List of Figures

2.1	Shaded relief map of the northern Basin and Range	9
2.2	Model domain and initial and boundary conditions	13
2.3	Velocity profiles for transform and normal velocity boundary conditions	15
3.1	Gravity anomaly maps of the Reykjanes ridge and the Australian-Antarctic	
	Discordance	23
3.2	Model geometry and boundary conditions	30
3.3	Evolution of topography, temperature, viscosity, and brittle deformation	34
3.4	The magnified upper left part of the model shown in Fig.3.3 \ldots	35
3.5	Topography (in m) and accumulated plastic strain for the models with	
	associated plasticity at 10 My	35
3.6	Same as Fig.3.3	37
3.7	Same as Fig.3.5, but for the models with zero dilation angle \ldots .	39
3.8	Plots of the primary crack spacing	40
3.9	Same as Fig.3.5	43
4.1	Ridge segments and other ridge-parallel structures can release thermal	
	stress in the ridge-normal direction	58
4.2	Geometry of the model domain	61
4.3	F_x as a function of time, depth profiles of temperature and viscosity,	
	and 3-D rendering of the second invariant of plastic strain	64
4.4	A 3-D representation of the surface topography	65
4.5	Modes of interaction between two mutually approaching ridge segments	66
4.6	The piecewise linear variation of cohesion	69

4.7	Patterns of localized plastic strain	71
4.8	F_x as a function of amount of extension $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	72
4.9	Work done by the external extension versus γ	73
4.10	Plot of Pe' versus γ'	74
4.11	Models with a twice higher horizontal resolution	75
4.12	F_x for models with different weakening rate $\ldots \ldots \ldots \ldots \ldots$	76
4.13	Patterns of localized plastic strain in the increasing order of ω	77
5.1	The architecture of a coupled <i>Application</i>	94
5.2	Drawings showing the domains of the coupled solvers as a whole	96
5.3	An example of a 2-D mesh and a portion of the other mesh $\ .$	97
5.4	Synchronizing time steps of two <i>Solvers</i>	99
5.5	Results from the thin-plate benchmark problems	102
5.6	The initial distribution of temperature and viscosity $\ldots \ldots \ldots$	106
5.7	Topography along the equator for various coupled models	108
5.8	Results form the large coupled problem	110
5.9	Along-equator profiles of topography and the radial component of trac-	
	tion and velocity	111
A.1	Configurations of tetrahedra and conventions for the notation \ldots .	118
B.1	Schematic diagram depicting the oedometer test	126
B.2	Plots of stress vs. strain	130
B.3	Schematic diagram for the problem of the thick cylinder $\ldots \ldots \ldots$	131
B.4	The second invariant of stress from $SNAC$	136
B.5	Radial profiles of the second invariant of stress	137