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Chapter 5

Coupling models of crustal

deformation and mantle convection

with a computational framework1

5.1 Abstract

Crust and mantle exhibit contrasting compositions and thus distinct rheologies, mak-

ing it challenging to model their combined mechanical behaviors. A code coupling

technique is explored in order to solve multi-material and multi-physics problems.

We adapt Pyre, a framework allowing distinct codes to exchange variables through

shared interfaces, to the coupling of a Lagrangian and an Eulerian code. Motivated

by computationally challenging problems like crust-mantle interaction, we couple an

explicit code for the solution of crustal deformation for the mechanics of lithosphere

with a finite element model for mantle dynamics, both in a spherical domain. The

continuity of velocities and tractions and the no-slip conditions are imposed on the

interfaces. The benchmarks against analytic solutions to the bending of a thin plate

verifies that SNAC can give accurate solutions for the traction boundary conditions

and that Pyre can correctly handle the crucial data exchanges. As a preliminary

model in anticipation of more realistical problems, an elasto-visco-plastic lithosphere

is coupled to a Newtonian viscous mantle. Flow in the mantle is driven by a hot

1Parts of this work were published by Eh Tan, Eun-seo Choi, Pururav Thoutireddy,
Michael Gurnis, and Michael Aivazis in Geochemistry, Geophysics, Geosystems, 2006, 7, doi:
10.1029/2005GC001155.
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sphere placed at the center of the mantle. This coupled model shows a steady growth

of a dome in the lithosphere directly above the hot sphere, as expected. Unnecessarily

high numerical cost is caused by the mismatch of time marching schemes adopted in

each code.

5.2 Introduction

The dynamic coupling of the crust with the mantle on geological time-scales (such

as those occurring on >105 yrs) is a long-standing problem that has been difficult

to approach numerically. Together, the crust and mantle have a complex, composite

rheology in which different layers and domains deform on vastly different time and

spatial scales (e.g., Goetze and Evans, 1979; Kohlstedt et al., 1995; Ranalli, 1995).

The mantle is usually treated as a linear (or non-linear) viscously dominated fluid

with an infinite Prandtl number (the ratio of the diffusion of momentum to heat)

(Davies, 1999; Schubert et al., 2001). The crust and upper lithosphere is commonly

subdivided into several layers of elastic, elasto-plastic, and/or viscoelastic solids (e.g.,

Bodine et al., 1981; McNutt et al., 1988; Buck, 1991; Burov and Diament, 1995; Albert

and Phillips, 2002). Modeling of geodynamics usually involves large displacements,

rotation and strains and non-linearities such as brittle fracturing and non-linear visco-

elastic creep (e.g., Lavier et al., 2000; Hall et al., 2003). In recent years the adoption of

new numerical techniques (e.g., Cundall, 1989; Poliakov et al., 1993a; Fullsack, 1995;

Beaumont et al., 2000; Hansen, 2003; O’Neill et al., 2006) has allowed for the modeling

of a wide variety of problems related to deformation of lithosphere in 2-D and 3-D.

These choices of non-linear rheologies to model the deformation of the mantle and

crust as well on the widely different length scales of deformation, typically >10 km for

the mantle and from a few meters (faults) to >100 km (long term elastic strength) for

the lithosphere poses a vast challenge to numerical modeling of dynamics. The high

resolution required for the solutions for 3D multi-scale phenomena leads to exorbitant

numerical cost.

Various geophysical problems can be better addressed when the distinct rheolo-
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gies of the crust and mantle are modeled as a composite system. For example, the

initiation and the evolutionary processes of the Afar triple junction is the result of the

mechanical interaction between the lithosphere and a mantle plume (e.g., Manighetti

et al., 2001a,b). With a linear viscous rheology only, the transition from continental

rifting to the formation of a mid-oceanic ridge through extension of the lithosphere

cannot be properly modeled (e.g., Lavier and Manatschal, 2006). On the other hand,

without the dynamic motion of the mantle, the time evolution of a triple junction

cannot be realistically considered. A more complex example is the Cenozoic evolution

of the Basin and Range Province in the western U.S. during which low angle normal

faults accommodated extension occurring over a broad region (e.g., Wernicke, 1981).

The Basin and Range Province is suggested to be extending under its own weight

as well as due to contributions from other mantle-originated forces (e.g., Sonder and

Jones, 1999, Chapter 2). The long-term deformation of such regions would be better

simulated with a coupling between the mantle and the crust.

In this chapter, we explore the coupling of distinct numerical models as a potential

option for such multi-material and multi-scale geodynamic problems. In particular,

using facilities provided by Pyre (Tan et al., 2006), one mantle convection code is

coupled with a code for modeling lithospheric deformation. We use a variation of

CitcomS (California Institute of Technology COnvection Model, Spherical) (Zhong

et al., 2000) for mantle convection in a regional spherical cap (RegionalCitcomS here-

after). It is an Eulerian finite element program for solving the Stokes and energy equa-

tions and has been widely used for modeling mantle convection. SNAC (StGermaiN

Analysis of Continua) is used for lithospheric deformation. This code is based on

the same algorithm for FLAC (Fast Lagrangian Analysis of Continua) and the code

PARAVOZ developed by Y. Podlatchikov and A. Poliakov (e.g., Poliakov et al., 1993a)

but has been extended to 3-D through a computational framework called StGermain

(Quenette et al., 2005). SNAC uses an explicit scheme to acquire static or quasi-

static equilibrium through a dynamic relaxation technique. Since SNAC can model

various rheologies including plasticity, this code is well suited for the modeling of

lithospheric deformation, such as those problems studied with the code PARAVOZ or
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FLAC (Cundall, 1989; Poliakov et al., 1993a; Burov and Poliakov, 2001; Lavier and

Buck, 2002; Hall et al., 2003; Buck et al., 2005). More theoretical background on

SNAC is given in Appendix A. In Chapters 3 & 4 we give detailed applications to

lithospheric deformation using SNAC without coupling.

5.3 Numerical method

5.3.1 SNAC: Overview

SNAC is a Lagrangian finite difference code for modeling a finitely deforming elasto-

visco-plastic solid in 3-D. SNAC is very similar to a conventional finite element code

with linear tetrahedral elements and thus shares many benefits with it. However,

SNAC does not make explicit use of shape functions. For this reason, it is technically

classified as a finite difference code. Another important characteristic of SNAC is that

the dynamic relaxation technique is used to achieve static or quasi-static solutions

from a dynamic momentum equation. This technique lets SNAC obtain solutions

without solving a large matrix equation. A static finite element code whould typi-

cally involve inversion of a stiffness matrix and often suffers slow convergence when

a non-linear constitutive law is adopted. Since the equation for heat energy bal-

ance can be optionally solved, SNAC can solve thermomechanical problems and have

temperature-dependent rheologies. Although formulated in the small strain limit,

long-term geodynamic problems eventually develop finite deformations. Two po-

tential problems associated with large deformations acquired by accumulating small

strains are the loss of objectiveness (the invariance under rotation (e.g. Rudnicki

and Rice, 1975)) and the mesh distortion. To avoid these problems, SNAC updates

stresses based on the objective Jaumann stress rate (e.g., Rudnicki and Rice, 1975)

and performs remeshing when the mesh becomes too distorted.
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5.3.2 StGermain framework

SNAC is built up from the StGermain framework, an environment for the develop-

ment of numerically intense scientific codes (Quenette et al., 2005). As frameworks,

StGermain and Pyre differ in that StGermain provides the infrastructural components

needed to build complete codes while Pyre provides the superstructure to couple codes

together; for this reason we refer to the former as an infrastructure framework and

the latter as a superstructure framework.

StGermain provides a suite of libraries needed by general physical modeling soft-

ware such as flow control, domain discretization, and initial/boundary condition man-

agement (Quenette et al., 2005). One of the advantages of using the StGermain frame-

work is that a code can be easily extended through entry points and plug-ins. By

adding or removing entry points, a problem-specific algorithm can be implemented

while keeping the modification of source codes limited. Plug-ins are small pieces of

codes that work as a part of the program, but can be compiled separately and dynam-

ically loaded at run time. Thus, their development can be completely independent of

the main program. For example, a new constitutive relation or time-varying bound-

ary conditions can be made available as plug-ins without modifying or compiling the

whole program that already exists.

5.4 Coupling through Pyre

We extend Pyre, a Python-based modeling framework that is originally developed

to solve fluid structure interaction problems (Cummings et al., 2002). Technical

details as well as an overview of Pyre have been published in (Tan et al., 2006). For

completeness, however, we present the most relevant features of this framework and

then describe under what physical principles the two solvers, RegionalCitcomS and

SNAC, are coupled.
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5.4.1 Overview of Pyre

Pyre is a full-featured, object-oriented environment that is capable of handling all

aspects of the specification and launch of numerical investigations. Pyre operates

on massively parallel supercomputers including both shared memory computers and

Beowulf clusters. Pyre is written in the Python programming language, an open-

source, well-maintained and widely used interpretive environment.

Pyre leverages the extensibility of the Python interpreter to allow for the seamless

integration of rather diverse computational facilities. The framework provides enough

flexibility to allow the dynamic discovery of available facilities as part of simulation

staging. There is a well-defined and well-documented method by which a new solver

or a new material model can be made available to the framework, while the flexibility

allows the user to specify solvers and algorithms in the simulation script, without

the need for recompilation or relinking. The combination promotes experimentation

with new algorithms by lowering the overall overhead associated with trying out new

approaches.

Each simulation model under Pyre is called an Application. An Application could

contain one or more Solvers. An Application and its Solver(s) can run on multiple

processors, but each processor has only one Application and one Solver on it (Fig.5.1).

The role of the Application is to assign each processor a Solver and orchestrate the

simulation staging of the Solver(s), such as initialization (including memory allocation

and variable assignment), time marching, and output (Tan et al., 2006).

5.4.2 Coupler

“Coupling” means running two spatially overlapping geophysical applications in such

a way that interaction occurs through sharing physical quantities (such as velocity

and traction) at interfaces. The sharing of information at an interface typically takes

the form of sending and receiving data between two solvers and is managed by a

“Coupler”.

The Coupler is one of the Pyre’s classes that control the general procedure of
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Figure 5.1: The architecture of a coupled Application. The Application has two
Solvers. The original code of the solver (in C/C++/Fortran) is complied into a
library, which is called by the Pyre Solver via the Python bindings. Solver 1 is the
containing solver and has a Coupler 1, and the other solver, Solver 2, has a Coupler
2. The Couplers communicate via the Exchangers, which are external to the Solvers.

coupling between elements in the Pyre. The Coupler controls only the top level

of coupling, i.e., orchestrates the timing for sending and receiving information in the

context of global time marching. The interaction details (for example, what quantities

are exchanged and how received information will be used) vary with the nature of

the problem (e.g., coupling earthquake rupture to tectonic loading versus coupling

crustal deformation with mantle flow).

The actual information exchange occurs in the Exchanger (Fig.5.1), which consists

of a number of C++ classes. The Exchanger of a Solver can communicate with

another Exchanger of a different Solver. An Exchanger is specific to its host Solver,

but independent from the Solver that it is coupled to. The different types of the

coupling mechanism can be easily implemented by virtue of the flexibility and the

extensibility of the Exchanger. For example, the Exchanger of RegionalCitcomS was

originally developed to couple with another CitcomS (Tan et al., 2006); it is used

here to couple with SNAC with only little modifications. Since a goal is to leverage

existing modeling code, the Exchanger is external to the Solver and not required for

uncoupled applications.

For simplicity, let us first consider the case of a single-processor Solver coupled

with another single-processor Solver. Solver A, which is going to send a message,

has an Outlet, while Solver B, which is going to receive, has an Inlet. Their meshes
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would look like Fig.5.2 or Fig.5.3A in more general settings. First, Solver B has a

BoundedMesh. The BoundedMesh contains a set of nodes at the interfaces of coupling

Solvers and maintains a bounding box of those nodes, hence its name. Here we use

“interface” in a loose sense. The set can be the whole collection of boundary nodes of a

Solver (Fig.5.3B), or only part of it, or the nodes in the overlapping region (Fig.5.3C).

The Inlet sends the BoundedMesh to the Outlet. The Outlet uses the bounding

box as an efficient check on whether the BoundedMesh overlaps with the domain of

Solver A. The Outlet then assembles the requested data (usually by interpolation of

a local field variable to the nodes in the BoundedMesh) and sends them to the Inlet.

With finite elements, the interpolation involves finding the corresponding element

and computes the shape functions of each node in the BoundedMesh and is the most

time-consuming procedure. If both meshes are static (Eulerian), this procedure is

performed only once and the shape functions are stored for subsequent use. If one of

the meshes changes with time (i.e., Lagrangian), this procedure repeats at every time

step. The Inlet then imposes the data received to the interface nodes. Depending on

the use of the data, the action of “impose” can have different meanings. If it is used

as boundary conditions (BC), the BC arrays are updated; otherwise, it might simply

replace the field variable. In the case of multi-processor coupling, the procedure

becomes more complicated (for actual codes, see Tan et al., 2006). Each processor still

has an Inlet (for Solver B) or an Outlet (for Solver A). Additionally, each processor

of Solver A has a Source, but only the leading processor of the Solver B has a Sink.

Each processor of Solver B constructs a BoundedMesh according to its local mesh.

Those local BoundedMeshes are broadcast out by the Sink to all Sources. Each

Source passes the received BoundedMesh coordinates to the Outlet, which performs

the same interpolation procedure as the single-processor case. The Outlet passes the

interpolated results to the Source. The Sink collects the results from all Sources

in Solver A and distributes the collected data to all Inlets. Inlets then impose these

data to the interface nodes. In general, Solvers have their own domain decomposition

scheme, and the decomposition boundaries of two Solvers do not coincide. Therefore,

nodes in a local BoundedMesh of an Inlet might be interpolated by different Outlets.
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Figure 5.2: Drawings showing the domains of the coupled solvers as a whole. The
gray plane at a constant depth represents the interface between two solvers. The
spherical object below the interface represents a hot sphere that drives mantle flow.
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Figure 5.3: An example of a 2-D mesh and a portion of the other mesh. (A) One fine
grid is in dashed line, and the other coarse grid in solid line. The fine-grid nodes are
shown as dots, and the coarse-gird nodes as crosses. The meshes reside on separated
Solvers but overlap in the modeling space. The fine mesh is completely immersed
within the coarse mesh in this particular example. The two meshes are not required
to be parallel to each other. Two scenarios of BoundedMesh are presented. (B) The
fine-grid Solver is Solver B. Its BoundedMesh consists of twelve boundary nodes (red).
The coordinates of these nodes are sent to Solver A (the coarse-grid Solver) to find
the corresponding elements (green, only one element is colored) and shape functions.
(C) The coarse-grid Solver is Solver B. Its BoundedMesh is the three nodes (red) in
the overlapping region. One corresponding element is shown in green.

The Sources and Sink maintain the bookkeeping of overlapping nodes.

Different Solvers, depending on their design, usually have different coordinate sys-

tems and units to represent the physical quantities internally. To facilitate informa-

tion exchange, we require that any quantities be exchanged in Cartesian coordinates

and SI units. Conversion from and to the native coordinate system and units is

carefully handled within the Inlet and Outlet. An option of skipping conversion is

available if the Solvers use the same coordinate system and units.

During a coupled computation, the Coupler monitors the model times of both

Solvers (for actual codes, see Tan et al., 2006). If the model times of both Solvers

are equal, they are synchronized. For example, in Fig.5.4, step M+3 and step N+1

are synchronized, but step M+2 and step N+1 are not. Only when the times are

synchronized, is the coarse-grid Solver allowed to march forward to the next time

step. Generally, the coarse-grid Solver has a larger stable time step than the fine-

grid Solver. As a result, at the end of a time step, the coarse-grid Solver will be ahead

of the fine-grid Solver (Fig.5.4A). The coarse-grid Solver must wait until the fine-grid
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Solver catches up (Fig.5.4B-C). The fine-grid Solver, if necessary, will clip the size of

its stable time step so as to synchronize with the coarse-grid Solver (Fig.5.4D).

5.4.3 Coupling RegionalCitcomS and SNAC

The physical principles applied to the interfaces of RegionalCitcomS and SNAC are the

continuity of velocity and traction. We also assume the no-slip condition, requiring

the continuity of all three components of velocities. A coupling scheme satisfying

those principles is implemented as follows:

1. RegionalCitcomS and SNAC are both initiated on a multi-processor computer.

2. RegionalCitcomS gets a solution for an initially given thermal anomaly in the

mantle and boundary conditions that are updated later.

3. RegionalCitcomS sends the new stress field to SNAC.

4. SNAC computes a solution (velocity, stress and pressure) for the new traction

boundary conditions retrieved from the received stresses.

5. SNAC sends back to RegionalCitcomS an updated velocity field.

Steps 2-5 are repeated until the end of simulation. Since velocities and tractions are

determined by one solver at a time and the other simply uses them, the continuity

across the interfaces is automatically enforced at all times. This method of coupling

a Lagrangian code with an Eulerian code can prevent numerical instabilities caused

by substantially different physics working in each code (Fedkiw, 2002).

The time step size for RegionalCitcomS is set to be larger than that of SNAC, which

is consistent with the time scales associated with mantle and crustal deformations as

well as with implicit and explicit time marching in each code. For this reason, the step

(4) includes an inner time loop for SNAC to catch up with RegionalCitcomS. Related to

this property, SNAC’s dynamic relaxation can potentially pose a problem. A system

modeled by SNAC would not be in equilibrium immediately following the update of

traction boundary conditions as it takes a finite amount of time to dissipate inertial
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Figure 5.4: Synchronizing time steps of two Solvers. (A) After a synchronized step,
the coarse-grid Solver will be ahead of the fine-grid Solver. (B) and (C) The fine-
grid Solver keeps marching forward. The coarse-grid Solver waits until the fine-grid
Solver catches up. (D) The fine-grid Solver clips the size of its stable time step so as
to synchronize with the containing Solver.
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forces and reach a new equilibrium state within SNAC. Unlike in a true dynamic prob-

lem, these transient solutions are not physically meaningful. If a data exchange occurs

during this transient phase, RegionalCitcomS would attempt to adjust to that state

and can become numerically unstable. To prevent this numerical artifact, transient

effects in SNAC should diminish substantially by the time of the next data exchange.

In practice, this is achieved by setting the ratio of RegionalCitcomS’s time step size

to that of SNAC to be sufficiently large.

The incompressibility condition is another problem-dependent detail associated

with the coupling of RegionalCitcomS and SNAC. For the convergence of RegionalCit-

comS, the incompressibility condition should be enforced for the kinematic boundary

conditions. However, the velocity field received from SNAC might have non-zero flux

leading to numerical instability. The material near the interface is a Maxwell vis-

coelastic material in SNAC, according to which viscous responses are guaranteed to

be incompressible by the formulation, but even a small dilatational component due to

elasticity can violate the RegionalCitcomS’s incompressibility condition. Thus, SNAC

performs the operation that removes a net flux in its velocity field before being sent

to RegionalCitcomS.

Interpolation is a necessary operation in the data exchanges because the meshes

of the solvers are usually not perfectly identical (Fig.5.2). Unit conversion is also

required because variables are non-dimensional in RegionalCitcomS while SNAC’s vari-

ables have physical dimensions.

The deformation of the interface is assumed to be negligible on the RegionalCit-

comS’s side although it is a crucial output from the Lagrangian code, SNAC. If a

significant deformation of the interface is expected for the Eulerian code, the use of

techniques such as ghost fluids or Arbitrary Lagrangian Eulerian would be required to

account for the effect of moving boundaries (Fedkiw, 2002; Arienti et al., 2003). How-

ever, the deflection of the interface in this study is on the order of a few km, which is

small compared to the typical radial dimension of a RegionalCitcomS’s domain (>1000

km). Thus, the effects of moving boundary on the flow field in RegionalCitcomS can

be safely ignored.
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5.5 Benchmarks

5.5.1 Traction boundary conditions applied on SNAC

A problem of plate bending is solved by SNAC under the thin plate approximation.

The purpose is to validate SNAC’s solution for traction boundary conditions, which

are the type used in the coupled modeling. The analytic solution is easily acquired

for the case where two ends are embedded and a uniform transverse loading is applied

(Fig.5.5a) (e.g., Turcotte and Schubert, 2001):

w(x) =
q

24D
x2(L− x)2, (5.1)

where q is the applied load with the unit of N/m2, L is the length of the plate, and

D is the flexural rigidity. The flexural rigidity is defined as Eh3/(12(1 − ν2)), where

E is the Young’s modulus, h is the thickness of the plate, ν is the Poisson’s ratio.

We use different resolutions to test the convergence of numerical solutions to the

analytic one. The following values of parameters are used: L=1 km, h=20 m, E=

75 GPa, ν=0.25, and q=10 kPa. While adjusting the resolution, the other dimension

of SNAC’s 3-D domain is determined such that each hexahedral element becomes a

cube. The relative error defined as ‖w−w′‖/‖w‖ is 1.3 % for the model with 401×7

nodes, where w is the analytically computed flexure, and w′ is a numerical solution.

Fig.5.5b compares numerical solutions for various resolutions with the analytic one.

The expected trend of decreasing error with increased resolution is observed.

5.5.2 The RegionalCitcomS-to-SNAC transfer of traction

A similar numerical experiment is set up to test if Pyre can correctly handle the

data exchange between RegionalCitcomS and SNAC. The type of problem is the same

with the previous section, but the transverse loading is now computed and given

by RegionalCitcomS. Although set up in the spherical coordinate system, thin slices

along the equator are used as problem domains. Since the domains are then essentially

rectangular slabs, the approximate solutions can be directly compared with the thin
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Figure 5.5: (a) A schematic diagram showing the geometry for the thin-plate bench-
mark problem. (b) Displacement (w) as a function of the transverse distance (x). (c)
Arrows represent tractions (upper panel) and velocities (lower panel) resulted from a
temperature perturbation with a cosine form. Gray shades represent the temperature
normalized by 1700 ◦C: The darkest for 0 and the lightest for 0.82. (d) Same as (b).

plate theory based on the Cartesian coordinate system. The longitudinal range of

the SNAC domain is 0.1◦ (L=∼10 km) centered on 90◦ and the thickness is 200 m.

The length to thickness ratio is about 50, a sufficiently high value for the thin plate

approximation. The RegionalCitcomS’s domain covers the same longitudinal range

but its radial dimension is 5 km. The overlapped region between the two domains is

15 m.

A cosine perturbation is added to a temperature field of RegionalCitcomS that is

otherwise horizontally uniform and varies linearly along the radial direction. Such a

temperature field can be described by the following function:

T (ϕ, r) = ∆T0 sin2

(

π
r − ri
ro − ri

)

cos

(

2π
ϕ− ϕmin

ϕmax − ϕmin

)

+ (Tt − Tb)
r − ri
ro − ri

, (5.2)

where r and ϕ are the radial and longitudinal coordinates, ∆T0 is the magnitude

of perturbation, ri and ro are the inner and outer radius of the domain, ϕmin and
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ϕmax are the minimum and maximum of the longitudinal coordinate of the domain,

and Tt and Tb are the top and the bottom temperature. With a uniform viscosity

of 1021 Pa·s, the resultant velocities and stresses have the form of a cosine function

(Fig.5.5c). Then, the traction boundary conditions derived from such a stress field

also takes a cosine form. The tractions shown in Fig.5.5c are defined as σij(nr)j,

where σij is the stress tensor and nr is the unit vector along the radial direction, and

computed at each grid point of the RegionalCitcomS domain. Note that the tractions

actually applied on the SNAC’s boundary are appropriately determined by the local

unit normal vector. The Rayleigh number and the values of other parameters are

listed in Table 5.1. The velocity boundary conditions for RegionalCitcomS are free-

slip on all the surfaces. Zero heat fluxes are assumed on the side walls while the top

and the bottom temperature (non-dimensional) are fixed at 0 and 0.82, respectively.

The boundary conditions for SNAC are the same with those in the previous section.

A simple analytic solution is acquired for a thin plate with a sinusoidal loading.

If the loading is given by q = q0 cos(2πx/L), the corresponding analytic solution for

a thin plate with both ends embedded is

w(x) =

(

L

2π

)4
q0
D

[

cos

(

2π

L
x

)

− 1

]

. (5.3)

The numerical solution from a model with 601 by 13 nodes is compared against to

the analytic solution in Fig.5.5d. The relative error for this model, defined in the

previous section, is 0.62 %.

5.6 Application

5.6.1 Model Setup

As an example of the coupling of RegionalCitcomS and SNAC via Pyre, we solve the

following problem motivated by the thermal and mechanical response of continental

lithosphere to a persistent hot spot. A domain for viscous mantle is defined by lines
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Table 5.1: List of parameters

For the benchmarks
Ra 4.226363×108

∆T 1700 ◦C
ηref 1021 Pa·s
κ 10−6 m2/s
g 9.8 m/s2

R 6371 km
α 3.0×10−5 K−1

ρ 3280 kg/m3

∆T0 10−8∗

ri 0.99921519384711976∗

ro 0.99997017736619054∗

ϕmin 1.5699236621688994
ϕmax 1.5716689914208937
Tt 0∗

Tb 0.82∗

For the coupled application†

∆T0 0.18∗

dblob 0.07∗

E 45.0
C 1.0
∗Non-dimensionalized with respect to R or ∆T .
†The Rayleigh number and its defining parameters are
the same with those for the benchmarks.
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of constant colatitude and longitude, marking 67.5◦ and 112.5◦ respectively (Fig.5.2).

The top and bottom boundary of the domain are at the depth of 145 km and 1200

km, respectively. A portion of the lithosphere resides in a separate but overlapping

domain defined by the lines of the same colatitude and longitude. This lithosphere

has a thickness of 150 km, creating a 5 km-thick region overlapped with the mantle

(Fig.5.2). Since the overlapped region is sufficiently thin that one can ignore radial

gradients of all the variables within the region, it is essentially same as having a single

surface as an interface between two solvers. This model was assigned 432 processors,

400 for SNAC and 32 for RegionalCitcomS. The computation took 10 days for the

model time of 1.5 Myrs.

The entire system is composed of 100 Ma elasto-visco-plastic lithosphere, Newto-

nian viscous mantle, and a hot sphere in the mantle. Temperatures are fixed at 1400

◦C on the bottom surface of RegionalCitcomS, and the top surface has a fixed temper-

ature corresponding to the depth of 145 km according to a half space cooling model.

SNAC has the temperature of 0 ◦C on the top surface, but the bottom temperature is

determined in the same way with RegionalCitcomS (Fig.5.6a). The hot sphere, placed

at the depth of 700 km, is defined by the following temperature field:

T (ϑ, ϕ, r) = ∆T0 exp(−(d/dblob)
2) + Tamb(ϑ, ϕ, r), (5.4)

where ∆T0 is the temperature difference between the center of the blob and the

reference mantle temperature, d is the Euclidean distance from the center of the

blob, dblob is the characteristic length scale equivalent to the radius of the blob, and

Tamb is the ambient temperature field given by a half-space cooling model. Zero heat

fluxes are assumed on the side walls of both codes. The radial profiles of temperature

through normal mantle and the hot sphere are shown in Fig.5.6c. Table 5.1 lists the

values used for these parameters.

Kinematic boundary conditions are free-slip on all the surfaces of both codes ex-

cept for the top surface of RegionalCitcomS and the side walls of SNAC. The top

surface of the mantle domain has zero velocities in the beginning, but SNAC-derived
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Figure 5.6: (a,b) Temperature and viscosity distribution mapped on the 3-D domains
of each solver. (c,d) The depth profiles of temperature and viscosity taken right
through the hot sphere are compared with the reference profiles. Note that the
temperature is normalized with respect to 1700 ◦C in (c).



107

velocities are imposed on it later. The SNAC’s side walls are all fixed like the embed-

ded plate discussed in the previous section. As described earlier, SNAC has traction

boundary conditions for the bottom surface (the interface with the mantle solver),

derived from the stress field received from RegionalCitcomS.

Viscosity is given by a temperature-dependent function:

η(T ) = ηref exp

(

E

T + C
− E

1.0 + C

)

, (5.5)

where ηref is the reference viscosity, T is the non-dimensional temperature, E and C

are constants determining the range of viscosity variations. In this study parameters

are chosen such that the viscosity varies from 1021 to 1028 Pa·s. This function is

shared by both codes so that the common temperature distribution can ensure the

continuity of viscosity across the interface (Fig.5.6b,d). The rheology for lithosphere

is elasto-visco-plastic with the Mohr-Coulomb yield criterion and a non-associated

flow rule (Albert et al., 2000; Poliakov et al., 1993b; Simo and Hughes, 2004). All the

parameters and their values are listed in Table 5.1.

5.6.1.1 A qualitative 3-D test

This test verifies that the 3-D coupled model behaves reasonably in a qualitative sense.

For simplicity, SNAC represents an elastic plate while mantle flow in RegionalCitcomS

is driven by a hot blob as described in the previous section. However, the sphere’s

depth and radius are slightly different such that it is located at the depth of 573.39 km

and the radius is about 400 km. The elastic flexure computed by the coupled SNAC

is compared with topographies computed by the standalone RegionalCitcomS. We

obtain topography from RegionalCitcomS in two different ways: One is to convert the

σrr component of stress tensor to topography under the assumption of Airy isostasy;

the other is to directly integrate over time the radial component of velocity on the top

surface (Zhong et al., 1996). Since pressure from the evolving topography is applied

on the top surface as a traction boundary condition, the system eventually reaches an

equilibrium state in which the internal loading is perfectly balanced with the load of
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topography. Since the growth of topography is much faster than the advection of the

hot sphere, we can obtain a surface topography that is almost time independent and

comparable to the one by stress conversion. In general, the two types of calculation

should coincide (Zhong et al., 1996).

We compare various profiles of the surface topography along the equator from

the coupled SNAC and the standalone RegionalCitcomS in Fig.5.7. Since we are in-

terested only in the instantaneous elastic response, it is sufficient to let SNAC and

RegionalCitcomS interact only once in the beginning. The inertial forces in SNAC

were sufficiently damped out after 2000 time steps. So, the topography from the

coupled SNAC is constant afterward and it is this static topography that we use for

the comparison. Consistent with physical intuition, the elastic plate added on the top

of RegionalCitcomS reduces the height of the central dome when compared with that

achieved by RegionalCitcomS alone. Furthermore, the height is inversely proportional

to flexural rigidity of the plate.

Figure 5.7: Topography along the equator for various coupled models.

5.6.2 Results

The overall behavior of the coupled model can be described by a dome growing in

response to a hot sphere in the mantle. The temporal evolution of topography is

tracked at the top center of the SNAC’s domain (Fig.5.8a). The lithosphere with
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no pre-stress responded to the mantle flow such that the topography grew to about

380 m during the first 104 yrs. Afterward, the viscoelastic plate is slowly flexured

further upward, reaching a topography of about 520 m at 1.5 Myrs. Magnitudes of

the radial tractions that drive the deformation of lithosphere are in the order of 1 GPa

(Fig.5.8b). The magnitudes increase with time as the rising hot sphere gets near the

interface. The rising speed of the hot sphere is about 10 cm/yr but the magnitude of

velocity near the interface is must smaller (≤∼1 mm/yr) because the lithosphere is

elastically stiff, more viscous, and initially at rest (Fig.5.8c). After adjusting to the

velocities received from SNAC for the first time at 0.2 Myr, RegionalCitcomS reaches

a steady state. The same trends in topography, traction, and velocity are depicted in

Fig.5.9. This figure, however, shows profiles of each variable along the equator from

0 to 1.5 Myr at the 0.3 Myr interval.

5.6.3 Discussion

According to the above results, the coupled model could simulate a continuous and

predictable process of doming due to a thermal anomaly in the mantle. Although the

rheology is capable of non-linear processes such as yielding and localization of plastic

strain, the maximum amount of deformation was not sufficient for the triggering of

these processes. The computation took 10 days for the model time of 1.5 Myrs using

432 processors. With the same problem sizes and the number of processors, a simple

extrapolation gives an estimate that two months would take to cover about 10 Myrs

of model time, which is a prohibitively long time considering large parameter spaces

to explore.

The rate-limiting factor in this coupling study is the high ratio between two solver’s

time step size. Currently, that ratio of SNAC to RegionalCitcomS is 104. Such a high

ratio was required because of the dynamic nature of SNAC as discussed in 5.4.3. If

SNAC were an implicit code, the whole computation would be greatly accelerated. Al-

though each time step would be more expensive than that of the current explicit time

marching, the convergence to a certain static or steady state would be generally faster
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Figure 5.8: Temporal variations of topography from SNAC (top), the radial compo-
nent of traction from RegionalCitcomS (middle), and the radial component of velocity
of RegionalCitcomS (bottom). All three quantities were taken at the top center of
each solver’s domain.
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Figure 5.9: Along-equator profiles of topography and the radial component of traction
and velocity.
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than damping artificial inertial forces. The efficiency in parallelism implemented in

Pyre as well as within each node can be another issue, but it is only secondary in the

present case. If this demanding numerical cost can be reduced, the coupling technique

presented in this chapter can be applied to a variety of geophysical problems.
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