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Appendix B

Verification of plastic solutions

We compare the approximate solutions from SNAC with the analytic solutions to two
simple problems including plasticity: an oedometer test and a problem of a thick
cylinder with a pressurized inner wall. Readers are referred to standard textbooks on
plasticity for more details of these problems (e.g., Hill, 1998; Davis and Selvadurai,
2002).

B.1 Oedometer test

This simple problem tests if SNAC can properly handle the angular geometry of the
Mohr-Coulomb yield surface.

B.1.1 Problem Setup

A cube of Mohr-Coulomb material is pressed on one surface while all the other surfaces
are confined such that they have free-slip boundary conditions (Fig.B.1).

Special care is needed for the angular yield envelope of the Mohr-Coulomb model.
This oedometer test provides a direct test in this regard because the post-yielding

stress state resides on one of the edges of the Mohr-Coulomb yield surface.
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Figure B.1: Schematic diagram depicting the oedometer test.

B.1.2 Analytic Solutions

B.1.2.1 Elastic solution

vAt
L —wut
Ae, = Ae, =0.

Ae, =

Ao, = (A+2p)Ae,
Ao, = Mg,
Ao, = o,

B.1.2.2 Plastic solution

Yield criteria for Mohr-Coulomb plasticity are defined as

F' = o0, —0,Ny+2c\/N,
F2 = UI—O'ZN¢+2C\/N¢.
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During plastic flow, the strain increments are composed of elastic and plastic parts

and we have

Ae, = A€ + A€ (B.8)
Ae, = Ae, + Ae) (B.9)
Ae, = A€+ Aé€. (B.10)

Using the boundary conditions, we may write

vAL
A€ = — A€ B.11
@ = 2L ag (B.11)
Ae, = —Ae (B.12)
Ae = —A€. (B.13)

The flow rule for plastic flow along the edge of the Mohr-Coulomb criterion corre-

sponding to o, = o, has the form

Ael = Al?)f: + Ao gij (B.14)
Al = )\1% + )\2% (B.15)
st = 28,0 B9
where G and G? are the potential functions corresponding to F'* and F?:
G' = o,—0o,Ny (B.17)

G* = o, —0.Ny. (B.18)
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After substitution,

Al = A+ Xy (B.19)

AE§ = —)\1N¢ (BZO)

Ael = —XyNy. (B.21)
By symmetry, we know A\; = \o:

Al = 2)\ (B.22)

Ael = —A Ny (B.23)

Aeg = —)\1N¢. (B24)

The stress increments are given as

Ao, = (A +2p)Ae; +2)\A¢; (B.25)
Ao, = (A +2u)Ac; + AAe; + Aey) (B.26)
Ao, = Aoy, (B.27)

At
vAtL
Ao, = (A+2u)MN, + A (L L2 A1N¢> (B.29)
—v
Ao, = Aoy, (B.30)

During plastic flow, the consistency condition that AF! = 0 should be satisfied, which
takes the form

Ao, — Aoy,N, = 0. (B.31)

Solving for A;, we get

A+ 20 — AN, LAL

A = .
TN+ 20) — 20N, + Ny) + 2(A + )Ny Ny,
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B.1.3 Results

The following parameters are used:
e Bulk modulus: 200 MPa.
e Shear modulus: 200 MPa.
e Cohesion: 1 MPa.
e Friction angle: 10°.
e Dilation angle: 10°.
e Tension cut-off: 5.67 MPa.
e Boundary Conditions: v, = -1.0x107° m/sec.
o At =1 sec.
e Mesh size: 1x1x1 m, and 5x5x5 nodes.

The stress (0,,) is plotted against the strain () in Fig.B.2 for the solution of

SNAC and the analytic solution. Those two solutions show a good agreement.

B.2 Thick cylinder with a pressurized inner wall

B.2.1 Problem Setup

We compute the equilibrium solution for a thick cylinder with a pressure applied on
its inner and outer wall. The cylinder is assumed to be long along its axis such that
the problem becomes a plane-strain one.

The problem is constructed by the following mathematical statements:

e Momentum balance:

darr Orr — O0p
+

=0. B.33
dr T ( )
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Figure B.2: Plots of stress vs. strain for analytic solutions and those from SNAC.

e Boundary conditions:

Urr(a> = _Pia
o (b) = —P,.
Note: The sign is negative because compressional.

e Plane strain:

e Constitutive Relations:

du,
Erp =
dr’
u”"
€ — —,
T

o = e + 2Ge,,.,

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)
(B.39)

(B.40)
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Figure B.3: Schematic diagram for the problem of the thick cylinder with a pressurized
inner wall

Opp — Ae + 2G€99, (B41)
where e is the volumetric strain.

e Yield and flow functions:

Since ogg(> 0) > 0., > 0,.(< 0),

1+ s
F = op — Now — 20N <0, N — L +sno (B.42)
1 —sing
1+ siny
= - Moy, M =——7—. B.4
g = Oy o 1 — sin ¢ (B.43)

B.2.2 Analytic Solutions

By combining (B.33) and (B.38)-(B.41), we get the momentum balance equation in

terms of the non-trivial radial component of displacement, w,.:

Pu,  1du, u,
- —— =0. B.44
dr? r dr r2 ( )
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A general solution has the form

u, = Cir + —.

Then, strain components become

Co
Err = C’1 o

T

Coy
€pg — 01 + 7“_2

B.2.2.1 Elastic solution

on(a) = —P = M\(20)) + 2G (01 - @>

2G
== 2()\ + G)Cl - ?CQ,

o (b) = =P, = \(2C}) + 2G (01 — 9)

b2
2G
=20+ G)C, — ﬁCQ.
From (B.48) and (B.49),
a’P, — V’P,
Ol = )
2(A + G)(b? — a?)
P, — P, a%h?
=T poa

The full solution for the radial component of displacements is

B a’P, — b*P, +PZ-—PO a’h?® 1
TN —a?) T 26 B —ar

Components of strains are given as

_ @P—¥P, P —P, a® 1
crr = 2N+ G)(b? — a?) 2G b2 —a?r?

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)
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a’P, — V*P, P,— P, a?h® 1

= —. B.54
o0 2\ + G)(b? — a?) * 2G b? —a?r? ( )
Finally, stress components are
a’P;, — V*P, (P — Po)aQb2 1
T TR 2 B_a2 2 (B.55)
a*P;, — v*P, (P — P,)a*h? 1
Opp — b2 — a2 —|— b2 — a2 ﬁ <B56)

B.2.2.2 Plastic solution

In the elastic region : Let us assume that region of r < d yielded, where d is the
outer radius of the yielded region and a < d < b. Also, let o4 be the stress at r = d.
Then, solution for the elastic region (r > d) are acquired by simply substituting d and
04— P, for a and P, — P, in (B.52), (B.53), (B.54), (B.55), and (B.56). Specifically,

stress components are given as:

d20'd - b2P0 _ (O’d — Po)d2b2 1

T T g 02— 2 (B:57)
d*cq — b*P, (04— P,)d*V* 1
Opy — b2 — d2 b2 — d2 ﬁ (B58)

In the plastic region : The yield function (B.42) should be 0 in the plastic region.
So, we insert

099 = Noy +2cV'N (B.59)

into (B.33):
do ., . o Nop +2evV'N _0

dr T r

. Then, we get an ordinary differential equation for o,

T 2 N
+(1-N)TT VN _

dr r r

do,,

0. (B.60)

The solution to the ODE

SHESS
8



134
is

b
y:——+01913a7
a

where '} needs to be determined using a boundary condition. The corresponding

coefficients in (B.60) are
a=—(1—N), b=2c¢VN.

The solution for o, is

N-1
= — . B.61
g N —1 + 017’ ( 6 )
The value of C} is determined by the stress continuity at r = d, i.e., 0,.(d) = —oy:
2cv N
Cy = <—ad+; 1) d-v. (B.62)

The complete stress solution in the plastic regions is

onr(r) = (B.63)

2cv N 2cv/ N N-1
- C\/_ + | —0q+ C\/_ (Z> .

N -1 N -1 d
oe9(r) = Noy + 2cvV'N

2cv N
= — C\/_—I—N<—O'd+

N -1 N -1 d

2C\/N> s (B.64)

In the above formulae, o4 is still unknown. The elastic stress solutions (B.57 and

B.58) should make the yield function (B.42) zero when yieldeing occurs initially at
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P~ VP, (P~ PP’

b2 _ a2 b2 _ d2 CL2
a®P, — ¥’P, (P — P,)a*b?
R e M —2¢V/N =0
(a® + b*) P, — 2b*P,

b2 _ a2
_ 2¢V/N + (20%/(V? — a?)) P,

_|_NPi—20\/N:O
. Pyola) = N+ (82 + )/ (02 2)0.

Since the same should hold for any end condition.

D — 2cvV/'N + (20%/(1? — d?))P,
)= N e P —d)

(B.65)

Finally, d is numerically determined by finding r at which the yield function becomes

Z€ro.
To benchmark SNAC’s solution, we use (B.57), (B.58), (B.63), and (B.64) with

numerically computed d.

B.2.3 Results

We present the results for the following parameters:
e Bulk modulus: 200 MPa.

Shear modulus: 200 MPa.

Cohesion: 1 MPa.

Friction angle: 10 °.

Dilation angle: 10 °.
e Tension cut-off: 567 MPa.

Grid size: 31x3x31.
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Figure B.4: The square root of the second invariant of stress from SNAC. Profiles
shown in Fig.B.5 are extracted along the radial direction (the black arrow)

e Geometry of cylinder: a (inner radius) = 3.0 m, b (outer radius) = 10.0 m.

e Boundary Conditions: P; = 20.0 MPa, and P, = 0.0 MPa. Two surfaces normal

to the axis are free-slip.
e dt = 1 sec and results are compared after SNAC proceeds 5000 steps.

The second invariant of stress (/1,) is chosen as a representative value and Fig.B.4
shows the spatial distribution of the squre root of I1,.

The radial profile of \/I1, for the SNAC’s solution is shown in Fig.B.5 together
with the analytic and purely analytic solutions. The SNAC’s solution shows a good

agreement with the analytic solution.
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Figure B.5: Radial profiles of the square root of the second invariant of stressi (11,):

Circles for SNAC’s solution, crosses for analytic solution, and a dashed line for the
analytic solution for the purely elastic case.
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