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Abstract

Cavity quantum electrodynamics (QED), the system of a single atom interacting with
a single mode of a high finesse optical resonator, has tremendous potential for use
in quantum logic, quantum information processing, and in enabling observation of
quantum mechanical effects in the laboratory. The work of this thesis demonstrates
a number of steps toward realizing these goals, by employing an experimental system
with the strongest atom-field coupling achieved to date in optical cavity QED. The
effects of strong coupling in cavity QED are studied for single cold atoms measured
one at a time, in real time. The passage of single atoms through the cavity is em-
ployed to map out the frequency response of the system, and to demonstrate that
quantum rather than semiclassical theory provides the correct theoretical model. The
mechanical effects of strong coupling on single atoms are explored, these experiments
demonstrating the first trapping of single atoms with single photons. Additionally,
strong coupling enables high signal-to-noise ratio for monitoring atomic position at
single photon field strengths; this capability is employed to investigate the motion of
atoms trapped within the cavity. The transmitted cavity field is used to reconstruct
the trajectories of single atoms, thereby realizing a new form of microscopy - the
Atom-Cavity Microscope. Technical developments necessary to create the cavities
used in this experiment are detailed. Ideas for future extensions to the experiment
are proposed; a zero light-shift dipole force trap, and measurement of photon statis-
tics of a single strongly coupled atom (which realizes a photon blockade device) are

discussed.
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Chapter 1 Introduction

1.1 Motivation

The principal motivation of many researchers in experimental quantum optics, and
certainly my personal reason for entering the field, is a desire to observe the weird and
wonderful effects of quantum mechanics in the laboratory. The experimental system
of cavity quantum electrodynamics (cavity QED)[1], consisting of an atom strongly
coupled to the electromagnetic mode of a nearly lossless optical resonator, is one of
very few physically realizable systems in which such effects can be observed, and is
the setting for the experiments described in this thesis.

To generate quantum behavior in a real physical system is more difficult than one
might think, given a first theoretical introduction to quantum mechanics is typically a
simple closed system, such as a single particle in a box, for which quantum weirdness
is manifest. The real world, however, is not like a single particle in a box. Real
particles exist in a web of connections and interactions with their neighbors, the sum
of all these outweighing any particular simple interaction of interest. So if you try
to ask a simple question, like looking for an entanglement between two particles,
the collective effect of interactions with the outside environment usually makes the
measurement result indistinguishable from that of a classical system, a process known
as decoherence. This leads us to the rich study of “open” quantum systems [2], where
couplings to the environment are explicitly taken into account in the formalism, and
leads us to ask under what circumstances, then, can decoherence can be avoided (or at
least controlled, as in the case of quantum error correction [3, 4]), allowing quantum
behavior to still be observable?

The simplest solution is to create a system of single quanta, eliminating interac-
tions which lead to decoherence, while preserving the coherent quantum dynamics of

interest. This is in practice by no means a simple undertaking. We call this a regime of



2

strong coupling, for which the coherent quantum evolution rate of these single quanta
dominates any dissipation in the system. That is, we require gy > 3 = max[I', 771,
where gq is the rate of coherent, reversible, evolution, T is the interaction time and I'
is the set of decoherence rates for the system. In such a strongly coupled system, the
coherent quantum evolution gg can be exploited to create quantum superpositions and
entanglements of particles, and enable measurement and processing of these quantum
states before decoherence eventually washes away the quantum behavior.

Beyond merely being interesting from the laboratory perspective of being able to
experimentally explore fundamental quantum mechanics, research into strong cou-
pling with cavity QED has been fueled by the potential application of this system as
a quantum device for quantum computing [5, 6], quantum state preparation [7, 8],
and quantum communications [9, 10]. Cavity QED is not alone in trying to realize
quantum computing. In the last few years, a handful of experimental systems have
demonstrated at least some of the required quantum behavior; ranging from trapped
ions [11], and trapped atoms in high-finesse cavities [6, 12] or optical lattices [13], to
Josephson junctions [14] and NMR systems [15]. Promising proposals also exist for
utilizing coupled quantum dots [16, 17], spins of donor atoms embedded in silicon
[18], or single quantum dots coupled to microcavities [19, 20, 21]. This newfound
ability to measure and manipulate the quantum states of individual quanta, one by
one, is a revolutionary development in recent experimental physics. It heralds the

’ in which single quanta interacting

beginning of a new era of “quantum engineering,’
by the rules of quantum mechanics are the fundamental building blocks.

The quest to create and explore interesting quantum states has been one of the
primary driving forces in experimental efforts in cavity QED. A rich array of quantum
effects have been predicted theoretically over the last 35 years, since the first work
by Jaynes and Cummings [22], but conditions in which they can be experimentally
observed have proved difficult to achieve: to realize the simple Jaynes-Cummings
Hamiltonian we are required to be dealing with single quanta, and be in the regime

of strong coupling. Strong coupling at the level of single atoms was first observed in

1992 [23], by an averaged measurement over a series of single atoms from a thermal
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atomic beam. A significant advance in the field was made in 1996 [24], with the use of
laser-cooled atoms instead of a thermal beam, allowing single atoms to be measured
one at a time, in real-time.

The work of this thesis involves experiments studying the effects of strong coupling
on single cold atoms, measured one at a time. In Chapter 3, the passage of single
atoms through the cavity is employed to map out the frequency response of the system,
and to demonstrate that quantum theory is the correct description of this system [25].
In Chapter 4 the mechanical effect of strong coupling on single atoms is explored, these
experiments demonstrating the first trapping of single atoms with single photons, first
reported in Ref. [26] and fully explored in Ref. [27]. In addition, being in a strong-
coupling regime generates superb signal to noise for atom detection by single photon
fields, enabling us to reconstruct the trajectories of single atoms inside the cavity
and realize a new form of microscopy [27]. Chapter 5 details technical developments
which were necessary to fabricate the optical cavities used for these measurements,
and finally in Chapter 6 I present calculations of ideas which could be incorporated
into the cavity QED experiment in the future; exploring a zero-shift dipole trap and
the possibility for measuring photon statistics from a single strongly coupled atom.

With atoms now trapped in cavities, both via the single photon quantum fields
employed here [27] and with classical dipole-force traps [28], the stage is now set for
elusive measurements of quantum behavior to finally become a reality: from quantum
feedback control [29, 30], to generation of single photons [8], to demonstration of
quantum communications schemes [9, 10]. With these prospects, the next few years

should be an exciting time for optical cavity QED.

1.2 A history of my involvement in the Kimble

group

Arriving in the Kimble group in September 1994, I started work with Quentin Turchette

in what was at the time the sole cavity QED lab; a somewhat daunting room full
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of optical elements, vacuum parts and electronics. By late 1994 news of Shor’s fac-
torization algorithm, which essentially launched the field of quantum computation,
was spreading through the experimental quantum physics community. Visits to the
group by Artur Ekert and Seth Lloyd in summer and fall of 1994 helped flesh out
potential applications of cavity QED to quantum computing, and catalyzed a change
in our immediate experimental direction; we decided to use the existing cavity QED
apparatus for a proof-of-principle demonstration that this system can provide the
necessary single-quanta non-linear coupling required for quantum logic, the results
published as Ref. [6].

The scheme explored was to use a Kerr-type nonlinearity generated by a single
atom medium (provided by an atomic beam) in the cavity to couple together two
laser fields (at the single photon level), inducing a nonlinear polarization-dependent
phase shift to the transmitted photons. Decoherence could be minimized by detuning
the two lasers far from the atomic resonance (to avoid spontaneous emission losses),
while maintaining a significant phase shift. This experiment was an extension of the
previous 1D atom [31] work of the lab, measuring phase (instead of amplitude) trans-
mission through the atom-cavity, and measuring the conditional saturation behavior
of the system using two laser fields. From these measurements we inferred the logical
truth table for a “quantum phase gate.” My contributions to this experiment were
primarily in Iab setup work and data taking, sometimes running the experiment solo,
taking some of the published data while Quentin was traveling. Additionally, I pro-
posed our novel method for measuring the phase shift of a circularly polarized beam;
by probing with a linear polarization and measuring a rotation of polarization. This
turned out to be an existing technique in chemistry, known as polarization interfer-
ometry. With Wolfgang Lange’s invaluable computer-controlled rotating waveplate,
measuring these polarization rotations was relatively simple.

In my second year, Quentin, Nikos Georgiades and I worked on an experiment to
couple squeezed vacuum into the atom-cavity, in the hope of measuring an altered
radiative lifetime for the atom [32]. This was a tough experiment that had already

been an ongoing project for 2 years when I joined the group. It was decided that the
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coupling efficiencies weren’t as high as they should have been in the previous attempt,
so it was worth giving it another try. The initial setup phase of this experiment
involved me working with Nikos in the squeezing lab, where I learned to generate
squeezed vacuum from the OPO [33] - my first example shown in Figure 1.1. Even
having optimized experimental efficiencies, we still didn’t see linewidth narrowing
directly, something of a mystery since the simple theory predicted a measurable result.
Scott Parkins, our theoretical collaborator from the University of Auckland proposed
a new method: adding a coherent saturating beam, then looking for modulation in
the transmission signal as the phase of the squeezed vacuum was rotated. Again,
nothing was obvious, but a complicated chain of signal analysis revealed modulation
peaks at the expected frequency, buried in the noise. We mapped out this modulation
as a function of detuning, coherent driving strength, degree of squeezing, and atom
number, but from these quantities were never able to confidently claim that we had
observed linewidth narrowing.

Why were the effects so small? We are now fairly confident that this was due to
using an atomic beam as an atom source, averaging over the passage of many atoms
to obtain our signal. While completing the manuscript (eventually published as Ref.
[34]), I did some work modeling intracavity losses arising from the atomic beam, these
results in the end explained the large degradation of observed signals fairly well.

Right around this time (the squeezing experiment was wrapping up in Spring of
1996) Hideo Mabuchi, Mike Chapman and Quentin demonstrated that laser-cooled
atoms from a magneto-optical trap (MOT) can be used as a source of single slow
atoms for cavity QED [24], measurable one at a time, in real time. Having just spent
a year plagued by the evils of atomic beams, it was very clear to all of us that cavity
QED with cold atoms was the way of the future.

So, in the summer of 1996, I joined post-doc Mike Chapman to build up a new
cavity QED apparatus with a cold atom source; to run in parallel with Hideo’s exper-
iment. Joined in the fall by Theresa Lynn, we started spending the QUIC (Quantum
Information and Computation) grant on furnishing this new lab, the new features of

this experimental setup described in Section 2.2. New smaller mirrors (described in
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Figure 1.1: Homodyne measurement of squeezed vacuum. The horizontal line indi-
cates the shot-noise level. The phase of the squeezing is rotated with respect to the
detection beam, generating the observed oscillations. The squeezed quadrature here
has noise 2dB below shot-noise; this was optimized to ~ 4dB for use in the cavity
QED experiment.
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Chapter 5) allowed us to construct a shorter 10pm cavity with higher atom-cavity
coupling (g =120MHz) than previously achieved, and hence better signal-to-noise ra-
tion for detecting single atoms. A year later, in the summer of 1997 the experiment
was operational and we observed the first “upgoing transits” (probing on the Rabi
sidebands), and were able to map out spectral response of the system using single
atom events. We also measured the nonlinear saturation behavior of the atom transit
signals, which due to being in a regime of strong coupling now showed a marked de-
viation from the predictions of semiclassical theory, and a corresponding agreement
with quantum theory. These results were published as Ref. [25], and are described
in detail in Chapter 3.

The next stage of this experiment was to try and trigger on these single-atom
events to trap an atom in the cavity, via strong coupling to the cavity mode driven
by single photon fields. Initial promising results were seen [26], but then a 12 month
break occurred when our cavity failed and we spent time building new cavities, new
mounts and battling vacuum problems. The main personal highlight of this period
was somehow ending up in a Comedy Central spoof item on quantum teleportation,
the experiment that Akira Furusawa, Jens Sorensen and Jeff had been working on in
the squeezing lab [35].

Eventually we emerged from our technical nightmares with a next-generation cav-
ity - with lower linewidth for even better signal-to-noise detection and better isolation
from spontaneous emission heating. Almost immediately, in July of 1999, we saw sin-
gle atoms trapped by single photons. Moreover, the exquisite signal-to-noise obtained
from strong coupling allowed us to monitor the position of these trapped atoms as
they moved within the cavity mode, realizing a new form of microscopy which we
have called the atom-cavity microscope (ACM). These results were published as Ref.

[27] in February 2000, and are described in detail in Chapter 4.
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1.3 The experimental system: Cavity QED with

cold atoms

The experiments described in this thesis take place in the setting of cavity quantum
electrodynamics (cavity QED)[1], the system of a single atom strongly coupled to a
single electromagnetic mode of a nearly lossless optical resonator (cavity). Here the
quantum nature of the system stems from the fact that the rate gy that characterizes
the coherent interaction of an atom with the cavity field for a single photon can
dominate the dissipative rates for atomic spontaneous emission v and cavity decay
k. The coherent interaction go is made large by making the cavity volume small, as
discussed in Chapter 2. Note that the value of gq is for an atom at a peak of the
intracavity field mode; atoms at other positions 7 see a reduced coupling strength
9(F) < go-

The basic components of the experiment are shown in Figure 1.2. Single atoms
are provided by first laser cooling a cloud of ~ 10? cesium atoms in a magneto-optical
trap (MOT)[36], then allowing this cloud to fall so that single atoms pass one at
a time between the two mirrors which form the cavity, indicated by the arrows of
Figure 1.2. The cavity length is locked such that only a single electromagnetic mode
(TEMoo) is resonant in the cavity. The combined atom-cavity system is driven by
a weak probe laser of strength < 1 intracavity photons; we measure transmission of
this beam by balanced heterodyne detection to infer the intracavity field, and hence
the atomic dynamics as single atoms pass through the cavity.

The light inside the cavity forms a standing-wave structure, shown in the inset
to Figure 1.2. For certain choices of probe detuning and intensity, atoms can be
channeled to pass through antinodes of these standing-waves (as in the experiments of
Chapter 3), or even trapped in orbit at a single antinode of the field (the experiments
of Chapter 4), as shown in the trajectory of the inset to Figure 1.2.

In addition to providing single-photon forces sufficient to trap a single atom, strong
coupling (go > k,~y) means that the presence of a single atom in the cavity has a strong

effect on the intracavity field. Moreover, the atom-cavity transmission changes as the
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Figure 1.2: Basic components for experiments with cold atoms in cavity QED.

atom moves within the cavity mode and its coupling strength g(7) < go correspond-
ingly varies. The position-dependent coupling strength g(r) thereby gives rise to
time-dependent transmission signals, with which we can track the motion of single
atoms. This enhanced detection capability can be quantified by the “optical infor-

mation” per atomic transit, discussed in Chapter 2.

1.3.1 History of CQED with cold atoms

Up until 1996, the quest to observe quantum effects in cavity QED experiments was
plagued by difficulties caused by using thermal atomic beams as the source of atoms
[34, 37], with losses due to many-atom effects described in Section 2.1.3, and Refs.
[34, 37, 38]. One conceptually obvious, but practically difficult, solution was to try
to combine the technology of laser cooling and trapping with that of cavity QED,
to instead have a sample of cold, slow atoms as the source, or even a single trapped
atom within the cavity mode. This was part of the “wish-list” of technologies in

the Kimble group, mentioned by both Rob Thompson (who had been involved in
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the atomic beam cavity QED experiments above) in 1994 [39], and Zhen Hu (who
demonstrated a single atom trapped in a MOT) in 1995 [40] in their respective theses
as a desirable next step.

Experimental efforts to integrate cold atoms with cavity QED began with micro-
sphere (rather than Fabry-Perot) optical resonators. In 1994, Hideo Mabuchi was
working on a project to couple atoms to the whispering-gallery modes of high-Q mi-
crospheres [41], which seemed most easily achieved by beginning with a very cold
and dense sample of atoms. Hideo thus began work on an apparatus to form a MOT
in close proximity to a microsphere. But before serious effort was put into coupling
atoms from the MOT to a microsphere, it was decided to switch to a Fabry-Perot
cavity; for two major reasons. Firstly, the larger mode volume of the Fabry-Perot
would greatly increase the likelihood of observing passing atoms, then once the sys-
tem was optimized a return to microspheres could be attempted. Secondly, in 1995
Scott Parkins visited, and told us about calculations he had carried out which showed
that the mechanical forces from strong coupling would be enough to trap cold atoms
dropped into a Fabry-Perot cavity [42]. Several iterations of the experiment later,
Hideo and Quentin Turchette, joined by post-doc Michael Chapman, finally observed
for the first time single atoms coupled one at a time to the cavity mode, in March of
1996 [24].

This new technology was so promising that a new lab was established, where my-
self, Michael Chapman and Theresa Lynn focused on trying to realize Scott Parkin’s
single-photon trapping scheme. Meanwhile, Hideo and Quentin pursued a program
of trying to optimize and extend the earlier measurement to hopefully achieve atomic
position measurement at the standard quantum limit. The new lab was observing
atom signals by late 1997. These single-atom events were the basis for a series of
experiments published in Ref. [25] in 1998. The most important of these was the
mapping out of the frequency response of the atom-cavity system, and measuring
its non-linear saturation behavior. Meanwhile, the microsphere experiment had been
revived by David Vernooy who, working with Nikos Georgiades and Akira Furusawa,

observed cavity QED coupling of cesium atoms in a vapor the mode of a microsphere
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[43].

In January 1999, observation of single cold atoms in a cavity QED setting was
also reported by Gerhard Rempe’s group in Konstanz [44], followed up in May by an
investigation of single atom dynamics by measuring photon statistics over an ensemble
of single atom transits, to give information about atom dwell-time in the cavity [45].

Meanwhile, experiments in both Caltech labs were progressing nicely, with first
evidence of atom trapping seen in the Hood/Lynn/Chapman lab, and the signal-to-
noise improved in Hideo’s experiment (now joined by post-doc Jun Ye) sufficient to
demonstrate quantum-limited detection of atom transits, and a full measurement of
both field quadratures in heterodyne. Both these results were published in Ref. [26]
in April 1999, with a more detailed account of Hideo and Jun’s experiment following
in June 1999 [46)].

After Hideo’s graduation in early 1998, David Vernooy joined Jun Ye to work on
a new experiment; to trap atoms via a classical standing-wave far off-resonant dipole-
force trap (FORT), mutually resonant in the cavity with the cavity QED beam. This
scheme holds tremendous promise for implementing quantum logic schemes, where
ideally one would like the atom trapped independently of the cavity QED interactions.
They demonstrated the remarkable achievement of a single-atom intracavity FORT
lifetime of 28ms, published in December 1999 [28].

Also in 1999, in July Theresa and I finally realized Scott Parkin’s trapping scheme,
and saw clear signals of single atoms trapped by single photons fields. Additionally,
the very high signal-to-noise generated by the large coupling in our experiment en-
abled us to track the trajectories of single atoms, and characterize the dynamics of
single atom motion in the trap (oscillation frequencies, trap times). These results of
trajectory reconstruction and oscillation frequency analysis were published in Febru-
ary 2000 [27]; the trap-time characterization manuscript is currently in preparation.

Shortly after our publication on single photon trapping, the Rempe group pub-
lished a similarly titled manuscript in March 2000 [47] showing two examples of
localized atoms and one simulated transit, but without the analysis of atom dynam-

ics via large data sets presented in our work. From these few events an inference
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was drawn that cooling of the atomic motion occurs as it hops between standing-
wave well, a result which is currently under scrutiny [48], as part of a manuscript

comparing characteristics of the two parameter regimes of these experiments.

1.4 Observed single atom signals

In the absence of an atom, the spectral response of the empty cavity is just its
Lorentzian linewidth, shown by the dashed curve in Figure 1.3(c). However, in the
presence of an atom, the strong atom-cavity coupling go gives rise to a dressing of the
system eigenstates and a corresponding splitting in the energy. For a single, optimally
coupled atom the transmission spectrum is shown by the solid curve of Figure 1.3(c),
the vacuum-Rabi spectrum. Optimal coupling is only achieved when the atom is at
the point of maximum field strength (at the center of the Gaussian cavity mode).
Thus as an atom falls through the cavity the coupling evolves from g = 0, with
an empty-cavity Lorentzian transmission spectrum (dashed curve) to g = go (solid
curve) then back to g = 0. If the atom does not pass close to an antinode of the
cavity standing-wave, a smaller g,q.. < go Will be achieved.

For an atom traversing the cavity mode (in ~ 75us), the position-dependent cou-
pling gives rise to a time-dependent probe transmission [49, 50]. For two probe fields
of fixed detuning (indicated by the arrows positions of Figure 1.3(c)) simultaneously
illuminating the atom-cavity system and being detected in transmission with hetero-
dyne detection, the real-time atom-cavity transmission is shown in Figure 1.3(a,b).
Close to resonance (Figure 1.3(a)), transmission drops as an atom enters the cavity
and the spectrum shifts from the empty-cavity Lorentzian response to the vacuum-
Rabi spectrum. Transmission regularly drops by a factor of 100 at this detuning.
For the same atom during the same transit but for a probe of detuning —go (Figure
1.3(b)), the transmission correspondingly rises. For the data of Figure 1.3, the two
probe fields are applied simultaneously, leading to a fundamental decrease in signal
to noise over single-probe measurements due to the trade-off between reduction in

shot noise and saturation of the atom-cavity response [25].
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Figure 1.3: Transmission for each of two probe beams simultaneously illuminating
the atom-cavity as a function of time for a single atom traversing the cavity mode.
For (a) the probe detuning is -20 MHz, for (b) -100 MHz. The change in the atom-
cavity spectrum which gives rise to these time traces is shown in (c). For these
traces the atomic and cavity resonaces are coincident, and the coupling strength
go/2m = 120MHz.
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1.5 Results

1.5.1 Mapping the system response with single atom transits

(Chapter 3)

By recording atom transits such as those of Figure 1.3(a,b), the entire transmission
spectrum (solid curve of Figure 1.3(c)) was mapped out [25]. This was the first time
that the two-peaked spectrum had been seen via individual atom events, and served as
independent confirmation of our geometrically calculated value for go. Next, resonant
transits (as in Figure 1.3(a)) were recorded as the intracavity photon number was
increased, to map out the saturation behavior of the system. A quantum system
respecting a Jaynes-Cummings ladder of states is predicted to saturate differently
than the corresponding semiclassical system, due to the different structure for high-
lying excitations. For our parameters the predictions differ by an order of magnitude,
with the semiclassical case predicting bistability. The data of Chapter 3 shows strong
agreement with the quantum master equation calculation, confirming the underlying

quantum nature of the atom-field coupling and our ability to access it experimentally.

1.5.2 Trapping single atoms with single photons (Chapter 4)

Beyond simply measuring the spectral effects of strong coupling, the next phase of
the experiment was to exploit it to trap single atoms using the vacuum-Rabi splitting
[50, 51]. From Figure 1.3(c) it can be seen that the system has a resonance at a lower
frequency (energy) with an atom present than the empty cavity resonance. That is,
the lower dressed state of the atom-cavity system (the left peak of the solid curve
of Figure 1.3(c)) has an energy minimum for an atom at the center of the cavity
mode. The spatial dependence of the cavity mode (Gaussian transverse distribution,
standing-wave along the cavity axis) therefore creates a series of trapping pseudo-
potential wells for the atom, if a red-detuned probe field is applied to selectively
populate this trapping state. For our parameters this gives a potential depth of ~

5mK, so with an initial atomic temperature of 154K and a fall of only 2mm to the
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Figure 1.4: (a) Transmission of the atom-cavity for two single atom transits, with no
triggering (black trace) and with the probe triggered to trap the atom (grey trace).
The grey trace shows an atom trapped by an intracavity field of 7 ~ 1 photon mean
amplitude for 1.6ms. (b) The motion of the atom lies in a plane at an anti-node of
the standing-wave field. (c) The grey transmission trace can be used to reconstruct
the trajectory of this trapped atom, in the plane indicated in (b).
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cavity, single atoms have low enough energy to be confined in this bound state. The
procedure used was first proposed and analyzed by A. S. Parkins in 1995 [42], and
consists of allowing the atom to fall into the cavity with a weak probing field (which
creates a shallow confining potential), then when the atom is near the center to switch
up the intensity to create the deep potential and trap the atom.

Figure 1.4 shows an example of a single atom trapped using this method. The
probing/trapping laser is detuned to the red, as was the case in Figure 1.3(b). The
black curve of Figure 1.4(a) shows a typical transmission trace for an atom ftransit
through the cavity when no effort to trap is made; this is the same type of signal as in
Figure 1.3(b). When we trigger on the presence of an atom in the cavity and switch
UP the intensity of the trapping field, traces like the grey curve of Figure 1.4(a) are
seen. This example shows a single atom trapped in the cavity for ~ 1.6ms, with the
wiggles in transmission corresponding to the atom’s motion within the trap. The
nature of the atomic motion is indicated by Figure 1.4(b); single atoms are trapped
at a single standing-wave antinode of the field, moving about the center of the cavity
in elongated orbits, giving rise to the oscillating transmission signal of Figure 1.4(a).

These transmission oscillations can in fact be used to reconstruct the actual trajec-
tories of single atoms. The data trace of Figure 1.4(a) yields the trajectory of Figure
1.4(c), where the plane of the atomic motion is indicated in Figure 1.4(b). This ability
to track the motion of the single atom demonstrates a new form of microscopy, which

we call the atom-cavity microscope (ACM).

1.5.3 Publications from graduate work

C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins and H. J. Kimble, The Atom
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J. Ye, C. J. Hood, T. W. Lynn, H. Mabuchi, D. W. Vernooy, and H. J. Kimble,
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Trans. Instru. & Meas. 48, 608 (1999).



17
C. J. Hood, T. W. Lynn, M. S. Chapman, H. Mabuchi, J. Ye, and H. J. Kimble,
Cavity QED, where’s the Q7 in Confined Photon Systems, ed. Benisty et al., Springer
(1998).

C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, Real-time cauvity
QED with single atoms, Phys. Rev. Lett. 80, 4157 (1998).

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble and A. S. Parkins,
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Chapter 2 Tools for CQED with single,

strongly coupled atoms

2.1 Theoretical treatment of the atom-cavity sys-
tem

We initially consider the ideal cavity QED system of a single atom (in this case ce-
sium) coupled to the TEMg longitudinal mode of a high finesse optical cavity, shown
schematically in Figure 2.1, with curved mirrors providing transverse confinement of

the mode. The coherent atom-field coupling rate g, is given by

Fuw

=d-E=d
go 2€0Vm’

(2.1)

where d is the atomic dipole matrix element, w the atomic transition frequency, V;,

the cavity mode volume, and 2gy is the single-photon Rabi frequency. The single-

hiw
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photon electric field strength is found by considering the Maxwell energy

density of the electromagnetic field
' 1
o= [(QIBF + 5 - |BR)AV = [ lBfav (2.2)
2 240

for a single photon excitation (of energy Aw) confined to a volume V;,,, and averaging
over the optical cycle of the field. If the cavity mode volume V,, is made small, the
magnitude of E for a single photon, and hence go, can become large. Experimentally
this achieved both by making the cavity length short, and by using mirrors with a
small radius of curvature.

The rate of dissipation is set by =, , the atomic dipole decay rate into modes other

than the single cavity mode, and &, the rate of decay of the cavity field. As the atomic
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Figure 2.1: Schematic: Single-atom cavity QED.

decay is purely radiative, the rate for decay of atomic inversion ) = 2v,. Also, v is
essentially the same as for an atom in free space, since the solid angle subtended by
our cavity mode is small (~ 1075). It should be noted that photon decay via x does
not necessarily lead to decoherence in the system, as these output photons can be
measured, processed, or even used as the input to another cavity system, maintaining
coherences with the atom-cavity [9, 10, 52]. Additionally, in experiments to date the
atom is not indefinitely fixed within the resonator, so another important parameter
is the transit time 7 of an atom through the cavity mode.

We can describe the atom-cavity system by two dimensionless parameters: the
critical atom number, Ny = (2x77.)/go? and critical photon number mg = 72 /243 ;
the number of quanta (atoms or photons) required to significantly alter the atom-
cavity response. A critical atom number of Ny indicates that the insertion of Ny
atoms into the cavity mode has a significant effect on the transmission of a probe
field through the cavity. Conversely, for a single atom in the cavity, as we turn up the
power 7 of a driving field while measuring the atom-cavity transmission, m = my
indicates the intracavity photon number at which the system response to this probe
becomes nonlinear.

The regime of cavity QED explored in the experiments of this thesis is that of

strong coupling, for which the coherent evolution rate of these single quanta dominates
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any dissipation in the system. That is, go > max[[’,7!], where g is the rate of
coherent, reversible, evolution for the single atom, T' is the interaction time and
I' = {71, k} is the set of decoherence rates for the system, so that for strong coupling

we require

go > (’Y_L,K,T_l). (2.3)

This condition also ensures that the critical parameters (Ny,mg) < 1, that is, the
atom-cavity response becomes nonlinear for a mean intracavity field of my < 1 pho-
ton, and the presence of Ny <« 1 atoms in the cavity has a significant effect. As we
will only ever be dealing with whole atoms, the condition Ny < 1 means in practice
that a single atom has a significant effect on the system even when it is at a position
of reduced coupling strength g(r) < go far from the center of the cavity mode.

In the limit of negligible dissipation and no detunings, the ideal cavity QED system
of a single stationary two-level atom in an electromagnetic field is described by the

Jaynes-Cummings Hamiltonian [22],
At A & Aat | ata
H = hwala + ﬁw-2—- + hgo(a6t +a's), (2.4)

where (&,4a') are the field annihilation and creation operators, (&,51) the atomic
lowering and raising operators (and hence &, the atomic inversion), w the coincident
frequency of the atomic transition and cavity field. This Hamiltonian can be simply

diagonalized at n system excitations to find eigenstates

with (g,e) here denoting the atomic ground and excited states. These states (the
Jaynes-Cummings ladder of states) represent the atom and cavity equally sharing an
excitation, and have corresponding energy eigenvalues nfw + /nhgo.

The anharmonicity of the level splittings of the Jaynes-Cummings ladder reflects
the fact that quantization of the field is important in this physical system, since for

a semiclassical nonlinearity the energy eigenvalues scale linearly as nfiw =+ nfigy. Note
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that at a single excitation n = 1, the semiclassical and Jaynes-Cummings predictions
are indistinguishable, so no conclusions about the quantum nature of the system can
be drawn from a weak coherent-field measurement of the system eigenvalues.

When discussing the measurable response of the atom-cavity system we refer to
structure, which relates to the eigenvalue spectrum discussed above and is reflected
in steady-state measurements such as the atom-cavity transmission speétrum, and
dynamics, which relates to the time-dependent behavior of the system as is makes
transitions between these levels, reflected for example in a photon statistics measure-
ment of the output cavity field.

In the regime of strong coupling go >> (k,7), the atom-cavity must be consid-
ered as a composite coupled system, with structure and dynamics approaching those
predicted by the Jaynes-Cummings Hamiltonian. Arising from this simple Hamilto-
nian, a rich array of quantum effects have been predicted theoretically over the last
35 years, since the first work by Jaynes and Cummings [22]. However, conditions
in which they can be experimentally observed have proved difficult to achieve: we
are required to be dealing with single quanta (atoms and photons) in the regime of
strong coupling, both of which are experimental challenges. Many quantum optics
experiments have been carried out at the single atom level [23, 53, 54, 55, 56], but
these have required measurements over ensembles of atoms in a thermal beam. By
contrast, the new technique of using laser-cooled atoms in cavity QED has recently
enabled individual atoms to be measured one at a time, in a setting of strong coupling
[24, 25, 26, 44, 45, 46, 28, 27, 47].

The dynamical properties of strongly coupled cavity QED systems have been ex-
plored via measurements of nonclassical photon statistics for an ensemble of atoms
in an atomic beam [57, 58, 59, 12, 60] or a MOT [61]. Measurements of the struc-
tural properties for weak excitation yields the familiar double-peaked vacuum-Rabi
transmission spectrum, arising from the splitting gy in the system eigenstates for
a single excitation, as was first observed for a single atom in Ref. [23]. However,
as Jaynes-Cummings and semi-classical theory give rise to this same structure for

weak excitation, to see a distinction between these theories (and thereby confirm
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that field quantization is of critical importance to this system) we are required to
be in a regime of strong driving. For stronger driving fields the nonlinear response
follows from the higher lying states of the Jaynes-Cummings ladder, directly observed
in the microwave domain of cavity QED [53] and reflected in nonlinear transmission
measurements in optical cavity QED [25, 46], to be described in Chapter 3.

In the presence of dissipation and allowing for detunings, the Jaynes Cummings
theory is extended to give a master equation for the evolution of p, the density
operator for the joint state of the atom and cavity, given in the electric dipole and
rotating-wave approximations by:

p = —% [ﬁo, p] 41 (26p5t — 616p — pot6) + K(2apa’ — alap — pata),

A

Hy = hOd'a+ hAsTG + hg(P[ast +als] +e(a + af). (2.6)

Here ¢ is a driving (probe) field of frequency w,, © = (w, — wp) is the cavity
detuning and A = (w, — w,) the atomic detuning from the probe frequency w, which
defines the rotating frame for these equations. The coupling strength gy has been
replaced by g(7) = gocos(2mz/\) exp[—(y? + 2%)/wd] = goy(F), which reflects the
position dependence of the atom-field coupling strength for an atom at position 7
within the cavity mode, which varies as a standing wave in the z (cavity axis) direction
and a Gaussian in the y, z directions. The full quantum theory treats 7~ as an operator.
For these experiments the atomic kinetic energy is significantly larger than the level
spacing for quantized atomic motion, and there is in addition atomic localization due
to spontaneous and cavity photon emissions. This means that the atomic motion can
be treated semiclassically as a wavepacket, with mean position given by the vector
7(t) [62]. If spontaneous emission were to be minimized (for example by moving to a
dispersive atom-cavity regime, or using Raman transitions), and the atomic motion
cooled, a full account of quantized motion would need to be incorporated into the
theoretical treatment, as is explored in Ref. [63].

In the strong coupling regime, numerical solution of Eq. 2.6 gives the result

shown in Figure 2.2 for the frequency response of the atom-cavity as a function of
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Figure 2.2: The presence of a single atom in the cavity radically changes the atom-
cavity transmission spectrum, resulting in the double peaked vacuum-Rabi spectrum.
Parameters are {go, k,7v, }/27 = {110, 14.2,2.6 }MHz with w, = w,, and drive strength
ng = 0.5 photons.

probe detuning A. Here there is no cavity detuning (w, = w.), the cavity parameters
are for the experiment of Chapter 4, {go, x,v.}/27 = {110,14.2,2.6}MHz, and the
empty-cavity Lorentzian response is shown as a dotted line for comparison. The
two peaks in the transmission spectrum (the vacuum-Rabi spectrum) at A = +gq
simply reflect the.splittings of the Jaynes-Cummings ladder of states resulting from
the coupling go, and the reduction in height of these peaks from an amplitude of 1 is
because the drive strength 7ip = 0.5 photons >> mg, and we are therefore driving in a
regime of nonlinear saturation.

By varying the cavity parameters x and go the response of the atom-cavity system

to a probe field can be changed qualitatively. For example, if the cavity decay & is
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large, we find that the atom and cavity retain their distinct identities, with decay
rates modified by their coupling. In particular, in contrast to the strong coupling
regime, we can define a “1-D atom” regime by £ > g2/k > v, in which the atomic
decay to the cavity mode is at rate g2/k and we have an effectively “1-D atom”
interacting preferentially with the cavity mode [31]. This was the parameter regime
used in the quantum phase gate [6], and squeezed-light cavity QED [34] experiments,
both of which employed the cavity as a means of enhancing an atomic interaction via
the 1-D nature of the system. In these experiments, the enhancement in spontaneous
emission into the cavity mode corresponds to a Purcell factor of 0.67 [6]. A more

thorough discussion of the various regimes of cavity QED can be found in Ref. [38].

2.1.1 Semiclassical theoretical treatment of the atom-cavity

system

Equation 2.6 for the evolution of the system density matrix can in general only be
solved numerically. However, in certain restricted circumstances a semiclassical ap-
proximation can be made, which consists of factoring joint operator moments, so
that for example (a6t) — (a)(67), and we thereby describe the field by an amplitude
(@) = « rather than a quantum mechanical operator. In this approximation, the
optical bistability state equation [64, 65] gives an expression for the driving field y in
terms of the intracavity field z, where both y and z are scaled by the square root of

the saturation parameter ,/mq:

2C . 206
y-ﬂ”K”m)“@*m)] (2.7)

Here § = (w, — wp) /YL, ¢ = (we — wp)/k, and C = NC is the N-atom cooperativity
parameter, with the single atom cooperativity parameter C; = g2/(2k7v.1). To relate
¢ and y to the quantities of Eq. 2.6, the classical external driving field € is given
by € = k,/mgy, and the intracavity field (@) <> y/moz, where this correspondence

for the intracavity field is not exact, because (@) is a quantum expectation value
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calculated from Eq. 2.6 while z and y are semiclassical quantities. Experimentally
our detection generates a photocurrent that scales proportionally with the amplitude
(@) of a transmitted probe through the atom-cavity, which we then square to end
up with a signal that scales as the amplitude squared. Consequently, for comparison
with semiclassical theory, the scaled powers X = |z|? and Y = |y|* will generally be
the quantities we calculate from the bistability state equation. These are scaled by
mg from the corresponding intracavity and drive photon numbers. It should be noted
that the bistability state equation gives only a steady-state solution for the system
mean values (mgX < (@)), so that it can be used to study the structural properties of
the atom-cavity, but the dynamical aspects are determined by a quantum treatment
of noise, expanded about the semiclassical mean values.

This semiclassical approximation is valid for large values of the critical parameters
(Ng, mg) >> 1, in which case quantities obtained from Eq. 2.6 can be expanded in the
small parameters (1/Ny, 1/mg) to yield Eq. 2.7; this “system-size” expansion detailed
in Ref. [66] (The significance of critical parameters Ny = 1/C} and mg which will be
discussed in more detail in Section 2.1.1). In this regime, a collection of atoms acts
as a classical nonlinear intracavity medium, and Eq. 2.7 is valid for any value of C
or driving field power Y.

Even for the case of strong coupling, for which (Ny,mg) < 1 and the above
semiclassical approximation is clearly not valid, in the very restricted case of weak
ezcitation (parametrization of what defines “weak” will be discussed in Section 2.1.1),
we can solve for the system eigenvalues simply by noting that there is never more than
one excitation in the system, so that (46,) = —(a) and (6,) = —1, formally equivalent
to a semiclassical approximation. That is, for measurements probing the structure
of the system (such as measurement of transmission or fluorescence spectra), a semi-
classical approximation is valid for weak excitation, and we therefore only expect to
be able to distinguish intrinsically quantum effects in these structural measurements
at higher excitation strengths.

That a semiclassical formalism correctly predicts the atom-cavity level structure

for weak driving fields should not be taken as a statement that the system contains no



26
interesting quantum mechanics: studying the dynamics of a weakly driven, strongly
coupled system reveals nonclassicality, such as photon antibunching of the output
cavity field [59]. In fact, such photon statistics measurements such as those detailed

in Chapter 6 give the largest degree of nonclassicality with weak driving fields.

Delineating parameter regions: Critical atom and photon numbers

To better parametrize exactly where semiclassical theory is valid we return to the
critical atom number, Ny = (2x7.)/go? and critical photon number mg = 7% /2g3.
Most quantum systems have large critical parameters; for example a typical laser has
a threshold photon number /mg >~ 10° —10%, indicating that adding or removing one
photon has a negligible effect. Similarly, for cavity QED systems with large critical
atom numbers, many atoms are required to have an effect on the intracavity light
intensity, and accordingly the effect of a single atom is small. In these situations,
the quantum equations (the multi-atom extensions of Eq. 2.6) governing the system
can be expanded in the small parameters (mg', Ny'), and the description of the
system reduces again to a semiclassical prediction of the structure, with quantum
noise fluctuations about these values [66]. Note that this expansion is valid for any
field strength, and provides the more precise definition of the semiclassical regime,
that is (mg, No) >> 1.

As the critical parameters are reduced, we move toward a regime where individual
quanta have a profound effect on the system, so the semiclassical approximation above
is no longer valid. We can expect to see uniquely quantum effects appearing in the
system structure. Kimble group experiments in optical cavity QED have marked a
steady progression from the semiclassical to the quantum regime: from (mg, Ny) =
10,000 in 1981 to recent experiments with (mg, Ng) ~ 0.001 [27].

In the intermediate regime of (mg, Ny) =~ 1 there is some disparity between the
quantum and semiclassical theories; however, even for one experiment with (mg, No) =
(0.02,0.9), this difference could not be resolved experimentally [31, 38]. In contrast,
for systems with small critical parameters (mg, No) << 1, marked differences between

the theories can readily be observed. One experiment with (mg, Np) = (0.0002, 0.015),
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described in Chapter 3, clearly demonstrates such a difference [25].

Finally, we note that the “weak” excitation regime, for which the system response
is linear and a semiclassical approximation is valid, can now be parametrized by
referencing the intracavity photon number 7 to the saturation photon number my,
with “weak-field” meaning m << mq. Note that for our current parameters of mg ~
10, we are not experimentally in the limit of weak excitation, as field strengths of

1072 < m < 1 are required for acceptable signal-to-noise ratio.

2.1.2 Quantum theoretical treatment of the atom-cavity sys-

tem

In regimes where semiclassical theory is not valid, the transmission of the atom-cavity
system (for a single atom) can be found by numerical solution of the quantum master
equation (Eq. 2.6) for the steady-state value of p [67]. In this formalism, we express
decay of the system via cavity decay or atomic spontaneous emission respectively by

the “jump” operators,

L. = V2ka (2.8)
L, = \/5710-7 (2'9>

and re-express the master equation in terms of the superoperator £, where (with

h=1)
ip=Lp=[Hopl =) §(L;Ljﬂ + pLiL; — 2L;pL}). (2.10)

g

To compare the results obtained by numerical solution to Eq. 2.10 and the semi-
classical bistability state equation, plotted in Figure 2.3 is relative transmission ver-
sus empty cavity photon number for the quantum and semiclassical theories, that
is, moX/moY vs. mgY in the semiclassical case, and m/f vs. 7 in the quantum
case, where 7 = | (a) |> with an atom present, and 7 is the corresponding value in
the absence of an atom. Referring back to Figure 2.2, for the quantum curve of Fig-

ure 2.3 we plot the ratio of the two curves of Figure 2.2, at the particular detuning
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A = 0, and as a function of driving strength. In Figure 2.3(a), cavity parameters are
go = Kk = 27y, so that (mg, Ng)=(0.125,1), and there are no detunings (w, = w, = wp).
Here it can be seen that for critical parameters (mg, Ny) < 1, the semiclassical theory
predicts well the nonlinear saturation behavior of the system, even though this the-
ory is only strictly valid for (mg, No)>> 1. In contrast, the experimental parameters
of Chapter 3 {go,x,v.}/27 = {117,45,2.6}MHz, with (mqg, No)=(2.5%x107%,0.017)
yield the curves shown in Figure 2.3(b), which show a clear distinction between the
theories. The data of Chapter 3 explore this quantum/semiclassical distinction, and
show agreement with the quantum predictions. Finally, Figure 2.3(c) shows the same
calculation for the “dream” cavity with {go,k,v.}/27 = {647,56,2.6}MHz with
(Mg, No)=(8x1075,7x107%) described in Chapter 5, showing an even larger distinc-
tion between quantum and semiclassical theories.

While the weak-field agreement of the quantum and semiclassical theories remains
valid in Figure 2.3(c), it can be seen that the saturation characteristics of the quantum
and classical theories are becoming increasingly divergent as (myg, Ng) become smaller,
with the general trend that the quantum theory starts to saturate sooner, then takes
longer for the signal contrast to finally disappear, as was investigated in Ref. [38].
In Figure 2.3(c), the quantum theory has begun to saturate a factor of 10 lower than
the semiclassical turning point my, and it can be seen that as we push the technical
edge of making (myg, Np) increasingly smaller, the semiclassical theory will become
increasingly irrelevant to describing the nonlinear behavior of the system.

Another interesting point to consider is that the final saturation in signal contrast
moves to higher empty cavity drive strengths as (mg, Np) decrease. This can be simply
understood: the weak-field relative transmission for a single-atom cooperativity C} is
given by (M/7)weakfica = 1/(1 + 2C1)? = {0.11,7 x 1075,1.2 x 1077} in the three
cases shown in Figures 2.3. The empty cavity field 7 corresponding to a with-atom
field m of strength m = myg is then A = (1 + 2C;)%my = {1.1,3.5,66} photons for
these 3 cases, so it takes increasingly higher driving fields to access the nonlinear
regime in which the system saturates. In the strong coupling regime, (14 2C})*mg =

(93/k71)2 (72 /293) = (g2/2K?), so an empty cavity driving field of 7 < g§/2x? gives
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Figure 2.3: Relative transmission versus empty cavity photon number for the quantum
(solid) and semiclassical (dotted) theories. Cavity parameters are (a) {go, &, 7L }/27 =
{5.2,5.2,2.6}MHz, (b) {go, k,vL}/2m = {117,45,2.6}MHz, and (c) {go, %, 7L}/27 =
{647, 56,2.6}MHz, with (w, = w, = w,) for all traces.



30

Number of Excitations, n.

+./nhg,

]
N>>1
Number of Atoms, N

Figure 2.4: Energy eigenvalues of the atom-cavity system as a function of number of
excitations, n, and number of intracavity atoms, N. In the shaded region semiclassical
theory correctly predicts these eigenvalues.

a weak-field response with an atom in the cavity.

2.1.3 What’s so special about a single atom?

Given that a single intracavity atom can have a profound effect on the intracavity field,
the question arises as to whether this effect can be further enhanced by increasing the
number of atoms. Returning to the case of a lossless interaction, the extension of the
Jaynes-Cummings ladder of states to the case of N atoms [68, 69] is summarized in
Figure 2.4, where the level structure of the atom-cavity system is plotted as a function
of the number of interacting atoms. For one atom the structure is the familiar Jaynes-
Cummings ladder, with the n-excitation levels split by £%gg\/n in energy.

Moving to larger atom numbers (IN), we notice that magnitude of the 1-excitation
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vacuum-Rabi splitting scales as VN, and are hence led to define an effective coupling
strength g.fr = goV'N. Making this identification suggests that N atoms might
act as one effective atom of coupling strength g.ss, following a Jaynes-Cummings
Hamiltonian. Looking more closely at the higher-lying excitations shows that this is
clearly not the case. The 2-excitation splitting is £hgov/4N — 2, which for N >> 1
tends to the energy eigenvalues expected for classical coupled oscillators, &2hg.yy.

In the limit of large atom number N >> 1, it therefore follows that semiclassical
theory yields the correct values for the structure of the system irrespective of drive
strength. Additionally, the quantum and semiclassical descriptions only deviate for
n > 2 excitations, so it should not be surprising that semiclassical theory is also valid

in the regime of weak excitation, as was already found.

Additional considerations with distributions of atoms

In cavity QED experiments which use a thermal atomic beam as an atom source,
there is by nature a spatial distribution of atoms within the finite cavity mode, and
a temporal variation of this distribution. Although these atoms may be collectively
strongly coupled in the sense of gors = gov/N being large [23, 54], quantum effects
are made difficult to observe by the presence of many atoms as discussed in Section
2.1.3, even when the effective atom number in the cavity mode less than one. In
addition to the degradation in “quantumness” when moving from single atoms to N
atoms, if the distribution of atoms varies spatially and temporally there are additional
complications. In particular, if 1(r) is the mode function of the cavity field, then
the effective atom number N,;; = S~ |¢|? gives rise to effective coupling gesy =
go\/m for the single photon excitation; however for excitations of 2 photons the
splitting is modified to +hgo\/4Nesr — 2M/N.ss where M = SO |wal* [37). That

is, various atomic distributions of the same N5 will each produce different structure
in the nonlinear spectrum.

Also, temporal variations in the atomic distribution lead to a time variation of
geff, and a resulting averaging of output spectra over the experimental detection

time. Intrinsic to thermal beams as an atom source, this effect has led to the in-
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ability of optical cavity QED experiments to directly and unambiguously resolve the
higher lying states of the Jaynes-Cummings ladder [37, 70], and has been a principal

motivation in moving to laser cooling as a source of single atoms.

2.1.4 What do we mean by a “single photon?”

In all of our experiments, we drive the atom-cavity with weak coherent fields, but we
often speak of “single photons” or “single photon fields.”

To begin with “single photon fields,” for an intracavity field characterized by mo-
ments of the operator @, two measurable quantities are of interest to us; |(a) |2 ,which
is the quantity measured via our heterodyne detection, and (afa), the mean pho-
ton number of the intracavity field, which would be measured via photon counting
of the output cavity field. For a coherent field (as is the case in the absence of an
atom), [(@)|* = (a'a). We often choose to work with fields of mean field amplitude
|(@)| ~ 1, in which case the mean amplitude, power, and photon number are equal,
[(a)| = [(a)|* = (afa) = 1. Typically this is what is meant by a “single photon field,”
although of course the actual distribution of photons is a Poisson stream, with an
average photon number in the cavity at any time being, for example, one photon.

With an atom in the cavity the picture is more complicated. As shown in Figure
2.5, for some drive strengths the values for |(a) * and <&T€L> of the intracavity field can
be different by an order of magnitude. In this regime, when discussing a measured
field m = |(a)|> = 1 with an atom present, we can still call this a “field with mean
amplitude 1 photon,” or a “field strength of 1 photon” as these refer to the amplitude
[{(a)]. However, this state does not have a “mean intracavity photon number” of one.
That (ata) > |(a)| indicates that a substantial portion of the driving field is re-
radiated into the incoherent part of the atom-cavity spectrum, to which our coherent
heterodyne measurement is insensitive, except to add a small contribution to the noise
spectrum. A photon-counting measurement would collect all photons radiated into
the cavity mode, yielding (afa) . For a Poisson stream of photons, |(a) = (afa), but

this does not necessarily mean that |(4)|* # (a'a) signifies nonclassical (or interesting)
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Figure 2.5: Saturation of the relative transmission of the atom-cavity system. As
the system saturates, values for |a|?> and (a'a) are quite dissimilar. Parameters are
{90, K,7vL}/2m = {117,45,2.6}MHz with w, = w..

photon statistics: for example, a thermal distribution and a squeezed vacuum state
both have (&) = 0 and (afa) > 0.

Having dealt with “single photon fields” we now move to discuss what we mean by
a “single photon.” Quantization of the electromagnetic field inside the cavity treats
the field as a quantized harmonic oscillator, of which the n-photon Fock states [n) are
energy eigenstates. Technically then, a “single photon” is the 1-photon Fock state |1)
of the electromagnetic field.

The question to be answered then, is when we drive the cavity with a weak coherent
state, is this quantization of the intracavity field into photons significant, or should

we restrict our discussion to field amplitudes (4) = « and combinations thereof?
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This can be addressed by returning to the discussion of Section 2.1.2, where quantum
(Eq. 2.6) and semiclassical (Eq. 2.7) theoretical descriptions of the atom-cavity
were contrasted. The essence of the semiclassical approximation is that fields are
treated as amplitudes (@) = o rather than operators &, that is, in the quantum
theory quantization of the cavity field into photon states is explicit, while in the
semiclassical theory it is absent. Thus, if we can experimentally observe structure
and dynamics in the atom-cavity system that are described only by a full quantum
treatment (and are at odds with semiclassical theory), we are justified in speaking of
the intracavity fields in terms of photons, and photon states. In this regime, we can
think of our incident coherent field as being decomposed by the atom-cavity system
into a basis of Fock states, processed in this basis, then reassembled into an emitted
cavity field which is no longer a coherent state.

The measurements of Chapter 3 show such a quantum-semiclassical distinction in

the system structure, justifying this picture of a quantized intracavity field.

2.1.5 Calculating mode volumes

The electric field distribution within the cavity E(7) = Eyy(7) is determined by a
spatially varying mode function ¢(7), and the corresponding energy stored in the
electric field for a single photon is calculated by integrating over this mode function

to obtain a mode volume V,, ;
hw o / B2V = E? /(|¢(F‘)l2dv _ B2V, (2.11)

Assuming the mode is of the form () = cos(27z/)) exp[—(y* + 2?)/w§], the mode

volume V,, obtained (for a cavity of length L.s¢) is

Voo = [(p0FaV = JuiLess 2.12)

This assumes that the cavity mode has hard edges at £L.sr/2 and of pure sinusoidal

standing-wave form. However, as described in more detail in Chapter 5, the physical
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mirrors that we use in the experiment are composed of a ~ 35 layer dielectric stack
of alternating A\/4 layers high and low index materials. The total thickness of this
coating is ~ 5um, and penetration of the mode into this coating is not negligible for
cavity lengths of less than a few tens of microns.
To calculate ¢(7) and V;, including this leakage into the mirror coatings, we first
note that for an electric field in a dielectric, the single-photon stored energy is modified

to

| hw /(D .E)dV = /n2|E]2dV = B2V, (2.13)

where the mode volume is now determined by the integral

m=/#mwmmm (2.14)

with n(7) is the material refractive index at position 7. Calculations for the form of
n?(7)[¢(7)|* are made in Chapter 5 for the mirrors used in the experiment of Chapter
4, with one example shown in Figure 2.6. It can be seen that for this 3A\/2 cavity, the
leakage of the mode into the mirrors has a sizeable impact on the mode volume, in
this case the coupling strength go calculated is reduced to 80% of what would have
been expected from a hard-edged cavity of length L = 3X/2.

In the numerical integration of Eq. 2.14 over calculated field distributions such as
the example of Figure 2.6, one subtlety arises - the mirrors have finite transmission, so
there is a (constant amplitude) traveling-wave component to the mode which extends
outside the cavity mirrors. Consequently, if the integration limits were taken to
x = =00, the integral for V,, would also be infinite. I have chosen to truncate the

mode at the outer edges of the mirror coating stack.

2.1.6 Optical Information

Over the last few years the Kimble group has pioneered the use of laser-cooled atoms
in cavity QED [24, 25, 26, 46, 28, 27|, enabling experiments with single atoms, one at

a time. Previous experiments using atomic beams required averaging over many atom
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transits to extract any useful data. To quantify this information rate, we derive the
optical information I [71], which is roughly the number of photons obtained as signal
for a single atom traversing the cavity in time 7" with photon detection efficiency «,
and is given by

2
7= 292 (2.15)
K

For the parameter of Chapter 3, this yields I ~ 54000w, compared to I ~ 7 for
previous atomic beam experiments. This vast increase in signal allows for the real-
time monitoring and manipulation of single atoms as they traverse the cavity mode.

The optical information is derived as follows for our system with go > k > . As
discussed in Section 2.1.2, when driving the atom-cavity on resonance, an intracavity
field of mean photon number 7 = g2/2x? is reduced in power to the saturation photon
number my when an atom enters the cavity. Photons are emitted from the cavity at
rate 2k, so the photon flux out of the cavity is reduced by ~ g2/ photons/sec, or
a total of I = g2T'/k photons over time T. No increase in I is obtained by further
increasing the drive strength, as the signal contrast reduces. Measurement of the
reflected (rather than the transmitted) cavity field would give a corresponding increase
(rather than a decrease) of photon counts by I.

If the probe detuning is chosen to be A ~ gg, so that the probe is tuned to
one of the vacuum-Rabi sidebands (the two peaks of Figure 2.2), numerical solutions
suggest that the optical information obtained for a single atom transit is of similar
magnitude to the case of resonant driving, but derivation of an analytical expression

is more troublesome.

2.1.7 Motivation for cold atoms in cavity QED

From the theoretical discussion above, two principal motivating factors suggest that
cold, slowly moving atoms would be a better atom source for cavity QED experiments
than fast thermal atomic beams.

1. With cold atoms, single atoms can be isolated one at a time, avoiding the

debilitating losses discussed in Section 2.1.3 intrinsic to atomic-beam ensembles of
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atoms.

2. The transit time T of a single untrapped atom falling through the cavity mode is
increased by a factor of ~ 5000, so the optical information obtained is large enough to
monitor single atom trajectories with high bandwidth, rather than having to average
over the passage of many individual atoms. The high values obtained for the optical
information mean that this measurement strategy can in fact approach the standard
quantum limit for the measurement of atomic position, i.e., the point at which we
extract the maximum amount of information allowed by the principles of quantum
mechanics [72].

In addition, there is a third important and interesting consequence of the integra-
tion of strong coupling with cold atoms. The kinetic energy Ej associated with the
slow atomic motion can be smaller than the interaction energy hgo of the atom-cavity
coupling. This means that the strong coupling interaction between atom and cavity
will then unavoidably have a significant mechanical effect on the atomic motion. In
the results of Chapter 3, we see that the single photon coupling energy fAgy causes
atoms trajectories to be channeled toward (or away from) maxima of the intracav-
ity field, depending on probe detuning. In Chapter 4, these same quantum coupling

forces are exploited to trap single atoms in the cavity with single photon fields.

2.2 Overview of experimental procedures

Many of the procedures employed and equipment used in this experiment are very
similar to those of previous Kimble group cavity QED experiments. In particular, I
would point to Quentin Turchette’s Ph.D. thesis [38], which provides a more detailed
overview of the following topics: Locking the Ti:Sapphire laser with a FM saturation
lock, probe beam generation with the traveling-wave modulator, heterodyne detec-
tion, and measurement of heterodyne detection efficiency. I will focus here primarily

on aspects of the experiment which are different from these earlier incarnations.



39
2.2.1 Atom source - Cold atoms from a MOT

From the theoretical discussion presented in Section 2.1.7, the advantages of using
cold atoms rather than a fast, thermal atomic beam emerge: single atoms can be
observed one at a time in real-time with high bandwidth, losses due to many-atom
effects are greatly reduced, and we can expect to see interesting consequences of strong
coupling on the center-of-mass atomic motion.

The setup used here to provide single atoms for the cavity QED interactions to be
studied is an adaptation of apparatus used in the first cold-atom experiments by Hideo
Mabuchi and collaborators [24, 73]. A cloud of ~ 10 cesium atoms is first collected
in a magneto-optical trap (MOT) [36], situated between 2mm and 5mm above the
cavity mode. In the initial experiments of Chapter 3, the MOT was loaded from an
atomic beam. While this helped keep the background pressure in the chamber low
(= 1078 Torr), few atoms were captured in the MOT because no beam-slowing was
being employed. We soon moved to instead running the entire chamber as a Cesium
vapor cell, since significantly more atoms were collected in this configuration. The
edges of the MOT beams are aligned to clip on the cavity mirrors, so that a MOT
can be made as close to the cavity as possible, thereby minimizing the kinetic energy
of atoms entering the cavity mode. This minimum trap height is 1.5mm, the radius

of the mirror substrates.

Sub-Doppler cooling

Once atoms have been collected, the MOT laser beams are reduced in intensity and
detuned further to the red, and the magnetic field coils switched off, to provide sub-
Doppler cooling for 5 to 15ms. The intensities and detuning are adjusted operationally
to produce the coldest atom cloud, with the temperature measured by monitoring the
free expansion rate of the atom cloud. Temperatures of 15-20uK are typical after sub-
Doppler cooling. The MOT beams are then switched off, and the atoms allowed to
fall under gravity toward the cavity mirrors. Figure 2.7 shows a time-lapse sequence

of CCD images of the cloud of atoms as it falls, from an initial height of 15mm in
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this series of images.
To interact with light in the cavity mode, an atom must fall through the 9um
gap between the edges of the mirrors and also through the waist wy ~ 14um of the
Gaussian mode of the resonator. As a result, even with 10* atoms initially, only one

or two atoms are observed crossing the standing-wave mode of the cavity each time

the MO'T is dropped.

MOT coils

The main magnetic field coils required to form the MOT are wound directly onto the
outside of the vacuum chamber. Heat generated from these coils had an unexpectedly
large effect, heating the chamber which caused both an increase in chamber pressure,
and undesired changes in cavity length and alignment. To counteract this heating,
copper piping was wound directly over the field coils to run cooling water. With both
the coils and cooling water on, several hours are required for the chamber temperature
to stabilize. Additional smaller pairs of coils (trim coils) zero the magnetic field at
the site of the MOT, so that when the atoms are released they expand freely, rather
than feeling a force from a residual magnetic field. Good zeroing of the fields is also
required for effective sub-Doppler cooling.

Finally, a single large bias coil directly above the chamber provides a field to shift
the position of the MOT, from ~ 15mm above the cavity (as pictured in Figure 2.7)
with this coil off, to ~ 3mm above with this bias field on. For the experiments of
Chapter 4, the cavity position within the chamber was raised, and ended up slightly
too high - covering the position where the MOT would form. The bias coil was used

in this case to raise the MOT position to 2-3mm above the cavity.

MOT lasers and MOT beam layout

The MOT beams are provided by two home-built grating-stabilized diode lasers [74].
The trapping laser is detuned 10-30MHz to the red of the {Cs F=4—5}hyperfine com-
ponent of the D2 line (6S,/2 —6P3/2 transition). This detuning is achieved with two
acousto-optic modulators (AOMs). The laser is locked directly using FM saturation
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Figure 2.7: A cloud of cesium atoms falling to the cavity, 0, 10, 20, 30 and 40ms after
the MOT is switched off. This expansion rate reflects a temperature of ~ 15uK.
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spectroscopy to the F=4—4,4—5 crossover peak (126 MHz below the F=4—5 transi-
tion), then is upshifted in frequency by a double-passed AOM by a total of ~215MHz,
this AOM tunable to allow the laser to be detuned quickly for sub-Doppler cooling.
A fixed frequency AOM then shifts the laser down by 110MHz, back to the desired
frequency for trapping ~ 10MHz to the red of the transition, this second AOM al-
lowing the beam to be switched on and off during the trap-drop cycle. Before passing
through this second AOM, this beam is amplified by passing through the gain element
of an SDL 8630 laser. This MOPA (Monolithic Optical Parametric Amplifier) chip
provides a gain in power of a factor of 100, from ~4mW to ~400mW. The repump-
ing laser, locked to the {Cs F=3—4} hyperfine level of the D2 line, addresses atoms
which fall into the non-interacting F=3 ground state, and returns them to the {Cs
F=4—5} trapping transition.

These two beams are created with opposite linear polarizations, added at a po-
larizing beam-splitter, then focused into a single optical fiber, which transports them
across the room to the chamber where the MOT is to be formed. At the output of
the fiber, the trapping beam is split evenly for the 3 axes of the MOT by using two
polarizing beam-splitters with half-wave plates to rotate the polarization preceding
each one. This generally gives about 15mW in each l-inch diameter beam. The re-
pumping laser follows the same paths, but will be split unevenly by the polarizing
beam-splitters, as its initial polarization is opposite to the trapping beam. As this
beam only provides optical pumping (and not radiation forces), this imbalance has

negligible effect.

MOT control sequence

The data acquisition cycle, shown in Figure 2.8 is as follows: The MOT is loaded for
2s (MOT beams on, Main coils on, Bias Coil High) far from the cavity (~ 10mm)
then lowered to ~ 3mm above the cavity, Since the MOT laser beams clip and are
distorted at the edge of the cavity, atoms can be collected more efficiently further from
the cavity. The MOT beam intensities are ~ 10mW per beam in a ~2cm diameter.

Then, the main field coils and bias coil are switched OFF, the MOT beam intensity
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Figure 2.8: Switching sequence of optical and magnetic fields, for cooling and drop-
ping the MOT. At 30ms, sub-Doppler cooling begins: the magnetic fields (bias field,
gradient field) are switched OFF, and the MOT laser detuned and attenuated. 15ms
later the MOT laser is switched OFF and the atoms fall. 20ms later, a trigger enables
data acquisition. This drop sequence is repeated every 2s.

switched down to ~ 1ImW and detuning increased to ~ 30MHz, for ~ 15ms of sub-
Doppler cooling. Finally, the MOT light is switched off and the atoms are allowed to
fall toward the cavity. A trigger is sent to a separate data acquisition program ~ 20ms
after the trap is dropped, to begin recording data of the atom-cavity transmission.
A Labview routine controls this sequence, outputting a series of control voltages to

switch the field coils, and MOT laser AOM drivers.
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2.2.2 Optical layout: laser locking, frequency shifting.

The layout of optical paths for the cavity QED (rather than the MOT) part of the
experiment is shown in a simplified form in Figure 2.9, and frequencies of these
beams are indicated by Figure 2.10. A Ti:Sapphire laser provides 3 principal beams
used in the experiment: the “lock” beam, “probe” beam and local oscillator (LO)
for heterodyne detection. The Ti:Sapphire is locked ~ 40MHz above the F=4—5
hyperfine component of the Cesium D2 line, achieved by frequency down-shifting
part of the laser output with a double-passed AOM, then locking with this shifted
beam directly to the F=4—4,4—5 crossover peak in an FM saturated absorption lock.
The laser lock frequency defines the LO frequency, and is adjustable by changing the
frequency shift of the lock AOM.

The probe beam is a single RF sideband of a travelling-wave electro-optic modula-
tor (TW-EOM). This probe generation method allows for rapid switching of the probe
beam intensity and frequency, using RF switches. The TW-EOM does not generate
sidebands very efficiently, so in order for the carrier (which is in general ~ 50 times
larger than the sideband) to have an insignificant effect on the intracavity physics,
it must be far detuned from the cavity resonance. For our cavity of Chapter 3 with
40MHz linewidth, this led to a requirement of = 500MHz detuning. This frequency
shift was achieved by double-passing a 200MHz AOM twice, to give a total shift of
800MHz. An RF frequency of 800+200MHz applied to the TW-EOM then generated
a scannable probe beam near the Cesium resonance. With the large atom-cavity
coupling strength g ~ 120MHz in this experiment, this large scan range is critical for
mapping out the frequency response of the system.

The lock beam, used in the experiments of Chapter 3, was generated by taking
the unshifted beam from the double-double-pass setup, and shifting it with a fixed
frequency 40MHz AOM. This AOM allowed the lock beam to be chopped for use in
the locking-scheme detailed in Section 2.2.4. The detuning of this beam from the
Cesium resonance was adjusted by shifting the laser lock frequency. The lock and

probe beams are combined on a beam-splitter, then mode-matched into the cavity
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Figure 2.9: Simplified layout of the optical paths used for the cavity QED interac-
tion and detection. Labeled elements are H=half-wave plate, Q=quarter-wave plate,
PBS=polarizing beam-splitter, AOM=acousto-optic modulator, EOM=electro-optic
modulator, P=polarizer. Unlabeled elements are mirrors, beam-splitters, and lenses.
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Figure 2.10: Frequencies of the LO, lock and probe laser beams.

with lenses and beam-steering mirrors.

The local oscillator beam was taken directly from the laser output, without fre-
quency shifting, to try and keep the spatial profile of the beam as clean as possible.
Lenses are used to overlap shape of this beam with the cavity output beam, the
beat-note between these frequency-detuned beams detected in balanced heterodyne

detection as a measurement of the cavity output beam.

2.2.3 Basic cavity design

The cavity, pictured in Figure 2.11 and shown schematically in Figure 2.12 is con-
structed of two mirrors, each machined down in a cone from a 3mm diameter cylin-
drical substrate, to leave a 1mm diameter coated surface. This machining serves two
purposes. Firstly, it allows the curved mirrors to be brought more closely together
than would be possible with larger diameter substrates, increasing the atom-cavity
coupling strength g. Secondly, it allows clearance for the two MOT laser beams
which are oriented perpendicular to the cavity axis, allowing the MOT to be formed
only 1.5mm above the cavity mode. The fabrication, cleaning, and inspection and
characterization of these mirrors will be discussed in more detail in Chapter 5.

In the cavity shown in Figure 2.11, the mirrors are lightly glued to aluminum
v-shaped blocks, which are then glued to flat, shear-mode piezoelectric transducers

(PZT’s) which allow the cavity length to be scanned and actively controlled. The
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Figure 2.11: Photograph of the cavity and cavity mount used in the experiments of
Chapter 4, and described in more detail in Chapter 5.

Reflective Surface

BK7 Substrate 10pm

Figure 2.12: Schematic of the cavity mirrors.
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PZT’s are glued to a solid copper base, which gives good intrinsic cavity length
stability, and forms part of the vibration-isolation stack inside the chamber. In an
earlier cavity mount design, used for the experiments of Chapter 3, this base-block
was made of two separate hollow sections, with an internal tube PZT providing scan-
ning/stabilization capabilities. Mechanical resonances in this mount at low frequen-
cies (few kHz) were eliminated by moving to the solid-block design, simplifying cavity

stabilization.

2.2.4 Cavity stabilization

For cavity of finesse F, the length stability required to keep the cavity resonant
within its linewidth is AL ~ (\/2)/F, so for stability of 1/10 of a linewidth, which
would typically be a minimum requirement for our experiments, this gives AL ~
(A/2)/10F = 8.8 x 107*m for a cavity with 480,000 finesse. To attain this level
of length stability, the cavity needs to be isolated well from vibrations, and actively

controlled.

Passive stabilization: Vibration-isolation stack

To isolate the cavity from vibrations of the chamber and table, a series of alternating
heavy copper blocks and absorbing materials (viton, RTV) is used, with the specific
design employed here designed by Michael Chapman. The cavity mount pictured
in Figure 2.11 sits, isolated by a square of viton at each corner of the mount, on a
thick copper baseplate which has a heavy copper rod extending from its base. This
baseplate is then placed, with RTV underneath, onto a large copper block which is
machined to fit the circular shape of the chamber. This block is composed of two
heavy copper sections and a connecting crossbar, with a hole in it to allow the heavy
copper rod to hang freely. Finally, the large copper piece is placed inside the vacuum
chamber, supported by combination viton/RTV rubbér bumpers. These pieces are
shown in Figure 2.13. At each stage, there is no contact between the copper pieces,

except via the rubber bumpers. The thickness of these copper pieces is chosen such
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Figure 2.13: The cavity mount is isolated from vibrations by a series of copper blocks
seperated by rubber spacers.

that the final height of the cavity should be just below the geometric center of the

vacuum chamber, where the MOT forms.

Active stabilization: Cavity locking strategies

To actively stabilize the cavity length in the first experiment, described in Chapter 3,
an auxiliary locking laser beam was used in the cavity. The intensity of this beam was
high enough to saturate out any atom-transit signals, so that transiting atoms had
no effect on the cavity lock. This beam was chopped off in a square wave at 0.5kHz,
to allow 1ms intervals of data acquisition between cavity locking. For experiments
using coincident probe beams, this beam was not completely chopped off, but rather
chopped to a low level suitable for probing the atom-cavity. This chopped lock has
the advantage that “no-atoms” segments bracketed the atom signals which helped
with normalization of the signals; however, it limits the potential dwell-time of an
atom in the cavity to ~ 1ms.

The lock beam was detuned from the atom-cavity resonance by x, and the cavity

locked to keep the amplitude transmission of this beam constant, thereby derived a
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locking error signal directly from the slope of the side of the cavity resonance. The
feedback signal came from the heterodyne detectors (via the video out port of the
spectrum analyzer, log scale), this feedback filtered to ~ 50Hz bandwidth to avoid
interference from the chop frequency. This direct locking was chosen after investi-
gating chopped-locks with other methods of error signal generation: dither/lock-in,
and FM reflection locking. These more complicated schemes did not improve the
characteristics of the lock, primarily because the main lock excursions were cavity
drifts and instabilities around or above the chop frequency of ~ 1kHz, which in each
case were above the lock bandwidth.

The quality of this lock is investigated in Figure 2.14, where noise variance (A#)?
versus mean intracavity photon number 7 is plotted for a laser field transmitted
through the cavity, with these points taken from the data traces of Chapter 3. The
cavity is locked with the chop-lock described above, and measured with an indepen-
dent probe beam at a different frequency. Circles are for a probe resonant with the
cavity, and triangles for a probe at 20MHz detuning (~ x/2 for this cavity). The
initial linear behavior (dashed line) reflects the dominance of shot noise (Af o v/f)
at low powers, but eventually technical noise (An o @) introduced by cavity lock
imperfections dominates, and the noise variance deviates from a linear dependence.
For a probe beam resonant with the cavity, shot noise dominates up to 7i =~ 3 pho-
tons, whereas for a probe on the side of the cavity this limit is i < 1 photon. This
is expected, since a probe on the side of the cavity will be most sensitive to noise
introduced by cavity vibrations.

In the data of Chapter 3, the intracavity photon number is generally 71 < 1 photon,
so the observed noise will be dominated by shot noise.

In the second series of experiments, the more stable solid-block mount (pictured
in Figure 2.11) allowed a slower chop frequency. It was found that the lock was nearly
as good when the independent lock beam was eliminated, and the cavity was locked
directly to the probe beam. When an atom signal was observed, the lock feedback
was triggered off for 2ms, to avoid interference of atom signals in the cavity lock. Due

to the higher finesse of this cavity, technical noise had a greater contribution to the
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Scaling of Noise Characteristics with Photon Number
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Figure 2.14: As a test of the cavity lock characteristics, we plot noise variance (A7)
versus mean intracavity photon number 7 in the absence of atoms. A linear depen-
dence indicates shot-noise dominated measurement up to 7 ~ 3 intracavity photons
for a resonant probe (circles), and up to 7 ~ 1 intracavity photon for a probe detuned
by x/2 (triangles).
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observed noise; at 0.3 intracavity photons some contribution from was clearly visible
from a mechanical resonance of the mount at 60kHz.
In both experiments, the respective cavities was estimated to be locked to ~

+2MHz center frequency.

2.2.5 Heterodyne detection, data acquisition

The transmission of the probe and lock beams through the cavity are measured by
balanced heterodyne detection, described in more detail in Ref. [38]. The local
oscillator beam is overlapped with the cavity output on a beam-splitter, then the
beat between these frequency-separated beams is measured in two detectors at each
output of the beam-splitter. Subtraction of the two photocurrents yields a signal
proportional to the intracavity field a. If coherent demodulation is employed, as
in Ref. [46], both quadratures of the intracavity field, and their associated noise
characteristics can be obtained with this type of measurement.

In the current apparatus, we use a spectrum analyzer to provide demodulation of
the beat frequency, which incoherently sums the two field quadratures to measure only
the transmitted intensity |4|? through the atom-cavity system. The video-out signal
from the spectrum analyzer is digitized by our computer-controlled data acquisition.
This same signal video-out signal is used for cavity lock, and in the atom-trapping
experiments of Chapter 4, for triggering on atom signals. A block diagram of the
electronics used in the cavity lock, data acquisition, and atom triggering is shown in
Figure 2.15, for the case where the cavity is locked directly to the probe beam. With
an independent lock beam the setup is more complicated; each of lock and probe has
own spectrum analyzer, an additional function generator produces a square wave to
chop the lock beam, this same signal used to blank OFF the lock feedback signal
during data-taking phases.
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Figure 2.15: Block diagram of the electronics used in the cavity lock, data acquisition,
and for triggering on single-atom events.
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2.2.6 Calibration of measured signals

Over the course of these measurements, the efficiency of our heterodyne detection
was 45-55%, measured independently for each data set. For a given cavity output
power (typically ~ 20nW for this calibration) and a know local-oscillator beam power
(typically 5mW), this efficiency can be determined by comparing the resulting beat-
note size to the shot-noise level, as detailed in Ref. [38]. This is consistent with
a direct measure of homodyne fringe contrast, for this experiment n ~ 0.8, which
combined with the detector quantum efficiency of « ~ 0.8 gives an overall heterodyne
efficiency of an? = .8 x (.8)% ~ 50%.

Calibration of the intracavity photon number 7 is achieved by reference to a cavity
output of known power; the output flux of cavity photons will be 7i(¢/2L)T, where T
is the output mirror transmission, and photons strike this mirror every ¢/2L seconds.
Accounting for measured transport losses between the cavity and heterodyne setup,
this allows the optical power to be related to an intracavity photon number. The
corresponding spectrum analyzer beatnote level scales linearly with optical power, so
the relationship between spectrum analyzer dBm level and intracavity photon number
is then established.

This photon number-dBm calibration is done at a single detection frequency, so
corrections need to be made for variations in detector sensitivity/gain when probing
at other frequencies. These corrections were derived by measuring the shot-noise (and
electronic noise) levels as a function of frequency: As the shot-noise spectrum is white,
any variations will be due to detector/amplifier response. As shown in Figure 2.16,
over the frequency range of 5-250MHz used in detection, variations of several dBm
are seen. These variations depend on the specific detectors, cables, and spectrum
analyzers used, so once the calibration was made care was taken to change nothing
in the setup. In Figure 2.16, the top (dark) curve is the electronic noise (all beams
blocked) and the lower (light) curve shot-noise (cavity output blocked). The shot noise
trace, which is used to determine the frequency-dependent correction to the photon

number calibration, has been offset downward by 6dB in this plot. Because the shot
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Figure 2.16: Over the frequency range 5-250MHz used in heterodyne detection, the
sensitivity and gain of the detectors varies by several dB.

noise signal is ~6dB larger than the electronic noise, small spikes in the electronic
noise spectrum (due to phenomena such as RF pickup in the photodetectors) are
largely hidden when shot noise is added.

Finally, the signal we actually record is a voltage from the spectrum analyzer
video-out port, so the calibration of this voltage to dBm needs to be measured.
This varies according to which spectrum analyzer is used, and changes when auto-
calibration is run on the spectrum analyzer, so again, once this calibration was deter-
mined no changes were made to the setup. The calibration relationship is non-trivial:
for the data of Chapter 4, the conversion from video-out to dBm was determined by

(Power in dBm) = (Vout) x79.1 -87.975 +(offset due to detection frequency response).
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Chapter 3 Real-time cavity QED with

single atoms

This Chapter is largely based on “Real-Time Cavity QED with Single Atoms,” C. J.
Hood, M. S. Chapman, T. W. Lynn and H. J. Kimble, Phys. Rev. Lett. 80, 4157
(1998).

3.1 Introduction

An important trend in modern physics has been the increasing ability to isolate and
manipulate the dynamical processes of individual quantum systems, with interactions
studied quantum by quantum. In optical physics, examples include cavity QED with
single atoms and photons [1] and trapped ions cooled to the motional zero point
[11], while in condensed matter physics, an example is the Coulomb blockade with
discrete electron energies [75]. An essential ingredient in these endeavors is that the
components of a complex quantum system should interact in a controlled fashion
with minimal decoherence. More quantitatively, if the off-diagonal elements of the
system’s interaction Hamiltonian are characterized by (Hi) ~ hg, where g is the
rate of coherent, reversible evolution, then a necessary requirement is to achieve
strong coupling for which g > 8 = max|[', T~!] with T as the interaction time and I
as the set of decoherence rates for the system.

Although there are many facets to investigations of such open quantum systems,
our primary motivation has been to exploit strong coupling in cavity QED to en-
able research in quantum measurement and more generally, in the emerging field
of quantum information dynamics [71]. For this system, the coherent coupling is
parametrized by rate go, where 2go is the single-photon Rabi frequency, and decoher-

ence is dictated by the rates I' = {v,,x}, with v, as the atomic dipole decay rate
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and « as the rate of decay of the cavity field. Several experiments in cavity QED
have investigated the nonperturbative interaction of an atom with the electromag-
netic field at the level of a single photon [53, 54, 58, 59]. However, without exception
these experiments have employed atomic beams in settings for which the information
per atomic transit (of duration T') is I = 3352 ~ 1, that is, little information is ob-
tained from the passage of a single atom through the apparatus, and measurements
over an ensemble of atoms are required. For example, the passage of a Rydberg atom
through a microwave cavity and its subsequent measurement provides a single bit of
information [53, 58].

By contrast, an exciting recent development in cavity QED has been the ability
to observe single-atom trajectories in real-time with I > 1, pioneered by the results
of Ref. [24], and explored in several subsequent experiments [25, 26, 44, 45, 46, 28,
27, 47]. In this method the transmitted power of a probe beam is monitored as
cold atoms fall between the mirrors of a high-finesse optical resonator, with the probe
transmission significantly altered by the position-dependent interaction between atom
and cavity field [49, 50].

Similarly enabled by the use of cold atoms, the research reported in this Chapter
exploits the largest coupling gy achieved to date to explore a new regime in cavity
QED, for which single-atom trajectories can be used to infer the nature of the under-
lying one-atom master equation. More specifically, for atoms taken one by one, we
map the frequency response of the atom-cavity system, and thereby directly deter-
mine go from the vacuum-Rabi splitting. In this measurement, we observe a marked
asymmetry in the vacuum-Rabi spectrum; when the probe laser is tuned to the red of
the coincident atom-cavity resonance the characteristics of atom signals are in accord
with the single-atom master equation, whereas for a blue-detuned probe few trajec-
tories achieve optimal coupling, reflected in a diminution of both the peak amplitude
and abundance of atom signals. We attribute this effect to light forces, which due to
the strongly coupled nature of the system have a significant effect even for photon
numbers < 1. Notably, this is the first experiment for which the interaction energy

hgo is greater than the atomic kinetic energy.



58
For probe excitation frequencies near the coincident atom-cavity resonance, the
nonlinear saturation behavior of the atom-cavity system is explored, and found to be
in accord with the single-atom master equation (for a red-detuned probe field) but

at variance with semiclassical theory.

3.2 Experimental apparatus

Our apparatus is shown schematically in Figure 3.1. The Fabry-Perot cavity consists
of two superpolished spherical mirrors of radius of curvature 10 cm, forming a cavity of
effective length 10.1 pm and finesse F=1.8 x 10°. In this cavity (go, &, 71, T7")/27 =
(120, 40, 2.6, 0.002) MHz, where the atom-field coupling coefficient go is determined
by the cavity geometry (and the known transition dipole moment [76]),  is the
measured linewidth of the TEMg mode of the cavity, v, is the dipole decay rate
for the Cs (6S1/2,F=4, mp=4) —(6P3/o,F'=5,m}=>5) transition (A = 852.36 nm)[76],
and typical transit times for atoms through the cavity mode (waist wy ~ 15um)
are T ~ T5us. These rates correspond to critical photon and atom numbers (my =
v% /293, No = 2671 /92) = (2.3 x107%,0.015), and to optical information per atomic
transit I ~ 5.4 x 10 [71]. This large value of I > 1 enables not only detection
of single atoms, but monitoring of the motion of these atoms in real-time with high
signal-to-noise ratio. The probe transmission (typical power 10 pW) is measured
using balanced heterodyne detection with overall efficiency 40%. The length of the
cavity is actively stabilized by chopping an auxiliary locking beam [59].

Our experimental procedure consists of loading the MOT for 0.5s, performing
sub-Doppler cooling to 20K and then dropping the atoms, all the while monitoring
transmission of a circularly polarized probe beam with fixed detuning A = wp —wac
(where Watom = Weavity = wac). The circularly polarized probe beam drives the
cycling transition mp=4—m}=>5 and provides optical pumping to this sublevel as an
atom enters the cavity mode. The magnetic field is zeroed at the site of the MOT to
allow sub-Doppler cooling and from the coil geometry, should also be well zeroed at

the cavity mode. Explicit spatial quantization obtained by switching a magnetic field
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Figure 3.1: Schematic of the experimental apparatus.

“on” along the cavity axis as the atom transits produced no significant impact on the
transit signals. Note that transit signals from atoms that are incorrectly optically
pumped and driven on transitions other than mp=4—m’=>5 will be eliminated by

our selection of optimal events detailed in Section 3.4.1.

3.3 Single atom transit signals

As an atom falls into the cavity, it encounters a spatially dependent coupling coeffi-
cient g(7) ~ gocos(2mz/\) exp[—(y? + 2%)/wi] = goyp(F), arising from the standing-
wave structure of the cavity mode. As an atom enters, and g¢(7) increases from
zero, this coupling causes the otherwise coincident atomic and cavity resonances
(Watom = Weavity = Wac) to map to dressed states for the atom-cavity system, which
are split in frequency by 4g(7). The probe spectrum thus evolves from a simple
Lorentzian to a “vacuum-Rabi” spectrum with two peaks at wac %+ g(7), as illustrated
in Figure 3.2. Displayed is a series of theoretical transmission spectra m(A) = |(a)|*.
That is, m(A) indicates the transmission through the atom—cavity for a probe of
detuning A. Here (a) is the mean intracavity field amplitude calculated from the

steady-state solution of the master equation for a single atom (of infinite mass). In
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Figure 3.2: m(A) = |(a)|? as a function of probe detuning A for atomic positions 7;
such that g(7) = {0,90/9, ..., 9o}, with probe intensity fixed at fip = 1,and Weapity =
Watom. For an atom transiting the cavity, this position dependent coupling yields a
time dependent transmission, indicated by the bold curves for fixed probe detunings
A/27w = {-20, —40, —120} MHz.

Figure 3.2, the atom’s position 7 is stepped such that its coupling strength g(7})
increases from g(7;) = 0 to g(7;) = 2r x 120MHz= g,.[50] Of course, the spectrum
at g(7) = 0 is simply the Lorentzian response of the cavity with no atom present,
hereafter denoted by 7(A) = fig/[1+(A/k)?], while the spectrum at g(7}) = go corre-
sponds to an optimally coupled atom.

Although in the actual experiment most atoms never reach a region of optimal
coupling, some do enter in the desired mp=4 sublevel and fall through antinodes of

the field. These atoms encounter an increasing g(7) which sweeps the vacuum-Rabi



61
sidebands of the spectrum outward in frequency to the maximal splitting of g, /27 =
+120MHz. (For atoms which only reach a coupling of gmes < go, the sidebands will
sweep out to the smaller separation of £g.,/27, indicated by the intermediate curves
of Figure 3.2.)

Instead of measuring this entire spectrum simultaneously, we will be using a single
probe field at a fixed frequency. For this probe, the position dependent coupling of the
atom leads to a time dependent transmission. That is, the atom’s position changes
in time thereby changing its coupling strength, the spectrum shifts correspondingly,
and so the probe transmission at a specific frequency changes as a result the atomic
motion. The bold traces in Figure 3.2 illustrate this evolution of /m for three probe
detunings A relevant to our observations, as an atom enters the cavity. At a probe
detuning A ~ 0, transmission drops as an atom enters the cavity, whereas for A /27 ~
go/27 = 120MHz, the transmission increases. The process reverses as the atom leaves
the cavity and the coupling returns to g(7) = 0.

Turning to our measurements, we present in Figure 3.3(a)-(c) examples of the
time-dependent transmission T'(t) = m(t)/n of the atom-cavity system at the probe
detunings of Figure 3.2. Withwp ~ wyc (A = 0), as in Figure 3.3(a), we first observe
a decreasing probe transmission (due to increasing g(¥) as the atom enters the mode
volume), then a minimum in transmission (when g(7) =~ go), and finally transmission
increasing to its original value (as the atom exits the cavity), resulting in what we call
a “downgoing” atom transit signal. Tp, ~ 1072 is regularly observed for single atom
transits. Conversely, for A /27 = —120 MHz = go/27 (Figure 3.3(c)), the transmission
increases as the atom enters the cavity mode, peaking at Tha.x ~ 3.5 when g(7) = go,
and then falls again as the atom exits, which we call an “upgoing” transit. Finally, an
intermediate regime A /27 = —40 MHz =~ % go/2m exhibits more complicated behavior
(Figure 3.3(b)). Here, as the atom enters the cavity, the transmission first increases as
the lower Rabi peak sweeps past wp, then decreases to a minimum when g(7) =~ go,
and finally passes through a second maximum as g(7) decreases with the atom’s
departure.

The transit signals of Figure 3.3 are smoothly varying without the rapid oscilla-
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tions recorded in Ref. [24], which were tentatively attributed to motion along the
standing wave. Here we suspect that the tenfold increase in g leads to mechanical
forces which inhibit this motion.

To confirm the qualitative characteristics of the vacuum-Rabi spectrum during a
single atom transit we simultaneously record the transmission of two probe beams,
as in Figure 3.3(d,e). For probes with detunings A o & Fgo, the cavity transmission
increases simultaneously for each probe during the atom transit (Figure 3.3(d)). For
one probe near resonance (A; ~ 0) and the other red-detuned (A, = —go), there is a
simultaneous reduction in the transmission at A;, and an increase in the transmission
at Ay (Figure 3.3(e)). Note that the signal-to-noise for these traces is less than that
for single-probe measurements due to saturation, reflecting a limitation in principle

to the rate at which information can be extracted from this quantum system.

3.4 Vacuum-Rabi splitting from single atom tran-

sits

Next, by sequentially stepping our probe laser over a range of detunings % <

200MHz, we map the frequency response of the atom-cavity system (Figure 3.4).
Clearly evidenced is a double-peaked structure reminiscent of the “vacuum-Rabi”
splitting, with peaks near 4go/27, as was first observed for a single atom in Ref.
[23]. In contrast to previous work with atomic beams, here atoms are observed one
by one with negligible effect from background atoms in the tails of the cavity-mode
function[34] (in Figure 3.4, such “spectator” atoms contribute in aggregate an effec-
tive atom number N, < 0.04).

At each value of probe detuning A, a series of about 50 trap drops is made, yield-
ing up to 800 single-atom events, from which the data points shown in Figure 3.4 are
determined. At each frequency, the maximum (circleé) and/or minimum (squares)
relative transmissions are shown. Note that at small detunings, decreases in trans-

mission are observed as an atom transits the cavity (cf. Figure 3.3a), so a minimum
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Figure 3.3: Measured cavity transmission T'(t) = m(t)/7 as a function of time for
individual atom transits. Traces (a)-(c) are for A/2r= {-20,-40,-120}MHz with
fio ={0.7,0.6,1.0}. (d) Apa/2r= {-100,+100}MHz with 7ig po= {0.38,0.22}. (e)
A 9/27= {-20,-100}MHz with 7ig; 0= {0.05,0.3}. All traces are with zero cavity
detuning (Watom = Weawity) and are acquired with 100kHz resolution bandwidth and
digitized at 500kHz sampling rate.
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Figure 3.4: Maximum (o) and minimum (O) normalized transmission T(A) versus
detuning A measured via single atom events. The solid curve gives T'(A) for an atom
with g(7) = go (the vacuum-Rabi spectrum), while the dashed line is the maximum
transmission for any coupling g(7) < go.

value for the relative transmission is shown in Figure 3.4. Conversely, at large de-
tunings (cf. Figure 3.3c,d) increases in transmission are observed, so the maximum
relative transmission is shown. For detunings 40MHz < |A|/27 < 60MHz both in-
creases and decreases are observed (cf. Figure 3.3b), hence we record and display
both the maximum and minimum transmission. From the theoretical understanding
gained from Figure 3.2, we expect that at these intermediate detunings the minimum
relative transmission will correspond to the atom being in a position of best coupling.
Again, as in Figure 3.3 the transit signals are normalized to the transmission of the
empty cavity at each frequency to give T'(A), with 7y varying from ~ 0.6 photons
near resonance to ~ 1.4 photons at A/27 = £200MHz.

For comparison with theory, the solid curve in Figure 3.4 gives T(A) obtained
from the steady-state solution of the master equation for a single stationary atom with

optimal coupling ¢g(7) = go. Atoms with maximal coupling give the largest increases
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in transmission for |A| > go and similarly the deepest downgoing transits near A =
0, so at these detunings the data points track the solid curve well. However, for
intermediate detunings 40MHz < l2—A7—r[ < 100MHz, the maximum observed transmission
corresponds to a smaller value of coupling, ¢(7) =~ |A| < go, and so these points are
not expected to fall on the solid curve. We can, however, determine the maximum
expected transmission at each A by considering all couplings g(7) < go, with the
result plotted as the dashed curve in Figure 3.4. Agreement between this ideal one-
atom theory and experiment is evident for A < 0, providing direct confirmation of
the quoted value for go.

One of the most striking features of the data in Figure 3.4 is the asymmetry of
the spectrum between red and blue probe detunings, both in the magnitude and
abundance of transits. Indeed, the number of events observed with T'(A) ~ 2.5
around A ~ g is five times smaller than for T'(A) ~ 3.3 around A ~ —go. Residual
atom-cavity detunings are insufficient to explain the observed asymmetry (the cavity
lock results in Watom ° Weavity With systematic offsets below 4+2MHz and peak-to-
peak excursions less than :EBMHZ). It was also verified that none of the auxiliary
laser fields present in the cavity were providing a significant AC Stark shift to the
atomic transition. To check this, the strong cavity locking beam was swapped in
detuning from the blue to the red side of the cavity, with no effect on the resulting
asymmetry of the spectrum. The probe beam in this experiment is generated as an
RF sideband of a traveling-wave electro-optic modulator. The carrier frequency of
this beam is usually detuned by +800MHz, we switched this detuning to -800MHz,
again with no effect on the atom-transit spectrum.

We attribute this asymmetry to mechanical light forces from the probe beam
affecting the atom’s trajectory. As analyzed in Ref.[77], weak excitation by a coherent
probe tuned to Ay = &g gives rise to a pseudo-potential (for times > k! ~ 4nsec),
with depth +#gops, where py o< m(AL) is the probability of occupation of the upper
(lower) dressed state. Since figo/kp ~ 7TmK, such light forces can be significant even
for 7 ~ 0.5 photons. We thus expect significant channeling of atomic trajectories into

regions of high light intensity and strong coupling for a red-detuned probe (A < 0).
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Figure 3.5: Maximum and minimum normalized transmission 7'(A) versus detuning A
measured via single atom events. The solid curve gives T'(A) for an atom with g(7) =
go (the vacuum-Rabi spectrum). The asymmetry of the data points is attributed to
light forces from the intracavity field of # < 0.5 photons.

Conversely, a blue-detuned probe (A > 0) creates a potential barrier and prevents
an atom from reaching areas of optimal coupling. Apart from its relevance to the
spectrum of Figure 3.4, this phenomenon suggests the possibility of trapping single
atoms in the cavity mode with single photons.

Figure 3.5 shows the same data and traces as Figure 3.4, but with T'(A) plotted on
a logarithmic scale. It can now be seen that the asymmetry of the spectrum is present
for all blue detunings, and that even in the case of resonant driving atom transits
do not reach the expected depth. A probe detuning A/27 < —20MHz is apparently

required to channel atoms into regions of strongest coupling, where the transit signals



67
will have largest amplitude. The edge of the shaded grey region indicates the shot-
noise limit for determination of the depth of transits; for signals weaker than this
level the observed minimum transmission will be this noise floor rather than the
“true” minimum transmission. This boundary corresponds to an intracavity photon
number of 6x 1073 photons for the 100kHz resolution bandwidth of this measurement.
The driving strength 75 has here been chosen to be strong, so that transits do not
reach this shot-noise limit, and we can therefore relate the observed value of the
minimum transmission to a coupling strength g(7). For a weak-field measurement,
the theoretical relative transmission on resonance is 1/(1 + 2C;)? = 5 x 107°, where
Cy = 1/Ny = g2/2kry,. For this data set the theoretical minimum is ~ 1072, because
for the strong driving 7y ~ 0.6 photons we are well above the saturation photon
number myg for the intracavity field, and the atom-cavity system is in a regime of

nonlinear saturation.

3.4.1 Selection criteria for data points, generation of error-

bars

The data points shown in Figures 3.4 and 3.5 are determined from a sub-selection of
the up to 800 single-atom events observed at each individual probe frequency A.
For most atoms transiting the cavity, g(7) never reaches go. Referring to the bold
curves of Figure 3.4, it can be seen that if the maximum coupling achieved is gnqe, <
go, this will have a significant effect on the character of the transits observed. For large
probe detunings (A /27 ~ —120MHz), the probe transmission will not reach the same
maximum value as for an optimally coupled atom, and so upgoing transits will be
smaller than expected. Over an ensemble of atoms with coupling strengths ¢me. < 9o,
all transit heights are possible, up to a maximum height associated with coupling go.
Similarly, for a probe tuned close to the atom-cavity resonance (A/2r ~ —0MHz),
atoms which reach coupling gmae < go result in shallower downgoing transits than
would be expected for an optimally coupled atom. So, for an ensemble of atoms with

Imaz < 9o, downgoing transits will be seen of all depths, down to a deepest value
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Figure 3.6: The spectrum of Figure 3.4 is generated from these individual data points.
Each circle represents the heightgr depth of an individual atom transit.

corresponding to coupling go.

This continuous distribution of transit heights/depths is shown clearly by Figure
3.6, which shows the individual transit data used to generate Figures 3.4 and 3.5. For
individual signals such as those of Figure 3.3, the height of each individual upgoing
signal, and depth of each downgoing signal was recorded, with each of these points
displayed as a circle in Figure 3.6. Due to the inherent shot-noise of the probe
laser, there is a minimum detectable size for transit signals. This is indicated by the
shaded grey region: only transits extending beyond these limits are detectable with
the detection bandwidth of 100kHz and drive strength of 7ip &~ 1 photon used. At
large detunings the intracavity field A(A) = fg/[1+(A/k)?] is weaker, so the noise is
larger and transits must have larger amplitude to be detected.

We wish to use these points to extract values and uncertainties for the maximum

and minimum relative transmission 7" observed at each A. Our procedure is to take a
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fixed fraction f, of the best events (maxima and/or minima) from the total data set
at each A. The mean values of these “optimal” subsets are the points displayed for
T in Figures 3.4 and 3.5.

We now must determine an appropriate value for the proportion f. of transits to
include in these “optimal” subsets. First note that in the absence of mechanical forces,
we calculate that for a uniform spatial distribution of atoms dropped into the cavity,
a fraction fi(A) ~ 0.1 of all atoms causing detectable transit signals reach coupling
0.990 < g(7) < go. Further, for data with A/2r = —120MHz and A ~ 0 (which have
the best statistics and highest signal-to-noise ratios), as we vary the fraction f. of
the total data included in the set of optimal events (maxima or minima), both T and
the sample standard deviation o4 are found to be relatively insensitive to the choice
of f, for f. < 0.15. We thus take f = 0.15 to determine the set of transits to be
included in Figure 3.4 (and hence to fix o4 from the associated distribution). There is
an additional uncertainty o, arising from the shot-noise of the detected probe beam
itself. We estimate this by measuring the noise for “no-atom” data bracketing the
transit signals, then scaling this noise appropriately by the mean transit height/depth.
The quantity o = (/02 + o2 is shown in Figures 3.4 and 3.5 to estimate the error in 7'
at each A. For all our data, the absolute uncertainty in the quoted photon numbers

is ~ +30%.

3.5 Nonlinear saturation behavior of the atom-cavity
system

In the next series of measurements, we explore the nonlinear saturation behavior of
the atom-cavity system. As described in Section 2.1, for measurements of structural
properties of the atom-cavity system (rather than dynamical properties such as pho-
ton statistics) we expect the strongest distinction between semiclassical and quantum
theories to appear in a regime of strong driving. Here, we explore this regime by vary

the driving strength 7y, with the probe beam at fixed detuning. At each 7y we again
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digitize the cavity transmission for a large number of transits, with a set of “opti-
mal” single-atom events determining the value of 7' and its uncertainty o. Results
of such a measurement for a probe detuning A/2r = —20MHz are shown in Figure
3.7. The solid curve of Figure 3.7 is from the steady-state solution of the master
equation for T' = 7 /7, for a single (stationary) atom with g(#) = go, with reasonable
agreement between the data and this ideal quantum model. By contrast, the dotted
line is the semiclassical transmission function[64] evaluated for the parameters of our
experiment, and exhibits bistable behavior. While shifts from the semiclassical bista-
bility curve have also been predicted for other regimes of cavity parameters|78|, this
is the clearest example observed to date of a quantum/semiclassical distinction in the
structural response of an optical cavity QED system. Also plotted (dashed line) is
the relative transmission predicted for a photon number measurement, {4'a) /7, which
would be the quantity measured via photon counting rather than that obtained by
our heterodyne measurement of |@|?. The increase in (a'a) over |a|* shows that in this
driving regime there is a strong component of emission into the incoherent spectrum;
|a|? measures only the coherent transmitted field amplitude whereas (a'@) measures
all emitted photons.

The slight red-detuning (A/2m = —20MHz) of the probe beam in Figure 3.7 is
required to channel atoms into regions of optimal coupling, as was the case for the
spectrum measurements of Figure 3.5. The effect of this probe detuning is shown in
the series of saturation curves in Figure 3.8, where transmission T is plotted versus
probe drive photon number 7ig for the series of probe detunings A/27 = { —20MHz,
—10MHz, 0OMHz}, with the cavity detuning fixed at waom = Weawity- As in Figure 3.5,
across these data sets there is a progression from good agreement at red detunings
(A/27 = —20MHz), to clear disagreement near resonance (A/2r = 0MHz), which
can be understood as the mechanical effect of the red-detuned probe channeling atoms
to regions of optimal coupling.

In another series of nonlinear saturation measurements, 1' versus fip was again
measured for a series of probe detunings, but this time with the atom-cavity detuning

varying also, such that weepity = Wprobe for each data set, and the detuning A now
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Figure 3.7: Transmission T' versus probe photon number 7y for maximally coupled
atom transits for fixed A/2r = —20MHz. The solid (dashed) line results from the
quantum master equation solution for the quantity |a|? ( (afa) ) for one atom with
g(7) = go, while the dotted line is the semiclassical bistability state equation.
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Figure 3.8: Saturation of downgoing atom transits as a function of drive strength 7o,
for probe detunings A/2r = { —20MHz, —10MHz, OMHz}.
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refers t0 A = Wprobe —Watom- For this data, shown in Figure 3.9, agreement is somewhat
better for red detunings, but overall not as good as was the case in Figure 3.8. This
can again be understood in terms of the channeling effect of light forces. In the data of
Figure 3.8, as an atom enters the cavity the lower atom-cavity dressed state resonance
(the lower peak in the vacuum-Rabi spectrum) shifts toward the probe field, meaning
that this lower dressed state (which spatially forms a confining potential as discussed
in Section 4.2), will be preferentially populated. However, for a probe resonant with
the empty cavity, the arrival of an atom moves the dressed state resonance away from
the probe, and no confining/channeling potential results.

We note for weak driving fields, the quantum and semiclassical theories (solid and
dotted traces) yield the same results for the relative transmission, yet the data of
Figure 3.9 agrees with neither. Referring back to the measurements of Figure 3.5,
we see that for resonant or blue probe detunings, atoms transits do not reach their
expected magnitude; a probe-cavity detuning of < —20MHz is required to channel
atoms into regions of optimal coupling. For the data of Figure 3.9 this probe-cavity
detuning is zero, so we expect that atoms will not reach regions of optimal coupling

and that the transit signals are therefore shallower than the ideal theory would predict.

3.6 Conclusion

In conclusion, by exploiting laser cooled atoms in cavity QED, a unique optical system
has been realized which approximates the ideal situation of one atom strongly coupled
to a cavity. The system’s characteristics have been explored atom by atom, leading
to measurements of the “vacuum-Rabi” splitting and of the nonlinear transmission
for probe photon number ~ 1. As the interaction energy Ag is larger than even the
atomic kinetic energy, the sub-photon intracavity fields have a strong mechanical
effect on the atomic motion, channeling atoms toward or away from maxima of the
field, depending on the detuning of the driving laser.

In these measurements, each atom signal was used to obtain only a single data

point (height or depth), but as can be seen from Figure 3.3 the time-dependent
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individual atom transit signals contain far more information than just these peak
values. In the next stage of this experimental effort, described in Chapter 4, we
derive an explicit mapping from transmission to atomic position, and are able to
reconstruct the trajectories of single atoms in the cavity.

Because I >> 1, the system offers considerable opportunity for long interaction
times and controlled quantum dynamics, such as to generate a bit stream contain-
ing m ~ 10 photons with a single falling atom [8] or to trap one atom in the
quantized cavity field, as will be investigated in Chapter 4. Although the atomic
center-of-mass motion has here been treated classically, this work sets the stage for
investigations of quantum dynamics involving the quantized CM and the internal
(atomic dipole+cavity field) degrees of freedom [79, 62], including trapping by way

of the “well-dressed” states for single quanta [63].
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Chapter 4 Experiment 2: Trapping

single atoms with single-photon fields

This Chapter is partially based on “The Atom-Cavity Microscope: Single Atoms
Bound in Orbit by Single Photons,” C. J. Hood, T. W. Lynn, A. C. Doherty, A. S.
Parkins and H. J. Kimble, Science 287, 1447 (2000).

In the experiments of Chapter 3, single atoms transits were observed, and used to
map out properties of the atom-cavity system. The next stage of this experimental
effort was to trigger the probe intensity on these atom transits, to trap individual
Cesium atoms by the mechanical forces associated with single photons. The work
was carried out primarily by myself and Theresa Lynn, with initial involvement by
Michael Chapman, and in the final stages, by Kevin Birnbaum.

As described in Section 1.2, in addition to providing single-quantum forces able
to localize single atoms, strong coupling also means that the presence of an atom
can significantly modify the intracavity field [24, 25, 26, 44, 45, 46, 28, 27, 47, 49],
thereby enabling real-time monitoring of an atomic trajectory by way of the light
emerging from the cavity, as already observed for the atom transits of Chapter 3. In
more quantitative terms, the ability to sense atomic motion within an optical cavity
via the transmitted field can be characterized by the optical information I = 9%?—
This indicates the number of photons that can be collected (with detection efficiency
o) from this system as signal in time interval 7. When I ~ (5 x 10°/s) x 7> 1 as
in our experiment, atomic motion through the spatially varying cavity mode leads to
changes in the transmitted field that can be recorded with high signal-to-noise ratio
on microsecond time scales.

In this case, for an atom localized within the resonator, we recover real-time in-

formation about the position of the atom as it moves within the trapping potential.
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These records of the atomic motion show strong oscillations in transmission, indica-
tive of atoms orbiting the center of the potential. The known mapping of transmission
to coupling strength ¢(7) (and hence to atomic position ) then allows us to infer the
atom’s position as it moves within the potential. We can then investigate characteris-
tics of the trapping potential in detail, including measurements of the trap oscillation
frequencies and trap lifetimes of individual atoms.

Finally, an inversion algorithm developed by Theresa Lynn, which infers both
atom position 7(¢) and angular momentum L(t) from the transmission signal, allows
individual atom trajectories to be reconstructed from the record of cavity transmis-
sion, and reveals single atoms bound in orbit by single photons. This reconstruction
demonstrates a new measurement device, which we have called the atom-cavity mi-
croscope (ACM), which in these initial experiments yields 2um spatial resolution in
a 10us time interval for atomic motion in free space. Over the duration of the obser-
vation, the sensitivity is near the standard quantum limit for sensing the motion of a

Cesium atom.

4.1 Apparatus

The experimental setup for this work is essentially the same as for the work of Chapter
3, and is pictured in Figure 4.1. A cloud of Cesium atoms is collected in a magneto-
optical trap (MOT][36]) in a vacuum chamber at 10~8Torr, sub-Doppler cooled to a
temperature of ~ 20uK then released to fall under gravity. With initial mean velocity
7 >~ 492, the cold atoms then fall 3mm toward two mirrors which form an optical
resonator (cavity).

To interact with light in the cavity mode, an atom must fall through the 9um
gap between the edges of the mirrors and also through the waist wg ~ 14pum of the
Gaussian mode of the resonator. As a result, even with 10* atoms initially, only one
or two atoms are observed crossing the standing-wave mode of the cavity each time
the MOT is dropped, represented by the arrow of Figure 4.1. The cavity is driven

by a circularly polarized probe field &pope Of frequency wprobe = Watom + Dprobe, the
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Figure 4.1: Schematic of the experimental apparatus.

transmission of which is recorded by heterodyne detection with overall efficiency for
detection of an intracavity photon 25%. Three substantial changes were made to the

experimental setup with respect to the earlier experiments:

4.1.1 Cavity

Since the cavity used for the experiments of Chapter 3 deteriorated unexpectedly as
this next stage of experiments began, a new cavity was used for the following work.
The optical cavity is formed by two 1mm diameter, 10cm radius of curvature mirrors,
located on the tapered end of 4mm length x 3mm diameter glass substrates. The
multi-layer dielectric mirror coatings have a transmission of 4.5 x 107 and absorp-
tion/scatter losses of 2.0 x 1075, giving rise to a cavity finesse F' = 480,000. For the
measured cavity length [ = 10.8um, we then have parameters (go, &, 7) = 2m(110,
14.2, 5.2) MHz. We ran into unexpected problems with cavity mount stability and
cavity birefringence during construction of this cavity, the details of this described in
Chapter 5. Our final solution was the new cavity mount design pictured in Figure

2.11.
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4.1.2 Optical pumping

Once atom-trapping signals had been observed, an additional laser beam was added
to the setup, tuned to the {6Si/s, F' = 3} — {6Ps)2, F = 4} transition. Without
this additional field, if a trapped atom made a transition to the {651/, F' = 3} level
it would become untrapped, and undetectable by our probe field. To optimize our
trap lifetimes we therefore added this “repumping” laser to return these atoms to the
{6P, /2, F = 4} ground state. The intensity of this field was adjusted operationally to
give the best trap lifetimes.

The optical pumping beam is spatially overlapped with the probe and enters along
the cavity axis. As this beam is 9GHz detuned from the cavity resonance, only a tiny
proportion of the incident light enters the cavity. However, since the cavity FSR >>
9GHz, and the cavity transverse-mode spacing ~ 60GHz >> 9GHz, then we expect
the optical pumping light that does enter the cavity is spatially well overlapped with
the probe field, and optical pumping will be fairly uniform throughout the cavity

mode.

4.1.3 Locking method

For these experiments the cavity was locked directly to the transmission of the weak
probe field, with the feedback signal taken from the same video-out port of the spec-
trum analyzer that is used to record the data. Upon triggering on an atom transit,
the lock was switched off for 2ms, so as not to interfere with the atomic dynamics
by moving the cavity in response to atom-dependent signals. The passive stability of
our new mount design means that the cavity length does not drift significantly during
this 2ms time interval (the main DC drift which limited this switch-off interval was
thermal in origin, and related to heating and cooling of the chamber by our magnetic
field coils and cooling water). By measuring a probe field tuned to the side of the
cavity resonance, we estimate the cavity stability when locked to the weak probe in

this way to be ~ £2MHz, these being slow variations on timescales ~ 10ms.
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4.2 Triggering trapping, the basic idea:

If an atomic dipole coupled to the quantized cavity field satisfies both the strong
coupling condition (i.e., go > k, ) for its internal degrees of freedom, and in addi-
tion the atom’s kinetic energy Ej is small enough that go> (E, /A, 7, &), then strong
coupling should also have significant consequences for the external, center-of-mass
motion of the atom. The seminal work of Refs. [51, 80] and numerous analyses since
then [50, 63, 81, 82] have made it clear that a rich set of phenomena should arise
from the interaction of the mechanical motion of atoms with a quantized light field
in cavity QED. In this regime a single quantum is sufficient to profoundly alter the
atomic center-of-mass (CM) motion, as for example in Ref. [63]. The effect of strong
coupling on the atomic center-of-mass motion has only recently begun to be explored
experimentally [25, 26, 45, 27, 47], but is of importance both in terms of understand-
ing the underlying fundamental quantum processes, and also of practical concern for
the use of cavity QED systems for quantum information processing protocols, for
which atoms need to be strongly localized at particular locations within the cavity
mode [9, 10, 6, 5].

As a significant development in this experimental effort, we have reported the
first observations of a single atom trapped by an intracavity field with mean photon
number m ~ 1 [26, 28, 27]. Such trapping is possible in our experiment because
the coherent coupling energy figo ~ 5mK is larger than the atomic kinetic energy
E, ~ 400uK.

The conceptual basis for trapping with single quanta in cavity QED is illustrated
by Figure 4.2. Displayed is the spatial dependence of the energies /i34 (p) for the first
excited states |4) of the atom-cavity system (the Jaynes-Cummings ladder of states)
along the radial direction p = W , for optimal z (standing-wave) position and
neglecting dissipation. The ground state of the atom-cavity system is |a,0); the
atom is in its ground state a and there are no photoﬁs in the cavity. For weak or
no coupling, the first two excited states are that of one photon in the cavity and

the atom in the ground state, |a, 1), and of the atom in the excited state e with no
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Figure 4.2: An atom entering the cavity in the ground state |a,0) can be pumped
into the lower dressed state |—), causing it to become trapped.

photons in the cavity, |e,0). These two states are separated by an energy hA,., where
Age = Weavity — Watom 18 the detuning between the “bare” (uncoupled) atom and cavity
resonances. As an atom enters the cavity along p it encounters the spatially varying
mode of the cavity field, and hence a spatially varying interaction energy fg(7),
given by g(7) = gocos(2mz/\)exp(—(y? + z*)/w3). The bare states map via this
coupling to the dressed states |+), with energies By = Zetomtenitu 4 [g(7)? 4 AT?”]” 2,
These spatially varying energies can be exploited to trap the atom via a strategy first
suggested and analyzed by A. S. Parkins [42], and implemented in Ref. [26].
Consider an atom entering the cavity along p, with the system initially in the
ground state |a,0). When the atom reaches the center of the cavity mode, a laser
field Eprone(t) at frequency wprope is switched on. When a photon is absorbed, the
system is driven into the state |—), and the atom is bound by the potential well
formed by spatial dependence of the energy AS_ (7). Photons are emitted from the
system at rate x, but continuous driving by Eprebe(t) repopulates the |—) state. This
creates a pseudo-potential U(7) for times >> k, which for weak driving fields has a
depth approximately given by p(-)(Aweavity — RS- (7)), where p_y is the steady-state

population of state |—). For stronger driving, there will also be a contribution to
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the pseudo-potential from populating higher-lying states in the Jaynes-Cummings
ladder. For wyrope > B-(F) the states populated are, like |—), confining, so a trapping

pseudo-potential is maintained.

4.3 Simulated transits

Beyond this intuitive picture of trapping with the lower dressed state, our collab-
orators Andrew Doherty and Scott Parkins from the University of Auckland have
carried out extensive analytical and numerical simulations of atomic motion for the
parameters of our experiment, explained in more detail in Ref. [27], which I describe
briefly here and will used throughout this chapter for comparison to the experimental
data.

The conservative component for motion of an atom within the cavity mode can be
described by an effective potential U(7) determined by integration of the expectation

value of the force operator
F(7) = ~hvg(7)(a'6_ +6.4) , (4.1)

with (@,a') as the annihilation and creation operators for photons in the cavity field
and &4 as the raising and lowering operators for atomic excitation. There are also
non-conservative (velocity-dependent) and random (diffusive) forces that act on the
atom. Because the time scale for internal (atomic dipole + cavity field) dynamics
is much shorter than that for the atomic center of mass motion, (F(f‘)) and these
other forces can be calculated by solving the steady-state quantum master equation
for the internal degrees of freedom alone [67]. The local atom-field coupling g(7),
probe parameters (Eprobe; Aprobe), detuning A, and cavity parameters determine the
conservative force, friction, and diffusion acting on the atom at position 7. The
trajectory of the atom is then calculated in a semicllassical approximation for the

mean and variance of the atomic wavepacket.
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Figure 4.3: Effective Potential U(7) and heating rate, along the standing-wave direc-
tion, z. Here the heating rate is predominantly due to dipole diffusion. At a field
antinode (such as z = 0), diffusion is due to spontaneous emission only, giving a
heating rate of 3x107* mK/pus.

4.4 Effective potentials, heating rates

Figures 4.3 and 4.4 show examples of the effective potential U(7) calculated from
the quantum treatment described above. Displayed are both the radial and axial
dependencies U(p, o) and U(0,z) (that is, perpendicular to and along the cavity
axis, where o is an antinode of the standing wave). The depth of the potential
Uy ~ 2.3mK is greater than the initial kinetic energy of atoms in our experiment,
E} ~ 0.46mK, thereby enabling an atom to be trapped within the cavity mode. The
perturbing effect of gravity on this potential is negligible.

Also shown in Figures 4.3 and 4.4 are the heating rates (mean rates of energy

dE(p,z0) dE(0,2)
dt

dt

increase) and along the radial and axial directions, with %€ related

to the momentum diffusion coefficient D by %Iti = D/m, where m is the atomic
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Figure 4.4: Effective Potential U(7) and heating rate, along the radial direction, p.

Here the heating rate is dominated by spontaneous emission.



85
mass of cesium. Near a field antinode (for example, z = 0), the random or diffusive
component of the motion arising from % on experimental time scales ~50us is on the
whole much smaller than that associated with conservative motion in the potential
U. Thus we expect a predominantly orbital motion within the cavity mode with a

smaller (but non-negligible) diffusive component.

4.4.1 Comparison to a classical dipole-force trap

For comparison with the well-established theory of laser cooling and trapping in free
space [36], Figures 4.3 and 4.4 also display in dotted lines the corresponding potential
V (7) and heating rate %ﬂ derived in the absence of the cavity, but for the same beam
geometry and the same peak field strength [83]. Note that although the free-space
potential V' (7) is similar to the cavity QED potential U (7), suggesting that trapping
could be achieved without the cavity [as, for example, in the pioneering experiments
with optical lattices [84, 85, 86]], in fact, in the axial direction the free-space heating
rate %‘% is much greater than the corresponding cavity QED quantity id%.

A simple estimate of the corresponding trap lifetimes [87] is obtained by averaging
the diffusion over the spatial variation of the standing-wave (heating in the Gaussian
direction is negligible by comparison). With a heating rate given by %€ = (D(z))/m
we then obtain a lifetime of 20us for the classical dipole-force trap, and 250us for
the corresponding quantum case, for detunings and drive strength of Figures 4.7
and 4.10. However, as atoms are initially well confined to antinodes of the field
where the diffusion is small, this will be an underestimate of the lifetime. A slightly
better estimate (for the average distribution) is given by starting the atom initially
at rest at an antinode (z = 0) of the field, then incrementally increasing the mean
energy by steps of ((D)m)dt, where (D) is the diffusion weighted by a normalized
position distribution P(z), that is (D) = [ D(z)P(z)dz. The position distribution is
here obtained at each energy step by assuming a harmonic well distribution P(z) o

1/4/1 — (x/Tmax)?. This estimate gives slightly longer lifetimes of 28us and 270us

for the classical and quantum cases. The contribution of velocity dependent forces in
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the classical case was also calculated, and found to be negligible in comparison to the
diffusive heating.

The trapping time for an atom in the free-space setting is tenfold less than the
observations of Figure 4.7, so short that the atom would not make even one orbit
before being heated out of the potential well. By contrast, this simple estimate for
the quantum case within the setting of cavity QED is in reasonable agreement with
the 340us mean lifetime observed in the histogram of Figure 4.10.

We emphasize that the comparison in Figures 4.3 and 4.4 is made for the same
peak electric field — the cavity is not simply a convenient means for increasing the
electric field for a given incident drive strength. Rather, there are profound differences
between the standard theory of laser cooling and trapping and its extension into the
domain of cavity QED in a regime of strong coupling. At root is the distinction
between the nonlinear response of an atom in free space and one strongly coupled
to an optical cavity. In the latter case, it is the composite response of the atom-
cavity system that must be considered as is described by the corresponding one-atom
master equation in cavity QED. That this full quantum treatment of the atom-cavity
system is required has been experimentally confirmed by way of measurements of the
nonlinear susceptibility for the coupled system in a setting close to that used here
[25, 26, 46].

A second and critically important point of distinction between the current work
and traditional laser cooling and trapping in free space [36] relates to the ability to
sense atomic motion in real time with high S/N. We stress that this is not simply
a matter of a practical advantage, but a fundamental improvement beyond what
is possible by way of alternate detection strategies demonstrated to date (such as
absorption [88, 89] or fluorescence [90, 91, 92] for single atoms and molecules). An
estimate of this enhanced capability is given by way of the optical information rate
I/At ~ 10°/s, which in the current work is the largest value yet achieved in optical

physics.
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Figure 4.5: Triggered trapping with downgoing trigger signals [26].

4.5 Initial results: Triggering on resonant transits

Our first attempt at implementing this trapping scheme was carried out with the (go,
K, v) = 2m(120, 40, 5.2) MHz cavity of Chapter 3. The strategy was to (1) sense
the atom entering the cavity by probing with a weak field close to the coincident
atom-cavity resonance, (2) trigger this resonant field off (to reduce heating) and wait
a fixed delay (typically ~ 10us) to allow the atom to move to the center of the cavity
mode, then (3) trigger on a stronger probe field tuned to wprobe = B-(0) (the energy
of state |—) when the atom is at the center of the cavity mode 7 = 0), to provide a
strong potential to trap the atom.

Figure 4.5 shows an example of an atom trapped by this method. Displayed
is the atom-cavity transmission for the strong trapping field (at frequency wprobe)-
Triggered on an atom transit, this field is switched on for a total duration of 400us:
the particular atom shown is trapped for 300us. While we had some limited success
with this triggering strategy, with several examples observed of atoms trapped up to
300us, it was still the case that most triggers did not result in significant lengthening
of the transits. |

We believe that this was primarily because our triggering was not selective enough.

Resonant probing gives a very sensitive meter for an atom entering the cavity mode
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(the transmission drops by a factor of 10? for an optimally coupled atom, as discussed
in Chapter 3), so that at our high trigger threshold we were detecting atoms essentially
all atoms at the very edge of the cavity mode. However, very few of these atoms should
be expected to end up in regions of strong coupling g(7) ~ ¢(0), since many of these
triggers will be for atoms with initial y position passing through the sides of the
Gaussian beam with y > wq, and others triggers are for atoms falling in the top with
y ~ 0 but passing through nodes of the standing-wave along z.

To try and improve this selectivity, we lowered the trigger point to select only
very deep down-going transits, but this had little effect on our trapping effectiveness
- presumably because heating from the resonant beam is significant in this case,

limiting the trap lifetime.

4.6 Triggering on upgoing transits to trap single
atoms

It was decided that a better strategy would be to tune our triggering beam to wprope =
B-(0). This would have several positive effects:

1. Only atoms in positions of strong coupling g(7) ~ go are detected and cause a
triggering on of the trapping potential.

2. Heating from this probe beam is less than in the case of resonant probing.

3. The shallow potential formed by the weak triggering beam causes channeling
of the atoms into regions of high coupling, as previously observed in the spectrum
measurements of Chapter 3. This both increases the number of well-coupled atoms
available for triggering, and ensures that atoms are initially located near antinodes
of the standing-wave, greatly simplifying our interpretation of the atom-cavity trans-
mission signals.

Unfortunately, as we were about to try and impiement this triggering scheme
our cavity finesse dropped dramatically, making further experiments impossible. A

painful year of technical development (see Chapter 5) then followed before the new
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cavity ( {go, K, v} = 27{110, 14.2, 5.2} MHz ) was installed in the vacuum chamber,
and we were ready to resume the experiment. With the apparatus running again, we
tried the new triggering scheme, and immediately saw transits lengthened to >1ms,
with interesting internal structure (oscillations) in the single-atom transmission sig-
nals. Over the next few days, by exploring different detunings/drive strengths we
operationally found regions of good trapping, with atoms trapped up to 1.9ms.

To trap an atom, we drive the cavity with a weak circularly polarized probe laser
at frequency wprope = G- (0). This probe field initially has intracavity photon number
fi, = 0.05, providing a small, off-resonant excitation of the empty cavity. Because
the resulting (shallow) potential U,(7) is deepest for an atom at the cavity center,
an atom entering the cavity effectively sees a series of potential wells, determined by
the Gaussian transverse shape of the cavity mode and the standing-wave structure of
the light inside the cavity. The atom is channeled by U,(7) towards regions of high
coupling, and as the energy B_ of [—) shifts accordingly, there is a corresponding
increase in probe transmission as #_ comes into resonance with wprope [25]. By using
upgoing transits, we are guarantee that the atom is at a region of high coupling
strength at the time of triggering, so that when the potential is switched on the
atom should be trapped. When the transit height reaches the trigger level (i.e., g(7)
exceeds some predetermined threshold g;), we switch the probe power up to a level
7i; = 0.3 & 0.05 intracavity photons, creating a deep confining potential U(7) around
the atom to trap it.

Note that throughout we denote by 7 the photon number for the empty cavity,
with 7 = [{a@)|? as the corresponding quantity with an atom present; these quantities
are directly proportional to the detected transmission signal. Because we employ
balanced heterodyne detection, we measure |(a)|? rather than the photon number
(a'a). In the absence of an atom we have a weak coherent field within the cavity,
so these two quantities are of course equal. However, with an atom present they
are typically different. For the experimental parameters of the data presented in
this work, this difference is calculated to be 10-20%; however, for different choices

of (Weavity, Wprobe) the difference can be much more dramatic, as discussed in Section
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4.10.2 to follow.

To demonstrate the variety of individual atom signals seen, Figure 4.6 shows a
collection of individual atom transmission signals, each generated with the trigger-
ing/trapping scheme described above.

Moving now to examine these transmission signals in more detail, shown in Figure
4.7(a,b) are traces for two individual atom trajectories. At time = 0, the atom is
detected, triggering the driving field &, to switch from i, — 7, to catch the atom.
The cavity transmission is highest (with 7m ~ 1) when the atom is close to the center
of the cavity, and the observed oscillations in m result from modifications in cavity
transmission as the atom moves within the cavity mode. When the atom eventually
does leave the cavity mode, transmission returns to fi;. To demonstrate the strong
effect of the triggering/trapping strategy, Figure 4.7(a) also shows a typical atom
transit (black trace) recorded with a drive strength of # = 0.3 and no triggering. In
this case, atoms fall through U(F) with average transit time 74us. By contrast, the
triggering protocol described above extends this average to 7 = 340us.

Figure 4.7(c,d) show transmission calculated from the numerical simulations of
individual atom transits, with experimental noise added to these traces. Also shown
are the calculated positions y(t), z(t) in the radial direction, and z(t) in the standing-
wave direction, corresponding to the transmission shown.

The simulations indicate that the motion along the cavity axis  is tightly confined
(for example, to a region §z ~ £50nm from the simulations) due to the steepness
of U(z) and to channeling of the incoming atoms to regions of high light intensity
for the red-detuned field. However, as shown iﬁ Figure 4.7(c,d), ultimately the atom
does escape due to a “burst” of heating along the cavity axis. Because the diffusion
coefficient is proportional to the |[VU(z)|?, there is a slow heating rate while the atom
is well confined at the minimum of the potential, but as soon as it begins to heat and
explore regions of higher curvature, the heating rate accelerates quickly and the atom
is lost - this burst of heating occurring over a time less than the orbital period T'. This
dominant loss mechanism appears repeatedly in the simulations over a wide range of

operating parameters. Once an atom is heated sufficiently to leave the antinode to
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Figure 4.7: (a,b) Examples of atom transits, i.e., cavity transmission as a function
of time as an atom passes through the cavity field. Red traces show atoms trapped
using the triggering method described, with /m =~ 1 photon mean field strength. For
comparison, an untriggered (untrapped) atom transit is shown in black. For these
traces, Aprope/2m = —125M Hz and Ag./2m = —ATMHz. The corresponding level
diagram is shown in the inset, with wW(pea) = W(probe,cavity,atom) Of the text. (c,d)
Theoretical simulations of atom transits for the parameters Apope/2m = —125MH 2,
Ay /2m = —ATMHz. Shot noise and technical noise have been added to the trans-
mission signal, shown in red. Other traces show the three-dimensional motion of the
atom. Motion along z, the standing-wave direction, has been multiplied by 10 to be
visible on the plot. Note the atom is very tightly confined in x until rapid heating
in this direction causes the atom to escape.
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which it was initially confined, it is very rarely recaptured in another antinode but
rather escapes the cavity altogether, because the Sisyphus-type mechanisms [82] for
cooling are ineffective in the current setting (as confirmed by the simulations).

Experimentally, we can set a limit on atomic excursions along x by examining the
amplitude of the observed oscillations. Since the oscillation frequency v, ~ 1.5MHz
is well above our detection bandwidth of 100kHz, large excursions in z would lead to
significant reductions in amplitude for the observed oscillations in transmission, from
which we deduce a bound éz¢ < 70nm for p <« wp. Inference of axial localization
without such bandwidth limitations can be found in [46].

We emphasize that the corresponding quantum state is a bound state of atom and
cavity. The situation is analogous to a molecule for which two atoms share an electron
to form a bound state with a lower energy than two free atoms. Here a “molecule”
of one atom and the cavity field is formed via the sharing of one photon excitation
on average, thereby binding the atomic center-of-mass motion. Note that our atom-
cavity “molecule” only exists while an excitation is present, with decay set by &,
since k > 7. Photons leak out of the cavity at rate x, but the cavity is continuously
driven by the probe field which replenishes the intracavity photon number, repeatedly

recreating the bound state before the atom has a chance to escape.

4.7 Characterization of transmission oscillations

A striking feature of the traces in Figure 4.7 are the oscillations in atom-cavity trans-
mission within the transit of a single atom. As illustrated by the position traces of
the simulated transits in Figure 4.7C,D, our simulations show that these oscillations
arise from elongated atomic orbits in planes perpendicular to the cavity axis.
Having established that atoms are well localized in x at antinodes of the standing-
wave, we can restrict our attention to motion in transverse (y, z) — (p, ) planes, and
investigate the validity of our model for the effective potential U(p, #) by comparing
the predicted and observed oscillation frequencies of single atoms within the poten-

tial U(p). Note that oscillations with a short period (P, in Figure 4.7A) have a lower
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amplitude than those of longer period (P, in Figure 4.7A). This is due to the an-
harmonicity of our approximately Gaussian-shaped potential U(p); large-amplitude
oscillations are expected to have a longer period than nearly-harmonic oscillations at
the bottom of the well.

The data in Figure 4.8A reveal this anharmonicity. Plotted is the period P versus
the amplitude A for individual oscillations, where A = 2((H;+ H»)/2—H,.)/(H1+ H>),
with parameters { Hy, Hs, H.} indicated in Figure 4.7B. The solid curve is calculated
for motion in the effective potential U(p) shown in the inset to Figure 4.8A; the
comparison is absolute with no adjustable parameters.

We also present in Figure 4.8B similar results for A versus P from the numerical
simulations (for the same parameters as Figure 4.8A, without the experimental noise
added to the traces of Figure 4.7). This plot reveals the relative importance of different
mechanisms that cause deviations from the one-dimensional (1D), conservative-force
model. To this end, we select from the simulation points corresponding to atoms
with low angular momentum about the center of the cavity, that is, those which pass
close to the center of the potential (p = 0) and therefore have close to a close to 1D
trajectory. As expected these points (shown in black in Figure 4.8B) fall closest to
the curve given by the 1D potential U(p). The grey points in Figure 4.8B have larger
angular momentum, corresponding to atoms in more circular orbits. The presence
of this separation by angular momentum in the simulation indicates that friction
and momentum diffusion, which tend to invalidate the conservative-force model, have
a relatively small effect on the motion. This is also evident from the discussion
of potentials and heating rates U(7) and %€ in Section 4.4. The spread in observed
angular momenta is constrained by our triggering conditions - the potential is switched
up only when an atom reaches a position near the center of the cavity mode, so that
the measured trajectories tend to be in a regime of tight binding. The wider spread
in the data of Figure 4.8A relative to 4.8B comes from experimental noise (present in
Figure 4.8A but not added to Figure 4.8B), with both shot-noise and technical noise
contributing significantly. We have made comparisons as in Figure 4.8 for several

data sets with varying values of {(Eprobe; Dprobe)s Dac, i} With the same conclusions.
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Figure 4.8: Oscillation period as a function of amplitude from experimental (a) and
simulated (b) atom transits, for Aprope/2m = —145MHz and A,./2m = —80M H 2.
Calculated one-dimensional oscillation in the anharmonic effective potential (inset) is
shown by the solid curve, with no adjustable parameters. In simulated data, note the
separation of data points by angular momentum; lowest angular momentum transits
(black) most closely follow the one-dimensional model.
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In Figure 4.9 are displayed a series of these anharmonicity curves, for a series
of drive strengths n; = {0.08,0.16,0.31,0.7} photons, at detunings (Aprope/2m =
—145MHz, A,./2m = —80MHz). The relative size of the atom-transit signals H/7,
changes significantly over this range of drive strengths, and to highlight this we chose
a different normalization to that of Figure 4.8, now plotting the period P versus the
depth of individual oscillations, normalized by the empty cavity field ;. That is, we
undo the previous normalization for 7i; and plot (H, + 7i¢)/fi:. The solid curves are
again calculated for one-dimensional conservative motion in the effective potentials
U(p) at each driving strength, derived from the quantum master equation for the
measured parameters {(Eprobe; Aprobe)s Dac, it }; the comparison is absolute with no
adjustable parameters. The first data set (7; = 0.08) was collected from atom transits
rather than triggered/trapped atoms, this drive strength being too weak to reliably
trap atoms. As a result, few oscillations were observed, with those present due to
atoms which were caught in the potential well without triggering, as described in
Section 4.8.1. In the final panel of Figure 4.9 the weaker driving data (72; = 0.16) of
the second panel are overlaid in grey circles to highlight the difference between the
data sets. The trend to smaller oscillations with higher drive strength is due primarily
to saturation of the atom-cavity relative transmission as drive strength is increased,

decreasing from a factor of 5 at 0.16 photons to a factor of 3 at 0.70 photons.

4.8 Experimental characterization of single-photon
trapping

4.8.1 Histograms of transit lengths - triggered vs. untrig-
gered

To explore the effect of triggering in more detail, in Figure 4.10 we plot histograms

of transit lengths 7 for untriggered (Figure 4.10(a)) and triggered (Figure 4.10(b))

events, for the same experimental parameters as Figure 4.7. From these histograms
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Oscillation Period vs Depth of Oscillations
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Figure 4.10: Dwell time 7 of single atoms in the cavity, with and without employing
the triggered trapping strategy.

it is apparent that the triggering/trapping strategy has a strong effect on extending
the trap-time 7 of an atom in the cavity mode, with most events lengthened from
~ T5us to > 200us, and the average trap-time extended to 7 = 340us. The longest
trap-time shown in this data set is >1.6ms, and times of 1.9ms have been observed
in other data sets. Although single atoms have recently been trapped with lifetime
28ms in a regime of strong coupling by way of a classical dipole-force trap [28], our
results are the first example of trapping using the single-photon quantum field itself.

Even in the untriggered case there are a few rare events of atoms trapped up to
~ T00us duration. These can be explained by the large momentum diffusion present
along the z (standing-wave) direction. As explained in more detail in Ref. [27], this

diffusion is the principal cause of heating of the atomic motion, and hence limits sets
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the trap lifetime. However, this strong diffusion can also occasionally lower the falling
atom’s energy sufficiently that it becomes trapped by the pseudo-potential even in
the absence of the triggering scheme, leading to the rare long events of Figure 4.10(a).
The triggering/trapping scheme is much more efficient way of loading atoms into the
potential, as evidenced by the qualitatively different character of the distributions of

Figure 4.10(a) and (b).

4.8.2 Histograms of traptimes - experimental vs. simulated

transits

Next, we compare the histogram of experimental trap-times to the corresponding dis-
tribution obtained from the numerical simulations of single atom trajectories. These
results are presented in Figure 4.11, with 4.11(a) the experimental results, and 4.11(b)
the simulations.

From Figure 4.11 it can be seen that while experiment and simulation are generally
in good agreement, minor differences exist, such as the slightly longer average trap-
times of the simulated transits; for this simulation a mean of (), =415us compared
to the (T)exp: =340us mean of the data. In the simulations, these small discrepancies
were found to be highly sensitive to the initial conditions (positions and velocities) of
atoms entering the cavity mode, values which are not particularly well characterized
experimentally.

Additionally, the method of assigning initial conditions to the simulated atoms
may cause some differences. They are set as follows: the z (vertical) position and
velocity distribution are just those of the initial MOT distribution evolved forward
in time. y and z are given flat position distributions (the MOT is assumed large
compared to the 14um mode waist and 9um gap between the mirrors), the y velocity
distribution is that of the initial MOT, and the z velocity is a flat distribution cut
off at velocities for which the atom would hit the mii'rors surfaces before reaching
the mode. Each individual atom simulated is randomly assigned values for these,

with each of the 6 parameters assumed uncorrelated. While this is a reasonable
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Figure 4.11: Comparison of Experimental Data and Simulated Transits - Atom dwell 7
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first approximation, in the actual experiment the narrow 9um gap between the edges
of the mirrors and the Gaussian waist wg ~ 14pum of the cavity mode will introduce
additional correlations between position and velocity. For example, atoms which have
an initial upward z-velocity will only reach the cavity mode if they have very small y
and z velocities.

That there is generally a good agreement for both the mean and distribution of
trap times of trapped atoms indicates that the simulations provide a good theoretical
understanding of both the conservative and dissipative (heating) mechanisms in this

atom trapping scheme.

4.8.3 Histograms of traptimes for different atom-cavity de-
tunings

The data of Figures 4.7,4.10 are taken at the particular detunings Ap.op/2m =
—125MHz and A,./2m = —47TM Hz, with drive strength 7, = 0.05 before trigger-
ing, and 7, = 0.3 £ 0.05 after triggering. These values were chosen operationally
- detunings and intensities were varied over a wide range, with best results for
trapping achieved in the approximate range Ap.op/2m = —110 — —160M Hz,
Age/2m = —4A0MHz — —80M Hz, with drive strengths 7, = 0.15 — 0.8 intra-
cavity photons.

In Figure 4.12 are shown histograms of trap times as a function of atom -cavity
detuning A,,, with the probe detuning chosen to be 10MHz above the lower dressed
state resonance G_(0) for each data set, and with a fixed drive strength 7i; = 0.320.05.
These data sets were taken before the addition of an optical pumping beam to the
apparatus. The effect of optical pumping can be seen by comparing the second
panel of Figure 4.12 to Figure 4.10, as these otherwise have the same experimental
parameters. ’

This series of histograms shows that for these expeﬁmental parameters, trapping
is better for intermediate detunings A,./2m ~ -50—-100MHz than for near-resonant

detunings A,./27 ~ 0, and larger detunings A,./27 < —150MHz.
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One further comparison that was made was to switch the role of “atom” and “cav-
ity,” by setting the atom-cavity detuning to A,./2n = +102MHz, while still probing
10MHz above the lower dressed state (now atom-like) resonance. This comparison
is shown in Figure 4.13. A trapping potential is still formed by the curvature of
the lower dressed state, but in this case the trapping times are shorter, evident by
comparing the histograms of Figure 4.13(a,b). In Figure 4.13(c), the untriggered dis-
tribution corresponding to Figure 4.13(b) is shown, and it can be seen that a far larger
proportion of untriggered atoms end up trapped than in the red-detuned cavity case
of Figure 4.10. This figure suggests that the diffusion is larger here: larger diffusion
makes it easier for untriggered atoms to randomly lose enough energy to be trapped,

and also means that the trap lifetime will be shorter.

4.9 Reconstruction of atom trajectories - the ACM

The trap-time histograms together with the data of Figures 4.8 and 4.9 show that we
have good agreement between experiment and theory, in terms of the depth and shape
of the potential, and also in heating rates. Our understanding of atomic dynamics in
the effective potential U(p) (including confirmation that motion in the standing-wave
direction is minimal) together with a knowledge of the mapping between atom position
and probe beam transmission via the master equation enable accurate reconstructions
of two-dimensional trajectories for the individual atom transits of Figure 4.7, extract-
ing both radial position p(t) and angular momentum L(t) from the transmission data
of Figure 4.7. This reconstruction algorithm, developed by Theresa Lynn, is discussed
in detail in Ref. [27] and at the web site www.its.caltech.edu/~qoptics/atomorbits/,
along with a discussion of its limitations and validity.

The single atom transmission signals of Figure 4.7(a,b) yield the trajectories of
Figure 4.14(a,b), where motion is in the y — z plane .at optimal z position (at an
antinode of the standing-wave). We now see directly that the large-amplitude trans-
mission changes of Figure 4.7(a) relate to elongated orbits, with large excursions from

the cavity center. Likewise, the smaller oscillations of Figure 4.7(b) translate to a
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more circular, tightly bound orbit of Figure 4.14(b). The size of the dot at the start
of each trajectory indicates the typical error in the estimate of the atomic location,
from comparisons as in Figure 4.14(c). Figure 4.14(c,d) show reconstruction from the
simulated transmissions of Figure 4.7(c,d). In this case the reconstruction was made
from transmission signals with noise (including fundamental shot-noise and technical
noise) added to the transmission, such as is shown in Figure 4.7(c,d). For comparison,
the actual trajectories provided by the simulation are shown in grey. In general we
find good agreement until the very end of the trajectory, where our algorithm fails
because (i) little information is known about the final angular momentum and (ii)
the reconstruction ignores z-axis motion, which becomes non-negligible at the end of
the trajectory (see Figure 4.7(c)).

Although modifications in cavity transmission by single atom transits were first
observed in cavity QED in 1996 [24] and in several subsequent experiments [25, 26, 45,
46, 28, 27|, the results of Ref. [27] represent the first time that individual trajectories
for single atoms have been extractable from these signals. Moreover, beyond the
scope of cavity QED per se, the ability to reconstruct atomic orbits demonstrates
a new measurement device - the atom-cavity microscope (ACM) [27]. The position
of a single atom in free space is tracked with 2 micron resolution, achieved in a 10
microsecond timescale, with extremely low levels of incident light (= < 1 photon
in the cavity). Over the duration of the observation, the sensitivity is near the
standard quantum limit for sensing the motion of a cesium atom, that is, the limit
at which the laws of quantum mechanics prohibit a better measurement without a
measurement-induced backaction on the momentum of the particle. We believe that
the combination of spatial and temporal resolution of ACM should be applicable
beyond single-atom cavity QED, extending to include the imaging of chemical and

bioclogical processes [93].
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4.10 Extensions:

4.10.1 Quantum servos

With this sensitive monitor of the atomic position, an obvious next step in this exper-
imental effort will be to extend our triggering/trapping strategy to build a feedback
system to cool the atomic motion. In response to changes in transmission, such as
shown in Figure 4.7, we are free to change the depth of the effective potential well, for
example by modulating the intensity or changing the frequency of our driving probe
field, enabling atom cooling and manipulation by servo-control. Cooling the atomic
motion so that a trapped atom has a constant coupling strength g(7) ~ go will be
necessary for realization of single-atom quantum computation and communications
schemes [9, 10, 6, 5], measurement of the photon-statistics from a strongly coupled
single-atom source, and generation of single-photon pulses [8]. In addition, at the
point where our measurement efficiencies approach the standard quantum limit for
detection [94], this would become a quantum servo, meaning that quantum measure-
ment backaction must be taken into account as an integral part of the feedback loop,
a system of fundamental interest to the theoretical quantum information community
[29, 30]. Initial estimates based on the theoretical analysis of [72] indicate that the
current experiment is perhaps a factor of five above the SQL. Straight-forward im-
provements to the experiment, such as enhanced detection efficiency, a single-sided

versus two-sided cavity, and reduced technical noise along the lines of [46].

4.10.2 Measuring quantum /semiclassical distinctions

In the nonlinear saturation measurements described in Chapter 3, it was shown that
the one-atom master equation of cavity QED was in good agreement with our transit
data, whereas semiclassical theory of the optical bistability state equation predicted
atom-cavity transmission markedly different from that ;)bserved, as well as predicting
bistable behavior in thé system saturation. Measurements made by Hideo Mabuchi

and Jun Ye in similar settings show a corresponding deviation from semiclassical
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theory, while quantum theory is in good agreement with the data [26, 46].

What then, are the characteristics of this quantum/semiclassical distinction for
the upgoing transits of our current experiment?

Firstly, to compare the basic saturation characteristics of upgoing and downgoing
transits, in Figure 4.15 I plot relative transmission versus empty cavity photon number
7, With Weqpity = Watom and for probe detunings of wyrobe = Watom aNd Wprobe = Watom —
go on the same graph. The quantum calculations were performed using Sze Tan’s
quantum optics toolbox for Matlab [67], and the semiclassical by solving Eq. 2.7, the
state equation of optical bistability [64, 65]. By “relative transmission,” we mean the
ratio of the atom-cavity transmission with an atom present to that with no atom.

For the [(a)|? calculation the relative transmission is given by [(@)|2.om/ (@) 120 atom =

A

/7, and for the (a'a) calculation it is given by (a'&)atom/ (@' &) no_atom = (@18) atom /7,
since in the absence of an atom in the cavity, |(8)|2, wiom = (8'@)no.atom = 7. For the
semiclassical field the relative transmission is the ratio of the intracavity (and hence
transmitted) power with and without the atom present.

Note that the resonant case shows the same qualitative difference between the
(bistable) semiclassical theory and the quantum calculation as was evident in Chapter
3, but with the effects more pronounced here due to the increase in cooperativity C}.
Additionally, transits persist to higher drive strengths than previously: at 10 photons
empty cavity field strength downgoing transits are still present, with signal contrast
still of a factor ~10%. The separation of |(a)|*> and (a'a) is also more pronounced.
At a drive strength of 10 photons, measurement of |(a)|* (as in our experiment,
by heterodyne detection) gives transmission changes of a factor of 100 as a single
atom transits the cavity. If one were instead to measure (a'a) (by photon counting),
transmission would only change by of a factor of 10 for the same atom transit. That
(afa) >> |(a)|* means that a significant proportion of our driving field is being
radiated into the incoherent part of the atom-cavity spectrum. While this difference
was difficult to resolve for the data of Chapter 3, it should be easy given this order-

of-magnitude separation for the current cavity parameters.

For the saturation of the upgoing transits (Wprobe = Watom — go), the differences
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between quantum and semiclassical theories are smaller, but the same basic trend is
maintained: |(a)|? begins to saturate earlier that the semiclassical theory at low drive
strengths, then at high drives it takes longer for the contrast to completely disappear.
One interesting feature to note is that the trace of |(a)|? is double-branched in this
plot. Keeping the probe frequency fixed at wprobe = Watom — go, the bottom branch is
i vs. |(@)|? for an atom with coupling strength g(7) = go . The top branch is 7 vs.
|{a)|? for an atom with any g(7) < go. That is, when driving with a probe detuned by
go, higher transmission is measured for these drive strengths if the atom has coupling
strength g(7) < go.

To try and understand more quantitatively the saturation of these transits, Fig-
ure 4.16 shows the same curves, but here the relative transmission is plotted versus
intracavity field strength with the atom present, that is, m/f vs. m for the |(a)]?
trace, and (a7a@)qiom /7 vs. (a7@)atom for the (a'a) trace. For the resonant downgoing
transits, the onset of saturation is characterized by m = mg = v, /4g2, which is
the drive strength at which the semiclassical (bistability state equation) transmission
has saturated by a factor of 4 in intensity (a factor of 2 increase in the transmitted
field amplitude). For these parameters my = 2.8 x 107*. The saturation photon
number for the earlier experiment of Chapter 3 was very similar, at mg = 2.3 x 107,
However, here weak-field downgoing transits have higher contrast, with the depth
given by 1/(1 4 2C;)? = 9.3 x 1078, compared to 1/(1 + 2C,)* = 7.4 x 1075 for the
previous experiment. It therefore makes some sense that transits persist to higher
drive strength - approximately an extra order of magnitude in transit depth has to be
saturated out, and about an order of magnitude higher drive strengths are required
to achieve this.

To characterize the saturation of upgoing transits, I apply a similar semiclassical
analysis, re-arranging the bistability state equation to find the intracavity photon
number for which the semiclassical intensity transmission is reduced by a factor of
4. For the particular detunings chosen (Weavity = Watom, Wprobe = Watom — Jo0), and

under the assumptions of strong coupling 72 /g2 << 1 and k/go << 1,and with the

additional assumption v, /& << 1, the solution takes on the very simple form that
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saturation occurs for m = v/3(kgo/7%)mo = V/3/2(k/go). For our current parameters,
the assumptions x/go << 1 and 7, /k << 1 are not strictly valid. Even so, this sim-
plified formula leads to only a 15% error in estimation of the semiclassical saturation
parameter, with a value of 7 = 0.11 inferred from the simple formula and /m = 0.13
from the full bistability state equation. The quantum curve for |(a)|? saturates to this
same factor of 4 change at m ~ 0.07, a factor of approximately two lower. It is ap-
parent then, that saturation of upgoing transits onsets for a much higher intracavity
photon number than for downgoing transits, in this case three orders of magnitude
higher. This raises the possibility that weak-field effects associated with driving at
this detuning, such as strong antibunching of photon statistics, may persist at these
higher drive strengths, making this measurement a much more experimentally feasible
prospect.

Moving now to the parameters of the experimental data of Figures 4.8 and 4.9
(Age/2m = —80MHz, Apope/2m = —145MHz), I plot relative transmission as a func-
tion of empty cavity photon number 7. Each of the traces for |(a)|?, (a'a) and
the semiclassical result is branched: the lower branch corresponds to the saturation
behavior of an atom with maximum coupling g(F) = gy, while the upper branch
is the maximum transmission for any coupling g(7) < go. At low drive strengths,
this branching means that an atom falling through an antinode of the field (passing
through a point of g(7) = go) will produce a two-peaked transmission signal, with
the dip in the center corresponding to the position of optimal coupling. It can be
seen that at very low and very high photon numbers the differences between quantum
and semiclassical theory are most pronounced. However, at the empty cavity values
7 = 0.1 — 0.7 photons of the data, we are close to the crossing-point of these two
theory curves, meaning that the distinction between them is small, and would be
difficult to distinguish experimentally - this was not an optimal choice of parameters
if our goal were to look for a quantum/semiclassical distinction. At the detunings
of the other data set (Ag./2m = —47MHz, Apope/2m = —125MHz) the behavior is
very similar, and the chosen drive strength of 7 ~ 0.3 is once again close to the

crossing-point of the quantum and semiclassical theories.
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Note however that at lower drive strengths 7 ~ 0.05, the |(a)|* calculation predicts
upgoing transits with a transmission increase of a factor of ~ 7, while the semiclas-
sical prediction is for a factor of ~10, a difference which should be experimentally
distinguishable. Unfortunately, at this driving strength the potential is too shallow
to trap atoms well, meaning that the measurement would have to be derived from
an ensemble of transits rather than the heights of single trapped oscillating atoms.
At higher drive strengths there is also a measurable difference. At 7 ~ 1.5 photons,
quantum theory still gives transits with a factor of 2.35 intensity increase, whereas
the semiclassical prediction is for only a factor of 1.9, a ~ 50% difference in the height
of transits (remembering that as this is relative transmission, the baseline is 1). As
the shot-noise is reduced at this higher driving strengths, and will be approximately
a factor of v/5 = 2.2 lower than for the data traces shown in Figure 4.7, this should
be an easily distinguishable difference. Showing that the relative transmission pre-
dicted by the quantum theory is lower at low drive and higher at high drive than the
semiclassical would also be a confirmation that restricts systematic offsets existing in
our experimental data, which could be argued would explain a quantum-semiclassical
difference observed at a single drive strength.

Given that the data taken so far in this experiment was not in a regime which
demonstrates a striking quantum-semiclassical distinction, I will present here a few
suggests for better experimental parameters. Firstly, by simply moving the probe
beam closer to the cavity resonance, the results of Figure 4.18 are obtained for
Ae/2m = —80MHz, Aprope/2n = —115MHz. Here there is a qualitative change
in the type of transits seen as the drive strength is increased. For a weak probe, “up-
down-up” transits such as recorded in Figure 3.3(b) of Chapter 3 will be observed,
since the transmission for an atom with coupling go is less than that for an atom with
g(7) < go. At higher drive strengths, as the spectrum saturates simple upgoing tran-
sits are observed. In this regime of upgoing transits there is now a clear separation
between |(a)|?, (a'a) and the semiclassical result.

This separation can be enhanced further by moving the cavity closer to the atomic

resonance, as is shown in Figure 4.19, for parameters A,./2m = OMHz, Ay ope/27 =
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Figure 4.19: For parameters A,./2m = OMHz, A,rope/2m = —30MHz, an even larger
effect is seen at high drive strengths.

—30MHz. Our understanding of the general behavior of the quantum saturation is
that it onsets sooner than the semiclassical case, then takes longer to finally saturate.
Given this, it is not surprising that probing with high drive strengths is a good
place to look for the quantum-semiclassical distinction. And, as the system saturates
the two peaks in the spectrum move inward, so at highest drive strengths the best
upgoing transits are seen for detunings close to the atom-cavity resonance, such as
Aprobe/2m = —30MHz in Figure 4.19.

Finally, as in Chapter 3, it should be pointed out that the best contrast is obtained
for downgoing transits near the atom-cavity resonance. In Figure 4.20, a slightly red-

detuned probe is chosen, with the intention of channeling atoms to regions of strong
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Figure 4.20: The best contrast between quantum and semiclassical theories is observed
near resonance, here at detunings A, = 0, Apope /27 = —5MHz.

coupling as was observed in the saturation measurements of Chapter 3. Parameters
are Ag./2m = OMHz, Aprope/27 = —5MHz for this figure. At an empty cavity field
2

strength of 10 photons, the difference between |(a)|? and the semiclassical result is a

factor of 100, and the difference between |{a)|?and {a'a) a factor of 10.

4.10.3 Two-atom events?

One remaining point still to be investigated are occasional anomalous signals seen
such as those of Figure 4.21(b) and (f). As evidenced by the anharmonicity curves
of Section 4.7, the characteristics of transits (peak amplitude, oscillation frequency)

are in good agreement with quantum theory, and consistent over large data sets. The
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transits of Figure 4.21 were taken from a data set with peak transit height consistently
1.5 < m < 1.6. Very occasionally, signals are seen extending above m = 2.0, with a
duration of 50-100us. The timescale of these events makes them suggestive of being
a second atom falling through the cavity while the first is trapped.

This could be verified experimentally by triggering on these secondary peaks and
switching on a probe field at a higher detuning. The collective effect of two atoms
is to give an effective coupling strength g.f; = v/2go, which for the lowest dressed
state determines the observed probe transmission spectrum. (For higher-lying dressed
states, the dependence on atom number is more complicated, as discussed in Section
2.1.3). At a probe detuning ~ g.ss then, upgoing transits should be seen for two-atom
coincidences in the cavity, with no signal for single atom events.

If these signals were confirmed to be 2-atom events, an obvious goal would be to
trigger, and trap two atoms in the cavity. This may be achievable by first triggering
to catch a single atom in the usual way, and then when a second is detected, switching
to a stronger driving field at a probe detuning ~ g.s; , which by its detuning primarily
addresses the collectively coupled state of the two atoms. This second potential would
need to be deeper than the first, so as to overcome the kinetic energy gained as the
second atom entered the existing potential well. The lower dressed state again forms
a trapping potential, this time for the collective state of 2 atoms. Interestingly, in the
same sense that the state |—) = %([al) —|e0)) (neglecting detunings) is an entangled
state of a single atom and cavity mode, the lower dressed state in the two-atom case
is an entanglement of two atoms and the cavity mode, so preparation of this state

would in and of itself be an interesting advance.
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Chapter 5 REQO Mirrors

5.1 Fabrication, inspection and cleaning

5.1.1 Fabrication of cone-shaped mirrors by REO

The mirrors used in our current series of experiments began life as 7.75mm diameter
(4mm thick) fused silica substrates, superpolished with a spherical radius of curvature
to sphericity of better than /10 and surface microroughness less than 0.1nm([95]. A
multilayer dielectric coating composed of alternating A\/4 layers of TayOs (index of
refraction n=2.041) and SiOs (index n=1.455) was then deposited onto these sub-
strates by ion beam sputtering; a total of 35 layers for the first coating run (#D1306,
mirror transmission 15ppm) and 37 layers for the second coating run (#7T95, trans-
mission 4.5ppm). With Jun Ye, I made a series of measurements to characterize in
detail the properties of the #T95 coating run and developed a model to predict cavity
properties. Details of these measurements appear in Section 5.3.

Toward the experimental goal of incorporating cold atoms and strong coupling in
a cavity QED system, it became clear that the physical size of the 7.75 mm substrates
was a limitation. Firstly, atoms collected in a MOT above the mirrors would have to
fall >4mm before reaching the cavity mode volume, in which time they would have
acquired a substantial velocity. Minimizing this distance to reduce the initial atomic
kinetic energy would have the effect of increasing the atom’s interaction time inside
the cavity, as well as increasing the atom’s sensitivity to mechanical forces induced
by the single-photon cavity field.

Secondly, the cavity length is limited by the curvature of the mirrors. To create the
smallest possible cavity mode volume, and hence the strongest coupling g, it would
be desirable to use short radius of curvature mirrors, resulting in a small mode waist,

as well as a short cavity. To combine these requires smaller mirrors: a cavity formed
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Figure 5.1: Two mirrors face one another to form an optical resonator.

with 10cm radius of curvature mirrors with 7.75mm diameter substrates can be made
150um short before the mirror edges touch, whereas lmm diameter substrates of the
same curvature can form a cavity of only 2.5um length! In practice, cavity lengths
were chosen longer than this to allow a space for atoms to enter though the side of
the cavity, and to allow for imperfect tilt alignment of the mirrors.

In the first experiments with cold atoms in cavity QED, Hideo Mabuchi and
Quentin Turchette used mirrors reduced in diameter to a 3mm cylinder. Quentin
and Michael Chapman also spent some time trying to develop 1mm cylinders, but
these proved extremely difficult to clean, and alignment of a cavity with the beams
passing cleanly through the narrow substrates was next to impossible. As a next-
generation to the 3mm cylinder mirrors, Michael Chapman devised a design for a
hybrid 3mm/lmm mirror - a 3mm cylinder which is then tapered in a cone shape
down to 1lmm diameter at the coated surface, as pictured in Figure 5.1.

These mirrors are fabricated at REO with the following procedure: The coated
7.75mm mirrors are glued with UV curing glue to a second lem mirror blank, which
is then centered by eye under a microscope (to ~ 100um accuracy) on the chuck of
a diamond lathe and attached with wax. A drop of nail varnish is used to cover and
protect the coated surface during machining. The mirror+blank are then reduced
in diameter to a 3mm cylinder (programmed onto the lathe). Next, the chuck is
removed and mounted on a hand-rotatable pivot, at an angle of 45° to a diamond

grinding wheel. With the wheel spinning, the 3mm cylinder is gradually translated
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into the grinding wheel while being slowly rotated by hand, generating a tapered cone
shape at the front of the mirror. Machining stops when the final diameter reaches
the specification of 1mm=+50um, measured by removing the chuck-+mirror from the
grinding setup and examining the mirror under magnification. The mirror/blank is
then removed from the chuck by heating the wax, and placed in a vapor degreaser to
remove glue and varnish. Originally REO would perform additional cleaning which
sometimes led to scratching, but we now ask that the mirrors be delivered to us
uncleaned (after only this one stage of vapor degreaser cleaning).

It remains an open question as to what effect this process of machining the mirrors
down from 7mm to 1lmm/3mm cones has on the quality of the mirror coatings. For
the coating run #7T95 (which has a relatively high incidence of defects) a brief survey
of the unmachined substrates suggested to me that there are fewer spots on the
average untouched 7mm substrate than on the cone mirrors. However, defects are still
present on the 7mm substrates, and are very inhomogeneously distributed, appearing
in clusters, so that while most substrates looked clear a few had a high density of
defects. It is possible that coincidentally the mirrors that were turned down all had
higher defect densities (they were taken sequentially, and presumably therefore came
from similar locations in the coating machine). Also, defects are harder to spot in
the center of a 7mm substrate than on a 1mm substrate, for which the sharp edges of
the mirror can be used to check focusing, so perhaps this leads to a bias in reporting
defects on the cone-shaped mirrors.

A good test of the machining procedure would be to begin with 7mm substrates,
clean and note any defects, then make a cavity and measure finesse. Next disassemble
the cavity and coat the mirror surfaces with nail varnish. Finally re-clean the mirror
surfaces to remove all traces of the varnish, look for defects, and re-measure the finesse.
This test should certainly be done before considering machining higher reflectivity

(~1ppm) coatings.
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5.1.2 inspection of mirror surfaces

There are two critical elements to successfully constructing a high-finesse cavity.
1. Careful inspection of mirror surfaces - being able to identify any dust/scratches
2. Careful cleaning - being able to remove dust and solvent streaks without

scratching the mirror surfaces.

Types of defects

An optical microscope with 100x, 200x, and 500x magnification is used to look for
dust, glass chips, solvent streaks and scratches, with both bright-field and dark-field
illumination used to examine the mirror surface. What are the characteristics of these
four types of contamination?

(1) Dust/dirt spots: These appear as black spots under bright-field illumination,
white spots under dark-field illumination. Some are so small as to only be visible with
500x magnification, appearing as resolution-limited dots, implying that the particles
are sub-micron size. Spots are easier to see with dark field illumination, which I
primarily use while cleaning mirrors. Some spots cannot be removed from the coating
by cleaning - these ”point defects” are probably dust contaminants embedded in the
coating. I have not found a way to distinguish cleanable and uncleanable spots by
visible inspection - the only way is to repeatedly try to clean the mirror and see which
spots won’t budge.

(2) Glass chips: generally large (visible 100x magnification), and when examined
at higher magnification are transparent - looking like small sugar crystals. Be very
wary of these, as they will scratch the surface easily! Often easier to identify as glass
with bright-field illumination.

(3) Solvent streaks: Generally easier to see with bright-field illumination. Some-
times clearly visible as colored bands (like an oil-slick), sometimes just a patch of
coating with a subtly different (darker) color. Can ah%vays be cleaned off - the trick
is to do it without leaving another streak!

(4) Scratches: These are easier to see with bright-field illumination. They appear
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as-fine lines, slightly paler color than the coating. Also tiny pale dots are sometimes
seen - I think these are pits in the coating (caused by glass chips perhaps) since they
have the same optical appearance as scratches. If you see a glass chip on the coating
look carefully to see if there is a scratch trailing it. Sometimes solvent streaks can
masquerade as scratches, particularly during the early stages of cleaning - if the entire
mirror surface is coated in an impurity (varnish in our case) then cleaned streaks look

a lighter color, which can be mistaken for bad scratching.

Microscope focusing tips

To observe the defects described above requires that both the microscope, and your
eye be focused precisely on the position of the defect. Often if your eye is trained
slightly to the side of a defect, or is slightly defocused, the spot/scratch will be missed.

This is complicated by the fact that the field of view of the microscope (lmm
diameter at 200x magnification, 400pum diameter at 500x magnification) is never all
in focus at the same time. This is because the mirror surface is in general curved,
and also because it is difficult to sit the mirror completely flat under the microscope.
However, at least for our particular microscope this variation in focus provides a useful
meter: the area of the substrate in focus appears slightly darker than the out-of-focus
region, so that a subtle dark line across the field of view indicates the region of the
substrate in focus. In addition, for 1mm diameter mirrors the sharp mirror edges can
be used to check focusing.

The inspection algorithm is then to move the eyes slowly across the field of view
at fixed height, while turning the focus knob of the microscope to bring the plane of
focus back and forth through the mirror surface (observed as the dark line-of-focus
moving back and forth across the point on which the eye is focused). Dividing the
field of view into ~10 such horizontal sweeps covers the surface. This ”dithering” of
the microscope is useful because:

(1) Different areas of the field of view are at different focal positions as discussed
above.

(2) The eye is often more sensitive to the change of a tiny point flashing in and



125

out of view than to a static image.

(3) It is often not obvious when viewing a very clean mirror with no visible features
whether the image is in focus or not. Also my eye is sometimes defocused from the
image (again, with no features it’s hard to focus), so dithering the microscope in this
‘way helps locate defects.

(4) Defects sitting on the surface or embedded in the coating will have different

focal positions.

Impact of defects on cavity finesse

Any spot/scratch which is visible is clearly having an impact on the scattering proper-
ties of the mirror surface, and hence will affect cavity finesse. The task when trying to
construct a maximum-finesse cavity then becomes to try and prioritize given defects,
and thereby select a pair of mirrors with the lowest total losses.

For highest finesse, ideally the central 400pm (full field of view at 500x magni-
fication) should be completely free of defects. Guessing an uncertainty of ~ 100um
in how well the mode can be centered on the cavity mirrors, for a mode with waist
wo =25um this would give a defect free area out to at least ~ 4wy radius, where the
field is reduced by a factor of ™6 = 1077, meaning that scattering effects from a
defect at the edge of the clean area should give sub-ppm losses.

Our first batch of coated mirrors (run #D1306, 15ppm transmission) had a very
low density of point defects, so it was possible to find a pair of mirrors satisfying this
criterion of a clean center. Unfortunately, at this point we were still working out how
to safely clean these mirrors, so many arrived scratched from REO and others were
scratched during cleaning at Caltech. As a result, only a single pair of mirrors ended
up usable from the initial batch that was machined. (Subsequently, mirrors from the
same coating run have been machined down without bejng cleaned, so scratches should
no longer be a problem.) The second coating run (ruﬁ #T95, 4.5ppm transmission)
has a far larger number of uncleanable point defects, such that every mirror displays

a few defects in the central 400pm region. When selecting mirrors to use in cavity
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making, I used the following ranking of defects (from most to least serious):

thick scratches, thin scratches, spots visible bright-field and dark-field at >200x
magnification, spots visible dark-field only 200x, spots visible at 500x magnification
bright and dark-field, spots visible dark-field only, 500x magnification only.

Weighted into this is an assessment of the position of the defect - a bad defect at
the edge of the 400um will have less impact than a small defect at the center, several
small defects may be similar to one larger one...I tended to try and look for mirrors
with the central 100um completely clear. Sketches of the permanent defects of four
10cm radius of curvature substrates from the #T95 coating run are shown in Figure
5.2. Mirrors 1 and 10 are exceptionally clean for this coating run, with mirror 11
being more typical. As a test of the severity of these defects I made one test cavity
with substrates 1 and 10, and another with substrates 8 and 11, with the resulting
finesse méasurements being F=480,000+10,000 and F=420,000+10,000 respectively,
corresponding to total cavity losses of 13ppm and 15ppm. By the measurements
detailed in Section 5.3 it was found that the mirror transmission is ~ 4.3ppm, from
which we can deduce absorption/scatter losses of 2.2ppm/mirror and 2.95ppm /mirror
for the two cavities in question, suggesting that the few extra point defects in the
central region gave rise to ~ 1ppm per mirror additional absorption/scatter losses.

Comparing this to a ring-down measurement of the unmachined 7.75mm diameter
substrates, which yielded a measurement for total losses of T + A + $=6.2+.4ppm
(A+S =1.9ppm if T=4.3ppm) and a finesse of F=510,000 suggests furthermore that
~ 0.5ppm of the remaining losses may have been introduced by machining of the

mirrors to 3mm/Imm cones.

5.1.3 Cleaning 1mm tapered cone mirrors

The task of cleaning the 3mm/Imm come mirrors is a.difficult one, because:
(1) the edge of the lmm mirror surface is surrounded by chips of ground glass,
which can easily scratch the mirror surface.

(2) residues of varnish are left on the surface and must be removed without scratch-
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Figure 5.2: Dust and scratches oberserved on 4 mirrors. The circle represents the
central 400um of the coating. DF=dark-field illumination, BF=bright-field illumina-
tion.



128
ing the mirror.

(3) traces of glue/varnish may also be left on the tapered surfaces of the mirror
or on the back surface - these must be cleaned away for the sake of eventual good
vacuum pressure once the cavity is in the vacuum chamber.

This set of issues has led to the development of a cleaning/inspection procedure

specifically designed for these mirrors, described below.

Throughout mirrors are handled only with teflon-coated tweezers to avoid acci-
dental scratching, and sit only on a surface of clean lens tissue. Always sit the mirror
on its back surface (coated surface up) to avoid having the mirror roll around. Gloves

should be worn to prevent contamination of finger oils.

Step 1. Removal of coarse varnish/glue residues from substrate

There is a large variation in the amount of varnish left on the mirrors after the REO
vapor degreaser cleaning. This residue can be softened by:

-vapor degreasing with acetone (I generally didn’t do this because of the difficulty
of securely mounting the small mirrors)

- boiling gently in acetone (this didn’t seem to affect the resulting cavity finesse)
making sure that the mirror doesn’t move around in the liquid (if it grates on the
side of the container then small glass fragments could scratch the surface).

-soaking in acetone

I expect that ultrasound cleaning in acetone would also be effective, if a way to
hold the substrates firmly is developed.

Tweezers with folded lens tissue (see Figure 5.3) wetted with spectroscopic grade
acetone can then be used to wipe away spots of varnish from around the substrate
(being careful to avoid the coated surface!). Once no residue can be seen on the sides
of the mirror, the back surface needs to be cleaned -'hold the mirror with one set
of tweezers and swipe with lens tissue/acetone held in another set of tweezers (never
rest the mirror on its coated surface!), then sit the mirror coated side up on clean

lens tissue.
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Figure 5.3: I fold lens tissue crosswise in half two times, then in three. Next I twist
the tissue to reduce the diameter, then finally fold in half lengthwise. This leaves a
square end ~2mm across. Either the flat edge or a corner can be used for cleaning
mirror surfaces.
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Step 2. Cleaning varnish from mirror surface

Inspect the mirror under 200x magnification, bright-field illumination. There will
likely be brownish globs of varnish still on the surface, and there is also likely to be
a large number of glass chips sitting on the surface or embedded in the varnish.

The cleaning procedure involves wiping the surface with tightly folded acetone-
soaked lens tissue held by tweezers, while grasping the sides of the mirror with another
pair of tweezers for stability. The first wipe will be from the center of the substrate
toward one edge. Examine the distribution of glass chips under the microscope and
decide which direction is least likely to cause scratching - the goal is to gently
move these chips away from the center of the mirror without bringing any toward
it. Remember that the microscope field of view is spatially inverted compared to the
actual mirror surface.

This first wipe should be as gentle as possible, barely touching the substrate, so
as not to push down hard on the glass chips and cause scratches. After making this
wipe (and after every wipe) inspect the mirror under the microscope again. Choose
another “best” direction to minimize potential damage - this is usually in the opposite
direction to the swipe just made. If there appears to be no change at all use slightly
stronger pressure. Wipes need to move from the center to the edge of the mirror,
because if the lens tissue catches the edge of the mirror at the beginning of a stroke
it will drag glass chips across the mirror!

Repeat this cleaning/inspecting until the varnish residues are removed. Before
each swipe look at the entire mirror at low magnification for any large particles
(dust, glass chips, lint from lens tissue) on the surface. If an attempt to clean the
mirror is made with a large particle present this could easily cause scratching of the
mirror surface. These should be removed if possible by blowing with compressed air
or nitrogen. If that doesn’t work, always clean in the direction to take this particle

away from the center of the mirror.
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Step 3. Iterative cleaning/inspection to remove spots/streaks

Inspection at this stage under dark-field illumination (200x and 500x magnification)
will reveal a number of small spots on the mirror surface. Also, solvent streaks are
probably present near the center of the coated surface. To remove these, essentially
the same cleaning technique is used as in step 2. That is, inspection (now in dark-
field), a single swipe with folded lens tissue dropped with acetone in a direction to
swipe defects away from the center, then repeated inspection. The difference now is
that to avoid leaving solvent in the central region of the coating, the swipe needs to
start closer to one edge of the mirror, but being careful still not to drag chips from
the edge across the surface. After each swipe inspect at 200x, 500x to see which spots
have been removed, which remain. If a spot won’t shift after 3 or 4 swipes (which
remove/add other spots) then it won’t be cleanable. At this point I've tried switching
solvents to methanol or isopropyl alcohol, but this never helped - it really seems these

remaining spots are embedded in the coating.

Step 4. Final inspection

Do a careful inspection with dark-field 200x and 500x, then with bright-field to look
for scratches/solvent. I find that it typically takes about 1 hour to clean a single
mirror with this procedure. Once satisfied that the surface is as clean as possible,
clean the back of the mirror by picking it up with tweezers and swiping the back with
lens tissue/acetone. If it wasn’t a clean swipe then repeat, but this surface can’t be
inspected at this time without dirtying the front surface. After cleaning the back
place the mirror on its side (to keep both front and back clean). I use a v-shaped
holder of two microscope slides covered in lens tissue to stop the mirror from rolling

around.

5.1.4 Cleaning 7.75mm mirrors

For the ring-down measurement made with 7.75mm substrates I used basically the

same cleaning procedure as above, rather than spin-cleaning as was done in previous
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experiments. Obviously, the danger of scratching by glass fragments is greatly dimin-
ished in this case - but it is always possible to introduce particles on the lens tissue, so
the substrate should be inspected before every swipe as before. On these substrates I
looked for the central 1mm (full view 200x magnification) to be clear rather than just
400um, since it is harder to reach the same absolute accuracy in aligning the larger

substrates.

5.2 Cavity construction and alignment

5.2.1 Basic design

The clean mirrors sit on small v-groove aluminum blocks to which they are glued
with Torr-seal. These blocks in turn are glued to the cavity mount. For our first
series of experiments this was made of two aluminum pieces surrounding a cylindrical
PZT (piezo-electric transducer). With one v-block glued to each half of the mount
the cavity length could be scanned and stabilized with the PZT. When moving to the
higher finesse cavity of our second measurements this design wasn’t stable enough,
with noise at frequencies of a few kHz evident on the cavity transmission. Our
eventual solution was to move to a single solid-block mount, with shear-mode, flat
PZT’s under each v-block to scan the cavity length - this new design developed
primarily by Theresa Lynn. This design has greatly improved noise characteristics at
low frequency, but still exhibits mechanical resonances at ~25kHz and ~60kHz that

are evident on the cavity transmission.

5.2.2 Basic alignment

Transverse and tilt alignment of the mirrors is achieved with reflected HeNe fringes
(the cavity has very low finesse at 633nm wavelength).

Starting with a collimated HeNe beam (no coupling lens), the input mirror is
aligned such that the HeNe beam passes through the substrate, and hits the lmm

mirror surface in its center. With a <lmm spot size it is relatively easy to center
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the HeNe beam in this way. Next the tilt of the input beam is walked so that the
HeNe spot is both centered on this mirror, and the beam is backreflected (i.e., the
reflection from the mirror surface is centered on the incoming beam. There will be
two reflected HeNe spots - one from the mirror surface and one from the back surface
of the substrate. These are easily identified because the reflection from the back of the
substrate remains a collimated beam (~1mm size), while the beam which bounced
off the curved mirror will be expanding. For a 10cm radius of curvature mirror it’s
about 2cm diameter at 1m distance.

Next the tilt and position of the back mirror is adjusted. Again two reflected spots
result from this mirror (giving a total of 4 spots), but they are harder to identify this
time because of the lensing effect of passing through the input mirror. For 10cm
mirrors, two sets of circular fringes are seen within the 2cm beam (the reflection from
the front mirror). At lm distance, the large, obvious circular fringes that fill the
entire spot are the wrong set, arising from a reflection off the back of the second
substrate. The correct reflection off the second mirror is a very small spot (~1mm),
due to being lensed through the front mirror. Simply backreflecting this spot along
the input beam path is good enough alignment. To further check the alignment the
correct circular fringes can be seen by looking further back from the cavity.

The alignment procedure then consists of walking the alignment: adjusting the
translation of the front mirror, the tilt of the back mirror, and the position of the
input HeNe beam until:

(1) Circular fringes from the two beams are properly back-reflected.

(2) The mirror substrates are aligned transversely (i.e., the edges line up).

Transverse alignment of the substrates is checked with a long focal length micro-
scope and CCD camera (looking from above), and by looking through a 5cm lens by
eye (from the side).

During this alignment the front mirror/v-block is already glued to the cavity
mount, which is on a translation stage. The back mirror/v-block is held by a mirror
mount which gives tilt control. This translation/tilt, together with walking the

alignment of the input beam allows for optimal alignment.



134

Once the HeNe fringes are aligned correctly, an input coupling lens is added to
the setup, and a Ti:Sapphire beam (spatially overlapped with the He:Ne beam) is
measured in transmission. If properly overlapped with the HeNe beam then cavity
modes will be found very easily with a small adjustment of the coupling lens. Mea-
suring resonant wavelengths of the cavity, and hence the cavity free spectral range,
gives the length.

Once cavity alignment and length are correct, the translator is moved out to allow
Torr-seal to be inserted between the mount and back v-block. There is then ~1/2
hour to restore optimal alignment before the glue starts to harden. As the glue dries
overnight the cavity length changes (lengthens) by ~2 orders, then when the clamp
is unscrewed the cavity gets ~1/2 an order shorter. The back v-block should be held
lightly in its clamp, so that when this is unscrewed the v-block doesn’t shift and

change the cavity alignment.

5.2.3 Gluing, baking and cavity birefringence

The careful alignment procedure detailed above was developed to satisfy two goals:
firstly, to be able to specify cavity length precisely, and secondly to try and reduce
birefringence, by aligning the mirrors well.

When a cavity has just been made both of these are correct - the cavity length can
be targeted to 1um, and birefringence is low - typically birefringent axes can be found,
but injected linear polarization still cancels with about a 200:1 ratio at the worst
places (45° to the birefringent axes). The magnitude of the observed birefringence
depends on the way in which the mirrors are glued to the v-blocks. If only small dabs
of glue (= 0.5mm) at the back of the substrate are used then very low birefringence
is observed (the 200:1 cancellation described above), but if a larger (several mm) gob
of glue on the side or underneath the substrate is used then the birefringence will
be made worse. We believe that the cone shape of the mirrors probably also has an
effect in reducing birefringence: the lmm coated surfaces are isolated better from the

site of gluing than would be the case for a 3mm cylindrical mirror.
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However, the birefringence got unexpectedly worse when the cavities were baked.
This wasn’t noticed with the cavity used in our first experiment, probably due to
a combination of factors: less glue was used than in later cavities, the chamber was
only baked to 50°C (mirrors would touch due to aluminum mount expansion if heated
any hotter!), and this cavity had a finesse 3 times lower, making the total effect‘ of
the birefringence 3 times less apparent. When making cavities with higher finesse
this became a real problem. In one typical test cavity, for which the polarization
cancelled 200:1 for all polarizations before baking, after baking at 100°C for 24 hours
clear birefringent axes had developed, with linear polarization now only cancelling
10:1 off-axis. The cavity length also changed during this baking, from 10.1 to 12 pm,
indicating that some serious shift in the cavity alignment took place.

My belief is that this birefringence comes from shifting in the Torr-seal glue as it
hardens, both changing the alignment of the cavity and adding stress to the mirrors
(from the small dabs of glue on the substrates), possibly in conjunction with some
shift in the PZT. This effect was seen when using both regular and shear-mode PZT’s,
which suggests it is more likely the glue.

As a test of whether cavity alignment alone could be responsible, one test cavity
was made where the mirrors were glued to their respective v-blocks (with one glued
to the cavity mount), then baked at 100°C overnight before aligning the cavity. This
cavity was more birefringent that the unbaked cavities, suggesting that the birefrin-
gence is at least partly due to stresses from heat-induced changes in the small dabs
of glue attaching the mirrors.

To illustrate in detail the effects seen, I present here the “baking history” of the
cavity used in our second series of experiments (4.6ppm mirrors). Based on the above
experience it was decided to bake the cavity and chamber as gently as possible, to
try and lower the chamber pressure without destroying the cavity.

Initial cavity parameters: 852nm modes at 9.2um and 9.6um length depending
on PZT voltage (20V or 200V respectively). Finesse F =~ 470,000. Birefringence:
linear polarization cancels to 1.5% in worst places. No obvious change in linewidth of

34.5MHz (at 9.2um length) with input polarization, so birefringent splitting < 2MHz.



136

The vacuum chamber with cavity inside was then baked at ~38°C for 1 week.
Measurements made while the chamber was hot showed that the birefringence and
finesse F ~ 480,000 were unchanged by this gentle heating, and the cavity length
was now 11.4um due to thermal expansion of the cavity mount.

When the bake was switched off the chamber slowly cooled over the course of
about 1 day. With the temperature back to 22°C, a cavity length of 10.1pym at 0V
PZT voltage was measured (that is, 2 orders longer than initially!), with birefringence
now slightly worse (cancellation to 3% off-axis), but still with the same cavity FWHM
measured along good and bad polarization axes (31MHz FWHM, F ~ 480, 000).

Unfortunately, the chamber pressure was still too high, so we chose to do another
stage of baking, expecting that if we continued the bake at the same temperature
(=40°C ) there would be no further changes in the cavity, since our first bake would
have already made whatever changes to the glue that were going to happen. So again
the chamber was raised to ~38°C for 1 week. Measurements with the chamber hot
gave a cavity length of 11.8um or 12.2um, with birefringence still small at ~2.5%
cancellation. When the bake was turned off the birefringence again got worse - with
final cavity length 10.5um (at 120V PZT) and polarization cancellation to 7%, leading
to a ~1MHz difference in measured linewidth with polarization.

It was then decided to cool the chamber slightly by running cooling water, to bring
the cavity length back to the target 10.1um length. With the chamber temperature at
16°C and cavity length at 10.1um (17V PZT), input polarization now only cancelled
to 20% ! After the temperature had stabilized, length was 10.1um (80V PZT), bire-
fringence 25% cancellation, meaning that the cavity lineshape was now visibly split
by about the HWHM. That is, for off-axis polarization a cavity width of 45MHz was
measured, and on-axis 31MHz. When the cooling water was switched off again, the
cavity returned to 10.5um, birefringence ~8%. As a final test the cavity was cooled
again and left cold for a week, to see if a gradual settling of the glue would help reduce
this birefringence. The cancellation was better this time (15%) but stayed close to
this value (best 13.6%). Finally the chamber was returned to room temperature.

The final length ended up being yet longer, 10.9um (180V) at room temperature,
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but with lower birefringence of 2% cancellation! Remember that this cavity gave 7%
at 10.5um, and 15% at 10.1pm length.

From this series of measurements it seems to me that there is an effect due to
unequal thermal expansion and contraction of the PZT/Torr-seal/glass/aluminum
structure, which ends up putting a stress on the mirrors. The copper mount and
aluminum v-blocks probably contract smoothly, but the Torr-seal perhaps doesn’t
follow this and so stresses the mirrors. Because birefringence increase seems to be
associated with cooling the cavity, it also indicates that the warming and cooling the
glue give different expansion/contraction rates. As for the change in cavity length, I
suspect that this is because the Torr-seal is intended to be cured at high temperature
and we let it set at room temperature - additional baking further hardens the glue
and changes its properties.

One mystery remains: an almost identical cavity (regular not shear PZT, alu-
minum not copper mount, same Torr-seal gluing) was made for Jun Ye and Dave
Vernooy’s experiment. This cavity was baked inside their vacuum chamber to 150°C
for several days, and showed no increase in birefringence. The way in which the
mirrors were glued to the v-blocks was the same in both cavities. 1 can suggest
two possible explanations, neither of which has been tested: Firstly, it may be a co-
incidence of where the glue was placed with respect to the birefringent axes - if the
additional stresses ended up being symmetric there wouldn’t be a large resulting bire-
fringence. Secondly, it may be that their hotter bakeout initially introduced stresses
but eventually smoothed them out, while our cooler 100°C test bake wasn’t enough
to remove the remaining defects.

Finally, the obvious question arises: if Torr-seal used to glue the mirrors appears
to be causing this birefringence, why not use another type of glue? This raises an
orthogonal problem: that of cavity mount mechanical stability. Theresa Lynn spent
a considerable time testing various configurations of PZT’s, v-blocks, and gluing
techniques to improve the mount’s isolation from mechanical excitation. This was
because our first attempt at a cavity for the second experiment (4.6ppm mirrors)

exhibited a strong vibration at 15kHz. This meant that looking for atom transit
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signals with probe detuning on the side of the cavity would have been impossible,
both because these vibrations had large amplitude (=30% variation in transmission
for a probe laser at the cavity half-width) and were at a frequency corresponding
to expected atom signals. The 15kHz was a ’diving board’ resonance of the PZT,
which was not glued all the way underneath (to allow it to scan). One attempted
design was to damp these oscillations by using softer RTV glue under the v-blocks,
which instead introduced a large low-frequency mechanical resonance at a few kHz,
corresponding to the v-blocks swaying on the RTV, of larger amplitude than the
15kHz. In the most stable design produced, the 15kHz resonance peak was pushed
up to 65kHz by using shear-mode PZT’s instead of regular PZT’s, and by gluing
everything rigidly together - this resonance probably a bending oscillation of the v-
block /mirror structures. The amount of glue joining the mirrors to the v-blocks had a
strong effect on this frequency: if insufficient glue was used, the resonance was around
20kHz (softer 5 minute epoxy needed more glue for the same stability than Torr-seal),
and the resonance would jump to >50kHz when a proper rigid connection was made
by applying a small amount more glue.

So it seems that mirrors glued with RTV to try and avoid birefringence would
probably result in an unstable cavity if the current mount were used - this problem

of combining mechanical stability and low birefringence is yet to be solved.

5.3 Coating measurements and modeling

5.3.1 Introduction

For many contemporary physics experiments, measurement enhancement via an op-
tical cavity is a useful tool. In such situations, a better understanding of cavity and
mirror properties will be useful for achieving improved sensitivity and elimination of
systematic errors. For example, in cavity QED, one needs to know the mode structure
of intracavity fields in order to develop the optimum strategy of atom-cavity coupling;

for frequency metrology, accurate determination of phase shifts of the resonant fields
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can provide precision frequency markers. Additionally, the knowledge gained from
such an understanding could provide guidelines for the optic coating community to
develop in situ measurement and control capabilities of the coating process.

The work described in this section uses precise length measurements of short
optical cavities to determine mirror coating characteristics. These cavities have length
of the order of 10um, leading to a free-spectral-range (FSR) of 15 THz, or a wavelength
difference of a few tens of nanometers (for example, it is 36 nm for a center wavelength
of 852 nm) for neighboring cavity modes. Therefore, a 6-digit measurement of the
wavelengths (Burleigh wavemeter) of the cavity modes acquires a precision of the
order of 5 x 1075 for accurate determination of the cavity length, from which details
of the index of refraction and layer thickness of materials in the mirror stack can be
inferred.

The cavity finesse and overall cavity transmission can also be measured directly to
measure the mirror losses, [, and transmission, 7. This information can be combined
with the FSR measurement in two useful ways:

Firstly, the FSR measurement is sensitive to the difference in refractive index ny—
ny, of the materials making up the multilayer mirror stack, whereas the transmission
T depends on the ratio ng/ny. As a result, a precise measurement of both the FSR
and T can be used to determine the values of ng and nj independently. Moreover,
by mapping out the wavelength dependence of the FSR, the thickness of layers in the
mirror stack can be determined.

Secondly, if one of the refractive indices (here ny) is well known, then the FSR
measurement determines ny, and an independent value for the mirror transmission 7'
can then be calculated from ny and ny,, and compared to the experimentally measured
result. In this work the values obtained by the two methods agree well.

Knowledge of the cavity properties is of importance to our current experiments in
two particular ways:

1. Mirror absorption/scatter losses are a critical limiting factor in the loss rate
from our cavity QED system - for our current cavities the loss rate from photon

scattering due to mirror imperfections is similar in size to the atomic spontaneous
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emission rate. To build robust quantum computing/communications devices from
cavity QED components, it will therefore be necessary to improve the ratio of mirror
transmission to mirror losses.

2. The standing-wave light field inside the cavity penetrates into the mirror coat-
ings, giving a larger mode-volume than would be expected naively from the physical
distance between the mirror surfaces. As our microcavities are pushed to shorter
lengths, this leakage field will have a non-negligible effect on the achievable coupling
strength g.

5.3.2 Direct transmission and loss measurements

The #T95 coating run had a design transmission of T**=7ppm at a center wavelength
of 852nm, from which a cavity finesse of F=370,000 was expected. It was somewhat
surprising therefore to measure a finesse of F=480,000, and this prompted me to
make a more detailed measurements of the mirror properties, and design a model to
match these measurements.

Firstly, losses were measured directly by Jun Ye (for a 40pm length cavity with
20cm radius of curvature mirrors) in the usual way by recording resonant cavity
transmission, reflection and finesse. If we denote the transmission of mirrors 1 and 2
by T; and T respectively, and the absorption-+scatter loss per mirror as [; = (A+S5);,
then the total cavity losses T + T3 + l; + I3 can be determined from the cavity
finesse F (ringdown or linewidth measurement + length measurement). The cavity

transmission ligns = can then be used to determine I; + ls, if T7 and

ATy
(Ty+To+1+12)?
T, are known independently. In practice this is a difficult measurement to make,
because the overall transmission I;q,, depends on the mode-matching into the cavity
being perfect. A version of this which does not require perfect mode-matching can be
derived, by comparing the reflection and transmission values with the cavity locked
on resonance and off resonance.

First of all, the total loss (17 + 15 + 1 + I3) is always measured first, with a cavity

ringdown or linewidth measurement. Now let us denote the input power as F;,, the
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reflected power P, , and the transmitted power F,. There is also a mode matching
factor €, meaning that of the input power of Fj,, only eP,, is useful for coupling to

the cavity TEMgo mode, (1 — €)P;, is wasted. We have the following equations:

2
F = T+ T, : A = l—: T assuming two equal mirrors (5,1)
b F 2 2, F v2
eby, 1T2(27r) T (7r) (5.2)
P, —(1—-¢)F, F F
[ m=l l T__.TQ___z____lz__g .
P (h+b+T - T)(3) (=) (5.3)

(Remember (1 — €)P;, is the useless power that is reflected directly off of the
input mirror, and must be subtracted from P, to leave the reflected power we wish
to measure, that is, the sum of the field leaked from the cavity storage and the field
(mode-matched) directly reflected off the input mirror. This cavity contrast is a direct
result of the mirror properties.)

Division of Eq. 5.2 by 5.3 gives

P, T*(Z)?

yis

P =Py PE2-1

(5.4)

Eq. 5.4, combined with 5.1, will determine completely 7" and [ .

In the experiment, Jun’s direct measurement gave (from finesse we have [ + T =
7.2ppm) Py, = 54uW, P, = 42.6uW and P, = 4.82uW therefore | = 2.9 and T =
4.3ppm.

Another way to measure the (7T',1) is by sweeping out all the high order spatial
modes and carefully noting the transmission and reflection at each of them. One
measures the total input power and then sums together the powers of matched modes.
That measurement produced ! = 3ppm, and T = 4.2ppm. The value of T should be
a bit lower in this case because it is not possible to include all higher order modes in
the measurement, some of them are simply not measured due to their weakness.

Other cavities measured had higher finesse, thought to be due to a lower density of

surface defects. The highest achieved with cone-shaped mirrors was F=480,000+£10,000,
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corresponding to losses [ = 2.2ppm if mirror transmission 7' = 4.3ppm.

5.3.3 Technical details of the model

Next, a model for the coating was derived. A transfer-matrix formalism was used
to calculate the input-output propagation of a plane-wave field through the 37 layer
stack of alternating high index (Tay05, ng=2.0411) and low index (SiOs, n;=1.455)
dielectric layers (these dielectric constants are assumed to be constant with wave-
length). The substrate refractive index (supplied by REO) used was n,; =1.5098.
That is, the transfer of the field through each A/4 layer is represented by a matrix,
and the response of the entire mirror (or cavity) is determined by the product of these
individual matrices.

Following the treatment of Hecht [96], for normal incidence the matrix representing
cos(kh,; 1sin(kh;))/Y;
layer j is given by M; = (kh;)  (isin(kh;))/Y; . Here k = 27 /) is the
1Y sin(kh;) cos(kh;)
free-space wavevector of the incident light, h; = n; x (layer thickness) with n; the

refractive index, and Y; =, /-=4n; with (g, po) the electric and magnetic constants

in ST units. For an exact M\/4 layer (and for light at the design wavelength of the
. o 0 /Y . .
coating), this simplifies to M; = . A multilayer stack is represented by
iY; 0
multiplying the matrices of the individual layers: For light incident on layer 1, the
matrix for the entire structure of q layers is defined as the product M = M M;...M,.

For our mirror stack, this gives M = (Mra,0sMsio,)'®Mra,05- Note that at the

_nL
coating center (where there is an exact \/4 layer), Mrq,0,Msio, = nH ,
n
0 -
0 __73_(_%)18
so the system matrix has the simple form M = Yo ton
iYH(%f)ls 0

For a field incident from material with index my and exiting into material with

index n;, the resulting transmission coeflicient is given by

t = 2Yy/(YoMy1 + YoYsMiz + Moy + YsMya), (5.5)
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with transmission T = %}f

t|? (the factor of 2= re-expresses the intensity in free-space
units, by accounting for the change in field amplitude in the dielectric). At the center

wavelength of the coating then,

T= -Z—O — 2i/[(ng/ng)(nr/ng)*® + (ng/no) (nm/nr) ™. (5.6)

But we can make a further simplification: since (ny,/ng)*® = 0.0018 and (ngy/np)'® =
557 the first term in the denominator is only a 10~¢ correction, so the final result for

at the coating center becomes
T = dngno(ng)*®/(nu)*, (5.7)

and the transmission is determined by the ratio of the refractive indices.

This calculation reproduced the design reflectivity of T**=7.3ppm for the #T95,
and T*=14.6ppm for # D1306 coating run, for which the number of layers was
reduced to 35. The model and measured (REO spectrophotometer data) “coating
curves” are shown in Figure 5.4 for the D1306 coating run.

For a fixed cavity length the resonance wavelengths of the cavity can be calcu-
lated simply with the same transfer-matrix formalism, using a matrix for the entire
system, Mioar = M Myo,M, (a product of two mirrors plus a fixed length vacuum
gap between). The calculation steps through a series of wavelengths calculating the
cavity transmission T' at each, and by finding places of maximum transmission finds
the wavelengths of the cavity resonances.

Conversely, for a given set of measured cavity resonance wavelengths it is possible
to determine the cavity length very precisely - and the parameters of the model (index
contrast, layer thickness) are set by comparison to such measurements. Finally then,
with the detailed knowledge of the mirrors provided from the model, if the cavity is
locked to a laser of known frequency (in our case a cesium transition at 852.359nm)
the cavity length is determined precisely. Close to the coating design wavelength it

is roughly L.sy = L + 1.63\/2 with L (the physical distance between the mirror
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surfaces) an integer number of \/2. Further details of the wavelength-dependence are

provided by reference to the model.

5.3.4 FSR measurements

To determine the parameters of the model (index contrast, layer thickness), a series
of precise measurements of the cavity free-spectral range (frequency between succes-
sive cavity resonances) was made[97, 98, 99]. At fixed cavity length a Ti-Sapphire
laser was tuned to find successive resonant wavelengths (A1, Ag) of the cavity, and an
experimentally determined length was then defined by Lezp = A1A2/2(A1 — A2).

This length comprises the actual physical length between the two mirror surfaces,
L, plus a contribution from leakage of the mode into the mirror stack, which gives rise
to an additional phase shift at the coatings, to give a length L.;; > L. In addition,
the leakage into the coatings increases with wavelength as (Ay, A2) move away from
the coating design wavelength, so this gives another additional contribution to the
round-trip phase and hence to the measured length Legp.

As discussed in Ref. [97], if A; and A, were closely spaced compared to the scale
on which the coating properties vary (so that coating dispersion could be neglected)

then near the design wavelength of the coating we would have Loy = Legy = L +

(nHinL) X A/2 where ny and ny, are the high and low index materials of the stack,

and A = 21 Ag/(A\1 + Ag) is the average (in frequency) of wavelengths A; and ;. We

1
nH—NL

thereby have a dependence of the free spectral range on ( ), which combined with
the transmission (which depends on ny/ng) can fix ng and ny,. For these materials,
this gives L.sy = L + 1.633)\/2. However, for our measurements below with short
cavities, A; and Ay are separated by ~30nm, so Lesp > Less. But we can still use the
complete model to fit to the measured values (A, A2) and determine parameters of
the coating. Finally, by mapping out this wavelength dependence of the free-spectral
range to find min(Leg,:) we find the center wavelength of the coating.

In the model, the refractive indices used are adjusted to obtain the same pairs

(A1, A2) as measured. Then, the layer thickness in the model adjusted to agree with
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the measured coating center wavelength. By using the additional information of the
measured mirror transmission 7" from Section 5.3.2, we can now either:

1. Derive independent values for the refractive indices and layer thickness, or

2. Assuming one index is known, use the refractive indices and layer thickness
information to give an independent value for the mirror transmission, which can be
compared to the measurement of Section 5.3.2.

That the dispersion (FSR) measurement alone is sufficient to determine the loss-
less part of the mirror properties represents some useful information for the mirror
coating technicians: the index difference ny — n;, and the optical thickness of the
coating layers can be simply measured in this way without interference from absorp-
tion/scatter losses. And, if ny, is known, this also gives a simple way of finding the
mirror transmission. Adding in a direct measurement of mirror transmission yields
values for ny and nj, separately.

Data obtained from these measurements are shown in Figure 5.5, where L,y is
plotted as a function of wavelength, for a 10um cavity with 10cm radius of curvature
mirrors. The circles are measured data, and the curves the calculation from the
model, with parameters chosen to best fit the data. This data was taken by setting
the cavity to a series of different lengths, and recording a pair of resonant wavelengths
(A1, A2) at each length. The x axis is center wavelength A, = 2\1A2/(A1 + Ag), the
y axis the measured cavity length Leg = AAa/2(A; — A2) shown in units of A;/2
: for each pair (A1, A2), the length is such that Le,p/(A1/2) = 24.xx . Dividing by
Ag instead would exactly give 23.xx, since by rearranging the formula for L, we
see that Legpt/(A1/2) = Legpt/(A2/2) + 1. Due to a finite drift in the cavity length,
each measurement of A was made to only 5 digits resolution (e.g., 852.59=£0.01nm),
leading to the uncertainty in L.y, shown. Uncertainty in A, is £0.03nm and cannot
be seen on this scale.

Two theory curves are shown. The solid curve shows a model with n;, assumed
to be fixed at its nominal value of n;=1.455. To best fit the data, ny was increased
to ny=2.0676 (a factor of 1.3%). In addition, the center wavelength was shifted
to 847nm (by reducing the thickness of each \/4 layer by 0.6%). Discussions with
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REO confirmed that 1.3% is a known offset for the particular coating machine which
produced this run, and also that a few nm uncertainty in the center wavelength is
typical. With these parameters, the inferred mirror transmission is Ti,s =4.6£0.2ppm,
agreeing well with the measured value from Section 5.3.2. The dotted curve (which
overlaps the solid curve) shows the model when both n; and ny are allowed to
vary. Their values are chosen to match both the FSR measurement shown, and
to give a mirror transmission to match exactly the experimentally determined value
T = 4.3ppm. Parameters which satisfy these criteria are ng =2.0564 (0.75% increase)
and ny;=1.4440 (0.76% decrease). Our direct measurement of 7" in Section 5.3.2 had
a large uncertainty, which limits the absolute determination of ngy and nj, to about
this 1% level; however, a more precise measurement could in principle determine the
indices at the 0.1% level. One application might be to measure T and the FSR as
a function of position across a mirror substrate, thereby mapping out stress induced
variations in the refractive indices at the 0.1% level.

In this data set the correction for the Gaussian phase difference between the
actual resonator mode and the plane-wave of the model has been neglected. After
the propagation distance from the mode waist to the mirror surfaces, a Gaussian
beam will have acquired less phase than a plane wave travelling the same distance.
For a 10um cavity with 10cm radius of curvature mirrors, this gives a 2% correction,
corresponding to a shift in L., by ~ 0.0045 cavity orders. Lowering the refractive
index contrast of the model to shift the calculated curve by this amount would increase
the inferred mirror transmission by < 0.1ppm. For our second cavity (44um, 20cm
radius of curvature mirrors), the correction is 0.0066 cavity orders.

The mirror phase shift (FSR measurement) is only sensitive to the transmis-
sion (index contrast) and center wavelength (layer thickness). Therefore, if absorp-
tion/scatter losses are added to the model (by introducing an imaginary component
to the refractive index) the cavity resonance wavelengths do not change. More pre-
cisely, adding a scattering loss at the mirror surfaces has exactly zero effect on the
FSR and mirror transmission. Adding losses within the coatings has a small effect: in-

creasing the mirror absorption from 0.5ppm to 2ppm (an experimentally reasonable
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Measured and Calculated Cavity Length vs Wavelength
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Figure 5.5: The cavity length L., measured from the Free-Spectral Range (FSR)

varies about the design wavelength of the coating. Fitting a model to these data

points gives a measure of mirror transmission (from fitting of the difference ny —ny)

and center wavelength (from fitting layer thickness).
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range) changes the mirror transmission by a factor of ~ 107°T, clearly negligible,
and again there is no effect on the FSR measurement. As a result, this measurement
(with nj, assumed fixed) provided a very simple and sensitive inference of the mirror
transmission of T},; =4.640.2ppm, which is unaffected by absorption/scatter losses.

The same measurement and fitting procedure was used on another cavity with
mirrors from the same coating run. This 44um cavity made from 20cm radius of
curvature mirrors gave a transmission of T, =4.5+0.2ppm, with a center wavelength
of 848nm (This was the cavity used for the direct measurements of Section 5.3.2 which
gave T'=4.3ppm.)

One other factor which has been ignored so far is the effect of fluctuations in the
A\/4 layer thickness. Discussions with REO suggested that a 1% variation in thickness
was reasonable, so a Gaussian-distributed variation (of standard deviation 1%) was
added to the layer thicknesses of the model. For cavity calculations, identical mirrors
were used for both sides of the cavity. The principal effect of this variation is to shift
the center wavelength of the coating - over several realizations of random coatings,
this resulted in an rms shift of the center wavelength by +£1.2nm. So, the measured
shift of center wavelength in the coating (from 852nm to 847nm) is probably due
partly to a systematic offset, and partly to fluctuations. The mirror transmission is
also affected: the value of the transmission is on average increased slightly, by 0.6%
in the case studied, from 4.55ppm to 4.58ppm at the center of the coating. At the
level of our current measurements this is another negligible effect, but with a more
precise measurement aimed at determining ny and ny, the possibility of a systematic
offset from this mechanism should be considered. Lastly, the FSR measurement is
mostly effected via the change in center wavelength of the coating - the value of
min(Lexpt(simulated)) has a mean the same as without the added fluctuations, and
varies by only 0.0014 mode orders rms, again negligible for our purposes.

Another useful result of these calculations is that the free spectral range of the
cavity is well known, so that resonant wavelengths of the cavity can be accurately
predicted. This is important for choosing a diode laser of correct center wavelength to

match the mode, for applications such as cavity locking or dipole-force traps. With the
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idea of using a laser of >920nm wavelength to form an intracavity dipole-force trap,
this knowledge was particularly important: our Ti:Sapphire laser tuned only as high
as 890nm so cavity resonances in this wavelength range could not be measured, only
predicted. With the parameters chosen above for the model, the following theoretical

and experimental resonance wavelengths resulted:

theory 787.208nm 818.659 853.255 890.798 930.683
experiment 787.170nm 818.651 853.255 890.80 ?

Table 5.1: Measured and predicted values for the cavity free spectral range (FSR).

The experimental value for the cavity resonance can then confidently be predicted

to be 930.7£0.05nm, and a diode laser chosen accordingly.

5.3.5 Limitations to mode volume

In a similar calculation the to one above, it is possible to calculate the field distribution
of light inside the resonant cavity, by describing each layer separately with a left
and right travelling plane wave, then matching electromagnetic boundary conditions
between layers. An example of this kind of calculation is shown in Figure 5.6, where
refractive index and field distribution (Electric-field) are plotted as a function of
distance for a 3)\/2 cavity. The coupling strength g of an atom placed in the center of
the cavity mode is proportional to ﬁ, where V,,, the cavity mode volume is found
by integrating the field (D - E) over the standing wave and Gaussian transverse mode

profile. Large coupling is achieved by making a short cavity with a small mode waist

(short radius of curvature mirrors).

For a cavity of physical length L, the “leakage” of the mode into the \/4 mirror
stack (look at the tails of the mode in Figure 5.6) that increases L to L.;; also
increases the cavity mode volume. For our materials at 852nm, Le;r = L + 1.63A/2
, so for a cavity with physical distance between mirror surfaces L = A\/2, the cavity
the mode volume ends up being 2.63 times larger than you might expect, and hence
the atom-cavity coupling g is 0.6 times smaller than the naive estimate based on the

physical separation of the mirror surfaces.
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Achievable coupling strength with mirror leakage
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Figure 5.7: Due to penetration of the standing-wave mode into the mirror coatings,
the cavity mode volume achieved with real mirrors is larger (and hence the coupling
strength smaller) than for an ideal mirror with the same spacing between mirror
surfaces but no penetration.

This effect is proportionately larger as the cavity length gets shorter. In Figure
5.7, the expected g is plotted for a cavity formed with two 20cm radius of curvature
mirrors, as a function of the physical distance L between the mirrors. The two curves
show a real mirror (with g reduced by leakage into the coatings) and an idealized
mirror with no leakage (perfect reflectors at +L/2). The transverse (Gaussian waist)
dimension is calculated by simple Gaussian beam propagation, which is not strictly
accurate for length scales less than a few microns; however any error in this should
be the roughly the same for both the ideal and actual mirror cases, so the ratio of
these remains correct. The cavity is assumed resonant at an integer number of half-
wavelengths of light at the 852nm Cs D2 transition; that is, each A/2 is a distance of
0.426 microns.

The discrepancy between the expected and achieved coupling g is large even for
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our longer cavities - 5% for a 10um cavity. However, in the lab this is largely com-
pensated by the fact that we never measure the actual physical distance L between
mirror surfaces, but instead Lespe = A1A2/2(A1 — A2), which is close to L.ss, and so
incorporates the same offset of mirror penetration that determines g. This method
of length measurement breaks down eventually due to the dispersion of the mirror
coatings: Eventually if A; is at the center of the coating, Ay will be so far separated in
wavelength that it reaches the edges of the mirror coating stopband, and the observed
phase has then more to do with the coating than the cavity length. That is to say,
our measured L,y becomes increasingly different from L.;; and introduces an offset
in estimating the mode volume.

At L = 20)\/2 physical length (the regime of our present cavities) the difference
between the g inferred from L., and that found by integrating D - E over the mode
volume is <0.1%. At L = 10)\/2 (4.26pm) it would be a 1% error, at 51/2 an 8%
error. Note however that knowledge of these offsets means that when calculating g
from Le,, we can compensate for this error. Measurements of L.y, for cavities any
shorter than 5XA/2 would be impossible since A, has reached the edge of the mirror
stopband. To align shorter cavities a new method for length measurement will need
to be developed, such as measuring the frequency spacing of transverse modes.

We are now in a position to estimate parameters for the best Fabry-Perot cavity
that will be experimentally feasible in the near future using this type of mirrors.
First consider a L = A\/2 cavity with 20cm radius of curvature mirrors. If the mirror
transmission and losses were each reduced to T'= [ =0.5ppm to yield a cavity finesse
of F =3.14 x 108 , then this cavity has parameters (g, x,y)/27 = (647, 56,2.5)MHz,
which gives critical photon number ng = 7%/2¢* = 7.5 x 107 and critical atom
number Ny = 2k7/g? = 6.7 x 10~%. To make a cavity of this length the 20cm mirrors
would have to be reduced to a diameter of 0.5mm rather than 1mm. At this size
there would still be a 0.11um gap between the mirror edges for the L = A/2 (0.426
micron) cavity length, which should make it possible to still get atoms in and out,
and align the mirrors.

If the mirror diameter could be reduced to 350um, then 10cm radius of curvature
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mirrors could be used, with a 0.12um gap at the edges. Due to the tighter radius of
curvature, g/27 would be increased to 770MHz in this case. Now speculating that
“dream” mirrors of 7' =0.2ppm transmission, ! =0.2ppm loss might be possible (F =
7.85 x 10%), we could aim for the ultimate goal of (g, x,v)/27 = (770, 22,2.5)MHz, in

which case ng = 5.3 x 1078 photons, and Ny = 1.9 x 10~* atoms.
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Chapter 6 Ideas for future directions

6.1 Manipulation of AC Stark shifts in optical traps
by utiliiing multiple excited states

A scheme is presented which allows AC Stark shifts (light shifts) in optical dipole force
traps[100] to be manipulated by choosing a trapping laser wavelength that couples
(off-resonantly) to several excited states. This idea was proposed by Chris Wood
(NIST, now at Lightwave in Boulder, CO), and I have adapted this to the specific
example of a trap for cesium, and added an analysis of the polarization dependence of
the light shifts. By varying the trapping wavelength around 920-950nm, the excited
state Stark shift is strongly affected because it couples to another, higher-lying excited
state while the ground state shift remains essentially constant. In addition, for atoms
prepared in a particular hyperfine magnetic sublevel, polarization of the trapping
laser can be exploited to control the characteristics of the excited-state AC Stark
shift. This is similar conceptually to the proposal of Ref. [101], in which the AC
Stark shifts of hyperfine ground states are manipulated by tuning the trapping laser
between the D1 and D2 excited states; this scheme recently experimentally realized
in Ref. [102].

Spatial variations of the AC Stark shift are necessary for optical trapping, but
lead to problems for spectroscopy experiments, since the ground and excited states of
the transition are differentially shifted, leading to a change in the atomic transition
frequency that is position dependent. In addition, in a trap designed for ground-state
atoms, atoms in the excited state experience the opposite AC Stark shift, so are re-
pelled from the desired trapping region. In the solution proposed here, the ground
and excited state shifts can be individually controlled. It is thereby possible to give

ground and excited states the same confining potential, and hence an unshifted atomic
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transition frequency. Alternatively, the excited state can be made more tightly con-
fining, which Taieb et al. [103] show enables an efficient Sisyphus cooling mechanism
with the added benefit of reduced heating rates and diffusion.

To achieve this manipulation of the differential AC Stark shift for a particular
transition, it is necessary to choose the trapping wavelength carefully. Specifically,
the trapping laser wavelength must be selected such that a third energy level gives
rise to an important, or even dominant, contribution to the differential AC Stark
shift of the transition of interest. Wavelengths for optical traps are usually chosen to
be either near an atomic transition, or at a wavelength where high optical power is
available. While such choices simplify experimental requirements, a higher degree of
control can be achieved if the trapping laser wavelength is selected with respect to

spectroscopic implications rather than experimental convenience.

6.1.1 Multi-level dipole traps - the basic idea

Consider the three-level (ladder) system {|a),|b), |c)} shown in Figure 6.1. For the
current purposes, |a) is the ground state of an atomic transition of interest, |b) the
excited state, and |c) an auxiliary level which will be used to modify the AC Stark
shift of level |b).

Applying a laser field detuned from the |a) — |b) transition generates AC Stark
shifts (in the limit of large detunings) U, oc —I',J /A, Uy = —U, on levels |a) and
|b), where T, is the spontaneous decay rate of |b), I the intensity of the applied laser
field, and A, the frequency detuning of the applied field from the |a) — |b) transition.
Since for Agy is positive for a red-detuned (A > Ag) field, the resulting potential is
confining for ground state atoms, and repulsive for excited state atoms.

Similarly, the same laser field generates shifts Upy o —I'.1/Ap,U. = —Upz on
levels |b) and |c) arising from its coupling to the |b) — |c) transition. The resulting
total shift on level |b) is then Uy ~ I (Ty/Agy — T'e/Ape), which can be manipulated by
choice of the detunings (Ags, Ase) by changing the wavelength X of the driving laser.

In the case of a red-detuned laser field (A > Agp, Ape), to make U, < 0 and the



157

Figure 6.1: By utilizing an additional level |c), the AC Stark shifts of ground state
la) and excited state |b) can be made the same.

potential confining, it is required that Ay, > Ape (since I, ~ I'; ), which leads to the
requirement that A > Ay > Ay for a red-detuned trap in which levels |a) and |b) are
both confining potentials. Conversely, to construct a blue-detuned trap in which |a)
and |b) both feel repulsive potentials, the analogous requirement is A < Ape < Agp.
From here forward, I will only consider the case of a red-detuned driving field, as this
will be the case applicable to our Cesium system.

One particular choice of the driving wavelength A will balance the light shifts,
such that U, = U,. This will be the case of interest for spectroscopic applications -
since the transition frequency wg, is then unchanged by the presence of the trapping
laser, which now confines atoms in both the ground and excited states. It should
be noted that for a given atom (with fixed the I"s and transition wavelengths) this
cancellation depends only on the driving wavelength A, and is independent of driving
intensity, so that an arbitrarily deep trap can be made while still inducing no shift
to the atomic transition frequency. (Errors in finding the correct wavelength A to
balance the light shifts will have a larger effect at high intensity, which could be used
as a “fine-tuning” of the choice of A).

Other choices of driving wavelength can make the potential of the upper state more
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Y absorption/emission

Figure 6.2: Sisyphus cooling scheme.

tightly confining than that of the lower state. In this case, a very efficient Sisyphus
cooling mechanism [103] can be realized, the basic idea of which is illustrated in
Figure 6.2. An additional laser is tuned to the |a) — |b) transition when the atom is
at the center of the trap. If the secular frequency of oscillation in the trap is similar
to the atomic spontaneous emission rate I',, then the atom will tend to absorb at the
center of the trap, then emit when at the edges of the potential. The energy loss per
emission event is then given by the difference in potentials at this spatial position,
which could be as large as ~ 1GHz. With secular frequencies on the order of MHz,

this will provide very fast cooling.

6.1.2 Theory with polarizations and hyperfine sublevels

To implement this scheme in a real atom (such as Cesium in our case), we wish to
extend this simple treatment to include effects of polarization, and to allow for fine
and hyperfine structure within the atomic levels [101].

To calculate the polarization dependent light shifts for individual |F mp) sub-
levels, I follow the treatment of Deutsch & Jessen [104], which gives a very formal
derivation of light shifts and coherences between magnetic sublevels, with particular
regard to optical lattices. The light shifts now have an additional contribution due
to the strength of angular momentum coupling between different |F' mg) sublevels.

In the absence of magnetic fields, the potential for atoms in the ground state is
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determined by the operator U(z) = —E%(z) - &-E(z), where E(z) is the spatially
varying electric field, and & the atomic polarizability tensor operator. The light shift
of a particular |F,m) sublevel will then be given by the expectation value U(z) =
(F,m|U(z)|F,m). In a spherical basis for the electric field, we can write Uz) =
E} (z)e - &-eqFy(x). Deutsch & Jessen [104] show that for an atom having a multiplet
of hyperfine excited states, the components of the atomic polarizability tensor in this

spherical basis are given (in the limit of detunings >> hyperfine splitting) by
bgg =€) G-eg= aZfF'FZCF%Z:;qq' II::,,TH X |Fym+q—q)(Fym|. (6.1)

This expresses couplings between ground states within the same F' manifold, that
is, between |F,m) and |F,m + q — ¢'), via intermediate excited states |F',m + gq).
Here, frp are the oscillator strengths for decay F” — F, given in terms of 6J symbols

by

2
F1J

c? ™" is the Clebsch-Gordan coefficient for the |F m) to |F’ m/) transition, and @ is
a reduced (scalar) polarizability given by
(" el )

= ———F—— 6.3
R (63

with (J'||d|| J) the reduced matrix element for the J — J transition.
As we only wish to calculate level shifts (and not coherences between sublevels),

we only need the ¢’ = q components, so Eq. 6.1 simplifies to

lgq = awaZ (Chamta)? x |Fym)(F,m| . (6.4)

Finally, calculating the light shift on a particular |F' m) ground state sublevel for
a particular polarization ¢, the result is then a sum of coupling probabilities to all

possible |J', F', m+q) excited states, scaled by their detunings A and reduced matrix
y g
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elements |(J' ||d|| J)|*. That is,

2
d F1J /
U(z) z)[? Z' (Nl ) > @7 +1)(2F +1) (Chm D)2,
, J 1 F
(6.5)

When calculating this sum for a particular ezcited state |F' m) ( this would be
state |b) in Section 6.1.1), remember that shifts due to coupling to ground states |a)
get an additional minus sign, while shifts due to coupling to higher lying states |c)

follow Eq. 6.5.

6.1.3 Cesium parameters

In atomic cesium, the {|a), |b),|c)} ladder can be realized using the {6S;/3, 6P3/s,
6D5/2} set of atomic levels. As A(6S1/; —6P3/2)=852nm and A(6P3/; —6D5/2)=917nm,
then for some choice of A > 917nm we will be able to construct a red-detuned trap
in which the light shift of the 6P3/; level cancels, as this set of wavelengths satisfies
the condition A > Xy > Ag. For the general case of arbitrary polarization and initial
magnetic sublevel, other transitions also need to be taken into account. The ground
state |a) = 6S;/2 can couple to the 6P/, state (894.6nm), and the excited state
|b) = 6P3/, can couple to the 6Ds/; (921.1nm) and 8S,, (794.6nm) levels. Figure 6.3
shows a level diagram for Cesium, marking these transitions. For the red-detuned
traps explored here with A > 917nm, coupling to the 8S;/; has a negligible effect.

In order to apply this formalism to the particular case of Cesium one critical
elerhent was to track down the best known numbers for the oscillator strengths, of the
relevant Cesium transitions. The 6Py, and 6P3/; levels are extensively measured and
calculated, largely motivated by precision measurements of parity non-conservation
using these transitions [105]. Many other quantities are not measured at all but have

been calculated - below are the best values I could locate.
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Figure 6.3: Transitions in atom Cesium. We consider light shifts to the 6S;/; and
6P3/2 levels, so only transitions involving these particular levels are shown.

Lifetimes:

Rafac, Tanner et al.[106][107] measured the Cesium 6P;/; and 6P3/y lifetimes as
35.07(0.1)ns and 30.57(0.07)ns respectively, motivated to such accuracy by PNC ex-
periments. Unfortunately, the D levels haven’t been measured as accurately, with
the only result by Georgiades et al., which gave 51.3%3ns for the 6Djs/, level [108].
As a result, for the D levels I decided to use some very good theory work by Theo-
dosiou [109] instead. I presume this theory is good for the 6D levels, because in 1998
Berardino, Tanner and Sieradzan [110] made accurate measurements of the 5D lev-
els, and Theodosiou’s theory agreed very well (better than 0.5%) with these values.
Theodosiou gives 58.14ns for the 6Ds/; and 58.38ns for the 6Ds/s.
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6Py 35.07ns (expt)
6P3/,  30.57ns (expt)
6D3/; 58.14ns (theory)
6Ds/2 58.38ns (theory)

€

Table 6.1: Lifetimes of relevant atomic Cesium levels used in the dipole-trap calcula-
tions.

Reduced matrix elements:

The reduced matrix elements for each of the transitions can be derived from the above

lifetimes. First note that for a single decay channel, the relationship is given by

where ag is the Bohr radius, J’ is the spin of the upper state, and the lifetime = 1/~.
This directly gives the 6P /2, 6P3/2 and 6Dj5/, matrix elements to be 4.498, 6.331 and
6.24. The 6D3/, has decays to both the 6P;/; and 6P3/5 , so

1 _4hn ST ), 4y 2 2+4ﬁ ST Nl ) gl ?
lifetime 3 ,\1 VoI +1 Cdmeg 3\ /) | VoI 1 Cdmey|
(6.7)
Unfortunately, the actual matrix elements used in Theodosiou’s calculations are

not presented - so I have derived a guess at them from the oscillator strengths quoted

in the next section.

Oscillator strengths:

The “oscillator strength” of a transition is the ratio of the transition rate to that of the
corresponding classical electron oscillator, and is just a convenient dimensionless way
of characterizing transitions. From Cohen-Tannoudji Atom — Photon Interactions
[111], and Siegman Lasers [112] we see that:

fry = 20 [Q—/Mwao] ’ defined for a downgoing transition, and

r| V2T
2
J ' . s
fry = 2”h“"° [< \/QHJCf'L_Jl) ao} 22“9111 defined for an upgoing transition.

Often the degeneracy factor is omitted in definitions, which can be confusing.
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Laplanche et al. [113] calculated these oscillator strengths for Cesium. Comparing
the matrix elements derived from these oscillator strengths to those obtained from
the lifetimes, they’re the same to better than 5%, but the Laplanche matrix elements
are consistently smaller (see Table below).

Working out the Dg; lifetime from Laplanche’s matrix elements gives 62ns, higher
than the 58ns of Theodosiou’s theory. That is, the Laplanche matrix elements are
also too small for the 6P3/;, — 6Dj3/y transition, by a similar factor to those of the
6P3/2 — 6Dj5/o transition, a factor of 6.24/6.08=1.026 (see Table 6.2).

So, I chose to scale Laplanche’s matrix element values for the D3/, transitions up
by 1.026. These new matrix elements give a D3/, lifetime of 59ns, more consistent
but somewhat arbitrary. These numbers for the D3/, should be treated as around 5%
accurate.

Note that Liaw’s calculations [114] give very good agreement with experiment for

the S—P transitions.

Transition: A (J'||d|| J) used: Laplanche osc. str.
6S1/2 to 6Py 894.6nm  4.498 (from lifetime) .335 — m.el.=4.44
6S1/2 to 6P3/;  852.36nm  6.331 (from lifetime) .700 — m.el.=6.27
6P1/2 to 6Dg/,  876.4nm  4.31 ( from osc. str.) .306 — m.el.=4.2

6P3/2 to 6Dg/,  921.1Inm  2.11 ( from osc. str.) .035 — m.el.=2.06
6P3/5 to 6D5/2 917.2nm  6.24 (from lifetime)  .306 — m.el.=6.08

Table 6.2: Summary of Matrix Elements used in the dipole-trap calculation.

Clebsch Gordan coefficients:

Clebsch-Gordan coefficients and 6J symbols are most easily found using the built-in

functions “ClebschGordan” and “SixJSymbol” in Mathematica.

6.1.4 Results for a cesium trap in an optical resonator

To examine the potential use of this idea in our cavity QED experiments, I next
calculate the magnitude of light shift obtained for an experimentally realizable system

- a standing wave trap inside an optical cavity.
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In our recent cavity QED experiments we have chosen to drive the atom-cavity
system with circularly polarized light, optically pumping the atom into the cycling
6S1/2, F'=4, mp=4 — 6P3/5, F'=5, mp=>5 transition at 852nm. All of the calculations
to follow will be for these particular magnetic sublevels. That is, we chose the “ground
state” |a) = |6S1/2, F'=4,mp=4) and the “excited state” |b) = |6P3/3, F=5mp=5),
and calculate modifications to the AC Stark shift of these levels when coupling to

other transitions is considered.

Fields inside an optical resonator
Returning to Eq. 6.5, it remains to express the laser field |Ey(z)|? in a more exper-
imentally useful form. As the dipole trap in question is going to be made inside an
optical cavity, the cavity finesse can be used to build up a high peak intensity (and
hence deep trap) with a fairly weak input laser.

One way to express the field is in terms of a Rabi frequency associated with the
intracavity photon number. This gives an obvious link to our cavity QED parameters,
as 2g is the Rabi frequency corresponding to 1 photon. For N intracavity photons,

there is an intracavity energy Energy:;, = Nhwy, and a corresponding Rabi frequency

Qp=d F=|—==x*a —\/—-—-—— 6.

for a transition J — J' with Clebsch-Gordan coefficient = 1. The electric field £
has been incorporated via the intracavity energy density EL;:%E-E o« |E|? , with V,,
the cavity mode volume. For a symmetric cavity driven on resonance, Energy, is
determined by the input power Py, cavity decay rate x and mirror losses. For a
known cavity, we can then express {2 entirely by means of the power of an input
beam to the cavity. Allowing for saturation behavior (with large 2), the AC Stark
shift of level |J F' m) is given by:

2, /2

AR {
U = In |1+ (6.9)
; 2 A%+ (75a/2)?
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2
F I J .
x 3 (@ +1)2F +1) (chmrayz
J 1 F ’
FI

where all possible couplings to states |J' F' m + q) are summed. Here Ay is the
detuning of the driving laser from the J — J'atomic resonance, vy the linewidth
of this transition, and the angular momentum couplings have be taken directly from
Eq. 6.5. If the driving field is weak this reduces to: Uzﬁ—%gzraﬁ)ﬁ, and for large
detunings this becomes the familiar Uzﬁ%z .

The magnitude of the shifts depends on the peak intracavity intensity, that is, the
power of the input laser field and the cavity Finesse (which determines «). From the
calculations of Chapter 5, I estimate that our cavity mirrors (transmission 4.6ppm at
852nm, finesse F=480,000) have F =~ 3000 at 920nm, and F ~ 1000 at 950nm. The

calculated level shifts below do not take into account this variation of finesse with

drive wavelength, assuming a fixed finesse.

Resulting level shifts for ¢ circular polarization

For a ot polarized driving laser, the |S;/244) ground state can only couple to mp=5
sublevels, so coupling to |Py/255) (the excited state) is the only contribution, and
the level shift is as for a 2-level system. The |P5/255) excited state can couple both
to |S1/244) and |D5/266) however, so it experiences modification in its light shift.
Figures 6.4,6.5 show the ground state shift (dotted) and excited state shift (solid)
as a function of wavelength of the dipole-trap laser, with Figure 6.5 zoomed in to
the region 930-960nm to show the wavelength (~952nm) at which the level shifts are
equal.

In the calculation shown, a ImW laser resonant with a 1000 finesse cavity gives
a trapping potential 40MHz deep at the balancing point of 952nm. The potential
could be made deeper by increasing the input laser power, or using mirrors that give

a higher finesse at this wavelength.
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Level shifts, 6"polarization
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Figure 6.4: Shifts of the Cs 651/, F' = 4, M = 4 (dotted) and 6P3/5, F' =5 M =5
(solid) levels, as a function of wavelength of an applied ot polarized laser field.

Level shifts, Cﬁ;}ola?iz&tion
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Figure 6.5: Shifts of the Cs 6Sy1/2, F' = 4, M = 4 (dotted) and 6P3/3, F' =5 M =
5 (solid) levels, as a function of wavelength of an applied ot polarized laser field
(Expanded View).
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Level shifts, 0" polarization
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Figure 6.6: Shifts of the Cs 6S1/2, F' = 4, M = 4 (dotted) and 6P3/5, F' =5, M =5
(solid) levels, as a function of wavelength of an applied o~ polarized laser field.

Resulting level shifts for ¢~ polarization

For o~ polarization, the |S;/544) ground state can now couple to mp=3 sublevels, so
contributions arise from coupling to levels | P3/253) ,|P3/243),|P3/233) at 852nm, and
| P1/243), | P1/233) at 894nm. The excited state |P3/355) cannot couple to the ground
state with this polarization, but does couple to |Ds/264), | Ds/254), | Ds/244) at 917nm
and [D3/954), | Ds/244) at 921nm. Since a completely new set of wavelengths have been
introduced to the coupling scheme, the level shifts are now qualitatively different,
shown for ¢~ polarization in Figures 6.6 and 6.7. Again, the ground state shift
(dotted) and excited state shift (solid) are equal at some wavelength - here it is
~923nm. This calculation is for a 1mW laser resonant with a 1000 finesse cavity, and

gives a trapping potential 100MHz deep at the balancing point of 923nm.

Tuning the potential with polarization

Given the marked differences in the potentials for 6 and o~ polarizations, it should

be possible to tune the potential by applying an intermediate (elliptical or linear)
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Level shifts, 0 polarization
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Figure 6.7: Shifts of the Cs 6Sy/2, F' = 4, M = 4 (dotted) and 6P3/;, F' = 5, M =
5 (solid) levels, as a function of wavelength of an applied ¢~ polarized laser field
(Expanded View).

polarization which can be written as a sum of or+r and o~. This will be particularly
important when integrating this trap into a cavity QED setup, where the cavity length
is locked to be resonant with the 852nm transition. Given that the free-spectral range
of our cavities is large (up to 30 nm), typically only one or two cavity resonances fall
in the 920-960nm range, and, to provide good overlap between the dipole-trap and
cavity QED field at the center of the cavity mode, the wavelength chosen must be an
even number of cavity orders detuned from the 852nm laser. While the wavelength of
the dipole-trap will therefore be fixed by the cavity length, tuning of the potentials to
balance the AC Stark shifts could be accomplished by changing the input polarization
of the dipole-trap laser.

Note that this introduces a new constraint on the trapping laser: fluctuations in
polarization will lead to strong changes in the trapping potential, so for a stable trap

both intensity and polarization will need to be controlled precisely.
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Spin polarization lifetimes and trap heating rates

For a simple two-level system, the photon scattering rate is related to the optical

potential by the relation

Fee = %% (6.10)

Considering only the 65, /5, F=4,mp=4 — 6P3/3,F'=5mp=>5 transition at 852nm,
and a dipole-trap laser at 950nm, a well depth of 40MHz gives a photon scattering
rate 'y, ~ 27 X 5.7Hz, or a single photon scatter every 28ms. When driving with o~
polarization, these single photon scattering events can optically pump the atom out
of its initial |St/244) magnetic sublevel, at which point the polarization-dependent
potentials derived above would no longer apply. Additionally, this optical pumping
between potentials of different depths would cause additional heating of the atomic
motion, as observed in Ref. [102].

That this spin polarization lifetime is much shorter than the trap lifetime would
seriously degrade the usefulness of this polarization-dependent trapping scheme. How-
ever, fortunately when multiple atomic levels are again considered, there is a cancella-
tion which greatly enhances the spin polarization lifetime [115]. For a laser detuning
comparable with or larger than the splitting between D1 (P4/2) and D2 (P3/2) lines,
any particular photon scattering event between ground state sublevels |Fm) and

|F”"m') can occur through the P15 or P3/y lines, so the amplitudes for these need to

be added, which from [115] gives

3nctwiI(r) | T e ['3/n 3/2
Fsc: L /L " //+_——/—'—'"Oé(/)_> s v . 611
on w§/2A1/2 FM—F"M w§/2A3/2 FM—F" M (6.11)
For FM # F”M" (Raman scattering) it can be shown that A — S 2)_, Ve
FM—F"M FM—F'M

so that except for the difference in detunings there would be an exact cancellation,

and including detunings Raman scattering will be suppressed by a factor of
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Ty/2 T3/0
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u’1/2Al/2 w§/2A3/2

2

(6.12)

Ty/o
“’1/2A1/2

For FM = F"M" (Rayleigh scattering) ag’,/\;l)F,, My = a%le,, amo 80 that the
predominant scattering (at rate ~ 1/A?) will be Rayleigh scattering which returns
the atom to the same magnetic sublevel and maintains the spin polarization.

At laser wavelengths of 920nm-950nm the detunings A,/; and Az, are quite
different, so that there is only a partial cancellation, giving a suppression of scattering
by a factor of 0.22 at 950nm, and 0.43 at 920nm. This means that the spin polarization
lifetime will be slightly enhanced in our experiment to ~ 127ms at 950nm and ~ 65ms

at 920nm.

6.2 Photon statistics of a single, strongly coupled

atom.

In a regime of strong coupling go> (7, k), for which single quanta (atoms or photons)
play an important role in the dynamics of the cavity QED system, it is not surprising
that the output cavity field can have interesting quantum statistical properties. In
this section, we consider the correlation function ¢@ () = (: I(¢)I(t + 7) )/(I)?* =
(a(t)ta(t + 7)a(t + 7)a)/(ata)? for the intensity I of the output cavity field.

For a Poisson stream of photons (a coherent state) g®(7) = 1, that is, there
is no correlation in the arrival times of detected pairs of photons. In our strongly
coupled atom-cavity system both sub-Poissonian statistics (¢ (0) < 1) and photon
antibunching (¢@(0) < ¢g® (7)) are present. A value of g (0) < 1 is manifestly
non-classical, and is a signature that the field is interacting with a two-level system.
One example is resonance fluorescence from a single closed atomic transition: having

absorbed a photon the atom can only re-emit on timescale v, thus a second photon

cannot also be emitted within this time window, so the fluorescence photons gener-
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ated are antibunched and sub-Poissonian. In the cavity QED system, the transition
between the system ground state |0,0) and lower dressed state |—) can be employed
to form an effective two-level system in a similar way [116]. For certain choices of
driving/detunings of the atom-cavity the field can also be “bunched,” characterized
by ¢@(0) > 1.

Nonclassical photon statistics have been observed experimentally in cavity QED
for an ensemble of atoms in an atomic beam [58, 59, 12, 60] or a MOT [61], but to
date photon statistics from an individual atom in a cavity have not been measured,
primarily because single atoms have not been trapped in cavities until recently [28, 27].
In this section I calculate g® (7) for our current experimental parameters.

In the weak-field limit, the master equation can be solved exactly to find a solution
for the atom-cavity density matrix p, and hence an analytic expression found for
g®(7)[117]. This derivation is based on the assumption that the field is weak enough
that only |atom, field) = {|0,0), |1,0), |0,1), |1,1), 0,2),]2,0}} contribute to p. Of
course, the last term |2,0) is only possible in the case N>1 atoms. In this restricted
basis, the master equation can be solved exactly.

This derivation can be modified to account for detunings[118], in which case
atom and cavity parameters become & = (1 +14) and 3y = (1 + iA), where
0 = (we — wo)/K, A = 2(w, — wo)/7|, and {wa,we,wp} are the atomic, cavity and
probe frequencies respectively. The solution for the second order intensity correlation

function (for N atoms in the weak-field limit) is then:

- C (k4q /2 )
g@(r) =1+ % exp[—%(/% + 4 /2)7] x [cosh Q1 + Qﬁ;gzi/—) sinh Q7]%, (6.13)

where

%‘f — _28[26/(1 +2C - 201, (6.14)

and

0=/ (1/4)(F - 7/2)2 - Nt (6.15)
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with C, = g2 /&% , C; = C1/(1 +7y/2k) , and C = NC,.

Firstly, in the case w, = wy = w,, the result for ¢?(r) for N=1 atom is shown
in Figure 6.8, where 7 is shown in units of nanoseconds, and the calculation is for
the experimental parameters {go, &, }/27 = {110, 14.2,5.2} MHz. The large value of
g®(0) = 3x 108 and subsequent strong oscillations at timescale g5 * can be understood
in terms of an interference between the driving field, and the emitted field of the
atomic dipole which is out of phase with the driving field. This cancellation of driving
and emitted fields gives rise to the strong contrast 1/(1 + 2C)? in transmission on
resonance: an intracavity intensity of strength n corresponds to a driving intensity of
strength (1 + 2C)%n.

The trace of g®(r) in Figure 6.8 represents the probability of detecting a second
photon at time delay 7 conditioned on the detection of a first photon. At 7 =0 a
photon has just been detected, so the system’s state is the corresponding collapsed
state (by a quantum jumps formalism [117, 119]), and the associated “switching oft” of
the induced dipole field allows the driving field to pass through the cavity uncanceled,
giving a huge increase in photon count rate and hence g(¥(0) >> 1.

While this argument is correct for the bad cavity limit (x >> go >> ) in which
the cavity field switches faster than g; ', in the case of strong coupling the interference
of fields is actually an infinite sum over successive emission and re-absorption events
as the atom-cavity Rabi-flops at rate go. The time evolution of this sum after a
collapse (photon measurement) gives rise to the pronounced oscillations in g(? (7).

The lower panel of Figure 6.8 shows the same curve with the axes zoomed in to
show the first minimum, in the region 0 < g‘¥(7) < 2. While strong sub-Poissonian
statistics are exhibited at the minima, experimentally this would be prohibitively
difficult to resolve for two reasons. Firstly, given the fast timescale of g5 ! and sharp
contrast in the signals, a time resolution of ~200fs would be required. Secondly,
any tiny variation in coupling strength will change the position of the minima: If the
atom were moving around the field antinode such that g(7) = go+1%, then averaging
over the resulting time dependences means this first minimum would have a value of

g (1) ~ 175. A stability of g(7) =~ go+0.05% would be required to recover g (7) < 1
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Figure 6.8: Second order intensity correlation function ‘¥ (7), calculated in the weak-
field approximation for parameters {go, %, }/27 = {110,14.2,5.2}MHz, and no de-
tunings ( w, = wp = W, ).

at the first minimum, which presently does not seem experimentally feasible.

Next, we switch the probe detuning to be tuned to the state |—), by choosing
We — Wp = Wq — Wy = go. This situation is shown schematically by the black arrows of
Figure 6.9. Because of the anharmonicity of the Jaynes-Cummings ladder of states,
once the system has absorbed a single photon and been driven into the state |—),
then a second photon cannot easily be absorbed because the transition from |—) to
the |2—) (the lower dressed state of the 2-excitation manifold) is detuned from the
driving frequency wy. If the level anharmonicity is larger than the linewidths of the
|—) and |2—) levels, then the |2—) state is rarely populated and the systems acts as
an effective two-level system [116].

This detuning leads to strong antibunching ¢®(0) < 1 of the output cavity field,
as calculated in Figures 6.10 and 6.11. In Figure 6.10, the solid curve is for the
experimental parameters {go, %, }/2m = {110, 14.2,5.2}MHz, and the dotted curve
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Figure 6.9: Level diagram showing the lowest states of the Jaynes-Cummings ladder
for the atom-cavity system. When the probe frequency is tuned to the state |—)
(black arrows) two-photon absorption is suppressed, and ¢?(0) < 1. Conversely, for
the probe frequency shown by the grey arrows, two-photon absorption is favored and
g (0) >> 1.
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for a longer cavity constructed from the same mirrors, which at 80um length has
parameters {go, %,y }/2m = {25.3,1.94,5.2}MHz. The dashed curve is for the ex-
perimental parameters of Ref. [28], {go, &, }/27 = {32,4,5.2}MHz. Note that the
antibunching persists over a time ((k + 7;)/2)~". This is simply because once one
photon is absorbed, it is difficult for a second to be absorbed until the first leaves,
which happens in the characteristic decay time given by the inverse of the linewidth
of the state |—), this linewidth being ((x +))/2) since |—) is an equal superposition
of |1,0) and |0, 1). This situation represents a “photon blockade” [120, 121]; that is,
the presence of one photon in the cavity reduces the probability of admission of a
second within this time window.

That ¢ (0) > 0 indicates that there is some population of the [2—) state, since
for our experimental parameters the linewidths of the states are not negligible. The
ripples in g (7) on timescale g5 * arise from Rabi oscillations between states |+) and
[—); for the experimental linewidths, there is still a small probability of off-resonantly
populating the state |+).

In Figure 6.11, the solid curve is calculated for the proposed A\/2 cavity with
{g0, &, 7} /27 = {647,56,5.2}MHz described in Section 5.3.5. A calculation for a
longer (30)\/2) cavity constructed from the same mirrors is shown also by the dotted
line. This longer cavity would have parameters {go, #, vy }/2m = {79.7,1.86,5.2} MHz.
These proposed cavities have smaller g (0) since the single atom cooperativity Ci is
larger, and they also show fewer ripples on timescale g5 as the ratio go/x is higher
giving better isolation from off-resonant driving of the state |+).

For the cavity detuning w, = w, chosen here, the Jaynes-Cummings ladder of
states is symmetric around a probe detuning of wy = w, = w,, so the same result of
antibunching would be obtained by tuning the probe laser to the upper dressed state
|+). Experimentally, driving state |+) would lead to heating of atoms, as this state
spatially forms a repulsive potential. Conversely, the state |—) is trapping [25, 27], so
driving at this frequency would help confine atoms while measuring photon statistics.

Turning now to a different set of detunings, we set the probe frequency to w,—wy =

We—Wwo = go/ v/2. As shown by the grey arrows of Figure 6.9, the one-photon transition
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tme delayt,ns

Figure 6.10: Second order intensity correlation function g (r), calculated in the
weak-field approximation for parameters {go, 5,7 }/27 = {110, 14.2,5.2} MHz (solid
curve), {go, s,y }/2r = {32,4,5.2}MHz (dashed curve) and {go,%,V}/27 =
{25.3,1.94,5.2}MHz (dotted curve), with the probe beam tuned to state |—), that is
We — Wo == Wy — Wo = Jo-
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is now detuned from the state |—), suggesting that the probability of a [0,0) — |—)
transition will be suppressed. However, the two-photon transition to the state |2—) is
resonant, so when pairs of photons are incident on the cavity from the weak driving
coherent field, it is likely that they will be absorbed. We would therefore expect the
cavity output field to show strong bunching ¢ (r) >> 1. This is borne out by the
calculations shown in Figure 6.12, where again the solid curve is for the experimental
parameters {go, &,y }/2m = {110,14.2,5.2}MHz, and the dotted curve for a longer
cavity with {go,%,7)}/27 = {25.3,1.94,5.2}MHz. Since at this detuning the probe
field is closer to the state |+), Rabi oscillations due to population of this level are
more pronounced here.

Summarizing these weak-field results is Figure 6.13, which shows g (1) repre-
sented by a color scale, plotted vs probe detuning w, — wp (scaled by go), for a
fixed cavity detuning w, = w,, and the experimental parameters {go, %,7)}/27 =
{110, 14.2,5.2}MHz. Blue areas indicate g®? () < 1. Note that for easier display the
red side of the color scale (where g®(7) > 0) is drastically scaled logarithmically,
while the blue side (where ¢‘®(7) < 0) has a linear color scale. The time axis 7 is
scaled by (v/2)7.

Several experimentally interesting features can be gleaned from this plot. Firstly,
it can be seen that the level of antibunching for detunings ~ g, is present over a
large range of probe detunings. This means that in a realistic experiment (without
an auxiliary locking laser as in Refs. [46, 28]), for which it is challenging to lock the
laser and cavity frequencies to better than ~ 1MHz, the antibunching will still be
observable. Secondly, there is a wide contrast between timescales of the on-resonant
oscillations (at rate go), and antibunching (over timescale ((x + vy)/2)~"). For a
photon counting experiment, detector dead-times limit time resolution to a few ns, so
measurements at((k +y;)/2)™! = 17ns are on the edge of being possible with a single
detector, whereas measurements at gy ! ~ 1.4ns would be unfeasible without cascading
several detectors. Improvements in mirror reflectivity to reduce &, or alternatively to
use longer cavities (sacrificing coupling strength g, but also decreasing ) would clearly

make this an easier experiment to perform. A broad region of antibunching can also
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Figure 6.12: Second order intensity correlation function g‘®(7), calculated in the
weak-field approximation, with the probe field tuned to be resonant with the two-
photon transition to the state |2—), that is, w, — wp = w, — wo = go/ V2. The solid
curve is for {go, k, vy }/2m = {110,14.2,5.2}MHz and the dotted for {go, %, }/27 =

{25.3,1.94,5.2}MHz.
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Figure 6.13: Second order intensity correlation function g (7), calculated in the
weak-field approximation, shown by the color scale is plotted as a function of time
delay 7 (x axis) and probe detuning from the atom-cavity resonance (y axis). Param-
eters are {go, k,v}/2m = {110,14.2,5.2}MHz. Note the logarithmic scaling of the
g@ (1) > 1 part of the color scale.

be seen around detunings go/+/2, again persisting for timescale ((x+7))/2)*. Thirdly,
since w, = w,, g¥(7) is symmetric about wy = w, = w,, and strong antibunching
is seen for detunings w, — wo = +go. The symmetry that g&(—7) = g@(7) is also
apparent from Figure 6.13.

- Another interesting proposal for reducing the cavity linewidth, and hence length-
ening (and enhancing) the duration of the photon blockade is to use a cavity EIT
effect on a single atom [122, 123]. In these schemes, an second laser field and multiple
internal states of the atom are employed to generate a quantum interference effect

which reduces the linewidth of the 1-excitation levels of the manifold, and in addition
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greatly reduces atomic spontaneous emission, while maintaining the anharmonicity
of the 2-excitation levels which allows the atom-cavity to act as an effective two-level
system. This effect is the one-atom equivalent of schemes which have been used in
dense atomic clouds to enhance the refractive index without increasing spontaneous
emission [124]. It has been shown that such a multi-atom EIT scheme will not work
in the cavity QED context [120, 125, 126], but the case of a single (or few) atoms
in a cavity will still produce a strong effect. It is yet to be seen how easy it will be
to incorporate into our experiment the additional complexities required by the EIT
scheme, including additional locked laser fields and optical pumping.

It should be pointed out that the strong antibunching ¢®(7) < 1 is a funda-
mentally single-atom effect. It arises because of the anharmonicity of the Jaynes-
Cummings ladder of states, and as discussed in Section 2.1.3 this anharmonicity
decreases (for the same overall coupling strength) as the number of atoms increases.
To demonstrate this deterioration, in Figure 6.14 is plotted ¢‘®(7) from Eq. 6.13,for
probe detuning —go, with 1 atom (solid), 2 atoms (dashed) and 10 atoms (dotted),
each with the single atom coupling strength gy adjusted to give the same coupling
strength g = gov/N. As can be seen, the anharmonicity, and hence the degree of
antibunching, are quickly reduced.

Finally, a few words on the practicalities of a weak-field photon statistics mea-
surement in our experimental apparatus, where atoms are currently trapped only for
~ 1ms. To be truly “weak-field” requires the intracavity photon number n < ng. For
an intracavity coherent state, this would give an average photon count rate of ngXx
cavity linewidth x branching ratio for cavity decay, which gives no((k+7))/2) xx/(x+
7)) = nok/2 photons per second, or alternatively 1 photon per 2 /nok seconds. For the
current experimental values {go, &,y }/27 = {110,14.2,5.2}MHz (no = 2.8 x 107%),
this would give 1 photon every 80us, which leads to a total of only 12 photons counted
over a lms trap lifetime. However, for the photon statistics measurement of g (7)
considered here, the relevant count rate is the conditional count rate (nok/2)g® (1),
which can be very different to (ngx/2).

The question arises then as to whether ng is an appropriate measure of “goodness”
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183
of photon statistics, or whether a stronger field could be employed.

For the resonant case (w, = wp = w,), the large value of g@(0) leads to a condi-
tional count rate closer to the drive strength ( (1+2C)?no) than the steady-state value
ngp, so that collecting a reasonable number of photons ié not so much of a problem.

When the driving field is detuned by go however, there is only a suppression of the
conditional count rate, to ~ 0.2(nox/2) at 7 = 0. However, in this case it is not ob-
vious that ng is the relevant parameter for describing saturation of the system. From
Figure 4.16 it can be seen that for parameters {go, %, vy }/27 = {110, 14.2,5.2}MHz,
signals at a probe detuning of go saturate fairly abruptly at n ~ 0.1 intracavity pho-
tons (a semiclassical analysis gives V/3k/2go for this saturation value), and at n > 0.01
the signal contrast is degraded by < 10% from the weak-field case. This suggests that
an intracavity field of n ~ 0.05 may still have large quantum statistical variations,
while still providing a larger number of conditional photon counts (=~ 0.2 x 2000
photons in 1ms).

At even stronger driving, the nonclassicality of g (r) deteriorates as the field
strength is increased - at an intracavity field strength of |a|? ~ 1 as in the experiments
of Chapter 4, the photon count rate over 1ms would be increased to a respectable
40,000 in 1ms, however the value of ¢ (0) is suppressed to g(®(0) ~ 0.95[127].
[The weak-field equations given above no longer apply here, but g (1) can still be
calculated by numerical integration of the master equation.]

It looks like it should be possible then to find a regime of driving and detuning for
which g(®(0) is significantly <1, while still maintaining a count rate of 2 1000 photons
in a lms interval, so that a measurement of photon statistics from an individual

trapped atom should be possible.
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