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Appendix A

Algorithm of SNAC

A.1 Governing equations

The software package SNAC solves the momentum and the heat energy balance equa-

tions in the following differential form:

∂σij
∂xj

+ ρgi = ρ
Dvi
Dt

, (A.1)

∂qi
∂xi

+ r = ρCp
DT

Dt
. (A.2)

In the momentum balance equation, ρ is the mass density, vi is velocity, σij is the

Cauchy stress tensor, and gi is the gravitational acceleration. T is temperature, Cp is

the specific heat at constant pressure, qi is the heat flux vector, and r is the volumetric

heat source. D/Dt represents the material time derivative. In this study, no heat

sources are considered, including shear heating. Viscosity is temperature- and/or

stress-dependent. The elastic component of stress has an extra contribution from

thermal stress.

A.2 Spatial discretization

A 3-D domain is discretized into hexahedral elements, each of which is filled with two

sets of 5 tetrahedra (Fig. A.1a). In this mesh hierarchy, called the mixed discretiza-

tion (Marti and Cundall, 1982), hexahedral elements are used only as an averaging
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Figure A.1: (a) Two configurations of five tetrahedra in a hexahedral element used in
the mixed discretization. Numbers next to apexes indicate the local node numbering.
(b) Conventions for the notation. Al and nl denote the face and the unit normal
vector, respectively, associated with a local node l.

unit for volumetric strain. The averaging is enforced at all times, for incompressible

viscoelastic or plastic constitutive laws. The use of two equivalent sets of tetrahedra

is required to ensure a symmetric response. For a given loading, responses of one set

of tetrahedra can be different from those of the other set because of the differently

orientated faces of tetrahedra in each set (e.g., Zienkiewicz et al., 1995).

The approximation of partial derivatives with respect to spatial variables follows

the integral definitions (e.g., Wilkins, 1964):

∫

Ω

f,idV =

∫

∂Ω

fnidΓ, (A.3)

where Ω represent a tetrahedron as an integration domain, ∂Ω is the boundary sur-

faces of the tetrahedron, f,i is the partial derivative of a variable f with respect to i-th

spatial coordinate, ni is the i-th component of the unit normal vector of the surface.
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If the partial derivative is constant within a tetrahedron, it is evaluated as

f,i =
1

V

∫

∂Ω

fnidΓ, (A.4)

where V is the volume of the tetrahedron. By further substituting an algebraic

expression for the surface integral, reordering terms, and using
∫

∂Ω
nidΓ = 0 (when

f = 1 in (A.4)),

f,i =
1

V

4
∑

l=1

f̄ lnliA
l =

1

V

4
∑

l=1

1

3

4
∑

m=1,6=l

fmnliA
l

=
1

3V

4
∑

m=1

fm
4
∑

l=1,6=m

nliA
l

= − 1

3V

4
∑

m=1

fmnmi A
m,

(A.5)

where l is the local node index varying from 1 to 4, Al and nl are the area and the

unit normal vector of the triangular surface not having the node l as one of its apexes

(Fig. A.1b). Hereafter, we call such a face a corresponding face to node l. f̄ l is the

averaged f on the surface l.

A.3 Nodal assemblage

We can convert the differential equation for momentum balance (A.1) (the following

description is applied to the heat equation in the same fashion) to a principle of

minimum work rate as in the standard finite element formulation:

∫

Ω

δviρ
Dvi
Dt

dV =

∫

Ω

δviρgidV +

∫

Ω

δξijσijdV, (A.6)

where ξij are components of the strain rate tensor, δvi and δξij represent variations

of velocity and strain rate, and Ω here corresponds to the whole domain. The local

contribution to nodes corresponding to each term can be computed by following

the standard finite element procedure for linear tetrahedral elements. However, our
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method does not need to construct coefficient matrices such as mass and stiffness

matrices since it adopts an explicit time discretization. The resultant momentum

equation is

MnDv
n
i

Dt
=

1

3
T

[n]
i +

1

4
ρ[n]giV

[n], (A.7)

where the superscript n represents values evaluated at the global node n, the super-

script [n] means the sum of contributions from all the tetrahedra having the global

node n as an apex, Ti is the traction that is defined as σijnj and evaluated on a face

of one of the contributing tetrahedra. The nodal mass Mn is not the actual inertial

mass but an adjusted one to satisfy a local stability criterion discussed in the section

A.5. The correspondence between an apex and a face for the traction calculation

is determined as in the derivation of the expression, (A.5). Note that the factor of

1/3 in the traction term is inherited from (A.5) and the factor of 1/4 in the body

force term implies that the nodal contribution takes one quarter of a tetrahedrons

volume-dependent quantity.

While looping over the entire set of nodes, mass and nodal forces are assembled

by adding up the contributions from boundary conditions and all the tetrahedra

sharing that node as one of their apexes. The structured mesh of SNAC renders the

assemblage step conveniently static. The acquired net force (or heat flux) at each

node is used to update velocities and node coordinates (or temperature).

A.4 Damping and explicit time marching

We seek static or quasi-static solutions through a dynamic relaxation method. Instead

of adding a usual velocity-dependent friction term, we adopt a local non-viscous

damping scheme (Cundall, 1987):

F damped
i = Fi − α sgn(vi)|Fi|, (A.8)

where Fi is the i-th component of the residual force vector, α is a positive coefficient

less than 1, sgn(vi) returns the sign of the i-th component of velocity, vi. Once net
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forces are assembled and damped, velocity at that node is updated using a forward

Euler method:

v(t+
∆t

2
) = v(t− ∆t

2
) + ∆t

F damped
i

M
(A.9)

x(t+ ∆t) = x(t) + ∆tv(t+
∆t

2
). (A.10)

Damping is irrelevant to the update of temperature field, but the same forward Euler

method is used.

A.5 Mass scaling for numerical stability

The conventional CourantFriedrichsLewy (CFL) condition imposes a stringent upper

limit for the time step size such that dynamic relaxation takes long time to get quasi-

static solution over a geological time scale. To overcome this limit, a mass scaling

technique is applied. This technique adjusts each nodal mass such that the stability

condition for a user-specified time step can be locally satisfied. The stability condition

to be satisfied, however, is not the same as in the CFL condition, i.e., ∆t ≤ (lmin/vp),

where ∆t is the time step, lmin is the minimum element size, and vp is the P wave

velocity. Instead, through an analogy of continuum to an infinite mass-spring system,

we use a criterion that does not explicitly include length scale and P wave velocity

(see Ch. 9 in Bathe, 1996):

∆t ≤ T

π
, (A.11)

where T is the period of system, 2π(m/k)1/2, m is a point mass, and k is the stiffness

of the spring attached to the point mass. Now, reducing the infinite series of mass and

springs in one dimension to a single mass-spring system, the stiffness of that single

system becomes 4k, leading to an expression for the mass scaling:

m ≥ k(∆t)2. (A.12)

For a given size of ∆t, the nodal mass is adjusted according to (A.12) to automatically

satisfy the stability critetion, (A.11). The value of k is computed by equating internal
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force contribution at a node with kui:

1

3
Ti = −kui ⇒

1

3
(λ+ 2µ)(ǫ̇iidt)niS = −k(vidt) (no sum),

(A.13)

where only the volumetric contribution from internal forces is taken into account.

By substituting the approximation for the partial derivative (A.5) into the above

equation and dividing both sides by vidt, we obtain

kli =
1

9V
(λ+ 2µ)(nliS

l)2, (A.14)

where l is the local index for apexes of a tetrahedron and the surface-related quantities

are computed on the corresponding face of the tetrahedron. Finally, a tetrahedron’s

contribution to the scaled mass is given as

ml =
λ+ 2µ

9V
max[(nliS

l)2, i = 1, . . . , 3]. (A.15)

As in the standard FEM, appropriate mappings between local and global indices

are required.

A.6 Constitutive update

SNAC uses a general elasto-visco-plastic rheological model to update the Cauchy

stress tensor (e.g., Albert et al., 2000). First, the initial guess of stress is acquired

by the Maxwell viscoelastic constitutive law (Poliakov et al., 1993). If this initial

guess exceeds a given yield stress, it is projected onto the yield surface using a return

mapping method (Simo and Hughes, 2004); otherwise, the viscoelastic stress update

is retained. This elasto-visco-plastic model can deal with various constitutive laws

that are typically used for the Earth’s crustal and mantle material as its limiting

cases. For example, elastic, viscoelastic and elastoplastic material are realized in the

following cases:
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1. Elastic material corresponds to the limit of infinite viscosity and yield stress.

2. Viscoelastic material corresponds to the limit of infinite yield strength.

3. Elasoplastic material corresponds to the inifinte viscosity.

Using the viscoplastic rheology is physically more realistic than using one of the

limiting cases listed above since all materials have dissipative mechanisms and hence

viscosity. This viscosity also provides a length scale for the problem of localization,

which in turn enables physically meaningful mesh independent solution when the

mesh size is smaller than this length scale.

Since the nodal variables are velocities and whose spatial gradients are deformation

rates, we formulate the constitutive update in terms of strain rate. The objective

stress rate of choice is the Jaumann or the corotational stress rate (∆σ∆J) (Rudnicki

and Rice, 1975)

∆σ∆J =
∂(∆σ)

∂t
−W · ∆σ − ∆σ ·W T , (A.16)

where Wij = (1/2)(∂vi/∂xj-∂vj/∂xi) are the components of spin tensor and ∆σ is the

increment of stress tensor. Correction to the stresses due to rotation can be given as

σt+∆t = σt + ∆σ∆J .∆t (A.17)
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