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Abstract

A class of exact infinitesimel renormalization group (RG) transforma-
tions is studied. These transformations are pure changes of variables (i.e., no
integration or elimination of some degrees of freedom is required) such that
a saddle point approximation is more accurate, becoming, in some cases,
asymptotically exact as the transformations are iterated. The formalism pro-
vides a simplified and unified approach to several known renormalization
groups. The RG equations for a scalar field theory are obtained and solved
both by expanding in e=d —4 and also by expanding in a single coupling con-
stant. This calculation yields results -in agreement with conventional

methods.

Next we study the application of this kind of RG to Yang-Mills theories. A
simple exact gauge covariant RG transformation is constructed; the
corresponding RG equations are obtained and solved in the weak coupling
regime. This calculation shows that only certain initial conditions (i.e., bare
actions) are compatible with the constraint that all the RG evolution be

described by a single coupling constant. It also shows that at the tree level

the g8 function for the SU(N) gauge theory is —%1- (411:)2 g3 A one-loop calcu-
lation yields the usual result (-%2— (4‘:)2 g3). Unlike the scalar theory case

the iteration of the RG transformation does not lead to an asymptotic
situation in which the saddle-point approximation is exact. A lattice gauge
theory is proposed for which the application of this RG formalism is straight-

forward.
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Chapter 1. Introduction

1.1 Historical Background

The Renormalization Group (RG) is the common name given to several
concepts and calculational techniques which have been found useful in deal-
ing with some difficult problems in physics. The origin of the difficulty is that
in order to describe the behavior of some systems one must take into
account an extremely large number of degrees of freedom which are coupled

in nontrivial ways.

Problems of this kind include critical phenomena, the problem of mag-
netic impurities in nonmagnetic metals {the Kondo problem) and many oth-
ers. At first sight, these might seem to be rather esoteric problems; after all,
materials are not normally found near their critical point, which is just one
point in the whole phase diagram. But this is precisely the situation for quan-
tum field theories. In this case the correlation lengths (or the inverse masses
of particles) are much longer than any cutoff distance describing the micro-
scopic structure of spacetime (for example, the Planck length). Thus, in this
sense, quantum field theories are arbitrarily near to or very precisely on
their critical points and RG concepts should be relevant. It is then not unex-
pected to find that RG ideas lie at the very heart of theories such as quantum
chromodynamics and grand unified theories. In fact, historically the develop-
ment of the RG originated in quantum electrodynamics and only later was

the relevance to critical phenomena realized.
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The beginnings of the understanding of critical phenomena from a
microscopic point of view can be traced back to van der Waals [1] over a cen-
tury ago. He produced the first theoretical description of a critical point, the
liquid-gas critical point, in an attempt to explain the phenomenon of critical
opalescence which had only recently been discovered by Andrews. Later,
early this century, Weiss [2] reached an analogous understanding of mag-
netic critical phenomena following experimental work of P.Curie. These two
theories are particular instances of mean-field theories which were formu-

lated in a unified way by Landau [3] in 1937.

The mean-field theories provide rather accurate descriptions of the
phase diagram except in the immediate vicinity of the critical point. The
basic idea is to focus one's attention on that particular configuration (the
mean-field) that gives the dominant contribution to the partition function
and ignore all fluctuations. In field theory this is known as the classical, or

the tree approximation.

With the improvement of experimental techniques and especially with
the exact solution of the two-dimensional Ising model by Onsager [4] in 1944,
discrepancies with the mean-field predictions could be unambiguocusly esta-
blished. This stimulated a larger effort leading on the one side to extensive
numerical calculations and on the other side to the so-called scaling
hypotheses developed by Widom, Fisher, Kadanoff and others (these matters
are reviewed in e.g. [5-6]). The contribution of Kadanoff [7] was particularly
important. It provided an intuitive understanding of scaling based on the
block-spin idea, a primitive form of RG. From all this, and also from extensive
parallel experimental work, it became clear that the critical behavior of very

different systems is surprisingly similar, exhibiting a striking universality.
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This universality is expressed through the critical exponents, which
describe the critical behavior of thermodynamic quantities and turn out to
be independent of the detailed microscopic characteristics of the system. At
the level of mean-field theory, universality is already present (for example in
the Law of Corresponding States) but in a rather trivial manner; the mean-
field behavior is the same for absolutely all critical transitions. In contrast,
evidence from either experiments or numerical calculations showed that the
critical exponents exhibit a marked dependence on the nature (i.e. the sym-
metry) of the degrees of freedom involved and on the number of dimensions

of space.

The independence from the precise nature of microscopic interactions
is important for two reasens. First, it was identified as the basic qualitative
feature of critical phenomena that needed to be explained. And second, it
suggests a connection with the concept of renormalizability in quantum field

theory, which emerged from a completely independent line of development.

In the late forties and early fifties a theory of renormalization was
developed in the works of Bethe, Feynman, Schwinger, Tomonaga, Dyson and
others (see e.g. [B]) which allows one to by-pass the annoying problem of the
divergent results for the radiative corrections in quantum electrodynamics.
It was found that finite results could be obtained if the electron and elec-
tromagnetic fields were rescaled in an appropriate way and the results were
expressed not in terms of the bare electron mass and charge parameters

appearing in the lagrangean but in terms of some renormalized parameters.

Stueckelberg and Peterman [9] were the first to realize that there are
many different equivalent ways to choose the renormalized parameters and

that physical quantities would be invariant under the group of
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transformations from one set of parameters to another. They named this
group the renormalization group. In 1954 Gell-Mann and Low [10] indepen-
dently discovered the RG and considered the ultraviolet asymptotics of elec-
trodynamic Green's functions. Later, Bogoliubov and Shirkov (see e.g. [11])
formulated the RG invariance in terms of the normalization momenta and
used it to study also the infrared asymptotics of Green's functions in electro-
dynamics.

At high energies where particle masses can be neglected, one could
naively expect quantum field theories to be scale invariant. Gell-Mann and
Low pointed out that this was not necessarily so; the scale invariance would
be broken by the large cutoff introduced during the renormalization process.
Still, this cutoff could be taken into account, and useful information could be
obtained, provided an appropriate choice of the renormalized charge was
made. Furthermore, while physical quantities should be invariant under the
RG, perturbative expansions to any finite order need not be so. One may then
impose the desired invariance and construct improved perturbation expan-

sions.

The connection between the field-theoretical RG of Gell-Mann and Low
and critical phenomena was achieved in the early seventies mainly through
the work of K. Wilson (this is reviewed in [12]) although many other workers
(see, e.g., [13]) independently realized that such a connection should exist.
Wilson [14] conceived renormalization as a process in which high energy
degrees of freedom should be gradually eliminated in a sequence of steps
before tackling the experimentally accessible lower energies. This point of
view turned out to be very convenient. By lifting the previous restriction to a
fixed number of coupling constants it allowed an important generalization.

Also, it provided a more intuitive understanding of renormalization, which,
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together with Vilson's study of the implications of fixed points for scaling
behavior [15] led to the first RG calculation of critical exponents [16]. Soon
after, it became clear that practical calculations could more easily be car-
ried out using Feynman diagram techniques in a space of dimensionality
close to four (Wilson and Fisher [17]). This powerful calculational technique
together with the intuitive understanding of critical behavior has produced a

vast wealth of applications (for references, see, e.g., [1B]).

In the early seventies interest in the RG was independently awakened by
work of an altogether different nature. In 1968 the MIT-SLAC experiment on
deep inelastic electron proton scattering showed a very simple scaling
behavior, Bjorken scaling (see, e.g.. [19]). This stimulated new studies on the
scaling symmetry and its breaking of field theories at high energies, the con-
formal anomaly was discovered by Coleman and Jackiw [20] and a new ver-
sion of the RG appeared in works of Callan and Symanzik [21]. Then the work
of Politzer, Gross and Wilezek and also 't Hooft [22] showed that the observed
scaling could be explained if strong interactions were described by a non-
abelian gauge theory (Yang and Mills [23]), in this case quantum chromo-
dynamics {Gell-Mann et al., Weinberg [24]). This theory exhibits the remark-
able property, known as asymptotic freedom, that at high momenta the
interactions become weak. Foremost among its implications is the fact that
strong interactions at high energies become accessible to perturbative
methods. Also, the circumstance that at low momenta the forces become
stronger is widely recognized to be intimately connected to the phenomenon
of quark confinement. Furthermore, asymptotic freedom permits one to
overcome what is perhaps the largest obstacle to the unification of all
interactions, namely the fact that at low energies they have very different

strengths (Georgi et al. [25]).
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Many important parallel developments have been omitted from the
account above (for example lattice gauge theories, Monte Carlo RG's, tur-
bulence, etc.) but those mentioned are certainly sufficient to indicate the
extreme degree to which RG concepts and methods have become important

in modern physics.



1.2 An Overview of this Work

This work does not deal with the physics of any particular system under-
going a critical transition. Neither does it deal with the physics of quarks and
gluons nor other particles and flelds. It is not a work about any particular
physical system but rather about the renormalization group (RG) itself as a
technique that has been useful in approaching many problems in physics. A
study of this kind might offer new insights into why the RG techniques are
useful. This, in turn, may allow one to modify and simplify those techniques
preserving only the very essential features which make them work. It may
also suggest new ways, new problems to which the modified RG's might

profitably be applied.

For quite some time now it has been apparent that the success of the RG
methods in dealing with problems involving many degrees of freedom is con-
nected to an appropriate choice of variables. That is, the various RG's pro-
vide systematic ways to focus one’s attention on the degrees of freedom

which are most important in the problem under consideration.

For example, in Wilson's approach to the problem of critical phenomena
[12] it is recognized that short wavelength degrees of freedom are not
interesting in themselves, but only indirectly through the eflective interac-
tions they induce between the experimentally accessible long wavelength
degrees of freedom. The strategy then is to eliminate the short wavelengths
in a sequence of steps. We start by integrating out the shortest ones first,
then slightly longer ones, and so on, gradually working our way towards an

effective lagrangean which contains only the relevant degrees of freedom.

In RG's such as the original Gell-Mann and Low RG [10] the appropriate

choice of variables was achieved in quite a different way. The point is that
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while all wavelengths contribute to a loop integration in a given Feynman
diagram, the actual relative contribution of the short versus the long
wavelengths depends on the renormalization scale chosen. The freedom to
change the renormalization scale thus allows us to emphasize some degrees
of freedom over others and therefore to improve the perturbative calcula-

tion.

The two approaches above are sufficiently different that in spite of yield-
ing the same results when applied to a given problem the precise connection

between the two has been a matter of some confusion.

The Wilson RG transformation involves not only an elimination of some
degrees of freedom but also an explicit change of variables. Some conse-
quences of this fact appeared in works of Jona-Lasinio [26] and Wegner [27].
These authors were concerned with the possibility of choosing more general
RG transformations and showing that physically significant quantities such as
critical exponents are independent of such a choice. Thus, Jona-Lasinio
defines generalized renormalization transiormations as all those that leave
the effective action I' invariant in value. It seems unlikely that one can be
more general than that, but this evades the important issue of which
transformations are useful. Wegner goes further. He recognizes that
transformations can be made in a rather general way and makes the essen-
tial remark that the elimination of degrees of freedom is not a necessary
step since some changes of variable effectively accomplish such an elimina-
tion. He then goes on to exhibit explicitly the transformation which gen-
erates Wilson's incomplete-integration RG [12] and to conjecture that useful
RG transformations would involve some kind of nonlinearity perhaps through

some unspecified dependence on the hamiltonian.
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In Chapter 2 we study a class of exact infinitesimal RG transformations
for field theories in continuum space which are pure changes of variables,
i.e.. no additional elimination or integration of certain degrees of freedom is
required. To isolate the minimal structure a change of variables needs to
include in order to actually accomplish this, we consider in Section 2.2 three
exact RG's in differential form. First we review the sharp-cutoff RG of
Wegner and Houghton as simplified by Weinberg [28] and then formulate
simplified versions of the incomplete-integration RG of Wilson [12] and of the
hard-soft splitting RG (Wilson [29], Lowenstein and Mitter [30], Mitter and

Valent [31], Shalloway [32]).

In Section 2.3 the required change of variables is obtained as well as the
RG equations both in functional form and as an infinite set of integro-
differential equations. The reason why this class of RG's is useful is immedi-
ately apparent: the changes of variables are such that a classical or saddle-
point approximation in the new variables is more accurate. No mention is
made of the question of long versus short wavelengths; this is important. On
iterating the RG transformations (i.e., on solving the equations for the RG
evolution of the action or of the hamiltonian) the classical approximation
becomes better and better approaching the exact result. Since these RG
equations are much simpler than other sets of equations which need to be
tackled in order to solve quantum field theories (e.g. the Schwinger-Dyson
equations), we feel this is a promising way (as is the case with some other
RG’s) to leap beyond the limitations of perturbation theory. As we will see a
further fortunate feature is related to the possibility of applying these RG’s

fo gauge theories.

The calculation of Green's functions is considered in Section 2.4.
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As with most manipulations with path-integrals, the level of mathemati-
cal rigor is fairly low. Changes of variables occasionally produce surprises in
that the new lagrangean differs from the one that would be naively obtained.
In some situations the additional terms can be cast into the form of an extra
potential of order A%, in other situations they can be traced to non-trivial
jacobian factors and they generate anomalies (see e.g. [33-34] and refer-
ences therein). Two explicit solutions of the RG equations in Section 2.5 serve
as a check that in our case no such surprises occur. The first solution is an
expansion in £¢=d —4 (Wilson and Kogut [12], Wilson and Fisher [17], Shukla
and Green [35]) the second is an expansion in a single coupling constant.
Both give the same results, but they represent differing viewpoints. The
former emphasizes analyticity, the latter is somewhat closer to the Gell-

Mann and Low spirit.

Some of the details of the calculations and a pedagogical example, a
scalar field theory in zero dimensions (a single integral), are discussed in the

appendices to Chapter 2.

As discussed in the previous section, Quantum Chromodynamics (QCD)
(some popular textbooks are listed in [36]) is quite universally believed to be
the correct theory of the strong interactions. Renormalization group
methods have been instrumental in bringing about this state of things: QCD is
the only candidate field theory which is renormalizable, consistent with the
known symmetries of the strong interactions and which exhibits the remark-

able phenomenon of asymptotic freedom (Gross and Wilczek, Politzer [22]).

The challenging problem is to understand how, as the interactions
become strong, quarks and gluons are permanently confined inside hadrons.

Even in high energy experiments where couplings are small and perturbative
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calculations may be performed, remaining vestiges of strong coupling effects
obscure the comparison with experimental results yielding only qualitative

agreement,

Perhaps RG methods which have been so useful at short distances, may
also be used to describe phenomena at long distances in the strong coupling
regime. This might be achieved by eliminating the uninteresting short
wavelength degrees of freedom and obtaining an effective action or hamil-
tonian which describes only the interesting long wavelengths. This idea is old
and has been tried before. In the context of QCD, it was first suggested by Wil-
son [29] and then developed by Shalloway [32] who used it in the small cou-
pling perturbative regime. The RG transformation consisted of splitting the
propagators into hard and soft parts and integrating out the hard part. The
procedure had a serious problem: the gauge invariance was not manifest.
Also, although in principle the transformation could be exact, in practice it
was only approximate. On iterating this approximate transformation, errors
could accumulate which would violate the gauge symmetry. For small cou-
pling this problem was not fatal because the errors could be bounded and
their accumulation controlled, but the strong coupling regime lay completely
beyond the reach of this RG. At the expense of introducing an additional
ghost field, Mitter and Valent [31] developed a manifestly gauge invariant way
to split the propagator. This would perhaps allow one to overcome the limita-
tions of Shalloway's work [32] but because of the ghost field the formalism is

rather complicated. A simple gauge covariant RG transformation is required.

Once the structure of changes of variables which are alse RG transfor-
mations is identified, the actual construction of gauge covariant transforma-
tions is simple. An exact gauge covariant RG transformation would allow one

to develop approximation schemes compatible with the gauge symmetry
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even for strong coupling. For example, one possible such scheme could be as
follows. The infinite set of differential equations for the vertex functions
appearing in the RG-evolved action can be truncated in a manner compatible
with the gauge symmetry and one might perhaps obtain nonperturbative
solutions. This is quite analogous to the procedure developed by Baker, Ball
and Zachariasen (see [37] and references therein) to truncate the
Schwinger-Dyson equations and obtain nonperturbative information about
the gluon propagator in the axial gauge at long distances. Considering that
the RG equations are much simpler than the Schwinger-Dyson equations and
that obtaining solutions to the Ward identities is rather simple, (see Section
3.4 below) we are confident that implementing this scheme should be quite

feasible.

A word of caution is, however, necessary. It may happen that the most
convenient variables to describe a given problem are topologically different
from the original variables one has chosen. They cannot therefore be
reached through the continuous sequence of RG transformations considered
in Chapter 2. It is quite likely that this is actually the case with QCD at long
distances. If the QCD vacuum behaves as a chromomagnetic superconductor
('t Hooft, Mandelstam [38]) then it is possible that the appropriate variables
at long distances are the electric vector potentials C,, which are dual to the
usual magnetic vector potentials 4, (Mandelstam [39]). Baker et al. [40] have
developed this idea further. Once the theory is formulated in terms of the C,
potentials the RG of Chapter 2 becomes useful again because it can be used

to improve further on the choice of the C, variables.

In Chapter 3 we formulate an exact gauge covariant RG and obtain solu-
tions for the RG evolution of the pure Yang-Mills action in the weak coupling

regime. Matter fields are not considered.
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In Section 3.2 a simple exact gauge covariant RG transformation is given
as well as the corresponding RG equations. It is interesting that even though
the path integral for the Green's generating functional Z(j) requires that a
particular gauge be chosen and a Fadeev-Popov determinant introduced (for
popular textbooks on this subject, see, e.g., [36]) these complications do not
affect the RG equation. This is shown in Section 3.3. In fact, since one never
needs to invert the quadratic vertex function to obtain a propagator, the

solutions to the RG equation are not affected either.

Although it is not at all required, it is convenient to take advantage of
the gauge symmetry when solving the RG equations. In Section 3.4 the n-
point vertex functions are separated into two components, one which is
transverse to the momenta entering through each of its n legs, and another
which is {partially) longitudinal and is completely determined by the Ward
identities in terms of the vertex function with n—1 legs. A procedure is given
to calculate the longitudinal components and some solutions are given. In
ref.[41], Kim and Baker studied the constraints of gauge invariance on the
cubic gluon vertex in the axial and covariant gauges. Our method differs con-
siderably from theirs, being simpler partially due to the fact that there are

neither ghosts nor an axial gauge direction n, to worry about.

The perturbative sclution to the RG equations is carried out in Section
3.5. This calculation yields two interesting results. A common feature of all
RG-evolved actions is that they include an infinite number of complicated
interaction terms, in fact all terms consistent with the symmetries of the
system. Such actions are obviously not renormalizable in the usual sense. In
Section 3.5 we impose on the solution of the RG equations the condition that
all the evolution be described in terms of a single running coupling constant,

the same that appears in the covariant derivative. It is found that solutions
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of this kind are possible but only if the right initial conditions (i.e., the right
bare action) are chosen. The usual QCD bare action is precisely such a right
initial condition. It is quite plausible that this strong constraint on the bare
actions is equivalent to the requirement of renormalizability in quantum field
theories, either in its usual form or in the generalized version known as

"asymptotic safety” proposed by Weinberg [42].

The second interesting result is that in four spacetime dimensions the g
function describing the RG evolution of the action of the SU(N) gauge theory

turns out to be

B1_N_ 3
6

ﬂ(g) == (41T)2g

This result, which is the tree level approximation to the g function which
describes the evolution of the effective action I" (the generating functional of
one-particle-irreducible Green's functions), is quite close to the usual one-

loop result

o n_ 22 N
p(g) = —g(mgya -

obtained using the conventional Feynman graph methods.

In Section 3.6 we show that on computing the effective action I" to order
one loop an additional term with a coeflicient of :61- is obtained. Our final
result therefore coincides with the conventional one, as it should. The
existence of a large contribution to #' already at the tree level is in accord
with the basic idea behind this kind of RG, namely a perturbative calculation
performed in the new variables is more accurate. Unfortunately, the fact
that 8 and g' differ indicates that unlike the scalar field theory case, the clas-

sical approximation is improved when the RG transformation is iterated but

never becomes exact.
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The details of some calculations appear in the appendices to Chapter 3.
Appendix A contains an interesting result concerning the RG evolution of the

Fadeev-Popov determinant.

The conclusions and some final comments appear in Chapter 4. A
nurnber of applications of this formalism can be envisaged. In the remaining
sections of Chapter 4 we consider in a very preliminary form how one could

make a start towards implementing them.

We mentioned it should be possible to obtain non-perturbative solutions
to the QCD RG equations by following a procedure analogous to that of Baker,
Ball and Zachariasen [37], namely, truncating the system of equations in a
manner which does not violate the gauge symmetry. To do this we need trial
forms for the vertex functions which satisfy the Ward identities. The longitu-
dinal components of such trial solutions were obtained in Section 3.4, the

necessary transverse components are cbtained in Section 4.2.

A very convenient feature of these exact RG transformations is that they
do not require the elimination of degrees of freedomn and can therefore be
applied to field theories defined on a lattice.The lattice can be finite and even
small, and thus the RG evolution might be studied numerically. The RG equa-

tions appropriate to a scalar field lattice theory appear in Section 4.3.

Finally, in Section 4.4 we propose a lattice gauge theory formulated in
terms of the field variables A, instead of the usual rotation matrix variables
U, (for a detailed account of the latter formalism see, e.g., the review by
Kogut [43]). The Ward identities and RG equations for this lattice theory are
obtained and shown to be remarkably similar to the corresponding equations

for the continuum theory.



- 16 -

1.3 Basic Concepts: Wilson's Renormalization Group

To introduce the basic ideas behind Wilson's RG approach to critical
phenomena [8,12},consider a system described by a real scalar field ¢. This
fleld ¢ may represent for example the magnetization of a uniaxial ferromag-

net. The partition function for such a system is

z=f LI;IAM(q)] exp ~Holp(q)) . (3.1)

where Hy/ B is the hamiltonian and A is a momentum cutoff.

The features about critical phenomena that we wish to study are the
independence from the microscopic details of Hy and the scaling behavior.
This suggests we should describe the behavior of long wavelengths by an
effective hamiltonian from which the irrelevant short wavelengths have been
removed and the remaining long wavelengths have been appropriately

scaled. Thus, a typical RG transformation
RQHO——-HI N (3.2)

is performed in two steps:
1. the field components with wavevectors g between A/ b and A with b>1 are
integrated out, and
2. the remaining fields with g <A/ b are rescaled, the wavevectors are dilated
by a factor b to restore the cutoff to A, and the fields are multiplied by a fac-
tor ¢p.

The precise form of the factor ¢{, will be determined later. However,
since we want Ry B+ = Rpp or & &p = ¢pp, it must be that ¢, =b¥ with ¥ a con-

stant independent of b.
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The RG transformation Rp is then defined by

exp—~RyHp = f 'NH de 9)] exp "Ho] : (3.3)
b<g<h v(a)+{yv(dq)
so that (3.1) becomes
z=f LH tradv(bq)] exp —Ry Holp(q)) . (3.4)

and quantities computed from (3.4) are simply related to those computed

from (3.1). For example, the two-spin correlation function is
<p(9)¢(~q)>n, = T¥®(q.Ho) = ¢(ET®(bg R, Hy) . (3.5)
or equivalently (in d space dimensions)
Te&)(r,Ho) = 04T = Ry Ho) . (3.8)

This shows explicitly that distances are scaled by b7, in particular the corre-

lation length £ is scaled to

§(Ry Ho) = b7YE(H,) - (3.7)

On iterating the RG transformation one pgenerates a sequence of

effective hamiltonians
Hﬂ+l = Ran = (Rg)an . (38)

The new effective hamiltonians we have generated in this way are much more
complicated than the original one; they contain all kinds of complicated
interactions. It is certainly not clear so far that any progress has been
achieved.

Consider, however, the special situation in which ¢, is chosen so that as

the RG transformation is iterated a fixed point is approached,
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lim H, = H® sothat Ry H = H"* (3.9)

o=

In tact, (3.9) may be considered as an equation for both #* and ¢, or y. At

the fixed point (3.8) and {3.7) become
g, H°) = b¥ @ (bg H*) or I®)(r H*) = bzv-drm(g.ﬂ’) . (3.10)
and
E(H") = b 1(H") . (3.11)

Equation {3.11) has two solutions £=0 and £==, the second of which describes
a critical point, fur‘hermore (3.10) exhibits the scaling behavior we set out

to uncover; for large 7 Equation (3.10) implies {choose e.g. b=Ar)

(2) . ~ 1 = 1
[)r H") 732 - pa-gm (3.12)

The last equality defires the critical exponent 7 which is given by
n=2-Ry . (3.13)

The simple ideas above have very remarkable implications. First, sys-
tems are at their critical points when the iterated RG transformation leads
to the appropriate fixed point. Second, the mere existence of the fixed point
already gives us sca'ing behavior and third, the calculation of H* gives a crit-
ical exponent as a by-product. Furthermore, fourth, critical behavior is
described by hami'tonians in the vicinity of H*, the details of the original Hg
are irrelevant in the sense that many different Hg's could lead to the same

H°®. Universality has been explained (more on this later).

Some other characteristics of critical behavior (i.e.,the remaining criti-

cal exponents) we would wish to calculate refer to systems that are close but
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not quite at the fixed point. This study is accomplished by considering the

effect of RG transformations near the fixed point. Let
Ry(H'+6H) = H® + Ly6H + O(6H®) = H* + 6H' + O(6H?) . (3.14)

A convenient way to analyze this problem has been proposed by Wegner [44].
Suppose we can express 6H as a linear combination of a complete set of
operators () which are also eigen-operators of the linearized transformation
Ly (it is at present not yet clear whether this can be done in a mathemati-

cally sound way),
6H = Z,u.l-()..- . (3.15)
1
Loy = M(B)0; (3.16)
As before, the fact that we want
LoLy = Ly or N(b)N(b) = N(bb") :
restricts the form of the eigenvalues to
N(b)=b¥
with y; independent of b, so that
6H' = ;mni L W= b (3.17)

After solving (3.18), the RG evolution of H near H® can be easily studied.
Relevant operators (those with y;>0) will tend to grow exponentially as I, is
iterated driving H, away from the fixed point H°. Conversely, irrelevant
operators {those with y; <0) will vanish exponentially and only slightly affect

critical behavior. Marginal operators (those with y;=0) require a more
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careful study; 1n general, going beyond the linear approximation of {3 [4} s

sufficient to determine whether they are truly marginal or not.

Usually a hamiltonian describes a systemn at its critical point if all y;'s
for the relevant operators, of which there are normally just a small number,
have been carefully tuned to zero. For example, in magnetic transitions we
have to tune just two parameters, the temperature and the magnetic field, to
reach the critical point. On the other hand, the number of irrelevant opera-
tors is large. In fact, most of the microscopic details contained in the original
Hy are represented by irrelevant operators. This is the microscopic cause of
universality.

We suggested above that in the simple situation we are studying here
there are only two relevant operators which must be tuned to zero to reach

the critical point,thus
8H = 6%, + 8%, + (irrelevant Q's) |
where

Mg ~t and uy, ~h .

T-T
h is the magnetic field and £= 7 < (in fact, this defines T,).
[4

As an example of how critical exponents are determined once {3.:5) is

solved, consider a situation in which A=0 and ¢ >0. Rewrite {3.8) as
(2) = p-(d-2¢n) m2) T ¥t
M r ) = b D)
But b is arbitrary, so we may choose b =Ar and then

t(Ar)) = = DAt %)

I"(z)('r,t) =z —a 7 =

E
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for some function . On the other hand

M .¢) = ;‘EE—WD(—/}Z) :

defines the correlation length £, and therefore

1

gty ~t™v | U=a .

The first equality is the conventional definition of the exponent v and the
second shows how solving (3.18) allows one to obtain critical exponents. As a
final example, consider the magnetization m =<g> which satisfies an equa-

tion analogous to Equations (3.5,6), namely
m(pe) = @2 2 (4, p¥)
Now choose b =t™, then
m(t) = tPm(const)
is the desired scaling law with the critical exponent g given by
g = g(d-2+n) :

Other critical exponents may be similarly obtained.
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1.4 Basic Concepts: The Field-Theoretical Renormalization Group

Renormalizability is the propertly of a quantum field theory which allows
the Green’'s functions to be rendered free of ultraviolet infinities provided the
flelds, coupling constants and masses are rescaled in an appropriate way. To
be specific consider, for example, a scalar field theory in euclidean space-

time. This theory is described by the lagrangean density

1
L= (800" + smopl + L201 (41)

The theory may be regularized by calculating in d =4—¢ dimensions. Then the

appropriate renormalization constants are of the form
vo =2y %(g. —)¢-mo = Zm(g. )m go=2(g. —) % (4.2)

where g is the dimensionless renormalized coupling constant, m and ¢ are
the renormalized mass and field respectively and w is an arbitrary mass
scale. It is this freedom in the choice of u that generates a renormalization
group.

Renormalizability is thus expressed by the following equality between

the bare and the renormalized one-particle-irreducible Green's functions
TN gi:g0me) = Z, /2 T (g 59 .mou) |

where 7" is finite as £-0 and ['§® is independent of w. Differentiating with

respect to u produces a RG equation
2,50 o _ n)(g.: =
where

Blg. —) # R (4.4a)
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ﬁm(g.%) ﬁﬁ- (4.4b)
and
Blog Z
7,(9--’3) = %Ti—' (4.4¢)

These quantities are dimensionless and analytic as £€-+0, they can be expli-
citly computed using perturbation theory but are so far arbitrary because

we have not yet chosen a definite renormalization prescription.

To study the behavior of I®) when the momenta are scaled, g »Ag, Equa-
tion (4.3) can be rewritten in a more convenient form. The dimension (in the

gense of dimensional analysis) of I'®) is d —n ( g-—l). therefore

d A
" (Agiig.m ) = G F‘”)( g p) !
or
d d T(n) ) _
lp—— + }\—-- tmo— - d + n(§—1) "™)(A\g; g mu)=0

Subtracting from {4.3) we obtain the desired equation,

2 _

Ty +(1 —Bm)m 5 — +n7¢+n(§—1) ]P(M(Aqi;g.m.mw .(4.5)

The difficulty in solving (4.3) is that 8,8, and 7y, depend on two vari-
ables, g and m/ u. A most elegant way out of this problem results from not-
icing that the reason the renormalization constants of Equations (4.2) were
introduced was to absorb infinities due to integrations over high momenta.
But at high momenta it should be possible to neglect m. Therefore a renor-
malization prescription must exist for which the renormalization constants
and also 8,8, and 7, are mass independent. Such an idea is implemented by

choosing the finite parts of the counterterms to be identically zero. This
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"mass-independent” or "minimal-subtraction” prescription was invented

independently by 't Hooft and Weinberg [45].

The solution to Equation (4.5) in this case becomes

A . )
TM)(Agi.g ./m.pu) = A3 7271 exp [_"u[ 7¢(g (\)) %] I'™)g:g (A).m(N).u)

(4.6)
where g (A) and m () are the sblutions of
A8 = g0 L gr=1) =g (4.72)
and
AZZA) = o ) B (g ON)-1) . mOA=1) =m (4.7b)

The interpretation of Equation (4.8) is that a Green's function evaluated at
the scaled momenta equals the Green's function evaluated at non-scaled
momenta multiplied by the usual factor A%™@/2-1) given by dimensional
analysis, provided that the latter Green's function be evaluated using the
effective coupling and mass of (4.7) and that there be an additional

anomalous dimension factor.

To illustrate the use of the formalism above we will briefly consider the
critical point example of the previous section. As we saw there, the hamil-
tonian describing such a system may contain arbitrarily complicated micros-
copic interactions but most of these are irrelevant and may be omitted. The

system may then be represented by a hamiltonian of the same form as the

lagrangean of (4.1),

1 1 9o
H = ‘2'(3500)2 + §mo¢§ + et
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It 1s convenient to renormalize at the critical point, that is, choose the renor-
malized mass to be zero (*). Suppose now that at a certain value g° of the
coupling 8(g *)=0. Equation (4.7a) shows this is a fixed point, while Equation

(4.6) becomes
(M (Ageig * ) = AE@/2-INE ) pinyg 00 1y
which is a simple scaling behavior. In particular, for n=2
I(Ag:g° ) = X% T (g 9% )

which, comparing with (3.10) and (3.13) yields n=2y,(g ). Furthermore sup-
pose that in the vicinity of the fixed point, 8(g) ~ 8, (g —g )" +..., where n is
an odd integer. Using (4.7a) it is not difficult to see that if 8, <0 the fixed
point is attractive in the ultraviolet (i.e. )1\131_39()\)=g *) while if 8,>0 it is
attractive in the infrared (i.e. %\193 g(A)=g"). If n is an even integer and 8,>0
then the fixed point is ultraviolet and infrared stable for g<g° and g>g°

respectively (and vice-versa for 8, <0).

In this scalar field example a direct computation leads to

Blg) = —&g9 + (4{;)292 + 0(g%e.9%) . (4.8a)

7elg) = 13(;)492 + 0(g2e.9%) . (4.8b)

2
This shows that g *=0 is an ultraviolet stable fixed point, while g° = §4_g)_£ is
the infrared stable fixed point which describes the critical behavior. The
2
corresponding anomalous dimension is 7,{g ) = ISTB .

(*) The perturbative expansion of a massless 904 is strongly infrared divergent in d <4 space
dimensions even for non-vanishing externsal mormenta. This forces upon us an (asymptotic)
expansion in £=4—d; the theory is then well defined to any finite order in g™ &t.
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1.5 Basic Concepts: Yang-Mills Theory in the Background Field Gauge

The Euclidean spacetime Green's functions of a Yang-Mills theory [23]
without fermions are generated by the functional (some introductory texts

are listed in [36])

2() = [D(QB) exp~[ (@) + Ser + Sc - [1.@] . (5.1)

where @3 is the gauge field. The action S is given in terms of the field

strength
F';a.w = apQg va - gfabc Qz !
by
l
d%z =F¢ , .
s=/f . (5.2)

and is invariant under the non-Abelian gauge transformation
6Q%(z) = DR (@) (z) = 8,0%(z) — gf ** Qh () (z) . (5.3)

D% (@) is the covariant derivative and f®° are the structure constants of
the gauge group. The gauge fixing term corresponding to the gauge condition
G(@)=0is

Ser = 5= [d%z G(Q)CH@) . (5.4)
Finally, the Fadeev-Popov ghost action is

Sg = —zfddx ddy 6%( x);m%(—)l (y) o (5.5)

It has been found that calculations are simplified if one takes advantage

of the gauge symmetry. This is most conveniently done using the background
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field method originally proposed by De Witt [48] and further developed by

many others (see, e.g., Abbott [47] and references therein).
The generating functional in the presence of a background fleld 43 is
Z(j.A) = [D(Q88)exp -{S(Q+A) + Sgp + Sp — fj.Q] . (5.8)
The following choice of gauge,
G*(Q) = 0,@% —gf ™ ANGL = D (A)QL =0, (5.7)
is convenient because Z{j,A) is then invariant under the transformations
0AS = 8,008 —gf ™ ARO° (5.8a)
and
678 = —gfoe n Qe . (5.8b)

This is easily shown by making a change of integration variables in (5.6) of

the form
6Q% = —gfc Quor . (5.8¢c)

Equations (5.8a) and (5.8c) are just a gauge transformation of the total field
A+@, and therefore S{@+A) is invariant. Furthermore, since Equations
(5.8b) and (5.8¢c) are adjoint rotations, the terms fj.Q and Sgr are clearly
invariant. Similarly, making appropriate changes of the integration variables

© and @ one may show that the ghost action,
Se = =i [d3z 8° D2 (A)DY (A+Q)8°

is invariant (*).

(*) Notice tha: an axial gauge 'anz =0 is also an appropriate gauge choice for the back-
ground field method.
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It follows that the effective action (the generating functional of one-

particle-irreducible Green's functions) I'(@,4) is invariant under (5.8a) and
6Q5 = —gree unr (5.8d)

Finally, it is not difficult to show (Abbott [47]) that the arguments @ and A

only enter in I in the combination §+4,
I'(@.4) =T(Q+A) . (5.9)

Therefore, adjusting the sources j so that @=0 we obtain an effective action
I'(0.4)=I"(4) which is gauge invariant and which is sufficient (because of (5.9))
to compute all Green's functions.

The advantage of preserving explicit gauge invariance is that the cou-

pling and field renormalization constants defined by (*)
go = Zgu*’?g . and Ag = Z{/Fu R4 (5.10)

are related and one only needs the vacuum polarization to compute them.
The radiative corrections to the ghost propagator and to the cubic vertices
are not needed.

The infinities appearing in I must be in the gauge invariant form of a

divergent constant times (Fﬁv)z. But Fg, is renormalized by
(F&.)o = B /2o, A% — 0,A% — 92, Z}/ 21 % 4343 |

and will be gauge covariant only if it is proportional to £, . Therefore

(*) This is an unconventional field renormalization which is convenient because it leads to
(5.11). Abbott [47] chooses §g=2Zgg and Ag= Z}/?A which also preserves (5.11) but in-
volves a dimensionful coupling.
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Z, =ZiV% (5.11)
To compute the g tunction one notes that since gg is independent of u
u%'?lf—ﬂ Z#"”st«“u%f; 9#6—1%?1
And, using (5.11),
Bo)=-fg + BRI - by, Bgg) I (519)

In the minimal subtraction scheme Z, is a series of polesin ¢

which, when substituted into (5.12), must all cancel away so that g turns out
to be finite. The result is

- &, _ g%
Blg)=-39 - % T (5.13)

A direct calculation of the vacuum polarization in d =4 dimensions for SU(N)
Yang-VMills theory leads to

__11 g%~
Blg) = 3 (am)? (5.14)

This shows that g=0 is an ultraviolet stable fixed point and thus, that the
pure Yang-Mills theory exhibits asymptotic freedom
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Chapter 2. Changes of Variables and the
Renormalization Group

2.1 Summary

A class of exact infinitesimal renormalization group (RG) transforma-
tions is proposed and studied. The form of the transformations suggests
itself rather naturally after we formulate several known exact differential
RG’s. First we review the sharp-cutoff RG of Wegner and Houghton [1], then
we formulate a simplified version of the incomplete-integration RG of Wilson
(2] and finally we consider the hard-soft splitting RG developed by Wilson,
Lowenstein et al. and others [3-6]. The transformations are pure changes of
variables (i.e., no integration or elimination of some degrees of freedom is
required) such that a saddle point approximation is more accurate, becom-
ing, in some cases, asymptotically exact as the transformations are iterated.
The formalism provides a simplified and unified approach to several known
renormalization groups. The calculation of Green's functions is considered
and solutions for a scalar field theory are obtained both as an expansion in
e=d—4 and as an expansion in a single coupling constant. Some of the
details of the calculations and a pedagogical example, a scalar field theory in

zero dimensions (a single integral), are discussed in the appendices.
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2.2.1 Sharp-Cutoff RG

Here we review the sharp-cutoff RG derived by Wegner and Houghton as
simplified by Weinberg [1].

Consider the Green's functions generating functional in Euclidean space-

time,
Z = [Dy exp ~S,(v) . (2.1)

For the moment we are not concerned with coupling the field ¢ to external
sources. This problem will be addressed in Section 4.

Suppose field components with momenta larger than a certain cutoff

A.=Ae™™ have been integrated out, i.e.
p(g)=0 for g >A, .

This implies that the effective action S, consists not just of the simple
interactions contained in the bare action $=S5_, but rather of an infinite
number of arbitrarily comphcatéd interactions. Our problem is to study how
the action S, evolves when the cutoff A, is slightly decreased to Aris,. Sup-
pose we separate out the field components with momenta in the thin shell

between A, and Arisr
p(z) » ¢(z) + ofz) |

where now ¢{g) = 0 for ¢ > A4, and o(g) = O for g outside the thin shell of

thickness A07.

On integrating cut the fields g, the new action will be given by

exp =Sriee(pp) = fDU exp —S{p+a) . (R.2)
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The integration is performed perturbatively in three steps: first expand
S.(¢+0) in a power series in o, second. isolate a convenient o-fleld propaga-
tor, and third, treat the remaining oP vertices (p=1) as a perturbation. This
procedure, carried out in detail in Appendix 2.A shows that to first order in
the shell thickness only diagrams with one internal o-field line contribute.

The result is

Sreer(9) = S+(p) =

6%S, aS, 6.,
= [ddq(2m)¥a{q) 09(a)8¢(-q)  8plq) bp(-q)

(2.3a)

where A.(g) is a convenient ¢ propagator which vanishes for ¢ outside the

shell. Alternatively

S‘r+6‘r(¢) - S'r(‘?’) =

825, _ 85, 65,
0p(g)6p(—q) 6p(g) dp(~q)| "

=(2m)? AR %7 [0y (2.3b)

where now g®=A% .
To obtain RG equations an additional dilatation change of variables is
required. This is a rather trivial step which we will address later in Section

2.3.

The basic improvement of egs.(2.3) over those of Wegner and Houghton's
is that their equations include all diagrams with one internal g-field loop (i.e.
many internal ¢ propagators) while these include the much smaller set of

diagrams with only cne o-field propagator.
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2.2.2 Incomplete-Integration RG

In order to aveid the unphysical difficulties introduced by the discon-
tinuous cutoff considered in the last section, Wilson [2] introduced the con-
cept of incomplete-integration designed to achieve a smooth interpolation

between those degrees of freedom which have been integrated out and those
that have not.

This idea is implemented through the introduction of an auxiliary func-
tional §,{¢). In the case of an ordinary single integral §,(z) is a function such

that as a goes from 0 to e, the function z,(z),

za(z) = fdy zﬂ(y)da(y_z) !

smoothly interpolates between the integrand z4{z) and the integral z,{z). All

that is required is that

oue) - {990 for a2

Wilson's choice for §, was the Green's function of a certain differential equa-
tion It is perhaps simpler to use a Gaussian:

z
6.(z) = [——— +1 ] —4—a .
This single integral case is pursued further in an appendix, now we return to

the functional integral problem. We let a=a{g,7) and introduce
const = fD;o Sa(p—9)
into the generating functional Z,
Z = [Déezp-5(3) = fDyezp-S.(¢)

where
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ezp-S,(¢) = [ D& 64(¢-9) ezp -5(d)

52(9)‘@(9212

= thb exp- S(fb)+fdc'fl 2a(g 1) (2.4)

neglecting an unimportant overall factor. In eq.(2.4) and in the following we
adopt the notation df=d%q/ (2m)? and also 8(g)={2m)%4%(q).

The conventional usage is to choose a(g.7) such that S,(¢) describes
modes with an effective cutoff about A,=Ae ™ which means that a(g,7) is very
large for g >A; and very small for g <A,. A convenient, but by no means obliga-
tory choice is one in which the mode g(ge ™) in S,.¢, is integrated out to the

same extent as ¢(g) in Sy, i.e.
a(g,7) = a(g e %7, 7+67)
This implies that o depends on g and 7 only through the combination ge™

a=alg/A) .

The functional integral (2.4) can be transformed into the functional

differential equation

6283, _ 65, 65,
dp(q)op(—g) dulg) dp(—-q)) '

dS,

5o (2.5)

[
= fd*g(2mtalg 7)

where a=do/dr. This equation is obtained noticiﬁg that differentiation of
eq.{2.4) with respect to T brings down factors of (¢—#) on the right hand side
which may also be brought down through functional differentiation with
respect to ¢. Comparison of eq.(2.5) with the remarkably similar eq.(2.3a)

shows that here ad T is playing the role of a propagator.

Again, the full RG equations require an additional dilatation which we

postpone until Section 2.3.
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2.2.3 Hard-Soft Splitting RG

Another method which allows elimination of the short wavelength
degrees of freedom was suggested by Wilson [3]. It consists of splitting the
propagator of a massless particle into two pieces, one of which contributes
dominantly for high momenta while the other does so for low momenta:

1 u?

+ .
pi+f pR(pR+uf)

L= (2.6)

P
The idea was to take advantage of the UV asymptotic freedom of Yang-Mills
thecries to integrate out the hard components in renormalized perturbation
theory, and generate an effective action for the soft components which could
be treated using other techniques better suited to the strong coupling
regime.

The method was further developed by Lowenstein and Mitter [4], and by
Mitter and Valent [5], and applied to the weak coupling regime of quantum
chromodynamics by Shalloway [6]. In this section we formulate it in a simple
way which allows immediate comparison with the RG's described in the
preceding sections.

The actual splitting of hard and soft components is accomplished by

introducing
const = fDx exp —fdz—é—,uzf
into the path integral for Z,

1
Z = [Dderp-S(d) where S(§)= [dz 50208 + V(8)

and then making the change of variables ®=gp+g¢, and x=g,+8%%/ u®. The

result is
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1
Z = [DyDgy exp fdz 590 1——-)¢+ zw (8%~u®)pn ~ V{p+en)

where the separation of (2.6) is explicit. Integrating over ¢, leads once more

to
Z = [Dypezp-S.(yp)
where

1 o, 8%
ezp-5,{p) = [Donezp-|S(p+en) + [dz2p¥(Z5p+0,)?
e i

We wish to study the evolution of S, under changes of 7,(we are taking

u=u(7) ). It is convenient to shift variables back to & :

ezp-S{y) = [Déezp-

S(®) +fdé"% zlpcp(q)—@(q)’a] :

where p= 1+¢”/ u® This equation, which is very similar to eq.(2.4) can also be

transformed into a functional differential equation:

'f——ﬂ[( )d [ 625, 85, 55,]
dr se(q)p(—q)  »(g) 6¢(—q)

+ %P,-wm—-ﬁ;;) (27)

This differs from eq.(2.3) and eq.(2.4) only in the last term, which by now one
might suspecl is not essential,

Incidenteily, one could consider situations where x and p have momen-
tum dependeaces other than those assumed above, in particular one could

choose
(em)3u2 = pP+c

where ¢ is independent of 7. Then eq.(2.7) becomes identical with the original

incomplete-integration equation of Wilson {eq.11.8 of ref.[2]).
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The important conclusion to be drawn is that the various examples of
exact RG's considered above are characterized by a certain commeon feature,
which we might guess is what makes them useful RG's in the first place. The
variations are presumably inessential in principle, although in practice they
may be important. For example, the sharp-cutoff RG is definitely more incon-

venient to calculate with.
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2.3. The RG as a Change of Variables

Functional integrals are a particularly convenient way to formulate
quantum fleld theories not just because they readily allow for perturbative
expansions but also because the implications of the invariances or of the
changes induced in those theories by transformations of the dynamical vari-
ables can be easily studied. This feature has been found particularly useful in
the case of non-Abelian gauge transformations. In this section we consider
infinitesimal variable changes which reproduce the exact RG transformations

described previously.

Let us go back to eq.{2.1) and investigate the changes in the action S,

= bl oee

induced by the variable transformation

¢(g) » ¢lg) + 6T nlp.q) . (3.1)

where 7{yp.q) is some sufficiently well behaved functional of ¢. Taking into

account the jacobian of this transformation, eq.(2.1) becomes

[
z =fD¢[1+57fd‘q§§;%9)l] rw;v—[Sr+ §7 fdiq 25 n(so.q)]

op(q)

= [ Dy azp—Sy.e:(9) .

where
Sresr{®) ,= (¢) + 67 fddq [ ) (p.9) - _gég(%q)_l (3.2)
Suppose one chooses
65,
n(g.q) = —(2m%a(g.7) 6¢(—(:)) : (3.3)

Then eq.(3.2) becomes identical to the Gaussian incomplete-integration RG.

More generally, if one also includes an inessential rescaling of the field,
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., 65,
n(p.9) = -(2m)%alg.7) a:(-(:)) +¢g.melg) .

one obtains an equation of the form of eq.(2.7). From now on we will deal only
with the simpler transformation of eq.(3.3).

The conclusion is that transformations of the form of eq.(3.3) are RG
transformations.

Furthermore, one can see why they are useful transformations. A field
configuration ¢ which is a solution of the classical equation of motion
65,/ 6¢=0 will not be affected by {3.3). Any other configuration will flow with
T until it becomes a classical solution {i.e.,a stationary point), then it ceases
to Aow. As 7 goes to infinity a situation is approached in which all field
configurations are classical solutions, i.e. 65,/ dp=0 for all . The action

approaches a constant.

In the Appendix 2.B an example in zero spacetime dimensions, an ordi-
nary integral, is worked out. It allows one very clearly to see what is happen-
ing. The changes of variables are such that a "classical” approximation, i.e.,a
steepest descent approximation becomes better and better as T increases,
approaching the exact result as t»~. The reason the approximation is
improved is not that the integrand becomes steeper as one might at first
guess, but rather that it approaches a Gaussian for which the steepest des-
cent method is exact. The fact that this Gaussian is increasingly flatter (the
action approaches a constant) is not a serious obstacle. It merely requires us

to calculate the integral before the limit T-= is taken.

Traditionally RG techniques have been applied to problerms which exhibit
some kind of symmetry under changes of scale. In these cases it is con-

venient to perform an additional dilatation change of variables.
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Consider a situation in which the eflective cutoff is A Under the change

of variables

w(g) » ol(g) + 67 nlp.q.7=0) .

this effective cutoff is changed to Ae ~®". The scaling transformation g -»ge %"
then guarantees that the new momenta will span the same range (0-A) as

before. Thus one takes
6 — B
apl(g) = o7 (d—d.+q-£)¢(q) :
where the field dimension
d

includes an anomalous dimension term.

The full RG transformation is
, [ a
w(g) = ¢(g) + 67 n{p.q.7=0) + 6Tld-d,+9- g #(q) . (3.4)

and the full RG equation is

Sr=f ddq{wn)d&(q)

68S, __ 8S, &5, ]+
0p(g)8p(—q) bp(g) bp(-q)

65, B
+ W(d'd#% @)?(ﬂ] - (3.5)

where now a=do/dT at 7=0. This functional differential equation can be
transformed into an infinite set of integro-differential equations. Substituting

an action of the general form

S{p) = f} #qul---d‘?ng(iqj)uu(q1----:Qn-7)¢(q1)‘--¢(Qn) (3.8)
i=1

n aen ‘

into eq.(3.5) and equating the coeflicients of terms of the same degree in ¢
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one oblairs {omitting the T dependence)

Bun(q,...q,) _ | .
l"_\%“r_q.lzld—nd,—i qj.5—3—1-]11.,,@,...%)+fd]é“a(lc)umg(ql...q,,.k.-—k)+
=1

[m"’ ]n|‘2a(km)um(QI Gm-1km) Un-mi2(@m ** Gn—km)  (3.7)

ma2

where "z q; = i} g; and where Z denotes a sum over all permuta-
=l j=m iq,!
tions of the g,'s.

The equations (3.7) have an interesting graphical representation (fig.
2.1.) in which: the internal broken lines have factors of & acting as propaga-
tors. When a sharp-cutoff is employed, as discussed in Section 2.2.2, they

actually do correspond to propagators in the conventional sense.
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2.4. Green's Functions

The calculation of Green's functions or of correlation functions brings us
to the problem of coupling the field ¢ to an external source. The study of how
Green's functions calculated from the bare action S are related to those cal-
culated from S, can be done in a number of ways (see, e.g., Wilson and Kogut
[2] ). We would like to address this question in the spirit of the previous sec-

tion, regarding the RG as an infinitesimal change of variables.

Consider the generating functional

Z.(3) = [ Dy ezp[-S )+ [i¢] .

Performing a change of variables of the form of equations (3.1) and (3.3), (for

simplicity we do not include the dilatation change of variables) we obtain
. N d . - / 651‘ .
Z{j) = [Dg|:—67fd QJ(“Q)Q\Q-T)W exp(—S.+ fj¢) .

But,

8_57+fj¢ .

_ 6 -safie_ [p lilg) _ 05
Sl Rl ey S Rt Sl ey

and therefore

dz,
dr

977 (~q)dlg i (0)) 2:G)
Integrating in T with the initial condition S_.=S, i.e.
Zu(j) = Z(G) = [ Dy ezp(=S(p)+ [5¢)
leads to
2(i) = exp|- [d73(~)a(q. M (9)] Z:) .

which exhibits the desired relation in a particularly simple form.
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The generating functionals for connected Green's functions, W=-logZ

and the corresponding ¥, are related by

W) = W.(5) + [dd5(~q)alg. T)ilg) .

This shows that the connected n-point functions computed with S, are identi-
cal to those computed with S for n=3 while for n=2 they differ in a rather
trivial way. In this formulation it is then particularly clear that physically
significant quantities such as critical exponents or S-matrix elements can be
computed with either Z or Z, and that they are independent of the choice of

o, that is, independent of the choice of the RG, which is a well known fact.
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2.5. Solutions

Obtaining solutions to the RG evolution equations (3.7) is a challenging
problem. In this section two conventional approximations are discussed, an
expansion in £¢=4—-d and an expansion in a single coupling constant. One
motivation is to give us confidence that the expressions in the previous sec-
tions are correct in spite of the lack of mathematical rigor employed in their
deduction. Another motivation is to compare the two approximation schemes
which, although leading to differential equations of similar structure,
represent different viewpoints. Finally, yet a third motivation is to stress the
larger freedom in the choice of the RG. This is important, not only because it
allows one to construct RG's in which the usual restriction of integrating only
over short wavelength fluctuations is lifted, but also because it will allow us to

construct gauge covariant RG's.

A standard approach to solving eq.{3.7) consists of finding a fixed point
and studying the evolution of small perturbations about this fixed point. One
looks for a fixed point solution S* for which the vertex functions w, * do not

depend on T as an expansion in ¢ :
U ® = Vg + V& + Vigge® +...,
U* = Vyge + Vae® +... , ug® = Vget? +... (5.1a)
with the anomalous dimension given by
Ve = 718 + ¥t . (5.1b)

The crucial extra condition imposed on the solution and on the RG
transformation (3.4) (i.e., on the anomalous dimension 7,) is that the solu-

tion be analytic in the momenta. The need for this condition can be vaguely
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argued as follows. Non-analyticity in momentum space translates into long
range or nonlocal interactions in position space for which some features of

critical behavior, like universality, are known not to hold.

Details of these calculations, which are similar to those obtained by
Shukla and Green [7] for Wilson's incomplete-integration RG, can be found in

Appendix 2.C.

An alternative perturbative approach consists in expanding in a single
coupling constant g{7) without referring to any fixed point. One looks for a

solution of the form
Up = Upg + gUsy + g2Uge +...
w, = A (gU,y +g%Ug +...)
ug = A% (g%Ugs +...) . (5.2a)
with an anomalous dimension given by

Yo =G T 7297 . (5.2b)
and g {7) flowing according to

5% = —p(g) =b.g + bag® +.. (5.2¢)

Factors of A have been made explicit so that the various /s have the same

dimensions they would have at d=4.

The crucial extra condition imposed on the solution and on the RG
transformation in this perturbative approach is that all T dependence be
contained in the single function g{7). This brings us somewhat closer to the

spirit of the Gell-Mann and Low RG. The other functions are required not to
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depend on 7 but could be non-analytic. These calculations are carried out in

Appendix 2.D.

While none of the results obtained in those calculations are new, the
freedom in the choice of the "cutofl” function o't(q) is explicit. In particular,
one is not required to integrate only short wavelengths, that is &(0)=O. as for
example in the usual &(q)=?§. One can integrate the long wavelengths as

. 2
well, for example a{g)= 1equ— or even integrate all wavelengths simul-

RN
taneously to the same extent by taking a= #=co'nst.

Although physically significant quantities such as v, or B{g) are indepen-
dent of a the same is not true of the vertex functions u,. In particular one
should be careful with the otherwise very convenient choice a=const. For
this choice of a the vertex functions contain parts which are divergent as
d~4. This is annoying but nothing more. The way around this problem is the
usual one, to think of the u,'s as separated into twe parts u, =uf+uf one of
which is finite while the other is a divergent counterterm. The RG equations
(3.7) keep track of the evoluticn of both the finite and the divergent parts.
The presence of these divergences is a manifestation of the fact that while

the RG was historically connected to renormalization theory such a connec-

tion, although sometimes convenient, is not at all necessary.
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Appendix 2.A. The Sharp-Cutoff RG

In this appendix we integrate out the o flelds in the thin momentum
shell and deduce equations (2.3). As discussed in Section 2.1 this process
involves three steps. -

step :: Expand S,{(¢+0) in a power series about 0=0.

Sp+o) = ic I%fdzl o dzp S (px, - zp)o(zy).0(Zp) | (A1)
p=c P!

where

67 S.{(¢)

S¥)Np.z). zp) = 8p(zy)...60(zp)

step 2: Identify a convenient ¢-fieid propagator.

Rewrite the quadratic term in eq.(A.1) as

1
§fd-210'225-$2) (p.x1.22)0(z1)0(ze) =

1 1 &
= gfd'za(x)aza(z) + Efdr,dzgs.ﬁz)(;o,z,,zz) ,

and let S¥)=5%) for p#2, so that a convenient propagator is

6TAZ 2
(2m)

bz —y) = [dFA(g)e V) = Jd0geaEw) | (4.2)

step 3: Treat the o vertices perturbatively.
Rewrite eq.(2.2) in the form

exp—S-, = exp—|Y, — fdz, dz; 5P — Y
p=Sr+6:(®) p L;op!f 1 PUT O §4(x,) 87 (zp)

1 .- ,
ngoexp—fdx(-éaA,‘a—ja) li=o -

Since each ¢ propagator contributes a factor 67, (eq.(A.2)), while each vertex
3?) contributes a factor (67)° it follows that to first order in é7 only

diagrams with one internal o line need be included. Therefore
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Sroarls) = Selp) = [z dz S021m2)|SP (2,.22) -5 (z) S ()] +
+ 0(67%) ,

where at the expense of a ¢ independent constant, which may for our pur-
poses be ignored, we have dropped the bars. Rewriting this expression in

momentum space leads to €q.(2.3) as desired.

Appendix 2.B. A Field Theory in Zero Dimensions

In this appendix we consider in more detail the application of the RG for-

malism described previously to a field theory in zero dimensions for which

]
|
{
™
4

the partition function is an ordinary integral. This stud
concepls in a much simpler setting exhibiting the essence of the RG transfor-
mation as a change to variables better suited for a semiclassical approxima-
tion, and also to illustrate the fact that these RG's are not restricted to sys-
tems with an infinite number of degrees of freedom. First we deduce the
incomplete-integration RG equaticn interpreting it as a change of variables
and then show that a steepest descent approximation becomes asymptoti-
cally exact for the RG evolved action. Finally, as a practical example we per-

form a RG improved perturbative caleulation.

As discussed in Section 2.2.2 "incomplete integration” is achieved

through the introduction of a constant,
e 1
1= N;‘fdx S.{y~z) , where N, = (1+4ma)? ,
into the "partition function” z, so that

z = N,;l}dz exp —=Sy(z) . (B.1)

with
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exp—Sa(z) = fdy ba(y—z) exp-S(y) . (B.2)
Using
daa(z) - 2 dzda(z)
da  1+4ma ba(z) + dz® '

equation (B.2) can be turned into a RG differential equation

2
21

T 1+ana

dS,(z) _ d35,(z) _ [dsa(x) (B.3)

da dr? dx

This evolution can be interpreted as a sequence of changes of variables.

Changing z to z+7nda in (B.1) leads to

2 = J"v’-‘éda fduu" ex _Sa+da(z) N

where

_ dSq(z) dn 2nd o
SaraalZ) = Salz) + —p—nda - rda - T

dS
If one chooses 'r7=—?‘x this is precisely the RG equation (B.3).

Equation (B.3) can be transformed into a system of differential equa-

tions for the evolution of the "vertex functions”. Substituting

Salz)= Y Zun(@)z"

n=0,gven " “’

into {B.3) one obtains

e RSO 1| M (B.4a)
and for n#0

m_-i]umuﬂ-mz : (B.4b)
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Now we come to the question of why it is useful to go through the trouble

of solving (B.3). Consider a steepest descent approximation to (B.1) :

1

g = N;! 2ezp—S‘,(“x‘m) +...

S (Za)

where S{*) is the n-th derivative of S, and Z, is the saddle point, S (%,)=0.

The incomplete integration was designed so that as a»= the exponential
factor on the right hand side, e %% tends to the desired exact value z. If the

leading steepest descent approximation is to become exact it should be true

that
1
Lim N;l[ - j:‘_ ‘2 =1 (B.5)
ave |Pa \xa)J

It is easy to see that this is so by referring back to eq.(B.3). As a-= the left
hand side vanishes. Evaluating at the saddle point Z,, the second term on the

right also vanishes and one gets

21
1+4n¢

S8 (z,) » (B6)

which implies (B.5) as desired.
It is interesting to see what is happening from another point of view.

Consider evaluating

z = fd.'r: erp (—z-wz2+-——)\z4)

If A is small enough one could try a perturbative expansion
21\ 3 A
o (ETNyEeq 2
z & w.) (1 P + 0(Z®)) (B.8)

But one could refer to eq.(B.1) and try a RG improved expansion :

1
z & N;! e—uo(a)(_z_ﬂ'_. 2( {13__;_((__))_ +..) (B.9)
Uz

ug(a)
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where ug{a) uz(a) and u,{a) are solutions of (B.4) with the initial conditions

1£0(0)=0, up(0)=w and u4(0)=A. To order A these solutions are

_ 1 1+2wa Aa® 2 \
ug{a) = 2log Tiara T 2(1+2wo) + O(N%) (B.10a)
_ w A 2 )
wal®) = 13w * (1+2wa)? + O (B-100)
A 2
= + R 1
Ua(®) = sy + OO (B.10c)

According to (B.10b) up(a) tends to vanish as o increases. This could mean
trouble since as the integrand becomes flatter and flatter (this is apparent in
eq.(B.6) also), the reliability of the steepest descent approximation would
become increasingly doubtful. Fortunately we are saved by (B.10c) which
shows that the "interaction” 4, vanishes much faster and the integrand
approaches a Gaussian, a rather flat one but still a Gaussian. The perturba-
tive correction us/ uf in eq.(B.9) asymptotically vanishes.

Given the vertices (B.10) correct to order A, the best approximation is

obtained by letting o :

A (
Bw? '

N
Wl

z ~ (50)2 ezp—

e|

which has the typical exponential of RG improved calculations.

It is quite remarkable that one can study the powerful RG techniques at
work in such a simple example. It is perhaps even more remarkable that in
this simple study even their limitations become apparent. For the simple
case {B.7) the exact result is known and for strong coupling (large A) the

correct dependence on A is the power law
2~ ingdy &)
274N

and not the exponential dependence of (B.11). This illustrates the known fact
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that while RG perturbation expansions are an improvement over plain per-
turbation expansions, they remain nevertheless restricted to the small cou-
pling regime. Needless to say, this is not a limitation of the RG itself
(egs.{B.3-4) are exact) but of the perturbative solution (B.10) to the RG equa-

tion {B.4).

Appendix 2.C. The ¢ ¥xpansion

The RG system of equations (3.7) is greatly simplified if one realizes that
the solutions of interest are not the most general solutions of the first order
partial differential equations in which the momenta g; are independent vari-
ables, but rather those special solutions with interesting scaling properties
when all g; are scaled together. The unwanted solutions can be discarded by

evaluating (3.7) at momenta Ag; with A=e” instead of g;. This eliminates the

partial derivatives and (3.7) becomes
d ~ L]
{%d)\+nd "d}u’n()\Ql M A) = [aF alkYunsa(Ag1 - - - Agn k. —kN) —
b3
1
Z [mn_l] " Z (Akm)um()\QI ’ AQm—l-)\kmrA)un—m+2(7\qm T AQn-"}\km-A)‘
ma2 ™ fgy)

(C.1)

Substituting eq.(5.1) into (C.1) leads to a set of first order ordinary

differential equations for the V's :
(Ad—)\"'D) Voo = =20 V3, . (C)
(7\ =—2) Va1 + 271 Vo = SdEaV,, - 4aVaoVay | (C.3)

d ; d :
(A xR Ve + BN Var + R72Ve0 = JdFaVy + Efdk‘cx Var b=o

- Z&ngl - 4&V20V21 ) (C4:)
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d .
AoV = —Z(iano) Var (C5)
[+ 2N 7

d . . .
Ay Vaz + (471=1) Ve = [dfa Ve - Z(i,a Vao) Vaz — z(i;,a Va)Var .« (CB)
i

d a .
(Aa‘x"'?)Veg = —2(§a Vgo) Vez - 2(& V41V41 + 8 perm) . (C?)

j
The arguments of the V's can be easily obtained by referring back to
eq.(C.2). In eq.(C.7) the ten permutations refer to the inequivalent ways of

grouping six rmomenta into two sets of three.

Equation (C.2) is of the Bernoulli type. The solution behaving as Vggg?

for small g is

20(g) = ¢°f {(g)
where
1 rdA
Fig)= 1 = ezp-2 [ S2a(Ag) Vao(Ag) (C.8)
1+q2fd)\2a()\q) °
0

The second equality is very useful because it will allow us to construct
integrating factors for all the remaining equations (C.3-7) which are linear.

The solution to (C.5) is
4
Va(g1--9) = A J]f (g -
j=1

Next we solve (C.3). The fixed point {8V,,/ A=0) and the analyticity

requirements force us to choose ¥,=0, so that

1
Varlq) = (Cg* — SAB) f3(q) .
where C is a constant and

B = [df alk)f¥k) . (C.9)
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This completes the solution to order ¢

The solution for {C.7) 1s straightforward,

Vee(gy...qe) = -AzLﬁf(q,-) [D(Q1+QE+‘13) + 9 perm| |, (C.10)

where
D(k) = -2-[ ~f (k)] .

The solution for V., is messier, the only important point being that in
order to eliminate a divergence at A=0 (or g=0) the constant 4 in V,; must

be chosen to be A={4m)%/ 3.

Finally, we turn to Vpp. Again its explicit form is not very illuminating but
the requirement that it be analytic at g =0 determines both V,3(0...0) which

is not in itself very interesting and also s :
4m)t c 1 TN .
7e= -1 [arar L r )y (607 @) (C.11)

where Q=k+k' and f'= d—z-z—f (k). The integral in eq.(C.11) is complicated, it
can be done analytically for a= %e 9%/ & or else numerically for o= é or for
.« a2

a=?\;. The result is ye=—=

so that 7,= as it should be. This completes

108 108

the solution to order &2

Appendix 2.D. The Perturbative Solution

Substituting egs.(5.2) into (C.1) leads to the following set of equations

for the U's:
(7\——2) Uso = —2aU% | (D.1)

d » .
(A5 —2+01) Uzt + 271Uz = & [dEaU,; — 4aUzUs, | (D.2)
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(Afx-zmbl)c'ag + {(bg+2y) Uz + 2ygUs0 = A° [dEa Uy +

- 2aU% —4aUgUs; | (D.3)
d ks
(gx 1= Uar = ~2(5a ) Uas (D4)
(Afx+2b,—s)U4g + (botay) Uy = A fdE QU +

— 2336 Uao) Uz ~ 2(3aUa) Uss | (D5)
J J

8 , .
(A%+2bl+2_28) Uﬂa = —2(2& UZO) U82 - 2(& U.u L’41 + 9 perm) . (Ds)
J

These equations are naturally very similar to those of Appendix 2.C and
their solution proceeds exactly as before except that now, as discussed in
Section 2.5, no requirement of analyticity is made.

The solution of {D.1) behaving as Ug®g? for small q is

Unolg) = gf (q)

with f (g) given by (C.B) as before. The integration of (D.4) is straightforward.
We want Uy, independent of A so that all the evolution of gU, is attributed to
the evolution of g. This forces us to choose b,=&. Further we normalize

U,:(0...0)=1 which is the conventional normalization for g. Then
Un(g1-94) = f[lf(%')
J:

Next consider (D.2). The requirement that Up is independent of A

implies y,=0, and one obtains the in general non-analytic expression

)

Uay(g) = A':(qu_”—'z'_—e F&q) .

where B is given by (C.9).
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The solution for {’g; 1s uneventful, one obtains the expression 1n
eq.(C.10) with A=1.
Finally, the solution U to eq.(D.5) does not depend on A provided one

chooses by=-3/(4m)? + O(e), that is

=2 = p(g) = —sg + (o + 0(6) ) g +...

3
(4m)?
as it should be. We stop here since the solution for Ugs and v, proceeds in

just the same way.

One final comment concerning the choice of the "cutoff" function o 1f
one chooses a constant a=1/A? the vertex functions develop divergences as
d-4. This is evident when one computes the constant B given by (C.9). As
discussed further in Section 2.5. this is not really a problem, particularly
since physically significant quantities such as 7, and 8(g) are perfectly finite

and independent of a.
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Fig.1.- Graphical representation of the renormalization group equations (3.7).



Chapter 3. A Gauge Covariant Renormalization
Group

3.1 Summary

As an application of the ideas of the previous chapter we propose an
exact gauge covariant renormalization group transformation which is a pure
change of variables. The corresponding RG equations are obtained. By taking
the subtleties of gauge fixing into account it is shown that the gauge invari-
ant RG-evolved action is equivalent to the usual action as far as the computa-

tion of gauge invariant quantities is concerned.

Although the gauge symmetry is manifestly preserved by the RG evolu-
tion it is convenient to study the constraints which are imposed on the ver-
tex functions by gauge invariance. A method to do this is devised which is

simpler than a previously existing one (Kim and Baker [1]).

The perturbative solution of the RG equations shows that only certain
initial conditions (i.e., bare actions) are compatible with the constraint that
all the RG evolution be described by a single coupling constant. The 8 func-

tion for this single coupling for the SU(N) gauge theory is calculated to be

_2lL_N
6 (¢m)?

result, -22 —j—v—gs, Unlike the scalar theory case the iteration of the RG

6 (4m)?
transformation does not lead to an asymptotic situation in which the saddle-

g3 at the tree level while a one-loop calculation yields the usual

point approximation is exact. The details of some calculations and the
demonstration of an interesting result concerning the RG evolution of the

Fadeev-Popov determinant appear in the appendices.
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3.2. The Renormalization Group Equations

The Green's functions generating functional Z(j) for the pure SU(N)

Yang-Mills theory in Euclidean spacetime is given by (see e.g.[2])
Z() = [ DA bo(4) 6(G(A)) exp ~|S(A)- [z 5] | (2.1)

where the action S(A) is gauge invariant, G(4A)=0 is the gauge condition and

Ag(A) is the Fadeev-Popov determinant.

As discussed in Chapter 2, exact RG transformations may be con-

structed which are infinitesimal changes of variables consisting of two parts
Aﬁ i Az + 54{114; + 5“.;1‘1; ,

The first piece, the dilatation 6434, is rather trivial. It is conventionally
included, although this is not necessary, because it simplifies the analysis of
problems in which scaling phenomena are the object of investigation. The
second piece 04, is the important one. It is such that a saddle point
approximation performed in the new variables is more accurate than in the
old variables. In special limiting cases it accomplishes the elimination of cer-
tain degrees of freedom, a characteristic feature of many RG transforma-

tions.

We saw in Chapter 2 that the change of variables ;4 includes a term

6S
linear in —d_Al where S, is the RG-evolved action and 7 is the parameter

which describes that evolution. In order that the transformation be gauge

covariant, one chooses for example

6S,

SeniAlz) = '5T‘5‘5A(x) ,

where &=&(D.‘r) is some differential operator and D is the covariant
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derivative. The simplest choice, a=const. dependent only on T, leads to

. - 67 6S.,
SuuAl (2) Az __—JA: @) (R.2a)
where A,=Ae " or equivalently, in momentum space
¢ 65
beuAR(g) = - é(2m) - (2.2b)

AP AR(-q)

This gauge covariant transformation, which is the one we will employ in what
follows, differs from the transformations usually employed in studies of criti-
cal phenomena in that it tends to integrate out not only the short
wavelengths but alsc, and to the same extent, the long wavelengths. This

strange feature seems to be necessary if gauge covariance is to be achieved.

For the moment we will neglect the complications due to gauge fixing to
which we will return in the next section. Following the same steps that led to
(2:3.2), the evolution of the action S, under the transformation (2.2) is given
by the RG equation

dS.(4) _ (2m)? [atq 62S, _ 65, 6s, |
dr AE 6AZ(g)6A%(~q) 6AL(g) 6AS(-q)

(2.3)

By construction the evolution is such that if the bare Yang-Mills action

S(A)=S_.(A) is gauge invariant then the evolved action S,(4) will also be so.

As mentioned above one may want to perform a dilatation also

SguAB(z) = —67(dg+z. aiz)A; (z) (2.4)

where the field dimension
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includes an anomalous dimension term 7y4. Equation (2.4) may be rewritten

as

b AL(z) = 67,5, + DB (2,43) + (d4=1)A

While the first two terms are gauge covariant (in fact, the second is just a
gauge transformation which could be omitted if desired), the last term is not.
Fortunately, this noncovariant term is not a problem because it is just an
overall multiplication of the field by a constant and this may be reabsorbed
into a running coupling constant g (7). Thus the RG transformation will take

an action §, invariant under the gauge transformation

8A%(z) = 8,0%(z) — g (T)f A4 (z)0 (z) , (2.5)

into another action S.,s which is also gauge invariant but now under a

different gauge transformation

6AL(z) = 8,08 (z) — g(T+6T)f ¥ AL (z)0F (z) .

The evolution of g (7) is such that under A-e ~rldg ),

g(DA » g(n)e Vg = g(r+67)4 .
Therefore

Blg) = -g% = d—;‘:y +974 - (2.6)

This relation between 7, and f§ is the same that holds in the ghost free axial

gauges and in the manifestly gauge invariant background field gauge .



-85 -
In analogy to Equations (2;3.4) and (2;3.5), the full RG transformation is

(217)‘ 637
N 6A%(-q)

Ap(q) ~AL(g) - 6T Ai(g) . (2.7)

+ GT[d-dA+q. 595

(note that here 6,4 is evaluated at 7=0) and the corresponding RG equation

is
M=Idd {(277)‘ 6257 - éS, 6S,
dr N A [542(9)6A%(~q) ~ 8AE(q) 643
65, 3,0
* Mz(q)(d-dﬂq- @-)An(q)] : (2.8)

The RG functional Equations (2.3) and (2.8) may be transformed into an

infinite set of integro-differential equations. Consider an action of the general

form
@ 1 . n a'l T On a,
Se(A)= L o df dRE (g a4y, M) A ™(90)(R.9)
R=1TH J=t 1" Mn

where the T dependence of the vertex functions wy, is not written explicitly.
As before, we use the notation d§ =d%g/ (2m)% and 8(g)=(2m)%6%(g). Substi-
tuting into (2.3) and equating the coefficients of terms of the same degree in

A cone obtains

8 la, - a, [al-'- a, o a
Wnlﬁl"'Qn = 2fd£wn+2QI"' 9n k ~k| -
A2
L L bn MM
[
e SR Qpn " Gn a
n
1
o) (,J‘.J;Ewmq1~- q"l.—lkm W mezlm * Gn —km| (2.10)
A'rm.=2 -Iq;i L fhmer M Coe u

-1 n

where Ic,,,,:—-ﬂz1 g;= 2 g; and where 2 denotes a sum over all permutations
J=1 i=m ig;

of the g;'s
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The same procedure may be carried out for the RG equation with dilata-
tions, Equation (2.8). As discussed in Appendix 2.C, it is convenient to evalu-

ate at momenta Ag; with A=e”. The resulting system of RG equations is

4 a, - an 4 2, a, a a
(AH"'MA_‘!)‘WYI AGy ' AGn =X2'fd£"wn+2)\ql"' Agn k —k| +
b1 Mn My Hn 4H
;' Op-y a Cpn - Gp a
1
_-1—\1:2_ ﬁgLn?-l]m{Z;wm g1 Agme1 Mo | Wnoms2|AGm - - AQn —Mkp |
m= g i Mmer W B Mn M

(2.11)

Below we will obtain perturbative solutions to both (2.10) and (2.11), but
first we must show the RG equations above are legitimate when the gauge
fixing term and the Fadeev-Popov determinant in (2.1) are taken into

account.
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3.3. Gauge Fixing, Expectation Values and the RG Transformation

In this section we wish to study in more detail how the transformation

(2.2).
A+ B(A) = A+6ieA | ' (3.1)

is carried out. For simplicity we will not consider the full transformation
involving also a dilatation.

We will take advantage of the fact that obtaining the gauge dependent
Green's functions is not an énd in itself but merely a useful intermediate cal-
culational step and thus, of the freedom to choose different gauge conditions.

For example, the generating functional

Z,(j) = fDA Ag(4) 8(G(4)) exp ~(S(4)- [ dz jA) . (3.2)

could equally well have been expressed in a different gauge condition

G'(4)=0,
Z{5) = DA Ag(4) 8(G'(4)) exp—(S,{4)— fdz jAq) . (3.3)

Here, (4) is the gauge transformation that takes a field configuration A in
the G' gauge (G'{4)=0) to the corresponding field configuration Ag in the G
gauge (G{A4q)=0). Consider now the functional Z',(j) obtained by dropping

the subscript Q in (3.3),
Z'(j) = [ DA bol4) 6(G'(A)) exp —~(S,(4)—fdz jA) .

Green's functions obtained with Z',(j) clearly differ from those obtained with
Z.(5). This is a reflection of the fact that Green’s functions are gauge depen-
dent quantities. However, it is quite obvious that Z, and Z', are completely

equivalent as far as the computation of gauge invariant quantities is
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concerned. We will denote this equivalence by the symbol "~", for example:
Z,NZ

Let us then change gauge from G(4)=0 to G'(4)=G($"!(4))=0 and make
the RG change of variables (3.1). We obtain

Z.(j)~ [DA detg—g Boe-ty(8(4)) 6(G(A)) exp —(S-(8(4))- [dz j&(4)) .(3.4)

In the Appendix 3.A it is shown that the Fadeev-Popov determinant for any
linear gauge G is invariant under these successive changes of gauge and of

variables,
Boge(@(4)) = B(4) . (35)

This is a non-trivial statement dependent on the particular form of & given by

(3.1) and (2.2). Thus, (3.4) may be rewritten as

Z.(3) ~ [ DA Bg(A) 6(G(A)) exp ~{(Sr.sr(A)- [dz j(4)) | (3.6)
where
Seasnld) = S(8(4)) — log det = (3.7)

Using (2.2) one sees that (3.7) is the RG Equation (2.3) we wished to obtain.

Finally, we would like to study how expectation values obtained using the
RG-evolved actions in (3.2) and {3.6) are related to those calculated using the

bare action in {2.1).

It is convenient to choose an axial gauge (which as discussed above
implies no loss of generality). This simplifies dealing with Ag(4) which is in
this case field independent and can now be taken outside the integral sign.

Notice that from our point of view this property (the field independence of A¢
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in the axial gauge )is useful only if it is preserved by the RG evolution. This is

guaranteed by (3.5).

Then, using (2.2), (3.1) and also

0= fDa L(:) + 6jf;)] 5(G(A)) exp ~(S,~ [z jA) |
Equation {3.8) may be rewritten as
21) ™ Zuvanld) = 3| e 182)] 2,0
or equivalently as

Z‘r—G‘r(j) :

[
Z.(5) ~ exp [j’\—;-'f dz j%(z)

Iterating this expression leads to

T

[8T [z j3(z)

Z‘r(]) N exp ‘ro'l'\:g' Z'ru(j) .

Taking S_«=S or Z_.=Z as the initial condition one obtains

zfmwexp[ziﬁ [z %) 26) . (3.8)

just as for the scalar theory (Section (2.4)).

The conclusion is that Equation {2.3) is a legitimate RG equation pro-
vided that Z,(j) be used to compute gauge invariant quantities only. This is

not a serious limitation.
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3.4. Constraints on the Vertex Functions Due to Gauge Invariance

The RG evolution expressed by (2.3) or (2.8) is such that provided we
choose a gauge invariant initial condition (i.e., the bare action S) the invari-
ance of the RG-evolved action S, automatically follows and we need not worry
about it. However, it is useful, and as we shall see in the next section it may
provide further insights, to inquire what information about the structure of

the vertex functions can be obtained from the gauge symmetry alone.

The invariance of the action S, under the gauge transformation (2.5) is

expressed by

6S,

=0, !
5 5ak ) ()
or, in momentum space
. S, 6S,
= (‘r)f“bc df A® (k—-q) (4.2
W“dA,‘i(q) g f [ 6A‘f,(k) \ )

This mz::xy be transformed into a set of identities, a form of Ward identities,
between the vertex functions. Substituting (2.9) into (4.2) and equating the
coefficients of terms of the same degree in A, one obtains the well known
identities which determine the longitudinal projections of an (n+1)-legged

vertex in terms of the vertices with n legs,

aal...a'n ral--.aj_l b an
X b
Gun|g 91 " Gn| =9 f}f“’ Wpigy g1 Y9 ga| . {£3)
=
LS & 8 ! M1 Hi-r By Mn
n
where g+, ¢;=0.
j=1
For n=1, (4.3) becomes
a a,
quwz|9 9,|=0 , g+¢,=0,
Ly

and the tensor structure of w; is therefore completely determined
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a b
welg —g| = 6% Plq) walg) . (4.2)
v

where P, (q)=6,,~ g—:g—’
The statements made so far in this section are well known and have been
included mainly for compléteness and to establish the notation. Now we

study other consequences of (4.3). All vertex functions can be decomposed

into two parts
w, = wl+wd

the first of which, w,T, is transverse in all » legs, that is

Weld: ' 9n =Pp1v1(QI)' ’ 'Pp.nvﬂ(qn)u)r;QI " Qn - (46)
b R

This completely transverse component obviously makes no contribution to
the left hand side of the Ward identities. The second component w contains
terms which are longitudinal in at least one of the momenta entering through

its legs. This is expressed by

ul PR %
Pplvl(QI) e 'Pp,‘vn(Qn) wy g1 " gn|=0. (4.7)
vl CEEE Un

Equation (4.7) is very useful because together with (4.3) it completely deter-
mines the (partially) longitudinal component w. It is easy to see how this
works. On multiplying out the projection operators on the left one finds there
is one term with zero momenta {just a product of Kronecker é's), n terms

with two momenta, then terms with four momenta and so on,

a’l '1'% ( al --.%
ql)p.I(QX)v
wrlgy - gal| = ———q-lz-—-—‘wéql"'qn+~- +
1 T Hn Vi "t Mn

+ {terms with 4 q’sJ + (4.8)
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Now one eliminates all wy’s on the right using the Ward identities (4 3) and

the desired unique expression for wl in terms of wy, -y, _2. ... results.

Carrying out this procedure for n=3 (see Appendix 3.B) one obtains

la & ¢ q
wélz P k|l= igfabc {E%(WE(P)PW(P) —wy(k)Pye(k)) +
v o
Pk, :
+ TR wz(q)k;‘PM(q)] + {2 cyclic perm.} (4.9)

Notice that w§ contains singularities when any of the momenta vanish. This
is quite natural since the definition (4.7) of the wi's contains projection
operators and the property of being transverse to a momentum g becomes

ill-defined as g »0. Therefore the singularities must necessarily occur.

In the past (see, e.g., Baker et al. [3] and references therein) it has been
found useful to employ a trial expression for a vertex function which satisfies
the Ward identities and is free of the kinematic singularities described above.
Such trial vertex functions may be constructed by adding to the wf calcu-
lated as above a completely transverse tensor carefully tailored to cancel
the singularities {see Section 4.2 below). This transverse tensor is clearly not
unique.

Following a method very different from the one we have described Kim
and Baker [1] have obtained a trial form for the cubic gluon one-particle-

irreducible vertex in both the axial and the covariant gauges.

The calculation of explicit expressions for the wl's for n>3 is straight-
forward although quite laboricus. It is quite fortunate that when solving the
RG Equations (2.11) we will not need the full quartic vertex w, but only a

highly contracted form

la a b b

wy(gp)=wsg -9 2 -p| - (4.20)
n v v
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In the Appendix 3.B the longitudinal component of this contracted vertex is

calculated to be

Tl p) = g’w*{‘%l [wetp +9)-2uwa(p) +wetp )] +

wy(p ‘HI) wa(p-q)
®+9? = (97

'@—"1‘)‘{“/2@*9) —Rwp( Q)""wz(P‘Q)] ll—m

(4.11)

It is interesting to note that while the Ward identities constrain wf to be
completely determined in terms of wg and wj, the constraint on the con-

NL s N'Z' ]
tracted form wy is far greater: w, is completely determined by w; alone.

The gauge constraints studied above may be used to simplify the RG
equations. For example, (4.4) shows that the quadratic vertex contains just
one unknown scalar function. Then the RG equation (2.11) for n =2 may be
considerably simplified without any loss of information by taking its trace, in

which case one obtains
A2 +2d, —d) we(rg) = —-—1—-de‘1¢7 (A k) — Swirg) . (412)
dh A ( —l)A’?’ 49@N\g, AZ 2 . 4

Furthermore, for n>2 one needs to study only the RG evolution of the
transverse components w,] (the longitudinal ones are determined by gauge
invariance alone). Multiplying (2.11) by a string of projection operators

P,.....P,. and rearranging one obtains {for n#g2)

[ a a

a 1 k k
()\-&-X+ndA—d)w,T= Xi.f‘w Wi sz + Pl'-'Pn'#zwrwz ok <k +
TR
T T kmukmv [ LR + A [ - a
Z n! Z mWn —m +2 +P1"'Pn_—k2_wm “ o Mem [ Whomez| 0 “ANem
(Qﬂ N oy

(4.13)
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The second and fourth terms on the right may be rewritten further using the
Ward identities and the multiplication by P,,....P, eliminates all longitudinal
components. This means that the RG equation for w] contains on the right

hand side only the transverse components of other vertex functions.

Clearly, analogous manipulations may be carried out for the RG equa-
tions without dilatations (2.10), they are very similar and not worth repeat-
ing.

One final comment before closing this section. As far as the gauge invari-
ance is concerned one may take all wf=0 for n>2 (putting wy=0 is certainly
not interesting). Is this zero value preserved by the RG evolution ? In other
words is wi(7)=0, n>2 a solution of the RG equations (4.12)? The answer is
no; for n=4,m=3 the last term in (4.12) is proportional to w,w,#0 so that
even if one takes w,=0 as an initial condition, non-zero values will be gen-
erated by the RG evolution. Thus, the transverse components, undetermined

by gauge invariance, are unavoidable.
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3.5. Perturbative Solution of the RG Equations

We will look for solutions of the RG Equations (2.11) written in the form
(4.12) and (4.13) which are expansions in the single coupling constant g (7).
Later we will consider the similar solutions to the RG equations without dila-

tations, (2.10).

In d=4-¢ spacetime dimensions, let

Wa = Wzo“‘ngze +..., (51&)
wg = AVE(gWg + - ), (5.1b)
w, = NG W+ - ), (5.1c)

with the anomalous dimension and 8 function given by
d £
74=79%+ - and Blg)=-AZ =-Zg +y+ o (5.2)

We have rescaled g -A*%g and made explicit factors of A*’? in (5.1) in order
that g be dimensionless and that the W's may have the same dimensions
they have at d=4.

The anomalous dimension v, and, as we shall see, the solution itself is
determined by the requirement that all A=e” dependence be contained in the

single function g (A), i.e. that the #'s be explicitly independent of A.

Substituting (5.1) and (5.2) into (4.12) and (4.13) one obtains

(- WalAg) = ~ZWh (A7) | (5.3)

(d—1)NA%—®

AL —2re+ 2

I I Wao(Aq)) Waz(Ag) = =Ry Wan(Ag) +
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a b ¢

(i -1+ 25 Waolng))) Whi gy Age Ago| =0 | (55)
= U v o
2
d 4 a b c
ka‘x*‘F(Wzo()\f.{)""wzo(}\k))]wzz()\q?\k) Ziwh|-ra -we gt +
woov o

_N?

- BT MR09) = W) P(g) P(E) + (same with k+=k) . (56)

To solve these equations initial conditions are required. As A-0 (ie.,
T-—x) we would like the action S, to reproduce the usual QCD bare action,
therefore the initial conditions should be (remember that the q's are not the

physical momenta but have been dilated)

&1{% }\2 Wao(Ag) = (5.7)
. la b5 ¢ la b ¢
%H-% XWSI Ag Ap Ak| =vglg p k| = (5.8)
L v oo Vo

= 'i'fubc {5132(9 P + Suelp—% ),u + dop(k _Q)v] '
while for W4 we only need the contracted form

%\1551 W a(Ag M) = T4(q k) = 2d(d—-1)N? . (5.9)

1t follows from the discussion of the previous section that once condition
(5.7) is chosen the longitudinal components of (5.8-9) are automatically
satisfied but one would be free to choose different transverse components.

Instead of (5.8-8) let us then consider a slightly more general situation in

which
[a b ¢ la b ¢
&lg)lkwmkq?\z”\k = ¢vllg p k| . (5.10)
H VvV g v o
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11m wEng M) = 0D ]iq k) (5.11)

which includes the usual QCD action as the particular case ¢=n=1.

Equation (5.3) is of the Bernoulli type. The solution satisfying (5.7) is

Waolg) = g% 1 (q) . (5.12)
where
1) = e = e g 2 1y ) (5.13)

Equation (5.13) is very useful since it provides a way of constructing integrat-

ing factors for the linear Equations (5.4-6).

Solving (5.5) and (5.6) is a straightforward though somewhat laborious

exercise. We obtain

abec abece
whlag 2 k| =5 (q)f ) fk)¢vdlg p k| | (5.14)
v o v ag
and
—q—lc
B(g k) = FH) k) |nT (g k) + —[f q+k)[ L e Il *
(q+k)g(q -k®)RP(q).P(k) + (IH—k)” (5.15)

Notice that both Wg and W,, are explicitly independent of A; so far all A

dependence in the action is contained in the single coupling g (A).

The solution of (5.4) is more interesting. Integrating from Ap to A and

rescaling the momenta back Ag »q.the solution can be put in the form

Waala) = PSP Wa )y 2220y
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1

du [(ug)-I(0)=1'(0)uPq®| . .
+£#‘“‘ d-DN ¥ug) | O
A

+

dy [-zzqf+ 1(0)+1'(0)uq®
ue | fug)  (d-1)NEPf ¥ug)

>3~

where
I(q)=A"2de'W4g(q,k)=I(0)+!'(0)qz+ e (5.17)

Equation (5.16) shows an explicit dependence on A which must be eliminated
by taking the limit Ag=0. The third term in (5.16) is not singular and offers no
danger, but the first two diverge. In order that the limit of the first term

exist we are required to choose

e—t
WM%) N CA® [ﬁii] + o (5.18)

for small Aq. The second term is more problematic, the integrand contains
terms diverging as u*™° and as u®! as u~0 and their cofficients must be

made to vanish independently.

Consider first the u*~? divergence. The calculation of /{0) from (5.17)

and (5.15) yields

UKD oot t-ome) oo

I{0) =

Choosing the parameters 7 and £ appropriately /(0) might vanish for any
dimension d; we have to solve an overdetermined system of three equations

in two unknowns. It is fortunate, first, that a solution exists,
F£=n=1, (5.20)

and second, that this solution includes the usual QCD bare action.

Apparently the uf~! divergence is simple to deal with. One just has to

choose an appropriate value for v,



v = 10 . (5.21)

There is however a potential problem. As Equation (5.19) already shows, /(q)
contains divergences as d-4. A finite value of ¥ can thus be chosen to cancel
away the finite part of /'(0), but then we have no more free parameters to
eliminate the diverging % terms. These must vanish on their own. For-

tunately (5.17) yields

2 -
1.(0) - N P(1+5/2) 18

an)F+% | e (1+3n—-4£) + %(—2+81n—121£2)+0(£) (5.22)

so that the same choice (5.20) solves this problem too. Equations (5.21) and

(5.22) then imply

y= —2?1 (4N)2 + 0(g) , (5.23)
or, using (2.6)
Blo) = 5 9 + 0(e) (5.24)

This perturbative solution of the RG equations has thus yielded two surprises.
One is the result (5.24). It differs from the one obtained employing conven-
tional Feynman diagram methods which contains a factor 26_2 instead of our
21

B We will return to this apparent discrepancy later.

The other surprise is that in the process of solution of the RG equations
we have learnt not only how the action evolves but also what the possible ini-
tial conditions or bare actions are. In other words, the condition that all the
RG evolution be contained in just one function g(7) (this function being the
same that appears in the gauge transformation (2.5)) is a very strong con-
straint on the possible bare actions. Perhaps the condition above is

equivalent to the requirement that the theory be either renormalizable in



- 80 -

the usual sense or that it be "asymptotically safe” (Weinberg '4]).

The initial condition (5.18) contains a free parameter C, and (5.20)
allows two choices {=+£1. It is very likely that this remaining arbitrariness will
be restricted further or altogether eliminated when pursuing this solution to
higher orders (say computing Waa).

Before turning our attention to the problem of the missing 1/ 6 it is con-
venient to consider the perturbative solution of the RG equations without
dilatations, Equations {2.10). Except for some details the algebra involved is

essentially a repetition of the previous solution.

The natural expansion parameter is the coupling constant appearing in
the covariant derivative. As shown in Section 2, in the absence of dilatations
this coupling constant is not altered by the RG transformation and therefore

stays firmly fixed at its initial value, gg. Let
wy = Upgg + g§U22 +..., wg=golUa + ..., and w, = g§U4g + - . (5.29)

The U's now depend on A=e” and satisfy equations analogous to (5.3-8)

for the W's, namely

d N
Kd—AUzo(Q) 2FU20(9) - (5.26a)

2

(N + 425 Uno(9)) Vel = mﬁﬁs Diwlg.k) . (5.26b)
[a & ¢

(>‘_+2 iUzo (g;)) Ukja: 92 95| =0 . (5.26c)
L Vv oo

a b c

[x-—+4A2(Ugo( )+ Uao(k))] (g k)—zj‘\2 Ub|-g —k (g+k)|} +
MoV )
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_BNEN () o) ';c)]EP ).Pk) + ith k »—k
= Mgk ) 20(q ) — Uzl () P(k) + (same with k +—k) . (526d)

We will take the usual QCD bare action as the initial condition,
Ugo{A=0)=g?, Us,(A=0)=vg, and 0(A=0)=7,. Integrating (5.26a,c and d) is

straightforward and we obtain

Uwn(g) = q%fa(g) . (5.27a)
abc abc
Udilg p k| = Fa(@) Fa@) Falk)vdlg p k| (5.27b)
vV g vV o

and

. . . [~,_, N2)2 Aq k —q—kne
D’Iv.(q.k)=ff(q)f§(k)[ dg k) + -\ +R)g), ), g “ +

1 2_1.2\2 p( (
- ~k?)2P(g).P(k) + (k -~k ,
(q+k)2(q 2 P(q).P{k) + (k- )] ; (5.27c)
where now
FAg) = —5s - (5.274)
1+q2AZ/ A2

As before, solving (5.26b) is sightly more interesting. Let

=2 rak o = - 2
INg) = S5 dF Uslg ke A) = 15(0) + I\(0)g® +... (5.28a)

The first two terms on the right can be shown to be precisely (5.19) and

(5.22),

- _21IN?
(4m)?

I,(0) =0, and I'\(0) + 0(e) . {5.28b)

Integrating (5.26b) from Ag to A and rearranging gives

[Uza(g Xo)  I'\(0)g?
FRarg  (@-)N 8%t

Upa(g) = FR(q)



I'\(0)g? Yaulle) L,
d-)N o8N * (d-—1)N{; i [ff;’(q) (g

The term in the second square brackets is perfectly well behaved as Ap+0,
and therefore so must the first term be. This first term may consistently be

chosen to vanish. Thus,

2 A
Uzg(Q) = %g)'% !'A(O)qzlog)\ + {gf[% - [’)\(O)qz] : (529)

Naturally, this solution yields the same anomalous dimension as before.

If the quadratic vertex function is of the form
wy(g.A) = mPA) + g2 1(A) +...,

then the anomalous dimension is defined by

as expected.
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3.6. The One-loop Correction to the Effective Action

The solution obtained in the last section for the RG evolution of the cou-
pling constant differs from the result evaluated following more conventional
Feynman graph methods. We wish to show that there is no inconsistency. The
g function we have computed describes the RG flow of the coupling constant
appearing in the action Sy while the corresponding g function which is usu-
ally calculated describes the flow of the coupling constant appearing in the
effective action T',. For scalar theories these two 8 functions coincide, but for
non-Abelian gauge theories they do not.

To calculate the g function it is most convenient to employ the back-
ground field method (see, e.g., Abbott [5] and references therein) which man-
iféstly preserves the gauge invariance. One needs to compute only the
vacuum polarization. The radiative corrections to the ghost propagatoer or to

the cubic vertices are not needed. Let
. _ = _ .
Z,(j.A) = [D(Q88)exp~|S(A+Q)+Ser +Ss - Q] . (6.1)

where A and @ are the background and quantum fields respectively. The

gauge-ﬁxing term,
S';r'_ __.l fddzrD"'b(fl)sz 62)
2a |. ! ! ' ( '

involves the derivative D,{A) which is covariant with respect to the back-

ground field A. The ghost action is
Se = —i [dz 8Dt (A)Dlr (A+Q)6° . (8.3)

The action S, is the RG-evolved action (2.9) with the vertex functions w,
given by Equations (5.25,27 and 29). The relevant Feynman rules and some

details of the rather messy calculation of the vacuum polarization are left to
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the Appendix 3.C.

To calculate the field renormalization Z4 we only need the part of the

vacuum polarization quadratic in the momenta which is

[ ] '
TI®(q) = ’(‘;i)fawp 7)q° .. (6.4)

logA +

1
)

21 1
3 3

where g is the dimensionless coupling constant {go=2Z,Af%g). Then

[
- giN 2lioon+ L1
Zy =1+ (417)2[ 3 3 . +... (6.5)
This is of the form
% .A
zA=1+2ﬁ‘Si—). (6.6)
=0 <

One should note the presence of an n =0 term and also that the 2,'s show an
explicit A dependence in addition to the A dependence that is impliciting. In

this case, as shown in the Appendix 3.D, the § function is given by

oz 0z 0z
() = — =_&,_£,%c 1291 1,02

The first and third terms are the conventional ones ('t Hooft [6]), the second
and fourth are new.

The use of Equation (6.7) fo;' the theory described by S, in Equation
(6.1) might be considered questionable since S; does not lock renormaliz-
able. One should remember, however, that S, is completely equivalent to the

usual renormalizable QCD action (since it is obtained by mere changes of

variables) and therefore must also be renormalizable, although certainly not
manifestly so.

The Equations (6.5-7) then imply (as £-0) the desired result

oy = _22 g°N
g(g) s (4ﬂ)2+
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The result (6.4) is interesting in two ways. First it shows that A acts as
regulator which eliminates only some of the divergences,; this is the reason
why f# and g’ differ. Second, the first term in (6.4) comes from the quadratic
vertex Upp, it is a tree graph and not a loop correction. It is the second term
which is the correction due to loop graphs containing ghosts, cubic and quar-
tic vertices. In the conventional QCD variables the loop correction is much
larger (it has a factor 33?— instead of just %). This is in agreement with the
idea behind this kind of RG, namely a saddle point calculation performed in

the new variables is more accurate.

One last comment is in order. In the scalar theory of Chapter 2 the

[}

equence of RG changes of variables was such that a saddle point ap
tion would become asymptotically exact (i.e., the loop corrections vanish as
T-=). This is not the case for the non-Abelian gauge theory although there is

a vast improvement.
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Appendix 3.A. A Theorem Concerning the RG Evolution of A;(4)

We wish to prove that the Fadeev-Popov determinant is invariant under
the RG transformation (2.2) and the change of gauge described in Section

3.3. Recall that (see, e.g., Fadeev and Slavnov [2])
Aq(4) = [detM] G=0 .

where M is the derivative of the gauge condition with respect to a gauge

6G(A
transformation, that is —E(h—(ﬁ Using the chain rule this is

H®(zy) = GF¥(z) DR (Az)é(z—y) .

G (z) = 4G (Alz))

9AL ()
is independent of A for linear gauge conditions.

The determinant we wish to evaluate is

Bogen(@(A)) = [ethl' | gyne . ' = S G(E7(20(4))) .

Let us first consider

6(¢7 (z))S

30 (A) = - GE @D (Ay) =g

which for ® given by (3.1) and (2.2) becomes

%S,

5 1A = c _ o1 __5
30 A = GE () D (42) 8z —y) = 37 6F (@) D (A) gt

M’ is obtained by evaluating this expression at ${A) instead of A4:

65,
M (zy) = H®(zy) + GF(z) GA;(I)[ng(A'y)aAS(y)J '

But gauge invariance, expressed by (4.1), implies that the second term
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vanishes, therefore

Boge(®(4)) = 85(4) .
as desired. Notice that the particular form of ¢ was essential; the Fadeev-
Popov determinant is not invariant under transformations with arbitrary .
Appendix 3.B. The Longitudinal Cubic and Contracted Quartic Vertex Func-

tions

(g l)p,(‘h)vl
qf '

Let (Ll)y.lvl =
Then for n =3, Equation (4.8) reads

‘Lbé‘i 123] = (L1+L2+L3) - (L1L2+L1L3+L2Ls) + LiLglg ’U)s{ 123] . (Bl)

where we have dropped the superscript L on the right.

The Ward identity (4.3) for the cubic vertex

. abec
q.Wsl(q@ P k =igfabc (wz(p)Pve(p) —wz(k)Pva(k)) , (B.2a)
v o
implies
abe
g0, Ws|g P k| = —ig FP welk)p,Puelk) (B.2b)
va
and
abec
qupk,wslg p k[ =0 . (B.Rc)
v oo

Substituting (B.2) into (B.1) the expression {4.9) for w§ follows immediately.

The same procedure may be repeated for wi, but we will need only the
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~L . .
contracted form 10, which is much simpler to obtain. The contracted form of

(4.8) forn=41is

a a b b
~L 9.9 PepP 9u3.PeP
Wi(g.p) = {2520, + —5506u + —L—E-P?%—e]‘w‘;q -9 p -p| . (B.3)
p* v o p
The Ward identity (4.3) for the quartic vertex is
abrcd e cd
ig,wlg kp v =gf® wyk+g p |+
vap v op
b e d bc e
+ g% wglk p+q |+ gf* % wyk p T+g| (B.4a)
v o p va p

which implies
e a b b

9,3, We9 —9 P P =
v o p

= gzNg{'wg(p +9) Pop(p+9) — Rwa(p) Pop(p) + wz(P-q)Pap(P—q)} . (B.4b)

and

poab lwalp+g) _ walp—a)
9.9 PPowalg —q P —P| = g2N¥(g®p?- (’pq)z)[ PRy (B.4c)
v oo p g (p-9)

Notice that wg, while present in (B.4a), does not appear in (B.4b.c).

Substituting (B.4b) and (B.4c) into (B.3) Equation (4.11) for 'qu follows.

Appendix 3.C. The One-Loop Vacuum Polarization

The Euclidean spacetime Feynman rules we will need for the calculation
—iS5ab
of the field renormalization Z, are as follows. The ghost propagator is ':i

and the cubic ghost-ghost-field vertex corresponding to the term

AZ(g)8°(k)6°(p)S(g+p—k) is [ (putky) .
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The gluon @-@ propagalor is

6uprv(Q) + 6”9)‘%’ '

Ci
Ugolg) ag* (€.
We will need the quadratic A—A vertex
~g%Af Uza(q)6% Puu(q) (C.2)
the cubic A%(q)@} (p) @5 (k) vertex,
abdbc i
-gA'f/a Unilg p k| — _gm/z)aabc( ;w =Py /.w) (C.3)
v oo
and the quartic  A3(g)A%(k)@Q5(p)Q%(r) vertex,
abc d] \
"'ng; U42q k pri- ueYvp o vuJ . (C4‘)
vpo

It is convenient to calculate in a Landau-like gauge a=0. We need to compute
just three one-loop diagrams, the usual graph with one ghost loop, a tadpole

graph containing the quartic vertex, and the loop graph with two cubic

vertices. The ghost loop diagram is precisely the same that occurs in
QCD,
ZA.fN
6 = T 0% Pal@)at 5+ (c5)

The tadpole diagram containing the quartic vertex does not, as is usually the
case, vanish in dimensional regularization because of the structure of the
gluon-propagator (C.1). The vertex Uy in (C.4) is not completely known, we
only know its contracted form U,,. Fortunately that is all that is needed. The
rules {C.3) and (C.4) are complicated. To simplify the algebra, and since this
is enough to obtain the field renormalization Z,, we compute just the term
quadratic in the mornenta'q, The longitudinal components of the tadpoles

and the cubic vertex contribution cancel out giving
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RASN -
My + T = 9(4/:)2 sab Pw(q)q"’[é%] .

Finally. the rule {(C.2) with (5.29) gives a tree graph contribution

geAMN
(4 )2

Summing (C.5,6 and 7) gives (6.4).

M = ® Pulq) g% [-1'\(0) log

Appendix 3.D. Calculation of the £’ function

In the background field gauge, the coupling renormalization constant

Zgo
- ZgA:/Zg

is related to the background field renormalization constant

Za. { Ac=Z4"*A7*/%A) by (%)
Zy = ZjV?
Let
B{g) = A Afy __)\d)\ : Aﬁ% :

Then since gg does not depend on A,,

A.,dZ

90"0 ZA:/E —g+ﬂ(g) gZ dAﬁr

Mgh

and therefore

Bg) = —-9 - g-)\ Ix el .

(*} This is an unconventional field renorrnahzaUOn which is convenient because it leads to
(D.1). Abbo: [5] chooses go=Z,9 end Ap=Z, 42 A which also leads to (D.1) but involves a
dimension®1 coupling.
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d_. 8

A D gyl
dA-)\ (g) so that

We can use the chainrule A 39

an P

S PR 2g(g) 2

We have followed closely the standard treatment ('t Hooft [6]), except that
now, due to the explicit A dependence in Z, there is the additional second

term. Solving for §'

0 0
glg)= —%9 - %Agxlogz.q 142 Z00g7, +...

2 0g

and substituting for Z, using (6.6), Equation (6.7) follows. As in the standard
formalism the coeflicients of the poles in ¢ should identically vanish furnish-

ing a set of constraints on the z,'s.
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Chapter 4. Conclusions and Further Developments

4.1. Conclusions

In this work an approach to the Renormalization Group has been

developed in which the RG transformations are convenient changes of vari-

ables. The main conclusions of cur work are enumerated below.

(1)

(2)

(3)

A class of exact infinitesimal RG transformations has been proposed.
The form of the transformations is suggested quite naturally after
several known exact RG's are formulated in a conveniently simplified
way. Conversely, those exact RG's can be treated as special cases of a

more general formalism.

The transformations are pure changes of variables (i.e., no explicit
integration or elimination of some degrees of freedom is required) such
that a saddle point approximation is more accurate, becoming, in some

cases, asymptotically exact as the transformations are iterated.

Solutions of the RG equations for a scalar fleld theory were obtained
both as an expansion in £e=d—4 and as an expansion in a single coupling
constant. Physically significant results agree with those obtained follow-
ing conventional methods. The well-known fact that physical quantities
(such as critical exponents) are independent of the particular RG

employed emerges quite clearly.

The consideration of RG's from this generalized point of view has a

number of attractive features which immediately suggest many possible
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applications. We concentrated our attention on the application of this kind of

RG to Yang-Mills theories.

(4)

(5)

(7)

An exact gauge covariant RG transformation has been proposed. The
corresponding RG equations have been obtained and solved in the weak
coupling regime. By taking the subtleties of gauge fixing into account it
was shown that the gauge-invariant RG-evolved action is equivalent to
the usual action as far as the computation of gauge invariant quantities

is concerned.

The requirement that the RG evolution of the action be described by a
single coupling constant restricts the choice of the actions to be used as
possible initial conditions. It is plausible that this restriction is
equivalent to the usual requirement of rencrmalizability. The conven-

tional QCD action is included among such possible initial conditions.

The g and the f' functions describing the evolution of the coupling con-
stants in the action S, and in the effective action [' are almost equal but
quite definitely different; § is the tree approximation to §".

The small difference between 8 and #' is evidence that for the Yang-Mills
theory the iteration of the RG transformation improves substantially a
saddle point approximation but that the approximation never becomes
exact.

Although somewhat outside the line of argument of this work, it is con-
venient as a technical aid in seolving the RG equations to study the con-
straints imposed by gauge invariance on the vertex functions. A new

method to do this was devised.

A number of other applications of this RG formalism can be envisaged.

For example, the method could be extended to any problem where a saddle
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point approximation is used, one could perhaps obtain improved large N
expansions {Halpern [1]).

The role of dilatations is deemphasized and one might profitably attack
problems where the issue is not the symmetry under scale transformations
or its breaking. It should be possible to study the phenomena of dynamical
symmetry breaking or of dynamical symmetry restoration. The localization
of the minima of the classical action S and of the RG-evolved action S, need
not coincide and it is the latter that will give more reliable information about
the true minima. Another related possible application could be in the study

of the so-called anomalies. Again, the true symmetry of a quantum theory

action S,, which includes some quantum effects, than by classically studying

the action S.

In the remaining sections of this chapter we discuss in a rather prelim-
inary form how one could begin the study of some other applications which

we feel might be interesting.

We mentioned in Chapter 1 the possibility of obtaining non-perturbative
solutions to the RG equations of the Yang-Mills theory by truncating them in
a manner compatible with the gauge symmetry. The longitudinal components
of the vertex functions were obtained in Section 3.4, in addition we need trial

forms for the transverse components. These are obtained in Section 4.2.

The RG's discussed do not require the successive elimination of degrees
of freedom and can therefore be applied to systems with a small number or
even just one degree of freedom (see Appendix 2.B). In Section 4.3 the exact
RG transformations are applied to a scalar field theory defined on a lattice

(which can be finite) and the corresponding RG equations are obtained.
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Finally, in Section 4.4 a lattice gauge theory is proposed for which the RG for-
malism described in this work can be applied in a very straightforward
manner. The theory is formulated in terms of the fleld variables 4, instead of
the more usual rotation matrices U, (for an account of the latter formalism
see, e.g., Kogut [2] and references therein). The Ward identities and RG equa-
tions for this lattice theory are very similar to those corresponding to the
econtinuum Yang-Mills theory. We feel the exact RG transformations of this
work might represent an improvement over those approximate ones pro-

posed by Migdal [3] and Kadanoff [4] especially for small lattices.
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4.2 Trial Forms for the Transverse Vertex Functions

As we have mentioned previously, it should be possible to obtain non-
perturbative solutions of the QCD RG equations by truncating them in a form
which is compatible with the gauge symmetry. This requires that we use trial

forms for the vertex functions which satisfy the Ward identities.

For example, consider the RG equation for w, Equation (3;4.12). The
right hand side of this equation contains the contracted quartic vertex Wy,
the longitudinal component of which, @7, is completely determined by the
]

gauge symmetry (Equation (3;4.12)). Were the transverse component,
also known, one would be able to solve exactly for w,. Since W/ is not known
an alternative procedure is to guess reasonable trial forms for ¥ T and study

their implications for ws.

As far as the gauge symmetry is concerned the transverse vertex func-

tions are completely arbitrary,

ral... uﬁ [al.;. %
wllgy | = Pup (90 Puo (8n) Valgr - G| .
177 Hn M1 Hn

where V, is some unknown function with the appropriate Bose symmetry.
There are, however, some constraints which can reasonably be imposed on
w!. First, one would like to study RG trajectories that lead as A0 to the con-
ventional QCD action. In fact, in Section 3.5 we saw that other RG trajectories

do not necessarily yield consistent results.

A second constraint is the requirement that w, be free from kinematic
singularities. As discussed in Sectioﬁ 3.4, the property of being transverse to
a momentum g necessarily introduces singularities as g »0. It is these singu-
larities which we wish to avoid for the following reasons: (a) the singularities

are absent in the conventional QCD action (the initial condition for the RG
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evolution), (b) the RG evolution along a trajectory is smooth (singularities
are absent from the action or hamiltonian and they appear only on integrat-

ing to obtain the partition function), and (c) for mathematical convenience.

Let us first consider the transverse cubic vertex. It is not difficult to see
that the kinematic singularities are avoided if we require wg to satisfy the

"low energy theorem”
ab c
wsl0 p —p| = ~igf e o= [w(p)Pw(p)]
v g

obtained directly from the Ward identity for ws. Extracting the transverse

part leads to

2bel L bwp) -
VSIB p -p| = —igf ——a—};——-dw + (longitudinal terms) .
v o »

The other constraint on Vj is that when w; tends to g% Vi must repro-
duce the conventional QCD cubic vertex. A trial form which satisfies these

requirements is

abec
k)w -w
Vslg P k| = ‘igf‘m[fspu(%—Pa) wz(g ) 2(:2_17:(})) + {cyclic permutations)} .
v

In a similar way a trial form for the transverse quartic vertex may be

obtained. The appropriate "low energy theorem' to be satisfied is

laab a

w,l0 0 p —p| = N%?
va p

5, S ee)Pute))

One possible trial expression which reproduces the usual quartic vertex

(in the contracted form used in Chapter 3) as wy{g)-q? is

wo(p +q)—wa(p—q) O%wy(p)
wra—p—qR = PPl a(p2>2

13’4(‘]-?) = NEQZPM(Q)Pcp(P){Zdwaap +
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Bwylq)  1[walp+q) wz(P‘?)] ]
+ 4 bpp——5 — = =— + 6,,000 + 6,00,
090 a(g%)° 2\ (p+q)° (P -9)° (8upbuo + Suabup)

It is important to emphasize that these trial forms are by no means

unique and that perhaps more convenient ones can be found.
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4.3. RG Equations for a Scalar Field Theory on a Lattice

The RG formalism described in this thesis can be applied in a
straightforward manner to fleld theories defined on a lattice. The only

difficulty is to develop an appropriate notation. This is done below.
At each site R of an infinite Bravais lattice let there be a field variable
#(R) the dynamics of which is described by a hamiltonian (inte which a fac-

tor of 8 has been absorbed) of the general form

n

He= 3= 8 unlRy Ra)o(R)). 9(Ry) . (3.1)
1™ R R,

The formalism is closest to the continuum field theory if one works in

momentum space. Let

o(R)= [dfp(@)erp—ig R , df = (32%% , (3.2)

The integral is over the first Brillouin zone (1BZ) and v is the volume of the
d-dimensional unit cell. Outside the 1BZ the field is defined to be periodic,
v(q)=¢(g + Q). where @ is any reciprocal lattice vector (e*®%=1 for all R and

8). Then the hamiltonian can be written as
H, = X:I T—ith‘é-Zdil-"d‘Tnun(QI“'qn)¢(ql)"'¢(qn) . (3.3)
where
Un(g1-qn) = Tl Ryexp —z'j}gq,-ﬁ,- . (3.4)

It is easy to see that the symmetry of the u, (R,...R,) under translations by a

lattice vector R implies

u,.(ql-r-qn)=§un,o(q1~-qn)6"(iq,-+Q) , 8(g) = @6"(;;) ., (3.5a)

=1 v

U 0091+ Gn) = Un, o135 +@".00) . (3.50)
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By analogy to Equation (2:3.3) the RG transformation will be

SH.(¢)

w(g) = ¢lq) - GTSZ—:Ld&(q.‘r) e R

(3.8)

If we want to preserve the periodicity ¢(g)=¢(g+@) under RG transforma-
tions we have to integrate out ¢(q) and ¢(q+@&) to the same extent and

therefore the cutoff function a must also be periodic, a{g)=a(g +@).

The transformation (3.6) leads to the RG equation

[ 2
dH, o, (@m) 6%H, 6H. O6H,
el e C Rl o o ey e ey | ISR G

or, equivalently, to the following system of equations for the u, g's :

d _ - _
o un.Q(qlmqn)‘igzdﬁla(k)un+2.Q(QI~~Qn-k- k) +

n 1 - ,
mzaz (m_l)!(n_m_l_l)!gj:ia(km)um,o(QL--Qm—l-km)u-n—-m+2.0(‘Im~-Qn-k m) (3.8)
where
m-1 n
km=-2%’-k'm=—2‘b and k, +k'p, = @ .
j=1 ji=m

As before, 2 denotes a sum over all permutations of the g;'s.
59_1!
Notice that the last term of (3.8) involves only u's corresponding to
@=0. This implies that even if we set u, =0 for @#0 as an initial condition,

terms with §#0 will be generated by the RG evolution.

The RG equations for a finite lattice can be developed in an analogous
way. These equations are obtained from those above by restricting all
momenta g to only those discrete values which are compatible with periodic
boundary conditions and by replacing all integrals over the 1BZ by the

appropriate sums.
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4.4, RG Equations for a Lattice Gauge Theory

While it might be possible to study the RG of a lattice gauge theory for-
mulated in terms of the usual rotation matrix variables U, (see, e.g., Kogut
[2]). in order to apply the RG techniques described above it is more con-
venient to employ the field variables 4, Below we propose a lattice gauge
theory of this kind.

At each site K of a Bravais lattice let there be variables A%(R) which

have a Fourier expansion of the form
A3(R) = J?’Zdi,qg(q) exp —igR . (4.1)

The integral is over the first Brillouin zone (1BZ), and A%(q) is defined to be
periodic, i.e. A%(g+&)=A%L(q) where @ is any reciprocal lattice vector. The
notation d§° means vd®q/ (2m)® , where v is the volume of the unit cell and

similarly &(g)=(2m)%5%(g)/v .

We will consider actions of the general form

al DR ar‘
= 1 ~ ~ Ll
SHA)= Y =8 [ dfa8(Q+ L g wnolgr  Gn [Au N (91)Au ™ (g0).
n=1T QiBZ j=1
L i
(4.2)
The translational symmetry of the Bravais lattice implies
W, @1 - - - .qn+Q’] = wn.Q+Q’[91 ..... qn} : (4.3)

To replace the continuum spacetime gauge transformation (3;2.5) we
need an analogue transformation involving a function (Q%(R) defined only at

the lattice sites,

Q“(R)=l£qu”0"(q)e><p-iq1? . (%(g+@) = 0%(g) .
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An appropriate infinitesimal lattice gauge transformation is easily written in

momentum space,
6AL(g) = —ig, *(q)—gf ** 1{Zﬂl’f/‘hi(ti —k)0° (k) . (4.4)

The invariance of the action of (4.2) under the transformation (4.4) is

expressed by the analogue of (3;4.2),

65, " 65
= ¢ | dE A% (k- — 4.5

or equivalently by a set of Ward identities between the w, g's ,

[al . a‘n a , ial e . aJ"l b I u‘n
QuWnrrgldy ~ 9n =9i‘1f“’ Wnold: ~ Qi §i+Y9 - gal. (4.8)
R i M K #«n]

1
n
where @+g+ ) g;=0.

i=1

By analogy to Equation {3;2.2), the RG transformation will be taken to be

ér (@m)? __8S,

Al A® — , 7
which leads to the RG equation
dS, _ (2m) fd,,q’ 625, _ 85, 85, (5)
dT  wA? 15z ldAZ(q)ﬁAz(-q) 8A%(q) 6A3(-q)]
or equivalently
d [al . . . % 1 [al . . . a,‘ a a
'Ewn.qu o gpl = Eézdﬁwni—E.QQI i gg k —k| +
Ml"'tu'n- 1 7 Mn MU
. [ .
2 Om-1 Q A Oy Q
1 L 1 '
e 2 Lnn—l]_l 2 Wrmold: ©  Gm-1 km Wn-m+20[9m "' " Gn k'm -(4'9)
A m=2 n: fg;1
My T Hm M M M M
where '
m-1 n

km==2 g7  km=—)¢; and kp+k'm =@ .



-103 -

It 1s very plausible that a perturbative solution of (4.9) will yield the
same result of Section 5. namely ﬁ=—-2-6l @%Fga.

Finally, everything that was said here about an infinite lattice applies
also to a theory formulated on a finite lattice. The equations appropriate to
this case are obtained by replacing all integrals over the .:BZ by sums over

those wavevectors within the 1BZ which are consistent with periodic boun-

dary conditions.
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