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Abstract

A model for diluent diffusion into a polymer which includes mass
flux contributions from both a concentration gradient and pressure gradient
is proposed. The pressure is a result of the diluent-induced swelling of the
polymer and a constitutive law is incorporated that is analogous to that
used in nonlinear thermo-viscoelasticity. The concept of free volume is
used as the common basis to relate the relaxation processes for a viscoelastic
material to the diffusion of the diluent molecules. The resultant strains
(swelling) and stresses must satisfy a strain-displacement relationship and

equilibrium equations, respectively.

The governing equations are solved using the finite element tech-
nique. An iterative scheme is developed to solve the stress-coupled diffu-
sion process as two separate problems: one for the diffusion process and one
for the mechanical response. The two problems are solved individually

where the solution from one problem is used as input to the other.

Numerical simulations are performed for both one-dimensional and
two-dimensional axisymmetric problems in which the diluent is assumed
to diffuse along the axis of the cylinder. The results suggest that certain
anomalous experimental diffusion results can be explained through the re-
laxation behavior of the polymer. There are indications that Case II behav-
jor is included in the model by an appropriate choice of material parame-
ters. The results also indicate that typical diffusion experiments may be
inadequate to uniquely define the physical model for the diffusion process

when more than one type of diffusion driving force exists.
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Introduction

The use of polymeric materials for structural applications has
increased significantly over the past few decades. In connection with com-
posite materials, high specific strength and stiffness allow for significant
weight savings over comparable metallic parts, an attractive property for
military applications (as well as in the civil sector; e.g., cars). Unlike metals,
polymeric properties are often poorly characterized and not well under-
stood even in laboratory conditions. Matters are complicated by the fact
that in addition to being time dependent the properties are often affected by

environmental conditions.

An illustration of possible environmentally induced problems arises
in the use of polymers in structural adhesives. Adhesives are an attractive
fastening alternative since the use of rivets or bolts requires that holes be
introduced into the parts being joined. Introducing a hole may damage the
part, for instance composite parts may delaminate when fastener holes are
manufactured. Also the resulting hole will form a stress concentration re-
gion around the fastener. This is not to say that bonded joints are trouble
free, the adhesion process often introduces large residual stresses and
strains within the bond joint because of the elevated temperatures that are
sometimes needed to cure the adhesive. Such residual stresses and strains

will limit the ultimate load which the joint can sustain.

Besides residual stresses (which are basically related to manufactur-

ing issues), if the joint is used in an environment where large temperature
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variations occur or where diluents such as moisture or solvents can be ab-
sorbed, plasticization of the adhesive can occur, further reducing the ulti-
mate load that the joint can sustain. Hence the service environment of the
joint must be considered when one examines the suitability of polymers for
adhesion purposes. This study will focus primarily on the environmen-
tally induced interactions between the diluent (solvent) and the stress state

in the polymer.

The effect of the diluent on the polymer is by and large dependent on
its concentration. Many studies®!> have been performed on "conditioned"
polymers (polymers containing a uniform concentration of diluent) which
demonstrate the various changes in the mechanical behavior of a polymer.
A particularly important result is that the concentration of the diluent may
drastically change the relaxation times characterizing the time-dependent
polymeric properties. As a consequence when characterizing the long-term
behavior of a polymeric structure, both the rate and amount of diluent that
is absorbed needs to be taken into account. Such an accounting would re-
quire that the diffusion process of the diluent-polymer system be mathe-
matically modelled in some fashion, usually through a diffusion-type equa-

tion.

The absorption of a diluent into a polymer usually occurs over a rela-
tively long time span, as compared to thermal conduction, and this fact
often creates special problems in predicting or even studying the diffusion
behavior. Depending on the state of the polymer different diffusion behav-
iors are observed. For rubbery polymers (polymers which are in an envi-
ronment above its glass transition temperature, Tg) the diffusion can very

often be described by a Fickian-like diffusion process. Glassy polymers
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(polymer which are below their Tg) which undergo significant stiffness re-
laxation typically exhibit diffusion processes which are termed
"anomalous"” or "non-Fickian" and are often not readily explainable. Also
other researchers!? have shown that the stress level affects both the rate of
diffusion as well as the final solvent uptake. These issues complicate the
problem since it appears that, while the diluent concentration affects the
mechanical properties, the mechanical response of the polymer will in turn
affect the diffusion process. Hence the diffusion process (the rate of absorp-
tion of the diluent) and the mechanical response (the resultant displace-
ments, stresses, and strains due to diluent) of the polymer are coupled

together.

By providing a model for the diffusion process, which tries to incor-
porate current ideas on nonlinear viscoelastic material behavior, this study
attempts to explain some of the experimental observations found in the lit-
erature. The study is broken down into four chapters which will illustrate
the model that is being studied. Chapter 1 deals with the mechanical re-
sponse of the polymer due to the diluent. There a constitutive law relating
the stresses, strains, and diluent concentration is proposed which draws on

the ideas of nonlinear thermo-viscoelasticity.

The diffusion process is addressed in Chapter 2 and modifications are
made to Fick's first law to incorporate the possibility of a pressure gradient
induced mass flux. To include the effect of the mobility of the diluent and
polymer molecules the diffusion coefficient is modified by a free volume
based term. A basic "feel" for the terms in the proposed mass flux equation
is provided by a model that portrays the diluent molecules as "balls" and

the polymer molecules as "chains."



Numerical simulations of the governing equations, as proposed in
the two previous chapters, are delineated in Chapter 3. The nonlinearities
of the problem create difficulties in testing the computer code, but included
are several numerical test cases with the aim of validating that the code is
operating properly. Finally the numerical solutions to several problems
involving different levels of coupling between the diffusion process and
the mechanical response, material properties, and boundary conditions are

presented.

Chapter 4 discusses the ramifications of the results derived in
Chapter 3 and provides concluding remarks on the applicability of the pro-

posed model.
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Chapter 1

Mechanical Response

1.1 Introduction

As a diluent diffuses into a polymer, swelling strains are generated
and displacement constraints lead to the development of internal, nor-
mally self-equilibrating stresses. Because the mechanical response of
swelling systems is similar to materials undergoing thermal expansion, the
governing field equations and constitutive behavior for diluent swelling
are analogously modelled to follow nonlinear thermoviscoelasticity. In the
following, the governing equations for the mechanical response of a poly-

mer undergoing diluent swelling will be presented and discussed.

1.2 Field Equations

Consider a body undergoing a deformation with a displacement field,
u(x,1), such that lIVu(x,f)li<<1. From these deformations an infinitesimal

strain field, g(x,1), is defined as
£(x,t) = %—( Vu(x,t) + Vg(g,t}T ); HVu(x,nll<<1 (1.1

The strain field and diluent concentration field, c(x,7), would in gen-
eral create a stress field in the body. These three quantities, stress, strain,
and diluent concentration, are related to one another through a constitu-

tive model which will be discussed in the next section.



The resultant stress field, o(x,t), must also satisfy the equations of
equilibrium

where b(x,1) are body forces potentially applied to the body.

1.3 Constitutive Behavior

The computations presented here draw on a modified nonlinear
small strain viscoelastic model as the constitutive law for the stress-strain
behavior of the polymer. The polymer is assumed to follow a time shifting
behavior as a result of the diluent in a manner that is similar to that of
thermo-rheologically simple materials (TRS); the time shifting is assumed

to be described through the concept of free volume.

Amorphous-type (noncrystalline) polymers typically exhibit TRS
behavior and it is for this class of materials that the following constitutive
law is expected to hold. A few examples of amorphous polymers are
polyvinylacetate (PVAc), polystyrene (PS), polymethacrylate (PMA), and
polymethylmethacrylate (PMMA).

1.3.1 Decomposition of the Stress and Strain Fields

Within the constitutive model two field quantities are used exten-
sively: the pressure, P(x,t), and the (strain) dilatation, e(x,z). The pressure

and dilatation are related to the scalar field of the isotropic component de-
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fined by a decomposition of the stress and strain fields, respectively. The

decompositions are

ox.t) = s(x,0) + 3ro(x,nl = s(x,1) = P(x,n1 (1.3)

and

£(x,0) = e(x,0) + $rex.nl = e(x.1) + e(x.nl (1.4)

where s(x,7) and e(x,7) are known respectively as the deviatoric stress and
strain fields. In terms of the above decomposition, the pressure is related to

the stress field by

P(x,t) = —imro(x,0) (1.5)

while the dilatation is represented as

e(x,t) = re(x,n) (1.6)

C

The dilatation can be further divided into a swelling strain, ¢-, and a

mechanical strain, e™. The swelling strain is defined as the diluent-
induced dilatation which the body would undergo if it were externally un-
constrained. The difference between the dilatation and the swelling strain
is termed the mechanical strain and may be a result of inhomogeneities in
the concentration field or external body constraints (displacement boundary
conditions). By using the above definitions, the dilatation field can be ex-
pressed as

oc(x,7)

a7

exn = Man + e = Man+ [ _a-1) it (17)

where the swelling coefficient, a(z), describes the material's unconstrained
strain response to the diluent concentration and is directly analogous to the

time-dependent thermal coefficient of expansion.



Following the time-dependent nature of polymeric material proper-
ties, such as the bulk and shear moduli, the swelling coefficient, a(z), is also
assumed to be time-dependent. The temporal dependency reflects that the
polymer molecules cannot instantaneously reorient themselves to accom-
modate the diluent molecules. Further, as a result of other viscoelastic
principles, the convolution in Eqn. (1.7) reflects the assumption that the ef-
fects of temporal changes in concentration contribute to the dilatation in an
additive manner. Experiments to characterize the time dependence of a(r)
are difficult to perform. The long time scale of the diffusion process, creat-
ing an inhomogeneous concentration field within the body, would corrupt
the strain measurements needed for an accurate evaluation of a(s). As a
consequence, to date there is no experimental data for a(z) and thus for this

study o(?) is assumed to be a constant.
1.3.2 The Concept of Free Volume

Underlying the free volume concept is the idea that the viscoelastic
nature of polymers is a result of the relative motion of the long polymeric
molecules. This motion is achieved by having segments of the molecules
"jump" between the "holes" or "spaces" within the bulk polymer. "Holes"
that participate in this molecular rearrangement are called the free volume
of the polymer and by normalizing the free volume by the polymer's total
volume one obtains the fractional free volume or free-volume fraction, f.
The "holes" are dependent on the environmental conditions encountered
by the polymer. Thermal heating will agitate the polymer molecules creat-

ing more "holes" within the polymer, while diluent molecules accomplish
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the same result by perhaps disrupting the packing order of the polymer

molecules.

Voids must exist between the polymer molecular chains due to the
randomness of the packing of such chains. There have been some attempts
to measure the free volume within a polymer?2. Such measurements are
often questionable since the data is dependent on the type of marker used
and might not truly reflect the free volume (volume which is involved
with molecular reorientation in the system). The lack of direct experimen-
tal evidence has created some debate on the appropriateness of using the
free volume to model the polymeric relaxation behavior. But phenomeno-
logically the free volume concept is a simple way of explaining and predict-

ing the polymer behavior and thus will be used in this study.

As an illustration, the concept of free volume is used to justify the
material behavior of a class of polymers that are called thermo-rheologi-
cally simple (TRS) materials. A material is TRS if its time-dependent prop-
erties at different temperatures can be superimposed onto a single master
curve, at a reference temperature, by shifting the curve segments along the
logarithmic time axis and by accepting a small "adjustment" on the vertical
axis, (see Fig. 1.1). The time shifting is phenomenologically characterized
for temperatures above the polymer's glass transition temperature, Tg, by
the WLF equation proposed by Williams, Landel, and Ferry3?. Earlier,
Doolittle’ had introduced the idea of free volume as the parameter that
governs the viscosity of simple hydrocarbon based fluids and proposed a
phenomenological equation to fit his data. By assuming a relationship

between the temperature-induced
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dilatation and the free volume fraction, the WLF equation can be shown to
be equivalent to the Doolittle equation for temperatures above Tg. By using
statistical mechanics Cohen and Turnbull® provided the theoretical justifi-
cation linking the free volume concept to a Doolittle-type equation, further

bolstering the concept of free volume.

The fractional free volume is assumed to be related to the diluent-
induced swelling strains of the polymer. This assumption is based on the
investigations by Knauss and Kenner!®> who studied the effects of tempera-
ture and moisture on the mechanical properties of PVAc. Knauss and
Kenner found that the shear modulus for PVAc at different moisture con-
centrations could be shifted to form a single master curve, like that of a TRS
material, (reinforcing the previous assumption of the similarity between
thermal and diluent-induced dilatation). They further showed that the de-
duced fractional free volume could be related to the moisture-induced di-
latation through a Doolittle-type equation. An important aspect in the ex-
periments performed by Knauss and Kenner is that the PVAc specimens
were externally unconstrained and had been conditioned such that the
moisture concentrations were uniform within the specimen, thus the

swelling strain is equal to the dilatation.

Further justification for a concentration-dependent free volume frac-
tion, f, may be inferred from the literature review in Ferry's® text on the ef-
fect of diluents on various polymeric properties such as the glass transition
and relaxation times. Ferry comments that at low concentrations a linear
dependence of f on the concentration can be made if the fractional free vol-
umes of the diluent (f;) and the polymer (f,) are additive (or nearly so) and

in this linear range f has the form
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fn) = LT (x0) + Oc(x,1) (1.8)

where T is the temperature, ¢ the concentration, and @ a proportionality
constant. In structural applications, the diluent concentrations within the
polymer are fairly low (<10%) and Eqn. (1.8) should suffice for the work
presented here. Assuming again that the swelling strains are related to the
diluent concentration the fractional free volume described by Eqn. (1.8)

would be similar to that proposed by Knauss and Kenner.

If fis assumed to be linearly related to the dilatation a serious concep-
tual flaw becomes apparent. Imagine an experiment in which the polymer
is restricted in such a way as to prevent any volumetric change, hence the
dilatation is zero by definition. If a diluent then diffuses into the polymer,
the diluent molecules would occupy a portion of the "holes" which make
up the free volume. Thus a contradiction occurs because f must remain
constant since the dilatation is zero but conceptually this cannot be since

the diluent molecules now occupy a portion of the free volume.

Similarly, if f is assumed to be linearly proportional to only the
swelling dilatation, a mechanically constrained body will result in the

wrong qualitative effect for the fractional free volume.

These contradictions may be eliminated by simply assuming f to be
linearly proportional to both the mechanical strain and the swelling strain.

This proportionality leads to the representation for f as

fx0 = f£,x)+AeM(x,0) + BeC(x,1) (1.9)
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where the variable f, is the free-volume fraction in the reference state.
Rewriting Eqn. (1.9) in terms of the dilatation strain and the swelling strain,

by using Eqn. (1.7) to eliminate e, yields

fxb = f,(x)+ Ae(x,0) + (B— A)eC(x,1) (1.10)

Restrictions on the parameters A and B can be deduced from the arguments

that lead to Eqn. 1.9 as

0<B<A (1.11)
The partitioning of f does have the attractive feature that the free volume
fraction is related to both the free volume fraction of the polymer, AeM, and
the free volume fraction introduced to the polymer by the diluent, BeC.
This assumption allows the free volume fraction to be proportional to the
swelling dilatation, as claimed by Knauss and Kenner, but eliminates some
of the troubling features that would occur if the polymer were mechanically

restrained.
1.3.3 Time Shift Factor

Experimentally the time shift factor is determined by the amount of
shift needed to superimpose material property curves obtained at different
but constant temperatures to form a master curve. Another way of looking
at the time shift factor is that it allows the master curve to appear, with re-
spect to time, to contract or elongate depending on the state of the polymer

such that it corresponds to the experimental time window.

The relation between the time shift factor, ¢(x,7), and the change in

the free volume fraction is given by the Doolittle result as
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where by Cohen and Turnbull® b is a parameter related to the critical size of
the "holes" needed for a polymer segment to "jump." The time is then
scaled by the time shift factor to yield the internal or reduced time, &, of the
polymer as

I

E(t) - E(7) = _[r ¢(i"n) (1.13)

1.3.4 Stress - Strain Relations

The relationship between the deviatoric stresses and strains and the

pressure and dilatation can now be given by

s = [_26(¢0)- é(r))g%dr (1.14)

P(xt) = — j;K(g(z)-g(r))—gi-dr + j;ﬁ(a:(t)—-éj(r))-g-i-dr (1.15)

where material properties are the shear relaxation modulus, G(z), the bulk
relaxation modulus, K(z), and the diluent-induced pressure relaxation func-
tion, B(¢). Notice that the material properties in Eqns. (1.14) and (1.15) are
evaluated at the reduced time and this fact is the major difference between
nonlinear and linear viscoelasticity; where the nonlinearity results from
the coupling between the shear and bulk behavior (through the assumed
dilatation - free volume fraction relationship), and the interaction between

the stresses, strains, and free volume which in turn affects the reduced

time.
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This modification of the linear viscoelastic convolutions, where the
material properties are evaluated at the reduced time, should also be ap-

plied to the evaluation of the dilatation, hence Eqn. (1.7) becomes

Bc(x, t)

e = Mo + [ a(Em-E) (1.16)

1.3.5 Modelling of Material Properties

To aid in the numerical evaluation of the material properties the
continuous material time spectra are expressed as discrete spectra in the
form of a finite Prony series. For example, the relaxation moduli for K(z),
G(1), and S(r) are expressed as

K@) = EK exp(~t/7q); G@)= ZG exp(— t/Tc;,) B = Zﬁkexp( f/Tﬂk) (1.17)

i=1 Jj=1

where m, n, and q need to be chosen sufficiently large to allow a reasonably
smooth approximation of the moduli in question; typically 10 to 20 terms
are needed for each series expansion. The long time or equilibrium value
of the relaxation moduli can be achieved by having the time constant, 7, for
one of the series element to approach e. Similarly, to model the swelling

coefficient, ofz), one uses a modified Prony series
a(t) =Y o[1-exp(-1/7,)| (1.18)
i=1

where the long time behavior is modelled by having one of the time con-
stants of a series element to approach -ee. The modified Prony series is used
to model the swelling coefficient since it is expected to provided a better fit
to the swelling dilatation creep behavior, but as mentioned before there is

no experimental data for a(r).



-16-

The number of elements needed to portray B(z) depends on the
number of elements that are needed to model K(z) and «(¢). The diluent-
induced pressure relaxation function, (1), can be shown to be related to the
dilatational strain creep behavior, a(s), and the bulk relaxation modulus,

K(1), through their Laplace transforms B(s), @(s), and K(s), respectively.

B(s) = sa(s)K(s) (1.19)

By taking the Laplace transform of the Prony series representation of
K(?) and a(r) and substituting the transformed functions into Eqn. (1.19) one
can show that (z) can be represented as a Prony series

By =33

i=1 j=1

= iﬂk exp(—-t/z'ﬁk)

k=1

:in :’q {exp(-—t/ Tyi) — exp(~t/ rw-)}
K~ tai
(1.20)

For the subsequent study the swelling strains will be assumed to oc-
cur elastically (a(s) is constant with respect to time). Under this assumption
B(1) takes the simple form

B(t) = aY K exp(—t/t,)
im1 (1.21)
These governing equations and the proposed constitutive model

have been incorporated into a finite element model (see Appendix A1).
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Chapter 2
Diffusion Model

2.1 Introduction

In diluent-polymer systems anomalous or non-Fickian diffusion can
occur and it is this topic which will be explained now. Experimentally the
absorption of a diluent into a polymer is classified as non-Fickian if the
data, such as the total absorbed mass, does not possess the characteristics of
Fick's diffusion equations. In this study, an attempt to explain much of the
observed anomalous behavior is made by modifying the basic Fickian diffu-
sion equation to include other driving forces (besides the concentration
gradient), such as pressure and temperature gradients. Similar modifica-
tions have been suggested by other researchers®18:23:2429 though in this
study the full range from Fickian to non-Fickian diffusion behavior will be

looked at from the point of view of viscoelastic material behavior.

This chapter begins with a brief review of the characteristics of
Fickian and non-Fickian diffusion and then proceeds to outline the basis

for the proposed diffusion model.
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2.2 Fickian Diffusion

The one-dimensional form of Fick’s first law, which is phenomeno-
logical in nature, states that the mass flux of the diluent, j(x,?), is propor-

tional to the diluent concentration gradient, namely

oc(x,1t)

Jxt) = = D(C)'-—é;'—

2.1)
where the diffusion (proportionality) coefficient, D, may be considered to be
a function of concentration$, D(c). By combining Fick's first law with the
equation of mass conservation one derives the one-dimensional form of
Fick's second law which is more commonly known as the diffusion equa-
tion. In a one-dimensional Cartesian coordinate frame the diffusion equa-

tion can be represented as

[D(c)-a-c—(i‘-’ﬂ] 2.2)

ox

oc(x,t) _ 9
ot ox

The generalization to three-dimensions is straightforward and states,

with V denoting the Laplacian operator, that

92%32 = V-{QVC({,I)] (2.3

Solutions to Eqn. (2.3) for various types of boundary conditions, dif-
fusion coefficients, and spatial geometries can been found in the text by
Crank’. In particular, the solutions for a plane sheet are especially impor-
tant since most experiments draw on this geometry. For a plane sheet of
thickness, 2L, with concentration, Cy, prescribed on the boundary and D,

the value of the (possibly) concentration-dependent diffusion coefficient at
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zero concentration, the solutions are often depicted as concentration pro-
files where c(x,1)/Cy is plotted versus x/L for several nondimensional
"times," D,t/L?. The solutions could also be displayed as absorption (or
desorption) curves which represent the concentration profiles integrated
over the spatial domain yielding the mass absorbed (desorbed), M(¢), plotted
against \t. Often the ratio M(1) /M., is plotted against Vt/L, where M., is the
long time or equilibrium amount that is absorbed (desorbed); this type of
plot is known as the "reduced” absorption (desorption) curve. One often
uses the generic term the "sorption curve" to refer to either the absorption

or desorption curve.

The following are a few of the characteristics that are commonly used
to identify a Fickian diffusion process from the experimental results for

sorption curves and concentration profiles.

(a) Sorption curves are linear in the region of small values of

e

(b) Above the linear \/portion, sorption curves are always con-
cave towards the Vr axis.

(0 The shape of the absorption curve is not very sensitive to the
dependence of D on concentration. On the other hand, the
desorption curve is rather markedly affected by the D versus
¢ relationship.

(d) When the initial and final concentrations are fixed, the re-
duced absorption (desorption) curves for films of different
thickness all coincide yielding a single master curve.

(e) The single absorption curve so obtained is always above the
corresponding single desorption curve when D is an increas-
ing function of c.

() The functional form of D(c) greatly influence both the ab-
sorption and desorption concentration profiles!®.
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Diluent-polymer systems, where the polymer is in its rubbery state,
typically exhibit Fickian behavior. An example is the absorption and des-
orption curves for methyl acetate into polymethylacrylate (PMA).
Experiments® were conducted at 35°C (the T of dry PMA is approximately
5°C) for three different thicknesses and the results are indicated in Fig. 2.1.
By replotting the data on the "reduced" time scale, Vt/L, as in Fig. 2.2, it can
be seen that conditions (a), (b), (d), and (e) are satisfied and this particular

diluent-polymer system would be classified as Fickian.

SORPTION PLOT
Abs./*/

Absﬁ’ ............

Des. = /B/

ﬁ?&j’/ ® o L=3.53x10"°cm
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10 15 20
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Figure 2.1 Sorption characteristics for methyl acetate into polymethy-
lacrylate (PMA) at 35°C for three different thickness values (Tg for dry PMA

~5°C)S,

M(t) /M.,
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REDUCED SORPTION PLOT
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Figure 2.2 Reduced sorption curves obtained from Fig. 2.15,

2.3 Non-Fickian Diffusion

As mentioned before, Fickian diffusion usually occurs in polymer-
diluent systems, which are in the rubbery state. On the other hand, glassy
polymers which undergo significant relaxation during the diffusion process
tend to exhibit anomalous diffusion. By comparing the ratio of the
"characteristic" material relaxation time to the "characteristic" diffusion
time (the Deborah number), Vrentas and Duda?® claim to predict whether
the diffusion process is Fickian or non-Fickian. A schematic of a Deborah
number plot is shown in Fig. 2.3 where the outlined regions indicate areas

in which different diffusion processes occur.
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Figure 2.3 Schematic of a Deborah number plo

From this figure it can be seen that at high temperatures, where the
polymer is in its rubbery phase, Fickian diffusion is always expected since
the polymer behaves elastically. But at low temperatures and concentra-
tions Fickian diffusion is also expected and is a consequence of the quasi-
elastic behavior of glassy polymers. At intermediate temperatures or con-

centrations the polymer exhibits viscoelastic behavior and the diffusion

process is generally anomalous.

Many different anomalous behaviors have been observed and a par-

tial list is presented here:

(a) In the region of small values of Vt. sorption curves are not

linear.

(b) The absorption curve has an inflection point.

() Despite the expectation that D should increase with concen-
tration, the absorption and desorption curves may intersect;

t28,
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the relatively high initial rate of desorption followed by a
very slow rate leads to intersection of the two curves.

(d) The absorption and desorption curves which have coinci-
dent initial slopes do not coincide over the entire region of
t

() When plotted against V't /L the absorption or desorption
curves obtained from experiments on polymers of varying
thicknesses cannot be reduced to a single curve!®.

An example of a type of anomalous behavior can be seen in the ab-
sorption curves for allyl chloride diffusing into polyvinylacetate (PVAc),
shown in Fig. 2.4. The experiments® were conducted at 40°C (the Tg of dry
PVAc is approximately 29°C) for three different thicknesses. The absorption
curves for the different thicknesses failed to coalesce when plotted on a re-
duced sorption plot and the characteristics of the curves range from initially
linear (Fickian-like response) to sigmoidal (non-Fickian), conditions (b) and

(e).

REDUCED SORPTION PLOT
1.0 X A —
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Vi /L x10™ (min"/cm)

Figure 2.4 Reduced absorption curves for the allyl chloride into PVAc sys-
tem at 40°C as a function of thickness (Tg of dry PVAc ~ 29°C)S.
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Another important anomalous diffusion process is termed Case II
diffusion. The characteristics of Case II diffusion within a plane sheet ge-

ometry are:

(a) The mass of the absorbed penetrant increases linearly with
time.

(b) A sharp boundary separates the inner glassy core of unpene-
trated polymer from the outer swollen shell, and there is a
uniform concentration of penetrant across the swollen layer.

(¢ The separation between the two states advances with con-
stant velocity?.

Case II diffusion has been shown in the absorption of methanol by poly-
methylmethacrylate (PMMA), as exemplified in Figs. 2.5 and 2.6. The ex-
periment?® was conducted at 10°C (the Tg of dry PMMA is approximately
105°C). A typical absorption curve, Fig. 2.5, is linear with time (after a brief
initial induction region) satisfying condition (a). The concentration profile
in Fig. 2.6 defines the boundary that separates the glassy core from the
swollen, rubbery outer shell of the polymer and conforms to conditions (b)
and (c). Other systems exhibiting Case II diffusion include polystyrene with

1-iodo-n-alkanes as the diluent!!.
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Figure 2.5 Absorption profile for methanol into PMMA at 10°C (Tg of dry
PMMA ~ 105° O)Z.
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2.4 The Diffusion Model

From a mechanistic viewpoint additional driving forces for the dilu-
ent mass flux in polymers, besides that of a concentration gradient, should
be possible. As a diluent diffuses into a polymer swelling occurs and inter-
nal stresses or pressure develop which should affect the diluent mass flux
in a manner analogous to a Poisseuille flow or the mass flow through a
porous media. One may then, as a simple assumption, say that such a pres-
sure-induced mass flux is additive with concentration mass flux, thus mod-
ifying the Fickian diffusion equation. Another approach is to view the dif-
fusion problem in terms of irreversible thermodynamics and many re-
searchers?126.29 have found that other driving forces, besides that of a con-
centration gradient, could be included in the diffusion equation. From
either viewpoint potential driving forces for the diluent mass flux in a
polymer can include a concentration gradient (Fick's Law), a temperature
gradient (Soret effect), and/or a pressure gradient. In order to set the stage
for later developments let us examine briefly a thermodynamic variable

known as the chemical potential, p.
2.4.1 Chemical Potential

The chemical potential is classically defined (see Prigogine?!) as an
intensive variable that takes into account the change in entropy, S, result-
ing from the changes in the composition of a system. With such a defini-

tion the total differential for the entropy is given as

dE P S
=——-—+—-—dV—§:——‘d. 2.4
T T Tn' @4

ds

i=1
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where the internal energy (E), pressure (P), volume (V), temperature (T),

and the mole number for the ith constituent (n;) describe the state and com-

position of the system.

Based on the thermodynamics of irreversible processes the phe-
nomenological law governing the mass flux for the ith constituent, jj, is

given in one-dimensional form as

. L au.)
= -] F - =t 2.5
i T( - L @.5)

where L is a phenomenological (experimental) coefficient, T the tempera-

ture, and F; a generalized force acting on the ith constituent.

As an example, the chemical potential of a perfect gas or a dilute

solution is often expressed as

w(x) = n(T) + RTInC,(x) (2.6)

where T is the temperature, R the gas constant, and C, the diluent concen-

tration. Substituting Eqn. (2.6) into Eqn. (2.5) yields

L RT ( aC, FM aC M
= =20 - C+r1 = -p — - C—LF 2.7
A TCl(ax lRT) (ax xRT‘) @7
where
L RT
D = == = RTB (2.8)

is Einstein's relationship for the diffusion coefficient D in terms of the

mobility, B. M, is another phenomenological coefficient that relates the
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driving force to the diluent mass flux. The mobility term, B, is related to
the ability of the diluent molecules to move within the polymer and will be

discussed later in terms of what is known as the free-volume fraction.

The form of Eqn. (2.7) where the additional driving forces are consid-
ered to be additive with the concentration gradient is usually maintained
when postulating various models for the diluent mass flux equation, even

if the functional form of u is not known.

In the following sections an effort is made to explain some of these
potential driving forces through a conceptual picture of the interaction
between the diluent and polymeric molecules which occur during the dif-

fusion process.
2.4.2 Concentration Gradient

To get started let us visualize the diluent molecules as being "ball-
like" to allow a simple description of the scenario for a concentration gradi-
ent-dependent mass flux. For now the scenario assumes that both the dilu-
ent and the polymer are chemically neutral and no (electrically) polar sites
exist which could affect the mobility of the molecules and thus the diffu-
sion process. It also assumes that the polymeric molecular chains are
allowed to reorient themselves, but will not undergo an appreciable

motion into the diluent (the polymer provides a fixed reference frame).

A single diluent molecule or "ball" would have a Brownian motion
as a result of collisions with other diluent molecules and the molecules of
the polymer. It can be imagined that the side of the "ball" facing a higher

density of "balls" would be subjected to, on the average, more impacts forc-
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ing the "ball" to move. This view accounts for the observation that diffus-
ing molecules will move in the direction of the negative gradient of the
concentration. The fact that the "balls" would be expected to move faster
the more impacts it receives per unit time represents the fact that the rate of
mass transport is proportional to the magnitude of the concentration gradi-
ent. Phenomenologically, this proportionality constant is called the diffu-

sion coefficient.

The polymer molecules form a chaotic network where molecules
may be interconnected through cross-linking (chemical bonds at certain
sites along the chains) or a pseudo-cross-linking may occur through van der
Waals-type of bonds (polar attraction) or chain entanglements. To move
through the polymeric network the "balls" are now forced to "squeeze" in
between the polymer chains via the "holes" or "free spaces” that are formed
by the mismatching of the chains. By relaxing the assumption that there
are no polar sites, one could imagine highly polar diluent molecules replac-
ing and thus breaking the local polar attractions that help interconnect the
polymeric chains. Destruction of the interconnections would allow an
increase in the rate of diffusion by providing more flexibility to the polymer
chains allowing easier movement of the diffusing "balls." Alternatively, it
can be imagined that the "balls" are disrupting the "order" of the polymeric
chains creating more "holes", similar to defects in a crystal lattice. The
"order" of polymeric chains could be the chain interconnections, the atacity
of the molecules, or the structure of the molecule itself. As before, the
more "holes" that are created, the greater is the mobility of both the diluent
and the polymer molecules, thus increasing the diffusion rate. It is possible

that polar diluent molecules, rather than forming more "holes," may bond
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(due to the polar attraction) to the polymer molecules "plugging" existing
"holes" and thus retarding the diffusion process. This phenomena has
been observed for water molecules (which are highly polar) that interact
with polymer chains that have "suitable" polar groups®. In any event the
rate of diffusion is usually altered by concentration of the diluent and is
incorporated, conventionally, through a concentration-dependent diffusion

coefficient.

Environmental conditions may also affect the diffusion process. For
example, the diffusion rate is usually observed to increase with tempera-
ture. A plausible explanation is linked to the higher kinetic energy, associ-
ated with the increase in temperature, of both the diluent and the polymer.
Ignoring for now the possible existence of a temperature gradient, the dilu-
ent molecule would have more energy to deform the polymeric chains.
Also the increase in temperature will cause the polymer chains to have a
higher kinetic energy which would create more "holes" and become more
flexible. The net result is that the diffusion process can occur at a faster rate
and is reflected in the strong temperature dependence of the diffusion coef-

ficient.

The functional relationship between the concentration and tempera-
ture for a given polymer-diluent diffusion coefficient are current research
topics. The research is usually guided by two viewpoints: one is based on a
molecular interaction (molecular-microscopic) theory and the other on the
concept of free volume (macroscopic). The molecular theory tries to ac-
count for the intermolecular forces that occur between the diluent and
polymeric molecules. To date the molecular theory incorporates too many

simplifying assumptions so that it is unclear whether the results are appli-
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cable in the present context. Hence, the less detailed model based on the

free volume approach will be considered below.

As mentioned in the previous chapter, current theories for the vis-
coelasticity in polymers use the idea of free volume to scale the relaxation
time of the material. The free volume or "holes" that allow segments of
the polymer chain to rearrange are similar to the "holes" that allow for the
diffusion of the diluent. The size of the "holes" may be different owing to
the size difference between the diluent molecules and the segmental chain
sections that participate in the diffusion or reorientation, respectively.
From this viewpoint the diffusion process and viscoelasticity are related

through the free volume of the polymer.

In an attempt to incorporate the effect of the polymeric chain motion
Knauss and Shimabukurol® asserted that the time scale for the diffusion
process, which is controlled by a free volume molecular rearrangement,
should be terms of the internal time, £. Hence the time derivative in the
diffusion equation should be written in terms of the internal time. To
illustrate this idea, the one-dimensional Cartesian diffusion equation will
now have the form

odc _ 0 (-—— ac)

— = —| D(c)=— 2.9

& ox ( )Bx @9)
By scaling the internal time, &, by the £ - ¢ relation in Eqn. (1.13) the diffu-

sion equation, Eqn. (2.9), can be rewritten in terms of the actual time, 7, as

dc _ 1 d(x . dc
o Bx(D(C)ax) (2.10)
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where ¢, is given by

1 1

Ing,(c) = -, { - } (2.11)
) = =% Fom) ~ Fe)

The variables in Eqn. (2.11) have a similar meaning as those in Eqn. (1.13).

The notable difference is that the coefficient by reflects the critical sized

"hole" needed for a diluent molecule to "jump.”

An alternative viewpoint is that the mobility term in Einstein's rela-
tion, Eqn. (2.8), is governed by the free volume since this is the parameter
which governs the ability of the diluent to move about the polymer.
Fujital® uses this viewpoint and by following the work of Cohen and
Turnbull® develops the following diffusion coefficient for polymer-diluent
systems

(A(T) -~ FO.T)w
| FOTYF(O,T) + (¥(T) = fO.T))w]

In(D/D,)

[
<

} (2.12)

I
&

1 }
| f(0,T) fn.T)

where f(v,,T) is the free volume fraction at diluent volume fraction, v,, and
temperature, T. D, is the value of the diffusion coefficient at zero diluent

concentration and b, is related to the critical sized "hole" needed so that a

diluent molecule can "jump forward." Fujita expresses the free volume as

fOn.T) = fO,T)1-v) + Y(T)wn (2.13)

where AT) is a proportionality coefficient relating the free volume fraction

to the volume fraction of the diluent. The form of Eqn. (2.13) is similar to
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Eqn. (1.9) if the first term is viewed as the free volume fraction of the poly-
mer. A few examples of polymer-diluent systems where Eqns. (2.12) and
(2.13) correlate well with experimental results, as well as various systems

for which the theory does not apply are discussed by Fujital®.

Vrentas and Duda?’ point out that some of the deficiencies in
Fujita's model are a consequence of the assumptions made in comparing
experimental results to the model. A few notable assumptions were that
the molecular weight of the diluent is comparable to the molecular weight
of the jumping unit of the polymer chain and that the diluent concentra-
tions are small. They also noted that Cohen and Turnbull's model is more
appropriate to describe the self-diffusion coefficient rather than the diffu-
sion coefficient for a bi-component system. Vrentas and Duda suggest that
both the polymer and diluent self-diffusion coefficients, as proposed by the
Cohen and Turnbull model, be used to develop the diffusion coefficient for
the polymer-diluent system. To accomplish this, they make use of
Bearman's molecular interaction theory? which relates the so-called
"frictional coefficients" to the self-diffusion coefficients. The "frictional
coefficient" models the movement of the polymer molecules past one an-
other by interactive and inherent atomic forces. In this manner Vrentas
and Duda derive the diffusion coefficient for a diluent-polymer system,
which with the additional assumptions that the polymer contains only a

trace amount of diluent yields

In(D/D,) = {f(idr)} (2.14)



where the variables in Eqn. 2.15 have a similar meaning as those in Eqn.

(2.171).

Vrentas and Duda?® also provide some comparison of their model
with experimental results and claim to be able to extend the limitations

found in using the Fujita model.

The form suggested by both Fujital® and Vrentas et al?8. yield diffu-
sion coefficients that are affected by the free volume of the system and can
be recasted to a form in which the concept of time shifting and internal
time comes into play. Assuming that at D, the polymer has a free volume
fraction equal to the reference free volume fraction, f,, the diffusion coeffi-
cient as developed by Fujita and Vrentas et al. can now be expressed in the

following form

D,

D) =525

(2.15)

where ¢, is given by Eqn. (2.11). This leads, with an additional concentra-
tion-dependence on D,, to the following one-dimensional diffusion equa-

tion

2 _ a[ D)
o1 Bx[ 64(c) ax} 210

If the spatial derivative is performed, Eqn. (2.16) can be rewritten as

¢ _ 1 3f5 0] 04e) Do) (e
3 00 ax[D(C)ax] 24(0) ¢d<c)(ax) 217
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where the second term in Eqn. (2.17) is the only difference between Eqn.

(2.10) and (2.16).

Comparisons between Eqn. (2.10) and Eqn. (2.16) were performed
numerically and the resultant concentration profile and sorption plot are
shown in Figs. 2.7 and 2.8. The results indicate that the solutions are simi-
lar in form to each other; hence the inclusion of the second term in Egn.
(2.17) does not significantly alter the solution (at least for the material pa-
rameters used to generate the solution). It is expected that as additional
driving forces are added to the mass flux equation and as the material prop-

erties become viscoelastic the similarities would still apply.

As a consequence of the solution similarity and the effort to main-
tain the basic form of the mass flux equation presented in Eqn. (2.7), Fujita's
model was chosen for the remainder of the study®. An additional benefit of
assuming the form dictated by Fujita's model is that the comparisons made
by Fujita and Vrentas et al. with experimental work would now be applica-

ble to the proposed diffusion model.
2.4.3 Pressure Gradient

As the diluent diffuses into the polymer a pressure field develops in

connection with the swelling of the polymer. A part of the pressure may be

" Besides the reasons given for choosing the Fujita model, the author had initially
assumed that both models were equivalent. After much of the numerical work had been
completed using the Fujita model, questions were raised about the appropriateness of that
assumption. Work is currently being performed to better understand the differences between
the two models though initial indications are that the two, while different, yield similar
solutions.
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Figure 2.7 Concentration profile comparing the two diffusion models, Eqns.
(2.10) and (2.17). The numbers on the curves represent a nondimensional time,
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fusion models.
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applied by the bulk polymer as a force acting on the diluent molecules. Any
resultant pressure imbalance will in turn produce a net force propelling the
diluent molecule in the direction of the negative pressure gradient. The re-
sult is a mass flux due to the pressure gradient, which in the spirit of Eqn.

(2.7), is assumed to be an additive term in the mass flux equation.

To reinforce this additive assumption, Tirrell?> suggests that the
generalized force in Eqn. (2.7) should be the gradient of some potential field.
While Weitsman?® argues from a thermodynamic viewpoint that the
potential field may be chosen to be either the Helmholtz or Gibbs free
energy functions, which would yield mass flux equations dependent on the
strain (dilatation) or stress (pressure) gradient, respectively. For this study,
the pressure field is used since it offers the correct intuitive concept of a

driving force.

The resultant swelling pressure is carried by both the diluent and the
bulk polymer and the proportionality tensor, A, could be viewed as the re-
lationship that expresses what portion of the total pressure is actually ap-
plied to the diluent. As a simplification one can assume A to be an
isotropic tensor which takes the form AI where ] is the identity tensor.
Knauss and Shimabukuro!® provide an estimate for A by modelling the
diluent-polymer interaction as a thick-walled sphere (the polymer) loaded
by a uniform external pressure P (the resultant swelling pressure) and an
internal pressure P; (the pressure on the diluent). The sphere is modelled
to have an inner radius 4 and an outer radius b and is composed of a lin-

early elastic medium with a bulk modulus, K, and a shear modulus, G. The
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diluent is assumed to have a linearly elastic bulk modulus, K. The dis-

placement field, u(r), for this problem is given by

Pa®-Pp . (B,—P)p 1
31f<(zb3 2) ¥ 4;(173-(:3)77 218

u(r) =

The pressure, Py, in the cavity is related to the displacement, u(r), through

the bulk relationship of the liquid

=K % = 3K, “<“) (2.19)

where use has been made of the relation
AV = 4ra’u(a) (2.20)

By substituting the relationship for u(a) into Eqn. (2.17) and determining the

ratio of P to P, the relationship for A can be shown to be

k. K (3K +4p) (2.21)
P 4KG(1-f) + K,(3K+4uf) '
where the free volume fraction, f, is related to the two radii by
a 3
= {= 2.22
7=(4 e2)

Another estimate could be made by modelling the pressure driven
mass flux as a Poisseuille flow through a thick-walled cylinder (the poly-
mer) of inner radius a and outer radius b. The driving pressure will be the
pressure on the diluent, P;, as a consequence of the resultant pressure, P.

Following a similar procedure, as with the spherical shell, an estimate for A
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(assuming a uniform pressure P and that the cylinder ends are uncapped)

can be given as

s

K, (9K +6G)

A= P = SKG(I=f) + K.(0K+6G)

(2.23)

Given this interpretation, one sees that A is dependent on the free
volume and in both estimates, Eqns. (2.21) and (2.23), the dependence on f'is
the same. In general these elastic results should be replaced by their vis-
coelastic counterparts but one could expect that an elastic result with possi-

bly a quasi-elastic formulation would suffice in providing an estimate for A.

In this study A is assumed to be constant so that the effects due to the
pressure gradient can be assessed more readily. This assumption is not un-
realistic since typically f ranges® between 0.025 to 0.075 and, for these values

of f, would not affect the value of A significantly.
2.4.4 Temperature Gradient

The phenomenon of a temperature gradient affecting the diffusion
process is called the Soret effect. The Soret effect has been shown in fluid
mixtures where a temperature gradient is applied to a uniform mixture; the
mixture will then separate forming a concentration gradient. Following
the work of Fourier and Fick, Soret suggested that the mass flux equation,
Eqn. (2.1), should have an additional additive term which is proportional to
the temperature gradient. The text by Tyrrell?® provides some of the theory
behind this effect and presents experimental evidence for the additive na-
ture of the temperature gradient. As a result, the additivity of any tempera-

ture gradient-driven mass flow is also assumed.
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For the purposes of this study only isothermal effects will be consid-

ered and the thermally-driven mass flux term will be ignored.

2.4.5 Considerations for Time-Dependent Concentration,

Boundary Conditions

A possible explanation for sigmoidal shaped absorption curves has
been to allow the concentration boundary condition to become time depen-
dent!®1% The rational for this assumption is that the final concentration
value is dependent on the ability of the polymer to deform and accommo-
date the diluent molecule. As the polymer absorbs more diluent the poly-
mer begins to plasticize and the molecular chains relax allowing a higher
concentration value to exist. By applying only a time-dependent concentra-
tion boundary condition, Long and Richman!? ignore the fact that this con-
centration relaxation phenomenon should be applied to the whole polymer

and not just the surface.

Lefebvre et al.!® try to incorporate this phenomenon into a diffusion
model by normalizing the concentration in the diffusion equations by the
solubility of the diluent. The diluent concentration, ¢, is related to the sol-

ubility, S, through the partial pressure on the diluent, P;, by Henry's Law

It appears that Lefebvre et al. normalized the concentration in the diffusion
equation by simply dividing the concentration values by SP;. Such a nor-
malization would hold only if SP; is not a function of the spatial and tem-

poral variables. From their work, both § and P are functions of the free
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volume (which is ultimately dependent on the spatial variables) leaving a

question of the validity of the governing equations.

As indicated by the numerical solutions by Long and Richman this
time-dependent boundary condition could explain much of the anomalous
behavior observed in diffusion experiments. Though it may be important,
this effect will be ignored in this present study so as to more readily exam-
ine the effects of a pressure-induced flow and the time shifting behavior of

the diffusion coefficient.

2.5 Stress-Assisted Diffusion Model

A general form for the diffusion equation with the additional driv-

ing forces of pressure and temperature gradients can now be given as

ac . Q(C,T)

—— I

or ¢d(C,T){ Ve + C‘/}(C,T)VP + C(?(C,T)VT} (2.25)

where the additional driving forces are assumed to be additive as suggested
by the thermodynamics of the problem, Eqn. (2.7). The tensor functions
D(c,T), A(c,T), and ®(c,T) could be thought of as proportionality coeffi-
cients which relate the gradients of concentration (c), pressure (P), and tem-
perature (T) to the mass flux, respectively.

By assuming, as mentioned in the previous section, that the material
is isotropic, the proportionality coefficients are independent of concentra-
tion, and that the diffusion process occurs isothermally Eqn. (2.25) simpli-
fies to become

dex) _ . D)
ot ba(c)

{Vc(gg,t) + cAVP(x,t) } (2.26)
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2.5.1 Comparison with Other Stress-Assisted Diffusion Models

The form of Eqn. (2.26) has also been suggested by other investiga-
tors*24 in modelling Case II behavior. Thomas and Windle?* approached
the problem by using a modified Flory-Huggin's representation to model

the chemical potential per mole of diluent, y,,

PTN, + RT{ SL[3T=vp) - (- )]

i

il

My — 1y°

o + A=)+ xa-v)?} 22

RTlna1

where 11,° is the chemical potential per mole of diluent at a reference state,
v; the volume fraction or concentration of diluent in the swollen polymer,
P the external hydrostatic pressure or swelling pressure which acts on the
polymer but not on the surrounding liquid, G the molecular network pa-
rameter, T/; the molecular volume of the diluent, V; the volume of
unswollen polymer, X the diluent-polymer interaction parameter, Ny

Avogadro's number, and a; the activity.

The constitutive law that was chosen to relate the swelling pressure

to the dilatation, e, is a simple viscosity relationship

e _FP (2.28)
dt n
where 71 is the viscosity of the polymer. Assuming that the dilatation is
proportional to the concentration by a factor k, Eqn. (2.28) can be expressed

as



v _ P (2.29)

Thomas and Windle derive the diffusion equation in terms of the
activity rather than the concentration, but by using Eqn. (2.5) with the con-
centration and pressure as the independent variables the diffusion equation

could be shown to take a form

dc(x,t) _ 9 { [Q( )ac(x D 4 cAde )ap (x, ’)H (2.30)
or  ox

Cox and Cohen* also showed that the inclusion of a rate-dependent
pressure field into the diffusion equation would lead to a Case II-type diffu-
sion. Cox and Cohen modelled the Case II diffusion process by the follow-

ing diffusion equation

ac(x,t) 0 [D( )aC(JC,I) + A( )aP(x I)] (2.31)
o ox ox ox

where the pressure field is given through the following constitutive behav-
ior

oP(x,t)

= = Bo)[g(c)— P(x,1)] (2.32)

which is a combination of the Maxwell viscoelastic model and the Kelvin-

Voigt elastic model.

The similarities between the proposed model and those by Thomas
et al. and Cox et al. provide some reassurance that the full range from
Fickian diffusion to Case II diffusion will be encompassed. The basic differ-

ence between the models is that the present model incorporates a more
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complex constitutive model, one which is consistent with current vis-
coelastic theories. Both Thomas et al. and Cox et al. simply assume that the
pressure field is only defined by the constitutive law while in this study a
restriction is added that the resultant stresses (pressure) and strains
(dilatations) must also satisfy the equilibrium equations and the strain-dis-

placement equations.

A finite element model of Eqn. (2.26) was developed and imple-
mented into a finite element code (the details can be found in Appendix

A2).
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Chapter 3
Numerical Analysis

3.1 Numerical Solution Scheme

The two problems, namely the mechanical response (MR) which
deals with the solution for the displacements, strains, and stresses and the
diffusion process (DP) which deals with the distribution of the diluent con-
centration, are coupled together in a variety of ways. Coupling between the
two problems occurs through the constitutive law for the mechanical re-
sponse in which case the concentration affects the stresses and strains, the
stress (pressure) gradient which induces additional mass flow, and the
strain modified free-volume fraction which in turn influences the behav-
ior of the material properties. For convenience in describing various de-
grees of coupling, the "uncoupled" diffusion problem will be defined as
that for which the MR is affected by the concentrations through the stress-
strain law but the resultant pressure gradient does not affect the DP. By this
definition the set of uncoupled diffusion problems could also include those
cases for which the diffusion coefficient is modified by the time shifting
parameter as long as the pressure gradient does not directly enter the mass

flux equation.

Finding an analytical solution for the set of coupled nonlinear partial
differential equations (as presented in the previous chapters) is in general

unlikely; therefore the equations are solved numerically using the tech-
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nique of finite elements. The equations modelling the MR and DP are
converted to their numerical equivalents or, in the nomenclature of finite
elements, element types. The two element types, MR and DP, each describ-
ing a matrix equation are incorporated into a finite element computer pro-
gram called FEAP, an acronym for Finite Element Analysis Program. FEAP
was originally developed at the University of California at Berkeley3?,
enhanced at Brown University, and further modified to fit the needs of this
problem. The usefulness of FEAP is that it provides the basic software
needed for the finite element method, yet gives the users the flexibility to

incorporate their own element types.

The iterative solution method for the coupled diffusion problem is,
in principle, fairly simple; at a particular time step the diluent concentra-
tions are solved by using the DP element and holding the displacements,
stresses (pressure), and strains (dilatation) constant. Then while holding
the resultant concentrations constant, the calculations for the displacement
solution are performed using the MR element. Using the new displace-
ment solution, the stresses and strains are reevaluated and the solution
scheme returns to reiterate for the diluent concentration. This iterative
process continues until both concentration and displacement solutions
converge to within a specified tolerance. Nonlinearities associated with
each problem, MR and DP, add to the complexity of the solution method
since several iterations may be needed to solve each problem. This solu-
tion scheme is depicted in Fig. 3.1 where it can be seen that there are two
major iterations being performed; within each individual problem and

between the two problems.
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As with most numerical solutions, checks must be performed to con-
firm the accuracy of the solution. This is especially true for nonlinear prob-
lems where approximate iterative techniques are used to find a solution.
Such checks usually involve a reevaluation of the problem using different
mesh (element) sizes and/or time step increments; if the new solution is
"comparable" to the old solution the results are considered valid. The term
"comparable" is a qualitative statement depending on the possible "errors"
introduced by the solution scheme, thus error-checking with analytical

solutions are important.

—PC Increment time )

Iterate to solve the
modified
diffusion equation

v

Iterate to solve the
mechanical response
equations

Convergence check

Figure 3.1 Solution scheme at a particular time step.

A separate issue is that of the uniqueness and existence of any

numerically derived solution. Numerical solutions cannot answer the
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uniqueness question but by incorporating the nonlinearities in a piecemeal

fashion one may feel confident of a numerically derived solution.

3.2 Geometry and Boundary Conditions

Diffusion experiments are performed typically by exposing a plane
sheet or film of thickness 2L to a diluent reservoir at a certain concentra-
tion. To model this situation the basic spatial geometry for the subsequent
numerical analyses is chosen to be a right circular cylinder (see Fig. 3.2) of
length (thickness), 2L, and radius, R, undergoing axisymmetric deforma-
tion. Axial symmetry reduces the three-dimensional problem to a two-di-
mensional problem which still retains the basic features of the three-

dimensional solution.

Ar
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Figure 3.2 Basic geometric region for numerical analyses.

As a consequence of the axisymmetry there is no 6 dependence in the

problem and the spatial deformations (ur, ug, u;), mass flux (j,, jg j,), and

concentration (c¢) can be expressed as functions of r, z, and ¢ only.
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u, = u,(r,z,t), ug =0, u, = u,(r,zr) 3.1
Jo = Ji(nzt), jo =0, j, = jy(r.z.1) @.2)
¢ = c(r,z,1) 3.3)

Additional boundary conditions can further reduce the problem to be
fully one-dimensional and it is in these relatively simple 1-D cases where a
better understanding of the interaction between the diffusion and mechani-
cal response can be achieved. By relaxing these boundary conditions a
comparison between the one- and two-dimensional cases can be made.
Recall most experimental data reduction assumes the diffusion process to
be one-dimensional and the 2-D comparison can be used to evaluate this
assumption. In this spirit, numerical solutions and accompanying com-
ments are presented on the validity of the proposed diffusion model in the

following sections.

3.3 One-Dimensional Problems

The 1-D problems further restrict the spatial deformations of the

cylinder be uniaxial along the z-axis.

u.(r,z,t) = 0, u,(r,z,t) = u(z,t) (3.4

The tractions on the planar surfaces are assumed to be zero (no applied

normal or shear stresses).

O, (r.tL,t) = o,,(r,xL,t) = 0; r=[0,R], Vt20 3.5)
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The lateral surface is considered to be an impermeable boundary (the mass
flux across the lateral surface is zero); while the concentration on the two

planar surfaces are held constant at unity.

jr(R$Zst) = O; z=[—LsL]s V20 (3.6)

c(r,xL,t) = 1.0; r=[0,R], Vt20 3.7

Angular symmetry conditions allow the cylindrical region to be
modelled as a rectangular region between r = [0,R] and z = [0,L] with the

additional boundary conditions

w(0,1) = 0,,(r,0,) = j,(r,0,) = 0; r=[0,R], Vr20 (3.8)

6,,(0,z,t) = j.(0,z,t) = 0; z=[0,L], Vt20 (3.9

The region for the 1-D problem with the associated boundary conditions is

depicted in Fig. 3.3.

In the sequel, the solution behavior for various material properties
are examined and compared to Fickian diffusion behavior. Several 1-D
numerical solutions can be found in the text by Crank’ and these are used
to error-check the numerical scheme. Through this type of error-checking
one can comprehend the accuracy of the numerical solutions produced by
the iterative solution method of Fig. 3.1. Other numerical solutions are

also presented to show the effects of coupling between the MR and DP prob-

lems.
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A summary of the numerical 1-D analyses performed in this study

Figure 3.3 Modelled region for the 1-D problem with the associated

boundary conditions.

are listed in Table 3.1.



-52-

Summary of One-Dimensional Numerical Analyses

.. Material )
Description Properties Comments Fig.
Uncoupled diffusion with | D=0.1, A=0, Examines the numerical accuracy |34,
constant D and elastic ma- | K=1.0, G=0.28265] of the two elements, MR and DP, |3.5,
terial response (Fickian). =03, p=0.3 indi-vidually. The geometry is 3.6
L=0.1, R=0.002 with a minimum
element size of dz=0.002.
Same as 1 except D is a func- | D=0.01(1+100c), | Examines the numerical accuracy |3.7
tion of concentration (Fick- | A=0, of the DP element when the diffu-
ian). K=1.0, G=0.28265] sion coefficient is linear with con-
=03, =0.3 cen-tration. The geometry is
L=0.1, R=0.02 with a minimum
element size of dz=0.002.
Coupled diffusion with con- | D=0.001, A=100, | Simplest coupled diffusion prob- 3.8
stant D and elastic mate- | K=1.0, G=0.28265] lem. The problem can be uncoupled | 3.9
rial properties. o=0.3, =0.3 and the two solutions, (coupled
and un-coupled) compared to see
the effect of the iterative solution
scheme. The geometry is L=0.04,
R=0.02 with a minimum element
size of dz=0.002.
Uncoupled diffusion with | D;=0.001, A=0, | The time shifting behavior of the |3.10
time shifting of D and elas- | K=0.6083, diffusion coefficient steepens the |3.11
tic material properties. G=0.0001, concentration diffusion front but
ba=30, fo=1.0, the results remain Fickian-like.
A=1.0, B=0.9, The geometry is L=0.1, R=0.02
=03, p=0.3 with a minimum element size of
dz=0.002.
Coupled diffusion with Dy=0.001, A=100, | An example of the effect of pro- 3.13
time-shifting and vis- Kand G posed coupled diffusion model. 3.15

coelastic material proper-
ties.

see Fig.3.12
b=30, bg=30,
f0=1 'OI
A=1.0, B=0.9,
=03, f=aK

The viscoelastic properties relaxes
the pressure field thus slowing the
rate of diffusion into the body.

The geo-metry is L=0.1, R=0.02
with a min-imum element size of
dz=0.002

Table 3.1

Summary of the 1-D numerical analyses that were performed.
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3.3.1 Problem1: 1-D Uncoupled Diffusion; Constant D; Elastic

Material Properties

For this problem analytical solutions exist and a comparison between
the analytical and numerical solutions will provide a baseline for future
"error" comparisons. Crank’ records an analytical solution for diffusion in
a planar sheet of thickness, 2L, having a constant diffusion coefficient, D, an
initial concentration, ¢, and constant concentration boundary condition, c,.
The concentration profile is given as an infinite series in the following

form

c=c, _ . 43 (1 -D2n+127% |  (2n+1)zz
p— =1 2 2 2 +1) [ e cos=——- (3.10)

The corresponding sorption curve is also represented as the infinite series

M@ -D(2n+1)’ s
M. '72(2”1) [ ar? } G1D

A comparison of the analytical concentration profiles Eqn. (3.10) and

the analytical sorption curve Eqn. (3.11) to the corresponding numerical
solutions are shown in Fig. 3.4 and Fig. 3.5, respectively. In both plots the
solutions are comparable to within plotting accuracy, indicating that at least
for this simple case the numerical analysis for the DP element can yield ac-

curate results.

The one-dimensionality of the displacement field and the elastic
material properties allows one to solve the mechanical response problem
explicitly, independent of the diffusion process, yielding the pressure, P(z,1),

and dilatation, e(z,7), in terms of the concentration, c(z,?), as
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4aGK
= —¢(z, 3.12
P(z,t) 3K + 4G c(z,1) (3.12)
3aK
=2 . 13
e(z,t) 3K + 4G c(z,t) (3.13)

where «a is the swelling coefficient, G the shear modulus, and K the bulk
modulus. Thus the pressure and dilatation profiles should be equivalent to
the concentration profile provided they are scaled by the material properties
in the manner shown by Eqns. (3.12) and (3.13), respectively. This relation-
ship between P and c allows a check of the MR element and in Fig. 3.6 the
scaled pressure corresponds to the concentration profile, to within plotting
accuracy, indicating that the MR element is functioning correctly for elastic

material properties.
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Figure 3.4 Comparison of concentration profiles given by the analytical
solution, Egn. (3.10), and the corresponding numerical analysis. Numbers on
the curves are values of a nondimensional time, Dt/L2.
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Figure 3.5 Comparison of the sorption profiles given by Eqn. (3.11) and the
corresponding numerical analysis.
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Figure 3.6 Normalized pressure profile compared to the concentration pro-
file. For the material properties used in this calculation, P = 0.08211. The
numbers on the curves are values of a nondimensional time, Dt/L2.

Though not shown here, other tests were performed where vis-
coelastic material properties were incorporated by using a single Prony
series element for either K(z), G(p), or B(z). The MR element calculated the
stresses and strains which resulted from a uniform concentration applied to
the entire cylindrical region at time equal zero (step function) and the
numerical results compared well with analytical solutions. Such results

gave further assurance that the MR element is performing correctly.

3.3.2 Problem2: One-Dimensional Uncoupled Diffusion;

Concentration-Dependent D; Elastic Material Properties

In many instances the diffusion coefficient, as determined by exper-
iments, are found to be concentration-dependent and this effect has been

included in the development of the DP element. In general no exact analyt-
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ical solution can be found for a transient Fickian diffusion problem charac-
terized by a concentration dependent diffusion coefficient. However,
Crank’ provides a few solutions, using either approximate analytical meth-
ods or numerical methods (finite differences), which can be used to com-

pare with the solutions generated by the numerical code in this study.

The problem selected for comparison is that of a linearly varying dif-

fusion coefficient of the form
D(c) =Dy( 1+ 100c) (3.149)

In Fig. 3.7 Crank's solution for the concentration profiles is compared
with the finite element generated solution. The two solutions are similar
although there is an initial difference that fades as time progresses. Finite
element solutions for diffusion coefficients having other concentration
dependences (e.g., exponential) have also been compared to corresponding
solutions provided by Crank. Comments for these comparisons are similar

to the linearly dependent diffusion coefficient problem®.

This test case shows that for a variable diffusion coefficient the DP
element does not compare, against an analytical solution, as well with the
test case having a constant diffusion coefficient. The errors introduced are
probably a consequence of the digitization of the concentration profiles in
Crank's text, the nonlinearities of the problem (the need to iterate and con-

verge to a solution), and the time initialization approximations needed to

* The other diffusion coefficient used to check the finite element code is
D(c) = Doexplaz).

The results again had dissimilar initial solutions that faded with time.
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start the numerical scheme. Though these apparent errors are not major,
the curves are comparable, the last two possible error contributions would
probably be enhanced as the nonlinearities of the problem increase. The
initialization error indicates that for nonlinear problems caution must be
used in interpreting the results at "early times" especially when comparing

two solutions with different material parameters.

CONCENTRATION PROFILE
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0.8 e — CRANK ,%
5 | - NUMERICAL /// / /
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Figure 3.7 Comparison between the results provided by Crank® and the
numerical analysis in this study. The numbers on the curve are values of the
nondimensional time, Dot/L2.

3.3.3 Problem 3: 1-D Coupled Diffusion; Constant D; Elastic

Material Properties

For this example the diffusion coefficient and the material properties
are again assumed to be constant, but here the diffusion process is coupled
to the mechanical response. The elimination of the time shifting effect is

implemented by holding the free-volume fraction equal to the reference
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free-volume fraction causing the time shifting parameter, ¢, to be equal to

unity.

A special feature of this problem allows a direct assessment of the
accuracy of the numerical code. To see this, first note that the pressure field
for this case is also given by Eqn. (3.12). By substituting that pressure field
into the 1-D form of the diffusion equation, Eqn. (2.16), a Fickian diffusion

equation with a concentration-dependent diffusion coefficient is derived,

namely
99.(5?1.32 - %( D(C)Q%Q) (3.15)
where
D(c) = Do[l + ;I?-%%c(z,:)) (3.16)

Hence the coupled diffusion problem can be recast into an uncoupled
diffusion problem, similar to that for Problem 2. By being able to uncouple
the two problems a check of the proposed iterative solution method, §3.1,
can be performed. This is accomplished by comparing the solutions
generated by coupled case where the pressure from the mechanical re-
sponse problem is fed back to the diffusion process and the uncoupled solu-
tion where there is no feedback. Through such a comparison, the concen-
tration profiles at various times and the corresponding sorption plots, any
"errors” that are introduced through the iterative solution method may be
identified. Recall from the previous sections that solution checks have
been performed for both the MR and DP elements separately and the results

correspond well to analytical solutions, provided one does not look too
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carefully at “early time” solutions. Consequently, the solution to the
uncoupled problem can be assumed to be acceptably accurate. From Fig. 3.8,
the concentration profiles for the two solutions are again comparable
though at initial times a slight divergence occurs. This observation again
reflects the initialization problem, but again the "shape" of the concentra-
tion profiles are similar and the "error" disappears with time. On the other
hand the comparison between the resulting sorption plots for the two prob-
lems, Fig. 3.9, are comparable, since numerical integration has a
"smoothing" effect, and considering that at initial times the mass is still
small, resulting in a smaller absolute error. Subsequent numerical analyses

must bear in mind this type of "error" while interpreting the results.

The difference probably arises from the added "stiffness" in the finite
element formulation of diffusion process as a result of the pressure term.
This "stiffness" would account for the initial difference since there could be
insufficient flexibility between elements, to accurately capture the features
of the solution (the high initial gradients). If this explaination were true
the error could probably be corrected by adding more elements near the
boundary to increase the flexibility of the mesh in this region. Another
possibility may be the fact that since the solution for the concentration and
displacements are not solved simultaneously, the solution is determined by
iterating between the two problems until both are satisfied to within a spec-
ified tolerance. Thus the iterative procedure will have at least twice the
possible error (as provided by the tolerance) then that of a procedure which
solves both problems simultaneously (which is what occurs for the uncou-
pled cases). Because of the inherent numerical errors that occur in a nu-

merical solution the tolerance level cannot be set arbitrarily small (for in
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Figure 3.8 Concentration profile at various "times" comparing the uncou-
pled solution to the solution (coupled) to the iterative scheme. The numbers
on the curve represent a nondimensional time, Dot/L2.
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stance zero) and thus one must accept some numerical error. Here again
the high initial gradients will enhance the numerical errors that are gener-

ated and could explain the initial differences.

Besides the ability to provide a "self-consistent" check for the discrete
model, this problem points to an important lack of uniqueness in mathe-
matically modelling a physical system. As an example, the experimental
results by Hayes and Park!3 for the diffusion of benzene into a cross-linked
rubber can be explained by a diffusion coefficient which is linear with the
diluent concentration. Similar findings are also found by Aitken and
Barrer! for the diffusion of butane and pentane into cross-linked rubbers.
To deduce that the diffusion coefficient is linearly dependent on the con-
centration Hayes et al. and Aitken et al. assumed that the process was
Fickian (the mass flux is driven only by a concentration gradient). From
the 1-D solution presented here it follows that for the coupled model (the
mass flux is driven by both a concentration and a pressure gradient) with
elastic material properties, the diffusion coefficient could actually be con-
stant and that the "apparent” concentration dependence is actually a conse-
quence of a diffusion-induced pressure field within the rubber. From an
experimental point of view this non-uniqueness is significant since results
from typical sorption experiments would not be able to distinguish between
the two models. It follows that the mechanical response could be responsi-
ble for some of the "observed" concentration-dependent diffusion coeffi-

cient.
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3.3.4 Problem4: 1-D Uncoupled Diffusion; Time Shift Modified
Diffusion Coefficient; Elastic Material Properties

Again the one-dimensionality and elastic material properties allow
the problem to be recast as an uncoupled problem. For the uncoupled prob-

lem the diffusion coefficient can be expressed in the following functional

form
De) = 4>D(0c)(1 * 3?5%2;)
4 3.17)
1 1 40KGA
= Do f:Xp{: bd(}-o— bl ‘7-(;—)-)}(1 + m&‘)
where
£ = f, + 3BK + 4(B-A)G oc (3.18)

3K + 4G

with D, the diffusion coefficient at zero concentration, time shift factor ¢,
the swelling coefficient ¢, bulk modulus K, shear modulus G, A the con-
stant relating pressure gradient to the diluent mass flux, by the parameter
related to the hole size need to accomplish a "jump," reference free-volume
fraction f,, free-volume fraction f, A the mechanical dilatation participation
factor for the free-volume fraction, and B the swelling dilatation participa-

tion factor for the free-volume faction.

This case should be able to model the approximate diffusion behav-
ior above the glass transition temperature where the material is near its

rubbery stage. If the polymer is uncrosslinked the shear modulus in this
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temperature region would approach zero and hence the resultant pressure

would also tend to zero. This fact simplifies Eqn. (3.17) to

D(c) = Doexp[%z—?g&;J (3.19)
Numerical solutions for the coupled diffusion problem, with A =0 and a
nearly zero shear modulus (G/K ~ 0.00016), are shown in Figs. 3.10 and 3.11;
and would correspond also to the uncoupled problem with the diffusion
coefficient given by Eqn. (3.19). As a result of the time shift parameter the
diffusion coefficient shows a strong concentration dependence. This de-
pendence causes the concentration profiles to develop a sharp diffusion
front (see Fig. 3.10) in comparison to the elastic problem where the diffu-
sion coefficient is not modified by the time shift parameter (see Fig. 3.8).
The sharp concentration gradients appear to be similar to what is expected
for a Case II diffusion process, but the sorption plot (Fig. 3.11) still retains
the initial Vr linearity (rather than the linearity with respect to ¢ for a Case II

process) and thus would normally be classified as Fickian.
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absorption curve would cause this problem to be classified as a Fickian

diffusion process.
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3.3.5 Problem 5: 1-D Coupled Diffusion; Time Shift Modified
Diffusion Coefficient; Nonlinear Viscoelastic Material

Response

The full effects of the nonlinear viscoelasticity and the proposed dif-
fusion model are examined in this problem. The viscoelastic bulk and
shear moduli are modelled using PVAc data, where the moduli have been
scaled such that the glassy bulk modulus equals unity (see Fig. 3.12). The
swelling coefficient was taken to be constant and equal to 0.3 and the pres-
sure-induced relaxation coefficient, 8, which is related to the swelling coef-

ficient and the bulk modulus is given by Eqn. (1.21).

The results for the concentration profile are shown in Fig. 3.13. A
significant feature is that at initial times the profiles are similar to those in
Fig. 3.10, but as time progress the profiles become sigmoidal in shape. An
explanation for the sigmoidal behavior can be put forth by examining the
pressure profile, delineated in Fig. 3.14. The pressure profile shows a signif-
icant relaxation behavior leading to an inverse pressure gradient which
inhibits the mass flux into the region. This causes the concentration profile

to appear to "stall" creating the sigmoidal feature.

An absorption plot for the same material properties, but for two dif-
ferent thicknesses, are shown in Fig. 3.14. Note that the length scaling has
failed and the process would be considered non-Fickian. A simple explana-
tion can be put forth for this phenomenon: at “smaller" thicknesses the
pressure field has less time to relax before a significant amount of diluent
has diffused into the body thereby extending the Fickian behavior of the

sorption plot. As the thickness is increased the pressure field can relax
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causing the sigmoidal appearance of the sorption curve. The results are
similar to the situation presented by the diffusion of allyl chloride into
PVAc, shown in Fig. 3.3, suggesting that a similar phenomenon may be oc-

curring for this diluent-polymer system®.

In the published literature sigmoidal behavior in sorption plots are
often explained on the basis of a time-dependent (usually assumed expo-
nential) concentration boundary condition, (see §2.4.5). It is noteworthy
that the present model is also able to capture the sigmoidal behavior with-
out resorting to a time-dependent boundary condition. The addition of a
time-dependent concentration boundary condition would probably
enhance the sigmoidal behavior, but for reasons mentioned in §2.4.5 this

effect is not included in this study.
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Figure 3.12 Material properties for the bulk and shear behavior used in the
following numerical analysis. The properties are for PVAc normalized such
that the bulk moduli is 1.0 in the glassy region.
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Figure 3.14 Pressure profile corresponding to Fig. 3.8. The significant pres-
sure relaxation accounts for the sigmoidal nature of the concentration profile.

The numbers on the curves represent a nondimensional time, Dot/L2.
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3.4 Two-Dimensional Problems

As mentioned previously, diffusion experiments are conducted such
that the results are assumed to be comparable to one-dimensional (1-D)
solutions to Fick's diffusion equation. In this section the consequences of
this assumption will be examined by comparing two-dimensional (2-D)
solutions, which would more appropriately model typical diffusion exper-

iments, to the corresponding 1-D solutions.

The axisymmetric assumptions for the 2-D problems restrict the
deformations, mass flux, and concentration of the cylinder to be only func-
tions of r, z, and ¢ (see Eqgns. (3.1), (3.2), and (3.3)). For convenience the equa-

tions are repeated here,

u, = u(r,zt), ug =0, u, = u,(r,z1) (3.20)
Jr = J(rzt), jg =0, Jj, = j,(r.z1) (3.21)
c = c(r,z1) (3.22)

The free surfaces of the cylinder are considered traction free (the normal

and shear stresses on the surfaces are zero).

0, (rxL,t) = 0,(r,xL,t) = 0; r=[0,R], Vt20 (3.23)

0,r(R,z,t) = 0,(R,z,t) = 0; z=[-L,L}, Vt20 (3.24)

And the concentration boundary conditions are considered to be uniform

along the cylinder's surface.

c(r,xL,t) = 1.0; r=[0,R],Vt20 c(R,z,t) = 1.0; z=[-L,L),Vt20 (3.25)
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On the basis of angular symmetry for the above problem, the cylinder can

be identified by the rectangular region between r = [0,R] and z

the symmetry boundary conditions are given as

i
i

u,(0,z,t) = 0,,(0,z,t) = j (0,z,¢) = 0; z=[0,L], V20

u,(r,0,t) = 0,,(r,0,t) = j,(r,0,t) = 0; r=[0,R], Vt20

= [0,L] and

(3.26)

(3.27)

The region for the 2-D problem with the associated boundary conditions

can now be depicted as

r

A

0'"20 Grz=0 c=1.0

>7

Urz 0 O'r_zr- 0 jr:: 0

Figure 3.16 Modelled region for the 2-D problems with the associated

boundary conditions.
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Two-dimensional numerical simulations for both the uncoupled
and coupled diffusion problems are computationally intensive and, as a
result of available computer time restrictions, not all permutations of the
relevant material and geometrical parameters could be analyzed. This
study confines the 2-D analyses to basically the same material parameters
that were examined in the 1-D section. In most cases this allows a compari-
son between the two situations. A summary of the 2-D cases that were ex-

amined is found in Table 3.2.
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Summary of Two-Dimensional Numerical Analyses

Lo Material .

# Description Properties Comments Fig,.

6 | Uncoupled diffusion with D=0.01, A=0, Examines the effect of 2-D Fickian | 3.17
constant D and elastic mate- | K=1.0, G=0.28265] solution as compared to 1-D cases. |3.18
rial response (Corresponds | &=0.3, f=0.3 Motivates a modified boundary 3.19
to Pb. 1). condition. The geometry is L=0.05, | 3.20

R=[0.005,0.05] with a minimum 3.21
element size of dz=0.005. 3.22
3.23

7 | Same as 6 except modified |D=0.01, A=0, Examines the effect of modifying | 3.24
boundary conditions are K=1.0, G=0.28265| the lateral boundary conditions to
used. 0=0.3, f=0.3 be impermeable.

8 | Coupled diffusion with con- | D=0.001, A=100, | The geometry is L=0.05, R=0.5 3.25
stant D and elastic mat- K=1.0, G=0.28265] (R/L=10) with a minimum element | 3.26
erial properties =03, p=0.3 size of dz=0.002. Results appear |3.27
(Corresponds to Pb. 3). Fickian as in Pb. 3. 3.28

3.29
3.30

9 | Uncoupled diffusion with Dy=0.001, A=0, The geometry is L=0.05, R=0.5 3.31
time shifting of D and elas- | K=1.0 or 0.6083, | with a minimum element size of 3.32
tic material properties G=0.283 or 0.0001} dz=0.002. Appearance of Case Il |3.33
(Corresponds to Pb. 4) b=0, bg=30, f,=1.0| behavior for glassy properties. 3.34

A=1.0, B=0.9, 3.35
0=0.3, f=0.3 3.36

10 | Coupled diffusion with D,=0.001, A=100, | The geometry is L=0.05, R=0.5 3.37
time shifting of D and elas- | K=1.0, G=0.28265] with a minimum element size of 3.38
tic material properties b=0, bg=30, f,=1.0| dz=0.002. 3.39

A=1.0, B=0.9, 3.40
0=0.3, f=0.3

11| Coupled diffusion with D(=0.001, A=100, { An example of the effect of cou- 3.41
time shifting and visco- Kand G pled diffusion model. The vis- 3.42
elastic material properties | see Fig. 3.12. coelastic properties relaxes the 343
(Corresponds to Pb. 5) b=30 or 40, pressure field slowing the rate of |3.44

bg=20 or 30, diffusion into the body. The geom- | 3.45
fo=1.0, etry is L=0.05, R=0.5 with a mini- |3.46
A=1.0, B=0.9, mum element size of dz=0.002

o=0.3, f=aK

Table 3.2 Summary of the 2-D numerical analyses that were performed.
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3.4.1 Problem 6: 2-D Uncoupled Diffusion; Constant D; Elastic
Material Properties

For these numerical simulations the diffusion coefficient has a con-
stant value, D,, and the resultant pressure field does not contribute to the
mass flux. To examine the effects of two-dimensionality various R/L ratios
were analyzed and the actual parameters used to génerate these curves can
be found in Table 3.2. The consequence of the two-dimensionality on the
diffusion process is evident in the sorption plots shown in Fig. 3.17. There
it can be seen that as R/L becomes large the 2-D solutions approaches the 1-

D case which is depicted as R/L equal to .

To evaluate the diffusion coefficient from experimental sorption
curves a small time approximation for the 1-D plane sheet solution is typi-
cally used. Using this approximation the diffusion coefficient can be ex-

pressed as

where O is the initial slope of the "reduced" sorption curve ( M(t)/Me vs

VUL).

Assuming that all the sorption curves depicted in Fig. 3.17 are from a
1-D plane sheet solution Eqn. (3.28) can used to calculate the "apparent" dif-
fusion coefficient. The error introduced by this 1-D assumption could then
be compared to the diffusion coefficient's actual value of D,. The resultant

error is shown in Table 3.3 for the various R/L ratios.
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SORPTION PLOT

Vt/L

Figure 3.17 Sorption plot for varying R/L for a constant diffusion coefficient

D,. If these curves were assumed to be from a 1-D solution, the two-dimen-

sionality would give the appearance of a larger diffusion coefficient as indi-

cated by the larger slope of the curves.

Hence even R/L ratios of 10 to 1 would produce an error of 10%, so
care must be taken when using Eqn. (3.28) to reduce sorption experimental
data such that the planar area is much greater than the edge or side area.
Most sorption experiments use thin films with a large cross-sectional area
with typical R/L ratios varying from 20 to 300. For these R/L ratios the 1-D
assumption would produce an error of less than 5% which is acceptable in

light of the errors introduced by the experimental measurement tech-

niques.

More important is that the resultant pressure and dilatational fields
also become two-dimensional in nature and that the effects extend beyond

the concentration front. Contour plots for the concentration, pressure, and
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dilatation fields at a nondimensional time, Dyt/L* = 0.02, are presented as a

function of R/L in Figs. 3.18, 3.19, and 3.22, respectively.

Comparison of Diffusion Coefficients for Various R/L

R/L D (calculated)/D, % error
1.0 4.207 320
2.0 2.152 115

10.0 1.100 10.0

oo 1 0

Table 3.3 Comparison of diffusion coefficients for various R/L ratios,
demonstrating the error by assuming a 1-D solution for a 2-D problem.

The contour plots for the concentration approaches the 1-D solution
as R/L — oo confirming the sorption plots shown in Fig. 3.17. What may
not be as apparent as a result of the spatial normalization, r/R and z/L, is
that for this uncoupled case the diffusion front moves at approximately the
same speed in both the r and z directions. As the diffusion process becomes
coupled the effects of the pressure field and the time shift modified diffu-
sion coefficient would probably alter the speed of the diffusion front in both

the r and z directions.
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The pressure contour plots, Fig 3.19, also become one-dimensional in
nature as R/L is increased but does not approach the corresponding 1-D
solution. Unlike the 1-D case which has a finite equilibrium pressure
value, P,, the 2-D equilibrium pressure is zero. From this observation the
decay of the pressure field, as shown in Fig. 3.20, must be a consequence of

the two-dimensionality and the traction-free boundary conditions.

From the contour line separation the pressure gradient at r = 0 for
R/L values of 10 and e are nearly the same. This suggests that the 2-D pres-
sure field, like the 1-D pressure field, may be related to the concentration
field. This can be seen more clearly in Fig. 3.21 where the concentration
profile and a modified pressure profile are plotted at various nondimen-
sional times, Dot/L%. The modifications to the pressure profile at r = 0
includes a normalization by the 1-D equilibrium pressure, P,, and a vertical
shift by an additive constant such that at z = L the modified pressure value
is unity. Observing that the two profiles in Fig. 3.21 are identical one may
suggest that the pressure can be related to the concentration through the

following equation
P(z,t) = Pyc(z,t) + B(t) nearr = 0 (3.29)

where B(t) is some function of the material parameters, geometry, and

time.

Analytically this result can be shown to be true if the displacement

field in the region around the axis of the cylinder takes the form

u, = u(rt); u, = u,(z,1) (3.30)
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PRESSURE PROFILE @r=0

1.0 5
0.8 o™ Dot /L% = 0.004
0.040
0.6 frrreee 0.080
--- 0.200
0 0.4 | — 0.400
o
o 0.2
0.0
0.2 s B :'.:'—-‘;":"Z"
N E—
0.0 0.2 0.4 0.6 0.8
z/L

1.0

Figure 3.20 Normalized pressure profile for R/L = 10.0 at r = 0. P is the
equilibrium pressure value for the corresponding 1-D case (Problem 1).

COMPARISON OF P/P, AND C @r =0

1.0 .
sl — Concentaten /]
Q T e B = 0.09386
5 | - 0.17768
O 0.6 f =" 0.33758 p
h where P, = 0.08211 / / /
D 0.4 ,
3 / /
o 0.2
220,08
/ 0.02 A).oo‘af
0.0 m— e g
0.0 0.2 0.4 0.6 0.8
ZIL

1.0

Figure 3.21 The correspondence between the modified pressure and concentra-
tion profiles suggest that near r = 0 the pressure field is linearly related to
the concentration. The numerical values for B and Po are dependent on the
input material parameters and geometry that are found in Table 3.2. The

numbers on the curves represent a nondimensional time, Dot/Lz.
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If this were the case, the pressure field and dilatational field can be shown
to be linearly related to the concentration through an equation similar to
Egn. (3.29). However the function B(z) is undetermined by the analysis and

must be numerically derived.

In general, unlike the 1-D cases, there is no 2-D analytical solution for the
MR problem and therefore the coupled diffusion problem cannot be
uncoupled. However near the region r = 0, for large R/L values, an equa-
tion similar to Eqn. (3.29) may hold for the pressure field, allowing one to
"uncouple” the diffusion problem since only the spatial gradient of the

pressure field directly enters the diffusion equation.

Contour plots for the dilatation, shown in Fig. 3.22, also become 1-D
in nature and, like the pressure field, a normalized dilatation value near r =
0 does compare with the 1-D case by just an additive vertical shift. As a re-
sult of the traction-free boundary conditions the equilibrium dilatation for

the 2-D case is higher than that of the corresponding 1-D problem.

From the above observations for the uncoupled diffusion problem,
the coupled diffusion processes may be seriously affected by the change
from one to two dimensions. Though both the pressure and dilatation
fields become more complicated for this 2-D case, the two fields for large
R/L ratios near r = 0 may still be linearly related to the concentration field.
Thus the added mass flux due to the pressure gradient would be the same
for the two cases. The same cannot be said about dilatation because the ac-
tual value of the dilatation affects the free-volume fraction and therefore
the time shift factor and not the gradient. Also the equilibrium dilatation

for the two problems are not equal because of the added constraints impos-
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ed on the 1-D case. As the effect of time shifting is included in the coupled

diffusion problems, the full three-dimensional problem must be considered

to accurately capture the dilatation behavior.

DILATATION PROFILE @r=0

1.0
0.8 /‘/ /, -
P B
/ e ," .
/ - - o"’ ,",
“ “l. £
o 0.6 0 4 - - e /.’
[«3] " - o R ’
; - - ,"" s ’ ;’!
- .’ A
0.4 —— e,
N 0.2 o - ,
nnnn hd - s
____ ’.". 'f
""""" 008 RS f
0.2 s e S -0, 04 -
-------------------------------- 70.004
O 0 e boowmo - _
0.0 0.2 0.4 0.6 0.8 1.0
z/L

Figure 3.23 Dilatation profile for R/L = 10.0 at r = 0. The numbers on the
curves represent nondimensional times, Dot/L2. The dilatation is plotted

from strain values at the one-point Gauss quadrature point and normalized
by eg the 2-D equilibrium dilatation for this problem.

3.4.2 Problem7: 2-D Uncoupled Diffusion; Constant Diffusion
Coefficient; Elastic Material Response; Modified Boundary

Conditions

In order to capture the proper solution as the concentration front
moves, the resulting numerical mesh or elements must be small enough to
capture the salient features of the solution. This requirement calls for a

fine mesh in both the r and z directions and the resulting matrix equation
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will be very large (on the order of 3000 degrees-of-freedom) and computa-
tionally expensive, 5-10 Cray YMP units per time step. As R/L — oo the solu-
tion becomes one-dimensional and it behooves one not to solve for the
concentration front as it moves in the radial direction, since it occupies
only a small fraction of the entire region. With this condition in mind one
may try to compare the 2-D solutions of the preceding section to a solution
for which the lateral surface of the cylinder is considered to be imperme-
able. In this way, the basic concentration front will move in the axial direc-
tion allowing one to forgo the fine mesh restriction in the radial direction.
Since the displacement, strain, and pressure fields will still be 2-D the mesh
in the radial direction must still be able to accurately capture these fields,
but even with this restriction the computational cost can be significantly

decreased.

A comparison of the pressure and dilatation contour plots for the
full 2-D case versus the modified 2-D problem is shown in Fig. 3.24. The
two solutions are shown to be comparable provided one is concerned with
the central region of the cylinder, near r = 0. As the problem becomes more
coupled and nonlinear, the region of comparison will probably still exist,

but will be reduced in size.

Keeping these issues in mind, in the following sections the numeri-
cal solutions will be performed using the modified boundary condition

which is formally given as

Jr(Rz,t) = 0; z =[0,L] Vi20 (3.30)
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3.4.3 Problem 8: 2-D Coupled Diffusion; Constant Diffusion
Coefficient; Elastic Material Response; Modified Boundary

Conditions

For this problem the pressure gradient is included in the diffusion
equation, thus coupling the mechanical response to the diffusion process.
The diffusion coefficient is assumed to be constant and not modified by the
time shift parameter and the material properties are considered to be lin-
early elastic. The actual values used in this numerical simulation are listed
in Table 3.2. An R/L ratio of 10 was used since it approximated the 1-D so-
lution in Problem 6 and because the modified boundary conditions are used

only in the region near r = 0.

The concentration profile at r = 0 is depicted in Fig. 3.25 at several
nondimensional times, Dot/L% The curves exhibit a slight concavity with
respect to the z-axis and are similar to the 1-D concentration profile curves

in Fig. 3.8.

The pressure profile at r = 0 is normalized by the equilibrium pres-
sure, P,, for the corresponding 1-D Problem (Problem 3) and depicted in Fig.
3.26 at several nondimensional times, D,t/L?. The normalized pressure
profile is similar to the concentration profile except that it is vertically
shifted by an additive constant (see Fig. 3.27) so the linearity with respect to
the concentration (as described in Problem 6) of the pressure field near r = 0

still appears to hold.

The dilatation profile at r = 0 is depicted in Fig. 3.28 at several

nondimensional times, Dot/L% The curves are normalized by the equilib-
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rium dilatation value of e, and are similar to the curves in Fig. 3.23 of

Problem 6.

CONCENTRATION PROFILE @r = 0

1.0
Pt i
= 0.8 s )
9 '.,o"'l Re *
= -~ P /
< 0. 2t 4 #
£ / :
E o d ,"’ !'l
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% / 0.02 ,'(; 0 s
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0.0 et e =
0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3.25 Concentration profile for R/L = 10 at r = 0 at several nondimen-
sional times, Dot/Lz.

Depicted in Fig. 3.29 is a comparison of the sorption plots for Problem
8 and Problem 3, the corresponding 1-D solution. Since the pressure gradi-
ent is proportional to the concentration gradient by the same factor, P,, the
two sorption curves should be comparable, but Problem 8 appears to have a
slower absorption rate. An examination of the concentration contour plots,
in Fig. 3.30, shows that near the lateral boundary, r = R, the concentration
front tends to "lag" behind the front at r = 0. This phenomenon is a result
of the traction-free boundary conditions, for both the modified and unmod-
ified BC's, which cause the pressure field near the boundary to be reduced

(see Fig. 3.18) and thus decrease the mass flux contribution from a pressure

gradient.
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PRESSURE PROFILE @r = 0
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Figure 3.26 Pressure profile at r = 0 for R/L = 10 at several nondimensional
times, Dyt/L2. The value of P, is the equilibrium pressure for the 1-D case
described in Problem 1.

COMPARISON OF P/P, AND C @r=0

1.0
08 — Concentration /%
A P /P, + Constant / "/ /
0.6 /////
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Figure 3.27 Modified pressure profile as compared to the concentration pro-
file. The normalized pressure profiles are shifted vertically by additive
constants which are 0.1326, 0.2802, 0.3921, 0.5491 for Dyt/L? = 0.002, 0.01,
0.02, 0.04, respectively. Pg is the equilibrium pressure for Problem 1.
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As mentioned before (Problem 6) the sorption plots between the 1-D
cases and the 2-D cases are not truly comparable unless the R/L ratios
become very large. The modified boundary conditions alter this statement
slightly since sorption curves using the modified BC's do not have the
added mass due to the edge effects. In either case the 1-D sorption curves
appear to follow the same trends as the 2-D sorption curves using either BC,
so for the sake of computational effort the modified BC will still be used
and the interpretation of the sorption curves will have to include the con-

tour plot solutions for the concentration.

The similarity between the 1-D and 2-D problem for the concentra-
tion profile and sorption plot demonstrates that one may approximate the
2-D problem by the 1-D problem. Also since the concentration profiles and
sorption curves are similar for both the one- and two-dimensional cases,
the comments made in Problem 3 would also be applicable here. More im-
portantly the lack of uniqueness in these two types of results make it diffi-

cult to determine which is the appropriate diffusion model.

However, if the stresses and strains were the focus of attention, the
full 2-D problems would need to be modelled due to the significant differ-

ences between the two cases.
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Figure 3.28 Dilatation profile at r=0.0 at several nondimensional times,

Dot/L2. The equilibrium dilatation for Problem 8 is denoted eo. The numbers
on the curves indicate a nondimensional time, Dot/L2.
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Figure 3.29 Comparison of sorption profiles between the corresponding 1- and
2-D cases.
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3.4.4 Problem9: 2-D Uncoupled Diffusion; Time Shift Modified
Diffusion Coefficient; Elastic Material Response; Modified
Boundary Conditions

In Problem 9 the pressure-induced mass flux was eliminated so that
the effect of a time shifting diffusion coefficient could be studied. To min-
imize the 2-D behavior a R/L ratio of 10 was used and the modified bound-
ary conditions imposed. For this problem two different elastic material
properties have been considered: one, values depicting the glassy response
of polymer, and two, tthe rubbery response. The modelled material is
assumed to represent an uncrosslinked polymer which has a "long" time

shear modulus approaching 0 (G/K — 0) for the rubbery response.

The basic effect of the two different material properties on the
mechanical response is that for the rubbery material properties the pressure
field is zero and the swelling strain is equal to the dilatation (the mechani-
cal dilatation is zero). In contrast the glassy material properties have pres-
sure and dilatation response which is similar to what has been seen in
Problems 6 through 8. Bear in mind that the time shifting is dependent on
the free volume of the material, which in turn is assumed to be related to
the dilatation. Hence in Problem 9 the effect of the dilatation should be-

come apparent.

The effect of the material properties can be seen in the sorption curve
for the two cases, as shown in Fig. 3.31. The glassy sorption curve tends to
curve away from the abscissa indicating that the sorption rate is greater
than what a typical Fickian diffusion response would be. On the other

hand the rubbery sorption curve exhibits the typical Fickian behavior. In
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Fig. 3.32 the sorption curves are plotted with respect to time. The glassy
sorption curve appears to have, after an initial Fickian behavior where the
curve is concave towards the time axis region, a linear (between 0.01 < t <
0.015) region that is characteristic of Case II behavior. The rubbery sorption

curve remains concave toward the time axis.

To examine if the glassy properties lead to Case II behavior, the con-
centration profiles are plotted and are shown in Figs. 3.33 and 3.34. From
Fig. 3.34 the glassy concentration front appears to be moving at a constant
rate, another indicator of a Case II diffusion process. The rubbery concentra-

tion front shows the typical slowing characteristic of Fickian-type diffusion.

From the observations on the sorption and concentration plots sev-
eral comments can be made. For the rubbery material properties, the re-
sults suggest that a Fickian diffusion process is occurring but is the result of
a non-Fickian diffusion model. This again illustrates the nonuniquess that
may occur between the proposed model and the Fickian model. The results
are similar to those found in Problem 4 and this is a consequence of the
dilatation being proportional to the concentration field (see Fig. 3.35). The
difference between the diffusion response for the rubbery and glassy mate-
rial values suggests that the material's ability to "resist" the swelling that
occurs during the diffusion process and development of internal stresses,

may play a role in the evolution of a Case II response.

For completeness the pressure field for the simulation using the
glassy material properties at r = 0 cases is shown in Fig. 3.36. The rubbery

properties have a pressure field of zero for all times.
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Figure 3.31 Sorption plot for Problem 9 comparing the results of the glassy
and rubbery material properties. The glassy sorption profile's convexity
indicates that the diffusion process is occurring faster than what is predicted
by a typical Fickian diffusion process.
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Figure 3.32 Sorption plot versus nondimensional time. Notice the glassy pro-
file becomes linear in the region 0.005< t<0.015, characteristic of Case II

behavior.



CONCENTRATION

CONCENTRATION

o CONCENTRATION PROFILE @r = 0
_—7
A

yaaaain
) AAe AN

0.0 0.2 0.4 0.6 0.8 1.0
z/L

N\

.

Figure 3.33 Concentration profile at r = 0 for the case of glassy material
properties. The concentration front appears to be moving at a constant rate,
an indicator of Case II diffusion. The numbers on the curves represent nondi-

mensional times, Dyt/L2.
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Figure 3.34 Concentration profile at r = 0 for the case of rubbery material
properties. The concentration front appears to be slowing for this case typi-
fying a Fickian-type response. The numbers on the curves represent nondi-
mensional times, Dqt/L2.
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Figure 3.35 Comparison between dilatation and concentration for the rubbery
material properties. The eq is the equilibrium dilatation. The numbers on
the curves represent a nondimensional time, Dot/L2.
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Figure 3.36 Pressure profile at 7 = 0 for a R/L =10. The curves have been nor-
malized by the 1-D equilibrium pressure value, P, (Problem 3). The numbers
on the curves are nondimensional times, Dyt/L2.



-97-

3.4.5 Problem 10: 2-D Coupled Diffusion; Time Shift Modified
Diffusion Coefficient; Elastic Material Properties; Modified
Boundary Condition

Problem 10 is similar to Problem 9 except now the pressure-induced
mass flux is included in the diffusion process. The sorption curves compar-
ing the uncoupled problem (Problem 9) to the coupled problem (Problem
10) is shown in Fig. 3.37. The addition of the préssure gradient-driven mass
flux has accelerated the diffusion process causing the coupled problem to
reach equilibrium earlier. The coupled sorption curve still exhibits the
upturning behavior indicating that the diffusion process is occurring at a

faster rate than a normal Fickian diffusion process.
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Figure 3.37 Sorption plot comparing uncoupled (Problem 9) versus coupled
(Problem 10) diffusion processes. Addition of pressure-driven mass flux ac-
celerates the diffusion process.
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The concentration profile is shown in Fig. 3.38 and it appears that the
concentration front is slowing as time increases. Hence the process does
not exhibit true Case II behavior. The pressure profile, as in the previous
elastic cases, is linearly related to the concentration and is shown in Fig.
3.39. Thus the pressure profile is in fact adding to the Fickian nature of the
process and the Case II behavior in the coupled case may be obscured by the

Fickian-like processes.

For completeness the dilatation profile at r = 0 is shown in Fig. 3.40.

The profile resembles Problem 8 in Fig. 3.28.
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Figure 3.38 Concentration profile at r = 0 for Problem 10. The numbers on the
curves represent nondimensional times, Dyt/L2.
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Figure 3.40 Dilatation profile at r= 0 for Problem 10. The numbers on the
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3.4.6 Problem 11: 2-D Coupled Diffusion; Time Shift Modified
Diffusion Coefficient; Viscoelastic Material Properties; Modified
Boundary Condition

The fully coupled two-dimensional diffusion problem which incor-
porates the effects of a nonlinear viscoelastic response is simulated in
Problem 11. The material properties for the bulk and shear moduli are the

same used in Problem 5 and are again depicted in Fig. 3.41.

NORMALIZED MODULI
1.0

................ - — BULK
0.2 ~ --- SHEAR

3

~

%00 N 00 10° 10"

log (t)

Figure 3.41 Material properties for the bulk and shear behavior used in the
following numerical analysis. The properties are for PVAc normalized such
that the bulk moduli is 1.0 in the glassy region.

For this problem the parameters b (in Eqn. (1.12)) and by (in Eqn.
(2.12)) are chosen to enhance the material relaxation or the time shifted
diffusion coefficient, respectively. Two different sets of values are used: the
first is b = bq = 30 which are the same values used in Problem 5 and the

second is b = 40 and by = 20. The effect of the second set is to accelerate the
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material relaxation process and to inhibit the time shifting behavior of the

diffusion coefficient with respect to the first set of values.

The sorption plots for the two sets are shown in Fig. 3.42 and there
the effect of the different sets of b-values can be seen. For Curve 1 where b =
bg = 30 the response appears to be Fickian for this region of the sorption
curve. For the case where b = 40 and b4 = 20, Curve 2 assumes a non-
Fickian sigmoidal shape. The similarity with the sorption curves of Fig.
3.15 can be explained by material relaxation behavior with the chosen b-
values. For the given length, L = 0.05, the sigmoidal shape of Curve 2 is a
result of the faster material relaxation rate. This corresponds to the
explanation given in Problem 5 where the longer length, L = 0.1, which
allowed the material to relax during the diffusion process, created the

sigmoidal shaped sorption curve.

If sorption curves in Fig. 3.43 are replotted against nondimensional
time, as shown in Fig. 3.43, Curve 2 appears to become linear indicating that

a Case II diffusion process may be occurring.

Recall that a Case II diffusion process in a plate sheet is identified by
three conditions: a linear mass versus time curve, a concentration front
which moves at a constant velocity, and a sharp boundary between the
swollen and unswollen regions of the polymer. The concentration profiles
for Problem 11 are shown in Fig. 3.44 and there one observes that while the
concentration profile does not exhibit a sharp front it does appear to move
at a constant rate. The constant rate for the concentration front explains the
linear behavior of the mass-time sorption plot. Because the concentration

does not exhibit a sharp front, the process is termed pseudo-Case II
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diffusion. It is conjectured that by altering the input parameters the front

can be sharpened to capture true Case II behavior.

In Fig. 3.45 the pressure profile for Curve 2 is depicted for several
nondimensional times. The shape of the profiles explains much of the
observed anomalous diffusion behavior. At early times the regions with
an inverse pressure gradient (due to the viscoelasticity) inhibit the mass
flux causing the concentration profile to appear to "stall" in those regions
(see the concentration profile at early times) and creates the slowing of the
sorption curve. As the pressure field begins to move away from the
boundary its shape appears to remain the same, though shifted vertically
and horizontally, and the effect is a constant velocity concentration front.
These results suggest that a Case II diffusion process initially starts as a
Fickian-like diffusion process until the pressure field can relax and move
away from the boundary. The pressure field then basically acts near the

front of the concentration causing the constant front behavior.

It is expected that if the material were to relax quicker and the effect
of the pressure gradient-driven mass flux was enhanced, the concentration

front would steepen and give rise to true Case II behavior.

The dilatation profile is shown in Fig. 3.46 for completeness. The
curves appear similar to the concentration profile in that they exhibit a

sigmoidal shape.
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Figure 3.42 Sorption plot for the coupled diffusion process with a time shift
modified diffusion coefficient and viscoelastic material properties. The
sigmoidal shape of Curve 2 is a result of the higher material relaxation rate
caused by the choice of the b value.
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Figure 3.43 Sorption plot for Problem 11 with respect to time. After an
initial nonlinear region Curve 2 becomes linear with time indicating a Case
Il diffusion process.
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Figure 3.45 Pressure profile at various time steps for Problem 11. The end
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Figure 3.46 Dilatation profile at various time steps for Problem 11. The
numbers on the curves reflect the nondimensional time, Dyt/L2.

As with the previous 2-D problems, the concentration profiles (and
thus the sorption plots) exhibit similar features to the corresponding 1-D
problem (Problem 5). On the other hand, the pressure profiles have lost the

additive vertical shift comparability and have different forms.
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Chapter 4

Conclusions

A non-Fickian diffusion model that incorporates both the effect of
internal pressure as an additional mass flux contributor and a free-volume
dependent diffusion coefficient has been proposed. The internal pressure is
a result of the swelling that occurs as the diluent diffuses into the polymer
and a nonlinear viscoelastic constitutive law relates the two quantities.
Besides the non-Fickian diffusion equation, the equations of equilibrium
and strain-displacement equations also need to be satisfied thus coupling
the diffusion process with the mechanical response of the polymer. In the
following sections the results of the numerical solutions will be summa-
rized and conclusions put forth about the applicability of the proposed

model.

4.1 Effect of Elastic Material Properties

For the one-dimensional (1-D) problems, the restricted displacement
field and the elastic material properties allow one to solve the mechanical
response problem independent of the diffusion process. Here both the pres-
sure and dilatation are found to be directly proportional to the concentra-
tion. Likewise the time shift factor that modifies the diffusion coefficient
can also be expressed as an explicit function of concentration. These results

allow the proposed non-Fickian diffusion model to be expressed as an
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equivalent Fickian diffusion process which has the effects of the pressure
gradient and time shift factor grouped together to form a concentration-de-

pendent diffusion coefficient.

Similar statements can be made for the two-dimensional (2-D) prob-
lems but only for geometries with a large planar surface where the contri-
butions through the edge effects can be ignored. For such geometries the
two-dimensional solutions are unidimensional and numerical simulations
indicate that the pressure and dilatation are linearly related to the concen-
tration. By assuming an approximate displacement field to hold for such a
region, one can show analytically the form of the linear relation up to an
additive constant. This linearity with concentration again allows the non-
Fickian diffusion model to be expressed as a Fickian diffusion process with

a concentration-dependent diffusion coefficient.

The consequence of being able to express the proposed non-Fickian
diffusion model as a Fickian equivalent is that typical diffusion experi-
ments may not be able to discern which is the appropriate model.
Currently many diluent-polymer systems, where the material properties of
the polymer can be assumed to be elastic, are classified as a Fickian diffusion

process where in fact a non-Fickian process might be occurring.

A related issue is the comparability of the 1-D and 2-D solutions
using either the uncoupled Fickian model or the coupled non-Fickian
model. Analytically and computationally the 1-D problems are more
tractable so being able to model the diffusion process as one-dimensional
would be advantageous. For the Fickian model the 2-D solutions become

nearly equivalent to the 1-D solutions provided the geometry has a large
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R/L ratio and if only the region near r = 0 is considered. These conditions
on the specimen geometry would also hold for the non-Fickian model and

will be the only conditions considered for the rest of the chapter.

Similar statements can be made for the non-Fickian model though it
may not be as clear cut. If only the effect of a pressure-induced mass flux
were included the two solutions (one- and two-dimensional) would yield
the same concentration profiles and hence sorption curves. The reason
being that the pressure profiles for the two cases are different only because
of an additive time-dependent constant. Since the pressure field enters the
non-Fickian diffusion model through a spatial gradient, the two diffusion

models would be equivalent.

The dilatation, on the other hand, affects the free-volume fraction
and is dependent on the boundary conditions applied to the region. Hence
the time shift modified diffusion coefficient for the 1-D and 2-D problems
would be different and thus the diffusion processes would not be compara-
ble. A special exception is when the shear modulus (G/K) — 0 (typical ma-
terial behavior for a rubbery uncrosslinked polymer). For this case the pres-
sure field becomes zero, but more importantly the dilatation becomes equal
to the swelling strain, ac. For this special case the dilatation for both prob-
lems are equal and the 1-D solutions become equivalent to the 2-D solu-

tions.

For elastic properties where the shear modulus is not zero only a
qualitative comparison can be made. The time shift modified diffusion
coefficient would tend to accelerate the diffusion process, hence the general

character of the results would be the same for the two solutions.
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For the mechanical response, the approximate displacement field
used for 2-D problems show that the pressure and dilatation fields are lin-
ear with concentration, but does not tell us a priori the amount of the
time-dependent additive constant. Thus a 1-D analysis would not be able to
define the actual value of the 2-D stresses (pressure) or the strains
(dilatation). Again the exception is the special case where the shear modu-
lus is zero and the pressure field is known to be zero here the dilatation
(and hence the free-volume fraction) is directly proportional to the concen-

tration.

4.2 Effect of Viscoelastic Material Properties

In general with the introduction of viscoelastic material properties
both the pressure and dilatation fields for the 1-D and 2-D problems will not
be simply proportional to the concentration. This implies that the non-
Fickian diffusion model cannot be expressed as a Fickian diffusion process

with a concentration-dependent diffusion coefficient.

For this class of material properties, non-Fickian or anomalous diffu-
sion results occur and these are the results that could demonstrate the va-
lidity of the proposed model. Actual comparison of the proposed model
using "real" material properties have not been performed, but numerical
simulations have produced anomalous diffusion results that are typically

found in experiments.

As with the elastic results, the 1-D solution is not directly comparable

to the related 2-D solution since the time shift factors which are inherently
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involved in the use of the nonlinear viscoelastic constitutive law are differ-
ent. But the two results would again have the same characteristics pro-
vided one takes into account the shift in the time scale in which the diffu-

sion process is occurring.

A significant result is that the model, by varying the relaxation rate
of the viscoelastic material properties, begins to exhibit Case II-type diffu-
sion behavior. The concentration profiles for the calculated numerical
simulations do not exhibit the sharp front associated with the Case II diffu-
sion, but it is conjectured that this may be only a function of the material

parameters used to generate the curves.

4.3 Final Comments

The proposed model does appear to be able to explain much of the
experimental diffusion results ranging from Fickian to non-Fickian (Case
II) behavior. The numerical simulations indicate that the proposed diffu-
sion model may be able to span the range by using the appropriate speci-
men geometry and material properties to model the diluent diffusion
behavior. However, in this study no "real" simulations have been per-

formed using "real” material data.

Future work could involve a more comprehensive material parame-
ter study to see if the concentration profile could indeed be sharpened to
model Case II diffusion. Another interesting area is studying the effect of
the decomposition of the dilatational strains into mechanical and swelling

components and the relationship to the free volume. Finally, more exper-
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imental work needs to be performed such that the material properties of
diluent-polymer systems can be determined. Only when such "real”
parameter values are inserted into the model will a check be made of its

validity.
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Appendix A
Finite Element Modelling of the

Governing Equations

A1l Mechanical Response

The method of weighted residuals is used to convert the equilibrium
equations to its numerical equivalent, which will later be implemented
into the finite element code, FEAP32. The equilibrium equations, Eqn. (1.2),

are given by

V.o(x,t) + b(x,1) = 0 (ALD)

where o(x,7) represents the stress field and b(x,t) the body force at position

x and time .

The weighted residual method begins by dot multiplying Eqn. (A1.1)

by a weighting function, w, and integrating the result over a domain V
jﬂ-‘"{ V.t + b(x.1) }dv =0 (A1.2)

Applying the Divergence theorem to the first term of Eqn. (A1.2) and

dividing the domain into elements yields the following

Y[ fvw o - wepfave - [ owi(ow)ast} =0 @1y
The superscript e denotes the eth element and the evaluation of the
integrals are now performed over the elemental domain, V¢ The

elemental surface integral exists only for those elements whose boundary,
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S§¢, originally coincided with the domain's surface, §. The vector »° is the

outward unit normal from the surface, S¢.

A generic constitutive law

o‘(x,1) = D*(x,DE(x,1) — A(x,0)c*(x,1) (A1.4)

where D*(x,r) is a four-tensor and A°(x,7) a vector relating the strain and
concentration fields to the stress field, respectively, is used to convert Eqn.
(A1.3) from a stress formulation into a strain formulation. Cauchy's
fdrmula was used to replace the stress field within the surface integral in
Eqn. (A1.3) by the appropriate surface tractions, 1°. These operations lead
Eqn. (A1.3) to become

E{J’.{V\yt.lgtge — prc.(é“cG) _ Wﬂ_ée}dve _ L.‘i’"fds' } =0
(A1.5)

All field quantities were converted to equivalent matrix expressions
and are approximated by the corresponding nodal values through a set of

shape functions (see Eqn. (A1.7)).

]
LY
™

v
®

’O-XI Sxx
, & B ED%
e __ O, e e _ €, . A‘ = {4
o = {o}° = -, rs & = {e} =3 6. 3 b = {B (Al.6)
Oy €y 1= {ty
\O-xza 8”4
wxn ~ [Naol{ul ewn - [Fanlv)
(A1.7)

¢ = (V@) e’)

where [*] denotes a M X N matrix, {*} a N X 1 vector, and (*) 1 X N vector.
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By restricting the choice of weighting functions to be the same as the
shape functions, Galerkin's method, the i nodal displacement equation

can be expressed as
S{ @ Tekvyar = [ E}a Ky peyav +
+ j (N*Mp}ave +

+ [V eyas | (A1.8)

Following standard finite element techniques, the nodal
displacement equations for a particular element can be assembled to form

the elemental matrices and vectors

K1 = [.[B] DB Jav* (A19)
UY = [T iaY e Yar A110
{£Y = J,.[vYHplave (A1.11)
{£Y = [ [nYr)as (A112)

{£.}’ = [K]{ specified nodal displacements } (A1.13)

Again using standard finite element techniques, the global matrix

equations can assembled from the elemental matrices and vectors.

(KKt = {£} + {6} + {£} - {£} (Al.14)

It should be noted that this method of weighted residual yields the

same result as the concept of virtual work, if the weighting functions are
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chosen to be the same as the shape functions that relate the nodal values to

the corresponding interior quantities.

Al.1 Constitutive Behavior

For an isotropic solid undergoing small deformations, the
mechanical response can be described through two independent material
functions, for instance the shear modulus G(t) and the bulk modulus K{z).
To include the effects of concentration an additional material function S(z)
is assumed. This is analogous to what is done in thermal viscoelasticity?’,

and brief overview follows.

Due to the time-dependence, the stress-strain relationships are now

represented as a convolution integral of the form

{o(1)} = [D*[{e(n)} - {A*}c(r) (A1.15)
where [D+*] and {A*} are convolution operators, defined as
[A* A*x Ax 0 0 0 A *)
Ax A* Ax*x O 0 0 A*
Ax Ax Ax 0 0 O A*
D e — . € — .
[D] 0 0 0 Ar 0 L {A} { 0 ¢ (A1.16)
0 0 0 0 Ax O 0
(0 0 0 0 0 A L0

in which
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A* = J’;[K(t -1)+4$G(r - *c)]-%dz

Ax = L[K(z— ) -2G(t - r)]—g-'-dfc
Ax = [ 26a-5-ar

Ak = J'_;%ﬁ(tmr);%dr

An element of [D] can be represented as D, *(®) , where the * denotes
the convolution with the argument e. As a consequence of the
convolutions within the constitutive law the displacement vector cannot
be factored from the volume integral, but the shape functions being time
independent can; thus the left-hand side (LHS) of Eqn. (A1.8) becomes, in

component form,

LHS = [ BiDi*(BjU;)dv*
(A1.18)
= [ BiDy*(U;)Brav

A component for {f.}* becomes
fi = [, Baaie(c)Njave (A1.19)

A12 Time Integration Scheme

Assuming the three moduli, G(#), K(z), and B(1), can be represented as

a Prony series of the form.

I

L M
G() ZG,. exp(-—-—t—— : K@ = ZK,. exp(——-——{—-] (A1.20)

i=1 Tei =1 Tkj

N
B(@) = EB;CXP(--—E— (A1.21)

k=1 Tﬁk J
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Physically this models the polymer as a number of Maxwell elements
connected in parallel and the differential equation for a particular element,

say for the j* Prony series term for the bulk modulus, can then be written

as follows
O 1, _ _goe (A1.22)
ot Tx; ! I ot

where P, is the jth pressure contribution due to the strain e(s). An exact
solution to Eqn. (A1.22) for a constant strain rate at time ¢ can be expressed
as

P(r) = }}(O)cxp(m%;) - K jrxj[ l—cxp(—--——t——J }Cff (A1.23)

Kj TKI' dt

and a solution at ¢+ Ar can given by

P(t+Ar) = Pj(t)exp(—-%) ~ Kjij[ l—exp(-——éf-] }éﬁ

X Tk At
(A1.24)

i

Pj(t)exp[-—ét—] - K" Ae
T

Thus the solution at ¢+ At requires only the solution at the previous time
step and the increment in strain during the time step. If the strain rate is
not constant then Eqns. (A1.23) and (A1.24) become approximate relations
that approach the exact solution as At is decreased. Hence the convolutions
involved in the usual viscoelastic constitutive behavior, which requires
that all of the previous solution history be stored, can be replaced by Eqn.
(A1.24) provided the material properties are expressible by a Prony series as

in Eqns. (A1.19) and (A1.20) and that Eqn. (A1.22) is the differential form for

the constitutive behavior.
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This time-stepping algorithm is applied to our viscoelastic
constitutive behavior and the element matrix equations (see Losi??) now

take this form

K1 = [.[B][D]"[B]av" (A1.25)
{£.Y = J'V. [B‘]T{A‘}M(N‘){Ac Yav (A1.26)
{£Y = [ .[n]plave (A1.27)
{7} = [ v Helas (A1.28)
')} = { additional load due to history } (A1.29)
{£.0} = { prescribed nodal values } (A1.30)
where
A A A O O OF (A
A4 A 4 0 0 O A,
eqlan A2 A’Z AI 0 0 0 e A4
D1 =1 5 o A 0 0| {a} =10l (A1.31)
0 0 0 0 A O 0
0 0 0 0 0 4] 0]
in which
G* = i Tai - l—cxp(-—-—i) ‘
A = [%Gm'*'Km] A L Tei :
4 =K +36"] 8 |, [ A
4 = 2G™ ;K™ = ]Z{KJ At_l exp ) (A1.32)
A4

= 3p* N
B> = Zﬁk%[l-—exp(—--—?—t—J}
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The element matrices and vectors can then be assembled to form the

global matrix equation over the domain at ¢+ Ar.
[K@t+An]"{aU/ (t+Ar)} = {£+A0)} + {f,c+A0)} +

+ {fi(r+ A0} + {f‘j(t+At)} +

(A133)
- {f+an}

{U/+An} = {U@)} + {AU’(t+An)} (A1.34)

the j'h superscript indicates that several iterations may be needed to

converge to a solution.
A1.3 Effect of Free Volume or Time Shifting

For nonlinear viscoelasticity the material properties are evaluated at

the internal or reduced time £(r) denoted by

t dt

§0) = ), —= (A1.35)
k ¢(7)

The effect on the convolutions is simply replacing the material’s

time parameter with the internal time. For example, A * in Eqn. (A1.16)

becomes

ax = [ [4G(E0-&(x) + K(ER) - &(n) ]—(%—dr (A1.36)

This replacement of the internal time follows through the rest of the
derivation and a simple substitution of ¢ < £(r), where the material
properties are being evaluated, are all the changes that occur in the above

derivation.
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Recalling that the internal time is dependent on the free volume of
the material and hence on the stress and strain fields the matrix, Eqn.
(A1.33) becomes inherently nonlinear and several iterations may be needed

per time step to converge to a solution.
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A2 Diffusion Equation

The diffusion equation to be modelled is given as

dc(x, 1)
ot

- V-p(c){ Ve(xo) + c(gc,t)A(c)Vp(g_c,t)} =0 (A2D)

where D(c) is the diffusion coefficient tensor which may be concentration
dependent, A(c) is a proportionality coefficient tensor, which may also be
concentration dependent, and relates the pressure, p(x,t), gradient to the

mass flux of the diluent.

The pressure, p(x,f), is calculated from the mechanical response

portion of the program and can be represented by

px.n) = pi(x,1) + p°(x,0) (A2.2)

where p°(x,1) is the component of the pressure that is explicitly dependent
on the concentration, c(x,t). By separating the explicit concentration
dependence from the pressure term the numerical scheme tended to
converge faster and became more stable. The contribution of the diluent to
the pressure can be represented as a summation of N terms corresponding
to the Prony series representing f(t), (see Eqn. (A1.21)). Each term in the
series has a corresponding differential equation whose solution, for the jth

term p;(x,?), and for a constant ¢(x,t) , can be expressed as

pj(x,t) = pj(x,t—Anexp(—At/1y) + B [c(x,t)—c(x,t—Ar] (A2.3)

where

B" = ﬂ,%[ 1 - exp(-at/7,) | (A2.4)
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Upon substitution of Eqns. (A2.2) and (A2.3) into Eqn. (A2.1) and a

regrouping of terms, one derives the equation that will be actually

modelled.
de(x,t) — -, e
=2 - v De)Vesn) + c@rnBOVP@ED] =0 (A29)
where
N
D() = Q(C){l + C(zc,t)f.\(C)Eﬁ,‘-‘“} (A2.6)
Jj=1
Ae) = D(e)A(c) (A2.7)

P(x.1) = ipf(zc,t—At)eXP(—At/rxg) + K*[e(x,1)—e(x,t —AD] +

i=1
N
+ E pj(x,t—Ar) cxp(— At/ Tﬂj) ~ B"c(x,t— A1)
j=1
’ (A2.8)

As with the conversion of the equilibrium equations, the method of
weighted residuals is used and Eqn. (A2.8) is multiplied by a weighting

function, w, and integrating over the domain V yielding

fvw%—i-dV + ijV-( DVc + cAVp )dV =0 (A2.9)

Application of the Divergence theorem to the second term and dividing V

into elements yields
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i{-g-t—fvvy‘c’dve + jv‘Vw‘-E‘Vc‘dV’ +
+ IV‘VWQ~C‘Z°Vﬁ‘dV‘ -

* g (BTVE + RV s }=0 (A2.10)

The coordinate free tensor notation are substituted for their matrix
notation equivalent as [¥] a M X N matrix, {*} a N X 1 vector, and (*) a 1 X

N vector.

The interior values of p*(x,t) and c°(x,t) are approximated by the
element's nodal values {p}¢ and {c}¢ respectively, through a set of shape
functions (N") ( ie. c"(g,t)zf"(gc,t)=<N‘(gc,t) ){c}c). Thus ithnodal

equation, in matrix form, becomes
D s . ON? ON! NS \rmeT mell . V¢ rere
S L ey Fave + [ DL ypeparf e Fave +
ON;? ON? ON! \T e Tl melf =1/ nre\ [ . 1€ rre
o [ ( DB YR YmYipy (v ¢ Fave +
+ JBS.N{q:dS‘ }:0
(A2.11)

Assembling into the elemental matrices and vectors

[C] = ], {v}ve)av (A212)
(K] = [.[B][D°][B]av" (A2.13)
[ = LIBTIRE)p ¥ v av (A219)

{£} = [ {v}aas (A2.15)
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{ A }e = [ K ]‘{ specified nodal concentrations }* (A2.16)

These elemental matrices and vectors can then be assembled to form

the global matrix equation over the domain.

[cfe}+[x+G e} ={£} - {£} (A2.17)

A21 Time Integration Method

The time integration scheme used was showed by Wood and Lewis
31 to yield stable and numerically accurate solutions for first-order linear
systems. The scheme uses the Three-Step-Gear method (3GM) with a

modified Crank-Nicholson (CN) start. The algorithm is shown below.

Three-Step Gear Method for the n-th iteration

[%‘;’ic + K, (1+A1) + Gn(:+A:)]{ Ac™(t + Af) } =
{ fr+Ar } +
WY on - Yoy = Y -
[C ]{ v c(r) At’c(t) At'c(t At)}
[MC + K(t+An) + G(t+ At)]{ (¢ +Ar) }
At (A2.18)
where
" E+ A = c"(E+ Af) + ACT(t+Ab) (A2.19)

At’ = Old time increment (A2.20)
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Y = Weighting parameter; normally equal 0.5 (A2.21)

The modified Crank-Nicholson start approximates the solution at t =
At/2 by halving the solution at t = At as calculated by the CN method. The
3GM uses the "known" solutions at t = 0 and At/2 to obtain a solution at t =
At. The solution at t = 2At uses the 3GM with the "known" solutions at t =

0 and At. The CN algorithm for the nth iteration is given by

The CN algorithm for the n-th iteration

[C/at + y(K+G) [{Ac" ¢ +AD} =
r{resan}+ a-n{ro} +
[C/at — (1-7)(K+G) e } -

[C/ar + y(K+G) [ "t +An} (A2.22)
where
¢+ AL ="t + At) + ACT(t+AD) (A2.23)
At = Old time increment (A2.24)
v = Weighting parameter; normally equal 0.5 (A2.25)

Due to the material nonlinearities, [K] and [G] are functions of
concentration and a Newton-Ralphson iteration technique is used to
update the solution within a time step. Both the Crank-Nicholson and 3-
Step Gear remain essentially the same except that the tangent stiffness
matrix is used on the left-hand side of the equation. For example the 3GM

is now represented as
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[-l-i'-g—c + K2+ AD+ Gt + At)]{ AC™(t + At) } =

A
{ fr(t+Ab) }+

C H“ Y (8 =Yty = —Lc(t - AD)

_ (A226)
At At At

-I—EZZC+K(t+At)+G(t+At)}{ c"(t+ At) }

where (for 2-D problems where [D‘] and [A‘] are diagonal matrices)

] oN; 9D /ON* “ e
[K"]"f ")y dx dc <8x >{c }Nj "

oN; oD, [oN* } . e
: NidV
3y ac <ay>{c /

LM
(A2.27)

[c:]) = [ci], +
jv‘ aév; ag‘c“ <a§i >{ ¢ K N* >{ c }Nj + (A2.28)

Saetm e v He e
3y 8c<ay> D N ¢® ¢N;dvV

3t

A22 Free Volume Effect on the Diffusion Coefficient

The diffusion coefficient is modified by the free volume fraction and

the effect on the constitutive matrices are as shown in Eqn. (A2.29).

[D'©)] = [D©]/¢,(cr  [AN©)] = [A©)]/8.(c) (A2.29)
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The individual elements of [D(c)] and [K(C)] will simply be divided
by the time shift factor. The modifications are shown below, for one

element of the diagonal [D(c)] and [X(c)] matrices

- D (C) - A (C)
11(6) 5(0) 3 11(6) 5(C)

oD; _ 1 3D,() +D‘u<c>[ b 9_1_”_]
ac ¢(c) Odc #(c) | f*(c) oc
_ 19Dy  Dy@f b p % {__1’_0_,,-_ s }}
=50 o + ¢(c){f2(c)(B A)z;ail > [1-exp(-At/ z,,)]

R, _ 1 A , Ay b _a_f_}
oc #(c) oc #(c) | () oc

1 aKll(c) K;](C) b _ K [ —1@; _ _ }}
¢(c) oc " ¢(c) { fz(c)(B A el At [1-exp(-a/7,,)]

i=1

The other components of the [D(c)] and [K(C)] matrices are modified in a

similar fashion.
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A3 Effect of Element Order

Within each diffusion time step the displacements for the mechani-
cal response (MR) problem is solved while holding the concentration field
constant. The resultant displacements are then used to calculate the strain
(dilatation) and stress (pressure) state. The pressure and dilatation are then
used as inputs to the diffusion process (DP). A problem of solution or finite
element compatibility occurs when the pressure field is "fed" back into the
DP or when the concentration is "fed" into the MR problem. The issue
arises because the accuracy of the solutions, either the displacements or the
concentrations, is dictated by the shape functions used to define the finite
element!’. As an illustration, the MR element uses an displacement for-
mulation and the stresses are basically derived from the derivatives of the
resultant displacements. The implications of this are, first, that a linear fi-
nite element (an element which can capture a linear variation in the dis-
placement) can at best only describe a constant stress (pressure) state.
Likewise, a parabolic element can at best only capture a linear variation in
the stress (pressure). Therefore when the pressure values are "fed" into the
DP element, they must reflect the correct variation from which they were

derived.

Since the pressure enters the diffusion equation through its spatial
gradient, if a linear element were used to solve the MR problem, the resul-
tant gradient in pressure should be zero. Hence to have any effect on the
DP problem a parabolic or higher order element must be used in solving for

the MR displacements.
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In a similar vein the concentration enters the MR problem through
the constitutive law (which relates the stresses and strains), thus to have a
consistent representation, the elemental variation in concentration should

be the same as that for the stresses and strains.

These two compatibility issues can be resolved by using two different
ordered elements for each of the two problems, the order of an element is
the type of solution field that the element can capture accurately. Hence a
first order or linear element can capture accurately a linear variation in the
solution. To resolve the compatibility issue, the DP element selected
should be one order less then that of the MR element. For this study, in an
effort to balance solution accuracy against computational effort, a parabolic
8-noded quadralateral element is used for the MR displacement solution
(see Fig. A3.1A). (A parabolic 8-noded quadralateral element can accurately
capture a parabolic variation in the displacement field.) Once this choice
was made the compatibility requirement leads one to choose a linear 4-
noded quadralateral element to solve for DP problem (see Fig. A3.1B). (A
linear 4-noded quadralateral can accurately capture a linear variation in

concentration.)
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A) (B)

Figure A3.1 (A) a parabolic 8-noded element which can capture a parabolic
variation of the nodal parameter. (B) A linear 4-noded element which can
capture a linear variation of the nodal parameter.

The numerical implementation involved in using different ordered
elements is fairly simple. The elements are defined using the same nodal
positions (i.e., the finite element mesh of the region is the same for both
problems). But during the formulation of the stiffness matrix for the DP
element, linear shape functions are used to define the matrix, the nondiag-
onal elements of the row and columns for the midpoint nodes (nodes 5, 6,
7, 8) are set to zero, and the diagonal position is set to unity. This alteration
causes the matrix equation solver not solve for the midpoint nodes of the
element. After the corner nodal concentration values are determined
(nodes 1, 2, 3, 4) the midpoint nodes are then calculated by linear interpola-
tion using the corner nodal values as a reference. In this manner the con-

centration field for the 8-noded element is forced to be linear.

Unlike the displacements, the pressure values (for a parabolic 8-
noded element) are evaluated at the Gauss points of the element where
they are most accurate. But in the formulation of the DP finite element the

nodal pressure values are needed. To accomplish this and to maintain the
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pressure field accuracy, the Gauss point-derived pressure values are then
smoothed to the nodal position using a technique decribed in the next sec-

tion.

A4 Pressure Smoothing Technique

To smooth the pressure values evaluated at the element's Gauss
points to the nodal position; a technique described by Hinton and

Campbell'# is used. An abrigded description of their work is shown here.

For each element a smoothing matrix [S]° is formed and is given by
[s) = [ {Ne}(Ne)ave (A4.1)
where {N"} are the shape functions used to define the element.

The "forcing" vector consists of the Gauss point-determined pressure

values as is represented as
e _ elpe e
{Fy* = [ .{ne}peav (A4.2)
The evaluation of the volume integrals are performed by Gaussian integra-

tion where the pressure values are known.

Following standard finite element techniques to assemble the ele-

ment matrices and forcing vectors, a global smoothing matrix equation is

derived

[S{P} = {F} (A4.3)

where {P} is the vector representing the nodal pressure values.
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The actual evaluation of the nodal pressure values is relatively
cheap since [S] does not change throughout the problem. Hence once [S] is

inverted the pressure values can be solved by

{P} = [STHF} (A4.4)

This smoothing scheme was evaluated in one-dimension by using a
3-node parabolic element to evaluate the MR problem and the pressure
smoothing was performed using a linear element. The results comparing
the derivatives of the exact and "smoothed" pressure fields are shown in
Figs. A4.1 and A4.2. In Fig. A4.1 the exact pressure is linear within the re-
gion and, as expected, the smoothed pressure captures the variation exactly.
The exact pressure field in Fig. A4.2 varies parabolically and the
"smoothed" pressure field can only approximate the solution, but as more

elements are added the solution converges to the exact value.

It is assumed that similar behavior will occur for a two-dimensional
problem so the numerical scheme incorporated in this study uses an 8-
noded parabolic quadralateral element to evaluate the MR problem and the
pressure smoothing will be performed by using a 4-noded linear quadralat-

eral element.
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PRESSURE SMOOTHING

1.041  __ ExacT
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Figure A4.1 MR problem solved using parabolic elements and where the
pressure field is "smoothed" using linear elements. The exact pressure field
is P(x) = x.
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Figure A4.2 MR problem solved using parabolic elements and where the

pressure field is "smoothed" using linear elements. The exact pressure field
is Px) = x2.
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