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Appendix B

Verification of plastic solutions

We compare the approximate solutions from SNAC with the analytic solutions to two

simple problems including plasticity: an oedometer test and a problem of a thick

cylinder with a pressurized inner wall. Readers are referred to standard textbooks on

plasticity for more details of these problems (e.g., Hill, 1998; Davis and Selvadurai,

2002).

B.1 Oedometer test

This simple problem tests if SNAC can properly handle the angular geometry of the

Mohr-Coulomb yield surface.

B.1.1 Problem Setup

A cube of Mohr-Coulomb material is pressed on one surface while all the other surfaces

are confined such that they have free-slip boundary conditions (Fig.B.1).

Special care is needed for the angular yield envelope of the Mohr-Coulomb model.

This oedometer test provides a direct test in this regard because the post-yielding

stress state resides on one of the edges of the Mohr-Coulomb yield surface.
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Figure B.1: Schematic diagram depicting the oedometer test.

B.1.2 Analytic Solutions

B.1.2.1 Elastic solution

∆ǫx =
v∆t

L− vt
(B.1)

∆ǫy = ∆εz = 0. (B.2)

∆σx = (λ+ 2µ)∆ǫx (B.3)

∆σy = λ∆ǫx (B.4)

∆σz = σy. (B.5)

B.1.2.2 Plastic solution

Yield criteria for Mohr-Coulomb plasticity are defined as

F 1 = σx − σyNφ + 2c
√

Nφ (B.6)

F 2 = σx − σzNφ + 2c
√

Nφ. (B.7)
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During plastic flow, the strain increments are composed of elastic and plastic parts

and we have

∆ǫx = ∆ǫex + ∆ǫpx (B.8)

∆ǫy = ∆ǫey + ∆ǫpy (B.9)

∆ǫz = ∆ǫez + ∆ǫpz. (B.10)

Using the boundary conditions, we may write

∆ǫex =
v∆t

L− vt
− ∆ǫpx (B.11)

∆ǫey = −∆ǫpy (B.12)

∆ǫez = −∆ǫpz. (B.13)

The flow rule for plastic flow along the edge of the Mohr-Coulomb criterion corre-

sponding to σy = σz has the form

∆ǫpx = λ1
∂G1

∂σx
+ λ2

∂G2

∂σx
(B.14)

∆ǫpy = λ1
∂G1

∂σy
+ λ2

∂G2

∂σy
(B.15)

∆ǫpz = λ1
∂G1

∂σz
+ λ2

∂G2

∂σz
, (B.16)

where G1 and G2 are the potential functions corresponding to F 1 and F 2:

G1 = σx − σyNψ (B.17)

G2 = σx − σzNψ. (B.18)
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After substitution,

∆ǫpx = λ1 + λ2 (B.19)

∆ǫpy = −λ1Nψ (B.20)

∆ǫpz = −λ2Nψ. (B.21)

By symmetry, we know λ1 = λ2:

∆ǫpx = 2λ1 (B.22)

∆ǫpy = −λ1Nψ (B.23)

∆ǫpz = −λ1Nψ. (B.24)

The stress increments are given as

∆σx = (λ+ 2µ)∆ǫex + 2λ∆ǫey (B.25)

∆σy = (λ+ 2µ)∆ǫey + λ(∆ǫex + ∆ǫey) (B.26)

∆σz = ∆σy, (B.27)

∆σx = (λ+ 2µ)

(

v∆t

L− vt
− 2λ1

)

+ 2λλ1Nψ (B.28)

∆σy = (λ+ 2µ)λ1Nψ + λ

(

v∆t

L− vt
− 2λ1 + λ1Nψ

)

(B.29)

∆σz = ∆σy. (B.30)

During plastic flow, the consistency condition that ∆F 1 = 0 should be satisfied, which

takes the form

∆σx − ∆σyNφ = 0. (B.31)

Solving for λ1, we get

λ1 =
(λ+ 2µ− λNφ)

v∆t
L−vt

2(λ+ 2µ) − 2λ(Nφ +Nψ) + 2(λ+ µ)NφNψ

. (B.32)
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B.1.3 Results

The following parameters are used:

• Bulk modulus: 200 MPa.

• Shear modulus: 200 MPa.

• Cohesion: 1 MPa.

• Friction angle: 10◦.

• Dilation angle: 10◦.

• Tension cut-off: 5.67 MPa.

• Boundary Conditions: vx = -1.0×10−5 m/sec.

• ∆t = 1 sec.

• Mesh size: 1×1×1 m, and 5×5×5 nodes.

The stress (σxx) is plotted against the strain (ǫxx) in Fig.B.2 for the solution of

SNAC and the analytic solution. Those two solutions show a good agreement.

B.2 Thick cylinder with a pressurized inner wall

B.2.1 Problem Setup

We compute the equilibrium solution for a thick cylinder with a pressure applied on

its inner and outer wall. The cylinder is assumed to be long along its axis such that

the problem becomes a plane-strain one.

The problem is constructed by the following mathematical statements:

• Momentum balance:

dσrr
dr

+
σrr − σθθ

r
= 0. (B.33)
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elastic plasticelastic plastic

Figure B.2: Plots of stress vs. strain for analytic solutions and those from SNAC.

• Boundary conditions:

σrr(a) = −Pi, (B.34)

σrr(b) = −Po. (B.35)

Note: The sign is negative because compressional.

• Plane strain:

ǫzz = 0, (B.36)

σzz = ν(σrr + σθθ). (B.37)

• Constitutive Relations:

ǫrr =
dur
dr

, (B.38)

ǫθθ =
ur
r
, (B.39)

σrr = λe+ 2Gǫrr, (B.40)
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Figure B.3: Schematic diagram for the problem of the thick cylinder with a pressurized
inner wall

σθθ = λe+ 2Gǫθθ, (B.41)

where e is the volumetric strain.

• Yield and flow functions:

Since σθθ(> 0) > σzz > σrr(< 0),

f = σθθ −Nσrr − 2c
√
N ≤ 0, N =

1 + sinφ

1 − sinφ
, (B.42)

g = σθθ −Mσrr, M =
1 + sinψ

1 − sinψ
. (B.43)

B.2.2 Analytic Solutions

By combining (B.33) and (B.38)-(B.41), we get the momentum balance equation in

terms of the non-trivial radial component of displacement, ur:

d2ur
dr2

+
1

r

dur
dr

− ur
r2

= 0. (B.44)
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A general solution has the form

ur = C1r +
C2

r
. (B.45)

Then, strain components become

ǫrr = C1 −
C2

r2
, (B.46)

ǫθθ = C1 +
C2

r2
. (B.47)

B.2.2.1 Elastic solution

σrr(a) = −Pi = λ(2C1) + 2G

(

C1 −
C2

a2

)

= 2(λ+G)C1 −
2G

a2
C2,

(B.48)

σrr(b) = −Po = λ(2C1) + 2G

(

C1 −
C2

b2

)

= 2(λ+G)C1 −
2G

b2
C2.

(B.49)

From (B.48) and (B.49),

C1 =
a2Pi − b2Po

2(λ+G)(b2 − a2)
, (B.50)

C2 =
Pi − Po

2G

a2b2

b2 − a2
. (B.51)

The full solution for the radial component of displacements is

ur =
a2Pi − b2Po

2(λ+G)(b2 − a2)
r +

Pi − Po
2G

a2b2

b2 − a2

1

r
. (B.52)

Components of strains are given as

ǫrr =
a2Pi − b2Po

2(λ+G)(b2 − a2)
− Pi − Po

2G

a2b2

b2 − a2

1

r2
, (B.53)
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ǫθθ =
a2Pi − b2Po

2(λ+G)(b2 − a2)
+
Pi − Po

2G

a2b2

b2 − a2

1

r2
. (B.54)

Finally, stress components are

σrr =
a2Pi − b2Po
b2 − a2

− (Pi − Po)a
2b2

b2 − a2

1

r2
, (B.55)

σθθ =
a2Pi − b2Po
b2 − a2

+
(Pi − Po)a

2b2

b2 − a2

1

r2
. (B.56)

B.2.2.2 Plastic solution

In the elastic region : Let us assume that region of r ≤ d yielded, where d is the

outer radius of the yielded region and a < d < b. Also, let σd be the stress at r = d.

Then, solution for the elastic region (r > d) are acquired by simply substituting d and

σd − Po for a and Pi − Po in (B.52), (B.53), (B.54), (B.55), and (B.56). Specifically,

stress components are given as:

σrr =
d2σd − b2Po
b2 − d2

− (σd − Po)d
2b2

b2 − d2

1

r2
, (B.57)

σθθ =
d2σd − b2Po
b2 − d2

+
(σd − Po)d

2b2

b2 − d2

1

r2
. (B.58)

In the plastic region : The yield function (B.42) should be 0 in the plastic region.

So, we insert

σθθ = Nσrr + 2c
√
N (B.59)

into (B.33):

dσrr
dr

+
σrr
r

− Nσrr + 2c
√
N

r
= 0

. Then, we get an ordinary differential equation for σrr

dσrr
dr

+ (1 −N)
σrr
r

− 2c
√
N

r
= 0. (B.60)

The solution to the ODE

y′ = a
y

x
+
b

x
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is

y = − b

a
+ C1x

a ,

where C1 needs to be determined using a boundary condition. The corresponding

coefficients in (B.60) are

a = −(1 −N), b = 2c
√
N .

The solution for σrr is

σrr = −2c
√
N

N − 1
+ C1r

N−1 . (B.61)

The value of C1 is determined by the stress continuity at r = d, i.e., σrr(d) = −σd:

C1 =

(

−σd +
2c
√
N

N − 1

)

d1−N . (B.62)

The complete stress solution in the plastic regions is

σrr(r) = −2c
√
N

N − 1
+

(

−σd +
2c
√
N

N − 1

)

(r

d

)N−1

. (B.63)

σθθ(r) = Nσrr + 2c
√
N

= −2c
√
N

N − 1
+N

(

−σd +
2c
√
N

N − 1

)

(r

d

)N−1

.
(B.64)

In the above formulae, σd is still unknown. The elastic stress solutions (B.57 and

B.58) should make the yield function (B.42) zero when yieldeing occurs initially at
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r = a.

a2Pi − b2Po
b2 − a2

+
(Pi − Po)a

2

b2 − d2

b2

a2

−N
[

a2Pi − b2Po
b2 − a2

− (Pi − Po)a
2

b2 − a2

b2

a2

]

− 2c
√
N = 0

(a2 + b2)Pi − 2b2Po
b2 − a2

+NPi − 2c
√
N = 0

∴ Pi0(a) =
2c
√
N + (2b2/(b2 − a2))Po

N + (b2 + a2)/(b2 − a2)
.

Since the same should hold for any end condition.

σd(d) =
2c
√
N + (2b2/(b2 − d2))Po

N + (b2 + d2)/(b2 − d2)
. (B.65)

Finally, d is numerically determined by finding r at which the yield function becomes

zero.

To benchmark SNAC’s solution, we use (B.57), (B.58), (B.63), and (B.64) with

numerically computed d.

B.2.3 Results

We present the results for the following parameters:

• Bulk modulus: 200 MPa.

• Shear modulus: 200 MPa.

• Cohesion: 1 MPa.

• Friction angle: 10 ◦.

• Dilation angle: 10 ◦.

• Tension cut-off: 567 MPa.

• Grid size: 31×3×31.
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Figure B.4: The square root of the second invariant of stress from SNAC. Profiles
shown in Fig.B.5 are extracted along the radial direction (the black arrow)

.

• Geometry of cylinder: a (inner radius) = 3.0 m, b (outer radius) = 10.0 m.

• Boundary Conditions: Pi = 20.0 MPa, and Po = 0.0 MPa. Two surfaces normal

to the axis are free-slip.

• dt = 1 sec and results are compared after SNAC proceeds 5000 steps.

The second invariant of stress (IIσ) is chosen as a representative value and Fig.B.4

shows the spatial distribution of the squre root of IIσ.

The radial profile of
√
IIσ for the SNAC’s solution is shown in Fig.B.5 together

with the analytic and purely analytic solutions. The SNAC’s solution shows a good

agreement with the analytic solution.
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Plastic regime Elastic regime

Figure B.5: Radial profiles of the square root of the second invariant of stressi (IIσ):
Circles for SNAC’s solution, crosses for analytic solution, and a dashed line for the
analytic solution for the purely elastic case.
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