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Abstract

This dissertation focuses on two topics concerning the connections between structure

and property in ferroelectric thin films. First, the metalorganic chemical vapor depo-

sition (MOCVD) and characterization of highly-oriented PbxBa1−xTiO3 thin films is

addressed, where the texture is needed to generate high strains that rely on electrome-

chanical domain switching in ferroelectrics. The ferroelectric films are integrated with

SrRuO3 oxide electrodes, produced by pulsed laser deposition (PLD), onto single crys-

tal MgO and Si substrates using biaxially-textured MgO as buffer layers. The second

topic focuses on modeling of compositionally-graded BaxSr1−xTiO3 ferroelectric thin

films with the specific goal of understanding how the graded structure can achieve a

high and temperature-stable dielectric response.

PbxBa1−xTiO3 (0.2 ≤ x ≤ 1) thin films were deposited using MOCVD on single

crystal MgO as well as amorphous Si3N4/Si substrates using biaxially textured MgO

buffer templates, grown by ion beam-assisted deposition (IBAD). The ferroelectric

films were stoichiometric and highly-oriented, with only (00l) and (h00) orientations

evident in XRD scans. Films on biaxially-textured templates had smaller grains (60

nm average) than those deposited on single crystal MgO (300 nm average). Electron

backscatter diffraction (EBSD) has been used to study the microtexture on both
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types of substrates, and the results were consistent with x-ray pole figures and TEM

micrographs that indicated the presence of 90◦ domain boundaries, twins, in films

deposited on single crystal MgO substrates. In contrast, films on biaxially-textured

substrates consisted of small single domain grains that were either c or a oriented. The

surface-sensitive EBSD technique was used to measure the tetragonal tilt angle as well

as in-plane and out-of-plane texture. High temperature x-ray diffraction (HTXRD)

of films with 90◦ domain walls indicated large changes, as much as 60%, in the c

and a domain fractions with temperature, while such changes were not observed for

PBT films on biaxially-textured MgO/Si3N4/Si substrates, which lacked 90◦ domain

boundaries.

Conductive oxide SrRuO3 thin films were prepared by PLD, for the purpose of

integration with ferroelectrics onto Si-based substrates for CMOS compatibility. The

focus was again on achieving a high degree of texture so that SrRuO3 films are used

both as electrodes and growth templates for the textured active ferroelectric layers.

The SrRuO3 films were deposited on MgO and Si using biaxially textured MgO buffer

layers. On both substrates, the films were predominantly (00l) oriented and in-plane

textured, as shown by x-ray pole figures. Out-of-plane and in-plane characterizations

show that the SrRuO3 films on Si inherit the biaxial texture of the IBAD MgO buffer

layer, with full-width at half-max values of 4.3◦ and 9.7◦, respectively. This approach

led to the direct synthesis of PbTiO3/SrRuO3/MgO/Si3N4/Si heterostructures, al-

lowing for direct integration of active ferroelectric layers onto Si-based substrates.

The second topic of this thesis explores the dielectric behavior of functionally-
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graded ferroelectric thin films. Homogenous ferroelectric films offer the possibility of

engineering a tunable dielectric response for components in frequency-agile RF and

microwave devices. However, this approach often leads to an undesired temperature

sensitivity. Compositionally-graded ferroelectric films have been explored as a means

of redressing this sensitivity, but experimental observations vary depending on geom-

etry and other details. A continuum model is presented to calculate the capacitive

response of graded ferroelectric films with realistic electrode geometries by accurately

accounting for the polarization distribution and long-range electrostatic interactions.

We show that graded c-axis poled BaxSr1−xTiO3 (BST) parallel plate capacitors are

ineffective, while graded a-axis poled BST co-planar capacitors with interdigitated

electrodes are extremely effective in obtaining high and temperature-stable dielectric

properties.
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Chapter 1

Introduction

There has been an upsurge of interest in ferroelectric materials over the past twenty

years. The largest motives for the considerable scientific research done in this field

have been the development of ferroelectric nonvolatile random access memories (FE-

NVRAM) (Scott, 2000) as well as solid-state sensors/actuators. The interest seems to

have largely paid off in the memory arena now that ferroelectric RAM is a commercial

product1 and future efforts focus on increasing the density and read/write speeds. In

the ferroelectric sensors/actuators arena, commercial development focused on the

direct electro-mechanical coupling in the linear regime. That is the coupling between

polarization and stress in the direct piezoelectric effect as well as that between strain

and electric field in the converse piezoelectric effect. Piezoelectricity was discovered by

brothers Pierre and Jacques Curie in 1880 and has been used extensively since then in

a wide range of devices: microphones, hydrophones, sound generators, accelerometers,

motors, bulk wave filters, and many others. The main attraction has been the relative

ease by which the functional behavior is extracted, for example by applying a varying

1FE-NVRAM was first implemented in the late 90s in Sony PlayStation 2 and smart cards
commercially released in Japan, China, and Brazil
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electric field, allowing for direct integration with smart systems. However, the strain

and displacement generated by these are typically quite small: ∼0.1% in commercially

important piezoelectric ceramics such as those based on the PbZr1−xTixO3 (PZT)

solid solution.

To enhance this response, very special compositions are chosen such that the solid

solution lies on the morphotropic phase boundary. The morphotropic phase boundary

(MPB) delineates the tetragonal and rhombohedral phases, remaining in a near-

equilibrium state over a wide range of temperatures below the Curie temperature, Tc.

Substantially larger piezoelectric coefficients are achieved in this narrow compositional

band of various ferroelectrics. It comes as no surprise, then, that much of the current

research in piezoelectrics focuses on finding other morphotropic phase boundaries.

For example, Park and Shrout (1997) reported that ultrahigh strains ∼1.7% were

achieved near the morphotropic phase boundary of relaxor-type Pb(Mg 1
3
Nb 2

3
)O3-

PbTiO3 (PMN-PT) ferroelectric single crystals.

Such discoveries, based on MPBs, may prove to be technologically relevant for

bulk devices, but one must note that this enhanced response is complicated in nature

and is likely related to an electric field-induced phase transformation from the rhom-

bohedral to tetragonal state. Furthermore, relying on phase transitions at very special

compositions to obtain high strains is not a very forgiving approach, especially as far

as miniaturization goes. For smart systems to become increasingly miniaturized on a

single platform, we must focus on achieveing high-strains in thin film-based devices,

where tight compositional control (as in the MPB case) is not easy to implement
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repeatably.

More recently, a different strategy for obtaining large electrostriction in ferro-

electrics was suggested by Shu and Bhattacharya (2001). The basic idea capitalized

on domain switching giving rise to large strains under certain conditions. For ma-

terials like BaTiO3 and PbTiO3, the crystal structure is cubic, and tetragonal [001]

polarized, above and below the Curie temperature, Tc, respectively. This is illustrated

in Figure 1.1, which features some of the changes associated with the phase transi-

tion in BaTiO3 at 120◦C. The symmetry breaking below the transition temperature

leads to the polarization being aligned with any of the six crystallographically equiva-

lent <100> directions. Ferroelectricity allows for polarization switching between any

of these variants via an applied field or mechanical load. The authors suggested a

particular electromechanical loading path that relies on a bias stress-state to favor

one microstructural variant (domain orientation) combined with an alternating elec-

tric field (favoring different polarized variants). This cyclic electromechanical loading

results in repeatable switching accompanied by tetragonal re-orientation and, conse-

quently, large strains determined by the c/a lattice parameters of the tetragonal unit

cell. That is as high as 1% for BaTiO3 and 6% for PbTiO3. This strategy has been

demonstrated experimentally (Burcsu et al., 2000), using BaTiO3 single crystals of

(100) orientation. The applied uniaxial compressive stress favored [010] in-plane po-

larization, while the alternating electric field favored [001] polarization. A threshold

applied field caused [010] to [001] switching, and cycling back to zero reverts back to

in-plane polarization. Cyclic loading led to repeatable strains up to 1.1%.
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Figure 1.1: The phase transition in BaTiO3. Above Tc = 120◦C , the material is cubic
and the spontaneous polarization, Ps,= 0. Upon cooling, the material is ferroelectric,
and the crystal structure is tetragonal, with Ps 6= 0 along the long axis in any of the 6
possible variants. A tetragonal re-orientation would produce large strains determined
by the c/a lattice parameters of the unit cell. The phase transition is accompanied
by an anomaly in the dielectric constant, reaching values as high as ∼104 . Ps and ε
were computed using the approach outlined in Chapter 5.

One might question how we can extend our recent understanding of ultrahigh

electrostriction to materials in thin film form as we turn more and more towards

miniaturization and integration. The above approach, for instance, demands that the

ferroelectric material be utilized in a highly textured form (as demonstrated in single

crystals) to completely cycle between two different polarized states. Furthermore,

the electrostrictive behavior may be tuned via compositional control, for example

in PbxBa1−xTiO3 (PBT), since the c/a ratio and, consequently, the strain varies

monotonically with composition.
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A large motive for the experimental work presented in this thesis, therefore, is

the need for highly-oriented ferroelectric thin films of various compositions. For this

purpose, a method is detailed in Chapter 2 to produce highly-textured, composition-

controlled, ferroelectric PbxBa1−xTiO3 thin films by metalorganic chemical vapor

deposition on single crystal MgO and Si3N4/Si (using biaxially-textured MgO buffer

layers), as well as detailed microstructural characterization.

Progress in the field of ferroelectric research has also been hindered by the prob-

lem of polarization fatigue. Briefly, poalrization fatigue is the loss of switchable

remnant polarization in a ferroelectric material as the number of bipolar switching

cycles increases (Damjanovic, 1998). The expected polarization hysteresis loop in

ferroelectrics is a consequence of domain-wall switching. At near-zero fields the po-

larization increases linearly with the field, as most linear dielectrics do. However, as

the field continues to increase, regions of unfavorable polarization begin to align with

the field. This is a strongly non-linear regime, and when the majority of domains

are aligned with the field, the polarization again increases linearly. Reverting back

to zero field does not get rid of the polarization, i.e., a remnant polarization, Pr,

remains. The overall polarization can be reverted back to zero by continuing to de-

crease the field to the coercive field value, Ec. Repeating this cycle forms a hysteresis

loop as seen in Figure 1.2. However, bulk and thin film ferroelectrics are susceptible

to fatigue, as is illustrated schematically in Figure 1.2.

There have been numerous theoretical and experimental investigations as to the

origin of polarization fatigue. Many reports focused on the role of oxygen vacancies by
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Figure 1.2: Schematic of typically observed polarization fatigue in ferroelectrics.
A typical virgin hysteresis loop (left with startup branch) displays big polarization
switching where the dipoles align with the electric field in both directions (saturation).
However, with repeated cycling, switchable remnant polarization is lost progressively.

observing oxygen vacancy accumulation at the film/electrode interface (Duiker et al.,

1990; Scott et al., 1991). These interfacial layers would screen the ferroelectric film

and lead to polarization loss. Another mechanism is the possible pinning of domain

walls by the accumulating ionic charges in the form of oxygen vacancy defects. The

resulting immobile domain walls inhibit domain switching and lead to polarization

loss. Other reports focused on domain wall pinning by electron charge trapping (see

for example AlShareef et al., 1997). Electronic charge carriers are injected into the

films from the electrodes and are attracted to the domain wall regions. If the charges

are trapped there, domain walls will be pinned, again reducing the switching and

ultimately fatiguing the films.

A very promising development, however, was the discovery that the use of cuprate

superconductor electrodes greatly delayed the onset of fatigue (Ramesh et al., 1992),
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compared to the traditional elemental metal electrodes. These electrodes are not

thermally and chemically very stable, but soon thereafter a variety of conductive

metallic oxides led to excellent fatigue behavior in ferroelectric thin film capacitors

(for example SrRuO3 electrodes first reported by Eom et al., 1993). Most recently,

the coupling between polarization and space-charge distribution was rigorously in-

vestigated at Caltech (Xiao et al., 2005), and it was suggested that depletion layers

play a critical role in determining charge injection from elemental metallic electrodes

(such as Pt) to the ferroelectric. Electrodes with higher work functions are therefore

preferred to act as a barrier against charge injection and, ultimately, domain wall

pinning. So not only do we need highly-textured ferroelectric thin films as we try

to achieve high electrostriction in miniaturized devices, but we must also do so with

appropriate electrodes (such as SrRuO3) to tackle the potential fatigue problem.

Another motive for the experimental work presented in this thesis, therefore, is

the need to grow highly-oriented oxide thin films that function both as electrodes and

texture templates for the active ferroelectric layer. For this purpose I have assembled

a pulsed laser deposition (PLD) chamber to produce highly-oriented conductive oxide

SrRuO3 thin films on MgO templates. Due to the good lattice match, most results

for epitaxy of SrRuO3 are reported on SrTiO3, LaAlO3, or buffered Si substrates

(e.g., using yttria stabilized zirconia), but results are rarely reported on MgO (Singh

et al., 2002). However, biaxially-textured MgO templates can be deposited directly

on Si and amorphous substrates using ion beam-assisted deposition (IBAD) (Brewer

et al., 2005) and is therefore an attractive candidate for integrating both ferroelectrics
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and SrRuO3 on Si-based substrates. PLD growth of textured SrRuO3 thin films is

examined in this thesis, specifically for this reason.

The improved understanding of the electronic properties of ferroelectric thin films

and the recent advances in miniaturization have renewed the four-decade-old inter-

est in using ferroelectrics in RF and microwave tunable devices (see for example

Didomenico et al., 1962). The desired material properties for microwave applica-

tions are primarily high tunability and low dielectric losses, as very well reviewed by

Tagantsev et al. (2003). Tunability, n, is the ratio of dielectric permittivity at zero

bias to that at some applied electric field, ε(0)
ε(E)

. In other words, the tunability is the

measure of our ability to change the dielectric behavior (capacitance) of a material

by applying an electric field. That is an important parameter, for instance in RF

and microwave tunable filters, since the change in the resonant frequency depends

directly on the change of dielectric permittivity.

Ferroelectrics are highly-tunable materials and can be the basis of a high frequency

phase shifter, as pictured in figure 1.3, after DeFlaviis et al. (1997). The idea is quite

simple: since some of the microwave field passes through the ferroelectric layer, the

phase velocity of the propagating waves can be changed by changing the dielectric

permittivity of the ferroelectric layer using an applied bias voltage. The focus has

primarily been on using BaxSr1−xTiO3 (BST) thin films where the transition temper-

ature and, consequently, the tunability properties can be controlled by changing the

composition, x. Recent experimental efforts have focused on using strain (Potrepka

et al., 2006) or optimizing the processing conditions and compositional design (Cole
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Figure 1.3: BST thin films exhibit excellent tunability characteristics (top left after
Chase et al. (2005)) where the capacitance varies greatly with applied bias voltages,
especially at temperatures near the phase transition. High tunability enables phase
shifter concepts, such as the one pictured here, after DeFlaviis et al. (1997). The
phase velocity of the propagating waves can be changed by changing the dielectric
permittivity of a ferroelectric strip using an applied bias voltage

.

et al., 2003) to achieve high tunability while lowering dielectric losses. The technol-

ogy is already promising, as York et al. (Acikel et al. (2002); Serraiocco et al. (2002,

2003); Xu et al. (2005)) have already reported on BST-based tunable circuits and

phase shifters with superior tunability characteristics and low losses.

An interesting problem yet remains. Ferroelectrics are indeed highly-tunable, but

that is especially true near their phase transition temperatures, where the dielectric

constant is quite high. High tunability and high dielectric constants usually go hand

in hand (Tagantsev et al., 2003). So, one might engineer the composition of a BST

thin film to shift the phase transition to, say, room temperature, but the phase
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transition is where the dielectric constant depends very strongly on temperature!

Thus, while this method achieves high tunability near room temperature as is desired,

the properties are still very temperature-dependent. This means that for conventional

ferroelectrics, the resonant frequency of the filter may drift strongly depending on

ambient conditions (Zhu et al., 2002a). A separate, but equally, important challenge

thus emerges: the need for a low temperature dependence of the dielectric permittivity

over the operating temperature range (Tagantsev et al., 2003).

Compositionally-graded BaxSr1−xTiO3 thin films have been investigated precisely

for this purpose. The idea is that by changing the composition, x, in the growth

direction, the heterogeneous structure would result in a diffuse phase transition and

a high dielectric constant over a wide range of temperatures, corresponding to differ-

ent Curie temperatures for the different ‘layers.’ The diffuse phase transition would

redress the temperature sensitivity, while the high dielectric response would reduce

the necessary size of the microwave components (Vanderah, 2002), since the length

of the electromagnetic waves in the dielectric medium is inversely proportional to the

square root of the dielectric constant.

Recent experimental efforts have investigated the growth of graded films and the

effect of compositional grading as well as different capacitor geometries on the di-

electric response (Slowak et al., 1999; Zhu et al., 2002b; Lu et al., 2003; Zhu et al.,

2005), but the results vary somewhat from one research report to the next, primarily

for different capacitor geometries. For example, Slowak et al. (1999) achieved more

temperature-stable capacitors by using co-planar electrodes on graded BST thin films,
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rather than the traditional parallel electrode-plate configuration. The same difference

is observed by comparing Lu et al. (2003) and Zhu et al. (2002b).

This motivates Chapter 5 of this thesis, where we address the graded thin film

problem using a continuum model that takes into account the spatial variation in

properties and the long-range electrostatic interactions. The built-in electric poten-

tial, polarization gradient, and electrode charges are computed both in the presence

and absence of externally-applied electrical fields, and consequently we deduce the

dielectric behavior at various temperatures for different compositional gradings. We

seek an understanding of the combinatorial behavior of ferroelectric heterostructures

and provide results that are hopefully useful as design tools for the emerging func-

tionally graded devices (FGDs).

This thesis is divided into 6 chapters. Chapter 2 simply introduces some basic

background on ferroelectricity and on the synthesis methods chosen to fabricate the

ferroelectric thin films (metalorganic chemical vapor deposition, MOCVD) and con-

ductive oxide electrodes (pulsed laser deposition, PLD). In addition, we examine some

of the diagnostics implemented during the processing of ferroelectric PbxBa1−xTiO3

thin films, namely coherent gradient sensing (CGS) for curvature/stress measure-

ments. The Devonshire-Ginzburg-Landau phenomenological model of ferroelectrics

is discussed briefly, and we note how it can be extended to compositional inhomo-

geneity and electrostatics to tackle the graded film problem in Chapter 5.

Chapter 3 details the MOCVD process used to synthesize PbxBa1−xTiO3 thin

films and maintain closed-loop control of the film stoichiometry by ultraviolet spec-
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troscopic control of the organometallic precursors. The films are characterized in

detail for epitaxy both on single crystal MgO and biaxially-textured MgO/Si pro-

duced by ion beam-assisted deposition (IBAD). Scanning electron microscopy (SEM)

and transmission electron microscopy (TEM) give us insight into the microstructure.

X-ray diffraction (XRD) is used to examine the crystallinity and lattice parameter

variation with composition, while high-temperature XRD allows us to observe the do-

main switching process with temperature and consequently allows us to compare with

CGS results. Detailed texture is examined by x-ray pole figures and electron back-

scatter diffraction (EBSD), where we correlate the presence of domain wall boundaries

to the grain size using both growth templates. Finally, we summarize our efforts to

integrate the ferroelectric films with Si-based devices for electro-mechanical testing,

such as bridges, cantilevers and membranes.

Chapter 4 features the PLD process used to deposit conductive SrRuO3 elec-

trodes. It includes details on the custom PLD chamber built for this purpose as well

as the experimental conditions needed to produce high-quality electrodes with biaxial

texture. Further characterization includes scanning electron microscopy, x-ray diffrac-

tion, x-ray pole figures, rocking curves, and reflection high energy electron diffraction

(RHEED). This approach led to the direct synthesis of PBT/SrRuO3/IBAD MgO/Si

heterostructures, allowing for direct integration of active ferroelectric layers onto Si-

based substrates.

Chapter 5 addresses the graded film problem, discussed above, using a continuum

Devonshire-Ginzburg-Landau type model that takes into account the heterogeneous
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nature of graded thin films and the long range electrostatic interactions. Specifically,

we will illustrate how the parallel capacitors approach (graded thin film with co-planar

electrodes) results in a diffuse phase transition with low temperature dependence of

the dielectric constant by achieving larger polarization gradients and smaller built-in,

or depolarizing, fields. That is desirable in order for the dielectric behavior of tunable

RF and microwave devices to not drift on hot and cold days.

Chapter 6 concludes this thesis. We reflect on the work presented in the preceding

chapters and note the new directions and worthy future work that naturally develops

as a result of this thesis.
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Chapter 2

Background

2.1 The Phenomenon of Ferroelectricity

Materials belonging to 10 noncentrosymmetric crystallographic point groups1 possess

a unique polar axis, allowing them to exhibit an electric dipole moment in the absence

of an external electric field. The polarization associated with the spontaneous dipole

is known as the spontaneous polarization, Ps. These materials are called polar, or

pyroelectric. Ferroelectrics are polar materials in which the direction of the sponta-

neous polarization can be switched by an external electric field. All ferroelectrics are

necessarily piezoelectric, but the opposite is not true. Piezoelectric materials can be

polarized by application of mechanical stress. Therefore, in the direct piezoelectric

effect, the charge density, Di, induced by applying a stress, Xjk, is given by:

Di = dijkXjk. (2.1)

Here, dijk is the tensor of piezoelectric coefficients. In the converse piezoelectric

1These point groups are: 1, 2, m, 2mm, 4, 4mm, 3, 3m, 6, and 6mm
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effect, a strain, xij, can develop due to an applied electric field, Ek:

xij = dt
ijkEk. (2.2)

This linear piezoelectric coupling has many applications in sensors and actuators

when the mechanical and electrical loading is modest. In ferroelectrics, however, se-

vere loading leads to non-linear responses since uniformly polarized regions (domains)

can be switched, leading to irreversible polarization and strain. A major consequence

of switching is the occurrence of the ferroelectric hysteresis loop, as pictured schemat-

ically in Figure 1.2. In the beginning of the start-up branch in that figure, the po-

larization increases linearly with the electric field, as any linear dielectric would. As

the field gets strong enough, domains switch to align dipoles, entering a non-linear

regime. Reverting back to zero field does not get rid of the polarization, i.e., a rem-

nant polarization, Pr, remains. The overall polarization can be reverted back to zero

by continuing to decrease the field to the coercive field value, Ec. Repeating this cycle

forms a hysteresis loop.

The major properties of ferroelectric thin films stem from their domain microstruc-

ture. For this reason, it is beneficial to review the possible domain states and domain

boundaries in the ferroelectric state. We specifically review these concepts as they

apply to prototypical ferroelectric perovskites such as PbTiO3 and BaTiO3, since

many of the interesting ferroelectrics have a perovskite structure. Perovskite crystals

have the general formula ABO3 and can be viewed as BO6 octahedra surrounded

by A cations. These materials transform from a paraelectric cubic state above the
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Curie temperature, Tc, to a ferroelectric tetragonal structure as illustrated in Figure

2.1. The spontaneous polarization lies along the c-axis of the tetragonal unit cell

and is directly related to the shift of the O and Ti ions relative to the Ba or Pb.

Due to the symmetry of the material, there are now six equivalent directions along

which the polarization may be aligned. If there were no specific boundary conditions

imposed on such a ferroelectric sample, the polarization may arise with equal proba-

bility along any of these 6 equivalent directions. Regions of uniform polarization in

the crystal are called domains, and in the case of PbTiO3 and BaTiO3, domains may

be separated by 90◦ or 180◦ domain walls. The intricate domain patterns observed

in ferroelectric crystals form to minimize the electrostatic energy and elastic energy

associated with the mechanical constraints imposed on the material as it undergoes

the cubic-tetragonal phase transition (Damjanovic, 1998).

The most convenient potential function to describe the energy of ferroelectric

materials is the elastic Gibbs free energy, G, expressed as a function of temperature,

stress, and polarization (Fatuzzo and Merz, 1967). At zero stress, G can be expanded

in powers of the polarization, as is done by Devonshire (1949, 1951, 1954). The

coefficients are generally functions of temperature. It can be shown that if in the

ferroelectric phase the spontaneous polarization lies along a specific direction and the

electric field is strictly applied along this direction, then G can be written as

G =
α

2
p2 +

γ

4
p4 +

δ

6
p6, (2.3)
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Figure 2.1: Paraelectric-ferroelectric phase transition in perovskites. (a) The spon-
taneous polarization observed is associated with the distortion of the BO6 octahedra
relative to the A cations, in the tetragonal phase below Tc. (b) The polarization may
arise with equal probability along any of these 6 equivalent directions, separated by
90◦ or 180◦ domain walls

and the electric field is the result of differentiating G with respect to p

E =
∂G

∂p
= αp+ γp3 + δp5, (2.4)

where α, δ, and γ are coefficients obtained by fitting the properties of the crystal. For

example, α can be related to the dielectric susceptibility, χ, by differentiating equation

(2.4) and setting p = 0 to obtain χ = p
E

= 1
α
. The dielectric behavior in this setting is

governed by the commonly observed Curie-Weiss law, i.e., the dielectric constant falls
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with temperature above the Curie temperature, Tc such that ε = C
T−T0

for T > Tc,

where C is the curie constant, and T0 is near but not necessarily coincident with

Tc. Devonshire’s theory therefore assumes that α can be approximated as a linear

function of temperature near Tc:

α =
4π

C
(T − T0). (2.5)

A simple measurement of the dielectric behavior above Tc, therefore, determines

α. The other two coefficients, γ and δ, require knowing the spontaneous polarization

and dielectric constant dependence on temperature below Tc, as is detailed in Fatuzzo

and Merz (1967). These coefficients are known or calculated for many materials and

are summarized in Table 5.1 of Chapter 5 for BaTiO3, PbTiO3, and SrTiO3. Figure

2.2 illustrates the energy landscape for BaTiO3 using the coefficients from Table

5.1 at different temperatures. At room temperature, only the polar ferroelectric

phase is stable, and the energy minima correspond to the two opposite values of

the experimentally-observed spontaneous polarization in BaTiO3 ∼0.25 C/m2. At

a temperature between the Curie-Weiss temperature and Curie temperature (T0 =

110◦C < T < Tc = 120◦C), a third minimum appears at zero polarization indicating

that the non-polar paraelectric phase is metastable, while the ferroelectric phase is

still stable. At temperatures above Tc, the paraelectric phase is stable, and the

ferroelectric phase can only be induced by applying an electric field. Heating to

higher temperatues results in a purely non-polar phase.

The thermodynamic theory outlined above using a free energy such as equation
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Figure 2.2: An illustration of the energy landscape of BaTiO3 at different tempera-
tures.

(2.3) is commonly referred to as the Devonshire-Ginzburg-Landau (DGL) phenomeno-

logical theory. Many of the macroscopic ferroelectric properties, such as polarization

and dielectric dependence on temperature, field, and pressure, are well interpreted

using this model. This approach, however, does not describe the microscopic mecha-

nisms giving rise to ferroelectricity (Fatuzzo and Merz, 1967), and as outlined above

is only valid for a single crystal material in the monodomain state, although there

are many efforts to average single-crystal properties over all possible orientations to

deduce the polycrystalline behavior (Damjanovic, 1998).

In Chapter 5 we use the DGL formalism to describe the dielectric behavior of com-

positionally graded ferroelectric thin films by making the expansion coefficients spa-

tially dependent and linearly interpolating between the known coefficients of BaTiO3

and SrTiO3 for intermediate compositions.

2.2 Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a film growth technique where a heated sub-

strate is exposed to volatile precursors that react or decompose on the substrate
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Figure 2.3: A schematic to illustrate the many processes involved in a typical CVD
enviornment

surface, resulting in the desired thin film stoichiometry. CVD is a complex pro-

cess that involves many steps (all research topics in their own rights) such as gas

phase reactions, diffusion, surface adsorption, desorption, surface reactions, and crys-

tal growth. Nonetheless, CVD is regarded as one of the most cost-effective means

of high-throughput, high-quality thin film deposition of semiconductor and oxide

layers in device production. In addition to high growth rates, CVD can provide uni-

form coverage of non-planar shapes. This is a great practical advantage over many

other growth methods since it allows incorporation of new materials, into MEMS or

micro-electronic devices for instance, during back-end processing of traditional silicon

wafers, complete with interconnects and complex topology.

Part of this thesis details the deposition of PbxBa1−xTiO3 thin films by metalor-

ganic chemical vapor deposition (MOCVD), a variant of CVD that uses organometal-

lic compounds as source materials. The MOCVD reactor used in this work is a

warm-wall custom-built vertical stagnation flow reactor previously developed at the
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California Institute of Technology with National Science Foundation (NSF) and De-

fense Advanced Research Projects Agency (DARPA) support for the program Virtual

Integrated Processing of YBCO Thin Films. It is designed for uniformity and features

full optical access, both angled and glancing, for various diagnostics. Details on this

facility can be found in (Tripathi, 2001).

As will be detailed in Chapter 3, our facility features an advanced precursor gas

handling system that allows for closed loop control of gas phase stoichiometry during

growth. This approach requires characterizing the ultraviolet absorption spectra of

these precursors. The Ba precursor has been previously characterized in this same

facility (Tripathi, 2001), while the Pb and Ti precursors are newly characterized in

this work, and the results are presented in the next chapter.

Several modifications have been made to the facility, including the gas handling

system and data acquisition (DAQ) system to accommodate the newly characterized

Ti and Pb precursors. A new sapphire sample holder replaces the original silicon

carbide design. This eliminated silicon contamination previously detected in YBCO

thin films and also reduced sample (substrate) temperature offset from the heater itself

to only about 100 ◦C (Hammond, 2003). The inconel can (enclosure) surrounding

the heater has been redesigned and proved to be an improvement over the old design

that was susceptible to mechanical cracking at elevated temperatures. In addition,

the entire facility has been relocated from Steele laboratory (California Institute of

Technology) to newly renovated space at Thomas laboratory (California Institute of

Technology), which provided an opportunity to completely disassemble, clean, and
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rebuild the reactor.

In summary, our MOCVD process proceeds as follows. The solid precursors sub-

limate in the temperature controlled “bubblers” under reduced pressure and then are

passed through optical cells, kept at 250 ◦C, where the UV absorption spectra are

collected and used for feedback control of the gas phase relative stoichiometry of Pb,

Ba, and Ti. The precursors are then mixed with 2 SLM O2 and passed through a

showerhead onto the heated substrate in vertical stagnation-flow fashion. Figure 3.1

is a highly-simplified schematic of the entire process.

2.3 Coherent Gradient Sensing

The film-on-substrate structure inevitably gives rise to mechanical stress as an issue

facing a wide range of thin film applications such as micro-electronics, integrated

optical devices, and micro-mechanical devices. The stress can be due to a variety

of reasons, including lattice mismatch between film and substrate materials and dif-

ferent coefficients of thermal expansion upon cooling from growth temperatures, to

name two of many possible mechanisms. Both these mechanisms for stress accumula-

tion are present in the heterstructures considered in this thesis, namely ferroelectric

PbxBa1−xTiO3 on MgO. The situation in ferroelectrics is even more interesting than

most other materials. This is because PbxBa1−xTiO3 undergoes a cubic-to-tetragonal

phase transition at Tc (490 ◦C and 120 ◦C for PbTiO3 and BaTiO3, respectively) upon

cooling from the deposition temperature to room temperature. Once in the tetragonal

ferroelectric phase, the film is allowed to form domains, regions of uniform polariza-
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tion and crystallographic texture, to minimize the energy of the crystal, including the

mechanical energy.

According to most theoretical treatments of this topic, the resultant domain struc-

ture in ferroelectric thin films acts to relieve the lattice and thermal mismatch between

film and substrate as well as the transformation strain. The approaches taken are

mostly variants of the Devonshire-Ginzburg-Landau (DGL) formalism that predict

the domain structure in terms of energy-minimizing domain volume fractions (Speck

and Pompe, 1994; Koukhar et al., 2001; Alpay and Roytburd, 1998). On the other

hand, there has not been an experimental verification of these findings, primarily due

to the difficulty of measuring stress in situ during thin film deposition and subsequent

cooling. The most popular experimental methods include x-ray diffraction techniques

(for example, Cullity (1978) and Vreeland et al. (1989)) or laser scanning techniques

(Flinn et al., 1987), which are point-wise techniques and therefore maybe difficult to

implement on the wafer scale during film growth. There are other full-field techniques

based on optical interferometry and shadow moiré imaging, but these are typically

vibration sensitive. Moreover, these techniques measure surface topography, requir-

ing double differentiation to obtain curvature, thus introducing significant error into

the desired stress value.

A new interferometric technique, coherent gradient sensing (CGS), was developed

at Caltech to study dynamic fracture and static stresses in solids and thin films

(Rosakis et al., 1998). CGS is a diffraction-based, real-time imaging technique, where

a collimated beam is reflected from a sample surface with a wavefront S(x1, x2) that
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contains information about the sample surface. CGS interferograms measure the slope

of the wavefront by beam-shearing, i.e., splitting and displacing a wavefront with itself

laterally by a small amount, ω. Shearing is achieved by passing the wavefront through

a pair of transmission diffraction gratings, as is illustrated in Figure 2.4. The resulting

first order wavefronts with phases S(x1, x2) and S(x1, x2+ω) are combined to form an

interferogram on the screen. It can be shown (Rosakis et al., 1998) that the condition

for constructive interference of the wavefront with its sheared version is

∂S(x1, x2)

∂xα

=
n(α)p

∆
, n(α) = 0,±1,±2, ..., (2.6)

where n(α) represents the interferogram fringes observed by shearing along the xα

direction, p is the pitch of the gratings, and ∆ is the grating separation. Further-

more Rosakis et al. (1998) show that this result can be related to the sample surface

f(x1, x2), for small surface deflections, by

Figure 2.4: The optical bath of coherent gradient sensing after reflection from the
sample surface, after Rosakis et al. (1998)
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∂f(x1, x2)

∂xα

=
1

2

∂S(x1, x2)

∂xα

=
n(α)p

2∆
. (2.7)

Using the definition of the surface, any curvature tensor component is given by

καβ(x1, x2) ≈ ∂2f(x1,x2)
∂xα∂xβ

, and we can finally relate the curvature to the spatial derivative

of the first order interferogram fringes by the following relation:

καβ(x1, x2) ≈
p

2∆

∂n(α)(x1, x2)

∂xβ

,

nα = {0,±1,±2, . . .},

α, β ∈ {1, 2}. (2.8)

The curvature is therefore directly deduced from the CGS interferograms as the

density of fringes and can be related to stress through Stoney’s equation. A detailed

derivation of the CGS equations can be found elsewhere (Rosakis et al., 1998).

2.4 Pulsed Laser Deposition

From an experimental standpoint, pulsed laser deposition (PLD) is probably the

simplest of all thin film growth techniques. Figure 2.5 illustrates a very basic PLD

set-up. A high power laser is focused inside a vacuum chamber to strike a target of

the desired stoichiometry. Material is vaporized from the target and deposited as a

thin film on a substrate facing the target.

While the basic set-up is simple, the physical phenomenon of laser-target interac-

tion is quite complex. When the laser pulse is absorbed by the target, the energy is
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first converted to electronic excitation and then into thermal, chemical, and mechan-

ical energy resulting in evaporation, ablation, plasma formation and even exfoliation

(Chrisey and Hubler, 2004). The ejected evaporants expand into the surrounding

vacuum in the form of a plume containing many energetic species including atoms,

molecules, electrons, ions, clusters, particulates, and molten globules.

Pulsed laser deposition offers many advantages besides its simple implementa-

tion: fast response, strong film adhesion due to energetic bombardment, and good

stoichiometry control through congruent evaporation. There are some draw-backs,

including the presence of micron-sized particles in the deposited films and narrow

forward angular distribution that restricts the deposition to smaller areas. There are

Figure 2.5: Schematic of a basic set-up for pulsed laser deposition.
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some work-arounds to these disadvantages. For example, background gas can be used

to slow down the particulates, and laser rastering can be done for large area scale-ups.

In any case, these draw-backs do not limit the great usefulness of PLD as a rapid

research and development tool for new materials.

While Figure 2.5 illustrates a functional deposition set-up, practical PLD cham-

bers often have many extra components. Optical components are used to direct and

focus the high-power laser. The deposition may be performed in reactive or inert

gas atmosphere, requiring various controlled-flow ports. In addition, the substrate

heater is an important element, as epitaxial growth temperatures often reach 1200

◦C, and temperature uniformity is necessary to produce thin films of uniform thick-

ness. These and other considerations will be detailed in Chapter 4, which describes

the newly assembled general-purpose PLD system, mainly used in this study for epi-

taxy of SrRuO3 electrodes.
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Chapter 3

Metalorganic Chemical Vapor
Deposition Of PbxBa1−xTiO3

3.1 Introduction

High frequency response and work output per unit volume are two important figures of

merit for micro-actuator materials (Krulevitch et al., 1996). Taking this into account,

ferroelectrics are candidate materials since actuation can be achieved by directly ap-

plying electric fields. As a ferroelectric, the solid solution system PbxBa1−xTiO3

(PBT) is [001] polarized at room temperature (tetragonal) and is cubic above the

Curie temperature, Tc. The polarization direction may lie along any of the six equiv-

alent < 100 > directions, and this direction of polarization can be switched by applied

electric fields or mechanical loads. The switching is accompanied by a reorientation of

the tetragonal unit cell and can lead to a strain corresponding to c/a−1, where c/a is

the ratio of lattice parameters. In principle, this strain is about 1% for BaTiO3 (BT)

and 6.3% for PbTiO3 (PT) (Shirane et al., 1950a). Furthermore, the mobility of 90◦

domain walls is expected to be a function of composition since the Curie temperature

varies monotonically with composition, from 120 ◦C for BT to 490 ◦C for PT. The
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ability to tune the composition of the ferroelectric thin film, and consequently the

strain and response time, may allow flexibility in material design.

To achieve the high strains associated with the c/a ratio, PBT must be utilized

in single crystal or highly textured thin film form in order to be completely cycled

between two different polarized states (Bhattacharya et al., 1999; Bhattacharya and

James, 1999). MOCVD has been shown to be an excellent technique for depositing

PT on various substrates (Chen et al., 1995; Kim and Yom, 1999; Sun et al., 1997,

1996; Yoon et al., 1996; Yu et al., 1995), including on MgO (Gao et al., 1993; Okada

et al., 1989; Dekeijser et al., 1995). BT has also been successfully deposited on MgO

using MOCVD (Nakazawa et al., 1991; Zhang et al., 1994). Despite this, little work

has been done on MOCVD of the PBT system. Results available in the literature for

MOCVD PBT on Pt/Si (Schafer et al., 2000) indicated ferroelectric behavior only

for x > 0.8 and strongly distorted c/a ratios (< 1 for x < 0.8), where the distortions

were attributed to film stress.

In this chapter we report the successful deposition of highly-oriented ferroelectric

PBT (0.2 ≤ x ≤ 1) thin films on both commercially-obtained single crystal MgO (used

as received) substrates as well as amorphous Si3N4/Si using 20 nm IBAD (ion beam-

assisted deposition) MgO followed by 20 nm homoepitaxial MgO as a templating layer.

Details on the IBAD MgO process can be found in (Brewer et al., 2005). MgO is used

as a substrate because the lattice parameter (4.213 Å) is reasonably well-matched to

the lattice parameters of tetragonal BT (c = 4.038 Å, a = 3.994 Å) and PT (c = 4.151

Å, a = 3.905 Å). Furthermore, it has been demonstrated (Brewer et al., 2005; Wang
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Pb precursor temperature 135 ◦C
Ba precursor temperature 236 ◦C
Ti precursor temperature 130 ◦C
Total carrier gas flow rate 3 SLM
O2 flow rate 2 SLM
Reactor Pressure 15 Torr
Substrate Temperature 650 ◦C

Table 3.1: Typical growth conditions for MOCVD of PBT films on MgO.

et al., 1997) that IBAD MgO on amorphous Si3N4 develops narrow biaxial texture

and is therefore suitable as a buffer layer to integrate PBT with Si-based substrates.

A detailed characterization of the microstructure is presented using a variety of

techniques for PBT on both types of substrates, including microstructural changes

(domain switching) with temperature and the associated changes in mechanical stress.

There is evidence that the ferroelectric and fatigue properties of thin films depend

on crystallite orientation (Chateigner et al., 1998; Kim et al., 1994; Mansour and

Vest, 1992). Detailed texture analysis is, consequently, a crucial method in the char-

acterization of ferroelectric-based electronic and MEMS devices. We use electron

backscatter diffraction (EBSD) to confirm the presence of 90◦ domain walls and to

study the crystallographic texture in PBT thin films in addition to x-ray pole figures.

3.2 Experimental

3.2.1 Deposition

The MOCVD reactor used in this study is a custom-built, warm-wall stagnation flow

reactor with a vertical showerhead (Tripathi, 2001) and modified as discussed in Chap-
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ter 2. The barium, lead, and titanium precursors used are Ba(tmhd)2, Pb(tmhd)2,

and Ti(OPri)2(tmhd)2, where OPri is di-isopropoxy and tmhd is 2,2,6,6-tetramethyl-

3,5-heptanedione or [(CH3)3CC(O)CHC(O)C(CH3)3], a popular organic ligand used

with large metal ions to make volatile CVD precursor compounds. All three precur-

sors are commercially available.1 These entirely organic ligands can be fully oxidized

in the CVD chamber during growth, resulting only in carbon dioxide and water va-

por (Dahmen and Gerfin, 1993). The reactor features a precursor delivery system

that allows for closed loop control of gas phase stoichiometry during deposition to

produce PBT films of varying compositions. The precursors are kept in bubblers

inside separate ovens to sublimate at their specific temperatures. Table 3.1 lists typ-

ical experimental settings for the precursors and growth conditions. Figure 3.1 is a

simplified schematic of the process, while Figure 3.2 is an annotated picture of the

facility.

The stoichiometry control is accomplished using an ultraviolet-based control loop,

where the UV signals are used to determine the gas-phase composition during growth.

UV-based precursor control has been demonstrated in the literature for YBCO super-

conducting thin films (Tripathi, 2001; Desisto and Rappoli, 1998). These precursors

typically have distinct absorption features in the ultraviolet spectrum. For example,

the Ba precursor has an absorption feature at 290 nm, as previously characterized in

this facility (Tripathi, 2001) for YBCO deposition. The Pb and Ti precursors were

more recently characterized as part of this study to deposit PBT films, and the results

are presented in Figure 3.3.

1Inorgtech, Ltd. Suffolk, United Kingdom, recently acquired by the Epichem Group
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Figure 3.1: Schematic for MOCVD deposition process of PbxBa1−xTiO3 thin films
featuring an ultraviolet-based control system for gas phase stoichiometry

The control wavelengths chosen correspond to the absorption features in the spec-

tra and are 290 nm, 300 nm, and 330 nm for the Ba, Pb, and Ti precursors, respec-

tively. The solid precursors sublimate in the temperature controlled bubblers under

the reduced pressure and are then passed through separate optical cells kept at 250

◦C. At each cell, the UV signal strength indicates the concentration of the specific

precursor. Active control in the feedback loop is accomplished by changing the car-

rier gas flow rate (3 SLM argon total) through the individual bubblers. The total

precursor flow rate is typically kept at 75 µmoles/minute. The precursors are then

combined and subsequently mixed with 2 SLM O2 and passed through a showerhead

onto the heated substrate in the vertical stagnation-flow reactor. A typical growth

rate resulting from this procedure is 3-4 nm/min of PBT.



33

Ti Oven Pb Oven

Ba Oven
UV Optical 

Cells Oven

DAQ & 

Equipment 

Rack

Showerhead

Oven

CVD Chamber

Vacuum

Pump

UV

Source

Figure 3.2: Photograph of the CVD facility in 108B Thomas aboratory (California
Institute of Technology).

3.2.2 Diagnostics and Characterization

Our CVD reactor is equipped with an in situ coherent gradient sensing (CGS) inter-

ferometer as shown in Figure 3.4 (Boyd et al., 2005). The incident laser beam, which

is filtered and collimated, is directed by a mirror to the sample. Upon reflection from

the sample, the beam is directed through a pair of transmission gratings, and the first

diffraction order is passed to the frame grabber.

The CGS technique is discussed in Chapter 2. In our CGS interferometer, an

18 mWatt HeNe laser (632 nm) was collimated to a 50 mm diameter beam, and the

angle of incidence, relative to the sample normal, was 60◦. The pitch of the diffraction

gratings was 3.37 lines/mm, and the grating spacing was 81.25 mm. The gratings
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Figure 3.3: Ultraviolet spectra of Pb and Ti precursors. The absorption features at
300 nm and 330 nm chosen for control purposes of Pb and Ti precursors, respectively

were housed in a closed box to reduce the effects of air currents. The interferometer

was referenced to an optically flat mirror, and in these experiments fringes were added

to the reference by slightly de-focusing the incident beam. Only a single direction of

shearing was measured. Curvature can be measured directly from the first order CGS

interferograms as the fringe density using Equation (2.8). We use CGS to measure

the curvature during processing of a PbTiO3 film prepared by CVD. For films that

are thin compared to the substrate thickness, the film stress, σf , can be related to

the measured curvature, κ, directly using Stoney’s equation (Stoney, 1909):

σf =
1

6

Es

(1− υs)

h2
s

hf

κ . (3.1)

The variables hf and hs are the film and substrate thicknesses, respectively. ES is
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Figure 3.4: A schematic of the CGS optical arrangement around the MOCVD reactor.
The density of interference fringes can be analyzed to deduce curvature from CGS
interferograms.

the Young’s modulus of the substrate, and υs is the Poisson’s ratio of the substrate.

Phase modulation was implemented in these experiments to increase the sensitiv-

ity of CGS as well as determine the sign of the curvature (Boyd et al., 2006). This

technique involves moving one of the gratings in the direction of shearing by small

steps and measuring the corresponding fringe displacements. The fringes are stepped

in four increments of 90◦, and the magnitude and the direction of the fringe displace-

ments of interferograms are measured and converted to a phase map. Using a method

known as phase-unwrapping, the phase map is transformed to a map of the optical

path difference (OPD), which for this type of interferometer represents the wavefront

slope (Malacara et al., 1998). Zernike polynomials, which are commonly used to de-
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scribe wavefront abberations, are fit to the OPD. For this sample, which had uniform

curvature, the first order Zernike polynomial sufficed to determine the average fringe

density. For our experiment, the sets of four interferograms were captured and stored

continuously during growth and with a 15 second delay between sets during cooling

and thermal cycling. The collection time for each set was approximately 15 seconds,

and the phase-unwrapping, which is computationally intensive, took place after the

CVD processing.

In addition to in situ stress monitoring through CGS, the PBT thin films were

examined using a wide assortment of analytical tools. The microstructure, surface

morphology, and chemical composition of the PBT thin films were studied using a

scanning electron microscope (LEO 1550 VP Field Emission SEM) equipped with an

energy dispersive spectrometer (EDS). Quantitative analyses of stoichiometry were

performed using an electron microprobe analyzer (Jeol JXA-733 EMPA) with sam-

pling volumes of a few cubic microns, corresponding to a weight of a few picograms.

The crystallinity and phase purity were examined using θ−2θ XRD scans (Philips

X’Pert PRO MPD diffractometer) indicating the orientation of the deposited thin

films, while scans conducted at higher temperatures were used to investigate domain

switching and produced quantitative information regarding the abundance of specific

domains in the films. Scans were typically collected from 2θ = 10◦ to 2θ = 80◦.

Detailed domain characterization was accomplished by pole figure techniques

(Philips X’Pert equipped with a texture cradle), and the results were compared to

electron backscatter diffraction (EBSD) data. In recent years, EBSD has emerged
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as a powerful characterization tool for probing the microtexture of materials. The

combination of high surface sensitivity, high spatial resolution (∼ 50 nm in a field

emission SEM), and large spatial extent (using computer controlled stages) cannot

be matched using traditional texture techniques (Schwartz et al., 2000).

In this study we applied EBSD to study the texture of the ferroelectric thin films.

Only samples with high Pb content (x ≥ 0.8) were analyzed using this technique,

since the increased tetragonal distortion makes it easier to distinguish between c and

a domains during the automated indexing. The domain fractions and tetragonal tilt

angles measured by EBSD, specifically on Pb-rich films with c/a ≥ 1.05, produced

results consistent with x-ray pole figure analysis. The tilt angle between c and a

domains, δ, accompanying the tetragonal distortion is especially useful for detecting

domain boundaries. For c/a ≥ 1.05, δ ≥ 2.8◦, while the minimum measurable disper-

sion in orientation, using EBSD, is 1◦ (Schwartz et al., 2000). Square regions of a

few microns on each side were typically analyzed using grid points 50 nm apart for a

total of a few thousand patterns from each sample.

3.3 Results and Discussion

3.3.1 Orientation

Only (h00) and (00l) PBT peaks were observed in θ − 2θ XRD spectra, indicating

that the c and a axes of the tetragonal phase are either in or out of the plane of

the substrate exclusively. Figure 3.5 compares the θ − 2θ spectra of two PBT films



38

Figure 3.5: XRD comparison of PBT on single crystal and biaxially textured MgO
buffer layers on Si.

(x = 0.8, 0.5 µm thick). The film grown on single crystal MgO is predominantly

c-axis (out-of-plane) oriented, while PBT on the biaxially textured MgO/Si3N4/Si

substrate is mostly a-axis oriented. The difference is attributed to the low thermal

expansion coefficient of the Si substrate compared to MgO single crystal substrates

(αSi = 2.6 × 10−6/K (Hull, 1999), αMgO = 14.8 × 10−6/K (Touloukian et al., 1977),

while αPT = 12.6×10−6/K and αBT = 9.8×10−6/K (Jaffe et al., 1971)). At the high

growth temperature, PBT is cubic. As the film cools below the Curie temperature,

PBT transforms to the ferroelectric tetragonal phase and experiences compressive

stress on single crystal MgO (promoting c-axis orientation), while PBT on biaxially

textured MgO/Si3N4/Si experiences tensile stress (promoting a-axis formation).
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Figure 3.6: Variation of PBT thin film lattice parameters with composition.

The PBT films of various compositions were deposited on MgO, and the variation

of lattice parameters, determined from normal θ − 2θ scans, with Pb content (x) is

consistent with the published results (Burns, 1974) on bulk powder as shown in Fig-

ure 3.6. The Pb content was measured using electron microprobe analysis (EMPA).

For thin films, the tetragonality ratio, c/a, was found to be slightly less than what is

expected for the stress-free PBT powder.

3.3.2 Imaging

Cross-sectional SEM (Figure 3.7) revealed crack-free cross-sections with uniform thick-

nesses as well as clean interfaces. Surface images (Figure 3.8) showed features, 200-400
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Figure 3.7: Cross sectional SEM image of PBT film on single crystal MgO.

nm in size, for PBT films on single crystal MgO, while films deposited on biaxially

textured MgO templates had smaller grain sizes of 40-90 nm. No impurities were

detected using EDS. The small PBT grain size on the biaxially textured templates is

most likely due to the reduced size of the MgO grains, which is characteristic of the

IBAD process.

3.3.3 Domain Characterization

The tetragonal distortion in PBT (c/a 6= 1) causes a tilt angle, δ, between the (100)

plane of the a domains and the (001) plane of the c domains, as illustrated in Fig-

ure 3.9. As a result, it is not possible to get a complete picture of domain orientation

in PBT using normal x-ray θ− 2θ scans alone. X-ray pole figures are necessary for a

comprehensive understanding of the domain orientation (De Veirman et al., 1994).

For the PBT thin films examined in this study, the c domains were observed to be
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Figure 3.8: Surface secondary electron images from PBT films (x = 0.95) on (a)
single crystal MgO and (b) biaxially textured MgO templates/Si3N4/Si.

oriented normal to the sample’s surface, while the a domains were tilted by the angle

δ in four equivalent directions away from the substrate normal, giving rise to four

variants. A sample (100) pole figure (Figure 3.10) for PT on single crystal MgO, is

four-fold split, indicating the presence of these four variants. The four-fold splitting,

observed here for various compositions of PBT on single crystal MgO, is the direct

signature of 90◦ domain walls in the films.

In principle, the tilt of the a domains would lead to θ− 2θ normal scans underes-
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Figure 3.9: Misorientation angle of c and a domains separated by (101) twin plane
(exaggerated). The misorientation can lie in any of 4 directions (1 shown) due to the
unit cell symmetry.

timating the abundance of a domains when calculating the domain fractions from the

integrated intensities of diffraction peaks (Hsu and Raj, 1995). In this study, domain

volume fractions for a variety of PBT compositions and film thicknesses were calcu-

lated using θ − 2θ scans (using integrated intensities from the first order diffraction

peaks) and pole figures (using full volume integration of (001) and (100) poles) at

room temperature. The normal scans were found to underestimate the a domain vol-

ume fraction, but only slightly. For instance, direct comparison of domain fractions

from pole figure volume integration and θ − 2θ scans, at room temperature, differed

only by 3% for a 400 nm, x = 0.8 PBT film and only 5% for a 250 nm PT film

(composition x = 1, where the tilt angle is maximum). As the temperature increases,

the tetragonality ratio, c/a (confirmed experimentally using the θ−2θ scans), as well
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Figure 3.10: Simplified (100) pole figures of PT thin films. Four-fold splitting is
observed for PT on single crystal MgO (a), indicating the presence of 90◦ domain
walls. No twin boundaires observed for PT on IBAD MgO/Si3N4/Si (b).

as the tilt angle, δ, decrease. This further improved the domain fraction results from

the θ − 2θ scans. For this reason, θ − 2θ scans will be used below to estimate the

extent of domain switching at higher temperatures.

Pole figures, both (001) and (100), were also collected for films deposited on

biaxially textured IBAD MgO substrates. These data exhibited no such pole splitting,

suggesting the absence of twin boundaries (Figure 3.10). The presence of 90◦ domain

walls only for films grown on single crystal MgO is consistent with results obtained

using cross-sectional transmission electron microscopy (XTEM) on similarly prepared

films (Brewer, 2004). In XTEM images (Figure 3.11) of a PBT film on single crystal

MgO, a regularly spaced domain structure is observed, where a domains appear

as wedges oriented at about 45◦ the normal in the predominantly c-axis film. No

such structure was observed for a PBT film on the biaxially textured MgO/Si3N4/Si

template grown in the same batch, under the same processing conditions (Brewer
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Figure 3.11: XTEM image of the domain structure observed for MODCV PBT film
on single crystal MgO consistent with pole figures (from Brewer (2004)).

et al., 2005).

Plan view TEM indicated that the grain size for PBT on biaxially textured MgO

(60 nm average) was indeed smaller than that for PBT on single crystal MgO. We

propose that this reduced grain size is the primary reason for absence of the 90◦

domain walls. It has been observed that a domain-structure transition, from multi-

domain to single-domain grains, occurs for small grain sizes (∼150 nm) (Ren et al.,

1996), resulting in whole c or a oriented grains. This is consistent with the absence of

domain boundaries (from pole figures and XTEM) for the films on biaxially textured

substrates, where the grain size is well below this limit.

3.3.4 Microtexture

Inverse pole figures (IPFs) were calculated from EBSD data, as a convenient texture

representation for the thin film geometry, where single axis textures can be displayed

(normal to or in-plane of substrate for instance). IPFs were consistent with XRD
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Figure 3.12: Inverse Pole Figures for 500 nm PBT thin films (x = 0.9) on (a) single
crystal MgO and (b) biaxially textured IBAD MgO. The Y0 and Z0 axis are aligned
with the MgO < 001 >, as illustrated above. c and a domains are illustrated and
labeled on the appropriate IPF.

results, indicating that the vast majority of sample patterns are either (001) or (100)

oriented for PBT on both types of substrates (Figure 3.12 for 500 nm PBT films,

x = 0.9). Furthermore, the in-plane (Y0-IPF along MgO 001 in the plane of substrate)

and out-of-plane (Z0-IPF along surface normal) textures had a smaller mosaic spread

for samples on single crystal MgO compared to biaxially textured MgO templates, as

is expected.

The c vs. a domain fractions can also be estimated using EBSD from the normal

axis IPF by simply counting the number of data points that cluster around the 001 and

010 poles. It must be noted, however, that the penetration depth of EBSD is only

30-60 nm, compared to a few microns using XRD. The domain fractions obtained

from EBSD, therefore, will represent the near-surface domain structure except for

very thin films. Domain fractions obtained using EBSD were within 5-10% of XRD

data for PBT films less than 100 nm in thickness. For thicker films (∼ 500 nm) we
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Figure 3.13: EBSD confirms the tilt of a domains away from surface normal by the
angle δ (a), while c domains exhibit a standard distribution (b). Results for 500
nm PBT film (x = 0.9) on single crystal MgO. The tilt is consistent with x-ray pole
figures and is the direct signature of ferroelectric 90◦ domain boundaries.

observed differences as large as 30%, where the EBSD data typically overestimated

the abundance of the minority domain orientation.

The EBSD data were also consistent with the observation of the tetragonal tilt

angle, where a domains (for PBT on single crystal MgO) were tilted from the surface

normal by δ (see Figure 3.9). The orientation data, gathered from the a-oriented

sample points, showed the majority of a domains were tilted 2◦ to 3◦ away from the

surface normal (Figure 3.13), compared to a standard distribution for the c domains.

This spike agrees well with the expected tilt angle value for this film, where c/a =

1.051, and δ = 2 arctan(c/a)− 90◦ = 2.85◦. No such spikes were found for PBT films

on biaxially textured MgO, further confirming the absence of 90◦ domain boundaries

in these films due to the reduced grain size.
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Figure 3.14: Variation of lattice parameters for 500 nm PBT film (x = 0.9) on single
crystal MgO

3.3.5 Phase Transition

High temperature θ − 2θ XRD scans of various PBT thin films indicated that the c

lattice parameter decreases with temperature while the a lattice parameter increases,

as first observed by Shirane et al. (1950b) on bulk PT. This trend is evident between

room temperature and the Curie temperature, Tc. At Tc the films transition to

the cubic phase, the lattice parameter of which increases linearly with temperature.

Figure 3.14 presents these results for a 500 nm PBT film (x = 0.9) along with the

lattice parameters of the underlying single crystal MgO substrate.

The transition is rather abrupt, so these scans can be used fairly accurately to

determine Tc for various compositions, especially for compositions with higher Pb

concentration (x ≥ 0.5). At lower Pb concentrations and near the phase transition,
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Figure 3.15: Curie temperature of three different PBT thin film compositions vary
near-linearly between the transition temperatures of BaTiO3 (x = 0) and PbTiO3

(x = 1)

it becomes somewhat difficult to reliably distinguish between the near overlapping

peaks. Figure 3.15 presents Tc for three PBT thin films of different compositions.

The known bulk Tc of both BaTiO3 and PbTiO3 are included on the plot to indicate

that Tc varies near-linearly between the end compositions.

3.3.6 Domain Switching

There is experimental and theoretical evidence (Speck and Pompe, 1994; Speck et al.,

1994; Kwak et al., 1994; Speck et al., 1995; Foster et al., 1996; Pertsev and Zembil-

gotov, 1995, 1996; Alpay and Roytburd, 1998) that the domain structure forms as

a strain-accommodating mechanism when the system cools through the Curie tem-
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Figure 3.16: Successive HTXRD scans of a 240 nm PT thin film on single crystal
MgO with increasing temperature (bottom to top). A domain transition occurs from
predominantly c-axis oriented film to mostly a-axis oriented film at higher tempera-
tures.

perature following growth. The net effect is to minimize the total energy of the

heterostructure, using the degree of freedom that the tetragonal phase offers in the

form of domain switching. In terms of the coherent temperature-dependent stability

map (Speck and Pompe, 1994), the films fabricated in this study occupy the mixed

a/c portion of the map. This is predicted and experimentally observed for PT on

MgO using an effective substrate lattice parameter, b∗, to take into account the misfit

dislocations at the film/substrate interface formed during growth (Speck et al., 1994;

Foster et al., 1996).

High temperature x-ray diffraction (HTXRD) scans for PBT on single crystal

MgO did indeed show a substantial change in c and a domain volume fractions as a
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Figure 3.17: Change of c domain fraction with temperature for a 240 nm PT thin
film and a 450 nm PBT (x = 0.7) film on single crystal MgO.

function of temperature until the phase transition point, as evidenced by the change

of intensity of (001) and (100) diffraction peaks. Figure 3.16 features a series of θ−2θ

scans of the first order diffraction peaks from a 240 nm PT thin film on single crystal

MgO. The spectra are consistent with work predicting and experimentally verifying

the change of domain fractions for PT on MgO (Pertsev and Zembilgotov, 1995,

1996), and we here expand the range of compositions for which domain switching

with temperature is verified.

A variety of compositions (x ∼ 0.5-1) have been tested, and all displayed domain

changes similar to the PT/MgO system featured in Figure 3.16. The volume fractions

were extracted from the θ − 2θ scans by fitting Pseudo-Voigt profile functions (the

weighted mean between a Lorentzian and a Gaussian function) to the first order

diffraction peaks (001 and 100) to extract better data and deconvolve overlapping
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peaks. A standard non-linear least squares refinement procedure was used to arrive

at the final fit for each temperature (Levenberg-Marquardt method). Results are

shown in Figure 3.17 for PT as well as a PBT film (x = 0.7) on single crystal MgO.

Results are not included for temperatures nearing the respective Curie temperatures,

as it was difficult to reliably deconvolve the (001) and (100) peaks near the transition

points.

The results presented here agree with theoretical work (Alpay and Roytburd,

1998) suggesting that for a fully relaxed PT film deposited by MOCVD under similar

conditions, the c domain fraction is ∼ 0.81 at room temperature (0.8 in Figure 3.17).

Furthermore, the reduction in c domain fraction is consistent with the calculations

by the same authors.

No such coherent domain switching was observed for the PT thin films deposited

on IBAD MgO/Si3N4/Si. These results, coupled with the absence of 90◦ domain walls

(discussed above) for this type of substrate (due to reduced grain size), suggest that

90◦ domain boundaries may be critical for the process of domain switching as a strain

relief mechanism. Instead, the whole c or a oriented grains appear to be pinned to

the substrate in this specific heterostructure.

3.3.7 Stress in PbxBa1−xTiO3 Thin Films by Coherent Gra-

dient Sensing

The domain switching observed in the preceding section has consistently been de-

scribed in the literature as a strain relaxation mechanism (Speck and Pompe, 1994;
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Speck et al., 1994; Kwak et al., 1994; Speck et al., 1995; Foster et al., 1996; Pertsev

and Zembilgotov, 1995, 1996; Alpay and Roytburd, 1998) capable of fully relaxing

the elastic stress accumulated due to thermal mismatch between film and substrate.

Experimental observations, on the other hand, indicate residual strains for PbTiO3

films on MgO (Foster et al., 1995), despite domain switching. Our direct measure-

ment of curvature (and consequently mechanical stress) by CGS (Boyd et al., 2005,

2006) is therefore a valuable tool to study the stress relaxation behavior and correlate

it to the domain switching mechanism observed by HTXRD.

Results are presented here for three different PbxBa1−xTiO3 films of x = 1.0, 0.5,

and 0.2 on single crystal MgO. Curvature measurements are taken between room

temperature and the growth temperature Tg, 650 ◦C as outlined in the experimental

section above, and the film thicknesses are estimated from CS-SEM as 220 nm, 640

nm, and 430 nm for the three films, respectively.

We begin by examining the raw successive curvature measurements during growth

and subsequent cooling of the x = 1 film, presented in Figure 3.18. The values in

these plots were not averaged. The increased noise at higher temperatures and to some

extent during cooling is attributed to convection currents from the reactor body. We

observed a trade-off between the grating separation, which determines the sensitivity

and thermal noise. The average RMS value using a 10 point adjacent averaging of

the measured average curvature during growth is 0.00025 m−1, and this decreases to

better than 0.00002m−1 at room temperature. The heating and cooling rates were

kept low in an effort to maintain equilibrium between the sample and the heater.



53

Figure 3.18: Successive, in situ curvature measurements during deposition and cool-
ing of 220 nm PbTiO3 thin film on (001) MgO (Boyd et al., 2005). The growth
temperature is 650 ◦C.

Heating the film from room temperature to 650 C took three hours. However, the

cooling to room temperature takes place in about five hours due to the large thermal

mass of the reactor walls.

Examining Figure 3.18, a compressive stress evolves during growth (negative cur-

vature). This stress can be calculated using Equation (3.1) and is found to be be

-110 MPa. The compressive stress continued to accumulate during cooling to room

temperature.

The raw curvature data (such as Figure 3.18) have been collected for the three films

of different compositions. The sample temperatures during successive CGS measure-

ments are estimated from fourier transform infrared (FTIR) reflectance measurements

calibrated against thermocouple measurements inside the heater block (Hammond,
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Figure 3.19: In situ measurements of wafer curvature taken with increasing temper-
ature from room temperature to Tg for PBT films of compositions x = 1.0, 0.5, and
0.2 (bottom to top) on single crystal MgO (Boyd et al., 2006). The data are offset
for clarity.

2003). The result is Figure 3.19, allowing us to examine the stress behavior with

temperature to look for evidence of stress relaxation.

Figure 3.19 indicates that as the films cool from Tg, the curvature increases in

magnitude (more negative) at nearly constant rates. Near Tc(x), this rate decreases as

the films approach room temperature. Shown along with the plots of wafer curvature

are linear fits to both regions for each composition. The temperature obtained from

the intersection of each pair of lines was found to be 468, 350, and 154 ◦C. For

comparison, the Tc(x) observed from HTXRD (Figure 3.15) are 490 and 310 ◦C for

the x = 1 and 0.5 films, respectively. There are inherent difficulties in measuring the

sample temperature in a warm-wall reactor design, so it is possible that the offset
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in this comparison is due to thermal lag and/or measurement error in the growth

reactor.

Significant domain switching has been observed for all PbxBa1−xTiO3 films grown

here (Figure 3.17), and the curvature results (Figure 3.19) indicate that the rate of

stress accumulation does decrease below Tc(x), as is expected, but the relaxation

is not complete. Theories predicting complete relaxation invariably assume a single

crystal film on single crystal substrate, i.e., a perfect heteroepitaxial system. The

PbxBa1−xTiO3 films on MgO grown here do not qualify as perfect heteroepitaxial

systems, despite the high degree of texture. It is possible that the ability to relieve

interfacial and growth stresses in these films is limited by the presence of grains.

3.3.8 Functional Characterization

The ferroelectric thin films detailed above have been functionally characterized to

investigate their active behavior by various groups at Caltech as part of the Army

Research Office-administered project Engineering Microstructural Complexity in Fer-

roelectric Devices.

The hysteresis loops and polarization state of the samples have been investigated

using dynamic contact mode electrostatic force microscopy (DC-EFM) and piezo-

response force microscopy (PFM) by the Atwater group (Applied Physics at the

California Institute of Technology). Figure 3.20 presents hysteresis loops using DC-

EFM (after Brewer et al., 2005) that compare an MOCVD-deposited PbxBa1−xTiO3

thin film on biaxially textured IBAD MgO/Si3N4/Si to films deposited via sol-gel
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Figure 3.20: Hysteresis loops generated via DC-EFM comparing MOCVD-deposited
ferroelectric thin films to those deposited by other techniques. From Brewer et al.
(2005).

processing and molecular beam epitaxy. The loops are generated using a conductive

AFM tip by applying an AC field over a sample surface biased with respect to the tip.

The tip’s deflection is sensitive to the local charge density from the local polarization.

These loops confirm the functional nature of the films described in this chapter,

and the ferroelectric response has been observed on all probed locations on the films’

surfaces. The in-plane and out-of-plane polarization states were examined using PFM

for MOCVD-deposited polycrystalline PbTiO3 samples on Au/SiO2/Si, and the local

piezoelectric coefficient, d33 around the sampling tip, was found to be 43.19 pm/V

(Ruglovsky et al., 2006).

Mechanical and electromechanical behavior was studied using a custom-built concentrated-

loading tool on test structures (cantilevers, bridges, and free-standing membranes)
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(a)

(b) (c)

Figure 3.21: Various testing structures for electromechanical characterization includ-
ing (a) a wafer array of released PbTiO3/MgO/Si3N4 membranes (polarized micro-
scope image of single membrane in inset), surface micro-machined (b) cantilevers, and
(c) bridges. Cantilevers and bridges micro-machined by Ruglovsky et al. (2006).



58

and a pressure bulge device (free-standing membranes) in Ravichandran laboratory

(Aeronautics) at the California Institute of Technology. This required the prepara-

tion of released micro-cantilevers, micro-bridges, and membranes with an MOCVD-

deposited ferroelectric active layer. The cantilevers and bridges were micro-machined

by isotropic XeF2 Si-selective etch of SiO2-masked Si wafers, resulting in 2 µm thick

SiO2 released structures (Figure 3.21). Electrodes were subsequently deposited by

thermal evaporation of Au or pulsed laser deposition of SrRuO3 conductive oxide

(using IBAD MgO as a texture template). Finally, the active PbTiO3 layer is de-

posited on top of the resulting heterostructure, and the stress-strain response and

piezoelectric switching is studied using the concentrated-loading tool described in

Zhang (2005). These experiments are in progress as this thesis is being prepared,

and preliminary data were presented in Ruglovsky et al. (2006). Active thin film

membranes were prepared by depositing IBAD MgO and PbxBa1−xTiO3 directly on

commercially obtained TEM window wafers (Structure Probe, Inc.), i.e., an array of

50-200 nm Si3N4 released membranes. Figure 3.21 contains optical microscope and

SEM pictures of the cantilevers, bridges, and membranes. These membranes (0.5

mm squares) were also examined using the concentrated-loading device as well as a

pressure bulge test (Zhang, 2005).

3.4 Conclusion

PbxBa1−xTiO3 ferroelectric thin films were successfully deposited on both single crys-

tal MgO and biaxially textured MgO/Si3N4/Si substrates using MOCVD. A system-
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atic comparison using SEM, XTEM, XRD, and XRD pole figures indicated the ab-

sence of 90◦ twin boundaries for PBT on the biaxially textured MgO, and we attribute

this result to the reduced grain size on this type of substrate when compared to larger

PBT grains, containing twin boundaries, on single crystal substrates.

Changes in domain fractions were observed in films containing 90◦ domain bound-

aries, as a function of temperature, using HTXRD. These results are consistent with

theoretical work suggesting that the domain switching acts as a strain-relief mech-

anism to reduce the overall energy of the heterostructure upon transition to the

tetragonal phase. The stress was measured in situ during deposition and subsequent

thermal cycling for PBT films on single crystal MgO substrates, and the results indi-

cate that the rate of stress accumulation does decrease below the Curie temperature,

but the stress relaxation is not complete. No such changes were observed for films

lacking twin boundaries on biaxially textured MgO templates.

We also utilized EBSD as a tool to study the texture of the ferroelectric thin

films by presenting texture data in the form of in-plane and normal axis IPFs that

are consistent with the XRD results. Orientation data from EBSD further confirmed

the presence of 90◦ domain boundaries for PBT on single crystal MgO, evidenced

by measuring the tetragonal tilt angle. The combination of superior resolution and

large spatial extent makes EBSD a powerful tool to probe the near-surface domain

microstructure and full texture information of ferroelectric thin films and microstruc-

tures directly in the SEM.
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Chapter 4

Pulsed Laser Deposition of SrRuO3
Electrodes on MgO

4.1 Introduction

Considerable attention has been dedicated to SrRuO3 thin films in the past fifteen

years as a result of their useful electrical, magnetic, and optical properties. SrRuO3 is

a conductive oxide, paramagnetic at room temperature and ferromagnetic below 160

K, (Longo et al., 1968) with a high remnant magnetization and magento-optical con-

stant, making it a candidate for various electronic and optical devices. For example,

being a suitable epitaxial template for many perovskite materials, it has been used as

a buffer for highly-oriented YBCO superconducting thin films and as a normal-metal

layer in high-temperature superconductor Josephson junctions (Antognazza et al.,

1993). More relevant to this thesis, ferroelectric thin film capacitors with SrRuO3

electrodes result in superior leakage and fatigue characteristics as demonstrated by

Eom et al. (1993). This makes it a promising electrode, both for memory applications

and the high strain thin film micro-actuators discussed in the previous chapter.

SrRuO3 has an orthorhombic distorted-perovskite structure (a=5.57Å, b=5.53Å,
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b = 0.553 nm a = 0.557 nm

c = 0.785 nm

Figure 4.1: Orthorhombic crystal structure of SrRuO3. Oxygen, ruthenium and,
strontium atoms are represented in red, white, and green, respectively.

and c=7.85Å). However it can also be treated as a pseudo-cubic structure with d(110)

= 3.93Å(Eom et al., 1992). The crystal structure is illustrated in Figure 4.1. The

pseudo-cubic structure provides the relevant lattice parameter for matching with the

tetragonal ferroelectrics discussed in this thesis (BaTiO3: c = 4.038Å and a = 3.994Å.

PbTiO3: c = 4.151Å and a = 3.905Å). Lattice matching results in textured ferro-

electric thin films (as is demonstrated for PbxBa1−xTiO3 on MgO in Chapter 3) that

can potentially be used for high-strain switching.

In short, textured SrRuO3 thin films have a unique combination of properties

when integrated with ferroelectrics; they are both texture templates and electrodes

that lead to high-strain fatigue-free ferroelectric performance.

Most of the results for epitaxy of SrRuO3 are reported on SrTiO3 (see, for exam-
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ple, Chen et al., 1997; Jiang et al., 1998) and LaAlO3 (Jia et al., 1997) substrates due

to the superb lattice match (aSrT iO3=3.905Å, aLaAlO3=3.838Å), including detailed mi-

crostructural and texture characterization. Fewer results are reported on the low-cost

MgO (a=4.213Å) substrates as noted in Singh et al. (2002) due to the larger lattice

mismatch. Previous detailed microstructural studies of SrRuO3 on MgO stem from

the work of Jia et al. (2002, 2003), who demonstrated that YBCO/SrRuO3/IBAD

MgO heterostructures produced superior YBCO superconducting properties.

We use MgO as a bottom template for epitaxy of SrRuO3 and ferroelectric films

because it has been shown to develop narrow biaxial texture on amorphous Si3N4

and Si-based substrates via IBAD (Brewer et al., 2005; Wang et al., 1997) and is

therefore a promising layer for integration of SrRuO3 and ferroelectric films with

CMOS-processing. This motivates the work presented in this chapter dealing with the

deposition of textured SrRuO3 thin-film electrodes on MgO and Si-based substrates,

the latter using IBAD MgO buffer layers. This enables the synthesis of fatigue-free

and textured ferroelectric layer/SrRuO3/IBAD MgO/Si heterostructures for high-

strain applications.

A new pulsed laser deposition (PLD) chamber for the deposition of oxide elec-

trodes, as well as the experimental conditions required to achieve highly-oriented

SrRuO3 films on single crystal MgO and amorphous Si-based substrates buffered

by IBAD MgO, are described below. We then present a detailed study of the mi-

crostructure and full texture before finally demonstrating the viability of these films

as electrodes and texture templates for highly oriented ferroelectric thin films.
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Figure 4.2: Pulsed Laser Deposition System.

4.2 Pulsed Laser Deposition System

Figure 4.2 is an annotated picture of a custom PLD system used to deposit SrRuO3

thin films. The high-power laser is a Lambda-Physik excimer laser (model Lextra

200) used with a KrF gas fill to generate 248 nm wavelength pulses up to 10 Hz in

frequency with a nominal pulse length of 34 ns. The beam energy is adjustable up

to 1 Joule/pulse maximum ouput distributed over a 2 cm × 1cm rectangular beam

profile.

The output beam is guided using two UV-grade dielectric-coated fused silica mir-

rors at 45◦ incidence (CVI Laser model KRF-2037-45), the first of which raises the

beam vertically to the correct level, while the second turns the beam horizontally at
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Figure 4.3: Vacuum chamber of the PLD system. A focusing lens focuses the excimer
beam ahead of entry through the chamber’s laser window onto the target inside the
chamber. The target is on a motorized rotary holder and faces the substrate heater
on the opposite side of the chamber. The turbopump is also in view.

a right angle, re-directing it towards a fused silica focusing lens ahead of the vacuum

chamber’s optical viewport. Both mirrors are mounted on a linear translating stage

for easy alignment with the vacuum chamber, which is a standard 12 inch diame-

ter spherical vacuum chamber from Huntington Mechanical Laboratories, with many

ports for diagnostics, gas flow, and pumping (Figure 4.3). The chamber is pumped

by a Varian 200 turbopump, which is in turn backed by a Varian DS-102 rotary-vane

pump charged with a Krytox inert pump oil for oxygen compatibility. Base pressure

in the chamber is 5 × 10−7 Torr, as measured by an ion gauge, but deposition of

SrRuO3 is typically done in 100-250 mTorr of O2 pressure, corresponding to tens of
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Target

Substrate Heater

Thermocouple

Ion gauge

Figure 4.4: A view inside of the PLD vacuum chamber showing the SrRuO3 target
facing the substrate heater.

cubic centimeters per minute of O2 flow. Rough vacuum is measured by a Varian

WV100-2 wide range diaphragm transducer gauge.

The focusing lens has a focal length of approximately 30 cm (CVI Laser model

PLCX-50.8-154.5-UV-248), and the excimer window is a fused silica viewport with

over 90% transmission at 248 nm (Insulator Seal model 9722005). The focused beam

strikes the SrRuO3 target, which is mounted on a rotary motorized feed-through inside

the vacuum chamber as can be seen in Figure 4.3 through the chamber’s glass loading

door. The rotating SrRuO3 target faces the substrate heater in the chamber, as is

shown in Figure 4.4, which is an inside view of the vacuum chamber, so the ejected

plume from the target’s surface is directly transferred to the substrate mounted on

the heater.

The substrate heater is a 2 inch diameter modified HeatWave Labs design (model

101275 button heater inside a modified model 101446 assembly) capable of achieving
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Figure 4.5: Design of the PLD substrate heater and mounting adapter. See Figure
4.6 for a picture of the final assembly.

a sample temperature of 1200 ◦C (using 12V/20A) in a UHV/oxidizing environment.

The heating element is a precious metal resistive filament 0.04 inches diameter inside

an Al2O3 heater block, surrounded by a stainless steel enclosure with heat shields.

A type K thermocouple is attached to one of the sample clips on the heater block’s

surface for continual monitoring of operating temperature. The schematic design is

featured in Figure 4.5, while Figure 4.6 is a picture of the final assembly on the

mounting flange prior to use in the vacuum chamber. The power is supplied to this

heater from an HP 6268B power supply, rated for 50V/35A and instrumented for

external control of output voltage using a PC. The heater’s current is measured using

a DC current sensor (American Aerospace Controls model 952-50-B). Figure 4.7 is a

picture of the glowing heater assembly during operation while power is being supplied

to the resistive filament.
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Figure 4.6: A picture of the final substrate heater prior to use in the vacuum chamber.
A calibration silicon wafer with many bonded thermocouples is mounted on the heater
face. A permanent type K thermocouple can be seen attached to one of the wafer
clips. Two power leads, surrounded by ceramic fish spine beads, carry the power from
the external power supply to the heater through the vacuum flange.

Figure 4.7: The substrate heater of the PLD system during operation.
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Figure 4.8: LabVIEW interface to the PLD system.

The entire PLD apparatus is controlled using a PC equipped with a LabVIEW

program, an A/D board (Measurement Computing PCI-DAS1602/12), a D/A board

(Measurement Computing PCI-DDA08/12), and a thermocouple measurement board

(Measurement Computing USB-TC). The program interfacing with these DAQ boards

(Figure 4.8) allows for direct monitoring of chamber pressure, sample temperature,

and heater power in addition to direct control of the heater’s power supply, ramp

rate, and cool-down. It also allows for remote control of the excimer laser, including

the operating frequency.

4.3 Experimental

The films described in this chapter were deposited using one of two experimental set-

ups under the same experimental conditions. One is a recently-acquired commercial

Neocera PLD system in Watson laboratory (California Institute of Technology), and
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Target Stoichiometric SrRuO3

Substrate-target distance 9-10 cm
Substrate temperature ∼650 ◦C
Pressure 100-250 mTorr O2

Laser KrF excimer, 248 nm
Laser fluence 5-10 J/cm2

Laser frequency 10 Hz

Table 4.1: Deposition conditions for PLD of SrRuO3 on MgO and MgO/Si.

the other is a new custom facility assembled as part of this thesis and described above.

The vacuum chamber was evacuated to base pressure prior to deposition. Films

were then deposited in an oxygen pressure (100-250 mTorr) on the heated substrates

(∼650 ◦C). Two types of substrates were used: commercially obtained single crystal

MgO (used as received) substrates as well as amorphous Si3N4/Si using 20 nm IBAD

(ion beam-assisted deposition) MgO followed by 20 nm homoepitaxial MgO as a

templating layer. Details on the IBAD MgO process can be found in (Brewer et al.,

2005). The target was commercially-obtained stoichiometric SrRuO3 (SCI Engineered

Materials, Inc). The growth conditions are summarized in Table 4.1. Figure 4.9 is a

picture of the plume ejected from the SrRuO3 target during deposition under these

conditions.

4.4 Results and Discussion

The thickness was found to be about 160 nm (from 18000 pulses), as measured by

scanning a surface profilometer between a film’s surface and a masked area. The
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Figure 4.9: Picture of the plume ejected from a SrRuO3 during pulsed laser deposi-
tion.

films’ surfaces were found to be smooth and transparent, and SEM imaging revealed

surface features of ∼150 nm and ∼65 nm average for SrRuO3 on single crystal MgO

and biaxially textured MgO/Si, respectively. Figure 4.10 compares representative

surfaces of the SrRuO3 films on the two substrates. We attribute the reduced grain

size on the Si substrate to the characteristically small grains of the IBAD MgO tem-

plating layer. Four-probe resistivity measurements on optimized samples revealed a

resistance of ∼1.5 mΩ-cm, which is about 5 times larger than the expected bulk value.

The literature suggests that the resistivity of SrRuO3 thin films varies strongly with

the deposition temperature. For example, Zakharov et al. (1999) report the lowest

resistance from a deposition temperature of 775 ◦C, while films deposited at lower

and higher temperatures had higher resistivities by a few-fold. That is consistent

with the resistivity obtained here from samples deposited at ∼650 ◦C.



71

(a)

(b)

Figure 4.10: Surface SEM images from SrRuO3 on (a) single crystal MgO and (b)
biaxially textured MgO templates/Si3N4/Si.

4.4.1 Orientation

One of the difficulties in indexing SrRuO3 peaks from θ−2θ XRD spectra alone is the

degeneracy or near-degeneracy of many of the peaks for this specific structure. Figure

4.11 is a calculated θ−2θ spectrum of random powder SrRuO3 using ICSD (inorganic

crystal structure database) code 50341 (Kennedy and Hunter, 1998), indicating the

degeneracy of all three SrRuO3 orientations observed in Figure 4.12, which is a scan of

a PLD-deposited SrRuO3 thin film on single crystal MgO (100). The three degenerate
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2-theta (˚)

Figure 4.11: Powder diffraction scan of SrRuO3 using structure data from ICSD
50341

peaks are namely the most intense 110/002 (or 220/004 second order) pair as well as

the more minor 200/020/112 and 312/024/204 peaks.

The final indexing of these peaks as 002 (004 for second order), 112, and 024 in

Figure 4.12 is the result of a more careful analysis that took into account the intensity

of different orders of diffraction and the texture distribution of the deposited films

using x-ray pole figures, in Section 4.4.2 below, that allows for analyzing the angular

relationship between these crystallites on the pole figure. This is an important step

in the characterization of SrRuO3 electrodes since the texture of this layer affects

the texture and, consequently, the properties of the ferroelectric active layer. The

final result is that the SrRuO3 film in Figure 4.12 is predominantly (00l) out-of-plane

oriented, and the accompanying RHEED image confirms the crystalline nature of the

film.

SrRuO3 was also deposited on Si using biaxially textured buffer layers of IBAD
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Figure 4.12: θ − 2θ XRD scan of SrRuO3 thin film on single crystal MgO indicates
the film is predominantly (00l) oriented. The inset RHEED pattern attests to the
film’s high degree of crystallinity.

MgO. The XRD and RHEED scans on films grown at a lower temperature (Tg = 510

◦C) show a more polycrystalline structure, while similar scans for films of Tg = 650 ◦C

show a single (00l) orientation. These results are shown in Figure 4.13. Specifically,

the (200)/(112)/(020) peak all but disappears as the growth temperature increases,

and the RHEED pattern changes from ring-like to distinct spots. From these results,

coupled with rocking curve scans (below), we conclude that SrRuO3 inherits the

biaxial texture from the MgO buffer layer on Si.
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Figure 4.13: θ − 2θ XRD scans of SrRuO3 thin film on Si using biaxially textured
buffer layers of IBAD MgO. The increase in growth temperature allows for the de-
position of highly-oriented (00l) films. The RHEED insets confirm this result as
the pattern transforms from polycrystalline rings to distinct spots. While the (200)
reflection is forbidden in silicon due to a zero structure factor, it can arise due to
multiple-beam scattering, as observed and explained in (Tischler et al., 1988).

4.4.2 Texture

We here examine the full texture of the deposited films by diffracting from planes that

are away from the axis defined by the wafer’s surface normal to confirm the epitaxial

quality of SrRuO3 on MgO. Figure 4.14 is a pole figure of a SrRuO3 film on single

crystal MgO with 2θ set to 32.2◦ (200/020/112 bragg condition). The four largest

peaks at 45◦ away from the the (112) central pole correspond to the majority (00l)

grains. The fourfold symmetry is indicative of good in-plane texture. A small central
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Figure 4.14: (a) An x-ray pole figure scan of SrRuO3 on single crystal MgO indicating
in-plane texture. The four largest peaks at 45◦ away from the center correspond to
the majority (00l) grains. (b) is a surface representation of the same plot illustrating
the relative intensities and identifying grains by their θ − 2θ labels (Figure 4.12).

peak and other minor peaks represent the less prevalent crystallites with non-(00l)

orientation observed in the θ−2θ scan (Figure 4.12). Less of the sample is exposed to

the x-rays at higher ψ angles, and some of the non-(00l) grains are from the generally

more intense (200/020) diffraction instead of (112). Therefore, this pole figure over-

represents the non-(00l) grains; the film is primarily (00l) out-of-plane oriented and

has strong in-plane texture.

We now turn our attention to quantitative texture characterization of SrRuO3

on Si using biaxially textured MgO buffer layers. These films are exclusively (00l)

oriented when deposited at higher temperatures, as as can be seen in Figure 4.13.

The out-of-plane texture is examined via an ω rocking curve and the in-plane texture

via a φ scan at ψ of 45◦, which is equivalent to a circumferential slice of the pole
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Figure 4.15: (a) φ scan of SrRuO3/MgO/Si (2θ=32.2◦ and ψ = 45◦) with four peaks
indicating in-plane texture and a finer scan of single peak revealing the FWHM of
9.7◦ (b) Rocking curve for out-of-plane texture of SrRuO3/MgO/Si using the (004)
plane revealing a FWHM of 4.3◦.

figure that goes through the four most intense diffraction spots. These results and

the obtained full-width at half-maximum (FWHM) values are presented in Figure

4.15 as quantitative indicators of out-of-plane and in-plane textures. For the in-plane

characterization, a lower intensity but highly monochromatic CuKα beam is used in

a high resolution thin film diffractometer (Philips MRD). A crude scan (large steps

in φ) is first done to confirm the location of the four diffraction spots (starting φ is

arbitrary), followed by a finer scan (0.2◦ step) on one of the peaks (inset) to measure

the FWHM. The FWHM values of the ω and φ rocking scans are 4.3◦ and 9.7◦,
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Figure 4.16: θ − 2θ scan of a PbTiO3/SrRuO3/MgO/Si3N4/Si system. PbTiO3,
SrRuO3, and MgO deposited by MOCVD, PLD, and IBAD, respectively, on a
Si3N4/Si wafer demonstrating the ability to integrate highly-oriented ferroelectrics
with silicon directly complete with oxide electrodes for fatigue-free behavior.

respectively.

From the θ−2θ XRD results and pole locations in the x-ray pole figure scans rela-

tive to the MgO cubic lattice, it is possible to conclude that the predominant epitaxial

relationship of SrRuO3 on MgO is (001)SRO‖(001)MgO and <110>SRO‖<100>MgO.

This is consistent with cube-on-cube epitaxy, where the SrRuO3 structure is treated

as pseudo-cubic.

4.5 A Textured Ferroelectric/SrRuO3/MgO/Si3N4/Si

System

From the results presented in the current and preceding chapters, we conclude that

both PbxBa1−xTiO3 and SrRuO3 inherit the biaxial texture of IBAD MgO buffer

layers. This allows for the integration of highly-oriented ferroelectrics with silicon di-
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rectly, complete with oxide electrodes for fatigue-free behavior. Figure 4.16 illustrates

this unique heterostructure and contains a θ − 2θ XRD scan containing information

on the orientation of all the layers. The PbTiO3 functional layer, SrRuO3 electrode,

and MgO biaxial template in this sample are deposited by MOCVD, PLD (courtesy

of Dan Potrepka, Army Research Lab), and IBAD, respectively, on a Si3N4/Si wafer.

4.6 Conclusion

Conductive oxide SrRuO3 thin films were prepared by pulsed laser deposition (PLD)

for the purpose of integration with ferroelectrics onto Si-based substrates for CMOS

compatibility. The focus was on achieving a high degree of texture so that SrRuO3

films are used both as electrodes and growth templates for the textured active ferro-

electric layers.

The SrRuO3 films were deposited on MgO single crystals and Si (using biaxi-

ally textured MgO buffer layers). On both substrates, the films were predominantly

(00l) oriented and in-plane textured as shown by x-ray pole figures. Out-of-plane

ω and in-plane φ scans show that the SrRuO3 films on Si substrates inherit the

biaxial texture of the IBAD MgO buffer layer, with full-width at half-maximum val-

ues of 4.3◦ and 9.7◦, respectively. This approach led to the direct synthesis of a

PbTiO3/SrRuO3/MgO/Si3N4/Si heterostructure, allowing for direct integration of

active ferroelectric layers onto Si-based substrates, complete with oxide electrodes for

fatigue-free performance.
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Chapter 5

Compositionally-Graded
Ferroelectrics

5.1 Introduction

Ferroelectric thin films, especially those made of BaxSr1−xTiO3 (BST), have recently

emerged as candidate materials for tunable components in frequency-agile RF and

microwave devices that benefit from their high dielectric constants and related high

tunability (Potrepka et al., 2006; Cole et al., 2003; Acikel et al., 2002; Serraiocco

et al., 2002, 2003; Xu et al., 2005). However, the dielectric behavior of these materials

depends very strongly on temperature near the Curie temperature, Tc. This means

that, for conventional ferroelectrics, the dielectric properties of the tunable devices

may drift strongly depending on ambient conditions. In tunable filters, for instance,

this would be unacceptable since the resonant frequency varies directly with changes

in the dielectric constant (Zhu et al., 2002b).

Currently, only few materials satisfy the stringent requirements of low losses and

temperature-stability for dielectric resonators and filters in cellular base stations and

hand held devices. These materials are in the low to medium dielectric constant
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range (Vanderah, 2002). A high dielectric would aid in miniaturizing the microwave

components (length of waves is inversely proportional to frequency and root of the

dielectric constant).

In short, ferroelectrics are both highly tunable and possess high dielectric con-

stants, but an equally important challenge emerges: the need for a low temperature

dependence of the dielectric constant over the operating temperature range (Tagant-

sev et al., 2003) instead of sharp peaks at the phase transition.

Compositionally graded BaxSr1−xTiO3 thin films have been investigated as a

means of overcoming this temperature instability. The Curie temperature spans a

broad range depending on composition. Therefore, the idea is that the heterogeneous

structure would result in a diffuse phase transition and a high dielectric constant over

a wide range of temperatures, corresponding to different Curie temperatures for the

different regions. Recent experimental efforts have established the promise of this ap-

proach (Zhu et al., 2002b; Lu et al., 2003; Zhu et al., 2005; Slowak et al., 1999), and

modeling efforts have followed in this direction (Ban et al., 2003; Zhong et al., 2005).

The models solve for the polarization of one-dimensional systems and subsequently

(separately) compute the effective dielectric behavior by summing capacitances. How-

ever, experimental results also show the importance of capacitor geometry (Slowak

et al., 1999). The placement of the electrodes and the compositional grading give rise

to a complex coupling between the polarization and the electrostatic fields. Therefore,

there is a need to extend this to more complex systems by taking into account the

electrostatic fields, polarization distribution, and geometry in an integrated manner.
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This motivates us to address the graded thin film problem using a continuum

model that takes into account the spatial variation in properties and the long-range

electrostatic interactions. We present an integrated model that allows us to compute

the built-in electric potential, polarization gradient, and electrode charges both in

the presence and absence of externally applied electrical field. This approach enables

the direct calculation of the temperature-dependent dielectric behavior for different

compositional gradings and device geometries. We seek an understanding of the

combinatorial behavior of ferroelectric heterostructures and provide results that are

useful as design tools for the emerging functionally graded devices.

5.2 Model

We start by considering the continuum energy of a ferroelectric crystal (Shu and

Bhattacharya, 2001) occupying a region Ω in space:

E =

∫
Ω

(U(∇p) +W (p,x, T ))dΩ +
εo
2

∫
R3

|∇φ|2dV (5.1)

Here, U is the energy density associated with the presence of a polarization gradient,

and we take it to be of the form U(∇p) = a0

2
|∇p|2. The constant a0 is related to the

physical dimension across which polarization changes take place and is set to 10−9

Vm3C−1, corresponding to a few nanometers (Xiao, 2004). W is the Devonshire-

Ginzburg-Landau (DGL) energy density expanded in powers of the polarization, p,

the coefficients being functions of temperature and composition, i.e., position in a
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graded film:

W =
a1(x2, T )

2
(p2

1 + p2
2) +

a2(x2, T )

2
(p4

1 + p4
2) +

a3(x2, T )

2
p2

1p
2
2 +

a4(x2, T )

2
(p6

1 + p6
2)

+
a5(x2, T )

4
p4

1p
4
2, (5.2)

where x2 is along the thickness direction of the film and p1 and p2 are the two com-

ponents of polarization. The last term in equation (5.1) is the electrostatic energy

associated with the electric field, E = −∇φ, and can be obtained by solving Gauss’s

equation:

∇.(p− εo∇φ) = 0 in R3, (5.3)

with voltage specified at the electrodes and decaying at infinity in the surrounding

medium. By taking the first variation of the energy to be zero (Zhang and Bhat-

tacharya, 2005):

∇ ·
(

∂U

∂(∇p)

)
− ∂W

∂p
−∇φ = 0 in Ω with ∇p · n = 0 on ∂Ω. (5.4)

Equations (5.3) and (5.4) represent the equilibrium equations of our system. and we

need to solve them simultaneously for a given geometry and composition distribution.

Of special interest is the effect of capacitor geometry, since experiments suggest

different dielectric behaviors with temperature for the parallel plate and interdigi-

tated electrode configurations (Slowak et al., 1999). Here we consider two geometries

illustrated schematically in Figure 5.1. The first is a film graded along the entire

thickness of the film and completely shielded by two parallel plate electrodes (PE).
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Coefficient BaTiO3 SrTiO3 PbTiO3

a1 6.6× 105(T − 110) 1.41× 106(T + 253) 9.04× 105(T − 479)
a2 1.44× 107(T − 175) 8.4× 109 −3.116× 108

a3 3.94× 109 3.94× 109 3.94× 109

a4 3.96× 1010 3.96× 1010 1.584× 109

a5 2.39× 1014 2.39× 1014 2.39× 1014

Table 5.1: DGL coefficients for BaTiO3, SrTiO3, and PbTiO3 used in this report
from (Zhang and Bhattacharya, 2005; Pertsev et al., 1998; Ban et al., 2003; Rossetti
et al., 1998). All coefficients given in SI units and temperature in ◦C.

The second is a graded film with interdigitated electrodes (IDE), and the composi-

tional grading occurs in the region where the electric field penetrates into the film.

In both cases, PE and IDE, we look for solutions with the polarization aligned with

the applied nominal applied field and use the same range of compositions.

For the PE configuration in one dimension, W from equation (5.2) becomes:

W =
a1(x2, T )

2
p2

2(x2) +
a2(x2, T )

4
p4

2(x2) +
a4(x2, T )

6
p6

2(x2), (5.5)

and equations (5.3) and (5.4) are applied in one dimension to become:

ao
d2p2

dx2
2

− a1(x2, T )p2(x2)− a2(x2, T )p3
2(x2)− a4(x2, T )p5

2(x2)−
dφ

dx2

= 0,

with
dp2

dx2

(0) = 0 and
dp2

dx2

(t) = 0 (5.6)

and

dp2

dx2

− εo
d2φ

dx2
2

= 0 with φ(0) = 0 and φ(t) = φt, (5.7)

where t is the thickness of the film. The bottom electrode is kept grounded, while a
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potential φt is imposed on the top plate.

For the IDE configuration, the ferroelectric is not completely shielded, allowing

electric field to be generated outside the device. Under these conditions, the electro-

statics must be solved over all of space. Equations (5.3) and (5.4) are applied in two

dimensions with a boundary element technique that enables us to address realistic

device geometries (Dayal, 2006).

The heterogeneity of the ferroelectric is taken into account by making a1, a2, and a4

spatially-dependent in the equations above. Table 5.1 lists the coefficients for BaTiO3,

SrTiO3, and PbTiO3. We linearly interpolate for the intermediate compositions (0 ≤

x ≤ 1) in the graded structure, while a3 and a5 are chosen to retain a reasonable

energy barrier for polarization switching (Zhang and Bhattacharya, 2005).

The procedure outlined here allows us to calculate the polarization and electric

field at any point. To calculate the dielectric behavior, one can compute the charge

induced on the ferroelectric/metal boundary. For the PE geometry:

σ0 =

(
p2 − εo

dφ

dx2

)
x2=0

, σt =

(
εo
dφ

dx2

− p2

)
x2=t

. (5.8)

The difference in free charge, ∆σ, between zero and small applied field, φt, is used

to compute the capacitance at a specific temperature. The capacitance is similarly

calculated for the IDE geometry, at the specific locations of the co-planar electrodes.
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Figure 5.1: The dielectric response vs. temperature for two cases of 200nm graded
BaTiO3-Ba0.8Sr0.2TiO3 capacitors: (a) parallel electrodes (PE) and (b) interdigitated
electrodes (IDE). The desired stability is achieved for a wide range of operating
temperatures in the IDE geometry with an a-axis film. Moreover, the capacitance
is enhanced by a factor of ∼ 5 compared to the already-high capacitance of pure
BaTiO3.

5.3 Results and Discussion

We now examine the results for a 200nm pure BaTiO3 film (as a test of the procedure

and for reference) as well as a 200nm graded BST thin film. The endpoints of com-

positional grading are BaTiO3 at the bottom and Ba0.8Sr0.2TiO3 at the top. In the

PE geometry, the grading extends linearly from one electrode to the other, while in

the IDE configuration, this linear grading occupies the top third of the film, which is

the extent of significant field penetration under the chosen electrode/grading geom-

etry. The temperature dependence of the capacitance is presented in Figure 5.1 for

both configurations of graded films. The calculated capacitance is normalized by the
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room temperature capacitance of BaTiO3 due to the ambiguity of defining a common

intensive quantity such as dielectric constant to compare both geometries. There-

fore, we choose to normalize the results such that the room temperature normalized

capacitance of pure BaTiO3 is unity at room temperature for both cases.

In both configurations, the method produces the expected transition temperature

and dielectric peak for pure BaTiO3 at 120◦C. The graded film behavior, however,

differs for the PE and IDE geometries. The PE-graded film merely experiences a

temperature shift of the dielectric peak, such that the transition occurs between the

Curie temperatures of the two extreme compositions. In other words, the parallel

plate geometry in combination with a c-axis film does not lead to a broadening of

the phase transition, but the film behaves like a conventional ferroelectric, with a Tc

intermediate between those of the composition end-points. That is not the case for

the IDE graded film, where the capacitance displays a high and flat response over a

wide temperature range. The compositional grading with the IDE geometry results in

the desired broad transition. Small irregularities can be seen in the dielectric response

due to the approximation of a linear grading as a series of step changes in composition.

This physically corresponds to a multilayer ferroelectric film. These small suppressed

transitions are physical and have been found experimentally (Lu et al., 2003).

This result emphasizes the influence of the geometry on the dielectric behavior,

specifically for a system where the electrostatics plays a major role. To examine this

effect in detail, we now study the computed polarization and electric potential for

both geometries under zero applied field and room temperature. The field in the
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Figure 5.2: Calculated room temperature spontaneous polarization and built-in po-
tential for a) 200nm graded BaTiO3-Ba0.8Sr0.2TiO3 thin film, used in the PE geometry,
and b) a 200nm graded BaTiO3-Ba0.8Sr0.2TiO3 film, used in the IDE geometry. In
the PE geometry, the compositional grading does not lead to a polarization gradient
due to the strong electrostatic interactions manifested by the large built-in poten-
tial, or depolarizing field. A polarization gradient is achieved in the IDE capacitor
corresponding to multilayer parallel capacitances with weak interactions between the
different layers.

film is an inherently built-in one and is commonly referred to in the literature as the

depolarizing field. The computed polarization and potential profiles are displayed

in Figure 5.2 for the BST graded films of both geometries. In the PE geometry,

Figure 5.2(a), the polarization decreases, but very slightly along the x2 direction.

The compositional gradient does not lead to the polarization gradient expected from

the bulk spontaneous polarization of compositions between pure Ba0.8Sr0.2TiO3 and

BaTiO3 due to the electrostatic interactions. The slight polarization change is accom-

panied by a large built-in field. This graded structure behaves in effect as a single

ferroelectric system instead of an aggregate of different ferroelectric layers. These

results directly affect the dielectric properties of the film, making it behave like a

homogeneous ferroelectric, as is evidenced by Figure 5.1 above.
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The behavior of the graded BST film in the IDE geometry stands in sharp contrast

to the PE case, Figure 5.2(b). Specifically, the polarization displays a large gradient

in the top third of the film, where the grading is present and there is negligible

depolarizing field. The result is a broad phase transition with temperature, as is

shown in Figure 5.1 and desired for tunable filter applications.

The influence of the geometry can also be understood as the difference between

series capacitances (PE configuration) and parallel capacitances (IDE configuration).

In the IDE parallel capacitances case, a large part of the applied field is across the

compositionally-graded layers, as evidenced by the potential contours in Figure 5.3.

In this geometry, the field is entirely due to the applied potential on the left surface

electrode, unlike the PE case where a large built-in potential develops.

It is worth noting that the parallel plate configuration can be easily converted

to a parallel capacitance geometry by changing the grading direction of the film,

i.e., changing the composition along the surface of the film, although that may be

more difficult to grow experimentally. Another way to take advantage of the parallel

plate configuration while maintaining a compositional gradient along the thickness

of the film would be through the use of an a-axis film. Using the latter arrange-

ment would reduce the electrostatic interactions of the different layers, allow for

polarization gradients through a smaller depolarizing field, and reduce temperature

sensitivity. In fact, flat dielectric profiles with temperature have been achieved using

compositionally-graded a-axis films with parallel electrodes (Zhai et al., 2006). How-

ever, this approach has the disadvantage of being prone to switching to a c-axis film
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Figure 5.3: A contour of the calculated room temperature potential, due to an applied
field on the left electrode of a 200nm graded BaTiO3-Ba0.8Sr0.2TiO3 film, used in the
IDE geometry.

at larger bias voltages, which would be undesired. Therefore, it is possible to con-

clude that the compositionally graded a-axis film with co-planar electrodes provides

the best combination of stability with respect to bias and temperature insensitivity

(Figure 5.5).

In the results detailed above for modestly graded BST in the PE geometry, we

confirmed that the one-dimensional analysis (equations (5.6) and (5.7)) was adequate

to capture the dielectric behavior by comparing with two-dimensional calculations

performed on the same system. However, when analyzing aggressive polarization

gradings such as PbTiO3-BaTiO3 (spontaneous polarization, Ps, of 75µC/m2 and



90

10
0

20
0

30
0

40
0

50
0

T 
(˚C

)

5101520 Capacitance

PTBT

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0204060

PTBT

cu
b

ic

c-
ax

is

a-
ax

is

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0204060

F
ig

u
re

5.
4:

T
h
e

d
ie

le
ct

ri
c

re
sp

on
se

of
a

gr
ad

ed
20

0n
m

P
b
T

iO
3
-B

aT
iO

3
th

in
fi
lm

.
A

gg
re

ss
iv

e
co

m
p
os

it
io

n
al

gr
ad

in
g

ca
n

le
ad

to
sw

it
ch

in
g

of
p
ol

ar
iz

at
io

n
co

m
p
on

en
ts

u
p
on

ap
p
ly

in
g

an
el

ec
tr

ic
fi
el

d
,

ev
en

fo
r

th
e

p
ar

al
le

l
p
la

te
el

ec
tr

o
d
es

ge
om

et
ry

,
as

ev
id

en
ce

d
b
y

th
e

sa
m

p
le

co
m

p
u
te

d
p
ol

ar
iz

at
io

n
ve

ct
or

s
b
ef

or
e

an
d

af
te

r
30

0◦
C

.
S
ta

rt
in

g
w

it
h

a
c
-a

x
is

fi
lm

an
d

u
n
ti
l
∼

30
0◦

C
,

a
la

rg
e

b
u
il
t-

in
p
ot

en
ti
al

ac
cu

m
u
la

te
s

in
th

e
fi
lm

,
an

d
a

sm
al

l
p
ol

ar
iz

at
io

n
gr

ad
ie

n
t

al
on

g
th

e
th

ic
k
n
es

s
of

th
e

fi
lm

is
ob

se
rv

ed
.

S
w

it
ch

in
g

to
an

a
-a

x
is

fi
lm

al
lo

w
s

fo
r

a
la

rg
er

p
ol

ar
iz

at
io

n
gr

ad
ie

n
t,

u
n
ti

l
fi
n
al

ly
th

e
en

ti
re

fi
lm

tr
an

si
ti

on
s

to
th

e
cu

b
ic

st
at

e.



91

25µC/m2, respectively, at room temperature), we noted switching behavior for the PE

geometry that cannot be captured using the simple 1D model. Figure 5.4 illustrates

the capacitance behavior of a graded c-axis PbTiO3-BaTiO3 thin film between two

parallel electrodes. Below ∼ 300◦C, the graded film has a small polarization gradient

and a large built-in potential, as is predicted by the one-dimensional approach (for

example Figure 5.2). Above 300◦C, this profile becomes unstable and switches to an

a-axis film. This transition rids the film of the depolarizing field and allows a larger

polarization gradient, as is illustrated in the inset of Figure 5.4, which represents

the calculated polarization vector field at 326◦C. At higher temperatures the entire

film finally transitions into the paraelectric state. These results suggest that switching

must be taken into account for films with large polarization grading, as it may strongly

influence the overall dielectric response. The simple one-dimensional approach only

predicts a ferroelectric-paraelectric phase transition at 300 ◦C, but not the switching

that acts to relieve the film of the large cost of electrostatic interactions between the

c-axis graded layers.

5.4 Conclusion

To conclude, we presented a continuum model that accounts for the spatial varia-

tion in properties and the long-range electrostatic interactions in functionally graded

ferroelectric thin films, with an emphasis on the dielectric behavior. Two geome-

tries are emphasized as case studies: parallel electrode and interdigitated electrode

configurations. In both cases, we look for solutions of the polarization nominally
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Figure 5.5: Temperature-insensitivity and high capacitance achieved in a graded
ferroelectric BST capacitor via interdigitated electrodes.

aligned with the applied electric field and compute the temperature-dependent dielec-

tric response. We find that the parallel electrodes configuration results in a strong

temperature-dependence of the dielectric constant due to the strong electrostatic in-

teractions between the different layers. On the other hand, interdigitated electrodes

lead to a parallel capacitance geometry that results in a broad phase transition with

temperature, as is desired for tunable filter applications. Figure 5.5 illustrates the

temperature stability and high capacitance of such a device compared to a pure film

of BaTiO3 over a wide range of important operating temperatures.

Furthemore, we commented on the applicability of the one-dimensional approach
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to describe the dielectric behavior of graded ferroelectric films. Aggressive compo-

sitional grading can lead to switching, which can be taken into account by a two-

dimensional model. We expect that these results will be beneficial as design tools for

functionally graded tunable devices.
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Chapter 6

Conclusion

Ferroelectric materials have been investigated heavily in the last few decades. The

focus has mainly been on ferroelectricity as a bi-stable phenomenon for memory

applications and on the associated direct piezoelectric coupling in the linear regime

for sensors/actuators. This thesis has investigated two more recent topics concerning

the connection between structure and property in ferroelectric materials for the benefit

of specific applications.

The first topic stems from recent strategies designed to enhance the traditionally

limited strains available from ferroelectrics. One design calls for the manipulation of

ferroelectric microstructure (domains) to generate large strains by combining mechan-

ical and electrical loading to create competition between microstructural variants (Shu

and Bhattacharya, 2001). While large strains have been generated from BaTiO3 sin-

gle crystals this way (Burcsu et al., 2000), this approach is yet to be demonstrated in

miniaturized (thin film) form. To do so would require the synthesis of highly-textured

(ideally single crystal) films with complex crystal structures and nonstoichiometric

compositions (Bhattacharya and James, 2005).

Chapters 3 and 4 demonstrate the deposition of such a textured ferroelectric sys-
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tem (PbxBa1−xTiO3) directly on silicon, along with lattice-matching oxide electrodes

to enable high-strain actuation on technologically-relevant substrates. This has led to

the creation of ferroelectric/SrRuO3/MgO/Si3N4/Si heterostructures. The ferroelec-

tric layer is deposited by metalorganic chemical vapor deposition (MOCVD) and is

the functional layer in the heterostructure. SrRuO3, grown by pulsed laser deposition

(PLD), is the oxide electrode that allows us to electrically address the active layer, but

is also a highly-textured template. Both the ferroelectric and oxide electrode layers

are found to inherit the biaxial texture of the underlying MgO template which can be

deposited by ion beam-assisted deposition (IBAD) directly on the amorphous layers

(such as Si3N4), commonly available during back-end processing of silicon wafers. In

addition, we demonstrated control of the ferroelectric film stoichiometry using a spec-

troscopic control loop that monitors the ultraviolet spectra of the gas-phase MOCVD

precursors during growth.

In addition to the synthesis, we explored the microstructural details of these ma-

terials. Specifically, we correlated the presence or absence of 90◦ domain boundaires

in the ferroelectric to the grain size, using x-ray and electron backscatter diffraction

(EBSD). High temperature x-ray characterization allowed us to directly observe mi-

crostructural changes with temperature that are consistent with domain switching.

Furthermore, the stress was measured in situ during deposition and thermal cycling

of PbxBa1−xTiO3 on single crystal MgO, and the results suggest that the rate of stress

accumulation (due to lattice and thermal expansion coefficient mismatch) decreases

upon transition to the ferroelectric tetragonal state, but the stress relaxation is not
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complete. The ability to measure stress during processing is a great advantage since

final performance is tied to the stress history of any device.

In ongoing and future work, it will be beneficial to examine in detail the effect

of texture on ferroelectric device performance. Specifically: is the degree of biaxial

texture achieved here, using an assortment of deposition methods, enough to generate

the theoretically expected high strains, or must the films used be essentially single

crystals? This issue can be examined experimentally and theoretically using devices

of varying degrees of texture and by studying the effect of grain boundaries of various

angles on the mobility of ferroelectric domains.

The second topic of the thesis is motivated by the recent upsurge of interest in

using ferroelectrics in microwave circuit applications. Thin films of BaxSr1−xTiO3

have been studied as microwave components, due to their high dielectric constants

(200-300), high tunability (effect of applied DC bias on capacitance) and relatively

low loss tangents (tanδ < 0.01) (Xu et al., 2004). These unique properties can enable

compact DC blocking capacitors and tunable filters in the rf and microwave regime,

but the dielectric behavior in ferroelectrics is very sensitive to changes in temperature,

especially near the ferroelectric-paraelectric phase transition where the dielectric con-

stant and tunability are highest. Compositionally-graded ferroelectric films have been

experimentally investigated to reduce this sensitivity, where the compositional het-

erogeneity along the growth direction would result in a diffuse phase transition and a

high but smooth dielectric response over a wide temperature range that encompasses

the transition temperatures of the individual layers.
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Chapter 5 examined the graded film problem using a continuum model that ac-

counts for the spatial variation in properties and the long range electrostatic interac-

tions. The model is an integrated one in the sense that it allows for direct computation

of the built-in electric potentials, polarization gradients, as well as the overall capac-

itive behavior in the presence and absence of externally-applied electric fields. We

examined two geometries as case studies: parallel electrodes and interdigitated elec-

trode configurations with graded BaxSr1−xTiO3 thin films. We find that the parallel

electrode configuration results in high temperature sensitivity of the dielectric con-

stant due to strong electrostatic interactions between the c-axis layers that strongly

suppresses polarization gradients. Interdigitated electrodes used on a-axis poled co-

planar capacitors, however, lead to a parallel capacitance configuration resulting a

broad phase transition, as is desired for many applications.

In future work on graded ferroelectric capacitors, it will be necessary to experi-

mentally and systematically validate the role of geometry explored in this thesis. This

will involve the growth of graded ferroelectric heterostructures (for example by the

composition control method used to grow ferroelectrics in Chapter 3) and detailed

microstructural characterization that determines the nature of the grading and po-

larization state of the sample to compare with the right computations. The role of

stress is yet to be examined in this model. While simplified models do exist to account

for internal mismatch strains and bending in one dimension, the incorporation of a

detailed elasticity calculation in two dimensions alongside this model may be critical

to understanding how stress affects graded ferroelectrics, specifically those with high
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tetragonality and complex domain patterns. This is especially important for the in-

terdigitated electrode configuration that is found to be most effective in redressing

the temperature sensitivity of graded capacitors.
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