching boundaries, the substructures active in the

various regions of the phase plane, and the trajectories in each of
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Fig. 3.11 Shiding regime in VSS (a). The swilching line z,+cz, = 0
is swuch that the (trajectories of the subsiructures on
either side of the swiiching line are directed towards
the swilching line. The resuliant overcll trajectory (b) is
seen to be confined within the hysteresis bounds of the
swilching line. The ideal overall frajectory (c) is seen to
e different from, end independent of the substructures

used.
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the regions of the phase planes are all shown in Fig. 3.11a. The
switching boundaries are the z; axis and the straight line z,+cz, = 0.
The line zp+cz; = 0 is the switching line. The structure changes
whenever the Representative Point (RP) enters a region defined by
the switching boundaries. The important property of the phase
trajectories of the substructures is that, in the vicinity of the
switching line, the phase trajectories converge to the switching line.
The immediate consequence of this property is that, once the RP hits
the switching line the structure-control law ensures that the RP does
not move away from the switching line. Figure 3.11b shows a typical
trajectory starting from an arbitrary initial condition A(z,;.zz,).- The
resultant trajectory is seen to be confined along the switching
boundary z;+cz, = A. Figure 3.11c shows the same trajectory as in
Fig. 3.11b, when the nonidealities of the switching boundaries
approach zero (A = 0). In the case of ideal switching it may be seen
that once the RP moves onto the switching line zs+cz; = 0, the
systemmn motion is then along the switching line. The switching line
zz+cz; = 0 is defined by the structure-control law and is not part of
the trajectories of any of the substructures of the VSS. 7This motion
of the system RP along a lrwejeciory, on which the slruclure of the
systemn changes, and thaet is not part of any of the substructure
trajectories, is callied the sliding mode. This property is one of the
strongest {features of VSS. When sliding modes exist, and are
exploited, the resultant system performance is independent of the
properties of the substructures employed and depends only on the

preset structure-control law (in this example the boundary
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zo+czy = 0 on which the overall system trajectories are confined.)

3.2.3 Stability of Slidinz Modes

Another example of VSS is now synthesized to illustrate the
aspect ol stability of the system operating in a sliding mode. The
VSS considered here also is composed of the same substructures I
and II as in the previous examples. The structure-control law is now
given as

Substructure I holds for =z,{(zz+cz;) > A

Substructure II holds for =z,(z,+cz,) < A

c <0 ; Je| < |gel
The idealized switching boundaries, the substructures active in the
various regions of the phase plane, and the trajectories in each of
the regions of the phase planes are all shown in Fig. 3.12a. The
switching boundaries are the z; axis and the straight line zy+cz, = 0.
The structure changes whenever the Representative Point (RP) enters
a region defined by the switching boundaries. As in the previous
example the phase trajectories of the substructures in the vicinity of
the boundary =zz;+cz, = 0, converge to the boundary zz+cz, = 0.
Figure 3.12b shows a typical trajectory starting from an arbitrary
initial condition A(z,,.z»;). The resultant trajectory is seen confined
along the switching boundary =zs;+cx; = A. Figure 3.12c shows the
same trajectory as in Fig. 3.12b, when the nonidealities of the
switching boundaries approach zero (A = 0). In the ideal case the
system motion, as in the previous example, is along the switching

line =z,+cz, = 0. However unlike the previous example, the system
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fig. 3.12 An wunstable sliding regime in VSS (a) The switching
line zy+cx, = 0 is e siiding regime. Resultant overoll
irajectory (b) and tideal trajectory (c) are confined to
the swiiching line, dbut unstable.
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motion 1is forever away from the origin and is unstable. The
important point made through this example is that, when sliding
modes exist, analysis of the stability of the overall system is done
simply by examining if the trajectories on the swiiching boundaries

lead tc a stable operating point or not.

3.2.4 A Practical Example

The examples considered in the previous sections were all
free second order systems . They brought out the various features oi
the sliding modes in VSS. To reinforce the concepts illustrated by the
previous examples, a practical example of a de-to-dc electirical power
converter is presented, before we go on to generalize these concepts
for general dynamic systems.

Comnsider the ac-to-dc converter circuit shown in Fig. 3.13a.
Depending on the position of the single pole double throw (SPDT)
switch, the systemn consists of two substructures. The switching
variable = is related to the SPDT position. # = 1 when the inductor is
connected to V. = =0 when the inductor is connected to ground.
The substructures 0 and 1 are the resultant circuits for « = 0 and
uw = 1 respectlively, and are shown in Fig. 3.13b, and Fig. 3.13c. The

dynamic equations of the system are,

d’UO . Vg
dt ‘"R
di

Lgt— = Vgu ~vg

The same equations represent both substructures ¢ and 1 depending

on the value taken by the switching variable u. The system equations
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Fig. 3.13 The ezample of a buck converter () as a VSS. The
substructures (b) ond (c) are iLhe effecltive circuils
during the ociive and nonaciive periods of the operaiion
of the converter. Both {(a) and (b) are second order
sysiems.
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may be put in the following form.

dfuy 1 1 dug Y

g2 . ICUST RC 4t T IcY

With the definition of wg = z,; dvg/ dt = z5; 1/ LC = wg?; Béwg = 1/ FC,
the following representation is obtained.

3:-1 = Iz

zy = —wo?Z | —R{weTa +wo? Vyu
In normal converters the damping factor ¢ is less than 1, resulting in
complex conjugate eigenvalues with negative real parts.

For substructure 0, # = 0 and the system equations are
identical to those given in Section 3.1.3. The equilibrium point is
given by wg = dug/dt = 0. The phase trajectories for the substructure
0 are shown in Fig. 3.14. For substructure 1, « = 1 and the system
equations have an exira forcing term wy?V,. The equilibrium point is
then »g = V,. The eigenvalues being complex with negative real parts,
the phase trajectories are similar to those given in Section 3.1.3, and
are also shown in Fig. 3.14.

We now synthesize a control law given by

dv
Substructure 0 holds for (vO—VO’)+T-ED-> 0

dv
Substructure 1 holds for (vD—VO‘)+T—‘#<O

The switching boundary established by the above control law, and
part of the trajectories valid in the two regions defined by the
switching boundaries are shown in Fig. 3.15. The consequences of
the above structure-control law are as iollows.

i) The phase trajectories everywhere in the phase plane are
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of the substruciures <involved in the

buck converter. The lIrajectories marked « = 0, aend
© =1 correspond  to the aciive end nonactive

subsiructures of the buck converter repeciively.

Fig. 3.14 The trajectories

A dVvo
dt
u=0 2
(Vo-Vo) +7dVo/dt=0
u=0
vg
0 o =V0
u=1
Fig. 3.15 The desired Tesponse of ithe buck converter
d
(‘vo—'uo‘)+‘r% is seen o be a sliding regime. The
lrojectories on either side of the siiding line are

direcled towards the sliding line.
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directed towards the switching boundary.

ii) When the switching boundary is considered as a trajectory,

there exists a stable operating point given by w»e = ¥p°.
The steady state operating point defined by the switching boundary is
different from these oi either of the substructures. Starting irom
zero initial conditions, the system motion is shown in ¥Fig. 3.16. The
overall system motion consists of two parts. The first part is the
motion from any arhitrary initial condition on the phase plane till
the RP reaches the switching boundary or the sliding line. The time
taken for this part of the motion depends on the system parameters
and will be a small fraction of the total response timme in a well
designed system. The second part of the motion is from where the
RP hits the sliding line, to the steady state operating point on thne
sliding line. In this example this motion is with a time constant of 7,

and is independent of the system parameters.

3.2.5 Equations of Motiom on the Swilching Boundary

The same example shown in the previous section is now
studied for the equations of motion of the system RF along the
switching boundary. It was seen that the resultant motion of the RP,
in ;r.he case of ideal switching, is directed along the switching
boundary. One may then take the equation of the sliding boundary to
represent the system motion. Alternatively, the actual system motion
taking into account the nonidealities in switching may be computed
and the resultant motion arrived at by the process oi taking the

nonidealities to the limit of zero. This method of arriving at the
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? dVo
dt
(Vo-Y3) +r8¥o/dt=0
0 T - =Vo

Fig. 3.16 Typical storting lransient of the buck converier seen on
the phase plone. The stecdy stete opercting point is

'Uo-—Vc.

(Vo-Vb) +TdYo/dt=0

Fig. 3.17 The equivalent tragjeclory along the sliding line consists
of e series of [Irajectories corresponding to the

ndividual subsiructure irajeclories. The average
irgjectory niong the sliding line is lhe cverage of the

wndividual trajectories.
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equivalent system description is called the Filippov's method, and is
illustrated for this example here. The sliding line, the A vicinity as a
résult of real switching, and the actual motion of the RP starting on
the sliding line at time ¢ = 0 are shown in Fig. 3.17. z{) and z® are
the state velocity vectiors for w = 1 and = = 0 respectively in the
narrow A vicinity of the sliding line. The time taken for the system
RP to reach the edge of the switching boundary and back te the
sliding line are finite and equal to Af, and Af; respectively. Suppose
that the hysteresis region is small. Then the state velocity vectors

£ and £© are constants in the region considered. Then as A-0

_ 2MAt + 2O (AL, —AL)
At

(0)(‘ AA

2 =20u+20®(1-u); u= At,

In words then, the resultant motion of the system on the sliding
boundary is the weighted average of the rmotions of the
substructures on either side of the sliding boundary. In this example
it is seen that the weights are the relative duration of each
substructure in a cycle to the total duration of the cycle. The
higher the frequency of switching, the better is this approximation.
In a real sliding mode system the finite switching frequency of the
system is caused by the various nonidealities and is not constant. In
such instances, the method followed to get equivalent description of

the overall system is given in Section 3.5.
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The examples given in this section, though simple,
illustrated several important aspects of sliding modes in VSS. Before
these comncepts are generalized, several features of the general
problem are highlighted. For a general system of order higher than
two, the phase space is of dimension higher than two. The existence
of sliding modes is difficult to visualize for such systems. It is then
required to prove the existence of sliding modes through more
abstract mathematical means. The phase plane for the second order
system was set up in terms of the output variable and its derivative.
For higher order systems, not only that higher order derivatives are
difficult to measure, but could prove to be discontinuous as well
Therefore sliding regimes in a phase space made up of states which
are measurable, physical, and continuous variables would be desired.
Further, the systemm mmay have more than two substruciures
indicating multiple control inputs. These aspects are dealt with in
detail in the following sections.

Having seen the above examples, certain aspects of VSS are
now recapitulated [2]. The control laws developed in the theory of
VS5 usually provide for changes in the structure of the system,
whenever the RP crosses certain surfaces in the phase space of the
system. These surfaces across which the system siructure changes
are called the sliding suriaces. Once the RP of the system moves
onto these sliding surfaces, the control action is such that the RP
stays on these surfaces. The form of the sliding surfaces depends
on the type of the system and the desired periormance of the overall

system. Essentially the theory of VSS is the study of the properties
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of such regimes of operation in VSS, selecting rational sliding surfaces
appropriate for the type of response desired, and selecting the
appropriate substructures of the VSS to ensure the desired

performance.

3.3 Gemneral Dynamic System

A general dynamic system in the state space is described

mathematically as follows.

= f(ztu);, T €R*, Fef*, vwc R

z is a column vector which represents the state of the system. f is

a vector function. u is a control input vector.

z = [z; =z z, 17
F =105 Je 1"
u = [u; ug U, |7

The case of z, f, and =, all being continuous functions leads to the
class of continuous dynamic systems.

In the case of VSS, the control at any instant is dependent
on the location of the RP in the state space at that instant. These

are mathematically described as

w;H (z,t) for Si{z) > 0

U= u;~(z,t) for S(z) < ©

=18, mn
The equation S(z) = 90 represents a boundary in the state space,
across which the i* control undergoes discontinuity (w;* # w;,”). Away

from this boundary Si(z) = 8, i* control input is either w* or wu;-,

both of which are continuous functions.
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In the gemneral class of VSS, »;*(z,t) and w,~(z,f) are both
continuous functions of the state. The properties of this class of
systemns have been the focus of extensive study in the literature [2]
[5]. and a whole range of results on the existence, reachability, and
stability of such systems exist. The subclass of VSS where «;*(z,£) and
u;(z.t) take on only fixed values u;* and u;-, is classified as relay
control VSS. This class of systems arises in the study of on-off
systems. Most of the VSS encountered in power control applications
belong to this category. The scope of the present work is limited to
this subclass of VSS, namely relay control VSS.

The general problem of VSS, just like any other control
problem, has two aspects namely analysis and synthesis. In the case
of the analysis problem, the substructures and the structure-control
law are given. It is required to find out the conditions for the
existence of sliding mode, conditions that the system RP will
eventually reach the sliding regime, the stability of the system under
sliding control, etc. The synthesis or the design problem is the
reverse of this. From the desired performance specifications, suitable
boundaries (Syz) = 0) defining the sliding regime are to be
established. Then the discontinuous control inputs #;* and «;,~ are to
be determined such thal existence of sliding mode is guaranteed at
every point on the boundary Si(z) = 0. Finally the controcl must be
able to steer the system towards and onto the intersection of the

sliding boundaries S;(z) = O.
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In the case of the second order system considered in
Section 3.2, it was seen that sliding mode exisis if the phase
trajectories in the vicinity of the sliding line zz+cz,; = 0, are directed
towards the sliding line. In the following section this idea is
generalized to obtain conditions for the existence of sliding regime in

general.

3.4 Conditions for Existence of Sliding Regime

Consider the general dynamic VSS given by

£ = f(z,tu);, z€R™;, feFf*;, uck™, (3.6)

uw;¥(z.t) for Si(z) >0

= u; (z,¢) for Si(z) <0 i=1.2, A

(3.7)

The control inputs »(i=1,2, ,m) are defined by the location of the
RP in the state space with reference to the structure-control
boundaries Si(z) = 6. When sliding regime exists the system RP
eventually moves onto the intersection of all Siz) =0 (i=1,2, m).
The hypersurface defined by the intersection of the m switching
boundaries S;{(z)=0 is called the sliding surface o(z) = 0. The sliding
surface o(z) = 0, being the intersection of m switching boundaries
Si(z) = 0, is an (n-m) dimensional hypersurface in the state space.
The structure-contrel law is active on the switching boundaries, and
so the right hand side of Eq. (3.8) is discontinuous on the
hypersurface ¢ = 0 in the state space RF®. At all other points in the
_state space, away from the switching boundaries, the state velocity

function given by Eq. (3.8) is continuous. Therefore the limits of the
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functions f(z.f,u) exist as the RP approaches the sliding
hypersurface from either side. Let these limits be represented by

im F(z,t,u") = f¥{z,t)

o = 0ot
lim f(x.t.u"‘) = jf'(z,t)
¢ =0t

u«°* and «°" are the input vectors for ¢ = 0* and ¢ = 0~ respectively.
In general f*(z.t) # f(z.t). We now inspect the trajectory oi the RP

on either side of the boundary defined by ¢ = 0.

do 2 go dz; & 9o
= 2 oz, dt = Z: -azﬂfi =7 grad o

}L?_W: f~- gred o
ch_rtr’gfi—g‘f" grad o

At every point in the neighbourhood of o = 0 the signs of these limits

satisiy any one of the following nine relations.

do do

lim - >0 < lim —
o oo-Tdt o Do+ dE (3.8)

do do

lim 22 . do
o ::Hé_ dt <0> chzné* dt (39)

. do . dg
Jim o <0 < lim ) (3.10)

im 22 =0 < 1m 2%
q:O‘dt B o =0t dt (3.11)
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Fig. 3.18 Phose trojectories of VSS where wno sliding tegime
exists. In ell the ezamples (a) through (e), ihe
irajeclories on either side of the swilching boundary
move away from the swilching boundery.
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Fig. 5.19

Phose trojectories of VSS where sliding regime exists. In
all the examples (a) through (d), the trojectories on

either side cof fthe swilching boundary are ftowards the
swilching boundary.
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cliné_%g- <0 = ali=ng+%§- (3.12)
tm S =0> um 92 (3.14)
qlizn'é_%% >0 = Uli=rré+%§— (3.15)
ulir%_-![ii—g— >0 > oli=rré+i—? (3.18)

These relations are illustrated in Fig. 3.18 and 3.19. The Eqs. (3.8)
and (3.9) correspond to the RP moving freely across the switching
hypersurface. Equations (3.10), (3.11) and (83.12) show the RP
diverging away from the switching hypersurface on one or both sides
of the surface. Equation (3.18) is the case of the ideal sliding
regime on the hypersurface ¢ = 0. The RP is forced to remain within
an infinitismal neighbourhood of the hypersurface and oscillating
about ¢ =0 at infinite frequency. This provides the necessary
condition for the existence of sliding regime. Equations (3.13), (3.14)
and (3.15) are also essentially similar to Eg. (3.16). In those
instances too, if the RP is on the hypersurface ¢ = 0, then it cannot
leave an infinitesimal neighborhocod of the hypersurface. The RP
again oscillates about o = 0. Tnequality (3.16) was first suggested as
the necessary and suificient condition for the existence oi sliding
regime[1]. More recently [5] cases of Egs. (3.13), (3.14), (3.15) and

(3.18) are all combined together and stated as any one of the
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iollowing equivalent conditions.

. do . o

Im g =0=lm 5 (3.17a)
lim 0 2% < 0

lim o 57 < (3.17b)

lim mso

c-0 di (31?0)

Any one of the above conditions may be used as the necessary and
sufficient condition for the existence of sliding regime.

When the inequality given by Eq. (3.16) holds in the entire

half space,
rdo l‘da
= <0< =
ldt c>0 Idt o<0

it provides a sufficient condition that the system will reach the
sliding hypersurface.

A direct consequence of the above result, when applied to
relay control VSS, leads to the following simple test for reaching

conditions for sliding mode.

Theorem:

Let

Z=f(ztu): zecr™;, f€F*, wuchk™

ut for Si(z) > 0
HT for Si(z) < 0

be a general VSS made up of stable subsiructures. Let thz set {zi¥}
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and the set {z*-] be the set of steady state RPs corresponding to the
inputs »** and »i-, where

ut = [u;, . . owt L ou,)T
wit o= Juy .. wyT . w7

Then a sufficient condition for reaching of the sliding regime is given

by

zit € 5{z}<0

zt- € S(z)>0 foreil i = 1,2, .m
Procof:

The number of control inputs is m. Therefore the sets §zi+}
and {zxi~} each comnsists of 2™1 elements, each of which represents a
steady state operating point in the = dimensional state space.
Consider an element of the set {z**].

zit € S(z) < 0

Therefore

w=w o @) = K

K is a positive real number. Under this control input the steady state
operating point is z*~.

lim Si(z) = S(z*7) = ¥

M is a positive real number, and T is the seitling time.

[ dS;(z)] _ M+K
di

>0

leverage r
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[ ds;(z)
dt

Si(z)<0

In a similar way starting from any point zi-, we get

[ 45,(z)
| di

Si{z)>0

The above theorem may be stated in words as follows. If the steady
state operating point of a substructure effective in any region of the
state space in a VSS does nnt belong to the same region in the state
space, then the system RP eventually reaches the switching
boundary. The existence of sliding mode may then be examined by
studying the state velocity vectors in the neighborhood of the sliding
surface.

Having seen the existence and reaching conditions of sliding
regimes in VSS, the next focus of interest in the analysis of VSS is,
the behavior of the system operating in a sliding regime. The next

section deals with this aspect of VSS.

3.5 Equivalent Control

Equivalent control is an analytical tool of VSS theory to
study the behaviour of thg system under sliding mode control. The
method is due to Utkin [2] and is described first for a general case

and then applied for a variety of particular classes of VSS.
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Consider the general dynamic VSS,

= f(ztu); zcR", fEF*; weR™, (3.18a)

u;H(z,t) for Si(z) > 0

=Y u(zt)  for Siz) < O

i=1,2, m

(3.18b)

The control inputs %, w»;-, Ff and the system siates are all
continuous {functicns of time. The individual switching boundaries
defining the structure-control laws are all continuous functions of
the system states. The sliding regime is on the hypersurface o = 0,
which is the intersection of all the individual switching boundaries.

6=0=[S, S, S 17 (3.19)

Away from the sliding hypersuriace ¢ = 0, the equations of motion oi
the RP of the system are well defined and continuous. On the
switching boundaries the control inputs »; undergo discontinuity and
the equations of motion of the RP given by Eq. (3.18a) are undefined.
When sliding regime exists, the system RP eventually reaches the
switching hypersurface ¢ = 0 and hence the equation of motion of
the RP as given by Eq. (3.18a) is undefined and cannot be of any
help in studying the behavior of the system under sliding mode
control. An alternative method is then required to define the
equations of motion of the system, in terms of the equations of
motion away ifrom the discontinuity surfaces and the equations of
the discontiuity surfaces themseives. The formal method of achieving

this objective is the equivalent control method.
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The application of equivalent control method is as follows.
Time derivatives of the switching functions S;(z) are determined using
Eq. (3.18). Under ideal sliding mode the system RP stays on the
sliding hypersurface ¢ = 0 and hence the time derivatives of Si(z) are
zero. This fact is used along with Egq. (3.18) to solve for the
components of the control vector. The vector thus obtained is called
equivalent control u,,. This equivalent conirol vector u, is then
substituted inte Eq. (3.18a) to obtain the equatiions of motion of the
system under ideal sliding mode. In the case of real sliding mode, the
RP makes oscillatory motion about the switching hypersurface in a
smmall but finite neighborhood of the sliding hypersurface. This
difference between ideal sliding mode and real sliding mode arises
out of nonidealities in the switching hardware such as hysteresis,
delay, etc. These nonidealities are ignored for the moment. These
nonidealities and their effect on the ideal sliding motion are
discussed in Section 3.5.5. In the following sections the method ofi

equivalent control are applied to a few particular classes of VSS.

3.5.1 Limear Systems with Scalar Control

We consider here a class of VSS that are linear with a single

control input.

z = Az +b(t)u (3.20)

zeR™ ; A(f)cF™ by F* ; b(t)eFf™;, wcR!
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ut for S{z) > 0
w” for S(z) <0

The contrel is scalar and the switching boundary is given by the

iollowing function.

S(z) =gz =[g: g2 g1z, =z z, 17

Under sliding mode control, the RP of the system eventually moves

onto and stays on the switching surface S(z) = 0.

s _ . _
ar 9% =0 (3.21)

Combining Eq. (3.20) and Eq. (3.21), we get
gA+gbu,, =0
Uy = —[gb]lgAz (3.22)

Replacing the discontinuous control input = by the equivalent
continuous control input u,, in Eq. (3.20), under the assumption that
[gb]! exists, we get

& = [A-b(gb)lgAle = [I-b(gb)glaz (3.23)

The equation of motion of the RP described by Eg. (3.23) is
continuous and is the equation of motion of the system under ideal
sliding mode control. The rank of [/-&(gb)!g] is less than full. The
equivalent system is therefore of reduced order. This same fact may
be seen in the following way. Under sliding mode control the system
trajectories stay on the switching boundary S = 0 in the state space.
S =gz = 0 represents a surface of dimension {(n-1) in the state
space. The system states may be reassigned to give the following

equivalent description of the system.
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£, = zp

£p = Zg

3 _ _ 1

IZn_y = Zp = —g(glzﬁ-gaxz*" Fn-1Tn—1) (3.24)

Equations (3.23) and (3.24) describe the same system in two different

ways and the order of the system is seen to be (=n—1) from Eq. (3.24).

3.9.2 Linear system with Vector Comntrol

Consider the linear dynamic system described by

£ = A(t)z +B(¢)u (3.25a)

zek® ; A(t)eF™ by F* ; B{t)eF™ by F™ ; uck®

u;t for Si(z) > 0

w = u;~ for Si(z) <0 =12 m

(3.25b)
The elements of A(t),b(i) are all continuous functions. »* and w~
are constants away from the switching boundaries S)(z) = 0. The
switching boundaries are alsc continuocus functions of the system
states. In the vector case the sliding hypersurface is the intersection
oi the individual switching boundaries. The systemn RP eventually
moves onto and stays on the sliding hypersurface under sliding
control. The intersection of the individual switching boundaries is
given by,

¢ =0-= [Sl Sg Sm]T (3.26)

Under sliding mode control, the system trajectories stay on the

sliding surface and so do/dt = 0.
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ds; 2 085; dz;
dt Ez 8z, di

do . 05
= _ . {r = . . e = em——

G is an m by n matrix whose rows are the gradient vectors of S;(z).
Under the assumption that [GB]! exists Eqs. (3.25a) and (3.27) may

be combined to obtain the equivaleni control input w,,.
GAz + GBuyy = 0
Uy = —[GB]"'GAz (3.28)

Substitution of u,, into Eq. {(3.25a) leads to
% = (I-B[GE]"'G)4z (3.29)

Equation (3.29) describes the system motion under sliding control.
The matrix (/-B[GB]™'G) is less than full rank. The system motion is
constrained to be on the intersection of the m switching boundaries
given by S;(z) = 0. Each of these switching boundaries is an n-1
dimensional surface in the state space. Therefore the sliding surface
is described by an n-m dimensional surface in the state space.

Therefore the equivalent system description is of order n-m.

353 Systems Linear in Comntrol

Equivalent control method is also applicable to systems that
may be nonlinear but are linear with respect to contrcl. Consider
the dynamic VSS described by

z = j(z.t)+B(z t)u
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TER™; fEF™ by F*;, BCEF™ by F™ ; uwecR™

au;t for S(z)> 0

® = u;” for Si(z) < 0 t=1R m

F and B are continuocus functions. The individual switching

boundaries are continucus functions of the state and are described

by S;(z) = 0. The sliding hypersurface is represented by o = 0.
c=0=1[S S, Se17

Under sliding control,

do

at - =0

G is an m by n» mmalrix whose rows are the gradient vectors of S;(x).

When [GB]™! exists, u,, may be computed.
Gf + GBu,y = 0
Ugg = —-[GB1\Gr

The continuous equivalent system under sliding control is given by

+ = (I-B[GB]"'G)f

As before, the overall system dynamics are determined by the nature
of the sliding hypersurface and is independent of the parameters oi
the substructures. The equivalent control input %, is also
independent of the individual comntrol inputs «* and »~ for the class

of systems that are linear in control.
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3.5.4 Nounlinear Systems

Consider the general system

z = f(z.t,u) (3.30a)

;T for Si(z) >0
U = _ i =12 ,m

; for S{z) <0
U, () (3.30b)
Equation (3.30a) may be put in the foliowing form.
z = freu’(f -5+

_|o for o(z) > 0
“ =11 for o{z) < 0

u° is a new control function also having discontinuities on the sliding
hypersurface. f* and f~- are the state velocity vectors on either side
of the sliding hypersurface. Finding such a decomposition is always
possible when »;* and ;- are constants [2]. In other words for relay
control systems the state equations can always be manipulated and
" expressed linear in control. With respect to u® equivalent control

method can be conveniently applied.

3.5.5 Physical Meaning of Equivalenl Comntrol

It was assumed that in ideal sliding mode control, the
conirol u; is capable of changing at an infinite rate and that the
system RP stays always on the sliding hypersurface. In the ideal case
the system trajectories are always directed along the sliding surface.
In reality the hardware used to realize sliding control (finite

switching time of the switches used, hysteresis involved in sensing
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the crossover of switching boundaries), introduces nonidealities such
as hysteresis and delay in the real sliding motion. As a result in a
real sliding control, the control inputs change at a finite rate
alternately taking on the values u;* and »;-, and the system RP stays
in a finite A vicinity of the sliding surface.

llell= 2

Consider the general system linear with respect to control.

Zz = fz,t)+B(z.t)&

where # is the discontinuous control input which keeps the system
motion within a A vicinity of the ideal sliding surface.

& = Gf +GBY

2 = -[GB]'Gf +[GB] 15
As before G is an m dy n matrix whose rows are the gradient vectors
of S;(z) and [GB]! exists.

B = ugy+[GB]6

What is known about & is that it keeps the system RP in a finite A
vicinity of the ideal sliding surface, and that as the nonidealities tend
to zero, A vanishes. The system motion is forever bounded within the
A viecinity of ¢ = 0. Therefore the average value of 6 = 0. Taking

averages

ﬂuue = [ueq]awe

Thus physically the equivalent control input is the average value of
the input control signal, continuous or discontinuous, that will

maintain the system on the sliding surface. Alternatively it may be
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viewed as a fictitious continuous input which will keep the system,
with initial conditions on the sliding surface, to remain on the sliding

surface.

3.6 Stabilily of NMMotiom in the Sliding Regime

The final step involved in the analysis of VSS is the stability
of the system in sliding mode. This step is much simpler than one
would imagine. The existence of sliding regime and the condition for
reaching the sliding regime guarantee that the system motion is
confined to remain on the sliding surface. As a result the answer to
the stability question rests solely on the nature of the trajectories
on the sliding surface. If the phase trajectories on the sliding
surface all converge to a unigue steady state operating point, then
the system is stable. The sliding surface is normally expressed as a
linear combination of the states being equal to zero. The obvious
advantage then is the ability to apply the theory of linear differential
equations to study the stability of the trajectories on the sliding

surface.

3.7 Design Methods

The design process in VSS consists of two steps. The first
step is to select appropriate switching boundaries in the state space.
The system motion under sliding control is at all times on the sliding
surface, and consequently the overall system dynamics is dictated by
the nature of the switching boundaries employed in the structure-

control law. The criteria in selecting the switching boundaries are
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that the trajectories omn the sliding hypersurface must converge to
the desired cperating point, and that transients in the course of
reaching the operating point must satisfy the requirements of
overshoot and settling time in the various states. The second step in
design is to selecti appropriate substructures active in the various
regions of the state space defined by the switching boundaries. This
selection is done in order to satisfy the conditions for the existence
and reaching of the sliding mode.

The switching boundaries are usually selected as one given
by S; =0, where S; is a linear combination of the states of the
system. The reason ior this choice is two-fold. It enables analytic
solution to the overall systermn behavior through the application of
equivalent conirol method. Besides, since stability involves essentially
the study of the stability of the trajectories on the sliding surface, it
enables the application of linear system theory for the study of
stability. The state assignment to a system is not unique. It is seen
in subsequent sections that the desirable state assignment is the
output error and its derivatives. These states are called the
contrcllable states or phase variable states. Then the desired
operating point is the origin in the state space and the stability
study reduces to output zeroeing problem. The second aspect of
design, mnamely the selection of control inpuis toc satisfy the
existence, and reaching conditions of sliding mcde, is achieved

through the application of the inequalities stated in Section 3.2.



3.7.1 Transformatioms in Slate Space

It was mentioned that the desirable way of assigning states
in VSS is output error and its successive derivatives. This desirable
assignment is not always feasible, the reason being discontinuous
contirol as in the case of VSS invariably leads to discontinuities in
the higher order derivatives of the output. Besides, all higher order
derivatives of output may mnot be physically accessible for
measurement in the system. In such instances, it is necessary to
define the system through alternative states which are continuous
and accessible. The switching boundaries also then necessarily have
to be a linear combination of these physical states. It was seen in
Section 3.5, that the method of equivalent control provides an
equivalent continuous system description. This property is used to
transform the actual sliding equations in physical coordinates into a
fictitious continuous system states of output error and its successive
derivatives. Such a transformation enables simple stability analysis
even though the actual sliding surfaces are defined through the
physical states of the system.

Consider the system

Y = Fly.t)+By.t)u

u;* for S(y) >0

= - for S{y) <O ¢ =12 -

u'..
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c=0=[S S S.I"=0Gy

G is an m by n matrix whose rows are the gradient vectors of S(y).
Under sliding mode control applying equivalent control, we get

v = (I-B[GB]'G)f (3.31)

Equation (3.31) represents an equivalent continuous system and may
be used to obtain the relationship between the physical states and
the phase variable states.

y = Qz,t)z

The sliding equation may now be transformed to phase variable form.

o=Gy =[GQz = G’z (3.32)

The system motion is now given by &z = 0. The sliding equation is
now in terms of output error and ilts successive derivatives, and
hence the study of stability is simpler than otherwise. However, Eq.
(3.32) is in general nonlinear and dependent on the system
parameters implicitly through the transformation matrix Q(z.t). In the
following sections the design methods for a few particular classes of

VSS are indicated.

3.7.2 Linear Systems with Scalar Control

We consider now a limited class of VSS, which is linear, with
single input, and which may be expressed in the phase variable

canonical form.

T
dZo dn_EZc dn—IZO

dt din—2 din-1

€ = A()z+du ;. z = |z4
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(3.33a)

[ forS(z) > 0
Y lu forS(z) < 0 (3.33b)

The system states are defined as the output error and its successive
derivatives. It is also known that the system order being » and
number oif controls being 1, it is possible to obtain an overall system
response of order mn—1 under sliding control. The steady state and
dynamic requirements may be expressed as a homogeneous
differential equation of order n—1, whose eigenvalues are the desired

eigenvalues of the overall system. Let
d*-iz, dzg

o= gn_l—dtn—_;—+ .+ +917t—+z° =gx =0 (3.34)
The steady state solution of Eq. (3.34) is z, = 0, leading to output
error being zero under steady state. The transient response during
error recovery depends on the eigenvalues of Eq. (3.34). In this class
of VSS the system dynamics are entirely determined by the
eigenvalues of the switching boundary ¢ =0 and are totally
independent of the system parameters.

The condition for the existence of sliding regime is

lim ¢ < 0 < lim &
o=0*% o=0"

lim+ gAz +gbut < 0 < lim gAz +gdbu—
g=0

o=0"

The condition for reaching the sliding regime is given by

limo <0< limo
¢>0 o<0
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gAzT +gbut < 0 < gAzr +gbu~

3.7.3 Systems Limear im Scalar Comntrol

The class of system described here is linear in control. The
system states are output error and other continuous, physically

accessible variables in the system.

¥ = flyt)+bu; v = [yo v, Yn-z Yn-117 (3.35a)

e forS(y) > O
“Z1u-  forSy) <O (3.35b)

As before, the desired systemn response may be expressed as a

differential equation of order »—1. Let

0(Y) = Ga-1Yna+ . + . +9, Y1 +Yg =gy =0 (3.36)

Under sliding mode control, applying equivalent control method

v = [I-b(gd)gly (3.37)

From Eq. (3.37) the relationship between the physical states and the

output and ils derivatives are computed.

dy, dr 1y,
7
dt den—1 (3.38)

y =0z z=[yo

where z represents the vector whose elements are output error and

its derivatives. The sliding equation in the phase variable form is now

given by,
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o{z) =glz =0 (3.39)

Equation (3.39) determines the stability of the irajectories on the
sliding surface. The condition for reaching the sliding regime is,

gf +gbu* < 0 < gf +gbu-

3.7.4 Syslems Linear im Vector Comlrol

In the case of vector control of a systém of order n with m
control inputs, it was seen that under sliding control the overall
system order may be reduced to one of order m-m. As a result the
dynamic requirements of the overall system may be represented by a
differential equation of order m—m. This requirement of o{(z) = 0 (of
order m—m) may be wrilten down as the intersection of m sliding
surfaces S;(z) = 0 each of order n—-1i. Therefore, to begin with we see
that there is ireedom available in selecting the m individual switching
boundaries in order to achieve the same overall response. Let the
sliding hypersurface be

o(z) =0 =[5, Ss Sn]? = Gz

G is the m by n matrix whose rows are the gradient vectors of the
individual switching functlions. The only condition in synthesizing G is
that the intersection of the various switching boundaries is the
sliding hypersuriace o = 0 of dimension n-m. In the vector case
there is no general method that can be used ito solve the second
aspect of the design process, namely selecting w;* and »;~ to satisfy
the requirement of reaching the <liding regime. Of a few methods

that exist, the simplest and most useful method is the diagonalization



69

method. It consists of transforming the original set of inputs =« into
a new set of inputs «° such thai the individual components deccuple
the motion of the system with respect to one of the switching
boundaries.

Consider

z = Flz.t)+B(t)u

Let ihe original set of inpuis u be transformed to «”.

©’ = @ GBJu

where @ is an arbitrary diagonal m by m matrix and [GB]! exists.

% = f(z.t)+B[GB]'Qu°

c =G +Qu°
¢ being a diagonal matrix, the motion with respect to each of the
surfaces, is coupled only to the respective inputs. The control law
then is chosen as

. ut for Si(z) >0
o= - for Si(z) < 0

’iLi
In the case of relay control systems, where «* and wu~ are
constrained to be constants, the diagonalization method is applicable
when F is a constant matrix [1].

The condition for the reaching of the sliding regime turns

out to be m decoupled conditions as a result of the diagonalization.

gzt < — grad Sj(z)f(z.f) < guu;~

where g; is the i** diagonal element of @.
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3.8 Slale Estimmation

Another area of application of the sliding mode control is
state estimation in systems. It was seen in the design of sliding mode
control that, the robustness oi the response against parameter
uncertainties is available only when the states are assigned to be the
ocutput error and its successive derivatives (the controllable states),
and the sliding surfaces are designed to be a linear combination of
these states. This important advantage of sliding modes is lost
whenever the state assignment is other than the output error and its
derivatives. In those instances a need arises to estimate the
controllable states of the system when they are not directly
accessible in the plant. Besides, in many physical systems only a few
of the states are available for convenient measurement. In linear
control theory there exists a method of designing observers to
reconstruct all the states of the systemm from the available states
and inputs [7]. Similar to these observers in linear control, sliding
mode principles may be used to reconstruct the system states from
the inputs, and other available states. Unlike linear observers,
sliding mode observers may be applied to nonlinear systems as well,
the only constraint being the plant observed is itself stable.

It was mentioned in Section 3.2 that under sliding mode
control, the overall response of an n®* order system with m control
inputs will be of order =—m. A pariicular case of interest in case of
state estimation is a first order system with one control. The overall
response obtainabie in this case is of order zero. The sliding surface

in this case is of dimension 0. The siructure-control law reduces
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effectively to bang-bang contrcl. Consider the simple first order
system with one conirol input, where it is required to get an

estimate of z.

Y =u
| =K for z-y < 0
¥ =1+x for z—y > 0

The block diagram of the scheme is given in Fig. 3.20. The sliding
point is represented by the equation ¢ = z—y = 0. Under sliding
control, ¢ = ¢ = 0.

6 =z-y =0

& =9
The equivalent continuous signal u,, represents the average value of
v and equals . »,, may be derived by passing u through a low pass
filter. The condition for the existence of sliding mode is given by

<0 for o >0

"’=‘b‘y=""“{>o for o <0

k> |z|

The nonideality of hysteresis in the comparator makes, in the real
sliding control, the switching frequency to be finite. The low pass
filter corner f{requency is decided by the switching frequency.
Therefore, the useful range of frequencies up to those for which
satisfactory estimation of # may be done, depends on the filter
corner and in turn on the nonidealities in the comparator. With high
slew rate integrators and fast switching comparators, such state

estimation circuits may be cascaded to obtain estimates of higher
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LOW
PASS

Fig. 320 A phese variable stote estimator emnploying sliding mode
control. The output from the low-pass filter 1is an
estimale of the derivative of the input z.

LOW
™ pASS —
2
Low | %
PASS

Fig. 3.21 A coescaded phase variable statz estimator to obtmin the
Jirst and second derivative of the input function z.
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derivatives of z as well. It must be mentioned that the finite
switching frequency of practical circuits causes considerable
deterioration in the useful bandwidth of such estimators. Figure 3.21

shows two such circuits cascaded to obtain estimates of z and %.

3.9 Static Optimization

It was mentioned in Chapter 2 that in all power converters
one of the major concerns is to process power with minimum losses
within the converter. This is normally done by avoiding dissipative
elements in the converter, and by using near ideal reactive elements,
and switches. In practical power converters, power dissipation due
to the nonideal nature of the reactive elements is inevitable. One of
the questions that arise in this context is, whether one is able to
select the operating point of the converter to minimize the losses
within the converter. This is essentially a static optimization problem.
It was also seen that, in sliding mode control, the dynamic response
obtainable depends upon the order of the substructures used and
the number of control inputs available. Clearly one can foresee
applications where more controls are available than are required to
achieve the dynamic requirements of the system. In these instances,
the extra contirols available may be used to achieve optimization of
the operailing point of the system. Or static optimization could also
be a stand-alone application of sliding control.

We illustrate here the simple example of a one dimensional
oplimization problem. Consider the plant input =z and the

performance function f(z) which is to be minimized. The plant is
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f (x)

= X

]3¢

Fig. 3.22 The relationship between the plant input and the
performance index f(z) of e plant. Sliding mode control
can be wused lo minimize (or meazimize) the performance
index in such plants.

y y*
PLANT —:@c

—E_ LOwW H
! S
PASS

Fig. 3.23 Sliding mode controller to wminimize the perjformance
wndez f(z) of the plent shown in Fig. 3.22.
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shown in Fig. 3.22. The control objective is to drive the parameter
z, that is input to the plant, such that fF(z) is minimized.

y = f(z): [F @) = 72

Suppose that there are no local minimums and that f(z) om either
side of z is a monotonically increasing function. The principle
involved is an extension of the estimation of the derivative of f(z).
The sliding mecde controller to achieve this objective is shown in Fig.
3.23. The input z is supplied with a time varying function. f{z) is
estimated. The polarity of jf(z) is the switching boundary which

decides the rate of change of the input variable z.
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CHAPTER 4

DC-TO-DC CONVERTERS

A major area of application of electrical power processing is
the conversion of power irom one voliage level to another. In the
case of ac power, conversion from one voltage level to another is
done efficiently with transformers. The transformer consists of two
windings — a primary and a secondary - electrically isolated from
each other, and magnetically coupled to each other through a
common magnetic circuit. The primary, excited by the ac source,
sets up an ac flux in the magnetic circuit. The secondary winding
linked to the common magnetic circuit experiences an induced
electromotive force (emf) across it, which is used to power the load
connected to the secondary. The primary emf and the secondary emf
are related to each other by the ratio of the respective number of
turns. Conversion from one voltage level to another is achieved by
suitable turns ratio between the primary and the secondary windings.
Ideally the transformer is lossless. FElectromagnetic voltage
conversion depends on the rate of change of intermediate magnetic
flux, and is not applicable for dc voltage conversion.

Efficient dec-to-dc power conversion is done by switched
mode power converters. As has been explained ian Chapter 2, such

switched mode power converters counsist of reactive elements and
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switches. The principle employed is to altermately draw energy from
the source to charge up reactive (energy storage) elements, such as
capacitors and inductors, and then to deliver the stored energy to
the load. When the irequency of such energy packets delivered to the
lpad is large, the load experiences practically uninterrupted dec
power. Satisfactory operation of such converters depends on suitable
configuration of reactive elements, and appropriate method of
controlling the switches to obtain efficient power conversion.

Switched mode dc-todc converters are nomnlinear and time
variant systems, and do not lend themselves to the application of
linear control theory. In the past, the method of state space
averaging had been successfully applied to characterize de-to-dc
converters [3]. The basic converter topologies and the method of
staie space averaging, leading to small signal transier function
description of dec-to-dc converters, are reviewed in Section 4.1. The
variable structure system (VSS) description of the de-to-dc
converters, explained in Section 4.2, is an alternaltive method of
characterizing the dc-to-de converters in the time domain. The
control problem associated with the dec-to-dc converters is also
presented in the same Section.

Equivalent control method of analysis of VSS provides a
simple equivalent description of switched mode converters under
sliding mode control. In Section 4.3 duty ratio controlled de-to-dc
converters are described in the sliding mode control format. The
equivalent control method is then applied to obtain small signal

models. It is shown that the equivalent control method and the state
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space averaging meithod of analysis both, though they ifollow different
mathematical formalism, arrive at essentially the same low frequency
characterization of the converters. One of the design methods,
namely transfer function description and classical control concepts
such as loop-shaping, opens up itc solve the control problem then
onwards.

In chapter 3, it was mentioned that the most important
feature of VSS is the ability to achieve responses that are
independent of the system parameters through the application of
sliding regimes. It is therefore more fruitiul to apply the concept of
sliding regimes to the control problem of dc-to-de converters, in
contrast toc the transfer function characterization and frequency
domain design techniques. The buck dec-to-dc converter is ideally
suited for this application, since its controllable states (output and
its derivative) are all continuous and accessible for measurement.
The application of sliding mode control is explained in Section 4.4.
The conditions for the existence and reaching of sliding regime are
derived. Suitable protection features needed for practical converters
are indicated alongwith the design criterion. The design method used
for the buck dc-to-dc comverters is mnot applicable to boost and
buck-boost converters. Section 4.4 also indicates the features
associated with boost and buck-boost converters leading to the
difficulties.

An alternative method of control of all three dc-to-dec
converters is the contirel of the inductor current. Seciion 4.5

describes the current controlled de-to-de converters. Application of
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equivalent control leads to the small signal description, as well as
time domain relationship between the inductor current and the
controllable states of the converters (output voltage and ils time
derivative). Equipped with the relationship between the inductor
current and the output voltage, it becomes possible to set up the
sliding mode control to all the converters in terms of physical,
continuous states of the gvstem, namely the inductor current and
the output voltage. Section 4.6 illustrates this method exhaustively
for the examnle of a boost converter. Conditions for the existence
and reaching of sliding mode, small signal and large signal stability
are established. Practical considerations and design criterion are
highlighted and test results for the boost de-to-dc converter are
presented. Similar design criteria for the buck and the buck-boost

converters are presented.

4.1 Dec-to-De Converter topologies

In this section, the different power converter topologies and
their coperation are briefly reviewed. For simplicity the operation is
shown with constant switching frequency. Figure 4.1 shows the basic
power converters and their inductor current waveforms. Each of the
above converiers consists of one inductor (L), one capacitor (C), and
a single pole double throw (SPDT) switch. The purpose of the
converter is to take in power that is available at the source with a
voltage vy, and to deliver power to the load (&) at a voltage v, The
SPDT switch is operated at a constant switching frequency (1/ 7,).

During a fraction d (duty ratio) of the switching period, the SPDT
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BUCK CONVERTER:
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Fig. 4.1 The three basic dc-to-dc converiers. During the caclive
period dT,, energy is drewn from the source (seen from
the increasing inductor current). During the mnonaclive
period d'T,, excess energy from the reaclive elements is
supplied to the load.
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switch is thrown to the active position. During this period energy is
drawn from the source wv; to charge up the inductor (seen by the
rising inductor current). During the {fraction d' of the switching
period, the switch is thrown to the nonactiive position. During this
period part oi the energy from the inductor is tramnsferred to the
capacitor and the locad. The active and nonactive period of the switch
are complementary to each other {d = 1—d'). The average voltage at
which power is delivered to the load is a function of the duty ratio
(d). The volitage conversion is efficient, since no resistive elements

are used in the converter.

4.1.1 Voltage Conversiom Ratios

The above converters are named on the basis of the
obtainable voltage conversion ratios irom each of them. The average
voltage conversion ratios for each of the converters may be
computed from the fact that, under steady state, the flux (the volt-
second integral) in the inductor is conserved from cycle to cycle.

The f{following are the average voltage conversion ratios of the

converters.
Buck Comnverter: Vo/ Vg = D
Boost Converter: Vo/ Y, = 1/7(1-D)
Buck-Boecst Converter: Vo/ Vy, = D/ (1-D)

where V, is the average load voltage, ¥V, is the average source
voltage and D is the average duly ratio. The buck converter is
capable of providing voliage conversion ratios of ¢ to 1. The boost

converter provides voltage conversion ratios of 1 and above. The
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buck-boost converier can give veltage conversion ratios of 0 through

i and above.

4.1.2 Dynamic NModel - State Space Averaging

One of the widely used methods oi controlling the output
voltage of de-to-dc converters is by means of closed loop control of
the duty ratio (¢). In order to design such closed loop controllers, it
is necessary to obtain a dynamic model of the duty ratio controlled
converters. State space averaging is an analytical method to obtain
the dynamic model of the de-to-dc converters, and is done as
follows. The dynamic model (state space description) of the converter
in each of the different periods making up the complete switching
cycle is written down. The overall dynamic model is then the
weighted average of the constituent dynamic models over one
complete switching cycle. The weightage factor for each constituent
dynamic model is the duration for which the respective circuits are
active in each cycle. The method is illustrated here for a two
switched network boost converter.

Figure 4.2a shows the boost converter. The two different
circuits resulting irom the two different positions of the SPDT switch
are shown in Fig. 4.2b and 4.2¢c. The dynamic model of the
converter when the switch is in active position (7, < ¢t < (k+d)T) is
given by

T =Az+by,; ¥y =c,’z
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— ] (s} Vo
LT
d
— Vg
(5 R ;
(a)
KTg<t< (K+d) Ts (K+d) Ts<t< (K+1) Tg
e — 60 8 o
L L
— Vg i — Vg =
c R § C R §
(b) (c)

Fig. 4.2 The boost converter (z), and the linear eguivalent circuils
of the conwverier during the active period (Bb) and
nonactive period (c).
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_ B o 0
D A= lo /R

y=v,: c,=[0 177

The dynamic model of the converter when the SPDT switch is in the
nonactive position {(k+d)T; < £ < (+1)7;) is given by

T = Apz+bgy, . Yy = cpx7z

Mo To -1/ L
°2‘[o -AE‘[l/c /R

Yy =v,: cp=[0 1]7

The overall dynamic model is given by

z = [dA,+(1~d)Ax)z +[db,+ (1 ~d)bslu, = Az +by, (4.1}
y = [de,+(1-d)c,]’z = ¢z (4.2)

Equations (4.1) and (4.2) describe a continuous model of the

converter which is equivalent to the duty ratio controlled switching

converter.

4.1.3 Transfer Funclion Descriptiom of the System

The averaged dynamic model described by Eq. (4.1) and
(4.2) can be applied to any two switched network converters. The
control in all such converters is by means of duty ratic modulation.
The above dynamic model can be used to find the transfer function
description of the converter between output voltage and the duty

ratio modulation [3]. Suppose that the duty ratio is d(t) = D+4d,
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where D is the steady state duty ratio and & is the superiinposed
corresponding perturbations =z = X+Z,

With  the

perturbation.

Yy = Y+¢, and v, = V,+17,,
(Steady state solution)

X = AX+bY,
Z = AR+ b0, +[(A) ~A) X+ (b, ~b2) V1A + [(A; —Ap)E + (b, —b2)D,]d
+ noniinear terms

linear terms

Y = ¢7X  Stewdy state solution

G = cT8+(c,T—ecNNXd +(c,T—c,T)2d
linear terms + mnonlinear ferms
Under the assumption that the perturbations are small
Ty d z .
(7 <« 1, 7 KL ¥ & 1), the nonlinear terms may be dropped to
g
obtain,
Steady state model:
X =-A"V,; Y =-=T4 WY,
(4.3)
(4.4)

Dynamic model:
2 = AB+b0,+[(A,—A)X+(b,~b2)V,1d

g =cT2+(c,T—c NN Xd
Equations (4.3) and (4.4) represent the small signal dynamic model of

the converters, and may be used to obtain the following transfer
(4.5)

functions:

ﬂgl = (SI—A)_lb

T,(s)

42
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_ﬂﬂ = CT(SI—A)—Ib

Ty(s)

(4.6)

Z(s) = (sI-A) (A —A)X+(b,~b2)V,]

a(s) (4.7)

T8 < [oa—ca X+ eT(s1-2) (s = 420X+ (b1 =52) ;] (4.6)

Equations (4.5) through (4.8) describe the small signal low frequency
model of the duty ratio controlled two switched network de-to-dc
converters, in the frequency domain. The various transfer functions

for the different converters are given in Table 4.1.

4.2 De-to-de Converters as VSS

In the state space averaging method, the dynamic equations
of the system are arrived at by averaging the dynamic equations of
the constituent circuits over a complete cycle. The resulting overall
system is a continuous equivalent model of the actual converters. In
the VSS description of the system, the dynamic equations are written
as a single set comnsisting of some discontinuous switching functions
as well. Different values wvalid for the discontinuous switching
variables lead to the different substructures involved in the VSS. In
this section, VSS description of the three basic de-to-de converters
are given. The analysis and design problem associated with the de-

to-dc converters is then indicated.
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BUCK CONVERTER:

u=q4 ——=i vo f
u=0
= C=— R
Vg
e ¢

BO0OST CONVERTER:
—e=3i y=0 Vo A

u={4
:Vg c -— R §

bosesssccaa

BUCK-BOOST CONVERTER:

- l J% = R $ u=4 ° u=0 .,
Vg Vg C ' < ko —
i : :

3 H —_— t

Fig. 4.3 The three basic dc-to-dc conwveriers defined through the
switching variable w. During the aclive ocnd mnonaciive
periods, the switching wvariable uw is assigned volues 1
end 0 Tespecfively.



89
421 Systemm Descriptiom

Figure 4.3 shows the three basic switching converter
topologies and their inductor current waveforms. The switch position
defines the switching variable (control input) « as shown in Fig. 4.3.
The defining equations of the system may then be writiten as

Buck converter:

di
LE = vgu ~vg
dug . Yg
¢ Tt R

Boost converter:

di

L'af't- = vg—vgl
d’UO — Ygq
Cgr =W -F

Buck-Boost converter:

d

LE%- = Yau +Ugl
d’Uo C— Vo
Car = TR

where # = i1-w. The systems are time variant and discontinuous. But
in the above description all the time variance and the discontinuities

have been isolated into the single discontinuous control variable w«.
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4.2.2 TFormulation of Control Problem

The description of all the above converters may be
expressed in the following ccmpact form.

£ = Ar+bu+c (4.9)

where, for
Buck converter:

[ 4
z = |yl

ll/C -1/ R -1 0

fo
;e = [0
Boost converter:
0 -1/ L [vo/ L r'Ug/L
[1/0 -1/ R b=[—q:/ ‘C‘[ 0

Buck-Boost converter:

[4
= lug

) 1/L _ [(vg—ve)/ L _ o
[—1/0 -1/RC: P = i/ C ;c‘[o

The system state vector z and the matrices Ab., and ¢ are all
continuous.

In the analysis of d¢-to-de converters, the structure of the
converter, and the switching variable as a function of time are
known. It is required to find the periormance of the converter. In the
problem of design of dec-to-dc converters, it is required to select a
converier topology, and synthesize the control input « to achieve the
desired performance. The analysis and design methods of VSS had
already been discussed in great detail in Chapter 3. In the following

sections, the theory of VSS is applied to analyze the duty ratio
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contrelled de-to-de converters. The design methods {for the
application of sliding mode control for the different types of

converiers are then outlined.

4.3 Amalysis of Duty Ralio Controlled Comverters

One of the most widely used methods of control of the de-
to-dc converters is by means of the duty ratio €. The equivalent
control method described in Chapter 3 can be used to find an
equivalent low frequency model for such converters. There are two
modes of operation possible under duty ratio control, namely

Continuous inductor Current Mode (CCM), and Discontinuous inductor

Current Mode (DCM).

4.3.1 Countinucus Inductor Curremt Mode {CCH)

The constant irequency duty ratio controlled de-to-dec
converters in CCM were already introduced in Section 4.1 and shown
in Fig. 4.1. They were also described as a VSS in Section 4.2.1,
through the switching variable w. The SPDT switch in each of the
converters operate at comstant frequency. The SPDT switch is in the
active position {u=1) for a iraction d of the switching period. For the
rest of the switching period (2'7;) the SPDT switch is in the nonactive
(2 =0) position. The system description of the various converters, in
terms oif the switching variable u, are given by Eg. {4.8) in Section
4.2.2. The schematic representation of the duty ratio controlled
converters is shown in Fig. 4.4a. The control voltage (v.) is

compared to a constant frequency triangular waveform to generate
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L
//\/ o GG O
= — 1l u
+ 0 — —— u
- 1c
u=0

(a)

Fig. 4.4a Duly ratlic conirel of switching converfers. The conirol
volinge v, 1is compared o @ consient frequency
triangular waeve fo generate the duty retio d.

A=f (Vc‘, Ts)
{b)

Fig. 4.4b Duty wralio controiled converiers as o wveriable siructure
systemn (VSS). The constent fregquency (irieanguler wave
is replaced by an inlegralor, and comparator with
appropricie feedback. The hysieresis in the comperator
s adjusted fo obimin consteni swilching freguency.



the duty ratio d. The same contrcl method is shown by an equivalent
scheme in Fig. 4.4b. This equivalent scheme is a mathematical
artifice used, in order to be able to apply the principles ci sliding
mode control for the analysis of duty ratio controlled converters.
The equivalent scheme incorporates an integrator and a comparator
with hysteresis. The control input is numerically equal to the duty
ratio (0=d=v.,=1). Suppose that the hysteresis A in the comparator is
a function of w,, such thet the switching frequency is maintained
constant at all duty ratios. I is to be stressed again that the
equivalent scheme in Fig. 4.4b is an artificial representation of the
constant frequency duty ratio controlled converters, in order to
apply the sliding contrel principles. The dynamic equations of the
controller and the converter may now be written as

Y =d-u (4.10)

y-
N

Az +bu +c (4.11)

Equation (4.10) is a scalar equation. Equation (4.11) describes the
converter and is of order two. Equations (4.10) and (4.11) may be

combined into a single set of a third order system as follows.

{1

The structure-control law is

{1 for o =y > A
U =

0 for o

Under ideal sliding mode contrel, ¢ = ¢ = 0 and u, = d. The overall
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system is of order 3 and the number of control input is 1. As
explained in Chapter 3, the equivaleni description then is of order 2.
By substituting d = u,, in Eq. (4.12) we get an equivalent system
description of order 2.

i = Ar+dd +c (4.14)

The above description is exact when the system motion is along the
ideal sliding surface (A = 0). Finite constant switching frequency
implies that A#0. As a result the actual system motion consists of
nonidealities owing to finite A (switching ripple), superimposed on the
ideal motion given by Eq. (4.14). When the switching ripple is small,
the actual system may be represented by the ideal system within a
finite error. This same condition may also be stated as follows: the
switching frequency must be sufficiently large compared to the
natural frequency of the converter.

Equation (4.14) is in general nonlinear. The only condition
imposed so far is that the switching frequency be sufficiently large.
Hence Eq...(4‘.14) may be used to study both the small signal as well
as large signal behaviour of the converters. Alternatively Eq. (4.14)
may be linearized around the operating point to obtain the transfer
function description of the converters. In order to relate the results
easily to those obtained by the state space averaging method, Eq.
(4.11) may be rewritten as follows.

z = [Az+buglu+ Az +bu,](1 —u) (4.15)

where A, Az.6,6, are as defined in Section 4.1.2. Under sliding mode

control u4,, = d and so Eq. (4.15) reduces to
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fn | BUCK CONVERTER BOOST CONVERTER | BUCK-BOOST CONVERTER
Vo DY, V,/ (1-D) -V,D/ (1-D)
I Vo/ﬂ Vo/ﬁ (i‘D) —Vo/ﬁ (i"D)
i D 4+SCA 1 14SCA D  1+SCR
Vg R G(S) R(1-D)° G(S) R(1-D)° G(S)
Vo g 1 1 1 _ D 1
Vg G (S) (1-D) G (S) (1-0) G(s)
i Yo 1+SCR 2Vo  1+SCR/2 Vo (1+D0) 1+SCR/ (1+D)
d RD G (S) R(1-D}2 G (S) RD(1-D)2 G (S)
Yo Voo 1 Yo 1-SL/R(1-D)® Vo 1-SLD/R (1-D)3
d D GI(S) (1-D) G (S) D (1-D) G(S)
L,z L 2 LC L .. LC
6 (S) 1r5gHsiLe S pmE*e -0z | " Ra-0 o2
TABLE 4.1 The steady state,

end {ransfer

SJunclions of constant

Jrequency duly reiio conirolled dc-to-dc converters.
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z = [dA,;+(1—-d)Az]z +[db,+ (1 —d)dslu, = AZ + by (4.16)

Eq. (4.16) is identical to Eq. (4.1) obtained following state space
averaging method. Equation (4.16) may be linearized to obtain the
small signal transfer functions identical to those obtained (Eq. (4.5)
and (4.8)) following the state space averaging method and given in

Table 4.1.

4 3.2 Disconltinuous Inductor Curremt Mode (DCH}

Dec-to-dc .converters may aiso be operated in the DCM range
of operation. In DCM operation, the inductor current starts from
zero in every cycle, goes to zero before the end of the switching
period, and restarts from zero at the beginning of the next cycle.
Such a mode of operation arises out of the fact that the most
inexpensive realization of switches in dc-to-dec converters is by
means of unidirectional switches, which are capable of carrying
current in only one direction. As a resuli when the inductor current
reaches zero during a part of the switching cycle, the unidirectional
switch inhibits reversal of current and blocks. Figure 4.5 shows the
basic converters in the DCM range and the corresponding inductor
currents. The unidirectional nature of the switch is shown by a diocde
on the throw arm of the SPDT switches. The dec-to-dc converters in
DCM then have uiiiee characteristic periods during a cycle - activie
(u = 1), nonactive (up = 1), and blocking (u' = 1) — Suppose we define

the switching variables as



BUCK CONVERTER:

S7

naeture of the swilch. The current in the inducior falls fo

u=1 — | Vo 1
o L A
u =9 Up=1
- et ; A
BOOST CONVERTER: - u=d o vg=d o
— j Ups=1 Vo i
& A
L °
u=1 u =g
T Vg C—_ R §
BUCK-BOOST CONVERTER:
u'=q Vo i
—_—— ® A
u=41 Us=14
Vg E L c| R
i
Fig. 4.5 The basic dc-to-dc converters in the Discontinuwous
Conduction. Mode (DCH). The schematic diode
throw of the SPDT switch indicates the wnidirectional

zero before the end of every cycle.
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1 for &7, =%=< (k+d)T;
“ =10 for (f+d)T, = £t <= (k+1)T,

0 for kTy =t =< (&+d)7T,
Uy =11 for (k+d)T, <t < (k+d+d;)7;
for (k+d+d)T, < ¢ < (k+1)T;

Q

0 for kT, =t<< (k+d+dy)T,
1 for (k+d+dy)T, <t < (+1)7

wt+ugtu' =1 for all ¢

The dynamic equations of the system may be written as

4.

= A z+b,vy, for w =1
z = A22+b2'ug for Up = 1
T = Agz +bgy, for uw' =1
The overall systemn equations are then given by

z = [Ayz+byg Apz+bau, AT +dgyglu (4.17)

where z = [z u, u']7. The overall system given by Eq. (4.17) is
linear with respect to control. The equivalent description is found by
replacing the discontinuous switching variables by their average
values over a cycle.

z = [Az+bwy Az +bauy  Agz+bguglld dp a'l” (4.18)

The overall dynamic system described by Eg. (4.18) is identical to the
system description cbtained by the state space averaging method [8].
Although the dynamic equations show up three switching variables
d,dp.d', there is only one independent conirol input d. The other iwo

input variables d, and d' are functions of d, the circuit elements of
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the converter and the switching period 7;,. The method of obtaining

the transfer functions is given in detail in reference [8].

433 CCHM Qperalicn under Variable Swilching Freguency

It was seen in Section 4.3.1 that in the case of duty ratio
control, the overall system depends on the converter elements and
the duty ratio, and independent of ithe switching frequency; the only
restriction on the switching frequency is that it be sufficiently large
compared to the natural frequency of the converter. When the
switching frequency 1is constant, state space averaging or the
equivalent control method may be used to obtain the transfer
function description of the system. This property has been used in
the past to independently control two different outputs of a multiple
output dc-to-de converter [9]. When the switching frequency is not
constant, duty ratio is not defined and it is not possible toc time
average the system. However the equivalent control method can very
conveniently be used to arrive at the transfer function descriptions.
With reference to Fig. 4.4,

Y = v.—u
z = Az +bu+c

[—1

gl {0 olly

HR

+[Uc
b lc (4.19)
The structure-control law is the same as before.

{1 for o
U =

y > i (4.20)
Yy <

¢ for o
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fn  |BUCK CONVERTER| BOOST CONVERTER | BUCK-BOOST CONVERTER

Yo /ATA Vg/ (1-V,) -VgVe/ (1-V¢)

I Yo/A Vo/R (1-V,) ~Vo/R (1-V,)

i Vo 1+SCR Vo 1+SCR (Vg—Vo) Vo 4+SCA

Vg aY, G(S) AvZ 5(S) AVy G (S)

v Voo 1 Voo 1 Vo 1

Vg Vg G(S) Vg GI(S) Vg G(S)

i Vg 41+SCH 2Vs 1+SCR/2 (Vg—VYo) °1+SCR-Vo/ (¥g—Yo)

Ve R G(9) RYZ  GI(S) AvZ G (S)

7o 1 vé 1 (Vg—Vo) Z1+SLVy (Vy=Vp) /RVZ

— vV, —— —_—— -

Ve ? 6(s) Vo G(S) V G (S)

s} | 145 & +s%c 1+sL—V°2+saLcV_°2 1+sL(VQ¢V°)2.52'-C‘V9‘V°’2
RV vé RVZ VP

TABLE 4.2 The steady stote,

and ftransfer

SJunclions of wvariable

Jrequency duly ralio conirolled dc-to-dc converters. V,
is the normealized, nondimensional control input.




101

Just as before, under sliding mode conirel, ¢ = 6 = 0 and %, = 7.
The equivalent system representation is
T = Az +by +c (4.21)

For convenience, Eq. (4.21) may be restructured as follows where
A,,A2,0,,6, are all as defined in Section 4.1.2.

z = [U Ay +{1—v)Azlz +[u b + (1 -v,)b Jyg (4.22)
Equation (4.22) is in general nonlinear. z,v.,v; may be perturbed io
get the steady state solutions and the various transfer functions. The
various transfer functions are given in Table 4.2. These are similar
to those obtained for constant switching frequency converters and
given in Table 4.1. The only difference is that the transfer functions
are expressed in terms of the operating voltages and currents

instead of the duly ratio. The condition that the switching frequency

be sufficiently large still holds.

4.4 Sliding Mode Comnirol of Buck Comnverter

In Section 4.3, we digressed to apply the equivalent control
method to obtain small signal transfer functions of the duty ratio
controlled dc-to-dc converiers. The purpose of that exercise was to
show the usefulness of equivalent control method as an analysis
method for programmed switching structures. A more fundamental
aspect of VSS is to be able to synthesize the dynamic siructure-
control law {as against the programmed structure-control law of duty

ratio control) to achieve the desired steady state and dynamic
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periormance of the converter. The steps involved in such a design
process are as [ollows.

i) to relate the steady state and dynamic requirements into an
appropriate sliding boundary.

il) to establish a structure-control law with reference to the
selected sliding boundary, such that the conditions of reaching and
existence of sliding regime are satisfied.

It was mentioned in Chapter 3 that the above design process is
simple when the controllable states of the system (output and its
derivatives) are continuous and accessible. Dc-to-de buck converter
satisfies these requirements and is the simplest of all three dc-to-dc
converters for the application of sliding mode control. This example
was shown briefly in Chapter 3. In the following section, the de-to-de
buck converter is first taken up for the application of sliding mode

voltage control.

441 Buck Comnverter im Phase Variable Canomical Form

Figure 4.6 shows the buck converter, its inductor current,
and the outpuit voltage under steady state. The VSS description of
the buck converter is

T = Az +bu (4.23)
[ o —17n] . g/
‘[uo‘A'{uc—UR?“"[o

The inductor current ¢ and the output voltage wy; are both

]
!

continuous functions. The derivative of the output voltage (dug/ dt) is
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u=f —=1i Vo T NG ¢

;

x
@

Fig. 4.6 The buck dc-fo-dc converter end the wvarious steady state
wave forms. The polarity of the swilching funcltion o
delermines the state of the switch.
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proportional to the capacitor current, which is also a continuous
function. Let the desired output voltage be V,°. Then the output
error is defined as wyg—V,°. For dc-to-dec buck converters V;° is

censiant, and %’ < v,. Equation 4.23 may then be transformed as

7 = A'y+dbu+c’ (4.24)
o _ [ 0 1 . _ I'0
A= 1 1 o Vg
LC KC T.C
[

. _ 0
y ' c - _Voo
LC

The dc-to-dec buck converter is a second order system with one
contreol input. Therefore the dynamic response obtainable under
sliding mode control is of order 1. The desired steady state and
dynamic response may then be expressed as a one dimensicnal
sliding suriface (sliding line) in the phase plane. Consider

d(vg—Vg°)

g = ('!)D_"I/O’)'i.’r di =0= [l T]T =gy (4.25)

Equation (4.25) describes a stable trajectory in the phase plane with
steady state operating point wg = V*, and first order transient
recovery with a time constant 7.

The next step is to select the structure-control iaw such

that the line ¢ =0 is a sliding boundary. The condition for the
existence of sliding regime is

lim 6<0; lim ¢>20
¢ = 0ot g = 0"
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Let
u* for 0> 0
U =
©~ for o <0
The condition for the existence of sliding regime is

gAYy +gbut+ge’ < 0 < gAy+gdbu~+gc”®

Expanding and applying the condition that dvy/df = 0, we get
T
(1——152:) [dvesdt], _ . + ﬁ;(vgu+—'vo) <0

T T -
0 < (1-5r) [dve/dt], - + TA{wgu ™ —v0) (4.26)

From Eq. (4.26) u* and u~ are selected as 0 and 1 respectively. The
condition for the existence of sliding mode is then 7 > RC. The same
condition may also be arrived at from the steady state waveforms

shown in Fig. 4.6.

(6], < 8 < [6], - (4.27)

The next step in the design process is to ensure that
starting from anywhere in the phase plane, the system RP will reach
the sliding line o = 0. Recalling the theorem in Section 3.4 on the
sufficient reaching condition, it may be verified from Fig. 4.7 that the
sliding line partitions the phase plane into two regions and that the
steady state operating pecint for the comntrol input in each of these
regions lies in the opposite region. The switching boundary ¢ = 0
then qualifies as a sliding line.

i) ¢ = 0 is a stable trajectory satisiying the steady state (vg = V;°)
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d(V@-VSB

\dt
N\ u=ur=0

\\\
[Vo- Vﬂjuqr

= Yo- V@
VQ VO \
Fig. 4.7 The switching function ¢ = 0 is seen in the phase plane.

¢ = 0 parlifions the phase plone in fo fwo Tegions (o < O,

and ¢ > 0). The conirol inpui is respeclively u- and u*
in Lthese ftwo regions.

iA
E g
Vo/R
>
Vo 3
e
Yo
t; to
> ¢t

Fig. 4.8 The starting transient in the inducior current i and the
output woltage wvy wunder sliding wmode conirol. The

duration from ¢ = 0 fo t = t, is the inifial lransient wn
reaching the sliding line ¢ = 0. The second pari of the
transient from t = t, to t = t, is the sysftemn motion

along the sliding line (o rewch the sieady sicie operaling
point (ug = V5°).
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and dynamic (exponential error recovery with a time constant 7)
requirements.

ii) The boundary o = 0 is a sliding regime when » = 1 for ¢ < A and
w = 0 for ¢ > A. Further, conditions for the existence of the sliding
mode are T > RC and v, > V,°.

iii) Starting from any arbitrary initial condition on the phase

plane, the system eventually reaches the sliding line.

4.4.2 OQOvercurrent Protection

In Fig 4.8 a typical starting transient is shown. It consists of
two parts. From time ¢t = 0 to £ = #; is the time taken for the system
RP to reach the sliding line. From time ¢ = ¢, to ¢ = ¢; is the time
taken to reach the steady state operating point (vg = V;°) along the
sliding line. The initial transient time ¢, depends on the system
parameters v, L., and C. The sliding mode transient f; to {; is
exponential with time constant 7 and is independent of the system
parameters. During the transient, the inductor current ¢ is seen to
reach levels much higher than the steady state level. This large
transient inrush current is objectionable for two reasons. Firstly it
would saturate the inductor magnetic circuit leading to still larger
inrush currents. Secondly the electronic SPDT switch in the
converter may not be capable of withstanding this large inrush
current. It is therefore a healthy practice to 1limit this inrush
current. This feature is easily incorporated under sliding control by

the following simple modification of the sliding line.
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Fig. 4.9 The modified sliding line incorporating overcurrent
proteclion. The sliding line is now limited to I°.
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Fig. 410 A pictorial representation of the control low for the
buck dc-fo-dc converter shown on the phase plane.
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Figure 4.9 indicates the modified sliding line incorporating
the overcurrent protection. The modified sliding line ¢® = 0 shown in

Fig. 4.9 consists of three pieces of straight lines.

[ d(wo—V0") d{vo—Vp°
dtc fe=0 for (odt o)>[m
o _ e d{vo—Vs") _ dfug—Vp")
g = (1}0 V°)+‘r—dt——0 for T([w
d('Ug—Vo) d (v —V°
{ — 0 +1max=0 for —-(()dt*[”(*]mx (4.28)

The modified sliding line also satisfies the reaching condition. This
may be seen from the sieady state operating points for the two
control inputs # =1 and « =0. It was already seen that the
existence conditions of sliding regime is satisfied in the middle
portion of the sliding line ¢° = 0. In the current limited region the

sliding line may be written as

o’ = [O 1]y —Imax = go'y —[max

6° =gy
Tty Vg . Yo Trax Yg _ Vg
“RetICY I << ~mctIc* "I (4.29)

When |In.,] is sufficiently low, u* = 0 and v~ = 1 satisfy Eq. (4.29). 1t
may also be seen from the orientation of o° = 0 that the overall

irajectory along o’ = 0 is stable leading io the steady state operating
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Fig. 4.11 An overell glonce of ithe design criteria wused for the
sliding mode conirol of buck dc-io-dc converter.
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Fig. 4.12 The control schemnalic of the sliding mode coniroller for
the buck dc-lo-dc converter.
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Fig. 4.183 The vesponse of a buck dc-lu-dc converier wnder siiding
mode conirol, for a step change in the rejerence inpul,
seenn on the phase plane.
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443 Design Criteriom

The sliding line and the substructures used in the buck
converier are shown in Fig. 4.10. The y axis has been reassigned as
duy/ dt. Figure 4.11 indicates the complete design process of the
buck converter in the phase plane. Figure 4.12 shows the schematic
diagram of a sliding mode voltage controller for the buck dc-to-dc

converter. A typical response to step change in reference is shown

in Fig. 4.13.

4.4 4 QOther De-to-de Converters

The application of sliding mode voltage control, while being
straightiorward for the buck dc-to-de converter, is not so simple
when applied to the boost and buck-boost converter for the following
reasons. Figure 4.14a shows the typical waveforms of a boost de-to-
dc converter. It may be noticed that the derivative of the output
voltage (capacitor current to some scale) is discontinuous at the
instant of switching. In the presence of parasitic series resistance in
the output capacitor, even the output voltage (Fig. 4.14Db) is not
continuous. As a result the system motion is not continuous when
viewed on a phase plane defined as the output voltage and its
derivative as the axes. Therefore the same strategy of control used
for the buck converter is mnot applicable to boost, and buck-boost
converters. Sliding mode voltage control is possible for the boost and
the buck-boost converters, by setting up the sliding line in terms of
the output voltage and the inductor current. Before we go omn to

describe this method and develop the design strategies, it is helpful
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Fig. 4.14a The ideal boost dc-to-dc conwverter and ils steady state
waveforms. The capacitor current i, is seen to be

discontinuous.
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Fig. 4.14b The boost dc-to-dc converfer with the FEguivalent Series
Fesistance (ESR) of the copacitor. It is seen that the
cutpul wvolioge as well os the inductor current oare
disconiinuwous.
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to consider the sliding mode contirol of the inductor current in de-
to-dc converters. Some of the results obtained from such a control
method are used later on to develop a simple voltage control

strategy that is applicable to all three dc-to-de converters.

45 Current Programmed Dc-to-de Converlers

Another method of control of dec-ito-dc converters is to
control the inductor current. In this case, only the control eof the
inductor current is of interest, and hence all three converters are
first order systems and linear with respect to control input. The
dynamic equations of the different converters are

Buck Converter:

di
th- = Ygu —Ug

Boost Converter:

di

Lo =¥

y_vou

Buck-boost Converter:

L% = vgu tvgll

All the «bove systems are first order systems (n = 1) with one
control (m = 1). Therefore the sliding surface can be of dimension 0
(n—m). Let

g=1i-I°
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«* for >0
@w = - .
U for o <0

Applying the conditions for the existence of siiding mode, we get
Buck converter:

vgut—vg < 0 < yu~—vg

ur =0; u” =1, vy <y

Boost Converter:

Vg + U < 0 < wg+ugl

ur=0,; u-=1; Vg > Uy
Buck-boost Converter:
vgut+ugt’ < 0 < wguT+ugl

utr=0; =1

The structure-control law is identical for all three converters.

g =i-J°

_ 0 for o0>0
=11 for 0<0O

Phase space description for these first order systems can be
graphically shown in one dimension {phase line description). The
sliding surface is of dimension zero and is referred to as the sliding
point. The structure-control law requires only the output error. The
control is effectively a bang-bang control.

Figure 4.15 shows the phase line description of the three
de-to-dc  converters. The sliding point is ¢ =i-7/°=0. The

substructures active on each haili of the phase line are also shown in
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Fig. 4.15 The inductor current control of dec-to-dc converter +in the
phase spaece. Under inducltor current control all the
above converlers are first order systems. The phase
space is therefore of dimension 1. The sliding surface
then r7educes o e point (-1 = 0. The phase
trajectories are siraight line. The cownirol icw and the
effeclive circuil are also shown.
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Fig. 4.15. The steady state operating point for each substructure is

seen to be in the other half thus satisfying the reaching conditions.

4.5.1 Sysiem Description under Eguivalemt Comilrol

The method of equivalent control may be used to get an
overall description of the current controlled dec-to-de converters. The
method is illustrated here for the boost converter and the resulis

are presented for the other converters.

di _ —

Lar = Vs—vet (4.30)
dug _ .— Yo

Car =" g® (4.31)

From Eq. (4.30)

di

Uy, = 'Ug—LE

eg

Substitution into Eq. (4.31) vields

. ve®  d(Cve®/R)  d(Li?/2)
YWt = R YT ar T

In other words

INPUT _ OUTPUT RATE OF CHANGE OF
PowER = POWER ™t STORED ENERGY (4.32)

Equation (4.32) is in general nonlinear between inductor current and
output voltage, and is given below for different converters.

Buck Converter:
vo®  d(Cue®/R)  d(LiZ/2)

R dt dt (4.33)
Ugy = (vo+Ldi/dt)/ v,

Vgig, =
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Boost Converter:

vo®  dCugP/ 2 L GLic/2
g R dt dt (4.34)

Buck-boost Converter:

vg? N d(Cve?/ ) L d(Li%/2)
R dt dif
Ugg = (—vo+Ldi/ dt)/ (vg—vg) (4.35)

Vgl =

The above equations may be linearized around the operating point to
obtain the following transier functions between the inductor current
and the output voltage.

Buck Converter:

To(s) _ K
i(s) =~ 1+4sCR (4.386)

Boost Converter:

Oo(s) _ Ruwy 1-sL(Vp")?/ Rug?
is) 2%’ 1+sCR/2 (4.37)

Buck-boost Converter:

Uols) = Ry 1—=sLVp*(uy — Vo ")/ Rug?
i(s)  wg—2Vp* 1+SCR(ug—Vy°)/ (v,—2V;") (4.38)

These results are identical to the results obtained in Reference [10]

following the state space averaging method.
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4 5.2 Inductor Curremt to Ouipul Vollage Transiormatiom

it was mentioned in Section 3.6 that the desirable way of
setting up the sliding surface for sliding mode control is by means of
output error and its derivatives. The reason for this choice is that
the analysis of stability is simple for such a sliding surface. It was
alsc seen in Section 4.4 that such a state assignment is not possible
in case of buck and buck-boost converters. It becomes then
necessary to set up the sliding surface in terms of suitable
continuous physical variables. The inductor current ¢ and the output
voltage vy are continucus variables and qualify for suitable states in
terms of which the sliding surface may be set up. In order to study
the stability of the trajectories on such a sliding surface, one has to
transform the sliding surface into output error and its derivative.
The equivalent system description given by Egs. (4.33) to (4.35) may
be used to obtain this transiormation between inductor current and
output voltage. The method is illustrated for boost converter and the
results are presented for the other converters.

For boost converter, Eq. (4.34) may be manipulated and
rewritten as

v+ RCuotvy/ dt = Ri(ug—Ldi/ dt) (4.39)

In practical converters in order to obtain good small signal as well
as power bandwidth, it is necessary to choose I such that
vg > Ldi/ dt. Then,Eq. {4.39) reduces to

Cug dug vg®
+
vy dt Ruy

i =
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The above equation gives the relationship between the inductor
current and output voltage for boost converter. This relationship is
in general nonlinear and is given here for the other converters as
well.

Buck Converter:

dvﬁ Vg

at TR (4.40)

i =

Boost Converter:

Cug du vg?
1= —2—L4 2 [y > Ldi/dt]

vy dt = Ry, (4.41)
Buck-boost Converter:
. ("g“”o) dvg Ug—vUg Vg .
CE T @ T, R o> LA/ dt] (4.42)

In the next section sliding mode volitage control of de-to-de
converters is described where the sliding surface is set up in terms
of inductor current and output voltage. The relationship between
inductor current and output voltage given by Egs. (4.40) to (4.42)

are then used to analyze the stability of sliding regime.

4.6 Voltage Control of Dc-to-de Converters

In Section 4.4 the problems associated with the voltage
control of boost and buck-boost converters were highlighted. One of
the ways of overcoming these problems is to establish an inner loop

of sliding mode current controller, and then to design an outer
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supervisory loop of voltage controller based on the small signal
model of the current controlled converters. The transfer functions
given by Egs. (4.37) and (4.38) are useful for this appreach.

An alternative approach is to implement a direct sliding
mode voltage controller. The control strategy developed for the buck
converter is mot applicable in general since the derivative of the
output voliage exhibits discontinuity during switching. The alternate
approach consists of setting up the sliding surface in terms of some
continuous states of the system, and then to relate the resultant
dynamics to the desired respomnse. This method is applicable for all.
three dc-to-dc converters and is illustrated here for the boost
converter. The results are then presented for the other converters.

Boost Converter: Example i

For the case of boost converter, the sliding line may be set
up as usual in terms of some continuous states of the system. The
states chosen for this purpose are the errors in the inductor current

and the cutput voltage. Let
P g

7 and ¥, are the errors in the inductor current and the output
voltage respectively. ¢ is the weighted sum of the states of the
system and ¢ = 0 represents a straight line in the phase plane. The
inductor current error 7 and the output voltage error 7, are the
axes of the phase plane. The gain parameters used in setting up the
sliding line are K, and K,R,. The gain parameter F, in practice is the

current sensing resistance. The current sensing resistance &, is
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usually orders of magnitude smaller than the load resistance R. The
conditions for the existence cof sliding mecde are derived in a
subsequent section. Suppose that sliding mode exists and the system
RP is confined to move along the sliding line ¢ = 0. X, deces not
influence the response. It is significant only as a scale factor of the
phase plane. In ideal sliding mode control, switching takes place in
an infinitesimal vicinity around the sliding line ¢ = 0 and K, has no
significance whatsoever. In real sliding mode control, switching takes
place in a finite A vicinity around the sliding line and, K, determines

the nominal switching frequency for a given ripple and vice versa.

4.6.1 Stability of Trajectories om the Sliding Lime

We now go on to examine whether the trajectories along the
sliding line lead to a unique steady state operating point. Define the

current and voltage errors by the following relationship.

i=I%%

v = Vo'+7,
In the boost converter, the relationship between inductor current i
and output voltage wo was derived in Section 4.5, Eq. (4.41). This
relationship may be written in terms of the voltage and current
errors as follows.
~ _ C(Vo*+7q) d(Vy"+7g) + (Vo +00)°

I’+i =
Uy dt Hug

Separating the dec and ac components, we get
¥p*®

(4.43)
Ruy

r=




CVo° diy RVp® _ Cc dig® D3

i=
v i +H'v

+
g dt = Ru, Yot 2wy

Using Eq.(4.44), we may transform the sliding line into

[ 2V, R, CVp’R, d R 2
-~ [¢) 'S o {its Ug PN C-‘?s dvo .l
o = K Von+ ¥ 3 . ; 2,

l c }?vg 0 Vg at R'ug o 2@19 dt J

Equation (4.45) may be rearranged and written as

where,
RSVOO —~ °
a(t) = 1+ Fu, (B+Tq5/ Vp°]
CR.V,*
b(t) = ———{1+/ V']

g

(4.44)

(4.45)

(4.48)

Equation (4.46) is a first order differential equation. The condition

for guaranteed stability of response along the sliding line is that

both a(f) and &(¢) are positive. Or, in other words the relative error

Do/ Vy* is less than 1. Alternatively, Eq. (4.46) may be interpreted

o~

differently as follows. For large errors, the %¥,° terms dominate and

the sliding line is determined mainly by ¥,° terms; for small errors,

7y terms dominate. The response may be thought of as having two

parts.

Large signal response:

RC ddg?

L

=0

Small signal response:

(4.47)
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Fig. 4.16 The phase plane of the boost conwverier wilth the
inducior current and the output voltage as lhe siaies of
the converler. ILine [ shows the steady sicie gain
belween inductor current i end the oulputl wvolioge wvy.
Line II is the proposed sliding line. Under siliding mode
conirol boih the slecdy siate and the sliding condition
are salisfied, giving 7ise to the operating point (Vy°.1°).
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2Vo°Rs . CVo°R, dig

R, %7 T w, at (4.48)
The large signal response is a constant current response that is
stable, and with a time constant determined by the output circuit
elements R and €. The small signal response is decided by the
feedback gain (current sensing resistance £;) and the operating
point. The imporiant conclusion is that the system is stable for both
large and small signals and the steady state operating point is given
by (ve = V).

For second order systems, the phase plane representation
provides great insight into the system performance. The phase plane
representation of the boost converter is shown in Fig. 4.16. The axes
are the inductor current and the output voltage. The operating point
under sliding mode control has to satisfy two conditions, namely
o = 0 and the steady state gain I* = V3*®*/ Rv,. Curve I in the phase
plane represents the dc gain (i = v¢?/ Rv,). Line II is the sliding line
o = 0. The sliding line is centered on the operating point with a slope
of —F£,. The system RP, if confined to move on the sliding line,
eventually reaches the steady state operating point (V;°7°). Before
we go on to establish the conditions for the existence and reaching
of the sliding mode, overcurrent protection may be introduced
similar to the buck converter control. Figure 4.17 shows the modified
sliding line in the phase plane incorporating current limit. Again the
trajectories on the sliding line converge to the steady state
operating point (¥;°7°). Small signal response is unaltered. Large

signal response is now a truly constant current response. Having
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Fig. 4.17 The wmodified sliding line on the phase plane. The
siiding {ine 1is ciomped {o I, providing overcurrent
protectionn to Lhe conwverter.
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established the stability of response along the sliding line, the next
step in the design process is to ensure that sliding mode on the

chosen sliding line does exist.

4.6.2 Conditiom for the Existemce of Sliding Mode

The structiure-control law is the same as in the case of the

current contirolled de-to-dec converters.

11 for o <0
“ =10 for 6 >0 (4.49)

o = K)["?O +Rsﬂ

Figure 4.18 shows the phase plane, the sliding line, the structure-
control law, substructures active in each region of the phase plane,
and the steady state operating points for each substructure. The
steady state operating point for » = 0 is (vg,v,/ R). The steady state
operating point for » =1 is (v;/ A,,0), where R, is the resistance of
the inductor L. This has been taken into account as ctherwise the
inductor current for © = 1 tends to = and is not realistic.

The sliding line partitions the phase plane into two regions.
The Ilocation of the systern RP in the phase plane defines the
substructure at any instant. The steady state operating point for
each of the substructures lies in the opposite region of the phase
plane. This property ensures the reaching condition. To find out the
existence of sliding mode, we consider the sliding line in two sections
denoted in Fig. 4.18 as e, and &. Along section e the operation is

under current control. The sliding mode exists under current control
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Fig. 4.18 A pictoriacl rtepreseniation of the conirol low for the
sliding mode cownirol of the boost dec-io-dc converter. In
the haiched region, v, is less than vy, and is noi a
feasible operaling Tegion for the boost converler.
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when wg > v,. This condition was derived in Section 4.5 for the
current controlled de-to-dc converters. We observe then that sliding
mode exists along o everywhere except the region shown hatched in
Fig. 4.18. This region corresponds to vy < »; and is not feasible
region of operation for boost converter. It remains then to find out
the conditions for the existence of sliding mode along section & of

the sliding line. This is done analytically.
[

A
{?.

= KR, 11[F )7

l'u-/C' 1/RC'] ] " /L}

The conditions for the existence of sliding mode are given by

[b]o>0<0
[6]a<0>0

The above equations may be expanded to give the {ollowing

inequalities.
RSC('UO—’UQ)
L <= (4.50)
K, RCvy,
L<— (4.51)

The value of the circuit inductance must therefore be chosen to
satisfy Egs. (4.50) and (4.51) in order to ensure that sliding mode

exists. Equation (4.51) is usually more stringent.



From Eq. {4.48) it was established that the system stability
is always guaranteed, the design may be based on the small signal
model. For small signals the relationship between the inductor
current error and the ocutput voltage error is linear. Hemce the
sliding line may be expressed in the frequency domain as well. From
Eq. (4.44), for small signals

2V, Fod 724
£ Do(s) + —>sT(s)

W) = &, g (4.52)

%z is defined as the current error. To measure i, the average value I’
must be subtracted out. This is accomplished by use of a high-pass
filter in the inductor current measurement. The simplest form ol
filter function is a single inverted pole at ®,. The sliding line in
frequency domain is shown here modified to include the high-pass
filter for current measurement.

1

o(s) = Ig[ﬁo(s)i- m—}-,—;&ﬂﬂ} (4.53)

Equations (4.52) and (4.53) may be combined to obtain

2RV, CRE, Vg
1+ S 0+f‘7_l+_s_ls

ofs) = K=Y 5(s)

1+ (4.54)

in which the (good) approximation always obtains because the
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curyveilt sensing resistance & is miuch smaller than the load
resistance A, and where

1 v,
A g
YN = Cr, Vg (4.55)

In the ideal case in which the current error i could be

measured without a filter, w;, = 0 and Eq. (4.54) reduces to

o(s) = 1@[1 + ;—M]ﬁo(s)

(4.58)
or, in the time-domain as
~ 1 d’ao]
t) = —
o(t) -’Q[Uo"' wgy dt | (4.57)

Therefore, wy is the maximum bandwidth that can be obtained or, in
the time-domain, the fastest transient response of the output error
is characterized by a time constant 1/wg that depends on the system
parameters (Cvg,%,;) and the current sensing resistance (&).

In the realistic case of a nonzero filter corner frequency w,,

Eq. (4.54) may be factored so that

(4.58)

which is the same ideal result as Eq. (4.58). Therefore, the condition
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Fig. 4.19 The control schemalic of the sliding mode conirol of

boost dc-fo-dc converier. A highpass filter is wused in the
measurement of the inductorcurrent in order fto sublract
out the steady state current I°. The design criterion to
obigin meazimum bendwidth of the controller is that, the
highpass corner is wmuch lower thon the mezimum

obtainabie bandwidth.
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Fig. 4.21 The response of a boost converter to e load step under

siiding mode control. The vesponse is essentially first
order.
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that the factorization be valid, which is w; < wy, becomes a design
criterion: to retain the maximum bandwidth respomse, it is
neccessary only that the filter corner be chosen much lower than
the maximum bandwidth itseli.

Figure 4.19 shows the schematic diagram of a sliding mode
controller for a boost converter. Figures 4.20 and 4.21 show the
response of the converter to a step change in reference and a step

change in load, respectively.

464 Effect of ESE of Output Capacitor

In a practical converter, the output capacitor is not ideal
and will have a parasitic Equivalent Series Resistance (ESR). The
output voltage therefore will be discontinuous at the switching
instants. Figure 4.22 shows the inductor current, output voltage, and
the switching function o(¢). The switching function ¢ is seen to have
discontinuities. However this does not affect the performance of the
sliding mode controller other than decreasing the switching
frequency. It will be helpful to use a low-pass filter for measuring the

ripple with a corner beyond the switching frequency.

4.6.5 Buck Dec-to-de Comnverier

The method of setting up the sliding line in terms of the
inductor current and the output voltage as illustrated for the boost

converter is applicable to other de-to-de converters as well
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Fig. 422 The boost converter with the ESR of the output capacitor
and the worious sieady siote waveforms. The switching
SJunction o also ezhibils discontinuilies. This, however,
does mol cffect the low freguency performance of the
converler. The switching jfrequency 1is seen {o reduce
owing to the ESR.
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Figure 4.23 shows the phase plane oi the buck converter.
Also shown are the sliding line, structure control law, substructures
active in each region of the phase plane and the steady state
operating points for each of the substructures. The siteady state
operating point (V,°.7°) is the intersection of the sliding line and the
dc gain. The sliding line is given by

o(s) = Do+ K,Ri(s) = 0

The sliding line transformed to (T,.d¥g/ dE) is given by

o(t) = Do+ K,R,Cdig/dt = 0

The conditions for the existence of sliding mode are

KR < R
Vo < g

The maximum obtainable bandwidth is

wy = 1/ K,R.C

The practical sliding line is with a high-pass filter for measuring

current and is as follows.

K, Ry

o’(s) = (vog—Vp")+ 14w, /s

i(s) =0

The design criterion is thait the current filter corner is much less

than the maximum bandwidth wy.
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Fig. 4.23 The buck dc-lo-dc conwverter in the phaose plane. The
sitding line in lerms of the inductor current end the
output wvoltage is shown by curve II. ILine [ is the dc
gain between ihe inducior current and the outputl
voliege. The conirol low is also shown.
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4.6.6 Buck-boost De-to-de Converter

Figure 4.24 shows the phase plane of the buck-boost
converter. Also shown are the sliding line, structure-control law,
substructures active in each region of the phase plane and the
steady state operating points for each of the substructures used. The
steady state gain is given by

i = =g/ R+vo?/ Ry,

The sliding line is given by

o(s) = <Fy+K,Ri = 0

The steady state operating point is the intersection of the sliding line
and the de gain. The sliding line transformed to (7,,d?y/ dt) axes is

o(t) = a(t)Dy+b(t)dDy/ di

where

1+ mﬁs _ KJRS VO.

= o, — 00/ Vo)

a(t) =

b(t) = 11

The condition for stability of response is 9y/ Vp* < 1. The maximum

obtainable bandwidth is

~ KJRSCVO./'Ug for Vo. > 'Ug
“u =1 kR, for Vo <

The condition for the existence of sliding mode is
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v
u=0 [0, YO/Fylyey —o 2
P | By
l4
}
<G —a—1 T max
I%
SLIDING ‘
LINE
Vo [0, 0] y=p
Vo = L9

Fig. 4.24 The buck-boost dc-lo-dc converier in the phase plane.
The sliding line in lerms of the induclor current and

the outpul wvolitage is shown by curve Il ILine I is the dc
gain bdetween the inducior curreni and the ouiput
voltage. The control law is also shown.
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K,R;CRu; K,R;Cvg |
Vg "Imax+vo/ B

L<min{

The practical sliding line incorporating the high-pass filter for

measuring the current is

- - vdls o~ -
g’(s) = Wo(ﬂ"'m@) 0

The design criterion for achieving the maximum possible bandwidth is
that the current filter corner is much less than the maximum
bandwidth (&, < wy).

In this section, the method of state space averaging was
reviewed as a modelling method of de-to-de converters. The theory of
VSS and sliding modes were applied to dc-to-dec converters, first as
an analysis method and then as a design method for controlling the
output voltage of dec-to-dc converters. With sliding mode control it
was shown that the overall stability is guaranteed for both small and
large signals. With boost converter and buck-boost converter, where
the controllable states of the system are discontinuous, alternate
method of:setting up the sliding surfaces in order to achieve voltage
control was illustrated. The response was related to the desired
periermance, and practical design criteria were derived.
Experimental results on a boost converter control were presented to

confirm the design process.
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CHAPTER &

GENERAL THEOKY OF ELECTRICAL MACHINES

In this chapter the gemneral theory oi rotating electrical
machines is reviewed. From the general thecry [11] the governing
equations of different types of electrical machines are derived in
such a format as to appreciaie their similarity to dc to dc
converters, and to apply the sliding mode contrnl principles in order
to control different types of electrical machines.

Historically, each type of electrical machine was analyzed as
a special case with appropriate simplifying assumptions. This was
necessary because the theory of transformations which exposes the
unity of all electrical machines was not developed at that time. An
example of the type of approach adopted was the stationary, per
phase equivalent circuit model of three phase induction motors
under the assumptions of i) balanced three phase supply, and ii)
symmetrical, balanced and sinuzoidally distributed windings. Such
models were simple and adequate for the purpose of steady state
performance evaluation. Attention was confined to steady state
performance. Unbalanced operation was ireated using symmetrical
components and the principle of superposition. Appropriate
simplifying assumptions were made at the beginning of the analysis;

as a result the unifying features of all machines were missed.
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In conirast to the above, the general theory regards each
and every machine as an assemblage of coils. The performance of
any machine is governed by a single voltage equation and a single
torque equation. The general theory is concerned exclusively with
circuit theory of machines. The machines are treated as black boxes
characterized completely by a set of measurements made at the
terminals and the shait. Such a treatment is better appreciated by
the control engineer, who is interested in the performance of a
system, where the machine is just another component of the total
system.

Section 5.1 of this chapter describes the simplest of the
rotating machines with two coils and relative motion between the
two. Faraday’s law and conservation of energy are used to derive the
voltage and torque equations.

Section 5.2 describes the fundamental two phase machine.
This machine is conceived of as the primitive slip-ring machine, to
which all the practical slip-ring machines may be reduced. Section
5.3 describes the action of commutators found in dc machines and
presents the basic commutator machine, from which all the practical
commmutator machines may be derived.

Bulk of the machines used in practice are polyphase
machines. Section 5.4 explains the difficulties involved in the analysis
of such machines and introduces the mathematical iransformations
used to simplify the analysis. The properties of these
transformations are also presented alongwith the transformations. At

this stage the transiormations are given purely as a mathematical
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artifice. More  satisfying physical interpretations to these
transformations appear later in Chapter 8.

The application of the various transformations to the
general machines, to arrive at the general performance equations
are explained in greater detail in Appendix 1. Sections 5.5, 5.6, and
5.7 use the resulis obtained in Appendix 1 for the general machines
to get the periormance equations of a separately excited dc motor, a
three phase synchronous motor, and a three phase induction motor.
Simple electrical equivalent circuits are also given. These equivalent
circuits will be used in subsequent chapters to apply sliding mode

control to some of these machines.

5.1 Basic Two Winding Machine

In this section the basic two winding machine is analyzed
from first principles, using Ohm’s law, Faraday’'s law, and the law of
conservation of energy, to arrive at the performance equations.
Following the general theory of machines it is possible to analyze the
performance of different types of rotating machines in terms of the
voliage and torque equations of this basic machine.

The two windings of the basic machine are shown in Fig. 5.1.
¥ is the angle between the axes of the moving coil on the rotor and
the stationary coil on the stator. With the rotor moving with an
angular velocity of w,, ¥ is clearly a function of time.

d8/ df =w, (5.1)
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ig

Fig. 5.1 Schemalic of the basic two winding machine. The stotor
carries winding 1. The rolor corries winding 2. The
rolor is roleting at an enguler wvelocity of w.

Applying Kirchofi’'s law, the voltage egquations for the two

coils may be written as follows.

v =Ry +pLlyiy Y piypis (5.2)
Vp=HKpiz+PLaiz+pMai, (5.3)

R, B, are resistances of the two coils. L,.L, are the self inductances
of the coils. ¥,5, M, are the mutual inductance between the two coils.
p is the differential operator d/dt. The convention followed for the
mutual inductances is to associate the first subscript with the
voltage and the second subscript with the current. The mutual
inductances M, and M,, are equal and so the subscripts may be

dropped. Equations (5.2) and (5.3), then reduce to
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vy =Ry +pLlii +pMi, (5.4)
ﬂzzﬁziz‘!‘pinz'q'PMil (5.5)

In general the various inductances are functions of rotor position
and hence functions of time. Equations (5.4} and (5.5) may then be

expanded as

V=R v Lypi il Mpis+ipll (5.6)
Vo= Roint Lopigtisgp Lo+ Mpi,+i,pM (5.7)

Total instantaneous input power is the sum of the input powers into
each of the coils and is obtained from Egs. (5.6) and (5.7).

'Ul'il‘i"l)ziz:}?li? +R21:§+L17:1p7:1 +7,¥le +L27:2p7-.2+
i3pLa+ Mipig+2i,i,pM+Mizpi, (5.8)

Equation (5.8) may be put in the following form, the reason for which

will become clear in a while.

Uyl + Ui =R 1T+ i} +p(é—l.1i§ + %—ing +Miyig)+

1. 1. ..
‘2""?1’['1 + E%EPLz‘*‘%"JzPM (5.9)
The quantity inside the bracket in Eq. (5.9) is identified as the
energy stored in the magnetic field.

The law of conservation of energy may be applied to get the

following relationship.

INPUT RATE OF CHANGE OF
POWER = LOSSES + STORED ENERGY + OUTPUT POWER (5.10)
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Now Egs. (5.9) and (5.10) may be compared to obtain

QUTPUT _ 1 , 1, .
PowER = 5AiPLi+ giEpletisiepH (5.11)

The power output from the machine is mechanical and is the product
of the output torque and the angular velocity oi the rotor.

OUTPUT POWER = Tp1 (5.12)

The second periormance equation of the machine, namely the torque,
is obtained from Egs. {5.11) and (5.12).

1,0 1 dls
21

T do o gu thizgy (5.13)

Equations (5.4), (5.5), and (5.13) are the fundamental
performance equations of the basic two winding machine. They may

be put in the following compact matrix form.

V=2 (5.14)
- 1 ,7dL
T = glTol (5.15)
where,
v, [R,+pL, M
V= Vg B M Fo+pla) '
[, L, M
I=L 1 L= [M Lo

The "p” operator present inside the Z matrix warrants caution. It is
prudent to consider Egs. (5.14) and (5.15) as a compact
representations of the fundamental performance equations and not

as a matrix equation. With the theory of transformations to be
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described later, it will be seen that the periormance equationé of all

types of rotating electrical machines may be put in the above iform.

9.2 Fundamental Slip-ring MNachine

In this section the slip-ring machine is described. It differs
irom the basic two winding machine described in Section 5.1, in the
number of windings on the stator and rotor. The stator carries two
windings, orthogonal to each other. So does the rotor. The reason
for the selectionn of the above structure for the fundamental machine
is explained below.

The most essential features of all rotating machines are the
stator and the rotor. The stator and the rotor carry independent
windings. The current in the stator windings produce the stator
magneto-motive force (MMF). The current in the rotor windings
produce the rotor MMF. The stator MMF and the rotor MMF interact
to produce useful torque. The flux distribution in all rotating
machines is invariant along the length of the machine. As a result,
the magnetic circuit consisting of the stator, rotor and the windings
has linear symmetry and reduces to essentially a two-dimensional
one. Therefore in any general machine, in order to produce stator
and rotor MMF's in any arbitrary direction, it is necessary that such
a fundamental machine has at least two non-collinear windings on
both the stator and the rotor. If these non-collinear windings are
selected to be orthogonal to each other, further simplifications result
owing to the fact that the mutual inductances between orthogonal

windings are zero. These are the reasons leading to the structure of
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the fundamental machine as stated earlier.

Figure 5.2 shows the schematic of the fundamental slip-ring
machine. The stator carries two windings 4 and B, orthogonal to
each other. The windings A and F are shown as lumped windings
orierited in the direction of their respeciive MMFs. The rotor carries
two lumped windings « and g, orthogonal to each other. Again « and
g are shown oriented along their respective MMFs. The voliage

equation for the fundamental machine may be written as

f'vA {RA +pL, 0 PMaq PMaq [7-',4
vp 0 Fp+plp pMpa  PMpa ||ip
Ve PHMas PMap Fa+pLly 0 ia
vg pMpA pMﬁg 0 Hﬂ +pr 'i.B

(5.18)

Applying the condition that the mutual coupling between the stator
and rotor windings are trigonometric functions of the rotor angle 4,

Eq. (5.18) reduces to

fugl [Ry+pLy 0 Mpcosd Mpsin 3] iy
up 0 Kp+plp —Mpsin®d Mpcosd| lig
vl T Mpcecos¥ —Mpsind Fy+plg 0 ia
vg Mpsind Mpcosd 0 Fg+plg| lig

(5.17)

Equation (5.17) is the definining equation for the
fundamental slip-ring machine. It is seen that the Z matrix of even
this simplified machine is a function of the rotor angle. Furthermore
the "p” operator operates on the product of the various currents
and the trigonometric functions. The elimination of the rotor angle

irom the impedance matrix Z is the central feature of the unified



Fig. 8.2 The fundamental slipring wmachine. The stator carries
windings A aend B, which ere orthogonal to each other.
The Totor carries two orthogonal windings « end 8. The
rotor is rolaling wilh engulor velocity w.

machine theory. These details are explained subsequently in Section

5.4.

5.3 Basic Commutator RMachine

In the basic slip-ring machine described in Section 5.2, the
rotor MMF is a function of the rotor position when the rotor currents
are de. This physical fact is seen mathematically, in the impedance
matrix Z being a function of the rotor angle ¥. In contrast to this, in
the basic commutator machine, the rotor MMF is independent of the
rotor angle ¥. In this section the action of the commutator, leading
to the above result is first explained. Then the basic commutator

machine is deseribed.
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Frig. 5.3 The construction of o commulator Totor. The brushes lead
current into the ormature through the commutator
segments. The commutaior segments and the connection
to the rolor conductor is such that, the rotor MMF is in
line with the brushes oend independent of the rotor
position.

Figure 5.3 shows the construction of a commutator rotor.
The rotor windings, their connection to the commutator segments
and the brushes leading current into the rotor coils through the
commutator segments are all shown. The direction of currents in the
individual rotor coils are also shown. It may be seen that the MMFs
produced by the individual windings of the rotor add up to give a
nett rotor MMF along the direction of the brushes. The direction of
rotor MMF in a comrmnutator fed rctor is therefore, independent of
the rotor angle and stays always along the direction of brushes.

Figure 5.4 shows the schematic representation of the
commutator rotor. The rotor winding is shown lumped and fixed in

direction along the brushes, indicating the fact that the direction of



151

Fig. 6.4 The schemetic representation of the commutator rotor.
The rolor winding is shown lumped end in line with the

brushes fo indicale the direciion of the rofor MMF.

iB B

The stotor and the rolor

machine.

each corry lwo orthogonel windings. The Totor is supplied
the 7otor [field s

Fig. 5.5 The baesic commutalor

through commutalors and hence
independent of the 7olor posilion.
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rotor MMF of a commutator rotor is fixed in space alcng the
direction of the brushes.

As had been explained in Section 5.2, the generalized rotor
has to carry a minimum of two windings in order to be able to
arbitrarily select the direction of rotor MMF in the active plane of
the machine. The basic commutator machine, thereiore, is conceived
with two orthogonal stator windings (just like the stator windings of
the fundamental slip-ring machine), and two orthogonal rotor
windings supplied through a set of brushes and commutator
segments. Figure 5.5 shows the structure of such a basic
commutator mmachine. A and B constitute the orthogonal stator
windings. The windings 4 and g on the rotor are fed through a set of
brushes and commutator segments, and are orthogonal to each
other. The various windings are shown lumped and oriented along the
direction of their respective MMFs.

The unified machine theory consists of applying a series of
mathematical transformations, to replace any rotating machine by its
equivalent commutator type of machine, the motivation being the
impedance matrix of the equivalent commutator machine is
independent of the rotor angle, and hence much simpler to analyze.
The various transformations that facilitate this process are discussed

in the next section.
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5.4 Passive Transiormations

This section describes the passive itransiormations that are
used to unify the different kinds of rotating electrical machines.
These transformations are introduced with the objective of
simplifying the analysis of different kinds of rotating machines. In
order to appreciate the difficulties involved in solving the general
performance equations, a three phase machine is first presented.

Figure 5.6 shows schematic of a three phase slip-ring
machine. The stator carries three phase windings R,Y and B. The
rotor carries three phase windings =,y and &. Equation (5.18) is the
voltage equation for this three phase slip-ring machine, written down
from first principles.

V=2 (5.18)

Fig. 5.6 A practical three phase slipring machine. 7he stalor and
rotor carry bolonced ifhree phase windings.
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V=[wg vy vg v, v, v, |7

Y
I'=[dp iy ig 4 4 4 |7

(ER +ple pMpy  pMrs  PMp  PMp PMpy
rdi8%:3 Ry+pLly pMve  pMy  pMy My
Plpr  PMpy  Rp+plp pMp  piy, PHMp,
MR pMry Plrp o +pl, pliy, Py,
piyr pMyy PMyp Py £y +pLl, piy
?’Mbﬁ’ PMpyy  pMep  PMy, DMy, R, '*'PLaJ

The voltage equation consists of six component equations, one for
each of the three phase stator and rotor windings. The presence of
the differential operator “p” makes this into a system of
simultaneous differential equations. The differential operator
operates on the products of various mutual inductances and
currents, both of which are functions of time. This is so because the
mutual inductances between the stator and rotor windings are
dependent on the rotor angle and hence on time. The main objective
of the passive transformations described next, is to simplify and
eliminate the dependence of the above matrix upon the rotor angle
4. For the purpose of simplicity this is done in two steps, although it
can be accomplished in a single step.

The first step is to apply the phase transformation €; to
both the rotor and stator windings. The phase transformation C,
corresponds mathematically to a change of variables. The actual
machine voltages and currents are replaced by suitably scaled, more
convenient, fictitious voltages and currents. The result of this

transformation is to replace the actual three phase machine by its
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equivalent fundamental slip-ring machine described in Section 5.2.
The phase transformation C; considerably simplifies the system
equations. However, it does mnot eliminate the dependence of the
impedance matrix upon the rotor angle 8. The elimination of the
rotor angle ¥ irom the impedance matrix is the essence of the
generalized machine theory, and is accomplished by the application
to the rotor windings of another passive transformation. This second
transformation C;, called the commutator transformation, is a rotor
angle dependent transformation. It accomplishes the elimination of
the rotor angle from the impedance matrix by replacing the machine
variables into yet another set of new variables. In physical terms, the
original machine is replaced by its equivalent commutator machine
described in Section 5.3.

Although the volitages as well the currents of the machine
are transformed inio new variables, these individual transformations
are not independent of each other, since the power in the
transformed description has to be the same as the power in the
original description. It is seen below that, when the transformation is
unitary, the power invariance condition leads to identical
transformation for both voltages and currents. The primed and
unprimed system of equations below represent the transformed and

original system of equations respectively.

vV =2z (5.19)
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'I’VII = Z'J" (b-zo)
Let

vV =_CV (5.21)

r=cqJ (5.22)

The convenient form of representing power in matrix form is given
by

P =vT (5.23)

where the superscripts ¢ and 7 represent the transpose and complex
conjugate respectively.

P = v°ir (5.24)

Equating P and P, we get
VT = v°TC,°TCr (5.25)

This leads to

C,°’7C; = I, (Hdentity matriz of order n) (5.26)
Cy’T = Ci_l (52?)

When the transformations are real, if €, and C; are both identically

equal to C, then

c?T = ¢t (528)

The phase transformation €, and the commutator transiormation C,
both being power invariant transformations, possess the above

property.
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The phase transformation ¢, and the commutator

transformation €, are given in Egs. (5.4.12) and (5.4.13).

i’1/\/5 1/~M2  1/vV2

c, =V2/3 1 -1/72 -1i/2
0 V3r/2 —V3r2 (5.29)
1 0 0
Co={0 sind® cosd
10 cos ¥ —sin ¢ (5.30)

The transformed impedance matrix is given by

Z = CTzC (5.31)

Appendix 1 gives in greater detail how  these
transformations when applied to the various machines lead to the
desired simplifications. From the general equations brought out in
Appendix 1, the performance equations and equivalent circuits of a

few types of rotating electrical machines are derived in the following

sections.

5.5 DC HMachine

In this section, the performance equations derived for the
general commutator machine in the Appendix 1 are used as a
starting point to arrive at the electrical equivalent circuit of a
separately excited dc motor drive.

For the general two phase commutator machine the voltage

equations (taken from Eq. (A.7) of Appendix 1) are given by
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fvg] [Ra+Zgp © Myp 0 Fig
Up 0 Rp+Lgp 0 Mgp ip
va| T Map —Mpw, Rg+lgp —~Lgw, ||ig (5.32)
Vg My Mpp Lgwr Ry + Lgp) lig

The leading diagomnal terms are the veltage drops due to resistances
and self inductances. The terms containing #p terms are the induced
voitages due to the mutual coupling and disdi. These terms are
called the transformer voltages. The terms containing w, appear only
on rolor vollages and are due toc rate of change of fiux linkage due
to rotation. These voliages are termed as rotary voltages or
generator voltages.

The various inductance terms may be measured in a
physical machine by exciting one winding at a time, and measuring
the voltages appearing in the other windings as a result of
transformer action and rotation respectively.

The above result for the general machine may now be
applied for the particular case of the separately excited de¢ motor
shown in Fig. 5.7. The operation of the dc motor is as follows. The
field current i, in the field winding sets up a field MMF in line with
the field winding. The field MMF is stationary in space. The armature
current i; sets up an armature MMF stationary in space and in line
with the brushes. The field MMF and the armature MMF are
orthoganal to each other. The mechanical torque produced is
proportional to the product of the field and the armature MMF's.
Comparing Fig. 5.7 with the general machine given in Fig. 5.5, we find
that the field winding corresponds to the stator winding A. The

armature winding corresponds tc the quadrature axis winding g. No
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other windings are present. The simplified voliage equations are
PUA} [#£4+ Lap 0

vl Myeo, Eg + Lq_’p

9

[24
[iq] (5.33)

The next performance equation is that of torque. The
torque is obtained by applying the conservation of energy. The
voltage equation may be separated into resistive drops, induced

transformer voltages and rotary voltages.

V = RI+Lpl+Gu,I (5.34)
[EA Q I.LA 0 [O MA

K = L= G =
lo = lo 2, o o

The input power is given by

v = TRI+TLpl+ITGw ] {6.35)

The RHS of Eq.(5.35) gives the power flow through the machine. The
first term gives the copper losses. The second term is the rate of
change of stored magnetic energy. The last term represents the
power that is converted into mechanical output, which is the product
of torque and angular velocity of the shaft. The angular velocity w,
being a scalar, the torque is given by

T = ITGI = Myizi, (5.36)

The torque generated by the machine drives the mechanical
system coupled tc the motor. The dynamics of the mechanical
system is given by

MAT'IA?:q = Jd&)r/ dt +BG),.+ TL (537)

where, / = moment of inertia; B = {riction;
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ip

Fig. 5.7 A practical separately ezciled dc moachine. The stator
carries the fied winding A. The rotor +is supppied through

commultator. The stator and the Totor MMF’s are
orthogonal to each other.

i

Fig. 6.8 The electrical eguiveent circuit of the seporotely excited
dc mechine. The mechenical subsystemn of the machine
©s represented by ils analog elecirical eguivalent.
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73 = load torque.
The complete set of electrical and mechanical eguations

may be put conveniently into the electrical equivalent circuit shown

in Fig. 5.8.

2.6 Synchkromous NMachine

In this section, the performance equations derived for the
general slip-ring machine (Fig. A.1) in the Appendix 1 are used as a
starting point to arrive at the performance equations and electrical
equivalent circuit for the synchronous machine.

The general commutator equivalent of the three phase
salient pole machine considered in the Appendix 1 is governed by the

(taken from Eq. (A.7) of Appendix 1) following equation.

Vgl |BatLgp O Myp 0 i
VB 0 Fp+Lgp 0 HMpp ip
vg| Myp —Mpwr Fg+Lgp —Lgor O
Vg M, Mpp Liw, Ry + L,p| [i

a (5.38)

The various self and mutual inductance terms are fictitious and are
related to the original machine parameters by the relationships given
in Appendix 1. Alternatively they can alsc be directly measured if the
transformed quantities (vg,%,.43%;) are directly controllable and
measurable by appropriate circuits from the physical variables
(vr vy, Uy, 0.7y %) of the machine.

Now the above results may be applied to the particular case
of a three phase synchronous motor drive shown in Fig. 5.9. The

rotor carries balanced three phase windings (r,y.b) and excited by
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Y
THREE
PHASE
POWER

b

r

Fig. 5.9 A proctical synchronous motor. The armoeture is supplied
three phase power through sliprings. The field is on the
stator end is supplied with dc power.

balanced three phase power. The stator carries the field winding 4
excited by dc. The stator current i, sets up a stationary MMF in line
with the stator winding. The rotor supplied with three phase power at
synchronous frequency sets up a rotating MMF, relative to the rotor.
Since the rotor is rotating at synchronous speed, the rotor MMF is
stationary. The developed torque is proportional to the cross
product of the rotor and the stator MMF's. The field winding B of
the general machine is absent. Therefore the rows and columns
corresponding to winding B may be dropped from Eq. (5.38). The

simplified system of equations is given by

fog] [Re+Lip  Map o |ha
Vgl =| Map  Rau+lgp —Igw, | i (5.39)
Vg MA wr Ldr"r Rq + Lqp 711
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The voliage equation may be separated as before into
resistive drops, induced voltages due to transformer action and

induced voltages due to rotation.

V = RI+Lpl+Go,J (5.40)
7y 0 © [, 0 0 0 0 O

R=10 B O|:L=]|0 Ly 0| :G=|0 =L, ©
0 0 R, 0 0 I My 0 Ig

The input power is given by

IV = RI+ TLpl+ITGo, ] (5.41)

The first two terms of Eq. (5.41) give the copper losses and the rate
of change of stored magnetic energy respectively. The last term
gives the mechanical output power. The output torque is given by

T = ITGl = Mpyigig+(Lg—Lg)igiq (5.42)

The torque is'rnade up of two parts. The first part (Muisi,) is the
torgue due to stator excitation. The second part (La—Ly)igi, 1is
independent of the stator excitation and is due to the saliency of the
pole structure. This part of the torque is called the reluctance
torque. Reluctance torque is absent in non-salient pole (Lyg=Lg)
machines.

The mechanical system equation is identical to those given
for dc machine in Section 5.5.

T = Jdw,/ dt + Bw, + T} (5.43)
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T=Mipig+ (Ly—Lg) igiq

Fig. 510 The electrical eguivalent circuit of e synchronous
machine. The mechenical subsystern of the machine is
Tepresentated by ils elecirical analog.

Equation (5.39) though compact and adequate
mathematically, does not give an elegant equivalent circuit. For this
purpose the various self inductances in Eq. (5.39) may be written as

the sum of respective leakage inductances and mutual inductances

as given below.

lug] 1Ry + (3 + Lp)p Hp 0 o
Vgl = Mp Ky +(M+de)P _(M""qu)”r g
Vg Mo, (M+ L)oo, Ry + (M +Ly)p| i

(5.44)

From Eq. (5.44), the equivalent circuit readily follows and is given in

Fig. 5.10. The flux linkages in the d and g axes are named Ay and A,

respectively.
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’\d = Ldid+1WiA (5.45)

g = Lyig (5.46)

5.7 Inductiom NMNMotor

From the voltage equations obtained from the Appendix 1
for the induction machine, we go on in this section to arrive at an
electrical equivalent circuit for the induction motor. The wvoltage
equations for the induction motor referred to a rotating orthogonal

reference frame (rotating at dg/dt) is given by (taken from Egq.

(A.10) )

lvg,] | Ry+Lip -Lipy Mp -Hpy |l
Vg1 | Lape Fi+Lp Mpy Mp g1
Yaz Mp ~Mp(p—3;) FRy+Lgp —Lap (¢ —8,)| |ig2

v, Mp(p—8 M L ;

72 p—3;) P 2P (p~8;) Ra+Lsp |lige (5.47)
The convenient reference frame to choose is dg/dt = w,, the

electrical frequency of the three phase supply. Under this case all

the transiormed quantities are dc quantities. Further, the various

self inductance terms may be decomposed into leakage and mutual

inductances to arrive at an elegant equivalent circuit.
L, = M+,
Lg = M+L12

The power relationship is given by

TV = LRI+ ITLpi+ITGw, I (5.48)
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Fig. 5.11 The electrical equivalent circwit of an induclion mofor.
The mechoenical subsystem of the machine s
vepresenlaied by iis elecirical analog.
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T = M(ig1ige—igeis1) (5.49)

The mechanical system of equation is as before given by

T = Jdw,/ dt+Bw, + T} (5.50)

From Egs. (5.47) and (5.50), the overall electrical equivalent circuit

for the inductlon motor drive is given by Fig. 5.11.
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CHAPTER &

CONTROL OF ELECTRICAL DRIVES

Electrical drive systems provide a convenient means of
operation oi industrial machinery. The high reliability and great
versatility of electrical drives have resulited in their widespread
application. A {frequent requirement of industrial drives is the
capacity for efficient control of mechanical quantities of torque,
speed etc. The function of power conversion and power conditioning
(torque control, speed conirol) can be combined together. The
mechanical counterparts of power conditioners (such as gear trains,
clutches, ete.) do not enjoy this advantage.

In Chapter 5, the general theory of electrical machines was
reviewed. The operation of different types of machines was outlined
and the performance equations derived.

DC motors had occupied a wide spectrum of applications for
variable speed drives, because of their simplicity and versatility of
contrel. The simplicity is obtained owing to the typical mechanical
construction of the DC machine. The mechanical commutator in the
DC machine and the brush orientation leading current intoc the
armature enables orthogonality beitween the magnetomotive force
(MMF) produced by the armature current and the main excitation

MMF. As a result, for any given excitation to the DC machine, the
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armature voltage determines operating speed and the armature MMF
determines the developed torque. Under constant excitation, the DC
motor is essentially a linear system resulting in the simplicity of
control.

On the other hand the presence of commutator and brushes
contribute toc the wear and tear, and the consequent maintenance
overheads of the drive. These disadvantages have led to the
application of AC rmachines, which are robust in construction, for
variable speed applications [12].

Polyphase synchronous and asynchronous motors, when
supplied from a constant frequency, polyphase bus, operate at fixed
speed (synchronous motors) or nearly fixed speed (asynchronous
motors). They may be operated at variable speed when supplied
ifrom a variable irequency source. Conversion of power to polyphase
variable frequency system became viable with high speed solid-state
switches, opening up the application of AC motors for variable speed
applications. Different converter topologies such as voltage fed
inverter, current fed inverter, etc., are being used for the purpose.
Different modulation techniques such as pulse width modulation
(PWM), pulse amplitude modulation (PAM), etc., are used to control
the amplitude of the output voltage and to minimize the hormonic
content of the output polyphase power.

From the point of view of the motor being contrelled
different mathematical descriptions (voltage fed machine, current fed
machine, stationary refernce irame, rotating reference frame, etc.)

exist giving rise to different control options such as current fed
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operation, constant volis/hertiz operation, etc. More recently, the
rolating reference frame description of the machine and the vector
control or the field oriented control is being very successiully
applied for superior dynamic performance of the a.c. drive [13].

One common feature among all the above control methods
is that there is a converter (switching power processor) with its
characteristic control loop (phase control, quasi-square wave control,
PWM, etc.) and dynamics; and there is a motor (synchronous or
asynchronous) with its static and dynamic characteristics. The two
are then combined together to develop an overall model. Suitable
feedback techniques are then employed to achieve the control
objective such as speed control, position control, etc.

In comntrast to the above, the theory of variable structure
systems and the concept of sliding mode control may be used on the
power processor and the motor together to develop a control
strategy that is integrated to the final control objective namely
speed control, position control, etc.

In this chapter, the principle of sliding mode control is
applied for the speed control of dc motors and brushless de (BLDC)
motors. Useful criteria are developed for the design of speed
controllers for these machines. The design methods are then verified
from experimental results.

The dc motor drive controlled by a switching converters is
described in Section 6.1. The method of control is described through
the phase plane description of the dc motor. It will be noticed that

the speed control of the dc motor is mathematically analogous to the
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voltage control of the buck de-to-dc converier described in Chapter 4.
The design inequalities are derived for the existence of sliding mode
control. Practical considerations are highlighted and the practical
design criteria along with the experimental results are presented.

Measurement of speed in drive applications is usually done
with a tachogenerator, which is one of the expensive components in the
control loop. For low cost drives, an interesting application of sliding
mode control is the estimation of speed from the electrical quantities of
the drive. Section 6.2 describes such a speed estimator for a de motor
along with experimental results.

The performance equations and the operation of the
synchronous motor were given in Chapter 5. The BLDC motor is a special
case of the synchronous motor. Section 6.3 describes the BLDC motor
and the simplified equivalent ecircuit of the BLDC motor. Current
controlled operation and speed controlled operation are both discussed
along with the respective control strategies.

The field oriented control developed in Section 6.3 requires the
physical variables (phase currents) of the motor to be transformed to
rotating reference frame ( d —-g axes) variables. Section 6.4 describes
the practical aspects of hardware associated with the transformations.
Practical design criteria are develcped to relate to the dynamic
performance of the drive. Results on current-controlled operation and

speed-conirolled operation are then presented.
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The practical design of field oriented conirol explained in
Section 6.4, though mathematically exotic, is quite inexpensive to
realize using digital circuit blocks. However further simplifications
leading tc more economy is feasible for certain applications. Section
8.5 explains simplified approximate realizations of the
transformations. Experimental results are presented showing that the

difference in performance after the simplifications is imperceptible.

©&.1 Dec HMotor Drive

Figure 6.1 shows the chopper-driven dc motor. The
electrical equivalent circuit of the drive under constant excitation
together with the power converter is shown in Fig. 6.2. The
electrical equivalent circuit represents a completely elecirical analog
of the electromechanical system consisting of the motor and its
mechanical load. The transiformer shown in Fig. 6.2 represents the
electromechanical torque conversion taking place in the motor. The
secondary side current in the electrical equivalent circuit is
analogous to the torque generated in the motor. The moment of
inertia and the friction of the load appear as analogous capacitance
and conductance in parallel in the equivalent circuit. The constant
current load and the output voltage are analogs of the load torque
and the shait speed respectively. It will be noticed that the speed
control of the constant excitation dc motor and the voltage control
of the buck dc-to-dc converier are analogous problems. The
performance equations of the drive given by Egs. (5.33) and (5.37) in

Chapter 5 for general dc motors are given here for the case of the
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¢= AIR GAP FLUX
L=

ARMATURE
INDUCTANCE
Vg R= ARMATURE
RESISTANCE
J= INERTIA
B= FRICTION
Ldi/dt + Ri + Kzw = vyu T.= LOAD TORQUE

w= SHAFT SPEED

Jdw/dt + Bw + Tp = Kri

Fig. 6.1 Chopper-driven dc molor — definition of terms and

defining equations wunder constont ezxcitation.

) =
=l

Fig. 6.2 The electrical egquivalent circwit of the chopper-driven dc

motor. The systemn siruciure 1is onalogous to the bduck
dc-to-dc converter wilh the speed of the motor being

anclogous to the outpul wvoliege of the buck dc-to-dc
converier.
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constant excited de motor.

I
a

U

di | .
LE"TEE +KEG)

g (6.1)
dw _ .
JET'*'EQ"'TL = Kqi (62)
where,
I = Armature inductance; £ = Armature resistance;
Ky = Back emf constant; w = Angular velocity of rotor;
7; = Load torque; Ky = Motor torque comnstant;
i = Armature current; vy = Source voltage;

J = Moment of inertia of load;

B

i

Friction coefficient of load;

U Discontinuous control, *1.

The torque constant K; and the back emf constant Kz are
numerically equal in MKSA system of umnits. The above description is
valid at all times. The control input =« is the only discontinuous
variable and takes on the value of either +1 or -1 depending on the
switch position. The impressed voltage to the armature is
correspondingly positive or negative leading to the possibility of
bidirectional speed control. After some manipulation, the system

Eqgs. (6.1) and (6.2) may be put in the following form:

T =A'z+dv'u+c’® (6.3)

where,



s 0 1 e = o
- KTKE'[“_ BR | R Bl l HKrvg
JL L KTKEJ (L JL
. 0
= € T —R(Ty+ Bo®) ~ KpKges®
JL |

o

and ®° 1is the desired speed. Again it may be noticed that the
system representation in Eq. (6.3) is identical in form to the buck
dc-to-dc converter given in Chapter 4, Eq. (4.24). The system states
have been assigned as the output speed error and its derivative, so
that the desired operating peint is given by the state vector =z = 0.
The control problem now reduces to establishing a switching strategy
to select an appropriate z at any instant of time to meet the
dynamic requirements of the system.

We recall that the system order being 2 (= = 2), and the
number of control inputs being 1 (m = 1), it is possible to achieve
under sliding control an overall response of order 1 (n-m =1).
Suppose that it is desired to achieve a response of zero steady-state
error and a stable first-order {iransient response with a tLime
constant of 7. These requirements are translated into a sliding
boundary in the state space given by the {ocllowing differential
equation:

- d{w-w°) _
(w—)+7 a7 =0 (6.4)

In matrix form Eq. (6.4) may be expressed as
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c=gz=0 g=[1 7] (8.5)

¢ is a weighted sum of the states of the sysiem and ¢ = 0 may be
visualized as a line in the two-dimensional state space. Having
reiated the steady state and the dynamic requirements into a
suitable switching boundary, the next step is to establish the
conditions for the existence of sliding mode along the chosen
switching boundary. The general existence conditions are

E;g o <0, and ngl g >0 (6.8)

Let the control inputs be,

_ ut for o > 0
“=lu- fora<o (6.7)

Equation (6.6) now yields
. GA*X+GB*u*+GT" for o >0
771 GA*X+GBu~+GT* for ¢ <O

GBu* < —GAX-GT < GBu~- (6.8)

The control input is now chosen as

u*t=—~-1 and u~ = +1 (6.9)

For the selected control inputs, Eq. (6.8) reduces to

7KV, . Tk [K +R(Bw+ T_,,)}

JL JL | B¢ Ky
dlw-—w”) R B 1, TRrY
Yrar YT S T (6.10)

Equation (6.10) may be interpreted as follows. The dc quantities in
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Eq. (6.10) give the condition on the direction of average motion of

the system which is

o

(6.11)
where
w® = steady-state desired speed.
I’ = steady-state armature current at desired speed and load.

The time varying quantities in Eq. (6.10) (terms containing
d{w-w®)/dt.) give the condition on the motion of the system in

between switchings, which is

Lo
p

t‘-[’:q

B
7 (6.12)

Equation (6.12) gives the condition on the best transient response
obtainable. For machines whose electrical and mechanical time
constants are well separated (B/J<<R/ L) one may say that the best
transient response time constant achievable is the same as the
electrical time constant of the motor. Such a design would result in
large inrush of armature current during transients. In practice the
rated armature current of the motor must not be exceeded.
Therefore the rated armature current limits the rate of specd
correction (acceleration or deceleration) during transients resulting
in a response time which is usually higher than that given by Eq.

(8.12).
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8.1.1 De DNotor Drive im the Phase Plane

The relevant steps in designing a sliding mode speed
controller for the dc motor drive was seen in the previous section. It
is worthwhile to briefly see the same aspects related in a graphical
way through the phase plane description of the dec motor drive.

Figure 6.3. shows the phase plane description of the sliding
mode speed controller for the dec motor. The axes oif the phase
plane are assigned as speed error and its derivative. The sliding line
o = 0 shown in Fig. 6.3 consists of three sections. The central portion
of the sliding line is the same as explained in the last section. For
large errors the sliding line is shaped such that the maximum
acceleration and deceleration are limited thereby incorporating
overcurrent protection to the drive. The control inputs, namely the
switch position and the applicable equivalent circuits, are also shown
in Fig. 6.3 corresponding to the two regions in the phase plane. The
steady state operating points for each control inputis are also shown.
It may be noticed that the dc motor drive and the buck dec-to-dc
converter, being analogous systems, both lead to identical phase
plane descriptions.

In order to be able to directly extend this concept of
control later on to the BLDC motor, it is worthwhile to understand
the switching decision (u = +1 or = = —1) qualitatively. This is
necessary because the switching converter for driving the polyphase
motor has three pairs of switches corresponding to the three
phases of the motor. Accordingly at any instant three switch

positions are to be determined. To enable this the switch inputs
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(=] oy

u=u"=+4 [w—o] yoyr
g <0
w =20

Pig. 6.3 Chopper-drivenn dc motor in the phase plene. The sliding
line peartitions the phase plane in lwo healves. The control
end molor eguwivalent circwif in each helf is shown. The
steady siocie opereling point for each of the control
inpuis u =ut* end v = u- ere also shown.
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(u = +1 or w = -1) may be qualitatively stated as "accelerate”
(v = +1) and "decelerate” (u = —1). Later on these qualitative swite!l
input commands “accelerate” and "decelerate” will be related through

a look-up table tc the three phase switch inputs, when applied to
BLDC motor control.

6.1.2 Praclical Design Comsiderations

The sliding mode speed controller for the dc motor drive
was explained in its simplest form in the foregoing sections. The
control law is extremely simple. To realize the control law given by
Eq. (6.9), it is necessary to find out the location of the system RP in
the phase plane with reierence to the sliding boundary o = 0. This
involves the measurement of the switching function o which is a
weighted sum of the speed error and acceleration. Speed may be
conveniently measure by means of a tachogenerator. We recall that
in the analogous problem of dc-to-dc converter the derivative of the
output voltage was available as the current through the output
capacitor current. In the dc motor drive the derivative of output
speed is not physically accessible. Therefore the alternative method
of setting up the sliding line in terms of the output speed and
armature current (analogous to output voltage and inductor current
in the buck de-to-dc converter) is used. In the following sections
sliding mode control and linear control theory are combined in order
to set up a practical sliding line and then to relate the response to

the desired response.
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The sliding line is set up in terms of armature current

error and the ouiput speed error.

o(t) = (w—w*)+R1 (6.13)

i is the armature current error, and w® is the desired operating
speed. R, is the design parameier and is usually the current
measuring resistance. When the iriction is low and the load torque

is constant or slowly varying, Eq. (6.2) may be approximated as

Jdco

S (6.14)

The sliding line equation being a linear differential equation, one may
represent the same in frequency domain as well.

o(s) = (w—w°) + Ri(s) (6.15)

Under sliding mode control ¢ = 0. Substitution of Eq. (6.14) into Eq.

(6.15) yields an overall response of

w(s) = (s
1+sJR,/ Ky (6.186)

We do get a resultant first order response. However unlike real
sliding mode control, now the response timme is a function of the
design parameter K, and the motor parameters J and Kr as well as
(t = JRy/ K7).

In Eq. (6.15) the sliding line is set up as a linear
combination of the speed error and the current error. To measure
the current error, the steady state current (/°) will have to be
subtracted ocut of the armature current. The simplest way to realize

this is by means of a high-pass filter. Further, speed measurement
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from lachogenerator also requires filtering due to the commutator
noice present in the tachogenerator output. Thereifore in practice,
the sliding line is set up incorporating suitable prefilters. Equation

(6.17) gives the practical sliding line in the frequency domain.

l+wy/s wiy/s ¥

o%(s) = l+w/s® Trw/s™ * 14w, /s

(8.17)

The current measurement circuit has an inverted pole. Speed signals
are also measured with the same inverted pole. Inverted zeroes have
been added to the speed signals in order not to lose their steady
state values. Equation (6.17) may be put in the following form for
convenience.

1+7zs 1 TSk, "(s) -0

*

w— W
1+T1;8 1+1;s 1+7,8

o%(s) = (6.18)

Under sliding mode control ¢°(s) is maintained to be zero,

leading to the following closed loop response.

w’(s)

ols) = 1+s/ Qug+s?/ w§ (6.19)

w§ = Ky/ JRsT,
& = 1/ w72

The response as seen by Eqg. (68.18) is a seceond order response,and
provides suitable design criterion. 1, is the current filtering time
constant and is chosen higher than the electrical time constant of
the motor. The current gain R, is selected to obtain the desired
response time. The inverted zero iIrequency (1/7z) of speed

measurement is chosen to obtain the desired damping.
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Fig. 6.4 Sliding mode coniroller for the chopper-driven dc motor.
The sliding line is made wp of o linear combination of
the speed error aend Lhe ormature current with
eppropriale prefiliers. Overriding overcurreni profeciion is
elso incorporated.



The circuit schematic of the speed controller is shown in
Fig. 8.4. The circuit was tested with a dc machine with the following

parameiers.

Kp = 0.09 Nw.m/amp; J = 8.45E-4 Nw.m sec®/rad;
B = 7.11E-4 Nw.m sec/rad; F = 3.83 ohms;
L = 3.94 mH.
The current filtering time comnstant (7;) is chosen as 10 ms - in

between the electrical time constant(l ms) and mechanical time
constant(0.9 s) of the motor. The current gain (&) and the speed
prefilter time constant 7 are chosen to achieve the desired
response time and adequate damping respectively.

Figures (6.5) and (6.8) show the starting tramnsient of the dc

motor drive for two different compensator designs.

8.2 Estimation of Speed Using Shding Mode

In this section, the principle of sliding mode control is
applied to estimate motor speed. This is of special interest in
position control servos where the speed feedback is necessary only
for achieving the dynamic properties of the drive, and the steady
state accuracy is determined by a primary position sensor feedback.

Conventionally the speed estimation is done by an analog
controller as shown in Fig. 6.7, with motor current and voltage as

feedback signals. From Fig. 6.7,

- K uls)-Ri(s)—sli(s)
¥S) = T m =5 +sL/S(R:K) - (6.20)

i = Armature current; v = Armature voliage;
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Fig. 6.5 Starting transieni of the chopper-driven dc motor with
sliding mode controlier. The initial constant acceleration
Tegion corresponds to current limited region of operalion.
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Fig. 6.6 Starting transient of the chopper-driven dc wmotor with
sliding mode controller. The iniltial consiani cccelerciion
7egion corresponds to curreni limited Tegion of operaiion.
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R (4+SL/R) +

Fig. 6.7 Continuous control speed estimator. The dynamic block is

the model of the wotor. The compensator gain K
delermines the accuracy of the estimated speed y.

R = Armature resistance; L

Armature inductance;

K = Compensator gain; y = Output speed signal

Usually the electrical frequency (R/ L) of the motor is much higher
than the desired bandwidth of the estimator. Further if the
compensator gain K is chosen large (K>>R) Eq. (6.20) reduces to

y(s) ~ v(s)—-FRi(s)—sLi(s) = Kgw (6.21)

The closeness of this approximation depends on KX, the higher the
compensator gain, the better is the accuracy of the estimated speed.

As an alternative to the above, it is possible to build such
an estimator based on sliding control. Consider the electrical sub-

systermn of the machine
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Fig. 6.8 Sliding mode speed estimator. The dynamic block 1is the
model of the molor. The comparator with hyslerestis
mekes wup the sliding controller. The low pass filler
measures the averaged speed signal.
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Fig. 6.9 The speed estimate (trace 2) end the speed mecsured

through @ tachogenerator (iroce 1) are compared. Speed
estimate is shown inverfed for ease of comparison.
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We may construct a model of the motor given by,

D
L_Glt_+ Rip, +vgu

|
e

(6.23)

If the current (i,) in the model is made equal to the current (i) in
the motor, then comparison of Egs. (8.22) and (6.23) shows that v,u
equals the motor back emf, which may be used as a speed signal.
Equation (6.23) is the mcdel of the motor. The objective is to control
the current in the model (i,) equal to the current in the motor, by
means of the control input =». This is a first order system with one
control. The sliding mode control effectively reduces to a bang-bang

control:

G = i,—1 (6.24)

|+t for ¢ > 0
“=1-1 for 6 <0 (6.25)

It may be verified that the sliding condition given by Eq. (6)
is satisfied when w; > w+Rl,, The average value of the
discontinuous signal w,u equals the back emf and proportional to
the speed. Figure 6.8 shows the sliding mode speed estimator. It
may be pointed out here that the ideal sliding mode speed estimator
and the ideal analog speed estimator are the same (zero hysteresis
and infinite compensator gain respectively). Figure 8.3 compares

the speed estimator output with the tachogenerator output.
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8.3 Brushiess Dec Ulotor Drive

In Chapter 5, the operation and performance equations of
the synchronous motor were outlined. The BLDC motor is a special
case of a synchronous motor drive. In this section, the BLDC motor
equivalent circuit is derived f{cllowing the transformations explained
in Chapter 5, and Appendix 1. In Appendix 1, the transformations
were treated simply as mathematical artifices employed to simplify
the mathematical description of different machines. In this Section
the transiormations on the permanent magnet synchronous motor
(BLDC motor) leading to the rotating reference frame equivalent DC
motor description are interpreted physically at every step. The
system equations are written down directly in each reference frame,
and the description in different reference frames are related to each
other using some physical criterion. The reason to follow this
method is that the mathematical transformations explained in
Chapter 5, and Appendix 1 are firmly anchored to physical
interpretations and the inter-relationship between the physical
constants of the machine in different frames of reference is more
readily apparent.

The principle of sliding mode control is then applied for the
speed control of BLDC motor. Practical design criteria are then

developed and experimental results presented.
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6.3.1 Permanent Nagmelt Symchromous Notor

Figure 8.10 shows the construction of the permanent
magnet synchronous motor. The rotor is without saliency and carries
surface mounted permanent magnets providing the rotor MMF. The
stator carries symmetrically distributed three phase windings. The
stator is excited with balanced three phase power. The three phase
currents in the stator windings produce stator MMF which is rotating
in the airspace of the machine at the same speed (synchronous
speed) as the elecirical frequency of the stator power supply. The
interaction of the stator MMF and the rotor MMF produce the torque.
Average torque exists only when the rotor speed is the synchronous
speed. Compared with the generic synchronous motor explained in
Chapter 5, the Iollowing differences in the case of the permanent

magnet synchronous motor may be noticed. The armature is on the

Fig. 6.10 Construciion of o permanent magnet synchronous wmotor.
The stator carries balanced ithree phase windings. The
ezcilation 1is provided by permanent magnels fized on
the periphery of the votor.
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stator. The excitation field is on the rotor. The excitation MMF is
fixed, and provided by permanent magnets mounied on the suriace

of the rotor.

6.3.2 Brushless De HMotor

It was mentioned that the synchronous motor has net
average torque conly when the rotor speed is the same as the
synchronous speed of the three phase power supplied to the
armature. The brushless dc operation of a synchronous motor is
obtained in the following manner. The power supplied to the
armature is related to the physical position of the excitation field in
the airspace of the machine such that the synchronous speed of the
ac power fed to the armature at all times equals the rotor speed.
Due to this closed loop relationship between the rotor speed and the
armature power Ifrequency, the motor runs in synchronism at all

speeds and net average torque exists at all speeds.

8.3.3 Performance Equatioms of BLDC motor

In this section, the various transformations leading to the
transformation of the permanent magnet synchronous motor into the
equivalent d—g axes machine are applied to obtain the performance
equations of the BLDC motor. Figure 6.11 shows the essential
consiruction oi the permanent magnet synchronous motor. The
physical structure of the rotor is represented by the innermost
circle. The rotor carries the permanent magnets providing consiant

field excitation. The rotor MMF in the absence of stator currents sets
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up an airgap flux oi ¢y. The outermost annular ring in Flg 6.11
represents the physical structure of the stator. The stator phase
windings 4.8 and C are shown schematically to coincide with the
direction in which the respective MMF's are oriented. The
intermediate annular rings in Fig. 6.11 represent fictitious structures
which ére helpiul in stepping through the various transfcrmations
and are explained as we go along.

The defining equations of the machine are in three parts.
First is the electrical subsystem definiton relating the electrical
quantities of the machine. The definition of the electrical subsystem
depends on the chosen frame of reference. The second part is the
electromagnetic subsystem of the machine indicating the mechanism
of torque generation. The electrical quantities in the torque
relationship again depend on the chosen frame of reference. The last
part is the mechanical subsystem relating the break-up of the
generated torque into load, iriction and inertia. The selection of a
frame oi reference is to simplify the definition of the electirical
subsystem and does not change the definition of the mechanical
subsystem.

The definition of the mechanical subsystem is independent

of the frame of reference and is given by

722 BorT, = T,

dt (6.26)

where the quantities J,B,7; and w are as defined earlier in Section 6.1

and T, is the generated torque.
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Fig. 6.11 ABC to a, g to d, q ilrensformetions. The outermost

ennular 7ing and the innermost circle represent the
physical stator ond the physical rotor respectively. The
second onnular ring from oulside Tepresents o ficlilious
equivalent two phase Tolor which when ezciled by
aeppropriate twoc phase currents would result in the
same machine performance. The third oannuler ring
Jrom ouiside represenis o ficlitious fwo phase equivalent
“rotor”, which when corryin; dc currents (L, ond I)
Tesulls wn the saeme per. rmance as the original
machine.
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The electrical subsystem equaticns are dependent on the
frame of reference. In the physical stationary reierence irame
(stator represented by the outermost circle and the rotor
represented by the innermost circle in Fig. 8.11), the stator

elecirical circuit equations may be written from first principles as

below.
Ralit Laa g+ o g+ o gt + i = Vi (6.27)
Lpa tZIt ~; T FEplp+ Lpp ;t +Lpe ffitc dzfd = Vg (6.28)
di, dly dly  d¥eg
Lea—+ Lep g+ Helet Lee 5 e — g = Ve (6.29)
where

Lyy = seli inductance of phase windings;
Ry = resistance of phase windings;
Lyy = mutual inductance between phase windings X and Y;
Yxe = flux linkage to winding X due to rotor flux gq;
Vx = phase voltage; Iy = phase current.
Under the assumption of symmetrical balanced 3 phase

windings, without neutral conductor and sinuzoidal flux distribution,

RA RB RC = R ; LAA=LBB=LCC = LS ’

Lap=Lps=Lpe=Lep=Lea=Lac = —Ly :
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N+Ig+ic =0
Notice that Lygy is defined with a mnegative coefficient due ioc the

selection of the current directions in Fig. 8.11. Equations

(6.27},(6.28) and (6.29) may then be simplified as

dly  2Yu

R[A+(LS+LM)—dt +—_Glt =¥y
dip GY¥ga _

R[B+(L5+LH)_dt—+—dz— = Vp (680)
dip difey

Rip+ (LS'*'LH)F"' 4 = Ve

The generated torque is the sum of the torques due to the
interaction between the rotor MMF and each of the stator phase
current MMF's. The generated torque due to each of the stator

phase currents depends on the rotor position. The total torque is

given by

T, = Kgod{l,,sin(BBO"+a>t)+Igsin(150°+mt)+Icsin(90°+wt)} (6.31)

where K is a proportionality constant with proper dimensions and wt
is the instantaneous angular position of the rotor. Equation (6.31)

may be further simplified as

7, = K%{(—IA/ 2 —Ip/ 2+ Ip)cos wt+(V3I/ 2—V3Ig/ 2)sin “t] (6.32)

In Eq. (6.30) the rotor position is implicit through the terms ¥y. In
Eq. (6.32) the rotor position is explicit. Equations (6.30) and (6.32)
define the electrical and the electromagnetic subsystems in the

physical stator reference frame. The electrical quantities appearing
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in these equations are the same as whai can be measured in the
stator circuit.

The currents in the stator phase windings of the motor
produce an MMF in the active plane of the motor, which interacting
with the rotor MMF in the same plane produces the required torque.
This stator MMF may very well be produced by an equivalent stator
with two phase orthogonal windings carrying two phase ac currents.
The first step in simplifyving the system equations is to transform the
stationary reference frame three phase stator equations (Eqs. (6.30)
and (6.32)) to an equivalent stationary reference frame, iwo phase
stator equations.

The second annular ring from outside in Fig. 6.11
represents this fictitious stator with two phase windings on it (o and
B) as shown. Again from first principles the circuit equations and

torque equation may be written down as below.

. Ay dYpa
RI,+L dt +T =V,

° 0djﬂ dwﬁd
Rlg+L°—~+ 3 = Ve (6.33)
T, = Kygq(lgcos wt —I,sinwt) (6.34;

The subscripted quantities represent the fictitious two phase stator
electrical quantities. The machine constants in the equivalent
fictitious twc phase system are shown with asterisks. Their

relationship to the original machine constants is yet to be

estabiished.
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The next step is to find the relationship between the 4,B.C
system and the a8 systems. To do this we invoke the condition that
the torque developed in both the systems are equal. Comparing Egs.
(8.32) and (6.34), we get

I, = =N3L/2 + V3Iy/ 2

L= —L/2 —Ig/2 + Ip (6.35)

From Eqgs. (6.35) and (6.30), we get

R° =F M L‘ = LS+LM

o
|

= "'\/§VA/2 + ‘[B—VB/Z

VB=_VA/2—VB/2+VC

Yag = —V3Ypa/2 + V3Ype/ 2
Vea = Vaa/ R — Vpa/R + Y (6.386)

Now the system equations in the two phase stationary reference

frame (a.f axes) may be written as

dl, dVag
Rl +{Ls+ Ly) d—:+—d—;— = V,
dly dv
g gd  _
RIﬁ+(L$+LM)_¢F+_d_t_ = Vg (6.37)
Ty = Kpg{lgcos ot —I,sin wt) (6.38)

Notice that the system equations are still functions of rotor position.
Just as before the rotor position is implicit in Eq. (8.37) and explicit
in Eq. (6.38). The electrical quantities appearing in Egs. (6.37) and
(6.38) are fictitious quantities in the sense that they are not

accessible at any point in the actual machine.
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Polyphase currents in the stator at synchronous frequency
produce an MMF rotating in the machine airspace in synchronism
with the rotor MMF. The interaction between these stator and rotor
MMF’'s produce the required torque. The rotating stator MMF may
very well be produced by an equivalent set of windings rotating in
space at synchronous speed but carrying dc currents. The next step
in simplifying the system equations is to transform the system Egs.
(6.37) and (6.38) in the two phase stationary reference frame into a
itwo phase frame oI reference rotating in space at synchronous
fregquency.

The third annular ring from outside in Fig. 6.11 represents
this fictitious rotating structure carrying dc currents (3 and %) in
the two phase windings (d and g windings). The electrical circuit

equations and the torque equation may be directly written as

. .2l
R+ L ‘F“i-Kd&)

= ¥y
° od[q
R+ L o T = Vq (6.39)
T, = —Kpal, (6.40)

Notice that apart from resistive and inductive drops, the phase
windings also have speed voltage term because the d,g windings are
rotating in space. The machine paramelers are shown with asterisks,
because their relationship to the original machine parameters are
yvet to be established. We now invoke the condition that the MMF's
produced by the d,g windings are the same as those produced by the

o8 windings and the generated torque in both the systems are equal
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Comparing Eqgs. (6.38) and (6.40), we get

I; = I sin wi—Jgcos wi (6.41)

Equating d axis MMF’s, we get

Iy = —Icos wt—igsin wi (8.42)

From Egs. (6.41) and (6.42), the inverse relationship is also obtained.
Iy = =lgcos wi +sin of

Ig = —Igsin ot —Lcos wi (6.43)

Further, assumption of sinusoidal flux distribution leads to

Yaa = —Yqcos wi
Ypa = ~Ygsin wi (6.44)

where %; is the maximum flux linkage due to rotor flux to stator

(e.f) windings. Substitution of Eqs. (6.43) and (6.44) into Egs. (8.37)
and (6.38) leads to

dl;
Fil;+ (Ls"l" LH) _t?t__ (Ls'l‘ Lﬂ)fqﬁ) = I’d

dr,
Rlg+(Ls+ Lyy—-+(Ls+ L) g +Yaw = Vg (6.45)

Ty, = —Kepal, (6.486)

Equations (6.45) and (6.48) describe the system in synchronously
rotating frame of reference. As expected the electrical quantities in
Eqgs. (6.45) and (6.48) are all de quantities. They are independent of
rotor position. Again the electrical gquantities as expressed in Egs.
(6.45) and (6.46) are fictitious in the sense that they are not directly

accessible at any point in the actual machine.
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@ T 13 ®

Fig. 6.12 The electrical eguivalent circuil of the permanent
megnet synchronous moachine in Lhe synchronously
rotating (d.g) reference frame. The wollages (V4.V,) and
the currents (f.l;) ere dc gquentifies.

In the case of permanent magnet synchronous motor the
effective airgap between the rotor and stator is large, on account of
the fact that the relative permeability (u,) of the permanent magnet
material is nearly unity. As a result the cross coupling terms
( (Ls+Lywly < Vg (Ls+Lywiy <Kpgw ) in  Eq. (8.45) are negligible,
leading to the following approximations.

dl
Va ™ Rlg+(Ls+Ly) —-
dl,
Vq R R[q“"(Ls-l‘Lﬂ)‘a?"!-KEQ (647)

Tg = KTIg (648)

The constants 94 and —Kg¢g have been replaced in the Egs. (6.47) and

(6.48) by the more familiar back emf constant Kz and the torque
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constant Ky, The system of Egs. (6.26), (8.47) and (6.48) may be
more conveniently represented by the equivalent circuit shown in

Fig. 6.12.

6.3.4 Control Sirategy of BLDC HNolor Drive

The BLDC motor drive consists of a switching converter and
a permanent magnet synchronous motor. The converter is controlled
in such a way as to provide ac power to the armature at
synchronous frequency at all operating speeds. Or, equivalently, the
armature MMF at all speeds is maintained at a fixed phase angle with
respect to the excitation MMF. The BLDC motor drive consisting of
the synchronous motor and the switching converter is shown in Fig.
6.13. First current-fed operation of the BLDC motor is developed.
Speed regulation under sliding mode control is ezxplained in a

subsequent section.
Ag B; / C,
L

3

Fig. 6.13 Power circuii of the BLDC wmnotor. The swilches are
synchronized lo the rofor positionn and are the electronic
counierpart of the mechoanical commutator in the dc
molor.

— Vg
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In the d—g frame of reierence, the rotor MMF is constant in
magnitude and oriented alomg the d axis fixed to the rotor. The
stator MMF along the ¢ axis determines the instantaneous torque
(T = ¢q;). The stator MMF along the d axis does not contribute to
the developed torque. The operating principle of the BLDC motor in
the d—g irame of reference may be stated as follows. The current I,
which does not contribute to useful torque is maintained zero at all
times. The current J,, which is responsible for the developed torque,
is maintained at such a magnitude and polarity as to develop the
desired torque. The control strategy of the current fed BLDC motor
is then to achieve I; = 0 and I, = *, where [° is the desired g axis
current. The equivalent circuit of the current fed BLDC motor is
shown in Fig. 6.14.

The essence of the control problem of the current fed BLDC
motor drive is to relate the requirements of the d—g axes currents
( =0 and I; = I,°) into a suitable switching strategy for the three
switches in the converter. This is done best in the {following
graphical manner. Figure 86.15 shows the active plane of the
machine. The rotor is shown frozen at an angular position of 15°. The
orientation of the d axis is fixed on the rotor and coincides with the
rotor MMF direction. The orientation of the g axis is also fixed on
the rotor and normal to the d axis. The directed arrows in Fig. 6.15
represent the direction of the steady state stator MMF’'s for the
different switch positions shown alongside. For example, switch
inputs (4,.5,.Cy) produces a steady state MMF vertiicaily upwards in

the active plane of the motor. For the rotor position (15°) shown in
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@)

)

||

I
[ R
A
=

Fig. 6.14 FEguivalent circuit of the current fed BLDC motor (with
Iy = 0). 7The mechonical system consisting of the inertic
(/), friction (B), end the load torgue (T;) is represented
by their electrical analog.

Fig. 6.15 Steady state armoture MMF for the verious inverter
swiltch posilions. The directed arrows show the sieady
stele armeaeiure MMF in the active plene of the mmoior
Jor the siz possible switch inpuis. The orientation of
the d,g axes are shown frozen in space corresponding
io the Totor al 15°.
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Fig. 8.15, the switch inputs (4,.B, () produce a steady staie stator
MMF corresponding to some positive J; and some positive 4. In a
similar way the switch inputs (40.5,.C,) produce a stator MMF
corresponding to some negative I; and some negative £f; switch
inputs (44.8,.Co) produce a steady state stator MMF corresponding to

some negative I; and some positive Z; switch inputs (4,.54.C)

AN
produce a steady state stator MMF corresponding to some positive J;
and some negative J,. This above resolution of steady state MMF's
due to different switch inputs into equivalent d and g axes currents
is valid in the range of rotor position 0 < wt < 60°. Table 6.1 shows

the interpretation of steady state MMF's in terms of J; and % and the

validity of this interpretation in terms of the rotor position wt.

o Direction of MMF
Switch Position Range of ot
d axis g axis
A1B,..Co +I; +i, 0° < wt <60°
Ag.B,.Co —I; +1, 0° < wt <B0°
Ag,B,.C, ~I; -1 —30°<wt <+30°
Ag.Bo.Cy - -1 0° < wt <B0°
A,.By.C, +1; -1, 0° < wt <B0°
A,.By.Cy +I; +1, —30° < wf < +30°

TABLE 6.1 Steady state stator MMF's for different swilching inputs
and their interpretation in the synchronously rotating
(d.g) 7eference frame. As we ore interpreling o
stationary quantily (steady state stator MMF) in o
roleling reference frame the interpretation 1is wvelid
only in o limiied 7ange of 7olor position. The lasi
column indicates this limnitation.
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Fig. £.16 Sufficient conirol inputs jor each 60° wide secitors of the
The regquirement of hoving
independently only two gquantities ; end [, with three
independent swilches (A,B.C) vesults in the availability
of more than sufficient control options.
four switch inputs of wll the possible switch inputs are

7olor position.
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We need to relate the requirements of I; and ; to the three
switch positions at any instant. There are two variables (f; and ) to
be controlled with three switch inputs indicating an extra degree of
freedom. This extra choice available is also seen in Table 6.1.
However we may select a set of control inputs capable of achieving
+; and £/, and with a consistent range of wt in which they are
applicable. These are (A4,.5,.Co).(40.5,.C0).{4c.B0.C;) and (4,.By.C,) in
the range of rotor position 0 < wt < 60°. Therefore in the range of
0° < ot < 60°, the above iour control inputs cembination is sufficient
to obtain the required correction (increasing or decreasing) in both
I; and . Figure 6.16 shows the contirol input combinations used in
each of the 60° wide sectors in the active plane in which the rotor
MMF is oriented.

The strategy of control is to determine the error in the
instantaneous value of the currents I, and J, and to select the
appropriate switch inputs (4,B.C) depending on this error. In each of
the six sectors shown in Fig. 6.16 the instantaneous value of I; and
I; enables one to select an appropriate power circuit switch
positions. For example, in the sector 0°<wt<60°, if the value of
and I; are higher than their desired values ([;° and 1;°), the converter
is switched to (4¢.B80.C1)- If k4 is less than [;° and 4 is higher than
4,°, then the converter is switched to (4,,5,.C,) and so on. Rotor
position (wt) and the phase currents (J;./g.I;) of the motor are sensed.
By using the transformations given in Section 6.2.3, they are
converted into J; and /. 3 is checked for zero value. J, is checked

for the desired value J;. From these inputs and the sector in which
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Switch Inputs
Sector ;>0% Iq>1';?
, A B
0 o 1 1 0
0 1 1 0 1
0° < wf <B0°
© 1 0 0 1 o
1 1 0 0 1
0 0 0 1 0
0 1 1 0 0
60° < wt < 120°
© 1 0 0 1 1
1 1 1 0 1
0 0 0 1 1
120° < wf < 180° o ! L 1 0
1 0 0 0 1
1 1 1 0 0
0 0 0 0 1
o 1 0 1 0
1B0° < wf <240°
© 1 0 1 0 1
1 1 1 1 0
0 0 1 0 1
0 1 0 1 1
240° < wt <300°
@ 1 0 1 0 0
1 1 0 1 0
" 0 1 0 0
0 1 0 0 1
00° < wot < 360°
300°<wt < 1 0 1 1 0
1 1 0 1 1

TABLE 6.2 Look-up table relating the input guontities — rotor MMF
sector, d exis current ([3.> 0 ? ) and the q azis
current (L > I; ?) -  directly into the necessary
E:ontro)l action in ferms of the inverter swifch positions
A.B.C).
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the rotor MMF lies at any instant, the power circuit switch inputs are

selected. Table 8.2 is a lecok-up table for this purpose.

6.3.5 Current Fed BLDC Molor Drive amnd Test Resulls

The above control strategy was implemented on a 1/2 hp
BLDC motor. Figure 6.17 shows the block diagram of the hardware
to compute /; and I;. The Hall-effect current sensors generaie analog
signals proportional to the phase currents (/.75 and I.) of the motor.
An incremental encoder drives the up/down counter to produce
digital shaft position signal (wf). The ABC-af transformation block
realizes the Eq. (6.35). It takes in analog phase current signals (/g
and /) to produce the analog two phase current signals (/, and I).
Two Eproms store the trigonometric functions cos wt and sin ¢, and
are addressed by the digital shaft position signal. Multiplying D/A

converters realize Eqs. (6.41) and (6.42) to produce the analog direct

I
I, | AB.C | MULTIPLYING |—o1,
@ HALL T0 D/A
.7 | senson ap |- CONVERTER (=1,
A Y = ~
g5 P
Is i T cos wt ?
I : EPROM
SHAFT wt
PoSTTION [—ef (OSOT | el SIN ot
SENSOR oM
SECTOR
‘ 1  SENSOR =

Fig. 6.17 Hardware for computing the direct oaxis and the

guadrature azis curvents Iz and I,
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and quadrature axes current signals.

Figure 8.18 shows the block disgram of the current-fed
BLDC motor. The two comparators sense the polarity oi the error in
the direct axis current J; and the quadrature axis current . The
sector sensor is realized with an Eprom. It senses the 60° wide sector
in which the rotor MMF is oriented at any instant. From these inputs
the look-up table selects the switch input for the three phase input
switches. The content of the look-up table is the same as given in
Table 6.2.

Figure 6.1%a shows the phase currents I, and Iz Figure
6.19b shows the transformed two phase currenis /, and 7.

Under current control the overall system (J, vs o) is a first
order system whose time constant is the same as the mechanical

time constant (J/ B) of the motor. Figure 6.20 shows the step change

Id 4 A eyo ]1 g +
I 0 ﬂ_ & —> il i 1
% LOOK B A B8 c
Iq upP - Vg
_ ﬂ_ ; TABLE | .
E = 0 4] 0
. 1 1 1
_“t  ['secvom i § J MOTOR
SENSOR ?

Fig. 6.18 Block diagram of the current-fed BLDC motor drive. The
switch inpuls wuyugandup are stored in o lookup table as
e funclion of the errors in the direct end quedrature
azes currenis ond the secior of the rotor MMF.
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in 4 and the consequent response in speed. This test is useful in
delermining the motor parameters. The iime constant of the speed
response gives the mechanical time constant (J/ B) of the motor. The
slope of the speed response (dw/dt) as the speed passes through
zerc speed is a measure of the load imertia (&p/J). With a
dynamometer load the torque generated per ampere of [ (&) may
be measured. From this test all the mechanical parameters of the
motor may be experimentally delermined.

Figure 6.21 shows the block diagram of the current fed
BLDC motor drive. The quadrature axis current () and the speed
(v) are both continuous signals. The shaft speed (o) is related to the
quadrature axis current () by a first order dynamics. Simple linear
feedback compensators may be used to design an overall speed

controller. In the following section the alternative approach of a

(a) (b)

v ; v
] ]
1/
y
7

<
AIN®
a

\

f\ -:::‘A“ / / + \ +HH +H LH‘ + '\::. HAHHH ‘/r
SANEAV2 A y, WV

h LN/ N/ URVAN;

AZY;

2 i =
TRACE 1: I, TRACE 1: I,
TRACE 2: Ig TRACE 2: I
SCALE: 1AMP/DIV SCALE: 41AMP/DIV

Fig. 6.19 Current woaveforms of the current controlled BLDC
molor. The physical stator currents Ijandly (&) aond the
transformed fwo phase currents I, and I; (b).
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Fig. 6.20 The response in speed of the current fed BLDC motor
for step change in the lorque producing current I,. The
eleciricael lime comstant of the wmofor being low, the
Tesponse in current is almost instantenecous. The speed
response 1is ezponeniial with a time constant egual to
the mechanical iime constant of the drive.

T
31 + - ﬂ
Ig —= Ky _— — W
JS+B

Fig. 6.21 Block diagram wmodel of the current fed BLDC motor
drive. The system 1is linear and first order befween L
cnd w.



213

sliding mode speed comntroller is given.

6.4 Sliding Mode Speed Comiroller

The BLDC motor drive may be represented by the iront end
converter and the rotating reference frame equivalent circuit of the
motor as shown in Fig. 6.22. The control problem is to select an
appropriate control sirategy for the switches in the ifront end
converter in order to achieve the dynamic and steady state speed
response requirements for the drive. Recalling from the case of DC
motor speed control discussed in Section 6.1, the response

requirements may be put in the following form.
o div—w°
oy = (w—w°) + T .7 =0 (6.49)
The extra condition required to be satisfied for orthogonality

between stator and rotor MMF's is that

Og = ]d =0 (6.50)

The value of o, at any instant (again recalling from Section 6.1)
helps decide the need to "accelerate” or “decelerate” the motor. The
need for acceleration or deceleration determines the polarity of 4
desired. From Eq. (6.46) it is seen that increasing J; decelerates the
motor and decreasing ], accelerates the motor. The value of g4 at
any instant determines the corrective action desired in J;. Given the
value of 04,0, and the sector of the rotor MMF at any instant a look-
up table may be constructed to relate these conditions to the
desired switch input. Table 6.3 is the look-up table for this purpose.

Table 6.3 is identical in its conient to Table 8.2 used for current
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Switch Inputs
Sector gg>0° 0g<0g?
A B C
0] 0 1 1 0
] 1 1 (0] 1
=] t Q

0°<wt <80 1 0 0 1 0
1 1 0 0 1
0 0 0O 1 0
0 1 1 0 0

60°<wt <120°
© 1 0 0 1 1
1 1 1 0 1
0 0 0 1 1
0 i 1 1 0

a t a
120°<wi <180 1 0 0 0 1
1 1 i 8] 8]
0 0 0 0 1
0] i 0 1 0

-] t -]
1B0°<wi <240 1 0 1 0 1
1 i 1 1 0
4] 0 1 0 1
0 1 0 1 1

° t 00°
240°<wt <3 1 0 1 0 0
1 1 0 i 0
0 0 1 0 0
300°<wt <360° © 1 0 o 1
© 1 0 1 1 0
1 1 0 1 1

TABLFE 6.3 Look-up table relating the input quontities — rotor MMF
sector, d azis sliding line (og > 0 ? ) and the g azxis
sliding line (o, > 0 ?) - directly into the mnecessary
control aclion wn terms of the inverter switch positions
(A.B.C).
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N .
\ \ d axis Lgtly

“““““““““ : KT: 1

Frg. 6.22 The complete schematic diegrom of the BLDC wnotor
drive. The elecirical and the eleclromechanical
subsystemns of the drive are given in the synchronously
rotaeting (d.g) Teference frame.

controlled BLDC motor. The difference is in the g axis control

decision. This difference is due to the fact that positive I, produces

negative torque and negative J, produces positive torque.

6.4.1 Practical Design Considerations

The control strategy indicated above requires the output
speed error and its derivative to be measured in order to evaluate g,
at any instant. In the motor, the speed derivative is not directly
accessible for measurement. Therefore the sliding line has to be
modified in practice with certain approximations as was done for dc

motor drives explained in Section 8.1.
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"Under the assumption that iriction is low and that the load
torque is comnstani or slowly varying, the mechanical system equation

given by Eq. (6.26) may be approximated as

~ _ do
—Krlyg = I (6.51)

The switching boundary o, may be sel up in terms of the g axis

current error J; and the speed error (o-w®).

0a(t) = (v—0?)-RT, (8.52)

R; is a design parameter and is usually the current measuring
resistance. The sliding line equation being a linear differential
equation, one may represent the same in frequency domain as well.

Og(s) = (v—-0°) — BT, (6.53)

Under sliding mode control, since g,°(s) is maintained to be zero, the
resultant closed loop transfer function of the system is given by

o) = T3eTRT (6.54)
Notice that unlike real sliding mode control, now the response time
is a function of the design parameter K; as well as the motor
parameters J and Kj.

In Eq. (6.53) the sliding line is shown as the weighted sum of
the speed error and the current error 7,. To measure current erro:
fq, the steady state value L,° will have to be subtracted out from the
current . The simplest way to realize this function is by means of a
high-pass filter. Further, speed measurement from tachogenerators

also require filtering due to the commutation noise in the
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tachogenerator ouiput. Therefore in practice, the sliding line is set
up incorporating suitable prefilters. Equation (8.55) gives the

practical sliding line in the frequency domain.

_ 1+we/s wi/ s v 1
T Tre/ s I Tra/s? T Tre/s

o°(s) L(s) = 0

(8.55)

The current measurement circuit has an inverted pole. Speed signals
are also measured with the same inverted pole. In order mnot to
loose the steady state speed information inverted zeroes also have
been added to the speed measurement. Equation (68.55) may be put in

the following form for convenience.

1 +ToS

- TlS‘
o) = 9i7iT s

w— W —
gll+‘r,s 1+7,s

L(s) =0 (6.586)

Under sliding mode control ¢°(s) is maintained to be zero,

leading to the following closed loop response.

w’(s)

wis) = 1+s/ Qug+s?/ w§ (6.57)

The response as seen by Eq. (6.57) is a second order response, and
provides the design criterion. 7, is the current filtering time constant
and is chosen higher than the electrical time constant of the motor.
The speed gain g, is selected to obtain the desired response time.

The inverted zero frequency {1/ 7:) of speed measurement is chosen

to obtain the desired damping.
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Equation {6.57) may be modified as follows tc obtain certain
practical advantages.

l+7ss 1 " 1 -
g1 l1+7,s ©=g1 l+7,;s + l+T131q(S) - q(s) (658)

In the case of current controlled drive, the response in the current
is almost instantaneous due to the fact that the electrical time
constant of the motor is quite low. And since we have chosen the
various filter time constants higher than the electrical time constant
of the motor, the term (s) on the RHS of Eq. (6.58) may be replaced
by I (s) giving rise to the following equation.

1 . 1+7ps 1, =
9173 ms? TN T Ot Tar,s () = &7) (6.59)

Equation (6.59) is in such a form as to be added omn conveniently to
a current controlled BLDC motor. Ancther added advantage is that
overcurrent protection can be simply added by incorporating limits
on this current reference signal.

The practical implementation of the speed controller is
shown in Fig. 6.23. The two comparators sense the polarity of the
error o4 and o, respectively. The switch inputs for the three phase
swilches are obtained from the look-up table. The contents of the
look-up table are given in Table 6.2.

Figures 6.24 and 6.25 show the response in speed error and

I, for step speed reversal for two different compensator designs.
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o 1 + |
| 14mS O o
§
w 14755 T2 LOOK | pryvE
> UpP .
1+74S —of 1+74S TABLE |SIGNALS
wt -
I,
— " A, B, C
I — to @d>0? —
PRS— TN, dn q —
Ic
Fig. 6.23 The sliding mode speed coniroller. Unlike the Teal
sliding wnode conirol wusing the speed error and tils

deriwative as the feedback weriables, the modified sliding
rnode controller wuses the speed error end the g ezis
current as the feedback variables. Appropriale prefillers
haove been added lo facilitele measurement. The state of
the system (ogandoy) al any inslient end the sector in
which the rotor MMF lies ot cny insient are wused io

look wup inito o toble io decide lhe mnecessary conirol
ociion.
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TRACE 1:

SPEED ERROR

2v] v | 3
1 600 RPM/DIV
3 kﬁ@? TRACE &
. oo ] CURRENT I,
-« ] 5 AMPS/DIV

SLIDING LINE:

SECOND ORDER

Fig. 6.24

The response to slep speed reversel commend of e BLDC

motor drive with sliding mode conirolier.
design in this case is an wunderdemped second order

Tesponse.

wp=10.8 rad/sec
Q@ =1.2

TRACE 14:

4%

SPEED ERRGR

600 RPM/DIV

' (7]
<

TRACE 2:

N i

CURRENT I,

iosfinfosrafhes 5 AMPS/DIV

SLIDING LINE:

SECOND ORDER

bodadad llll.iJl P
o r T gt

Fig. 6.25 The response to slep speed veversal command of ¢ BLDC
with sliding mode controller. The control
case 1is an overdamped second order

molor drive

design 1in this

Tesponse.

wp=20.6 rad/sec
@ = 0.61

The control
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6.5 SOME MORE PRACTICAL ASPECTS

From performance point of view the BLDC motor is seen to
equal the dc motor drive. The electronic hardware is more complex
because reconstruction of the rotating reference frame currents I,
and J, calls for position sensor of good resolution, mullipliers, etc.
With digital memory chips and D/A converters, the multipliers can be
realized inexpemnsively. The position sensor is still one of the high
cost components of the system.

In this section some simplifications in the hardware for
certain applications are outlined. Possible solution to overcome the
disadvantages incurred due to the above simplifications is identified
in the design of the motor.

From Section 6.3, we may write the relationship between the
d—g axes currents and the phase currents as below.

Iy
[—v8/2 v3s2 o] [*

l—l/z —1i/2 1B
1 (8.60)

[Zg

_ [—cos wt sin of
2

—sin wi¢ —cos wit

When we desire sinusoidal currents in the windings, the above
transformations have to be realized with good accuracy of the
trigonometric terms involved in Eq. (6.60). Granting that non-
sinusoidal phase currents are tolerable, the trigonometric terms in
the above transformations may be replaced by the average values of
their end values in each of the 80° wide sectors of the rotor MMF
position. For example, considering the 0°<wt<80° sector, the end

values of the currents /; and J; are given by the following equations.
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[
[ -1 o]l-vB/2 V3sz o %
lfqumo”[o ~1||-1v2 -1z 1) (B
I (8.61)
Ir
[ _I-1/2 —v3/2]1-v3/2 v3/2 o] |4
[Qm:mo‘ N3r2 —1s2 )| -172 —1/2 1 |B
I (6.62)

Taking the average of Egs. (6.61) and (8.62) we may write for the

sector 0°<wi <B0°

[8v3,
Ud] 4 4
L. . |8
gl0°<wi <80 Z(IB—IC)

(6.63)

Further simplification is possible since under sliding control I; is

zero. Then it follows that

'3\/31
”d] 4 4
Lo o 3
9j0°<wt <80 57

(6.84)

Using the above idea we may piece together the currents I
and I, from the appropriate phase currents in each of the sectors.
The piece-wise relationship between the currents J; and [ and the
phase currents is given in Table 6.4.

Figure 6.26 shows the block diagram of the hardware
needed to compute L and 7, approximately according to Table 6.4.
Comparing with Fig. 6.22, we see that reconstructing the currents I
and J, using Table 6.4 requires only a sector sensor (much less

expensive than a high resolution position sensor) and analog
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Sector I3 Iy
J_
0° <ot <60° 83v3, | 3,
2 2
. . —3V3 3
60° <wf < 120 e | 3l
120° <ot < 180° +3V8, | 3,
4 2
—avs
1B0° < wt <240° V3., | 2
7 2
\/_
240° <ot <300° B3, 12y,
Z 2
300° < wt <360° _34‘/5 Ig %IA

TABLE 6.4 Appozimeate relationship between the d,q azes currents
end the {hree phase wmotor currents. From this
relationship I; aend I, may be apporimately pieced
together from the phase currenis with the wuse of only
seclor sensors ond ocnalog swilches instead of position
sensors and mullipliers.

switches instead of mullipliers. Considerable simplification is possible
by following the above method of generating I; and f,. For good many
applications the difference in performance because cf the ebove
changes is imperceptible. Figure 6.27a shows the phase currents
under such a control. Figure 6.27b shows the currents J, and I
Figure 6.28 gives the response in speed error and [, for step
reversal in speed command under such a control.

It may be seen that the phase current waveforms are
quasi-square wave. As a result the generated torque will be
pulsating causing difficulties at very low speeds. This problem exists
only if the motor has a sinusoidal distribution of flux. However if the

motor can be buill with trapezoidal distribution of flux the low speed
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ﬁ]IA I
iﬂ]%’ HALL = 3j2 | o
e e S
"J | SENSOR 4
Ia 49 tIg - ANALOG
Is < . SHITCH 3
=Ie sl —
Io = — 2
i Ig
P52?¥§;N UP/DOWN SECTOR
ENCODER COUNTER SENSOR

Fig. 6.26 Hordware for the approximeate computalion of the direct
end gquadrature ores currenis according fto Table 6.4.

(a)
v Pl
(1) t (2
T
I R
208 i
TRACE 1: I,
TRACE 2: Ig
SCALE: 41 AMP/DIY

Fig. 6.27 Three
two

and

{(b)
1y E
PEGN o K
(4] |V (2)
lss
AN
e
TRACE 1. I,
TRACE 2 Ig

SCALE: 4 AMP/DIV

phase currenl waveforms (a) end the eguivaelent

phase current
epprozimation given in Table 6.4 is wused to measure I

woaveforms ®) when the

“d

L. This approzimation leads to the well known
guasi-squaore wave conirol of the motor.
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periormance can be comnsiderably improved.

In this Chapter the application oif sliding mode control ifor
the speed regulation of dec motor and BLDC motor were explained.
Linear control theory and sliding mode contrel were combined to
obtain suitable design criteria for speed regulators. Experimental

results were presented to verify the design procedure.

The BLDC motor drive performance equals the dc motor
drive. In view of the robusiness of the motor the BLDC motor
provides an attractive option for variable speed applications. With

high speed switches the molor may be designed with higher number

TRACE 1:
r4Y 5V i SPEED ERROR
: 600 RPM/DIV

2 ) TRACE 2:

RS

sl Lores Lot CURRENT I,
ma i 5 AMPS/DIV
v SLIDING LINE:

SECOND ORDER

wp=20.6 rad/sec
@ = 0.61

Fig. 6.28 The rTesponse {o step speed reversal commond when
piece-wise approrimatiion is used io evaluate ihe I; and
I,. The respomse is practicelly indistinguishable from the
one given 1in Ffig. 6.25 where the wmore accurate

trigonomeliric irensformoations are wused fo evaluate I
and I,.
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peles for operation at. higher synchromnous irequency resul

(s
et
jau]
i{e]
s
=

n
Lo

kidy

higher power density for the motor. With trapezoidal flux
disiribution {further simpilification in the electronic hardware is

possible.
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CHAPTER 7

EXTENSION TO SYNCHRONOUS MOTOR DRIVE

In Chapter 5, it was indicated that the various machines
lead qualitatively to identical description. Such a description, when
expressed in an appropriate reference irame, also turns out to be
time invariant thus simplifying the analysis. In Chapter 8, the
concept of sliding mode control was applied to the dc motor drive
and the BLDC motor drive. The design criteria were also found to be
identical in both cases. The same method of control is applicable to
synchronous motor drives as well. The field oriented control of
induction motors following the principles of sliding mode control is
similar, but not in the scope of this thesis.

In this chapter, we set forth a discussion on the sliding
mode speed control of synchronous motor drives and the scope of

steady state efficiency optimization applied to synchronous motor

drives.

7.1 Synchroncus Motor Drives

From Chapter 5, we have the defining equations of the synchronous
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Fig. 7.1 The electrical equivalent circuit of the synchronous
motor.
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Fig. 7.2 The compieie conirol and power circuit schematic of o
syncnronous motor drive.
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motor.
to|  [Ra+ (8 + L)p ip 0 I
Ugi = Yo Fo+(M+Lg)p —(M+Lgw |lig
Ug Mo (M +Lg)o Ry +(M+ Lig)o| |, (7.1)
T = MAiq+(Ld—Lq)id?:q (7.2)

The equivalent circuit of the synchronous motor follows readily from
Egs (7.1} and (7.2) and is shown in Fig. 7.1. The g axis equivalent
circuit is identical to that of the BLDC motor. The d axis circuit
involves the excitation circuit as well as the armature circuit. When
we apply the sliding control principles of speed control of
synchronous motors, the armature control circuit is identical to the
control circuit of the BLDC motor. The extra control circuit required
is the excitation controller. This can be very conveniently realized as
a constant current controller. The overall control scheme is shown
in Fig. 7.2. The armature controller is identical to the controller
described in Chapter 8, for the BLDC motor. The field controller is a
constant current controller whose purpocse is to maintain the
excitation in the machine constant corresponding to 7I’4. The machine
excitation may be set to a fixed nominal value. Then the
performance of the overall drive will be identical te that obtained for
the BLDC motor. In the follwing section we see how the excitation
may be independently controlled to achieve optimum efficiency under

different operating loads.
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7.2 Losses im the Motor

For the synchronous motor, under steady state operation, with
reference to Fig. 7.2, we may identify the losses in the motor. Under
steady state operation, i3 = 0, 4, = L,°, and %4 = [;°. The icllowing are
then the steady state losses.

i) There are no iron or copper losses in the d axis armature
circuit. This is because the d axis current and consequently the d
axis armature MHMF are zero.

ii) There is a component of copper loss in the d axis excitation
circuit equal to I°4°R,. There ar= no hysterisis or eddy current
losses in the excitation circuit, since the excitation MMF is dc.

iii) The g axis armature circuit experiences both copper losses
and iron losses. The g axis armature copper losses are I"qz}?q, and
the g axis iron losses are proportional to the g axis MMF.

Under steady state then the losses are

LOSSES = I’ PRy +I°f*Ry+7(1%) (7.3)

where f(I°;) is the iron losses and is a nonlineaar monotonic function
of I’q. Further under steady state, the load torque is constant and
hence I°y = T°/ MI’,. Therefore the losses may be written as

LOSSES = K/ I° 2+ Kol* 2+ F1(1"4) , (7.4)

K, and K, are suitable constants. From Eq. (7.4), we see that the
losses are high at either end of excitation conditions. A minimum
value of losses exist for a specific value of 7’y for any specific steady

state operating condition.
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Fig. 7.3 The Input power ws ezcitation curves for a dc motor

under different oulput loed conditions. For every load
condition, there is o ceriwin ezcitation level which Tesulls
in  minimum  input power and mozimum  overcll
efficiency. From the argument given in the text, the
losses or a synchronous motor are also similar.
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Fig. 7.4 The synchronous motor drive wunder sliding mode control.
The ormelure conirol is identical fo the control of BLDC
motor. In o synchronous wmofor, since the excifalion 1is
also controlladie, a siiding mode field conirolier maoy be
edded os shown in order lo seleci the ezcitciion lewel to

obiein mazimurmn operating efficiency.
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The loss breakup given by Eq. (7.4) for the synchronous
motor holds good equally well for a separately excited dc motor as
well. It is more convenient to verify this on a dec motor. A test was
performed on a dec motor to evaluate the input power for constant
output power under different conditions of excitation. Figure 7.3
shows the result of this test, on a 1/3 hp motor for loads of 40W,
120W, and 200W for different excitation, plotted. It is seen that the
minimum loss condition is obtained under different excitation
conditions for different loads. This criterion may be therefore used
to select the excitation level 7’y of the drive. The selection of the
proper I°y for any operating condition is a single input scalar
optimization problem and had been described in Chapter 3, Section
3.9. Figure 7.4 shows the schematic diagram of a complete controller
for a synchronous motor drive. The speed controller is a sliding
mode field oriented controller and is identical to the one explained in
Chapter 6. The field controller is a current controller and

incorporates loss optimization as explained in Section 3.8.
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CHAPTER 8

CCNCLUSION

The theory of variable structure systems and its
counterpart of sliding mode control have been applied to the analysis
and design problems of switched mode power converters. The result
is an elegant analysis method and an integrated design approach to
the control of switched mode power converters. In contrast to the
conventional, small signal, frequency domain approach, the sliding
mode control is a time domain method and results in stable control
for both small and large signals. The control is less semnsitive to
system parameters compared to conventional frequency domain
design techniques such as loop shaping. The phase plane description
turns out to be a powerful graphical aid to the design process in the
case of second order systems.

In the case of motor drives, sliding mode control integrates
the design objectives of the drive to the control strategy of the
power converter, with resultant simplicity of controller hardware. The
method of sliding mode control is also shown to be applicable to
state estimation problems.

Sliding mode control is a time domain design method and
results in a globally stable system under all operating conditions.

Conventional wisdom of phase margin and gain margin are therefore
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not applicable to such systems. The concept of loop gain would still
be applicable. An area that requires to be addressed in future would
be to relate the sliding surface to the loop gain of the classical
control.

The advantage of reduced sensitivity to system parameters
and external excitation in sliding mode control is derived from the
fact that the sysitem operates free running. The switching frequency
is therefore not constant. This is an area that requires to be
addressed in order to increase the acceptability of sliding mode

control.
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APPENDIX 1

TRANSFORMATIONS USED IN GENERAL MACHINE THEORY

In this section, the performance equations of practical
electrical machines are derived f{rom first principles using the
transformations outlined in Section 5.4. At first a general salient pole
machine is considered. This will lead to the performance equations
vi e synchronous machine and the dc machine at appropriate
stages. The three phase induction machine, which is a uniform airgap

machine, is considered later.

Al.1l Salient Pole Machine

The general salient pole machine shown in Fig. A.1 consists
of a salient pole stator carrying orhogonal windings 4 and B. The
round rotor without saliency carries the three phase balanced
windings r.y and &. The system of equations for this general machine
is derived first. Appropriate equations are picked up from here in
Chapter 6 to arrive at the electrical equivalent circuits of particular
types of machines.

The voltage equations for the windings in Fig. A.1 are

[V

[
» :

_ [Z11 Zi2
= Ifa

V = =
21 Z2y Zaz

(A.1)

The equations are put into compound matrix form for convenience.

The subscripts 1 and 2 refer to the stator and the rotor respectively.



242

Fig. A.1 A genercl saliient pole moechine wiith o ihree phase 7olor.



243

_ {24 WA] _ [Eatply 0
2R P o RV

N
i

[ v Yy 'Ub]T; ILr=[4 'Ly i 17

_ r_ Mg DMpy PMge
[Ze:]" = lPMBr PMg, Pz,

N
»
|

%+ oL, PMyry PMyy ]
222 = pMyr Ry+p-z'y pMyb

DMy PMy, Ry+ply

The machine being salient pole, all the inductances except Ly and Ly

are functions of the rotor angle 4.

My = J[?A cos ¥ Mg = —-1[73 sin 4

MAy = IE cOSsS 132 MEy

= _EB sin '192
Ma = My cos 8, Mg, = —Mp sin %,
8, = 8+120°
¥y = 9 +240°
Rotor self inductance is maximum when 9=0, and minimum when
S=90°.

Using the truncated Fourier series to approximate the self

and mutual inductances, we get

= L +1I, cos 29 My, = My, = M +M, cos 28

T
Ly
L, = L[ +1, cos 29, My, = M,y = My+H, cos 28,

Iy = Ig+1I, cos 28, M, = M,

'y e = M—a+ﬁ-47¢, cos 29,

The first step in simplifying the above system is to apply the

phase transformation C, described in Section 5.4 to the rotor part of

the system.
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The transformed system is given by

Vi =2Zr; zZ' = GTZC, (A.2)

Knowing the original impedance matrix Z and the itransformation C,

Pl
the new impedance matrix 2’ is computed.
Zv Zhel Ir 0]lZn Zig)lr o
Z'gy Z'ge| T |0 7| |Z2y Zae lo o5
Z'll ‘Z'IZ1 _ [ le lecl
Z'ay Z'aol  |C\TZ C1TZa3C (A.3)

Expanding the RHS of Eq. A.1.03, we get

[Ry+Lgp O
Za=Zu=| 0 Ryrlg
[0 Mycosd Hysind
Zhe = Zie0h = [0 —Mpsin® Mpcosd

My = V3/2ﬁ—fA ’ Mg = VB/ZIﬁB
Z'ay = C1725 = 757

[ Fo+ Lap plLlgycosRy —pLgpsin2é
Z'op=|pLopcosR® FRp+p(Ly+L,cos28) pLysin2y
—pLgp5in2¢ PLysin28 Ry+p(Lg—L,cos28)
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}?2:}?7:1?”:.:?5; Lo = -;'i‘ 2.1-{2;: Ly =-Z'—b/2+-/17]b;
Loy = (Ly—Mp)/ V2 Ly = (L,—il;)

Some more simplifications on the system order are now possible. With
balanced supply and without neutral conductior in the three phase
system,

1
vg = —-\/—.zr(v,.+vy+ vp) =0

. 1 .. .. .
io = ggllr+iy+ 4) =0

Therefore the rows and columns corresponding to vy and iy from Eq.
(A.2) may be dropped and the iransformed system of equations is
given by

V= 2T (A.4)

V=[v vg vg vglli I =[d4 ig i ig |7

Fy+ Lo 0 My cosd My sin®
. 0 Hp+Lgp —Mpsin$ Mpcoscos®
z'= Mycos¥ —Mgsin® Fs+p(Ig + Ly cos 28) Ply sin 24
Mysind Mgcosd pL, sin28 R +p (L, — Ly cosRy)

Physically these equations correspond to the two phase equivalent of
the original machine shown in Fig. A.2. The Eq. (A.4) differs irom the
Eq. (5.18) given in Section 5.2 owing to the saliency of the rotor.
Equation (A.4) is more general and leads to Eq. (5.18) when there is

no saliency (I, = 0) in the machine.
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Fig. A2 A scalient pole machine with a two phase rofor. All three
phase maochines ore 7veducible fo this jfundemental {wo
phose configuraiion.
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The Eq. (A.4) may be put in the compound matrix form, the

suffixes 1 and 2 referring to the stater and rotor respectively.

iV] 1Z'1, Z;z] ]

[VZ 21 222

The next simplifying step is to apply the commutator transiormation

¢, described in Section 6.4 to the rotor variables.

(v B [ve {r o

|r|= & |r == o c
3 lcosd —sind

2 7 Isin®d cosd

The transformed system of equations is given by

Vv o= Zr Z° = C.TZ'C, (A.5)

The new impedance matrix Z° is now computed.

(20 2% | Zn  G'Zx
lZ°21 Z°22| lZ'zlca CoTZ'22C, (A.8)

Expanding the RHS of Eq.A.1.06, we get

[Ry+Lgp O
Zu=Zu=| 0 Ryt
1 IMAP

Zo2 = Z'20p = l 0 Mpp

Caulion is required in evaluating Z°;; and Z°,. The "p” operator
occurs as intermediate terms and must be considered along with the

following current terms to avoid errors.
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Pig. A.3 A saolient pole machine with o two phaese commutator fed
rolor. All types of elecirical wmochines are derivable
Jrom this general configuralion.
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[Mppcostd —Mgpsind] [iy
Mypsind  HMgp cosB

{cosd sind®

(o] —_ T on —
2o I° = CplZpd = —sind cosd

ip

The "p” operator applies to the product of the tirigomometric term
and the following current term. Expanding and then dropping the
post-muitiplying current terms, we get

[Mp —Hpw, [FetLlgp —Lyw,

) L2 = 7

Zaz Ligp Rg + Lqp

1 = lMAw, Mgp
Ld = La+Lb ; Lq = La_Lb

The complete set of equations is given by

[ 4 [R, +Lap 0 Myp 0] [’l',A
Up 0 Fp+ Lpp 0 Mpp ip
Vg = Myp ~Mpw, Fp+lgp "Lq @r | (g
Vg Mycon Mpp Law,  Ra+ Lgp| |4y

(A.7)

Equation (A.7) corresponds to the equivalent two phase commutator
machine described in Section 5.3 and shown in Fig. A.3. This
equation is used in Sections 5.5 and 5.6 to arrive at the equivalent
circuits of dc motor and synchronous motor drives. The next
machine structure considered here is the uniform airgap, three
phase slip-ring machine in order to derive the performance

equations of an induction motor.
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Al.2 Roumd Rotor Machine

Figure A.4a shows the round rotor induction motor with
three phase windings on the rotor and stater. The voliage equations
for the various windings are given in Eq. (A.7). For convenience,
they are put in the following compound matrix form, the suffixes 1
and 2 representing the stator and rotor variables respectively.

V Z EVI IZII le []1
=2 = [Vz T 1221 Zze l—’z

(A.8)
Vi={wg vy vg ) : I =[1ip iy ig]”’

V2=['Ur Uy 'vb]T ; fz=[ir 7'y ib]T

Ri+Lip -Hip -Mp ‘
Zy=|-Mp Ri+Lipp -Hp
—ip —Mp E1+L—1P4
.R2+L_zp —HMop —Mop .
Loy = -—ﬁzp R2+Zap —ﬁzp
~Mzp  ~Map R+ Lop

[ % p coss Mp cosd, Hp cosd,
Z12=[Z2)" = |Mp cosd, HMpcoss Hp cosB,
Mp cos§, Ep cos Y, ﬁp cos¥®

I+120°
Y +240°

%
Ve

1}

The first step in simplification is to apply the phase transformation
C, and convert the above system into its two phase equivalent

system.
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{ v [c, ©
4-sll el
Lh/,ve 1 0

H
i

V2/3 |1/V2 —172 V372
1/V2 -1/2 —V3/2

The transformed system is given by

v = 77 v 5 121 2] [I1
- - IV'a T 221 Za lfz (A.9)
Vi=[ve1 va Vg1 i Ve=[%e2 va VYga 17
ry=[do %ar i1 V7 5 Iz =[d02 iaz ipa JT
R +Lep O 0
lel = 0 R1+L1p 0
0 0  Ri+Lp
.Rz'*'l'czp 0 0
Z'ap = 0 Rz+ Lop 0
fo 0 0

Z'h12 =[Z25]7 = |0 Mpcosd —HMpsind
0 MpsinYd Mpcosd

Loy = I,-2M,: M =(@/2)H; Ly =I1I,+MH,; Ly = L+,

Under the assumption of balanced three wire supply, the rows and

columns corresponding to vg;.vgz.%¢;. @and ig; may be dropped and the
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()

(b)

Fig. A4 Praclical nonsalient pole three phase wmeachine (v), and
its eguivalent two phase configuration. The d and g czes
shown in () are the rotating reference frame. By
switeble choice of lhe cngular wvelocily of the votaling
Teference  froame, subsiontial simplification of @ the
mathematical representiaiion of fhe machine is possible.
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system order reduces.

wa| [ Ri+ip 0 Mp cos® —Mp sing] lig
Vg 0 fy+1i,p Mpsind Mpcosd| lig
Vaz| ~ | Mp cos® HMpsin® Rs+lap 0 g2
Vg ~Mpsin® Mp cosd 0 Ko+ Lap | [ig2

(A.10)

The next step In the simplification of the system is to
choose a reference axis rotating at an arbitrary speed w,=de¢/dt
indicated by the axes d.,g in Fig. A.4b, and transform the two phzase
voltages and currents to this new reference axes. This is the

commutator transformation given by C,.

(v [ye [Czy O
lr‘cclr-cc‘lo Caz

_leosp —sing ‘ _leos(p—9) —sin(p—9)
Cor = sing cosg |’ Coz = sin{¢—39) cos(p—7)

After carrying out all the transformations, the new set of voltage

equation is given by,

'Udl Rl +Llp “Llwe MP _MC‘)G 'I.,dl
Ug1 _ F 1A Ry+1L:p Mg Hp g1
Vdz - MP “‘M(Ue - &),-) o+ Lpp -La(we - &)7-) igo

Vg2 M(”a ”C\),-) Mp Lz(% “—mr) Rz + sz

=,

72 (A.11)

In the iransiormed reference frame the various inductances
turn out to be constants. Due to the relative motion between the
reference axes and the various windings, rotary voltages now appear

on both the rotor and the stater windings. Equation (A.11) is used in



254

Section 5.7 to arrive at the equivalent circuit of the induction motor.



