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Abstract

This thesis studies two rather distinct topics: one is the incorporation of contextual
information in pattern recognition, with applications to biomedical image identifica-
tion; and the other is the theoretical modeling of learning and generalization in the
regime of machine learning.

In Part I of the thesis, we propose techniques to incorporate contextual informa-
tion into object classification. In the real world there are cases where the identity
of an object is ambiguous due to the noise in the measurements based on which the
classification should be made. It is helpful to reduce the ambiguity by utilizing extra
information referred to as context, which in our case is the identities of the accom-
panying objects. We investigate the incorporation of both full and partial context.
Their error probabilities, in terms of both set-by-set error and element-by-element
error, are established and compared to context-free approach. The computational
cost is studied in detail for full context, partial context and context-free cases. The
techniques are applied to toy problems as well as real world problems such as white
blood cell image classification and microscopic urinalysis. It is demonstrated that
superior classification performance is achieved by using context. In our particular
application, it reduces overall classification error, as well as false positive and false
negative diagnosis rates. |

In Part II of the thesis, we propose a novel theoretical framework, called the
Bin Model, for learning and generalization. Using the Bin Model, a closed form is
derived for generalization that estimates the out-of-sample performance in terms of
the in-sample performance. We address the problems of overfitting, and characterize
conditions under which it does not appear. The effect of noise on generalization
is studied, and the generalization of the Bin Model framework from classification

problems to regression problems is discussed.



Contents

Acknowledgements

Abstract

I Contextual Pattern Recognition with Applications to

Biomedical Image Identification

1 Context

2 Mathematical Framework for Incorporating Context

2.1
2.2

2.3
24

2.5
2.6

2.7

Compound Bayesian Theory for Context . . . . . . .. .. ... ...
Optimality of Context-Sensitive Maximum Likelihood Decision Rule .
2.2.1 CSML Achieves Minimum Set-by-Set Error Probability. . . . .
2.2.2 Information Theoretic Interpretation of Context . . . . . . . .
2.2.3 Information Gain by Using Context . . . . . . . ... ... ..
A Toy Example . . . . . .. ...
Special Cases of Context . . . . . . . . ... ... ... ... .....
2.4.1 Oanly the Counts Count. . . . . ... ... ... ... .. ...

2.4.2 Only the Presence Matters. . . . . ... ... ... ... ... ,

Complexity Problem . . . . .. ... . . ... ... ... . ......
Partial Context . . . . . . . . .. ... ... ...
2.6.1 Mathematical Formulation . . . . . .. ... ... .. .. ...
26.2 AToy Example . . . .. ... ... ... ... .. .. .....
2.6.3 Computational Cost Using PCML . . . . . . . ... ... ...
Appendix . . . ...

iii

iv



vi

3 White Blood Cell Identification

3.1 Imtroduction . . . . . ... ... ...
3.2 Image Processing and Feature Extraction . . . . . . . . . . . ... . .
3.2.1 Adaptive Thresholding for Image Segmentation . . . ... . .
3.2.2 Feature Extraction . . ... ... . ... ... ... ... ...
3.3 Learning and Classification . . . . . ... .. ... ... ... ... ..
3.3.1 No-Context Performance . . . . . . .. . ... ... .. ... .
3.4 Incorporating Context into WBC Identification . . . . ... ... ..
3.4.1 Introduction . . . ... ... ... ... ... ... ... ...,
3.4.2 Estimation of the Context Ratio p(11,...,vp) . . . . . . . ..
3.4.3 Observations and Simplifications . . . . . ... ... ... ..
3.4.4 The Algorithm and Complexity . . . . .. .. ... ... ...
345 Results. . ... .. ... ... ..

Incorporating Context into Urinalysis

41 Introduction . . . . . ... ... ..
4.2 Incorporating Partial Context into Urinalysis. . . . . . . . . . .. ..
4.3 Identification of Relevant Classes . . . . . . . ... ... ... ....
44 The Algorithm . . . . . ... ...
45 Results. . . . . ...

II The Bin Model for Learning and Generalization

5 The Bin Model for Learning and Generalization

5.1 Introduction . . . . . . . . . . ...
5.2 The Bin Model . . . .. ... ... ...
5.3 Generalization Using Bin Model . . . . . . . . .. .. ... ... ...
5.4 Unbiased Optimization . . . . . . . .. ... ... .. ... ......
5.5 Other Paradigms . . . .. .. .. ... ... ... ... ... ...
5.6 Characteristics of the n-distribution . . . . . . . . . ... .. ... ..

33
33
34
35
38
39
41
42
42
43
46
47
47

49
49
51
93
57
58

67



5.7 Positive Learning . . . . . . .. ... 84
5.8 Noise . . . . . . . 85
5.9 Analog Error . . . . . ... 86
5.10 Conclusion . . . . . . . . . . ... 91
511 Appendix A . . . . . .. 91
512 Appendix B . . . . . .. 93

Bibliography 98



viil

List of Figures

1.1
1.2
1.3
1.4

2.1

2.2

2.3

24

3.1
3.2
3.3

3.4

Muller-Lyer Illusion . . . . . .. .. ... .. ... ... .. .. ...
An example of the effect of context in face recognition. . . . . . . . .

Zollner Mlusion. . . . . . . . . . . . ...

Comparison of error probabilities between with context and without
context, for both set-by-set error and element-by-element error. In
both figures, the dashdot line is without context, and the dotted line
iswith context. . . . . ... ... .. ...
The ratio of with-context error probability to without-context error
probability. The dashed line is for element-by-element and the solid
line is for set-by-set error probability. . . . . . . . ... .. ... ...
Comparison of error probabilities among with full context, partial con-
text and without context, for both set-by-set error and element-by-

element error. In both figures, the dashdot line is without context, the

dotted line is with full context, and the solid line is with partial context.

The ratio of with-context error probability to without-context error
probability, in terms of both set-by-set and element-by-element error
probabilities. In both figures, the dashed line is with partial context,

and the solid line is with full context. . . . . . . . . . . . . . .. . ..

Example of some of the cell images. . . . . . ... ... ... ... ...
Exampleof acell. . . . . . . . ... ...
(a)Histograms of red, green, blue frames. (b) Smoothed version of
().
(a)Gray level red, green, blue frames and intensity image. (b) Seg-

mentation of red, green, blue frames and the final segmentation.

Sy Ot Ot

20

28

29

34
35

36

38



3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

5.4

5.5

5.6

5.7

1X

Structure of a radial basis function network . . . . . .. ... .. .. 40
Context ratios when the classes are present and absent. . . . . . . .. 53
Relevant classes . . . . . . . . . . . . ... L 57
Confusion matrix without and with context in terms of total numbers 61
Confusion matrix without and with context in terms of percentages . 61
Analyte images . . . . . . . . ... 63
Analyte images . . . . . . ... L. 64
Analyte images . . . . . . . ... 65
Analyte images . . . . . . . . ... 66
Ilustration of a learning system . . . . . . . . .. .. .. ... .... 69
Two learning scenarios: over-fitting occurs in the second one. . . . . . 71
The Bin Model: We have a set of M bins, each containing red and

green marbles. The frequency of red marbles in bin ¢ is denoted by m;. 73
(a)An example m-distribution for M = 500 (note that the x-axis indi-

cates bin index). In this case the hypothesis that best approximates
the target function makes approximately 5% error. (b) The expected
test error as a function of training error v for the w-distribution in (a). 73
(a)The 7 distribution for a noisy learning problem. The target function
is f(x) = sign(sin(5)sin(%t)) and the learning model is 2-10-1 neural
network with hyperbolic tangent transfer function and linear output.
The training set is of size 20. The noise in the training set is realized
by randomly flipping the sign of the output with probability 0.1. The

input distribution is uniform in [-2 7, 2 7]. (b) The expected test error

as a function of training error v for the 7 distribution in (a) when using

unbiased optimization. . . . . .. .. ..o 79
Generalization error for a 2-layer neural network as the number of

hidden units varies. . . . . . . . . . . ... 80
Histogram of the empirical 7 distributions for experiments of Figure 5.6 80



X
5.8 m-distributions (the left column) and their corresponding generaliza-

tion curves (the right column). . . . .. ... . ... . ... ... .. 96
5.9 Binary symmetric channel . . . .. .. ... 97

5.10 Effect of Noise — the original 7 is pushed closer to random function. 97



x1

List of Tables

2.1
2.2
2.3
24
2.5

2.6

3.1
3.2
3.3

3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

p(c) for the Toy Example . . . . . . ... ... . .. .. ... .. ...
Comparison between errors for with and without context . . . . . . .
p(c) for the Toy Problem . . . . . . ... ... ... .. ... ... ..
plclAg=1) and p(c|dg=0) . . . . . ... ...
Comparison between set-by-set error probabilities for with full context,
partial context and without context . . . . . . . . .. .. ... ... .
Comparison between element-by-element error probabilities for with

full context, partial context and without context . . . . . .. . . . ..

Normal ranges of the percentages of all white blood cell types. . . . .
Features extracted from cell images . . . . . . . ... ... ... ...
Confusion matrix generated by context-free maximum likelihood deci-
sionrule. . . ..
Grouping of classes and counts . . . . . . . . ... ... ... ...
Comparison of with and without using contextual information . . . .

Nlustration of how context changes the labeling for a few specimens. .
plci=d|4;=1)
m)——" .........................

Context ratio ’i@%@ ........................

Context ratio

Correlation coefficient matrix of presence of eight classes. . . . . . . .

PlclAg=1) . . ..
P(C|Ad = 0) ................................
The prior distribution of the presence of all classes, and the class prior

distribution of all classes. . . . . . . . . . . ... ... ... ...
Mutual information I(c; Az) and the expected relative entropy between
the presence of a class Ay and the labeling probability p(c). . . . . . .

Features extracted from urine anylates images . . . . . . . .. . ...

35



xii
4.9 Confusion matrix generated by context-free maximum likelihood deci-
sionrule . ..., 60
4.10 Confusion matrix generated by partial-context maximum likelihood
decisionrule. . . .. ..., 60
4.11 Comparison of with and without using contextual information for element-
by-element error. . . . . . ... .. 62
4.12 Diagnosis confusion matrix without context . . . . . ... ... ... 62

4.13 Diagnosis confusion matrix with context . . . . . . ... .. .. ... 62



Part 1

Contextual Pattern Recognition
with Applications to Biomedical

Image Identification



Chapter 1 Context

The world we live in is interconnected. Things exist in conjunction with one another,
instead of in isolation. This interconnected nature of relationship gives rise to con-
text. Context describes the dependency among entities, and has been an important
notion and tool utilized to better perceive, understand or interpret the world. In this
thesis, we focus on the utilization of context in the case of object perception and
recognition. The effect of context in this case is that an entity may be perceived dif-
ferently when viewed in association with other entities, than when viewed in isolation.
The information conveyed by the accompanying entities is what we call contextual
information.

Context occurs at various levels, including perceptual /cognitive, and statistical.
For example, consider the two horizontal lines in Figure 1.1 (a). They appear to be
of the same length. Now add some context in the forms of arrows at the ends so as
to obtain Figure 1.1(b). In Figure 1.1 (b) it appears that the lower line is shorter
than the upper one. This is the well-known Muller-Lyer illusion. Another example
is Zollner Illusion in Figure 1.3. The diagonal black lines are actually parallel to one
another. However, when the short horizontal or vertical lines are added to the picture,
the diagonal lines appear to have changed their orientation and they no longer appear
parallel. These are examples of the effect of context at a perceptual level. Context
can help us perceive or recognize things that are not really there. Another form
of context is statistical context, which will be the focus of interest for this thesis.
It can be thought of as prior knowledge of the likelihood of the occurrence of any
combination of events. For example, look at the two men in Figure 1.2. At first
glance they appear to be President Bill Clinton and Vice-President Al Gore, but it is
really Clinton and Clinton. The faces on both men are identical, only the hairline and
clothing is different. This misclassification is due to the context. When a person’s

visual system looks at an image it is not so much concerned with the specific details
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as determining the overall meaning of the image. In this particular case, the viewer
is most likely used to such a pose with the Vice-President in the rear. Al Gore’s
familiar suit and hairline also contributed to the effect. When the viewer doesn’t pay
attention to the details in the above examples, context can be misleading sometimes.
But more often it can help reduce ambiguity and lead to correct classification that
would not be achieved without. This is illustrated in Figure 1.4. The words “festival”
and “graphics” are written in a noisy way. The “v” in “festival” and the “r” in
“graphics” actually have exactly the same appearance. Yet we can still identify them
correctly according to the context. In other words, the character is ambiguous and
the ambiguity is resolved by context.

Statistical context embodies the dependence or correlation among objects in a
statistical sense. It can be knowledge-driven or data-driven. In pattern recognition,
the main source of information to identify an object is the set of measurements asso-
ciated with it, which we call features. However, ambiguity arises when the features
are incomplete (missing information) or are contaminated by noise, or simply when
class-conditional feature distributions overlap, which leads to misclassification. The
use of information-bearing context can help to reduce ambiguity. Human experts
apply contextual information in their decision making process. And it makes sense
to design techniques and algorithms to make computers mimic human behavior, in
the sense that they can aggregate and utilize a more complete set of information in
their decision making the way human experts do. The application of context has been
investigated in many fields. In remote sensing image classification where each pixel is
part of ground cover, certain classes of ground cover are likely to occur in the context
of others. For instance, a pixel is more likely to be glacier if it is in a mountainous
area, and extremely unlikely if surrounded by residential pixels. In text analysis, one
can expect to find certain letters occurring regularly in particular arrangements with
other letters (qu, ee, est, tion, etc.). Where ambiguity occurs, we can look at the
neighboring letters to gain more information. The same principle applies to speech
recognition, where certain arrangements of some phonemes are more likely to occur

than others. For example, consonants such as “b”, “g”, “1” are always followed by
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Figure 1.1: Muller-Lyer Illusion



Figure 1.2: An example of the effect of context in face recognition.

Figure 1.3: Zollner Illusion.
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Figure 1.4: An example of the effect of context in character recognition.

vowels. “k” almost never immediately proceeds “d”, but it sometimes does “s”. In
white blood cell identification in the medical field, the composition (the percentage
of all blood cell types) of a blood specimen has certain patterns. Abnormal cells
are much more likely to appear in groups than in isolation. Specifically, in a sample
of several hundred cells, it is more likely to find either no abnormal cells or many
abnormal cells than it is to find just a few. Another example of the use of context
in medicine is in urinalysis. Bacteria always occur with white blood cells, which is
intuitive to us since the white blood cells are there to fight the inflammation often
caused by bacteria.

The usefulness of context lies in the fact that it abandons one of the most common
assumptions made in the study of machine learning — that the examples are drawn
independently from some joint input-output distribution, and takes advantage of con-
textual information that is otherwise ignored if we look at each individual object in
isolation.

While the approaches to incorporate context into classification are often closely
tied to specific applications, it is possible to see the general frameworks. The ap-
proaches broadly fall into three categories. The first is relaxation technique, which
has been intensively used for scene labeling/analysis. Relaxation is an iterative tech-
nique. The probabilities of neighboring pixels are used to iteratively update the
probabilities for a given pixel based on a relation between the pixel labels speci-

fied by compatibility coefficients to consider the joint distribution of one neighboring
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pixel at a time. In [Rosenfeld et al., 1976], a technique is devised that introduces
context by means of correlations of the labels between objects and their neighbors.
[Zucker and Mohammed, 1978] have suggested schemes that depend instead upon
the conditional probability of occurrence of a particular label on an object in view of
the labeling on neighbors. Another approach was introduced by [Toussaint, 1978]
under the theme of sequential compound decision theory. It attempts to decide
the label for one pixel based on the observations of all other pixels in the image.
Some of the approximation methods suggested by [Toussaint, 1978] can be found
in [Tilton et al., 1982], [Haralick and Joo, 1986], and [Khazenie and Crawford, 1986].
Another technique is to use a fuzzy knowledge representation, adopting the fuzzy-set
based quantitative approach. [Binaghi et al., 1997] applied this technique to remote
sensing image analysis. While the representations and formulations of context are of-
ten different, the implementation of context is often through one of two means. One
is the maximum likelihood framework, where the probability of the labeling of an ob-
ject is maximized in its proper context, as is in [Rosenfeld et al., 1976]. The other is
the optimization of some utility function, such as the level of ambiguity, consistency,
as in [Faugeras and Berthod, 1981] and [Illingworth and Kittler, 1987].

Some forms of context have distinct structures. For example, in speech recogni-
tion and text analysis, the context is temporal. The identity of a phoneme or a letter
is contingent upon the identities of the ones that immediately proceed or follow it.
Elaborate methods, such as Markov Models and State-Space Models, are devised to
deal with this kind of context. In scene analysis and remote sensing image classifica-
tion, the context is spatial. The identity of a pixel relies upon those of its neighboring
pixels. These kinds of context are local, since the farther away the neighbors are,
temporally or spatially, the less relevant they become, and thus less contextual infor-
mation they provide. Most of the research on context has been focused on context
with such locality. There are many pattern recognition problems that do not have
such a property. This is the case for white blood cell image classification problem
and microscopic urinalysis problem, where the task is to identify each element in a

set of elements, and the spatial or temporal arrangement of these elements is irrel-
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evant. Locality of context helps to reduce computation cost, because the number
of context-bearing elements is small due to locality. Computational difficulty may
arise for problems without locality. In white blood cell identification and urinalysis,
the amount of context-bearing objects are on the order of hundreds, which poses
computational challenges.

The first part of this thesis is organized as follows: Chapter 1 gives an introduction
of the background and motivation for using context. The mathematical framework
for the formulation of the incorporation of context using a Bayesian approach is pro-
vided in Chapter 2. Two forms of context — full context and partial context — are
formulated, and their error probabilities and computational complexities are investi-
gated. Chapter 3 and Chapter 4 demonstrate the use of context in the biomedical
field. Chapter 3 describes an automated white blood cell image identification system,
and the utilization of context in such a system. Chapter 4 focuses on the application

of microscopic urinalysis.



Chapter 2 Mathematical Framework for

Incorporating Context

2.1 Compound Bayesian Theory for Context

Let us consider a set of N objects T;, ¢ = 1,...N. We associate each object T; with
a label ¢; that is a member of a label set = {wy,...,wp}. Bach object T; is
characterized by a set of measurements x; € R, which we call a feature vector. We
consider a situation where the label ¢; of object T} is unknown, but the feature vector
x; is known. We would like to infer the identity ¢; through x;.

When each object is viewed in isolation, its identity is assumed to depend only on
its own feature vector, and is independent of the features and the labels of all other
objects. From Bayes’ rule, we have

p(eilx) = p——“*——(xigigg(Ci) (2.1)

This is the element-by-element (context-free) a posteriori probability of one single
object. (We use the word “element” and “object” interchangeably.) If we classify the

objects in a context-free manner, the decision rule selects the class label ¢; such that

¢; = argmax p(c;|%;) (2.2)

¢
for i =1,...,N. We call this the context-free maximum likelihood (CFML) decision
rule.
Since the accompanying objects {T1,...,T; 1,Ti+1, ..., T} may convey informa-
tion pertinent to the labeling of Tj, it is logical that we consider not only the fea-
ture vector x; of this object, but also the feature vector of other objects. There-

fore, we are interested in p(c;|xy, ..., Xi—1,Xi, Xi41, - - -, Xn). A more general form of
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p(c|xy, ..., X1, Xi, Xiy1, - - -, Xpy) i the simultaneous labeling of all objects given all
the corresponding features p(cy, ¢y, ..., cn|X1,Xs, - .., Xy), which is what the calcu-
lation of p(c;|x1,...,Xi—1,Xi, Xit1, - - -, Xy) Will eventually break down to. Since this

form incorporates contextual information, we refer to it as the set-by-set context-
sensitive a posterior: probability.

It follows from Bayes’ rule that

p(Xl,Xg, . ,XNicl, Co, ... ,CN>p(Cl, Co, ..., CN)

P(X17X2a S >XN)

pler, 2, ... CN X1, Xa, ..., XN) =
(2.3)

We make the conditional independence assumption that the feature distribution

of an object is dependent only on its own class, not on the features or classes of other

objects, i.e.,

p(xilei;er,cay ey €y Xy ey Xy, X, - -, XK ) = D(X4]Ci) (2.4)

for any J = 0,1,...,N and J # 4, and K = 0,1,..., N. (where x¢ and ¢, are null
elements.) This assumption is reasonable since in many cases the feature distribution
of a certain class does not change when this class exists in conjunction with some
other classes.

Therefore, it follows that

p(X1, Xy, ..., Xnle1, coy o en) = p(xaler) .. p(xwien) (2.5)

Then Equation 2.3 can be rewritten as

p(xllcl) .- -p(XN[CN)P(Cl, Coy ... ,CN)
p(Xth» ce ’XN)

p(CI)CZ)"'aCN Xlax2a"';XN>: y (26)

_ pler|xy) ... plen|xn)p(x1) ... p(xn)pler, ¢, .- en)
pler) .. .plen)p(x1,Xa, ..., XN)
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where p(c;|x;) is the context-free object-by-object Bayesian a posteriori probability,

p(c;) is the a priori probability of the classes, p(x;) is the marginal probability of the

features, and p(x1,Xa,...,Xy) is the joint distribution of all the feature vectors.
Since the features (xq,Xs,...,Xy) are given, p(xi1, Xs,...,Xx) and p(x;) are con-
stant,
Ci,...,C
pler, . enlxy, ... xn) o< plerfxa) - 'p<CN|XN>'p(—1“‘L) (2.7)

pler) .. .plen)

= p(e1]xq) ... plen|xn)pler, ca, ... en) (2.8)

where

A p(01702,~-~7CN)

plcy) ... plew) (2.9)

pler,ca, ... en)

The quantity p(cy, ¢, - .., ¢n), which we call the contezt ratio and through which
the context plays its role, captures the dependence among the objects. In the
case where all the objects are independent, p(ci,ca,...,cn) = p(e1)...p(en), then
p(ci,ea,...,en) = 1 — there will be no contextual information, and maximizing
the context-sensitive a posteriori probability in (2.3) is equivalent to maximizing the
context-free a posteriori probability in (2.2). In the dependent case, p(ci, ca, ..., cn) #
1, and the context has an effect on the classifications. In general, the range of p is
0<p<oo.

The context-sensitive decision rule chooses class labels ¢1, ¢, ..., éy such that

(é1,89,...,Cn) = argmax p(cy,ca,...,CN|X1, X2, ..., XN) (2.10)
(01)627"‘761\])

We call this the Context-Sensitive Maximum Likelihood (CSML) decision rule.
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2.2 Optimality of Context-Sensitive Maximum Like-

lihood Decision Rule

2.2.1 CSML Achieves Minimum Set-by-Set Error Probabil-
ity.

As stated earlier, our task is to classify all elements in a set according to their fea-
ture characterizations. Let us use the following notation: for a set of N elements
{T1,...,Tn}, vector random variable ¢ = (¢, ¢y, ...,cn) is the true labeling of the
set, ¢ = (é1, 6, ..., cy) is the estimated labeling, and z = (xq, X3, ..., XN) is the fea-
ture vector of the set of elements; for any element in the set, scalar random variable
c is its true labeling, ¢ is its estimated labeling, and x is its feature vector. The
environment from which the examples are generated is characterized by distributions
p(c) and p(z|c), based on which we can derive p(c) and p(x|c). !

We consider an environment in which each object has a unique identity. Errors
occur when our inference of the class is different from the true class. We define two
types of error: set-by-set error and element-by-element error. The set-by-set error

probability is defined as

Peset — P(Q;ﬁg)

Il

IH\.\

P(&(z) # clz, c)p(z, c)dzdc

J
¥

[1—0(e(z) — o)lp(z, c)dzde

o

where

1 ifs=0
6(s) =

0. otherwise

! The same conditional independence assumption as in equations 2.4 and 2.5 is made.
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is the Kronecker delta.

The element-by-element error probability is defined as

P:lement — P(é # C)

— /QL 7::7 2[1 ~ 8(Ca(z) — ca)lp(z, c)dzdc

The definition of set-by-set error is such that a set of elements is correctly classified
if and only if every single element in the set is correctly classified. If one or more
elements in the set are classified incorrectly, then this set, which can be viewed as a big
augmented object, is classified incorrectly. The definition of element-by-element error
is such that the error is counted on an element-by-element basis. If some elements
in a set are classified incorrectly, the rest of the elements in this set are still counted
as correct. Errors on different elements are counted separately and weighted equally
within a given set for element-by-element error.

We are more concerned with set-by-set error than with element-by-element error.
The difference between a set and an element corresponds to the difference between a
word and a letter or a syllable, a blood specimen and a blood cell. A word, rather
than a syllable, is the basic semantic unit. And it is a blood specimen as a collection
of a bunch of cells that conveys information pertaining to the health of a patient.

The benefit of using context lies in the fact that it reduces set-by-set error prob-

ability.

Theorem  CSML is the decision rule which achieves minimum set-by-set error
probability.
Proof:

Since ¢; € @ = {wy,...,wp} fori = 1,..., N, then ¢ = (c1,¢,...,cy) € QN =

{61,...,0DN}.
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For any given k, k =1,..., DV let A}, = {z|p(c = Ox|z) > p(c = 0;|z), for all j #
kand 1 <35 < DN}. In other words, X} is the region in the input domain RE*N
where an input z is given the label 6; according to the CSML decision rule.

The set-by-set error probability by using CSML is

P (error) = 1 — Pik,, . (correct)

DN

=1-)Y / o p(zley)p(ey)dz
~1=3 [ selonis

For any z € X, p(c,|z) is maximized by the definition of CSML decision rule,
therefore ZkD:Nl fEGXk p(cplz)p(z)dz is maximized, and Pg%,,(error) is minimized.
Q.E.D.

This is essentially the optimality of Bayes Error Rate. Conditioned on the col-
lective feature vector = (z1,...,Zy), no other decision rule is better in terms of
achieving a smaller set-by-set probability of error. The same logic implies that con-
ditioned only on isolated feature z;, the CFML decision rule that maximizes p(c;|«;)
for a given ; achieves minimum element-by-element probability of error. However, it
is possible that a decision rule conditioned on z = (1, ..., zy) has smaller element-
by-element probability of error than the one obtained by CFML conditioned only on

isolated feature z;, since more information is being utilized.

2.2.2 Information Theoretic Interpretation of Context

Define N,; as the number of objects in class d, and vg = %d— the frequency of class
d. Clearly, 25:1 N; = N and 25:1 vg =1 Let P = (P, P,..., Pp) be the class
prior probability vector, and v = (14,14, ...,vp) the class frequency vector. Taking

logarithms on both sides of Equation 2.7 gives:
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In pey, ..., enlxg, ..., X Zlnp (cilz;) +In Iﬁ;fc—%—%constant (2.11)

= Zln pleilzs) + In p(er, .., en) — In P PP + constant

i=1
N D

= Zln pcilzi) +In pley, ... en) — Z Ngln P; + constant
i=1 d=1

D
= Zln plcilzi) + In pley, ... en) — NZ vgln Py + constant

i=1 d=1
N D , D
= ZZ:l:ln p(cilz;) +In pler, ..., en) + N; valn Fz - Ndz:;ydln Vg + constant

p(cilz) +In pler, ...,en) + NH(v || P) + NH(v) + constant (2.12)

an

where H(v || P) = S0 viln 7 is the relative entropy between v and P, and
H(v) = — 25:1 vgln vy is the entropy of the class frequency.

The above relation implies that maximizing In p(cy, ..., cn|X1, ..., Xy) using context
has the effect of trying to achieve a trade-off among several factors: the likelihood
of each object given its feature (the first term), the likelihood of the set of objects
appearing jointly (the second term), the distance of the class frequency profile of
the set of objects from the prior distribution of the classes (the third term), and the
entropy of the class frequency profile, the maximization of which implies that the

least amount of further information is assumed about the frequency profile. The first

term depends on the features, and the other three depend only on the classifications.
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2.2.3 Information Gain by Using Context

It follows from the chain rule for conditional entropy that

H(ci,e,. .. en|Ty, o, .o 2N)
= H(ci|z1, %2, ..., zn) + H(coler; 21, 2o,y - .., 2y)+
H(cs|cy, co; 21,20, an) + ...+ H(enler, ¢2, ..o eno1; 21, Tay - -, T)

S H(Cl|x‘1) -+ H(Czlﬂ?z) + ...+ H(CN|$N)

Equality is achieved if and only if the following condition holds,

pleilX1, X2, ..., XN;C1, .0, 1) = plcilT;)

foralli =1,..., N. This condition says that ¢; is fully determined by z;, and nothing
else, which means that there is no context and therefore no information gain by
considering context. When there is contextual information conveyed by other objects,
this condition does not hold, in which case H(cy, o, ..., cn|21, T2, ..., ZN) is strictly
less than H(ci|z1) + H(calzs) + ... + H(ew|zn), and context provides information

gain.

2.3 A Toy Example

We illustrate the effectiveness of using context by a toy example. There are N = 4
elements in each set. ¢ = (c1,ca,¢3,¢4). BEach element takes binary values from
? = {0,1}. The distribution p(c) is specified in Table 2.1. We choose p(z|c) =
[1Y, p(zilc;), as assumed in Equation 2.5. The conditional feature distributions are
p(z|c = 0) = N(po,00) and p(z|c = 1) = N(u1,01). We choose o3 = 1.0 and o2 =
0.36. From p(c) we know that p(c = 0) = 0.525 and p(c = 1) = 0.475. The distance
between g and p; determines separability of the classes. When |ug — u1] = 0, the

two classes are completely overlapping, and there is maximum amount of ambiguity.
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Table 2.1: p(c) for the Toy Example

c p(c)
0000 0.30
0001 0.15
0010 0.05
0011 0
0100 0.05
0101 0
0110 0
0111 0.15
1000 0.05
1001 0
1010 0
1011 0.05
1100 0
1101 0.05
1110 0.05
1111 0.10

When |pg — 1] = oo, the two classes are completely separable, there is virtually

no ambiguity. We compare the performance of context-sensitive maximum likelihood
decision rule and the context-free maximum likelihood decision rule for the above
setup in terms of both set-by-set and element-by-element error probability as we
vary |uo — p1]. Monte Carlo experiments were run and the results are illustrated in
Table 2.2 and Figure 2.1. As we can see, by using context, smaller set-by-set and
element-by-element error probability are consistently achieved for varying |ug — 1]
Error probabilities, both set-by-set and element-by-element, decrease as |uy — fi1]
becomes larger. This is not surprising since the ambiguity is getting smaller. However,
the significance of context does not diminish. The ratios of context-sensitive error
probabilities to context-free error probabiﬁties actually decrease as |ug — p1| becomes
large, as shown in Figure 2.2, which implies that the effect of context becomes more

significant in a relative sense.
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Figure 2.1: Comparison of error probabilities between with context and without con-
text, for both set-by-set error and element-by-element error. In both figures, the
dashdot line is without context, and the dotted line is with context.
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Table 2.2: Comparison between errors for with and without context

| o — p || set-by-set w/o | set-by-set w/ [ ele-by-ele w/o [ ele-by-ele w/ |

0 0.866485 0.682500 0.407871 0.353600
0.5 0.818340 0.658045 0.360449 0.326740
1.0 0.706747 0.512500 0.270263 0.215787
1.5 0.535298 0.382020 0.176094 0.139310
2.0 0.363090 0.237900 0.106931 0.078304
2.5 0.217084 0.130278 0.059470 0.039422
3.0 0.118153 0.064205 0.030936 0.018312
3.5 0.056293 0.029339 0.014382 0.007899
4.0 0.024691 0.012473 0.006231 0.003249
4.5 0.009770 0.004770 0.002454 0.001219
5.0 0.003571 0.001766 0.000894 0.000445

2.4 Special Cases of Context

2.4.1 Only the Counts Count.

We deal with the application of object classification where it is the count in each
class, rather than the particular ordering or numbering of the objects, that matters.
Such is the case for the application of white blood cell identification and microscopic
urinalysis where it is the percentage profile of all classes in a specimen that convey
diagnostic information.

Proposition: p(cj,cs,...,ex) = p(n(c1, ¢2, ..., cn)), where 7(cy, ¢, ..., cn) is an arbi-
trary permutation of ¢y, ¢y, ..., ¢y, if and only if p(cy, ca, ..., en) = p(N1, Na, ..., Np),
where Ny is the count of class d, for d =1, ..., D and ZdD:1 Nqgy=N.

Proof:

A vector (c1,ca,...,cn) is said to be permuted into basic arrangement by m if
w(cy, Cay oy EN) = €1, Co', .., ey’ and the arrangement of ¢, ¢y’ ...,cn’ is such that the
first N; elements are in class 1, the next N, elements are in class 2, etc. In other
words, ¢, ¢2', ..., ¢y’ has the count profile of (N1, Na, ..., Np).

Since any vectors (cy, ¢a, ..., cx) that have the count profile of (Ny, Ny, ..., Np) can

. . ! .
be permuted into the same basic arrangement (c;, ¢2/, ..., cn’), and since p(cy, €3, ..., CN) =
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Figure 2.2: The ratio of with-context error probability to without-context error prob-
ability. The dashed line is for element-by-element and the solid line is for set-by-set
error probability.

p(m(cr, eay.yen)) = plcy, co', .., en'), therefore, p(ci, co, ..., en) = p(Ny, Ny, ..., Np) is
a function of the count profile.

The argument also goes the other way: if p = p(Ny, N2, ..., Np) is a function only
of the count profile (Ny, Na, ..., Np), then p(ci, cg, ..., cn) = p(n(cy, o, ..., cn)) for any
arbitrary permutation (¢, cs, ..., cn) of (¢, co, ..., Cn)-

We prove this by contradiction. Assume there exist two vectors (ci,c3, ..., ck;) and

(¢}, 3, ..., c&) that have the same basic arrangement (cy, ¢o, ..., cn),i.e., (el cl, ... k) =
(c1,¢2,...en) and (2, c3, ..., c&) = (e1, ¢y o) but plel, el ek) # p(c2, c2, ..., %),
Since p(c, 63, ..y i) = p(rt(ci, cb, ..., e%)) = plcr, ca, ... en), and p(c3,c2,...,c%) =

p(r?(c}, 3, ..., c%)) = p(cy, e, ..., en), therefore, p(cl, cb, ..., &) = p(c?, ¢, ..., c%), which

contradicts the assumption. Q.E.D.
As a result, the contextual ratio pA(cl, C2, ..., Cn) is only a function of the count in
each class. Since there are TVQWJ—V%VF ways of arranging N objects that gives rise to a

frequency profile of (1,14, ..., vp), then
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N{l..Np!
plc1, ¢, .yen) = —E——P—p(yl, Vg, ...y UD) (2.13)

Therefore,

p(Cl, Co, ...,y CN)
p(cr)...p(en)

p(Cl,Cz, -'-7CN) =

Nl'ND' p(l/l, Vo, ..., IJD)

T NI pNw_pYw (2.14)
= p(yh ) VD)
where Py is the prior probability of class d, for d = 1,...D.
Let
Nl Np!
a(v,vs,...,vp) = NT PN ps (2.15)
then,
p(v1,va, ...,vp) = a(vy, v, ..., vp)p(vy, Vo, ..., VD) (2.16)

Applying Stirling’s formula Irntieme AT < pl < o/2rn™tieMein to the

factorials in 2.15, we can derive the upper and lower bounds for a(vy, vy, ..., vp),

(V2m)P-1eNHEP) yDeZdDzl N N (2.17)
< alvy, v, ..., Vp) (2.18)
< (V2m)P1eNHWP) VDeZ’]"D:1 TG TN (2.19)

D v .
where H(v,P) = >, valn( 7 ) is the relative entropy between the frequency profile
and the prior distribution of the classes. The upper and lower bounds of context ratio

p(v1, v, ..., vp) follows immediately.
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D
(V2m)D-1eNHEP) i pe = 12N1d+1“ﬁlﬁp(y1, Vay ..y UD) (2.20)
p(v1,va, ..., vp) (2.21)
D 1
< (V2m)P-1eNHWP) e f’l"@_lmﬂp(ub Vo, ooy UD) (2.22)

IA

2.4.2 Only the Presence Matters.

In real world applications, there are cases where the contextual information is in the
form of the presence of some classes. It is the sheer presence, rather than the amount,
that provides context. For example, in microscopic urinalysis, the presence of white
blood cells indicates the presence of bacteria. We would like to formulate context in
the form of the presence of the classes.

We define random variable Ay in the following way ford = 1,..., D.

1 if class d is present
Ag=
0 1if class d is absent

A classification vector (¢y, o, . .., cy) can be mapped into a presence vector (Ay, ..., Ap),

where Ag = 1 if at least one of the ¢;’s are d and A; = 0 otherwise. Under the as-

sumption that all arrangements of the elements in a set (¢y, ¢y, ..., cy) that give the
same (Aj,...,Ap) are equally likely, we can derive the relation between the two,
Y4 Al; ey AD
pler, - en) = %
N4l

where ||A]| is the total number of 1’s in A, and A = (A;,..., Ap) is the binary
presence vector.

The denominatdr T4 is the number of arrangements of NV different elements
that result in designated ||A|| non-empty classes with at least one element in each of
them and D — || A|| empty classes. Some calculation leads to the iterative relation for

Tn,j4) given by
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Tn,l == 1

Tn,2 - 2” - 2

Tn,d = ZZ;§d_1) (Z) Tn—k,d—l
A sketch of the derivation is given in the Appendix.

As a result, the contextual ratio p(cy, ¢, ..., cy) is only a function of the presence

in each class, i.e.,

p(cy, ca, .oy CN)
p(cy)...p(en)

p(cla 15 TR CN) =

p(Al, . 7AD)

= ; . (2.23)
T ya PN PP

= p(As,...,Ap; Ny,...,Np)

2.5 Complexity Problem

When implementing the context-sensitive maximum likelihood decision rule, we want

to find a (cy,...,cn) that maximizes p(cy,...,cn|X1,...,Xn). There are D possible
choices for each ¢;, and there are N elements, i = 1, ..., N. Therefore, there are DV
possibilities that (ci,...,cx) can take on. We need to compute and compare DV
cases to find the maximum of p(cy,...,cn|X1,...,Xy). Suppose the D dimensional

probability vector p(c;|z;) is given for all ¢ = 1,..., N, then for the computation of
p(e, ..., enlx1, ..., xy) for each case of (¢, .. ., ey ), 2N+1 multiplications are needed
(see 2.7). The total number of multiplication for all DV cases is (2N + 1)D¥. Since
finding the maximum of of n numbers has complexity n, then finding the maximum of
of DY numbers has complexity of DY. For the blood cell recognition problem, D = 14
and N is typically around 600, the computation is enormous and virtually impossible

to implement. In the context-free case, we deal with each element individually by
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maximizing p(c;|x;) with respect to ¢; for all i = 1,..., N. Since the D dimensional
probability vector p(c;|z;) is already given for alli = 1,..., N, we only need to find the
maximum of all D-dimensional vectors, whose total complexity is ND. Incorporating
context entails computation cost, both in terms of total number of multiplications
and in terms of the complexity of finding maximum of DV numbers. In some cases,
additional constraints can be used to reduce computation, as is the case in white blood
cell identification, which will be demonstrated in the following section. In some other
cases when such simplifications are not feasible, we will have to resort to methods
that get around the computation problem, possibly at the cost of accuracy. This is
the motivation behind utilizing context in an indirect way, which will be described in

the following section.

2.6 Partial Context

2.6.1 Mathematical Formulation

Context-sensitive maximum likelihood leads to computation problems for relatively
large D and N. The alternative of using p(c;|x1,. .., X1, Xi, Xi+1, - - -, Xn) also has
exponential computation cost. Instead of using the primary “raw” context contained
in the feature vector (xi,...,Xy), we use the “intermediate-stage” context. The
context is called “intermediate-stage” because it is derived from “raw” context or
estimated without using context.

Let A be the “intermediate-stage” context. The physical definition of A depends
on the problem at hand. For example, A can be the percentage profile of all the
classes, or the binary presence vector of the classes, or the presence of one or a few
particular classes. A can also represent certain external information sources, such as
the chemistry result in urinalysis which is a urine test different from, yet related to,
microscopic urinalysis [Boehringer-Mannheim-Corporation, 1991].

By Bayes’ Rule,
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p(ci, x4 A)

p(zi; A)
_ p(wilei, A)P(ei; A)
- p(zs; A)

Once again, we make the conditional independence assumption that the feature dis-

p(ci‘xh A) =

tribution of an object is dependent only on its own class, not the features or classes

of other objects, i.e., p(z;|ci, A) = p(z;|c;), then

ol A) — p(w|ci)p(cs; A)
plales, 4) p(zs; A)
_ p@ile)p(cilA)p(A)
p(z;; A)

pleilA) p(A)p(z:)
ple;)  p(zi; A) (2.24)

= p(cilzi)

x p(c;lz; plal4)
p(ci|z:) (e (2.25)

The context-partial-sensitive a posteriori probability p(c;|z;, A) is obtained through

the context-free a posteriori probability p(c;|z;) modified by context ratio p = ”—1(7%%‘;1—).
The partial-context maximum likelihood (PCML) decision rule chooses class label

¢; for element ¢ such that

& = argmax p(c;|x;, A) (2.26)

c;

It is important to point out two aspects of using partial context. One is that the
context contained in random variable A needs to be reliable for formula 2.25 to be
carried out directly. Otherwise, using wrong context may lead to worse performance.
Another point is that A needs to be context-bearing. In other words, the value of
A does convey information about ¢;. There are many ways to measure the level of
relevance of A to ¢;, such as the mutual information I(c;, A), or the relative entropy

between the prior distribution p(c;) and the context conditional distribution p(c;|A).
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2.6.2 A Toy Example

We demonstrate the use of partial context to improve performance by a toy prob-
lem. There are N = 3 elements in each set. ¢ = (¢, co,c3). Each element takes
ternary values from Q = {0,1,2}, therefore D = 3. The joint distribution p(c) is
specified in Table 2.3. From the joint distribution p(c), it can be calculated that the
prior distribution of the three classes are p(0) = 0.26, p(1) = 0.49 and p(2) = 0.25.
From formula 2.25 we know that p(c;|A4) is needed to calculate the context ratio
p= %%—3'59. Table 2.4 lists p(c|Ag = 1) and p(c|Aq =0) for ¢ =0,1,2 and d = 0,1, 2.

We choose p(z|c) = [Iir, p(z:]ci), as assumed in Equation 2.5. The conditional
feature distributions are Gaussians p(z|c = 0) = N(po, 09), p(zlc = 1) = N(p,01),
and p(z|c = 2) = N(u2,02). In this toy problem, the intermediate-stage context is the
presence or absence of class 0. As mentioned earlier, the context A that p(c;|z;, A) is
conditioned on has to be reliable. We choose g = 0, 09 = 0.01 and both pu, s > po
so that there is hardly any ambiguity in the classification of class 0, therefore, the
context, i.e., the detection of presence of class 0, is accurate. We choose o7 = 1.0
and o, = 0.6. The distance between u; and ps determines the separability of class
1 and 2. We compare the performance of context-sensitive, context-partial-sensitive,
and context-free maximum likelihood decision rules for the above in terms of both
set-by-set and element-by-element error probability as we vary |u; — pa|- Monte
Carlo experiments were run and the results are illustrated in Table 2.5, Table 2.6 and
Figure 2.3. The main moral of this toy problem is, as we can see, that the context-
partial-sensitive algorithm consistently outperformed the context-free algorithm, for
both set-by-set and element-by-element error probability. In terms of set-by-set error,
the context-sensitive algorithm is the best, which is expected due to its optimality.
In terms of element-by-element error probability, both the context-sensitive and the
context-partial sensitive algorithms are better than the context-free algorithm, but
there is no clear winner between the two. Error probability, both set-by-set and
element-by-element, decrease as |u; — pa| becomes larger. This is not surprising

since the ambiguity is getting smaller. However, the significance of context does not
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diminish. The ratios of context-sensitive error probabilities, for both full and partial
context, to context-free error probabilities actually decrease as |y — p1| becomes
large, as shown in Figure 2.4, which implies that the effect of context becomes more

significant in a relative sense.

2.6.3 Computational Cost Using PCML

Similar to the context-free approach, the partial-context approach treats each el-
ement in a set individually, with additional information from context-bearing fac-
tor A. Again the D dimensional probability vector p(c;|z;) is already given for all
i=1,...,N. Once the context A is obtained, we want to maximize p(c;|z;, A) from
D possible values that ¢; can take on. For each 7, we need to do 2 multiplications (see
2.25) and to find the maximum of D numbers. Then the total number of multiplica-
tions is 2V, which is linear in N, compared to the exponential relation (2N + 1)D¥
in the full context case. The total complexity for finding the maximum is ND, the
same as in the context-free approach, compared to the exponential complexity DV N

in the full context case.

2.7 Appendix

Claim: Let T, 4 be the number of arrangements of n different elements into d classes

with at least one element in each class. It holds true that

Tn,l — 1
Ty = 2" — 2
Toa =0 (M) Ty g

Proof: 7T,; is the number of ways to arrange n elements in 1 class. Obviously,
Tn1 = 1. When we arrange n elements into 2 designated classes, since both 2 classes
are non-empty, the possibilities are: there are k elements in the first class, n — k in

the second for k = 1,...,n—1. Therefore the total number of ways to result in 2 non-
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Figure 2.3: Comparison of error probabilities among with full context, partial context
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figures, the dashdot line is without context, the dotted line is with full context, and
the solid line is with partial context.
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empty classes is (?) + (g) +...+ (n’il) = 2" —2. When there are 3 non-empty classes,
the possibilities are: there are k element in the first class with the remaining N — k
elements being arranged into the other two classes for k = 1,...,n—2. Therefore, the
total number of ways to result in 3 non-empty classes is (71‘) Tho1o+ (g) Thooo+...+
(nT—lz) 152 = Ty, 3, which can be calculated since we already know T, 5. Following the
same logic, to result in d non-empty classes, the possibilities are: there are k elements
in the first class with the rest N —k elements being arranged into the remaining d — 1
classes for k = 1,...,n — (d — 1). Therefore, the total number of ways to result in
d non-empty classes is (7) Tn_1,4-1 + (§) Th-24-1 + ... + (n~(27—1)) To1d1 = Tha

Once we know T;,, g1 form=d—1,...,n — 1, T, 4 can be calculated. Q.E.D.

Note: All the way, though, we assume that n > d to make T}, 4 a legitimate quantity.

Using this iterative relation, it follows that T'(n,n) = n!, which is expected.
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Table 2.3: p(c) for the Toy Problem

¢ p(c)

000 0

001 0.15

002 0

010 0.05

011 0.02

012 0

020 0

021 0

022 0

100 0.08

101 0.15

102 0

110 0.05

111 0.05

112 0.10

120 0

121 0.15

122 0.02

200 0

201 0

202 0

210 0

211 0.02

212 0.02

220 0

221 0.02

2272 0.12

A():l AOZO A1:1 Alz() A2:1 A2:0

plc=0]Ay) | 052 0 0.296 0 0 0.47
plc=1|Ag) | 048 | 050 || 0.557 0 044 | 0.53
plc = 2|Ag) 0 0.50 | 0.148 | 1.00 || 0.56 0

Table 2.4: p(c|Aq = 1) and p(c|Aq = 0)
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(m—p ]| wjo | wip [ w/ ]
0.5 0.507672 | 0.368006 | 0.339566
1.0 0.460798 | 0.277748 | 0.234935
1.5 0.326270 | 0.199237 | 0.164245
2.0 0.213740 | 0.135970 | 0.105204
2.5 0.122439 | 0.077499 | 0.062495
3.0 0.065066 | 0.041755 | 0.033470
3.5 0.031372 | 0.020084 | 0.015873
4.0 0.013825 | 0.009028 | 0.007548
4.5 0.005370 | 0.003406 | 0.002742

Table 2.5: Comparison between set-by-set error probabilities for with full context,
partial context and without context

(a—pa | wio | w/p | w/f |
0.5 0.257425 | 0.177472 | 0.195237
1.0 0.192419 | 0.120881 | 0.125462
1.5 0.125242 | 0.079026 | 0.078751
2.0 0.077659 | 0.050297 | 0.045337
2.5 0.042798 | 0.027409 | 0.023997
3.0 0.022220 | 0.014337 | 0.012044
3.5 0.010575 | 0.006790 | 0.005487
4.0 0.004630 | 0.003027 | 0.002553
4.5 0.001793 | 0.001138 | 0.000920

Table 2.6: Comparison between element-by-element error probabilities for with full
context, partial context and without context
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Chapter 3 White Blood Cell

Identification

3.1 Introduction

White blood cell (WBC) analysis is one of the major routine laboratory examina-
tions. The utility of WBC classification in clinical diagnosis relates to the fact that in
various physiological and pathological conditions the relative percentage composition
of the WBC changes. An estimate of the percentage of each class present in a blood
sample conveys information which is pertinent to the hematological diagnosis. Most
WBC differentiation depends almost entirely on manual specimen preparation and
human interpretation, and more than ninety percent of the direct costs are labor.
The availability of Automated Intelligent Microscopy Flow Imaging technology ( see
[Kasdan et al., 1994] ) makes it possible to have automated differentiation, which will
reduce labor and health care costs, and is more efficient. Typical commercial differ-
ential WBC counting systems are designed to identify five major mature cell types.
But blood samples may also contain immature cells. These cells occur infrequently in
a normal specimen, and most commercial systems will simply indicate the presence
of these cells because they can’t be individually identified by the systems. But it is
precisely these cell types that relate to the production rate and maturation of new
cells and thus are important indicators of hematological disorders. Our system is
designed to differentiate fourteen WBC types which includes the five major mature
types: segmented neutrophils, lymphocytes, monocytes, eosinophils, and basophils;
and the immature types: bands (unsegmented neutrophils), metamyelocytes, myelo-
cytes, promyelocytes, blasts, and variant lymphocytes; as well as nucleated red blood
cells and artifacts. Differential counts are made based on the cell classifications, which

further leads to diagnosis or prognosis. Table 3.1 gives a range of differential counts of
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all cell types within which a specimen is considered normal. A specimen is abnormal
if the differential counts of one or more cell types fall out of their ranges.

The data was provided by International Remote Imaging Systems (IRIS), Inc.
Blood specimens are collected at Harbor UCLA Medical Center from local patients,
then dyed with Basic Orange 21 metachromatic dye supravital stain. The specimen
is then passed through a flow microscopic imaging and image processing instrument,
where the blood cell images are captured. Each image contains a single cell with
full color. There are typically 600 images from each specimen. The task of the cell
recognition system is to categorize the cells based on the images. Figure 3.1 is an

example of cell images of various types.

PN BAND Lymp LYMP BAORD

{CLUSTERED)

META MYEL MYEL PROM BLET
{EQSINOPHILIC)

Figure 3.1: Example of some of the cell images.

3.2 Image Processing and Feature Extraction

The size of cell images are automatically tailored according to the size of the cell in
the images. Images containing larger cells have bigger sizes than those with small
cells. The range varies from 20x20 to 40x40 pixels. The average size is around 25x25
(see Figure 3.1). At the preprocessing stage, the images are segmented to set the
cell interior apart from the background. We use adaptive thresholding for image

segmentation.
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[ cell type | normal range ‘
pmn 34.4836 - 72.7435 %
lymp 14.5011 - 48.9739 %
mono 4.5973 - 12.2653 %
band 0-76776 %

eo 0-9.7089 %
baso 0-1.5436 %
meta 0-0.2757 %
vlymp 0-1.1691 %
myel 0-0.0467 %
blast 0
mega 0
prom 0

Table 3.1: Normal ranges of the percentages of all white blood cell types.

Figure 3.2: Example of a cell.

3.2.1 Adaptive Thresholding for Image Segmentation

Each color cell image is decomposed into red, green and blue frames; each frame itself
is a gray level image. In ideal situations, the average intensity of cells of the same
type should be more or less the same for the same color frame, and the background
should have homogeneous texture and have the same intensity level. However, this is
not true due to the instability of exposure time, variation in lens focus and lighting
intensity in the microscopic imaging systems and other various sources of noise in the
system. Some images appear brighter, some darker. There is also heterogeneous noise
in both the background and the foreground, which makes thresholding with constant

threshold an inferior approach. This motivates us to adopt an adaptive thresholding
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Figure 3.3: (a)Histograms of red, green, blue frames. (b) Smoothed version of (a).

technique, where the thresholds for each color frame of one cell vary according to the
statistics of the image.
A gray level image is first filtered with a symmetric Gaussian filter for noise

reduction.

L(i, 4) = 1(i, j) * G(r, ¢)

where * is convolution operator. I(4,7) is the original gray level image, I,(4, j) is

the smoothed image.

_1’2+02
e 202

G(T, C) = 242
e 202
(ric)ew
is the low-pass Gaussian kernel, and W is the size of the kernel, which is chosen to
be a 5x5 window in our system (—2 < r, ¢ < 2) and o controls the level of smoothness
of the filter.
A gray level histogram H(t) is obtained for smoothed gray level image I,(3, ),

where ¢t = 0,...,255. H(t) is a non-smooth discrete series with various peaks and

valleys. See Figure 3.3 (a). This series is filtered through a smoothing filter
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The smoothed version H,(t) of a histogram generally has one significant valley, which
corresponds to the highlighted threshold value that sets apart the background and
the foreground. See Figure 3.3 (b). An intensity value ¢ is a threshold if

and

H,(t)>0 (3.2)

A 5 order difference model is used to calculate the derivatives.

H (1) = %(H(t _9) — 8H(t— 1)+ 8H(t + 1) — H(t +2))

Instead of using Equation 3.1 and Equation 3.2, we use the following simplified
rules to locate the threshold: A value # is the threshold if H,(t—2) < 0 and H,(t—1) <
0 and H,(t+1) > 0 and H,(t+2) > 0 and T; < t < T,, where T; and T, are the
upper and lower bounds of the range that a reasonable threshold should fall in, which
is decided a prior:.

Once the threshold 7" is decided upon, the original gray level image is segmented
according to

Bli,j) = 1 ifI(4,5) >T
0 otherwise

where B(i,j) is the binary image after segmentation.

Segmentation is done separately for all three color frames of each color image,
resulting in three binary images. A binary NOR operation is taken for the binary

images on a pixel-by-pixel basis, ie.,
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(a) (b)

Figure 3.4: (a)Gray level red, green, blue frames and intensity image. (b) Segmen-
tation of red, green, blue frames and the final segmentation.

o 0 if B,(¢,j) =0 or By(t,7) =0 or By(i,j) =0
B(i,5) =
1 otherwise
This gives rise to a binary image with small holes in the foreground and small
islands in the background. A hole-filling and island-removing process is carried out

to deal with this problem, obtaining a compact island-free cell segmentation. See

Figure 3.4 (b).

3.2.2 Feature Extraction

Features based on the interior of the cells are extracted from the images. The features
include size, shape, color and texture. See Table 3.2 for the list of features. ! These

features by design are rotation and translation invariant.

!The red-blue distribution is the pixel-by-pixel In(red) — In(blue) distribution for pixels in cell
interior. The red distribution is the distribution of the red intensity in cell interior.
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Table 3.2: Features extracted from cell images

feature number feature description

cell area

number of pixels on cell edge

the 4th quantile of red-blue distribution

the 4th quantile of green-red distribution

the median of red-blue distribution

the median of green-red distribution

the median of blue-green distribution

the standard deviation of red-blue distribution
the standard deviation of green-red distribution

O 00 ~1 O U= Wi

10 the standard deviation of blue-green distribution
11 the 4th quantile of red distribution

12 the 4th quantile of green distribution

13 the 4th quantile of blue distribution

14 the median of red distribution

15 the median of green distribution

16 the median of blue distribution

17 the standard deviation of red distribution

18 the standard deviation of green distribution

19 the standard deviation of blue distribution

20 the standard deviation of the distance from the edge to the mass center

3.3 Learning and Classification

A feature vector is a numerical representation of a cell image, which is of a particular
type. We would like to design a learning machine that can, through a learning
algorithm, map a feature vector to its correct classification. This is done through
supervised learning, where a set of labeled examples (the training set) is given, and
the learning machine tries to infer the mapping between the feature vectors (the input)
and the classifications (the output) by observing and extracting relevant information
from the set of labeled input-output pairs. We choose the learning model to be
parametric. The learning process takes the the training set as input and tries to
adjust the parameters of the learning model to optimize some utility function. The

optimal parameters hopefully correspond to an input-output relation that is close
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to the real one. The utility function is an error function measuring the deviation
between the desired output and the model output on the training set.

Let P be the input dimension (number of features in a feature vector), and D
be the output dimension (number of classes). Let x be the input vector, g(x, w) be
the output vector of the learning model, and w the model parameters. We choose
our learning model to be Radial Basis Functions (RBF) [Bishop, 1995], where the

functional relation between the input and output is defined by the following:

exp(aq(x, w))

X, W) = =5 3.3
W) T caplaut, w) &
where P

aa(x, W) = Zud,pea:p(—m—;z@ﬂ-—) (3.4)

where d = 1,...,D and w = (U, py,02) are the parameters. U = {ug,} for
d=1,...,Dandp=1,...,P. p={us} and 0* = {02} for d = 1,..., D. Figure 3.5

illustrates the architecture of the RBF learning model.

output

Figure 3.5: Structure of a radial basis function network

The functional mapping that the RBF model implements is gy (x) : R¥ — [0, 1]7.
By design, Equation 3.3, the output vector g(w,x) = {ga(w,x)}2_, has the property

that 0 < ga(w,x) < 1 and Y2  g4(w,x) = 1. g4(w,x) can be interpreted as the



41
probability that x is in class d for a fixed set of parameters w. Therefore, 9a(W, x)
ford=1,...,D is a probability vector.

The outputs of the training set inputs are encoded in such a way that it is a D-
dimensional vector, with only one element being 1, the rest being 0, and the position
of 1 indicating which class the cell belongs to. Let y(x) be the desired output for
input x. The error function E(w) is defined as the summation of relative entropy
between the desired y(x) and the real outputs probability vector gy (x) for any x in

the training set.

The optimal set of weights is the one that minimizes the error function, 7.e.,

w* = argmin F(w)
w

According to [Richard and Lippmann, 1991], the learning process described above
gives a convenient interpretation of the output. The d* element of the output vector
of the learning model at the optimal weights w* for an input x corresponds to the a

posteriori probability that x is in class d, i.e.
ga(w*,x) = Prob( ¢(x) =d | x)

3.3.1 No-Context Performance

The maximum likelihood context-free decision rule at this stage is

d(x) = argznax p(d|x)

The context-free performance is illustrated in the confusion matrix in Table 3.3,
where the entry at (7, j) represents number of cells that are really in class ¢ and are

classified into class j by the decision rule.
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[ [l ym [ pmn | art | mono | eo | baso | mega | band | meta | prom [ blst [ myel | atly | rbc |

lym 348 2 25 4 0 1 0 1 0 0 7 0 0 0
pmn 6 691 1 5 2 0 1 0 1 0 0 0
art 13 4 123 2 2 0 0 0 1 0 1 0 0 0
mono 9 5 0 145 0 1 0 8 ] 0 0 0 4] 0
eo 0 ¢} 1 0 138 0 0 1 1 0 0 0 0 ¢
baso 0 o 1 ¢ 0 31 0 0 0 0 0 0 0 0
mega 0 0 0 0 0 o} o 0 o 0 o] 0 0 0
band 1 0 0 7 5 1 0 138 1 0 o] 0 0 0
meta 0 6 0 0 1 o} 0 5 27 0 0 0 o} 0
prom ¢ 0 0 3 0 1 0 0 0 0 0 0 0 0
blst 18 1 3 3 0 0 0 0 0 0 27 0 ¢ 0
myel 0 0 0 0 0 [¢] 0 1 3 0 0 ] 0 0
atly 0 0 0 0 0 0 0 0 0 0 1 0 o 0
rbe 5 0 3 0 0 0 0 0 0 0 0 0 0 0

Table 3.3: Confusion matrix generated by context-free maximum likelihood decision
rule.

The average classification rate is 89.71%.

3.4 Incorporating Context into WBC Identifica-

tion

3.4.1 Introduction

The “context-free” cell-by-cell decision is only based on the features presented by a
cell, without looking at any other cells. When human experts make decisions, they
always look at the whole specimen, taking into consideration the identities of other
cells and adjusting the cell-by-cell decision on a single cell according to the company it
keeps. On top of the visual perception of the cell patterns, such as shape, color, size,
texture, etc., comparisons and associations, either mental or visual, with other cells
in the same specimen are made to infer the final decision. A cell is assigned a certain
identity if the company it keeps supports that identity. For instance, the difference
between lymphocyte and blast can be very subtle sometimes, especially when the cell
is large. A large unusual mononuclear cell with the characteristics of both blast and
lymphocyte is more likely to be a blast if accompanied by other abnormal cells or an
abnormal distribution of the cells.

This scenario fits in the framework we described in Chapter 1. Context incorpo-

ration is treated as the post-processing of the cell-by-cell decisions.
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As was mentioned in Chapter 1, the contextual information is incorporated by
maximizing p(cy, g, ..., cN|X1, X2, ..., Xx) given all the cells in a specimen simultane-

ously instead of maximizing p(¢;|x;) for individual cells i = 1, ..., N separately.

p(Cl,...,CN>

plet, oy CNIX1, oy Xpy) X p(cllxl)'"p(CN’XN)p(cl)...p(cN) (3.5)
= p(cllxl)...p(chxN)p(cl, Coyouny CN) (36)

where
plci, cay .y Cr) = {CHENG) (3.7)

p(c1)...plen)
In the case of white blood cell identification, only the counts in each class, not the

ordering of the cells, that matters. Therefore,

pler, e, .oy Cn)
p(Cl)...p(CN)

pler,ea, o) =

o N]_'ND' p(l/]_, Va,y .oy VD)
~ N!pNn_plvr

= p(v1,...,vp) (3.9)

3.4.2 Estimation of the Context Ratio p(vy,...,vp)

To avoid encountering astronomical factorial numbers such as N!, we approximate
Equation 3.8 in the following way.

Since

p(va) = (1]\\[[1) PNa(1 — py)N-Na

We have

p(r)p(vs)...plvp) =
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N N N
<N1> <N2> (ND) PlNIPQNz-..PgD(l——Pl)N—Nl(l_PZ)N—Ng.”(1_PD)NuND

_ <]]\\£> (;\2) (]if\;) (1=PYHYN=N(1-pH)N=N2 (1 pPYN=No (e )p(es) . . . plew)

since p(c1)p(cz) . ..plen) = PP ... PP,

Therefore,

p(vi)p(ve) - - . p(vp)
o R O o L e T e

Ny N Np

p(cl)p(Cz) .. .p(cN) — (

And since

p(VI; Vy, .. .,VD)NllNQ! . ND'
NI

p(Cl,Cz, C . ,CN) =

it follows that

p(cr, oy . 0N)
p(cr)p(ea) - - - plew)

p(vi,...,vp) =

. p(Vl,I/g,...,VD) NllNg'ND' <N> (N) %
p(v1)p(ve) ... p(vp) N! N N, o

: (i) (L= POV L= POV (1 PPN

_ pln,v,...,up) N(N-1). (N—-N;+1)...N(N—-1)...(N—-Np+1)
~ p()p(ve) .. .p(vp) N!

x(1— PHYN=M(1— pAN-Ne (1 - pRyNhe

Taking logarithms on both sides, and using Stirling’s formula



we get

In p(vy,...,vp)

D
:lnp(z/l,VQ,...,VD)——ZlnP(yd +Z N — Np)in(l — Py)+
=1

d=1 d
= 1 1
ZZNd(N—Nd+1)+(N+§)lnN—N+§lmr
d=1 kz=1

Therefore, instead of maximizing p(cy, ..., cy|X1, ..., Xy ) We maximize

Inp(er, .., enlxy, oy XN)

N D D
= Zln p(cilx;) +In p(v1,ve,...,vp) — ZlnP(l/d + Z N — Np)in(1l — Py)+
i=1 d=1 d=1

SN No(N = Ng+1)

d=1 kg=1

In our case, D = 14 and N is typically around 600, and p(v1,1va,...,vp) is a
discrete distribution with DV possible values. The number of examples in the data
set we have to estimate the distribution is around 4000. Distribution estimation is
an ill-posed problem, and the problem is worsened with limited amount of data. We
try to get around this problem by grouping classes into 5 groups and grouping the
cell number into 5 ranges, which effectively reduce both D and N to 5 from 14 and
600 respectively. See Table 3.4.

p(v1, v, ...,vp) and p(v1), p(v2), ..., p(vp) are estimated by grouping.
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class subgroups

” range 1 ‘ range 2 ' range 3 I range 4 ‘range 5 '

Neutrophil 0—20% | 20 — 40% | 40 — 60% | 60 — 80% | > 80%

Lymphocyte 0—20% | 20 — 40% | 40 — 60% | 60 — 80% | > 80%

Mono+eo+baso 0—10% | 10 —20% | 20 — 30% | 30 — 40% | > 40%
Immature non-blast 0 1—-4 5—9 10 — 14 > 15
blast 0 1-3 4 -7 8§ —11 > 12

Table 3.4: Grouping of classes and counts

3.4.3 Observations and Simplifications

Direct implementation of the proposed algorithm is difficult due to the computa-
tional complexity. In the application of WBC identification, simplification is possi-
ble. We observed the following: First, we are primarily concerned with one class:
blast, the presence of which has clinical significance. Secondly, we only confuse blast
with another class lymphocyte. In other words, for a potential blast, p(blast|x) >
0, p(lymphocyte|x) > 0, p(any other class|x) ~ 0. Finally, we are fairly certain
about the classification of all other classes, i.e., p(a certain class|x) = 1,

p(any other class|x) =~ 0. Based on the above observations, we can simplify the algo-

rithm, instead of doing an exhaustive search.

Let p? = p(¢; = d|x;),7 = 1,..., N. More specifically, let p? = p(blast|x;), pF
p(lymphocyte|x;) and pf = p(class * |x;) where * is neither a blast nor a lymphocyte.
Suppose there are K potential blasts. Order the p? pf ..., p%’s in a descending

manner over ¢, such that

then the probability that there are k blasts is

Pg(k) = pf..pPpf1. Pk Dy plve = ~]’%, vy = v; + %, V3, ..., VD)
where V'L is the proportion of unambiguous lymphocytes and vs, ..., vp are the pro-
portions of the other cell types.

We can compute the Pg(k)’s recursively.
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% ¥ K
Pg(0) = pf...pf{ Pki1---DN p(vpg =0,vp = v, + i Vs, ..., VD)
pkB+1 p(ve = ij\L,l,VL = V'L + %, V3, .., VD)

Pg(k+1) = Pp(k)

L _ k _ ) K-k
pk+1 p(VB - _ﬁaVL =V + Tal/37"'7VD)

fork =1, ..., K-1, and

K

PB(K) = pprg p*K—}‘lp}kV p(VB = NaVL = VIL’V3, "'7VD)

This way we only need to compute K terms to get Pg(k)’s . We pick the optimal
number of blasts k* that maximizes Pg(k),k =1, ..., K.

3.4.4 The Algorithm and Complexity

Step 1 Estimate p(v4, ..., vp) from the database, for d =1, ..., D.

Step 2 Compute the object-by-object “no context” a posteriori probability p(c;|x;),7 =
1,..,N,and ¢; € {1,...,D}.

Step 3 Compute Pg(k) and find k* for k = 1, ..., K, and relabel the cells accordingly.

We would like to point out that the number of terms to compute and compare

drops from DY to 2V after simplification, and further to N after ordering.

3.4.5 Results

The algorithm has been intensively tested at IRIS, Inc. on the specimens obtained
at Harbor UCLA Medical Center. We compared the performances with and without
using contextual information on blood samples from 220 specimens (consisting of
13,200 cells). In about 50% of the cases, a false alarm would have occurred had context
not been used. Most cells are correctly classified, but a few are incorrectly labeled
as immature cells, which raises a flag for the doctors. Change of the classification
of the specimen to abnormal requires expert intervention before the false alarm is

eliminated, and it may cause unnecessary expenses and worry. When context is
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applied, the false alarms for most of the specimens were eliminated, and no false

negative was introduced. See Table 3.5. Table 3.6 illustrates how context changes

the labeling for a few specimens.

methods cell normality false false
classification | identification | positive | negative

no context 88% ~ 50% ~50% 0%

with context 89% ~ 90% ~10% 0%

Table 3.5: Comparison of with and without using contextual information

pmn | lymp | mono num of num | prob | num of prod num
+eo0 | immature of of | proposed p times changed
+baso | non-blast | blast | blast | changes P from blast
% % % to lymp
60.37 | 29.93 | 9.35 1 1 0.72 0 0.00 0.00 1
1 1.80 0.51
68.07 | 12.28 | 18.77 3 2 0.57 0 2.18 0.43 1
0.34 1 2.18 0.81
2 1.33 0.37
70.58 | 7.61 | 13.67 45 2 0.76 0 83.38 | 35.38 0
0.55 1 83.38 | 28.71
2 2.57 0.27
42.96 | 46.28 | 8.54 0 8 0.94 0 0. 0. 8
0.91 1 0. 0.
0.89 2 0. 0.
0.82 3 0. 0.
0.79 4 0. 0.
0.76 5 0. 0.
0.53 6 0. 0.
0.52 7 0. 0.
0.51 8 1.83 | 0.0002

Table 3.6: Illustration of how context changes the labeling for a few specimens.
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Chapter 4 Incorporating Context into

Urinalysis

4.1 Introduction

Urine is one of the most complex body fluid specimens: it potentially contains about
60 meaningful elements. Urinalysis is probably the physician’s oldest laboratory pro-
cedure. Examination of the urine sediment plays a critical role in urinalysis. It detects
the presence of elements that often provide early diagnostic information concerning
dysfunction, infection, or inflammation of the kidneys and urinary tract. Thus this
non-invasive technique can be of great value in clinical case management. Traditional
manual microscopic sediment examination is time-consuming, labor-intensive and dif-
ficult to standardize. Automated microscopy of all specimens is more practical than
manual microscopy because it eliminates variation among different technologists and
the variation that becomes more pronounced when the same technologist examines
increasing numbers of specimens. Also, it is less labor-intensive and thus less costly
than manual microscopy. It also provides more consistent and accurate results.

An automated urinalysis system work station (The Yellow Iris, International Re-
mote Imaging Systems Inc.) has been introduced in numerous clinical laboratories
for automated microscopy. Urine samples are processed and examined at 100x (low
power field) and 400x magnifications (high power field) with bright-field illumination.
Manual microscopic urinalysis systems rely on human operators who read the samples
visually and identify them. The Yellow IRIS automated system collects video images
of formed elements in a stream of uncentrifuged urine passing an optical assembly.
These images are given to a computer algorithm for automatic identification.

The elements found in microscopic urinalysis are casts (including hyaline casts,

granular casts and cellular casts), epithelial cells (including renal epithelial cells, tran-
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sitional epithelial cells and squamous epithelial cells), blood cells (including both
white and red blood cells), crystals (include amorphous crystals, uric acid crystal,
calcium oxalate crystals and triple phosphate crystals), as well as other elements
including bacteria, yeast (including both budding yeast and hyphae yeast), mucus,
fat body and spermatozoa. Some of these analytes are pathological. Specimens are
considered abnormal when any of the following is found: red blood cell count exceeds
3; white blood cell count exceeds 5; presence of yeast; presence of non-squamous ep-
ithelial cells ( i.e., presence of renal and transitional epithelial cells); large amount of
mucus; any type of casts other than hyaline casts.

Context is rich in urinalysis and plays a crucial role in analyte classification.
Some combinations of reasonable analytes are more likely than others. Some ana-
lytes go together, some don’t. For instance, the presence of bacteria indicates the
presence of white blood cells, since bacteria tend to cause infection and thus trigger
the production of more white blood cells. Some analytes, such as renal epithelial
cells, transitional epithelial cells and white blood cells, can be captured in both low
and high power fields. Thus, if they are detected in one power field, they probably
exist in another power field as well. Existence of cellular casts (collection of cells)
is strongly correlated with those of white and red blood cells. And if amorphous
crystals show up, they tend to show up in bunches and in all sizes. Therefore, if
there are amorphous crystal look-alikes in various sizes, it is quite possible that they
are amorphous crystals. Squamous epithelial cells can appear both flat or rolled up.
If squamous epithelial cells in one form are detected, then it is likely that there are
squamous epithelial cells in the other form. White blood cell clusters in the low power
field usually indicate white blood cells in high power field. Utilizing such context will
hopefully improve classification accuracy.

The task of automated microscopic urinalysis is, given a urine specimen that
consists of up to a few hundred images of analytes, to classify each analyte into one
of the classes. Figure 4.5 to Figure 4.8 are examples of analyte images of various types.
Similar to the white blood cell identification task discussed in the previous chapter,

the automated urinalysis consists of the following steps: image processing and feature
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extraction, learning and pattern recognition, and context incorporation. The first two
steps are very similar to that of the white blood cell identification, therefore these
details will not be discussed. Table 4.8 gives a list of features extracted from analyte
images.! The classes we are looking at are artifacts, bacteria, calcium oxalate crystals,
red blood cells, white blood cells, budding yeast, amorphous crystals, and uric acid

crystals. All these analytes are in the high power field.

4.2 Incorporating Partial Context into Urinalysis

The form of context in urinalysis, especially the fact that context is contained in the
presence of some types of analytes, makes it well suited for using the partial-context
framework discussed in Chapter 2. The partial-context maximum likelihood decision
rule uses intermediate-stage context and has the advantage of being computationally
efficient. In urinalysis, the intermediate-stage context A is the presence of several
relevant classes. The criteria for relevance will be discussed in next section.

Assume p(z;|c;, A) = p(z;|e;), according to 2.24,

p(ci|A) p(A)p(z;)
P(Ci) p(l’i; A)

p(Cz'|$i,A) = p(0i|$i)

p(ci|4)
P(Ci)

pleilA)
p(e;)

The partial-context maximum likelihood (PCML) decision rule chooses class label

is the context ratio.

where p =

¢; for element ¢ such that

¢; = argmax p(c;|x;, A) (4.2)
&
Since the context ratio p = Eg(ic*,—f)g is where context is contained, Table 4.1 and

1)\; and X, are respectively the bigger and the smaller eigenvalues of the second moment matrix
of an image.
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art bact caox rbc wbc byst amor uric

art || 1.0378 | 1.0286 | 1.0103 | 1.0069 | 1.0400 | 1.0392 | 0.4047 | 1.0364
bact || 0.6699 | 1.5816 | 0.9588 | 1.1276 | 1.1800 | 1.0784 | 0.3458 | 1.0545
caox || 0.8564 | 1.2463 | 1.9691 | 1.1468 | 0.9900 | 1.0000 | 0.5049 | 0.7636
rbc || 0.7387 | 1.2913 | 0.8247 | 1.9081 | 1.2150 | 0.8824 | 0.4440 | 0.8182
wbc || 0.9626 | 1.1327 | 0.7629 | 0.8368 | 1.9800 | 1.3137 | 0.3694 | 1.2182
byst || 0.8699 | 1.2374 | 1.1443 | 1.1509 | 1.0750 | 2.2353 | 0.4479 | 0.5455
amor | 0.8166 | 1.1786 | 1.1031 | 1.0988 | 0.9700 | 0.9804 | 1.6090 | 0.5091
uric || 0.8614 | 1.2389 | 1.1443 | 1.1632 | 1.0250 | 1.0196 | 0.5108 | 1.7818

Table 4.1: Context ratio %
art bact caox rbc wbc byst amor uric
art 0 0.0777 | 0.0052 | 0.0609 | 0.0006 0 0.8541 | 0.0014

bact || 0.7253 0 0.0135 | 0.1160 | 0.0046 | 0.0054 | 0.1285 | 0.0067
caox | 0.5017 | 0.3197 0 0.0940 | 0.0213 | 0.0055 | 0.0522 | 0.0056
rbc || 0.5742 | 0.2936 | 0.0150 0 0.0071 | 0.0073 | 0.0941 | 0.0088
wbe || 0.5306 | 0.2806 | 0.0120 | 0.0851 0 0.0035 | 0.0838 | 0.0044
byst || 0.5052 | 0.3253 | 0.0097 | 0.0794 | 0.0196 0 0.0546 | 0.0061
amor || 0.5362 | 0.3391 | 0.0103 | 0.0807 | 0.0220 | 0.0057 0 0.0062
uric || 0.5104 | 0.3269 | 0.0097 | 0.0744 | 0.0204 | 0.0053 | 0.0529 0

Table 4.2: Context ratio %)fﬂ

Table 4.2 give the context ratios for present and absent classes respectively. Figure

4.1 is a figurative plot of the ratios for both cases. In both tables, the (i,7)® entry
i ple=jlAi) plc=j|Ai)
S = It p(c=j)

enhances the likelihood of class j. If ’L&?}Jf;i) < 1, it implies that A; inhibits the

> 1, it implies that A;, the presence or absence of class ¢,

likelihood of class j.
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Figure 4.1: Context ratios when the classes are present and absent.

4.3 Identification of Relevant Classes

Not all classes are relevant in terms of carrying contextual information. We propose
three criteria based on which we can systematically investigate the relevance of the
class presence. To use these criteria, we need to know the following distributions:
the joint distribution of the presence of all classes p(A;, As, ..., Ap); the class prior
distribution p(c) for ¢ = 1,...,D; the conditional class distribution p(c|44 = 0)
and p(c|Adg = 1) for c = 1,...,D and d = 1,...,D; and the class presence prior
distribution p(Ay) for Ay € 0,1and d = 1,..., D. Table 4.4 gives the conditional class
distribution given the presence of all the classes. The (4,7)™ entry in the matrix is
p(c = j|class i is present). Table 4.5 gives the conditional class distribution given the
absence of all the classes. The (i, )™ entry in the matrix is p(c = j|class 7 is absent).
Table 4.6 lists the class presence prior distribution P(44 = 1) and the class prior
distribution P(c).

The first criterion is the correlation coefficient between the presence of any two
classes; the second one is the classical mutual information I(c; Ay) between the pres-

ence of a class Ay and the class probability p(c), where I(c; Ag) is defined as
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I(c; Ag) = H(c) — H(c|Ag)

where H(c) = 2 p(c = i)ln(p(c = 7)) is the entropy of the class priors and H(c|Ay) =
P(Ag=1)H(c|Ag = 1)+ P(As = 0)H(c|Ag = 0) is the conditional entropy of ¢ condi-
tioned on Ap, and the third one is what we call the ezpected relative entropy D(c||Aq4)
between the presence of a class A4 and the labeling probability p(c), which we define

D(cl|Ag) = P(Aq = 1)D(p(c)llp(c|Aq = 1)) + P(Aq = 0)D(p(c)|lp(c| Aa = 0))
where D ,
D(p(c)||p(c|Aq = 1)) = Zp(c =1i|Ag = l)ln(P(c :(Z‘idz): 1))
and D .
D(p(c)l|p(c|Aqg = 0)) = Zp(c =i|Ay = O)ln(P(c :(z\idi): 0))

Table 4.3 is the correlation coefficient matrix of the class presence. According to
the first criterion, one type of analyte is considered relevant to another if the absolute
value of their correlation coefficient is beyond a certain threshold. The graph in
Figure 4.2 illustrates the relevance between any two analyte types according to various
thresholds. In this figure, two types are related or relevant to each other only if their
nodes are connected by a line. The solid lines correspond to threshold 0.25 and the
added dotted lines to 0.10. Not surprisingly, lowering the threshold leads to more
relevant classes. It shows that uric acid crystals, budding yeast and calcium oxalate
crystals are not relevant to any other types even by a generous threshold of 0.10. Table
4.7 lists mutual information I(c; Ag) and expected relative entropy D(c||Aq4), both in
unit of nats. The bigger the mutual information between the presence of a class and
the class distribution, the more relevant this class is. Ranking the analyte types in
terms of I(c; Ay) in a descending manner gives rise to the following list: bacteria,

amorphous crystals, artifact, red blood cells, white blood cells, uric acid crystals,
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art

bact

CaoXx

rbc

whc

byst

amor

uric

art
bact
caox

rbe
wbc
byst
amor
uric

1.0000
-0.0128
0.0706
0.0721
0.1244
0.0674
-0.5121
0.0385

-0.0128
1.0000
0.0952
0.1588
0.2664
0.1139

-0.2708

-0.0847

0.0706
0.0952
1.0000
0.0529
0.1010
-0.0218
0.0470
-0.0567

0.0721
0.1588
0.0529
1.0000
0.2786
-0.1195
-0.1773
-0.0310

0.1244
0.2664
0.1010
0.2786
1.0000
0.1090
-0.1866
-0.0469

0.0674
0.1139
-0.0218
-0.1195
0.1090
1.0000
-0.0789
-0.0207

-0.5121
-0.2708
0.0470
-0.1773
-0.1866
-0.0789
1.0000
-0.0450

0.0385
-0.0847
-0.0567
-0.0310
-0.0469
-0.0207
-0.0450

1.0000

Table 4.3:

Correlation coefficient matrix of presence of eight classes.

art

bact

Caox

rbe

wbc

byst

amor

uric

art || 0.5303
bact | 0.3423
caox || 0.4376
rbc || 0.3775
wbc || 0.4919 | 0.3679
byst || 0.4445 | 0.4019
amor || 0.4173 | 0.3828
uric | 0.4402

0.3341
0.5137
0.4048
0.4194

0.4024

0.0098
0.0093
0.0191
0.0080
0.0074
0.0111
0.0107
0.0111

0.0734
0.0822
0.0836
0.1391
0.0610
0.0839
0.0801
0.0848

0.0208
0.0236
0.0198
0.0243
0.0396
0.0215
0.0194
0.0205

0.0053
0.0055
0.0051
0.0045
0.0067
0.0114
0.0050
0.0052

0.0206
0.0176
0.0257
0.0226
0.0188
0.0228
0.0819
0.0260

0.0057
0.0058
0.0042
0.0045
0.0067
0.0030
0.0028
0.0098

Table 4.4: P(c|Aq4=1)

budding yeast and calcium oxalate crystals. The relevance level decreases in the list.

Similarly, ranking the analyte types in terms of D(c||A4) in a descending manner

gives rise to the following list: bacteria, artifact, red blood cells, amorphous crystals,

white blood cells, calcium oxalate crystals, budding yeast and uric acid crystals.

Thresholding correlation coefficient explores the pairwise relevance of classes, whereas

mutual information and expected relative entropy indicate the general relevance of

a class to all other classes in an expectation sense. All three criteria lead to similar

conclusions regarding the relevance of all classes.
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art bact caox rbc wbc byst amor uric
art 0 0.0777 | 0.0052 | 0.0609 | 0.0006 0 0.8541 | 0.0014
bact || 0.7253 0 0.0135 | 0.1160 | 0.0046 | 0.0054 | 0.1285 | 0.0067
caox || 0.5017 | 0.3197 0 0.0940 | 0.0213 | 0.0055 | 0.0522 | 0.0056
rbe || 0.5742 | 0.2936 | 0.0150 0 0.0071 | 0.0073 | 0.0941 | 0.0088
wbc || 0.5306 | 0.2806 | 0.0120 | 0.0851 0 0.0035 | 0.0838 | 0.0044
byst || 0.5052 | 0.3253 | 0.0097 | 0.0794 | 0.0196 0 0.0546 | 0.0061
amor || 0.5362 | 0.3391 | 0.0103 | 0.0807 | 0.0220 | 0.0057 0 0.0062
uric || 0.5104 | 0.3269 | 0.0097 | 0.0744 | 0.0204 | 0.0053 | 0.0529 0

Table 4.5: P(c|Aq =0)

class | p(Aa=0) | p(c)

art 0.9646 0.5110
bact 0.5788 0.3248
Caox 0.2295 0.0097
rbc 0.5690 0.0729
wbc 0.4115 0.0200
byst 0.0696 | 0.0051
amor 0.0488 0.0509
uric 0.0305 0.0055

Table 4.6: The prior distribution of the presence of all classes, and the class prior
distribution of all classes.

Ad I(C; Ad) D(CHAD)
art 0.0938 0.0925
bact || 0.1735 0.2338
caox [ 0.0016 0.0160
rbc 0.0431 0.0812
wbc 0.0281 0.0307
byst 0.0063 0.0071
amor || 0.1231 0.0513
uric 0.0191 0.0062

Table 4.7: Mutual information I(c; A4) and the expected relative entropy between
the presence of a class A4 and the labeling probability p(c).
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Figure 4.2: Relevant classes

4.4 The Algorithm

Once we identify the M relevant classes, we use the following algorithm to incorporate
partial context.

Step 0 Estimate the priors p(c|44) and p(c), forc€ 1,2,...,Dand d € 1,2,...,D.
Step 1 For a given z;, compute p(c;|z;) for ¢; = 1,2,...,D.

Step 2 Let the M relevant classes be R;,...,Ry. According to the no-context
p(cilz;) and certain criteria for detecting the presence or absence of all the relevant
classes, get Ag,,..., Ary,-
Step 3 Let p(c;|zi, Ao) = p(c;|z;), where Ag is the null element. Then, for m = 1 to

M, iteratively compute

pleilzs; Ao, ... AR,y Ar,y)

p(ci| AR, )p(AR,,)
p(c)

= p(ci|@i, Aoy .-, AR, _,)

Step 4 Repeat step 3 until the algorithm converges.
Step 5 Label the objects according to the final context-containing p(c;|X;, Ary, - - -, ARy ),
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i.€.,

¢; = argmax p(c;|x;, M)
Ci

fori=1,...,N.

This algorithm is invariant with respect to the ordering of the M relevant classes
in (Ay,...,Ay). A sketch of the proof follows:
Proof:

Denote the final a posterior: probability of class label given the feature vector after
taking into account all context contained in M relevant classes as p(¢;|z;; A7, ..., Au)-

According to the above algorithm (step 3), what the algorithm effectively does is

p(C¢|$i; AR; yeeey ARM)

Iz T PledAr, )p(Ax,,)
ciles, 40) ] p(ci)p(zi, Ag,,)

. 1 plcilAr,) TIM p(Ar,)
_p( z| 1)11_:[1 p(Ci) H%le(xi,ARm)

Since p(c;|Ag,,) are multiplied, therefore, the order does not matter.

Q.E.D.

4.5 Results

The algorithm using partial context was tested on a database with 83 urine specimens
that contains 20276 analytes total. Four classes are considered relevant according to
the criteria described in section 4.3. The four classes are: bacteria, red blood cells,
white blood cells and amorphous crystals. The criteria for the presence of these
classes in each specimen are: bacteria exceeds 15% of the total amount of analytes in
a specimen, the number of red blood cell exceeds 5, the number of white blood cell

exceeds b, and the number of amorphous crystals exceeds 100. We measure two types
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Table 4.8: Features extracted from urine anylates images

feature number feature description

area

length of edge
square root of area

length of edge

standard deviation
\ mean
A1l

of distance from center to edge

A
sum of length of two longest straight edges

total length of edge
sum of length of four longest straight edges

total length of edge
sum of length of two longest semi-straight edges

total length of edge
sum of length of four longest semi-straight edges

total length of edge

© 00 N O Uk W N e

10 the mean of red distribution

11 the mean of blue distribution

12 the mean of green distribution

13 15" percentile of gray level histogram

14 85" percentile of gray level histogram

15 the standard deviation of gray level intensity

16 energy of the Laplacian transformation of grey level image

of error: element-by-element error, and specimen diagnosis error. The element-by-
element confusion matrices are list in Table 4.9 and Table 4.10 for without context and
with context respectively. The average element-by-element error is 44.48% without
context, and is 36.66% with context (see Table 4.11.) The diagnosis for a specimen
is either normal or abnormal. Table 4.12 and Table 4.13 compare the diagnosis
performance of with and without context. We can see that context helps to increase
correct diagnosis for both normal and abnormal specimens, and to reduce both false

positive and false negative.
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art | bact | caox | rbc | whe | byst | amor | uric
art || 6304 | 368 | 10 | 122|149 | O 705 1
bact || 6053 | 1116 | O 4 4 0 391 0
caox 30 4 9 34 2 0 95 1
rbc 58 11 3 301 64 0 220 0
whbc 34 0 2 7 | 158 0 35 0
byst 45 0 0 5 0 0 86 0
amor || 1959 | 173 3 23 | 12 0 1653 | 2
uric 1 0 10 5 0 0 4 0

Table 4.9: Confusion matrix generated by context-free maximum likelihood decision
rule

art | bact | caox | rbc | wbhc | byst | amor | uric
art || 5148 | 1671 0 |194 272 | O 372 2
bact || 2965 | 4409 | O 7 13 0 174 0
caox | 24 33 5 63 | 15 0 33 2
rbc 34 64 1 1392|128 O 38 0
wbc 18 7 0 5 1199 | O 7 0
byst 11 84 0 20 0 0 21 0
amor || 1583 | 469 5 56 | 16 0 1694 | 2
uric 0 0 8 9 0 0 3 0

Table 4.10: Confusion matrix generated by partial-context maximum likelihood de-
cision rule.
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Figure 4.3: Confusion matrix without and with context in terms of total numbers
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Figure 4.4: Confusion matrix without and with context in terms of percentages
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without context | with context
average element-by-element error 44.48 % 36.66 %

Table 4.11: Comparison of with and without using contextual information for element-
by-element error.

estimated normal | estimated abnormal
truly normal 40.96 % 7.23 %
truly abnormal 19.28 % 32.53 %

Table 4.12: Diagnosis confusion matrix without context

estimated normal | estimated abnormal
truly normal 4217 % 6.02 %
truly abnormal 16.87 % 34.94 %

Table 4.13: Diagnosis confusion matrix with context
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amorphous crystals

artifacts

calcium oxalate crystals

hyaline casts

Figure 4.5: Analyte images
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hyaline casts

non-hyaline casts

renal epithelial cells

Figure 4.6: Analyte images
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squamous epithelial cells

transitional epithelial cells

uric acid crystals

white blood cell clusters

Figure 4.7: Analyte images
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triple phosphate crystals
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spermatozoa

unclassified crystals

white blood cells

red blood cells

Figure 4.8: Analyte images



67

Part 11

The Bin Model for Learning and

Generalization
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Chapter 5 The Bin Model for Learning

and Generalization

5.1 Introduction

Part II of this thesis investigates the issue of generalization in the paradigm of learning
from examples. Learning is a general concept that describes the process of formu-
lating a hypothesis from a finite set of data. Data is presented as a set of instances
drawn from an underlying process, and one attempts to determine the underlying
process from the data. We hereby describe the set up for a learning process, which is
illustrated in Figure 5.1.

We are presented with a data set Dy, the training set, which consist of N input-
output pairs {xi,yi}i]\il. The input-output pairs are generated according to an un-
known underlying function f : R? — {0,1}, which we call the target function. Each
z; € R% is drawn according to a governing distribution Q(X). The training set is our
sole knowledge pertaining to the target function, and our goal is to infer the target
function based on the training set. Learning entails choosing a hypothesis function
g : R? — {0,1} from a collection of candidate functions H as our inference of the
target function. The set H is called the learning model because it reflects how we
choose to model the target function. The hypothesis function is chosen by a learning
algorithm, A. The learning algorithm takes as inputs the training set Dy and the
learning model H, outputs a hypothesis g € H, usually based on some performance
criterion on the training set. For example, a typical learning algorithm might be to
choose from the learning model the hypothesis which minimizes an error measure on
the training set.

The “goodness of fit” of a hypothesis is measured by how close it is to the target

function averaged over the input space. Error occurs when a hypothesis deviates
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target function

Dy

learning algorithm > hypothesis
a 8

learning model
H

itraining set

Figure 5.1: Hlustration of a learning system

from the target function on any point in the input space. The error a hypothesis
function commits on the training set is usually referred to as “in-sample error,” or the

I

“training error,” and the error on points out of the training set “out-of-sample error,”

b

or “test error.” A good hypothesis should give low out-of-sample error. A “clever”
learning algorithm might be able to find a hypothesis that fits the training set well
and achieve small in-sample error. However, in-sample error often has no bearing on
the out-of-sample error. Typically, two possible scenarios occur in a learning process
as illustrated in Figure 5.2. In the first scenario, the out-of-sample error decreases
as the in-sample error decreases, all the way until the in-sample error reaches its
minimum. In this case, it is good for a learning algorithm to find a hypothesis that
achieves the minimum in-sample error, since the corresponding out-of-sample error
is also minimal. In the second scenario, the out-of-sample error decreases at the
beginning together with the in-sample error as the learning algorithm is getting a
grasp of the general properties of the target function contained in the training set.
Then at a certain point, the out-of-sample error starts to rise as the in-sample error
is further reduced. The learning algorithm is finding hypotheses that fit the training
data better, but that also fit any idiosyncrasies in the training set. As a result, the
hypothesis approximates the training data set well, but fails to generalize to out-of-

sample data. This phenomenon is usually referred to as “over-fitting.” Over-fitting
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occurs when the learning model is overly complex. It is especially prominent when
the training set is noisy.

A question naturally arises: When can we be confident that our model has truly
learned and not simply memorized the examples it is given? How much does the in-
sample error tell us about the out-of-sample error? Does the in-sample performance
generalize to unseen data points? This is the issue of generalization. It is an important
issue when learning from examples because the training error is the only quantity we
have access to, and the whole merit of learning lies in the hope that training error,
to some extent, provides some information about the test error.

In general, both the target function and the learning model are nonlinear, and
the training set is noisy, thus making technical analysis difficult. It would be nice
if we can find a general framework that, for arbitrary target functions, arbitrary
learning models, arbitrary input distributions and noisy data sets, can estimate the
out-of-sample performance in terms of the in-sample performance, characterize the
conditions for over-fitting, quantify the effect of noise on generalization, and even-
tually, lead to rules for selecting learning models and learning algorithms that can
achieve better generalization performance. This is the motivation for our proposition
and design of the Bin Model. The Bin Model is a general yet manageable mathe-
matical framework from which we extract the essential property p(w) of a learning
process that combines the properties of learning model, input distribution and target
function. Given some knowledge of p(7), a closed form relationship between in- and
out-of-sample performance can be derived. In this framework, we can handle the
general nonlinear and noisy cases of learning. Important issues in learning, such as
generalization, over-fitting, the role of model complexity and the impact of noise, can
be addressed using the Bin Model.

We describe the set up of the Bin Model framework in section 5.2. In section 5.3,
we derive a closed form relationship between in- and out-of-sample error using the
Bin Model. Section 5.4 provides the condition that characterizes over-fitting. The
Bin Model result is compared with other paradigms addressing generalization issues

in section 5.5. The Bin Model captures fundamental properties of a learning process
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Figure 5.2: Two learning scenarios: over-fitting occurs in the second one.

and is not sensitive to certain details of the target function and the learning model.
Section 5.6 describes the relevant features of a learning process that characterize its
Bin Model. Section 5.8 studies the impact of noise on generalization, and section
5.9 generalizes the bin model to regression problems, and provides the condition that

characterizes over-fitting for regression problems.

5.2 The Bin Model

We consider a target function of the form f : X — {0,1}. A hypothesisg: X — {0,1}
is characterized by a parameter 7, which is the probability that g(z) disagrees with
f(z) on a point = randomly chosen from the input space X according to the possibly

unknown input distribution Q(X).

72 Prig# f] = / l9(z) — (@) )dz (5.1)

The “goodness of fit” for a hypothesis g is measured by its 7. The smaller 7 is,

the closer g is to f. If # = 0, then g is exactly f. The worst case scenario is that in

P time
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which 7 = 1 which implies g(z) # f(xz) for all z. In general, 0 < 7 < 1.

A more visual way to look at a single hypothesis function is to see it as a “bin”
that contains red and green marbles (hence the name “Bin Model”), with red marbles
representing input points on which the hypothesis disagrees with the target, and green
marbles representing those on which they agree. Then the fraction of red marbles in
the bin is 7. When we draw an example z from the input space and compare f(z)
with g(z), we are virtually drawing a marble from the bin and checking its color. A
sample can be treated as a Bernoulli trial with probability 7 of error (being a red
marble) and probability 1 — 7 of success (being a green marble). When we have a
training set with N examples, we have N ii.d. Bernoulli trials. We denote by v
the fraction of red marbles (frequency of error) in the sample. Therefore, v is the
in-sample error of hypothesis g for this training set, and = is its out-of-sample error.
The Law of Large Numbers tells us that for a given bin, as NV — oo, the random
variable v approaches its mean w. That is to say, the frequency of error will be a
good estimate of the probability of error for large sample size V.

So far we have established that one hypothesis is mapped to a bin parameterized
by m. When we have a learning model with a set of hypothesis functions, we have
an array of bins (Figure 5.3). Each hypothesis has its own error probability 7. The
array of my,ma, ..., mpr, where M = |H| is the number of functions in the learning
model H, leads to a m-distribution p(w). (Note that two different hypotheses can
have the same 7.) The w-distribution indicates the suitability of the learning model
for approximating the target function. The smaller the probability of error 7 and the
more the functions that have small 7, the better suited this learning model is for the
approximation of f.

Figure 5.4 (a) is an example of n-distribution in which we have some “best”
functions with error probability around 0.05, some “worst” ones around 0.95, and a
lot of mediocre ones that lie in between. (The n’s are ordered in an increasing way
for illustrative purposes.)

It is worth noticing that the w-distribution and M are all the information that

we need to specify a bin model. We do not need the detailed information about
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Bin 1 Bin3
¢ e ®
®,® ¢ ® e ®
L %)

Figure 5.3: The Bin Model: We have a set of M bins, each containing red and green
marbles. The frequency of red marbles in bin ¢ is denoted by ;.

(a)

Figure 5.4: (a)An example 7-distribution for M = 500 (note that the x-axis indicates
bin index). In this case the hypothesis that best approximates the target function
makes approximately 5% error. (b) The expected test error as a function of training

error v for the m-distribution in (a).

™™

(b)
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the specific forms the target and the hypothesis functions assume. Nor do we need
to know anything about the inputs and input distribution. The bin model abstracts
relevant quantities from the target function and the learning model. It can be applied
to arbitrary, nonlinear target function and arbitrary, nonlinear learning model. This
makes it possible to model learning processes in a very simple way without loss of

generality.

5.3 (eneralization Using Bin Model

We define the expected out-of-sample error given the in-sample error as the measure
of generalization, whose analytic expression can be derived from the bin model.

The learning game of interest is the following. We have a learning model and a
training set of size N. One hypothesis is randomly picked from the learning model.
Its in-sample error is measured, which is equivalent to drawing a sample of N marbles
from the bin this hypothesis corresponds to. An error frequency is obtained. If it
matches some predetermined level of training error v, we keep this function as our
approximation to the target function f, otherwise it is put back. This reminds us of
what we do in learning — we stop at a certain training error, and keep the function
that achieves this training error as our hypothesis. We repeat this experiment, and
keep all the hypotheses that have in-sample error v. We refer to the set of hypotheses
with error frequency v on the training set as #,. From #, one hypothesis is randomly
chosen as the final hypothesis. We would like to know the expected out-of-sample
error of the final hypothesis, that is E[r|v].!

The set {m;} induces a probability distribution p on 7. Randomly choosing a
hypothesis function from the learning model # gives us a hypothesis with probability
of error which can be assumed to be randomly chosen from p(7). For a given hypoth-
esis with error probability m, the probability for an in-sample error v is the binomial

distribution,

'We use E[] to denote expectations.
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p(v|m) = (]]\Z/) V(1 — )N

Therefore, it follows that the expected out-of-sample error given in-sample error

w() 2 Blr |v] = /0 rp(r | V)dr (5.2)
_ —ff ”pf;)dcfj (5.3)
Jo mp(m)aV (1 = mNO)dx (5.4)
fo Ty (1 — 7y N0 g ’
where

p(r,v) = p(r) (Ji;;) ﬂ_NU(l _ 7r)N(l—u)

We refer to the relationship between 7(v) and v in 5.4 as the generalization curve.
A perfect generalization curve should be w(v) = v, which implies that in-sample
error v is a perfect indication of out-of-sample error in expectation. It is not the
absolute value of v and 7(v), but the deviation between them that characterizes the
generalization behavior of a learning process. The further away a generalization curve
is away from 7(v) = v at any point, the worse the generalization is at that point. It is
important to point out that no assumption is made about the dependence among the
hypotheses. The statistical dependence among the hypotheses in the learning model
does not enter the w-distribution.

Figure 5.4 (b) is the generalization curve based on the w-distribution given in 5.4
(a). According to this model, when the training error v is zero, the expected out-of-
sample error is actually 0.17, indicating this sample error is an optimistic estimation
of the corresponding out-of-sample error.

Based on the Bin Model, we can also derive the variance of out-of-sample error

given in-sample error.
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Since
1y P
p(rlv) o)
o) = [ plelmpi)in
and
plolm) = ( ) 71 =m0
Therefore,
LoNv2(1 _ \NO=2) (o dor LoNvt(] . AN\ dor

’UCLT‘(?TII/)Z fo (1 ) p( )d _(fo (1 ) p( )d )2.

Jo T (L = mNOAp(m)dr [y V(L = m)NEp(r) dr

The variance measures the consistency of error probability of hypotheses whose
in-sample error is v.

For some p(7) we can get both 7(v) and var(w|v) in explicit form.

Special Case: For the m-distribution p(7) = (d + 1)7%, for any d € Z*, the

generalization curve 7(v) is

_Nv+d+1

)= Nrar2 (5:5)

and its variance is
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(Nv+d+1)(N—-Nv+1)
(N+d+2)2(N+d+3)

var(nlv) = (5.6)

The proof is provided in appendix A. When d = 0, p(7) = 1 is a uniform distribu-
tion, which implies that we have no bias or preference over the distribution of 7. If
there is only one training example, i.e., N = 1, then n(v) = %V + %, and the variance

Qi%—(ﬁz—ﬂ. If there are infinitely many training examples, .e., N = oo,

is var(rlv) =
then m(v) = v and var(w|v) = 0, which means the expected test error is consistently
the same as the training error and thus the generalization is perfect. This is expected

when we have a large training set.

5.4 Unbiased Optimization

As mentioned earlier, when attempting to learn a function from a finite data set by
minimizing the in-sample error, it is not uncommon to observe over-fitting. We argue
that over-fitting is an artifact induced by the learning algorithm. During the “learning
period” (i.e., when out-of-sample error is decreasing together with the in-sample error)
in Figure 5.2 (b), the learning algorithm is looking for hypotheses that better fit the
general properties of the target function . During the “over-fitting period” (7.e., when
out-of-sample error increases as in-sample error continues to decrease), the learning
algorithm is looking for hypotheses that are so complex and powerful that they can
fit the data almost perfectly yet are far away from the target function.

In the Bin Model framework, however, the over-fitting phenomenon does not ap-
pear. It can be shown that 7(v) is monotonically increasing with respect to v, i.e.,
d’;—g}") > 0 for all v. This implies that smaller in-sample error always corresponds to
smaller out-of-sample error in expectation. Thus there will be no over-fitting and we
can always benefit from getting smaller in-sample error. However, this does not con-
tradict our observation of over-fitting. Instead, it clarifies the condition under which

over-fitting does not occur — the condition of unbiased optimization. Unbiased opti-

mization is a learning algorithm that chooses all hypotheses with the same in-sample
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error with equal probability. In other words, it has no preference for some hypotheses
over others as long as they achieve the same in-sample error. Fundamental to the
Bin Model analysis is the random selection of a hypothesis from the resulting #, (we
assumed that all hypotheses with the same in-sample error v are chosen with equal
probability from 7{.) The choice is not subject to a controlled tour of parameter
space. The learning game we set up in section 5.3 and the resulting derivation of

7(v) utilize an unbiased optimization learning algorithm.

Theorem : Under unbiased optimization, dfi—fj”) > 0 for any v.

Proof: See Appendix B.

Notice that this theorem holds true for arbitrary w-distribution p(r).

Figure 5.5 is an example of the generalization behavior under unbiased optimiza-
tion. A histogram approximating p(w) is shown, along with the empirical general-
ization function 7 (v). p(w) is estimated by randomly sampling hypotheses from the
learning model and estimating = by the test error on a large data set. We can see
that the expected generalization is poor for such a small data set (even for v = 0
we can only expect m ~ 0.3), and that 7(v) is indeed monotonic — we obtain the
best out-of-sample error by finding the minimum training error (over-fitting is not
observed).

With the idea that over-fitting is usually accompanied by using overly complex
models, it is important to point out that no explicit measure of the model complexity
appears in the calculation of m(v). The generalization ability is completely captured
by p(m), which may be independent of traditional complexity measures.

More importantly, it points out that model complexity in and of itself is not the
cause for over-fitting. Under unbiased optimization, model complexity does not lead
to over-fitting. Here we demonstrate it with an example illustrated in Figure 5.6 and
5.7. Figure 5.6 illustrates this for a learning model of two-layer neural networks with

sigmoidal hidden units.? Target functions were chosen randomly from the model and

2Tn this case the output function of the network was used as a decision boundary for a binary



79

Figure 5.5: (a)The 7 distribution for a noisy learning problem. The target function

is f(x) = sign(sin(%)sin(%)) and the learning model is 2-10-1 neural network with

hyperbolic tangent transfer function and linear output. The training set is of size
20. The noise in the training set is realized by randomly flipping the sign of the
output with probability 0.1. The input distribution is uniform in [-2 7, 2 7]. (b) The
expected test error as a function of training error v for the 7 distribution in (a) when
using unbiased optimization.

trained on a data set with N = 50 examples. In comparison, the number of hidden
units in the model was varied from less than 10 to 1234 (the number of parameters
in the model was varied from less than 50 to more than 5000). When the model was
trained using gradient descent to a fixed level of training error, the out-of-sample
error remained relatively unchanged as the number of hidden units increased.

The independence of (5.4) on model complexity implies that, given a target func-
tion f, all models with w-distributions of the same shape will exhibit the same gen-
eralization behavior. If we can vary the model size without changing p(w), then we
can separate the phenomenon of over-fitting from conventional complexity measures.

Figure 5.7 shows an estimate of the w-distribution ® for three of the models used in
the experiments of of Figure 5.6. The distribution changes only slightly as the model
complexity increases. Given the preceding discussion, then, the results in Figure 5.6
are not surprising.

One discrepancy between the theory and experiment lies in the method of selecting

classification problem.
3Based on 100000 random samples of v on 100 data points.



Figure 5.6: Generalization error for a 2-layer neural network as the number of hidden

units varies.

Figure 5.7: Histogram of the empirical 7 distributions for experiments of Figure 5.6
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candidate bins. For the result of (5.4) we have assumed that bins are chosen randomly.
Training with gradient descent restricts our choice of bins to a small subset at each
step. In the experiments presented here, averaging over random targets and starting
points seems to have compensated for any differences that might have arisen. In
general, however, fitting an arbitrary learning algorithm into the framework of the

Bin Model is an interesting and open problem.

5.5 Other Paradigms

Many attempts have been made to assess the generalization performance of a learn-
ing process. These include the Prediction Error ([Akaike, 1970], [Moody, 1992]), VC
analysis ([Vapnik and Chervonenkis, 1971], [Abu-Mostafa, 1989]), and the Exhaus-
tive Learning paradigm ([Solla, 1992], [Schwartz et al., 1990]).

The Prediction Error approach takes a general form of out-of-sample error that
consists of the sum of two terms:

2C
out-of-sample error & in-sample error + ~]—V-—02 (5.7)

where C' embeds model complexity and therefore the second term can be viewed as a
penalty for model complexity. o2 is the variance of noise in the data. This criterion
has the nice property of formulating the impact of model complexity and data noise
on the gap between in- and out-of-sample error. The prediction error criterion is an
asymptotic result, and it requires knowing ¢ which is almost never known. For the
nonlinear case [Moody, 1992], it is assumed that the input density is discrete with
support only at input points in the training set which is a crude estimation and thus
limits the accuracy of this criterion.

Some insights into generalization are gained by bounding the deviation between
training and test error in the worst-case scenario. This is formulated by VC-theory,

which gives a bound of the form
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Prob [ sup|my — v, <€ <&
geH

where € is a tolerance level for the deviation between in-sample error v and the out-
of-sample error 7 for a hypothesis. This criterion highlights the impact of number of
training examples N and model complexity (both appearing in ¢) on generalization.
This approach provides a bound, not a definite relationship. For many cases the
bound turns out to be a trivial bound, i.e., § is larger than 1. Also, the confidence
level § is a function of the “growth function” [Abu-Mostafa, 1989] the calculation of
* which is formidable, if not impossible, for most learning models. This seriously limits
the practical use of VC analysis.

[Solla, 1992] and [Schwartz et al., 1990] suggested a framework with a somewhat

similar formulation as our Bin Model, which leads to the following results:
1
Gy = / gpn(g)dg (5.8)
0
_ Jy 9" pol9)dg

[ 9% polg)dg

where G is the 'mean generalization ability’, effectively our F(m); ¢ is equivalent

to our definition of m, and pp(g) is p(#) in the Bin Model. pn(g) corresponds to
p(r|ly = 0) in the Bin Model setting In other words, Equation 5.8 addresses only
the expected test error given zero training error, namely E(w|v = 0), instead of

establishing a mapping between E[r|v] for any possible v.

5.6 Characteristics of the m-distribution

It is very interesting to notice that the generalization behavior of a learning process,
characterized by 7(v), is fully determined by its n-distribution p(7). Two learning
processes may have different learning models (and hence different model complexi-

ties), target functions and input distributions, but as long as they have the same -
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distribution, they will have exactly the same generalization in terms of expected test
error given training error. This is striking because it implies that the m-distribution
of a learning process abstracts and fully contains what is important as for as gener-
alization is concerned.

Figure 5.8 gives some examples of p(w) and their corresponding generalization
curves 7(v). It seems that m(v) is not sensitive to the detailed shape of p(7), as long
. as there exists a “decent” amount of functions with 7 of all possible values. This raises
the question of what features of p(w) are most relevant to generalization. There are
two ways to characterize relevant features of a w-distribution. One is the moments of

p(m), and the other is the geometry of p(7) in terms of its derivatives.

Theorem: The generalization curve m(v) of a learning process is a function of the

first N moments of its 7-distribution p(7).

Proof:
Since,
N-—-Nv
(1 . 7‘_)J\T—]\/'l/ — Z (_1)N~NV»IC7TN7NV—~IC
k=0
Then,
) fﬂl N (1 — m)NOp(r)dr
T(v) =
[ a1 — m)NO=)p(r)dr
N—Nv No—k (1 _N—
NN N=Nuk [Nk ()
= —N-Nv “No—% (L NF
ko (TN [S Nk ()
_ ivz_oNV('l)N_NV‘kMN—kH
poo (NN Ry
where

L = fol 7*p(m)dn is the k™ -order moments of p() distribution. Q.E.D.
So, as far as generalization is concerned, we don’t need to know the full details of

p(m), only its first N+1 moments, which fully determine the generalization curve. Two
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mw-distributions with the same first N +1 moments and different higher order moments
will have exactly the same generalization. However, for two learning processes to have

the same variance var(w|v), they need to have the same N + 2 moments.

5.7 Positive Learning

According to 5.4, for any given in-sample error v and 7-distribution p(r), the gener-
alization curve m(v) is a function of the number of training examples N. We denote
7(v) as (v, N). We would like to study the effect the number of training examples
has on generalization. It is plausible to think that the bigger N, the better a learning
system generalizes, since we have more information provided by the training set about
the underlying target function. To formalize this, we introduce what we call positive
learning curve, which is defined as follows:

a (N +1,0) — o]

PL(N,v) & e (5.9)

Definition: A learning process is positive if more training examples brings the ex-
pected out-of-sample error closer to in-sample error, formally speaking, if %’/—)_;lﬂ <

1.

Theorem: A learning process characterized by m-distribution p(n) = (d + 1)7¢ is

positive.
Proof:
For a learning process characterized by p(w) = (d + 1)7%, according to the deriva-

tion provided in Appendix A, its generalization curve 7 (v, N) is

Nv+d+1
= Nl
(v, V) N+d+2 (5.10)
Therefore,
PL(N,v) = ln(N+1,v) — v

(N, v) —v|
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_ N+d+2
 N+d+3

<1

Q.E.D.

5.8 Noise

When we draw a sample from a bin and obtain error frequency v, it generally deviates
from the mean w. We define the discrepancy between v and 7 as noise. At a closer
look, we find that noise comes from two sources. One is Bernoulli noise, which is the
discrepancy between Bernoulli frequency v and the mean 7 due to finite sample size.
The other is data noise which corresponds to the physical noise in real world. We
formalize the latter source of noise by flipping the samples with certain probability
e. It is equivalent to putting the sample through a binary symmetric channel(BSC)
with cross probability £ (Figure 5.9). We are not able to tell the noise source when
we draw a sample and observe discrepancy. However, they are intrinsically different.
Bernoulli noise can be overcome by taking large sample size, whereas data noise can
not. Let Vpernowni denote the error frequency effected only by Bernoulli noise, and

vpsc be that effected also by data noise. It can be shown that for Bernoulli noise,

E(VBernoulli) =T (511)
m(l —m
VaT(VBernoullz') = % (512)
whereas for data noise,
E(VBSC) = (1 — 28)7’( +¢e (513)

(1—2e)°m(1—7)+e(l—e¢)
N

Var(vesc) = (5.14)



86

It can also be shown that introducing data noise with noise level ¢ is equivalent to
replacing the original error probability 7 by a diluted version (1 — 2¢)m +¢ (replacing
min (5.11) and (5.12) with (1 —2¢)w +¢ leads to (5.13) and (5.14).) Introducing data
noise has the effect of pushing the original 7-distribution closer to a random function
with 7 = 0.5 which has equal chance of agreeing and disagreeing with the target
function, as we can see from Figure 5.8. Taking large sample size reduces Var(vpsc)
to zero, and makes v close to E(vpsc) = (1 — 2¢)m + ¢. However, there is still a
deviation of £ —2e7 from E(vpsc) to the real mean 7. This leads us to the important
conclusion that data noise gives rise to intrinsic generalization error (the deviation
of test error from training error), which can not be overcome by taking large sample

size.

5.9 Analog Error

So far we have considered classification problem where the output of a target function
takes binary values. We would like to generalize the Bin Model framework to functions
with analog outputs. We consider target functions of the form f : X — R, and
hypothesis functions g : X — R.

The deviation of hypothesis g(z) from the target f(z) gives rise to the error
function e(z). Squared error e(x) = (f(z) — g(x))? is often used, though in principle
e(z) can be any measure of error. For a given target f(z) and a given hypothesis g(z),
the error function e(z) and the distribution p(z) induces a distribution p(e) whose

mean and variance are as follows:

= [ " e(2)plz)ds (5.15)

o0

= j{oo ep(e)de (5.16)

and
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o? = /jo (e(z) — m)*p(z)dz (5.17)

o0

- /Ooo(e — m)?p(e)de (5.18)

Note that 0 < 7 < o0.
When a single example is drawn from input space X, its error has the distribution

of p(e). When we have a sample of size N, the in-sample error is

1 N
I/-—-—*]‘V—;Gi

where the e; are i.i.d. from p(e). We would like to know the distribution of v for a
hypothesis g. In general, for a finite N, we can not get p(r) unless we know the exact
form of p(e). However, for large N, the central limit theorem can be used to estimate
p(v) for a given hypothesis. Since p(e) has mean 7 and variance o2, then according
to the central limit theorem, the limit distribution of p(v) for a given hypothesis is

. . . 2
Gaussian with mean 7 and variance ”ﬁ

p(vlg) ~ N, %)
- 217r02 exp(—%ﬁ>

Analogous to the binary case, let’s assume a hypothesis is parameterized by its

expected error 7. Therefore,

p(v|m) = p(v|g)

1 (v —m)?

= exp(— B e
2mo9 N
\/ N

A set of hypotheses induces a w-distribution, similar to the binary case. To get the

)

closed form of generalization, the learning game of interest is the same as the binary
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case. We have a learning model and a training set with N examples. One hypothesis
is randomly chosen from the learning model, and its in-sample error is measured. An
error frequency is obtained. If it falls into some predetermined interval of training
error [v — 6, v+ 0], we keep this function as our approximation to the target function
f, otherwise it is put back. Among the hypotheses that achieve the same interval of
training error, a hypothesis is randomly chosen as the final hypothesis. We would
like to know the expected out-of-sample error of the final hypothesis given in-sample

error v, formalized by 7 (v) 2E [7|v] as follows:

() & Blr |v] = /Ooowp(ﬁ|l/)d7r (5.19)
ff P : V”)dcjf (5.20)

I Wpyv|1:> o o

- e s O

(5.23)

In the binary case the p(e) for any hypothesis is a Bernoulli distribution with
mean 7. Under unbiased optimization, 7 () is monotonically increasing in terms of v
for arbitrary v and arbitrary p(7), which always favors small training error for better
average out-of-sample error. However, the monotonicity property does not in general
hold for analog error.

Assume for any hypothesis the error variance is a function of the mean, i.e.,
o = o(m). This is true for a wide variety of distributions. Also assume that the
error function e(z) is bounded for any z and thus can be normalized to [0,1]. This

normalization leads to 0 < v, < 1. We then have the following theorem.

d7r(u)

Theorem A sufficient condition for > 0 for arbitrary v is:
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2
my > and o9 <0 — Z_;<1:%
wo (5.24)
m>m oand o2 >0 = G >0
2
Proof:
Let
00 N 9
exp(—=5 (v — d
7(v) f()oo 1 D( 2;([2 (v : p(m)dm (5.25)
fo ”ewp("ﬁj;f(V— p(m)dm
_ AW)
~ B(v)
where
and
(v) /0 Ue:vp( 202( ) p(r)dn
Then
dr(v)
dv
ZBZ(V) / = (""il_a:l) iz - i2)V+ % - %]ezﬁ[—%(u — )% - 212(1/ — 72)2p(my)p(mo)dmwydma
All the terms in the product in the integral are positive except
1 1 .
Tl T BT 2T 3 5.26
(g 71'1)[(0% 022)V+ poi (5.26)

It is sufficient for d”(” > 0 for any v that the quantity in 5.26 is positive for any

v. We discuss all the possible scenarios.
Suppose 73 — m; > 0.
Case 1: % — % < 0. If we want (my —m1)[( — & )v+ %% — T] > 0 for all v, then
1 2 1 I3 T3 g1

the worst case is when v = 1. Consider the worst case, we need to have
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which implies

0'% 1—7"1

o2 " 1-m

Case 2: 01—2 - ;17 > 0. If we want (my —m)[(& — Z)v+ 2 — 7] > 0 for all v, then
1 2 2 1

-2
oy o2

the worst case is when v = 0. Consider the worst case, we need to have

T2 1

— — >0
2 2
03 0
which implies
or 0m
o

Since m; and m are interchangeable in the integral, there is no need to discuss the

case m; — mg > 0.

Q.E.D.

This condition can be written in a different way,

. 1—= T
If 7 > m, then either oy 1 2 oy < OF 0 < 0y < o14/ ~2 (5.27)
- i m

The sufficient condition given in 5.24 for monotonicity to hold true is an asymp-
totic result. Whether or not this condition is satisfied is a property of the learning
process. In other words, this condition puts constrains on the learning process (mod-
ulo the target function) for monotonicity to hold. There are some common p(e)
distributions that satisfy this condition. For example, for the Bernoulli p(e) where
o(m) = w(1—m), the above condition is satisfied, therefore the monotonicity holds for
binary bins, which is confirmed by the discussions in earlier sections. There are some
other distributions that don’t satisfy the condition. For uniform error distribution,

where 0 < e < C and p(e) = é, = —g and o? = ’;—2, the condition is violated.
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5.10 Conclusion

In the second part of the thesis, we proposed a novel theoretical framework, called
the Bin Model, which provided a framework for analyzing generalization in a general
classification learning process. The Bin Model abstracts the relevant quantities from
a learning process by parameterizing each hypothesis function with a single value,
m. Using the Bin Model, we derived a closed form for generalization that estimates
the out-of-sample performance in terms of the in-sample performance. The expected
generalization error was shown to depend only on the w-distribution for the learning
process. Within the Bin Model framework, we can derive properties that hold for any
p(m) (for example, the lack of over-fitting with unbiased optimization), and therefore
that hold for any learning model, target function and input distribution. Thus the
Bin Model can provide a tool for further study of distribution independent properties.
The Bin Model is a very powerful model which is simple enough for mathematical
manipulation and general enough to address and give insights into many important
issues in learning. While in general the 7-distribution is unknown, we can still gain in-
sights from invariant properties of the Bin Model analysis. Work in progress includes
the extension of the model to noisy problems, regression problems and the identifi-
cation of relative features of p(w) that characterize commonly encountered learning

problems.

5.11 Appendix A

Special Case: If p(nr) = (d + 1)7¢ for any d € Z*. Thenn(v) = NJ\TVE% and

_ (Nv+d+1)(N—Nv+1)
var(n|v) = aapdrs)
Proof: .
r() = fo a7 (1 — W)N(l‘”)p(ﬁ)dﬂ

fol aNv(1 — m)NO=)p(7)dn

B fol 7rNu+1+d(1 — )NNvp(n)dr

- fol aNvHd(1 — )N-Nvp(r)dn
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_ B(Nv+d+2,N—-Nv+1)
~ B(Nv+d+1,N—Nv+1)

where B(z,y) fo t*71(1 — t)¥~1dt is the Bessel function. Since B(z,y) can be

expressed in terms of Gamma function B(z,y) = “22W  and T'(z) = (z — 1)! for

(z+y)
x € Z*, then

I'(Nv+d+2)T(N +d+2)
I'(Nv+d+1)I(N +d+3)

m(v) =

 (N4d+1) ! (Nv+d+1)!
T (N+d+2) ' (Nv+d)!

Nv+d+1

= 5.28
N+d+2 ( )

For the variance,
var(r|v) = Bln*|v] — (E[r|v])’

_ fﬂl w2V (1 — m)NOYp(r)dr
fol TN (1 — m)NO=)p(r)dm

- ()

since p(7) = (d + 1)7¢, then the first term is

fol w2V (1 — o) NO)p(r)dr
fo Vv (1 — m)NO—)p(7)dm

fl Nu+2+d )N“N”p(ﬂ)dﬂ'

f() 7I'NV+d(1 )N“Nyp(’/'()dﬂ’

_ B(Nv+d+3,N—Nv+1)
~ B(Nv+d+1,N—Nv+1)

Ny +d+3)I'(N +d+2)
C T(Nv+d+1D(N +d+4)
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(N+d+1)! (Nv+d+2)!
(N+d+3)! (Nv+d)!

(Nv+d+1)(Nv+d+2)

= 5.29
(N+d+2)(N+d+3) (5.29)
Therefore,
var(mw|v)
_(Nv+d+1)(Nv+d+2) (Nz/—l—d+1