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Abstract 

We propose mathematical models to analyze two nervous system phenomena. The first is a 

model of the development and function of simple cell receptive fields in mammalian primary 

visual cortex. The model assumes that images are composed of combinations of a limited 

set of specific visual features and that the goal of simple cells is to detect the presence or 

absence of these features. Based on a presumed statistical character of images and their 

visual features, the model uses a constrained Hebbian learning rule to discover the structure 

of the features, and thus the appropriate response properties of simple cells, by training 

on a database of photographs. The response properties of the model simple cells agree 

qualitatively with neurophysiological observation. 

The second is a model of the coding of information in the nervous system by the rate 

of axonal voltage spikes. Assuming an integrate-and-fire mechanism for spike generation, 

we develop a quantization-based model of rate coding and use it to derive the mathematical 

relationship between the amplitude and temporal resolution of a rate encoded signal. We 

elaborate the model to include integrator leak in the spike generation mechanism and show 

that it compactly combines coding and the computation of a threshold function. 
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Chapter 1 Introduction 

This introductory chapter begins with definitions of the mathematical notation to be used 

in the course of the thesis. We then present the threshold function, a unifying theme of this 

thesis, and an example of its use in the detection of digital signals in the presence of noise. 

This example introduces some of the issues and ideas used in the remaining chapters, whose 

contents are briefly summarized below: 

Chapter 2 describes a model of the development and function of simple cells receptive 

fields in mammalian primary visual cortex in which a threshold function is used to 

detect the presence of specific visual features. 

Chapter 3 describes a model of neuronal spike rate coding in which a threshold nonlin- 

earity is used to encode somatic current into a series of axonally transmitted voltage 

spikes. 

Chapter 4 concludes the thesis with a discussion of the common themes of the two 

models. 

1.1 Notation 

This section introduces the notational conventions used throughout the remainder of the 

thesis. Since the primary mathematical concern is the characterization and manipulation 

of signals, we first define a signal, then present basic analyses to be performed on signals, 

including Fourier and statistical techniques, and finally introduce linear filtering and vector 

representations of signals. Futher development of these topics can be found in [Oppenheim 

et al., 19831, [Papoulis, 19911, [Oppenheim and Schafer, 19891. 

1.1.1 Signals defined 

A signal is a function of time and/or N-dimensional space. The value of the function is 

called the amplitude of the signal. If s is a strictly temporal signal, then s ( t )  is a function 

representing the signal's amplitude at time t .  Similarly, if s is a two-dimensional spatial 



signal, then s(x,  y) is the signal's amplitude at spatial coordinates (x, y). We use one spatial 

dimensional signals in derivations for the sake of clarity, but all results can be easily extended 

to the two-dimensional case. 

We will analyze two types of signals, analog and digital, which are classified by their 

characteristic amplitude values. The amplitude of an analog signal can assume a continuum 

of values, whereas that of a digital signal can only assume one of a discrete set of values. 

The most common digital signal is the binary signal, which can only assume one of two 

amplitude values; unless otherwise specified, all digital signals discussed are assumed to be 

binary. One of the themes of this thesis is the interconversion between digital and analog 

signals. 

A type of analog signal which arise frequently is the Gaussian process, a signal whose 

amplitudes are distributed as a Gaussian probability distribution. Another signal which 

arises in different contexts in the next two chapters is the impulse process, a sum of shifted, 

non-overlapping Dirac delta functions: 

C 6(t - ti), where ti # t j  if i # j 
i 

1.1.2 Fourier analysis 

A temporal signal x represented as a function of time t can also be represented as a function 

of frequency in radians per unit of time w by use of the Fourier transform: 

where j = a. We follow the convention of using capital letters to designate the Fourier 

transform of a signal. The frequency representation of a signal can be converted back to 

the time representation with the inverse Fourier transform: 

Similarly, a one-dimensional spatial signal s represented as a function of spatial position x 

can also be represented as a function of spatial frequency w, in radians per unit of space. 

A signal s is bandlimited if its Fourier transform is zero for all frequencies w of magnitude 

greater than the bandwidth frequency, 0,. By the Nyquist sampling theorem, a bandlimited 
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signal can be completely represented by amplitude samples spaced T units apart, where 

T 5 g. We use the notational convention x[k] to denote these samples, where sample index 

k is an integer: 

A signal of particular interest is the Kronecker delta function, 6[k], which is the bandlimited 

analog of the Dirac delta function: 

Note that by the definition above, the Kronecker delta function is a binary signal. 

1.1.3 Statistical analysis 

We will use statistics as a powerful method for characterizing signals and their interrelation- 

ships. An important statistic is the cross correlation between two signals x and y, denoted 

Rxy(7): 

where ( - )  denotes statistical expectation. The function Rxx(t) is known as the autocorrelation 

of signal x. 

If the two signals are bandlimited such that 0, 2 fly, the cross correlation can be 

represented by samples at intervals of T < &: 

The Fourier transform of cross correlation is called the cross-power spectrum SXy(w). 

The Fourier transform of the autocorrelation is the signal's power spectrum. Since the 

autocorrelation is an even, real function, the power spectrum can be computed as follows: 
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Sxx(w) = 1 1 RXx(r)  cos wrdr 
0 

A white signal has autocorrelation Rxx(t) = 6(t) and power spectrum Sxx(w) = 1. A white 

bandlimited signal x has an autocorrelation Rxx [k] = 6[k] and a power spectrunl which is 

constant for frequencies under its bandlimit and zero elsewhere: 

( 0 otherwise 

1.1.4 Linear filtering 

A linear filter performs a particular linear operation which maps signal x to signal y. A 

linear filter is completely represented by its impulse response, which is itself a signal. If h, 

is the impulse response of a given filter, the result of applying the filter to the signal x to 

produce the signal y is computed by an operation known as convolution: 

where "*" denotes the convolution operator. Convolution of two signals is equivalent to the 

multiplication of their Fourier transforms: 

For sampled signals, convolution is computed by a discrete sum: 

A filter of particular interest is the finite impulse response or FIR filter. The impulse 

response of an FIR filter is nonzero only in a specific time interval. 

1.1.5 Vector representation 

A bandlimited signal x can be usefully represented as the set of N-dimensional vectors x[k], 

where the individual elements of each vector x[k] are composed of x[k] and the previous 

N - 1 amplitude samples: 



This technique allows the application the concepts and methods of linear algebra to signal 

analysis. We will use boldface type to designate the vector representation of signals. 

A bandlimited FIR filter whose impulse response h is nonzero in the range a < k 5 b 

may be entirely represented by the N-dimensional vector h ,  where N = b - a + 1. The 

elements of the vector h are composed of the amplitude samples of the impulse response: 

These definitions allow convolution with a bandlimited FIR filter to be expressed as a dot 

product: 

1.2 The threshold function 

As mentioned in the beginning of this chapter, the threshold function is a common theme 

in the models of the next two chapters. In this section, we begin with its definition and a 

discussion of two of its most important properties, then illustrate its use in the detection of 

digital signals in noise. 

The threshold function O (x; 6 )  outputs a one if its real valued input x is at least as large 

as the threshold value 6 ,  zero otherwise. 

The graph of this function is shown in Figure l . la;  it is obviously nonlinear. From the 



definitions of the previous section, this function takes an analog amplitude as input and 

returns a binary amplitude. 

Figure 1.1: The threshold function. (a) A graph of the threshold function. (b) The thresh- 
old function implemented with a high gain amplifier configured as a comparator. (c) The 
function block with which the threshold function will be represented in block diagrams. 

- 

Before discussing its application, we highlight its two most important properties: 

THRESHOLD 

The threshold function has only two possible values. The threshold function 

is non-invertible transformation; in information theoretic terms, 0 ( x ;  0) conveys at 

most one bit, regardless of how much information was conveyed by z. The threshold 

function can be used to eliminate information which is irrelevant to a particular task, 

and for this reason, it is a computationally powerful tool. 

The threshold function has a simple electronic implementation. The threshold 

function can be implemented with a high gain amplifier configured as a comparator, as 

illustrated in Figure l . lb .  The high gain amplifying the differential input signal drives 

the amplifier's output to one of its two saturating voltages. Although the amplifier 

gain would have to be infinite to realize the threshold function exactly, it can be 

made large enough in practical situations to be considered effectively infinite. In the 

nervous system, the threshold function can be implemented by a particular neuronal 

ion channel, the voltage sensitive sodium channel. Either implementation is physically 

compact, making the threshold function an attractive building block when designing 

computing hardware, whether silicon- or carbon-based. 

The threshold function will be represented in block diagrams with the symbol shown in 

Figure 1 . 1 ~ .  



1.2.1 The detection of digital signals in the presence of noise 

One of the primary uses of the threshold function is for the detection of digital signals 

in the presence of noise, which has application in insuring the accuracy of digital signal 

transmission along a noisy, attenuating electrical transmission line. This is not only a 

standard situation in modern electronic communications, but also in the nervous system, as 

is discussed in Chapter 3. In Chapter 2, we show that it also has application to the detection 

of visual features in images. 

GAUSSIAN WHITE NOISE 

I 
THRESHOLD -+ 

0V-• % 
Transmitter Attenuating, noisy transmission line Receiver 

Figure 1.2: A schematic diagram illustrating the use of a threshold function to suppress 
noise introduced by transmitting a signal down an attenuating, noisy transmission line. 

A schematic diagram of the transmission scenario is shown in Figure 1.2. At any par- 

ticular time, the amplitude of the transmitter's signal is either one volt or zero volts. As 

the signal is travels along the transmission line, its power is attenuated and it is corrupted 

by the electrical noise, resulting in uncertainty at the receiver as to which amplitude was 

actually transmitted. The goal of the receiver is to estimate, with as little error as possible, 

which voltage was sent by the transmitter. As will be shown, this can be accomplished with 

the threshold function. 

Figure 1.3: A graph of the probability distributions p(D01.t) and p(Dllz).  

Let s denote the transmitted signal, Do denote that a zero was actually transmitted, and 
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Dl denote that a one was transmitted: 

We model the attenuation with a gain of i, where A is the level of attenuation, and the 

effects of noise are represented by the addition of a zero mean, Gaussian random variable 

of variance 02. The probability distributions of the received voltage amplitude z given the 

two different possibilities, Do and Dl ,  are shown in Figure 1.3: 

In order to minimize the error of estimation, the receiver must choose the more likely 

scenario, Do or Dl ,  given x. If Dl is more likely given x, the receiver should assume that a 

one was transmitted: 

Assume s = 1 if p(D1 1x) > p(Do (2) 

By Bayes' theorem, this is equivalent to 

If we assume that one and zero voltage transmissions are equally likely, then p(Do) = 

p(D1) = $. Since the additive Gaussian noise has the same variance for both distributions 

p(zlDo) and p(xlD1), (1.22) is equivalent to 

So when z > $, the receiver should assume that a one was sent, otherwise, a zero. This 

comparison is naturally expressed with the threshold function. The receiver may simply 

pass its received voltage x through the threshold function and use the result as the estimate 

of the transmitted voltage i: 



Note that the receiver will inevitably make some errors in its estimation of the transmitted 

signal. Due to the overlap of the two probability distributions p(x 1 Do) and p(zl Dl  ), there are 

two types of errors. An error of type I occurs when values of x due to Do are rnisclassified 

as signifying a one was sent (this is also known as a false alarm). Similarly, when values of 

z due to Dl are misclassified as signifying a zero was sent, this is a type I1 error. The total 

error rate is their sum, and for our classification scheme this is 

By performing the classification as described above, this probability was minimized. How- 

ever, type I and type I1 errors can be weighted asymmetrically if their consequences are not 

equivalent. In this case, the threshold level may shift from one half to minimize a weighted 

error probability. This point is discussed in Chapter 2 in the context of feature detection. 

NOISE NOISE NOISE 

. - - - . - . THRESHOLD }------- 

Figure 1.4: The use of threshold functions as repeaters. Attenuation reduces the signal 
voltage as it travels down the noisy transmission line, but the repeaters periodically reset 
the voltage to their best estimate of the originally transmitted value. This can be used to 
limit the error introduced by noise regardless of what distance the signal travels. 

The greater the attenuation ( 2 .  e., the larger A), the greater the overlap of the two proba- 

bility distributions p(zI Do) and p(zl D l )  and thus the higher the error rate. Since attenuation 

is typically a monotonically increasing function of distance traveled along the conductor, the 

farther the signal travels, the worse the error rate. If the transmitter and receiver are far 

apart, the error level may rise to an unacceptable level. To counter this, electronic im- 

plementations of threshold functions called repeaters can be placed at intervals along the 

conductor to reset the attenuated voltages to their estimated original values; this strategy is 

shown schematically in Figure 1.4. This can limit the error rate to an arbitrarily small value 
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given enough repeaters regardless of how far the signal must travel to reach its destination. 

Repeaters are commonly used in electrical communication, and as is pointed out in Chapter 

3, in the axonal transmission lines of the nervous system. 

If the signal to be transmitted down the conductor is not in digital form, it is possible 

to take advantage of the noise suppression mechanisms of digital signal communication by 

converting the signal to digital form. The conversion process is equivalent to the discrete 

approximation of a continuous value. As we show in Chapter 3, this involves use of a 

threshold nonlinearity. 



Chapter 2 A Model of Visual Feature Detection 

2.1 Introduction 

This chapter describes a model of the development and function of simple cell receptive 

fields in mammalian primary visual cortex. The model assumes that images are composed 

of combinations of a limited set of specific visual features and that the goal of simple cells 

is to detect the presence or absence of these features. Based on a presumed statistical 

character of images and their visual features developed below, the model uses a constrained 

Hebbian learning rule to discover the structure of the features, and thus the appropriate 

response properties of simple cells, by training on a database of photographs. The response 

properties of the model simple cells agree qualitatively with neurophysiological observation. 

2.1.1 The primary stages of mammalian visual processing 

We begin with a brief review of the focus of our modeling efforts: the structure and func- 

tion of the primary stages of mammalian visual processing (for a complete discussion see 

[Wandell, 19951). The luminance intensities of an incoming visual image are transduced by 

the photoreceptor array of the retina. Since the dynamic range of their output is limited, 

the receptors automatically adjust the scale of their photosensitivity to match the ambient 

light level. Retinal circuitry then enhances image contrast by computing the differential 

between each photoreceptor's output and the outputs of its neighbors; this is known as the 

center-surround organization of the retina. The resulting image is relayed through the tha- 

lamus to the visual area of cortex. In the first area of cortical visual processing, labeled 

V1 in primates, there are a class of cells known as simple cells which respond to certain 

properties of the image in a restricted spatial location known as the cell's receptive field. 

Two properties of particular interest are spatial frequency and orientation. A given simple 

cell responds maximally to the presence of a certain spatial frequency and orientation at a 

particular location. Typical simple cell receptive fields are illustrated in Figure 2.1. Note 

that we are purposely excluding from consideration other stimulus properties such as color 

and motion. 



Figure 2.1: Schematic representations of the receptive fields of two typical simple cells 
in primary visual cortex. The dark coloration represents the part of the receptive field 
responsive to illumination which is darker than background, the light coloration represents 
responsiveness to lighter than background illumination. The receptive field on the left is 
therefore responsive to an oriented step change in illumination; the one on the right is 
responsive to an oriented line. Based on a figure in [Miller, 19951. 

The goal of our modeling efforts is to offer an information theoretic argument as to 

why simple cells are tuned for a specific spatial frequency and orientation and to propose 

a mechanism for developing their specificities based on sensory experience with the visual 

world. Much work has already been done on this topic, which will be summarized next, 

and the final section of this chapter includes a discussion of our model in the context of the 

literature. 

2.1.2 Models of simple cell receptive fields 

In the following brief survey of previous modeling of simple cell receptive fields, we divide the 

models into two categories: phenomenological and functional. A phenomenological model of 

simple cell receptive fields proposes a mechanism which produces patterns which resemble 

simple cell receptive fields independent of any functional role; in other words, the model 

is able to replicate the phenomena without providing an argument for its purpose. In a 

functional model of receptive fields, the mechanism for the generation of receptive fields is 

based on their proposed function. Our model falls into the latter category. 

In typical phenomenological model, such as the work of [Linsker, 19861, simple cells 

receive random visual input with particular correlation structure, and their synapses are 

modified according to a Hebbian learning rule made competitive by multiplicative or sub- 
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tractive weight decay. Analysis of this type of model in [Miller and Mackay, 19941 has 

shown that the resulting receptive fields arise from modes of the correlation structure of the 

random input. While such models may provide explanations of prenatal development, their 

use of random input is unrealistic for animals experiencing a sensory world. Furthermore, 

development is treated as a separate issue from functional operation. 

Of the functional models that have been proposed, the most significant is the recent work 

of [Olshausen and Field, 19961. These authors propose that the computational purpose of 

simple cells is to form an efficient linear basis for representing images. Their measure of 

efficiency is "sparseness," meaning that any particular image should be represented with as 

few basis coefficients as possible. Their model is trained on a database of real images using 

various nonlinear measures of sparseness, and the resulting receptive fields qualitatively 

resemble those of real simple cells. As this model is the most similar in the literature to our 

own, we return to discuss it further in the final section. 

2.1.3 Chapter outline 

The remainder of this chapter is divided into six sections. Since the simple cell receptive 

field model is based on assumptions about the statistical character of images, the first section 

is both a general introduction to the statistical modeling of images and an exposition of our 

specific statistical model of images as being composed of visual features. In the second 

section, we establish the theoretical basis for our model of the function of simple cells by 

deriving the optimal detection strategy for visual features, assuming their form is known. The 

section concludes by describing the model in terms of specific neurobiological mechanisms. 

In the third section, the specific form of the features is assumed to be unknown, and a 

constrained Hebbian learning rule is derived to determine the form of features from example 

images. This Hebbian rule serves as our model for the development of simple cell receptive 

fields. In the fourth section, the model is elaborated to accommodate variation in lighting 

conditions and sensor noise. The fifth section contains results from training on a database 

of photographs, and the model simple cell receptive fields are shown to be qualitatively 

similar to those observed experimentally. The last section discusses the model in terms of 

its relation to the work of other authors, the mathematical techniques used, and its potential 

for further application. 

For definitions of terms and notation in this chapter, please refer to Section 1.1. As men- 
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tioned in that section, all derivations below use one-dimensional spatial signals to simplify 

notation, but the results naturally generalize to the two dimensions of real images. 

2.2 Statistical signal models of images 

Perhaps the most powerful and successful technique for describing the highly complex struc- 

ture of images is to model an image as if it were the output of a stochastically driven process. 

This section begins with the introduction of the prototypical structure of statistical signal 

models, followed by two specific models. The first is the standard model, which forms the 

basis for the methods of classical linear signal processing. After presenting it, we demon- 

strate its limitations as a model of real images. We then propose a more detailed model of 

real images, the features model, which will be fully developed in following sections as a basis 

for explairiing the development and function of simple cell receptive fields. 

2.2.1 The prototypical model 

The prototypical statistical signal model is that one or more independent, white, stochastic 

signal sources known as innovations processes are passed through corresponding linear in- 

novations filters and then summed together to produce the observed process; the observed 

process is the image seen by the observer. The model is illustrated in schematically in Fig- 

ure 2.2, and the notational conventions which will be used to describe the various parts of 

the model are summarized in the table below. 

Innovations processes Innovations filters 

WHITE STOCHASTIC PROCESS 

WHITE STOCHASTIC PROCESS 

Observed process 
Signals 

Figure 2.2: The prototypical statistical signal model. Independent, white, stochastic in- 
novations processes drive corresponding innovations filters which are summed together to 
produce the observed process. 



Using this notation, the equations describing the model can be written as follows. Each 

of the innovations processes im is passed through an innovations filter to generate signal s,: 

zm 

Gm 

Sm 

S m 

x 

where "*" denotes convolution and x is one-dimensional spatial position. The observations 

process x is the sum of all of the signals s,: 

Innovations process m (a white, stochastic process) 

Spatial frequency response of innovations filter m (a linear filter) 

Impulse response of innovations filter m (a linear filter) 

Signal rn (innovations process m passed through innovations filter m) 

Observed process (sum of the signals, the image seen by the observer) 

For any particular model of this structure, two items must be specified based on our a priori 

hypotheses about the mechanisms underlying image generation: the number of innovations 

processes and filters and the stochastic nature of the individual innovations processes. The 

spatial frequency response or impulse response functions of the innovations filters may then 

be adjusted so that the model best fits a representative set of real image data. 

The innovations processes are the sources of information in the image, and therefore 

an important statistical signal processing operation is to optimally estimate the innovations 

processes given the observed process. Optimality is defined in the minimum mean squared 

error sense, i. e. the optimal estimator produces the minimum mean squared error between 

its estimate of an innovations process and the true innovations process. The optimal inno- 

vations estimator can be used to perform many fundamental signal processing tasks such 

as redundancy reduction, noise suppression, and in the context of the proper image model, 

feature detection. 

For each of the two models considered below (the standard model and the features model), 

we are therefore interested in specifying the following: 

The number of innovations processes and filters. 
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The stochastic nature of the individual innovations processes. 

How to adjust the spatial frequency response or impulse functions of the innovations 

filters to best fit real image data. 

The optimal innovations estimator. 

2.2.2 The standard model 

The standard model is the simplest possible form of the prototype outlined in the last section. 

It has one white Gaussian innovations process io with unit variance and a single innovations 

filter Go, as illustrated in Figure 2.3. 

Innovations process Innovations filter 

Figure 2.3: The standard model. One white, Gaussian innovations process drives the linear 
innovations filter Go. 

WHITE GAUSSIAN PROCESS - 

As discussed in the previous section, the model must be fit to real image data by adjusting 

the frequency response of the innovations filter, Go(jwx). The power spectrum of images 

predicted by the standard model is 

- 

The innovations filter Go(jw,) can therefore be fit using the estimated power spectrum of 

real images sZz (w,) : 

- 
Go 

As has been reported in the literature [Field, 19941, by using a database of photographs to 

estimate S,,, one finds that Go(jwx) is approximately proportional to 5.  
The final task is to specify the optimal innovations estimator. For the standard model, 

the estimator is a linear filter, as illustrated in Figure 2.4. The filter has the form 

Observed process - b 



Observed process Innovations estimate 
e 

Figure 2.4: The optimal innovations estimator for the standard model. Given the observed 
process of the standard model, the optimal estimate of the innovations process is the linear 
filter Ho. 

While the standard image model has been successfully used in many applications, it has 

a significant limitation: the signals it describes lack the semantic content of real images. 

We hypothesize that an important aspect of real images is that they contain visual features, 

which we define with the following: 

DEFINITION A feature i s  a specific spatial pattern which can be described as being present 

or  absent i n  any  given image location. 

By this broad definition, a feature may be something as simple as a line segment or as 

complex as a human face. 

Figure 2.5: An image analyzed in the context of the standard model. Left: A sample real 
image. Right: The image passed through the innovations estimator derived from the average 
power spectrum of a database of photographs (refer to (2.5)). 

To demonstrate this particular deficiency of the standard model, it was used to ana- 

lyze the sample real image shown in Figure 2.5. The image was passed through the opti- 

mal innovations estimator H estimated from the average power spectrum of a database of 

photographs. If the standard model were a complete model of real images, the resulting 

innovatio~is estimate would be white, Gaussian noise. However, even though a significant 

amount of structure has been removed from the image by the innovations estimator, the 

semantic content of the image remains. We propose that real images require an alternative, 
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more detailed model which supplements the standard model with stochastic processes which 

explicitly add features. 

2.2.3 The features model 

Central to the definition of a feature is the idea that a binary judgment can be made about 

whether it is present or absent at any given image location. The features model therefore 

augments the standard model with a set of M Poisson impulse innovations processes to 

generate M distinct visual features. Recalling the definition from Section 1.1.1, an impulse 

process is the sum of uniquely shifted Dirac delta functions: 

i,(x) = C b(x - xj), where x j  # xk if j # k (2.6) 
j 

In a Poisson impulse process, the positions of the impulses are statistically independent. 

Although in the prototype statistical signal model asserts that the innovations processes be 

white, we relax this slightly for the Poisson process to allow a nonzero mean. If the mean 

of a particular Poisson process is A, its power spectrum is white plus a DC term: 

When passed through a linear innovations filter Gm, an impulse process produces a series 

of shifted images of the impulse response of G,: 

The feature is thus only present in the image at spatial locations {xj}. In the features model, 

the impulse responses of the additional innovations filters define the characteristic form of 

each feature. Referring to the examples of features mentioned in the previous section, the 

inlpulse response of an individual filter might be as simple as a line segment or as complex 

as a human face. We denote the combination of an impulse process and its corresponding 

innovations filter as a feature generator. The more feature generators the model uses, the 

less necessary the white Gaussian innovations process. 

In the context of the features model, the task of detecting the presence or absence of 

a particular feature can be interpreted as optimally estimating the innovations processes 



Innovations processes Innovations filters 

WHITE GAUSSIAN PROCESS 

POISSON IMPULSE PROCESS 

POISSON IMPULSE PROCESS 

POISSON IMPULSE PROCESS 

Figure 2.6: The features model. The standard model is augmented with Poisson impulse in- 
novations processes and their corresponding innovations filters which have impulse responses 
in the shape of various visual features. 

- 

generating that feature. Due to the binary nature of the impulse innovations processes, the 

optimal estimator involves the use of a nonlinear classifier. It is our hypothesis that the 

simple cells of visual cortex act as such estimators. 

In accordance with our discussion in Section 2.2.1, there are two important aspects to 

specify in the model. First, in the next section we derive the form of the optimal innovations 

estimators which serve as feature detectors. Second, in the following section we specify 

a method for fitting the model's parameters, and thus the parameters of the innovations 

estimators, to real image data. 

2.3 The optimal innovations estimator for the features model 

Go 

In this section, we derive the optimal innovations estimator for the features model in four 

stages of increasing complexity. In the first stage, the optimal innovations estimator is 

derived for a features model reduced to the Gaussian innovations process and a single impulse 

innovations process with no innovations filters. The second stage adds an innovations filter 

for the impulse process, the third stage adds the innovation filter for the Gaussian innovations 

process, and in the fourth stage the estimator is derived for the complete features model. 

Much of the mathematical development outlined below is well known in detection theory, 

which is discussed in detail in [McDonough and Whalen, 19951. 

One important practical difference between the rnodels discussed in this section and the 

Observed process 

- f \ 

+ 

J 
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- GM -\ 

G2 - 
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features model as originally described is that all signals are assumed to be baridlimited 

due to physical constraints. The images are therefore represented by discrete samples of 

their luminance amplitude, known as pixels, and the impulse innovations processes are 

bandlimited impulse processes composed of shifted Kronecker delta functions: 

C 6[k - ki], where ki # i$i if i # j 
i 

We make a series of five constraining assumptions about the innovations processes and 

filters for the purpose of mathematical tractability. The utility of these assumptions is 

demonstrated in the results section by using the model on real image data. 

2.3.1 The first stage 

The first stage of deriving the optimal innovations estimator begins with only one of the 

bandlimited, binary valued innovations processes, i l ,  whose two amplitude values are zero 

and one. The probability of a sample with amplitude one (il [k] = 1) is parameterized by 

A,  and the probability of zero (il[k] = 0) is thus 1 - A. The parameter X must be known a 

priori. Each sample of il is chosen independently, so that knowledge of il[k] does not bias 

the probability distribution of il[k + 11. 

The observed signal is the sum of this innovations process and the Gaussian innovations 

process, io. We assume for now that io has a variance of one, and so each sample of the 

observed process z is therefore a sum of il[k] and an independently drawn, zero mean, 

Gaussian random variable io[k] of variance one: 

Innovations processes - 
WHITE GAUSSIAN PROCESS 

Observed process 

1 

Figure 2.7: The observed process of the first stage. A single binary innovations process, the 
innovations process of the standard model, and no innovations filters. 
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Given z[k], the receiver must estimate il[k] with minimum error. This is the same scenario 

as the communications problem posed in Section 1.2.1; as before, the threshold function 

0 ( x ;  8 )  serves as the optimal estimator. This scenario is diagrammed in Figure 2.7. 

Ubserved process Innovations estimate 
THRESHOLD + 

Figure 2.8: The optimal innovations estimator of the first stage. A threshold function. 

Paralleling the discussion in Section 1.2.1, we denote il[k] = 0 by Do and il[k] = 1 by 

Dl. The value of 8 should be set so that O (il  [k] + io [k]; 8 )  will be one when 

and zero otherwise. Unlike the derivation in Section 1.2.1 p(D1) # p ( D o ) ;  in fact, p(D1) = X 

and p ( D o )  = 1 - A. The conditional probability distributions for z[k] are therefore 

The optimal 8 satisfies the equation 

Using Bayes' rule and substituting the Gaussian probability distributions above: 

Solving for 8, 

If X = $, then 8 = $, and therefore this more general result agrees with the specific case 

derived in Section 1.2.1. Using the above expression for 8, the complete optimal innovations 

estimator can be written as 



2.3.2 The second stage 

The next stage of complexity is to pass the innovations process il through the innovations 

filter G1 to produce sl .  Estimating il will therefore involve examining multiple pixels of z. 

In order to constrain the number of pixels N that must be examined, we constrain G1 to 

have a finite impulse response, which is the same as constraining visual features to have a 

finite spatial extent in the image. 

ASSUMPTION 1 The impulse response of each feature generator is only nonzero for N pixels, 

where N is a finite number. 

The observed process z of the second stage is the sum of sl and the Gaussian innovations 

process: 

z[k]  = sl [k] + io[k]  

where sl is defined in (2.1). 

Innovations processes 

WHITE GAUSSIAN PROCESS 

1 

0- 
Innovations filter 

Figure 2.9: The observed process of the second stage. The binary innovations process il 
is passed through an innovations filter G I ,  then added to the white Gaussian innovations 
process io to produce the observed process. 

The optimal innovations estimator has two parts. The first is a linear filter H1 called a 

matched filter, which maximizes the ratio of its response to the signal s ,  to its response 

to the Gaussian innovations process io. The second is a threshold operator to perform a 

Bayesian classification just as in the first stage. This scenario is schematically illustrated in 

Figure 2.10. The expression for the matched filter is 



which is a filter whose impulse response is the spatial reversal of the impulse response of G1. 

The derivation for this result can be found in [McDonough and Whalen, 19951. We present a 

geometric argument, using a vector representation of signals1. Using N-dimensional vectors, 

where N is chosen to be the length of the impulse response of the filter GI,  the vector 

representation of G1 is 

Using this, (2.18) may be rewritten as 

~ [ k ]  = gi  . il [k ]  + io [k ]  (2.21) 

Ignoring for the moment other possible values for il [k ]  , the estimator should distinguish the 

following two cases: 

If the estimator can accurately distinguish these two cases, it can estimate the value of 

i [ k  - N + 11. Since it must make this estimation based on the observed process z ,  note that 

the observed vector in the two cases is 

Dl: z [ k ]  = hl  + io [k]  Do: z [ k ]  = io [k ]  

 he vector representation of signals is defined in Section 1.1.5 
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where hl is an N-dimensional vector whose elements are the elements of g in reverse order 

( h l  is the vector representation of the matched filter): 

Just as in the previous section, Dl is more likely to have occurred when 

Making a Bayesian substitution, the two sides of (2.25) are equal at the classification bound- 

ary: 

Since the probability of d[k - N + 11 being one is A,  p(D1) is also X and p ( D o )  = 1 - A. 

Furthermore, because io is white, the probability distributions of the two cases are that of 

uncorrelated, multivariate Gaussian random vectors: 

1 -(z[k] - h l )  . (z[k] - h l )  
p(z[kllD1) = 7 exp 

(27r) -5 2 

Making the appropriate substitutions in (2.26) and solving: 

1 1 -X  
hl z[k] = -hl . hl + ln- 

2 X 

If 8 is set to 

the complete optimal innovations estimator can be written as 



which combines passing the observed process through the matched filter (hl - z[k]) and 

the threshold operation. The innovations estimator is illustrated schematically in the block 

diagram of Figure 2.10 and geometrically in Figure 2.11. 

Figure 2.10: The optimal innovations estimator of the second stage. The estimator is a linear 
match,ed filter followed by a threshold acting as a nonlinear classifier. 

Figure 2.11: The geometric illustration of the matched filter in two dimensions. The space 
shown is the vector space of a two dimensional z[k], so that the abscissa is z[k] and the 
ordinate is z[k - 11. The circles mark the equiprobability contours at one standard deviation 
of p(z[k] (Do) and p(z[k] I Dl). The vector hl represents the matched filter; applying the filter 
is equivalent to projecting z onto hl. The dotted line is the graph of p(z[k] 1 Do) = p(z[k] 1 Dl), 
which also marks the decision plane defined by applying the threshold function to the output 
of the matched filter. 

Observed process 

Returning to the earlier caveat of ignoring other values of i[k], there are two cases which 

are of concern. The first is values of i[k] in which the one value is not the last element of 

- - 

the vector. For example, 

HI THRESHOLD - 
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The classifier should assign this to the Do case, since a single feature should not be detected 

at multiple locations. The second case of concern is more than one occurrence of a feature 

within a single il[k], which would appear as multiple amplitude one elements. For example, 

This case should be classified as Dl ,  since the feature is actually present. In order to simplify 

these two cases, we make the following assumption: 

ASSUMPTION 2 T h e  impulse response of each feature generator i s  orthogonal t o  all spatial 

translations of itself of more than K, pixels, where K << N .  

By this assumption, the inherent structure of the feature's pattern causes the classifier 

to act correctly in both situations. If it results in significant misclassifications for shifts of 

less than K the results of the detector can be averaged and subsampled. 

2.3.3 The third stage 

The next stage of complexity is to add the innovations filter Go for the white, Gaussian 

innovations process of the standard model, as illustrated in Figure 2.12. The observed 

process x of the third stage is the sum of sl and so: 

Innovations processes Innovations filters 

WHITE GAUSSIAN PROCESS - 
1- Q 

EzT) Observed p r o c e s ~  

0- 

Figure 2.12: The observed process of the third stage. 



The matched filter of the last section is not the optimal estimator for il given this observed 

process because the samples of so[k] are correlated and the mathematical derivation relied on 

the assumption of a white Gaussian process. See Figure 2.13 for a geometrical illustration 

of this point. 

Figure 2.13: The geometric illustration of the why the matched filter developed in Sec- 
tion 2.3.2 does not work when the Gaussian process is correlated (nonwhite). The elipses 
mark the equiprobability contours at one standard deviation of p(z [k] I Do) and p(z [k] 1 Dl ) . 
The dotted line is the graph of p(z[k] 1 Do) = p(z[k] 1 Dl) ,  and the dashed line is the decision 
boundary that would be formed if a matched filter were applied directly; since these two 
lines do not coincide, the matched filter is not optimal. This situation may be transformed 
into the one shown below in Figure 2.14 by first passing z through a whitening filter, after 
which a matched filter may be applied. 

The optimal estimator for the third stage is the generalized matched filter, which is a 

linear filter best understood as a combination of two filters: a whitening filter and a matched 

filter. The whitening filter W is designed to transform the present problem into the matched 

filter problem by converting the signal so into a white, uncorrelated process. Its form is thus: 

We will use the tilde to denote signals after they have passed through the whitening filter. 

For example, the signal so after it has passed through the whitening filter is go: 

and this signal, as expected, has a white power spectrum: 
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Also note that the variance of So is now one by definition. 

The result of passing the observed process z through the whitening filter is 

z[k]  = So[k] + Sl [k] 

Since so is a white Gaussian process, the matched filter from last section applies. The 

difference is that the matched filter must now match the impulse response of G1 after passing 

through W: 

Figure 2.14: The geometric illustration of using a matched filter after applying a whitening 
filter to the situation illustrated in Figure 2.13. After the whitening filter is applied, it is the 
same geometric scenario shown in Figure 2.11. 

This is illustrated geometrically in Figure 2.14. The generalized matched filter is formed 

from the chaining together of the whitening filter and the matched filter: 

Just as in the previous section, a threshold function applied to the output of the generalized 

matched filter is the optimal Bayesian classifier. This is illustrated in Figure 2.15. The 

conditional probability distributions for E[k] are 



The value of 0 is 

The complete optimal innovations estimator can therefore be written as 

Figure 2.15: The innovations estimator of the third stage. The generalized matched filter is 
a whitening filter followed by a postwhitened matched filter. 

Observed process -- Innovations estimate 

2.3.4 The fourth stage 

THRESHOLD 

The fourth stage is the complete features model with all innovations processes and their 

innovations filters. Aside from the white, Gaussian innovations process io  of the standard 

model, there are M bandlimited Poisson, impulse innovations processes i l . . . ~ ,  as illustrated 

in Figure 2.16. 

-* 

Innovations processes Innovations filters 

WHITE GAUSSIAN PROCESS - 
Observed process 

* 

Figure 2.16: The observed process of the fourth stage, the complete bandlimited features 
model. This is a bandlimited version of Figure 2.6. 



The observed process of the complete features model is the sum of all innovations pro- 

cesses passed through their innovations filters: 

In order to simplify the design of the optimal innovations estimator, we assume that there is 

no exact spatial coincidence of features: 

ASSUMPTION 3 No more than one feature is initiated at any given spatial location,. 

Mathematically stated, this assumes that at most one of the binary innovations processes 

has an amplitude of one at any given sample index: 

We denote the event that im [k]  = 0 for all m as Do, and that im [k ]  = 1 as Dm. The 

probabilities of these events must sum to one: 

Based on Assumption 3, the optimal innovations estimator must solve the following equation 

for m at every pixel: 

By making a Bayesian substitution, this is the same as maximizing 

In order to solve this equation, the probabilities p(Dm)  of im[k]  being one must be specified. 

In the first three stages, there was only a single necessary a priori parameter A. However, 

with M impulse innovations processes, there are potentially M a priori parameters to set. 

We limit it to a single parameter with the following assumption: 

ASSUMPTION 4 All features occur with the same per sample frequency A. 
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From Assumption 4, p ( D 1 . . . ~ )  = A ,  and therefore p(Do) = 1 - AM. Next, the probability 

p(z[k]lDm) must be calculated. The exact expression for this is complicated, but it can be 

simplified with two approximations which rely on assuming that there a large number of 

feature generators (M >> 1).  In order to state these assumptions, we define nm[k] as 

This allows the observation process to be rewritten as 

for any given m. The first approximation is that there are enough statistically independent 

innovations processes so that by the central limit theorem, the sum of signals s j  converges 

to a nonwhite, Gaussian process. Therefore, nm [k] is approximately a nonwhite, Gaussian 

process. Just as for the generalized matched filter, this process can be decorrelated with 

whitening filter Wm:  

Furthermore, since the probabilities p(Dm) sum to one, A must be less than &. If M is 

large, each feature therefore contributes little to the power spectrum of the observed process. 

The second approximation is that the whitening filter Wm is approximately the same as the 

whitening filter for the entire observed process: 

The combination of the two approximations is that if the observed process is passed through 

a whitening filter, the conditional probability distributions for p(2 [k] I Dm) are approximately 



which can be substituted into (2.49).  The next step in solving (2.49) is to find the maximum 

among p(D1 ... M l i [ k ] ) :  

X - ( i [ k ]  - 6,) (i [k.] - Lm) 
max - hl exP 

m=l ... M ( 2 T )  2 

which is the same as minimizing 

rnin i [ k ]  . Z [ k ]  - 2% [ k ]  - Lm + L, . Lm 
m=l ... M 

WINNER 

TAKE 

ALL 

THRESHOLD 

Innovations 
estimates 

Figure 2.17: The optimal innovations estimator for the fourth stage, the complete bandlim- 

THRESHOLD 

ited features model. The observed process is whitened, then processed by a bank of matched 
filters. The largest matched filter output is selected by the WINNER TAKE ALL block and is 

* 

then passed through a threshold function. 

A geometric interpretation of (2.57) is that it is determining which of the vectors g,  is 

closest to i [ k ] .  When finding this minimum, i [ k ]  . i [ k ]  can be ignored because it is constant. 

In order to further simplify the computation, we make the following assumption: 

ASSUMPTION 5 The  postwhitened impulse responses of the feature generators have the same 

power. 

This can be stated mathematically as 

1lLm/l = A for all rn (2.58) 

where A is a constant. By this assumption, 6,  . 6,  = h2 for all rn. Therefore, minimizing 

(2.57) is the same as 

- 
max h, . i [ k ]  

m=1 ... M 
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Using the value of m which satisfies (2.59)) the second step in solving (2.49) is to find rnax- 

imum of p(Do 1 %  [ k ] )  and p(Dm li; [k]  . This can be accomplished with the threshold operation, 

where the threshold parameter 0 is given by 

Combining this with (2.59)) the entire optimal innovations estimator for the features model 

can be written as 

- 
0 ( max hm . H [k] ; 6 )  

m=1 ... M 

which is illustrated schematically in Figure 2.17, where the WINNER TAKE ALL block is a 

device which finds which signal among its N inputs has the maximum amplitude at each 

sample k  and passes that signal through unchanged; it outputs a zero amplitude sample for 

all other signals. This winner-take-all operation implements the solving for m in (2.59). A 

geometric illustration of the estimator is shown in Figure 2.18. 

Figure 2.18: The geometric illustration of the optimal innovations estimator for a features 
model with three feature generators. The axes represent the components of the two dirnen- 
sional, postwhitened, observed process Z. As before, the circles mark the equiprobability 
contours at one standard deviation of p(H [k]  I Dm). The dashed lines are the decision bonnd- 
aries formed by the winner-take-all operation, and the dotted lines are the decision boundary 
formed by the action of the threshold function. 
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2.3.5 Neurobiological mechanisms 

The optimal innovations estimator described in the previous section has four distinct compu- 

tational steps: a whitening filter, a matched filter, a winner take all operation and a threshold 

function. We next hypothesize a corresponding neurobiological mechanism responsible for 

each step. The image transduced by the retina is the observed process x. The contrast 

enhancing circuitry of the retina can be interpreted as the whitening filter W applied to x, 

so the retinal output is 5. In the cortex, we propose that there are M simple cells which 

act as matched filters at each retinotopic location; each simple cell filters its input with 

the synaptic weightings specified by the vector k,. The winner-take-all operation can be 

effected by lateral inhibition among simple cells, and the threshold function can be irnple- 

mented by the current threshold for spike output. We believe all of these mechanisms to be 

neurobiologically plausible. 

In the next section, we describe a learning algorithm for the setting of the simple cell 

synaptic weights to the proper values of L, based on sensory experience with example 

images. 

2.4 Fitting the features model to real images 

In the previous section, we derived the optimal innovations estimator for the features model 

assuming the innovations filters were known. In this section, the innovations filters are 

assumed to be unknown and must be estimated from real image data. The innovations 

filters need only be estimated indirectly insofar as they determine the matched filters of the 

optimal innovations estimators. In other words, the values of L, must be computed from 

image data. 

Before the model can be fit with image data, three parameters must be set a priori: 0 

(the threshold value), M (the number of features) and N (the number of dimensions of the 

vector representation of Z). In order to demonstrate that these are the only parameters that 

must be set a priori, we first define a normalized version of the matched filters L,: 

This normalizes the length of w, to one: I /w,(l = 1. If 0 is redefined as 



then (2.61) can be rewritten as 

0( max w, . i i[k];  0) 
m=1 ... M 

(2.64) 

Therefore, if N ,  M and 0 are set a priori, the only parameters the optimal innovations 

estimator must compute from real data are the vectors w,. Note that for the visual cortex, 

the three a priori parameters can be specified genetically: N is the number of retinotopic 

dendritic inputs to each simple cell, M is the ratio of the number of simple cells to retinotopic 

inputs, and 0 is the current threshold for somatic spiking. 

The features model predicts that the probability distribution of the post-whitened ob- 

served process i is composed of M + 1 Gaussian clusters, one at the origin and M corre- 

sponding to the individual features, as shown in Figure 2.18. The clusters are centered on 
- 

the vectors h,, and therefore an algorithm designed to find clusters in observed data can de- 

termine the proper values for L, (or its normalized counterpart, w,). The computationally 

simplest on-line method for locating clusters is the k-means clustering algorithm [Gersho 

and Gray, 19921. The k-means algorithm begins by randomly distributed k cluster centers. 

Incoming data vectors are classified as belonging to the nearest cluster, where proximity is 

measured by the Euclidean distance between the data vector and the cluster center. After 

a data vector is assigned to a particular cluster, the center of the cluster is moved slightly 

toward the data vector. 

I11 the context of the features model, this translates into the M matched filters w, being 

initialized to random values, the classification step simply being the normal operation of the 

optimal innovations estimator, and the weight vectors being updated with the following rule: 

where p is a learning rate parameter. There is one significant difference that the training. 

algorithm must have from the standard k-means algorithm. Since all the vectors are assumed 

to be of length one, this length must be maintained during training. In other words, the 

vectors w, are constrained to move on the surface of the unit hypersphere in N-dimensional 



36 

space. The following update rule has the same effect as (2.65)) but due to the term in the 

denominator, the vector remains normalized to a length of one: 

However, this relatively complicated to implement computationally, and implausible in neural 

hardware. We will therefore use the approximation technique proposed in [Oja, 19821 to 

derive a simpler, neurobiologically plausible rule. Assuming that p is so small that 0 ( p 2 )  

terms are negligible, an approximation to 1 lw, + p2I I is 

(llwm112 + 2pwm . + 0 ( p 2 ) ) f  (2.67) 

Using the approximation Jl+Z = 1 + 5 and the fact that 1 1wml 1 = 1, (2.67) reduces to 

1 + p w , . z  

Substituting this result, (2.66) becomes 

This can be simplified by multiplying numerator and denominator by 1 - pw, - i: 

which can be reduced to 

w, + p(Z - (w, . i)w,) 

Equation (2.66) can thus be approximated with the simpler learning rule 

In a neurobiological context, note that 2 represents the retinotopic input, w, . ?, is the 

weighted sum of all synaptic input, and w, represents the current synaptic weights. There- 

fore, the update rule at each synapse requires the locally available value of its own input and 
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own weight, and the only nonlocal information necessary is the somatically computed sum 

of all synaptic inputs. This is therefore a neurobiologically plausible, Hebbian style learning 

rule. 

2.5 Lighting level variation and sensor noise 

There are two issues which we have so far ignored in our model but are of significant practical 

concern: luminance variation and sensor noise. Lighting level variation is fluctation in the 

light level illuminating the image; we model this as a statistically independent, non-negative 

gain term O(x) multiplying the image signal. Sensor noise is the result of electrical noise 

in a photoreceptor and is modeled by an additive, white Gaussian noise source of variance 

0 .  A schematic diagram illustrating these two additional model complexities is shown in 

Figure 2.19. 

Innovations filters 
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Figure 2.19: Adding lighting level variation and sensor noise to the model. The sum of the 
innovations processes passed through their corresponding innovations filters is multiplied by 
a statistically independent, non-negative gain term representing lighting level variation and 
is then summed with a white, Gaussian noise source representing the effects of sensor noise. 

The difficulty presented by lighting level variation is that the matched filter strategy 

was developed with the assumption that signal power was known and constant. This was 

essential because it fixed the threshold value 8 of the matched filter. However, since the 

lighting level multiplies the signal with an aribtrary gain factor P(x) ,  this gain must be 

estimated and divided out of the signal before it is passed through the optimal innovations 

estimator. This is illustrated in Figure 2.20. 
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Figure 2.20: Countering the effects of lighting level variation by estimating the light level and 
dividing it out. Sensor noise is smoothed by the filter Q  whose spatial frequency response 
is adjusting according to the estimated lighting level (represented by the arrow between the 
light level estimator and the filter Q ) .  

In order to design a luminance estimator, we assume that the lighting level varies on a 

spatial scale greater than the spatial scale of the features. Without this assumption, lighting 

level and luminance variation due to the particular appearance of each feature would be 

confounded and impossible to separate. Since both signal mean and standard deviation are 

proportional to lighting level, either can be used as an estimate of lighting level, as long as 

they are estimated on a spatial scale larger than that of the features. For example, mean 

lighting level can be computed over P pixels if P >> N, where N is the pixel size of the 

features. 

The second problem to be addressed is the presence of sensor noise. The white, Gaussian 

sensor noise is assumed to have a constant power of oi, regardless of lighting level. At 

high light levels, its power is negligible compared to the image signal and may be ignored. 

However, when light levels are low, sensor noise significantly alters the expected spatial 

frequency spectrum of the observed process. The form of the linear smoothing filter which 

minimizes the noise power with the least impact on the signal is well known Jain [1989]. Its 

equation is 

This filter is adaptive because it depends on the measured value of ,B (hence the arrow in 

Figure 2.20 from the light level estimator to Q) . Note that when the luminance value ,O is 

high, the smoothing filter Q is approximately one. 



2.6 Results 

In this section, we present the results of simulating the development of simple cell receptive 

fields using the learning algorithm presented in Section 2.4 and the response of the trained 

simple cells to sample images. The images used for training were from a database of face 

images from the MIT Media Lab used in Turk and Pentland [1991]. The database contained 

432 images of the faces of sixteen different individuals taken with all possible combinations 

of three different head orientations, three viewing distances and three lighting levels. Each 

image was 128 x 128 pixels in dimension. 

Before discussing the actual results, we first detail the numerical methods used for each 

step of the simulation. The lighting level normalization discussed in Section 2.5 was per- 

formed by the relatively crude procedure of normalizing the luminaxlce variance of the entire 

image to one. To implement the whitening filter, discrete cosine transform (DCT) symmetric 

convolutio~l was used because of its computational efficiency and reflective boundary condi- 

tions (as opposed to the periodic boundary conditions of the Fourier transform) [Martucci, 

19941. In order to estimate the whitening filter coefficients, all images in the database were 

cosine transformed, and the root means squared of the transform coefficients was calculated 

and inverted to form the whitening filter. This procedure is the cosine transform equivalent 

of estimating the power spectrum. Images were whitened by cosine transforming them, mul- 

tiplying the image transform coefficients by the corresponding whitening filter coefficient, 

and inverse transforming. A noise level was estimated and used to form a smoothing fil- 

ter, which was then combined with the whitening filter. A sample normalized, smoothed 

and whitened image from the MIT face database is shown in Figure 2.21. Note that in 

the whitened image, many of the pixel amplitudes are negative, so the luminance values 

were chosen such that grey represents a pixel amplitude of zero, black represents the most 

negative amplitude value and white the most positive. This convention is used in all of the 

figures below. 

The model's a przori parameters were set as follows: receptive field size (corresponding 

to the parameter N) was chosen to be an 8 x 8 square pixel block, and the number of features 

M was set to 64. The threshold level was adjusted empirically. 

Before training, all receptive fields were initialized to random Gaussian synaptic weight 

values, then the weights were normalized to a total length of one. During training, images 



Figure 2.21: Left: An image from MIT Media Lab face database Right: The normalized, 
smoothed and whitened image. Because the post-whitened image has negatively valued pixel 
amplitudes, the luminance values were chosen such that grey represents a pixel amplitude of 
zero, black represents the most negative amplitude value and white the most positive. This 
convention is also used in the figures below. 

were whitened, then analyzed in 8 x 8 pixel blocks centered on every pixel location in the 

image. All pixel blocks were analyzed by the 64 simulated simple cells. Since statistical 

translation invariance was assumed, it was not necessary to simulate a separate group of 

simple cells at each pixel. A typical result of training on 250 randomly selected images from 

the database is shown on the left in Figure 2.22. Training took approximately half an hour 

running on a lOOMHz Pentium processor. The simulated receptive fields have an oriented, 

bandpass appearance which qualitatively agrees with physiologically observed simple cell 

receptive fields. 

As can be seen from the codebook on the left in Figure 2.22, many of the receptive fields 

are spatial translates of one another. This translational redundancy is caused by the fact 

that spatial translates of a particular feature are considered by the model to be distinct 

features because the competition only occurs at each pixel location. This problem might be 

solved by extending the competition during learning to neighboring pixels; we believe that 

this is most likely the case in neurobiology. The problem was addressed in the simulation 

by shifting the receptive fields during training to maintain their centroids at the center point 

of the 8 x 8 pixel block. The result is shown on the right in Figure 2.22. This strategy 

produced greater variety of receptive fields and especially a greater variance in receptive 

field spatial frequency. 

In order to ensure that these receptive fields were actually from features present in the 



Figure 2.22: Left: The receptive fields of 64 simulated simple cells after training on a set 
of 250 randomly selected images from the MIT face database. Each receptive field has a 
dimension of 8 x 8 pixels. The images have been smoothed to eliminate pixelation, and 
as in Figure 2.21, grey represents zero pixel amplitude. Right: A set of 64 receptive fields 
which were automatically centered in their pixel blocks during training to avoid translational 
redundancy. 

Figure 2.23: Control cases to ensure that the simulated simple cell receptive fields represent 
features in the data, not artifacts. Left: Result of training on images whose pixels were 
randomly scrambled. Right: Result of training on images whose pixels were scrambled, 
then passed through a & filter so that they have the power spectrum of real images. Neither 
case produced the type of receptive fields shown in Figure 2.22, as would be expected. 



Figure 2.24: Left: A 128 x 128 section of the IEEE standard irnage, "Lena," which was not 
used in training. Center: Result of reconstructing the image from simulated simple cell 
responses (see text for explanation). Right: The normalized, smoothed and whitened image, 
shown for comparison. 

data and not an artifact of the algorithm itself, two control cases were also run. In the 

first control case, the pixels of each image were scrambled before being passed to the sirnple 

cell simulation, which destroyed all but the first order statistics of the data. In the second 

control, the image pixels were first scrambled, then passed through a filter which gave them 

the same & power spectrum of real images. Both training sessions produced noisy receptive 

fields of no discernible pattern, as would be expected; see Figure 2.23. 

Since the model is of both development and function, we demonstrate the information 

filtering properties of the model simple cells by using their responses to reconstruct an image. 

The reconstruction procedure is performed by first passing the image through the simple 

cell simulation. At each image pixel location where a simple cell responded, the simple cell's 

receptive field is superposed at the corresponding pixel location in the reconstructed image. 

An example of this is shown in Figure 2.24. Note that there are relatively large regions of 

grey in the reconstructions corresponding to areas of the image to which no model simple 

cells responded, indicating flat or slowly varying luminance. A large array of examples is 

also shown in Figure 2.25, including fifteen of the face images from the MIT database and 

three images which were not used in training. 



Figure 2.25: Eighteen different images paired with their reconstructions from simulated 
simple cell responses. The original image is shown on the left of each pair, the reconstruction 
on the right. The top fifteen images are from the MIT face database used for training; the 
bottom three images are not from the training set. 



2.7 Discussion 

In the preceding sections we presented a model for real images, derived mechanisms to 

analyze images based on this model, and proposed that these mechanisms have realistic 

rieurobiological implementations, including the simple cells of mammalian primary visual 

cortex. In this section, we further compare our model to that of Field and Qlshausen, 

discuss the mathematical techniques used, and speculate on the further development of this 

work. 

In the model of [Olshausen and Field, 19961 (hereafter referred to as the "sparse coding 

model"), the objective is to produce a sparse, linear code for images. The winner-take-all 

mechanism of our features model can also be viewed as a sparse code; at the most, only 

one simple cell responds at each pixel. However, there is a fundamental difference between 

the features model and the sparse coding model: the assertion that images are composed 

of features which have the binary valued property of either being present or absent. The 

features model therefore uses a nonlinear threshold operation for feature detection. While 

the sparse coding model uses an nonlinear function to measure sparseness, the code itself 

is ultimately linear. Without an optimality criterion to guide its selection, the nonlinear 

measure of sparseness must be arbitrarily chosen. The sparse coding model also required at 

least a factor of one hundred more CPU cycles to train than the features model and required 

a complicated gradient descent technique. 

The features model can be viewed as a mathematical hybrid of the detection theory 

technique of matched filtering and a cluster finding algorithm related to k-means clustering 

or vector quantization. Since none of the assumptions of the model were particularly specific 

to images, the techniques discussed potentially have wider applicability in self-organizing 

feature detection. 

The prototypical statistical signal model we presented in Section 2.2.1 is also potentially 

more generally applicable. For example, wavelet or subband signal analysis [Strang and 

Nguyen, 19961 implies the signal model shown in Figure 2.26. In this case, the Gaussian 

innovations process of the standard model is augmented with a bank of innovations processes 

which switch between a white Gaussian source and zero. The innovations filters G, divide 

the spectrum into frequency bands. This model asserts that signal energy is localized in 

both time (or space) by the switching of the innovations processes and frequency (or spatial 



frequency) by the bandpass character of the innovations filters. We speculate that by using 

this model, an optimality criterion could potentially be derived for fitting the innovations 

filters G, to real data. 
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Figure 2.26: The subband statistical signal model. The white, Gaussian innovations process 
of the standard model is augmented by a bank of innovations processes which switch between 
a white Gaussian source and zero driving a bank of innovations filters which divide the 
spectrum into frequency bands. 
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Among the feature model's three required a priori parameters, the threshold value 0 is 

dynamically adjustable. In the derivation of the optimal innovations estimator, the value 

of 0 was chosen so that type I and type I1 misclassification errors would be equiprobable. 

However, as discussed in Section 1.2.1, the the two errors may be weighted asymmetrically 

depending on various circumstances. For example, type I (false alarm) errors may be highly 

undesirable, in which case the value of 0 can be increased. Conversely, if it becomes more 

important to avoid type I1 (missed detection) errors, the value of 0 can be lowered. Neuro- 

biologically, this would correspond to raising or lowering the current threshold for somatic 

spiking, which can be effected by neuromodulators. 

The most obvious improvement over the techniques employed in implementing the fea- 

tures model is to use a better lighting level normalization algorithm. We simply normalized 

the variance of total image luminance; a more sophisticated algorithm would estimate light- 

ing level over a smaller spatial scale. As for a more realistic modeling of the neurobiology, a 

strict winner-take-all mechanism is probably not necessary, just some form of competitiori 

among filters. 

Cortical processing of visual stimuli continues far beyond the level of simple cells. This 
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further processing could potentially be explained with the use of a more sophisticated sta- 

tistical signal model. We speculate that the most significant weakness of the features model 

is that the innovations processes are assumed to be statistically independent. However, in a 

real image the presence of a feature at a particular location is predictive of the presence of 

features at neighboring locations. For example, the probability of two horizontally oriented 

edge features occurring at horizontally neighboring pixel locations is much higher than their 

independent probabilities would predict. The next level of processing would therefore iri- 

volve detectors of combinations of features which we believe could be self-organized using 

similar methods to those presented for the features model. 



Chapter 3 A Model of Spike Rate Coding 

3.1 Introduction 

This chapter describes a model of the coding of information in the nervous systenl by the rate 

of axonal voltage spikes. Assuming an integrate-and-fire mechanism for spike generation, 

we develop a quantization based model of rate coding and use it to derive the mathematical 

relationship between the amplitude and temporal resolution of a rate encoded signal. We 

elaborate the model to include integrator leak in the spike generation mechanism and show 

that it compactly combines coding and the computation of a threshold function. 

3.1.1 Spike rate coding 

One of the fundamental roles of a neuron's soma is to transform the analog valued ionic 

currents resulting from sensory transduction or dendritic computation into a series of voltage 

spikes suitable for axonal transmission. This conversion is motivated by the fact that digital 

communication can be conducted very accurately and very fast; if a signal is restricted to 

having two legal values, a chain of high gain amplifiers can transmit the signal rapidly over 

a long distance with high fidelity, as discussed in Section 1.2.1. In the axon, these amplifiers 

are voltage sensitive ion channels. 

The relationship between the train of axonal voltage spikes and the somatic current which 

generated it are a controversial topic in neuroscience. The prevailing theory, first introduced 

in the 1920's by Edgar Adrian, is the rate coding hypothesis: information is coded as the 

rate or frequency of spikes [Kandel and Schwartz, 1991]. Recent theories of spike coding 

have argued against the rate hypothesis [Theunissen and Miller, 19951, but the arguments 

are vague since there is no mathematically rigorous definition of rate coding. For example, 

without a definition it is ambiguous over what time scale the spike rate should be estimated 

and what amplitude resolution the estimate produces. It is the intention of this chapter to 

propose a solid mathematical framework for a theory of rate coding. 

Assuming the soma is well modeled as an integrate-and-fire circuit (IFC), we show that 

rate coding can be analyzed from a traditional electrical engineering perspective by treating 



it as a specific strategy of amplitude quantization. Quantizing a signal s can be usefully 

modeled as adding quantization noise to s, and we can quantitatively describe the power 

spectrum of this noise. [Jayant and Noll, 19841 Decoding a rate code is then equivalent 

to reducing quantization noise, which can be accomplished using a low pass linear filter 

with a cutoff frequency at the signal's bandwidth a,. This is equivalent to averaging the 

spike rate over a time scale of &. A second method of reducing quantization noise is to 

average over the rate encodings of multiple, correlated signals. The two methods are known 

in a neuroscience context as temporal integration and spatial integration, respectively, and 

both can be implemented by the recipient of the spike rate code, the dendrite.[Kandel and 

Schwartz, 19911 

3.1.2 Chapter outline 

The remainder of this chapter is divided into three sections. The first section begins with a 

review of basic theory of amplitude quantization, then develops a novel analysis of IFC rate 

coding as amplitude quantization. The power of the quantization formalism is that it places 

quantitative bounds on the amplitude resolution of rate encoded signals. In the final part of 

the first section, a model of the soma is presented and compared to the IFC. 

One difference between an IFC and a real soma is that there can be significant leak in the 

somatic integrator. We demonstrate in the second section that an IFC with a leaky integrator 

can actually be used to simultaneously implement a rate encoder and the threshold function 

necessary for a matched filter; this economically combines the coding mechanism with a 

computational primitive discussed in the previous chapter. In the final section, we discuss 

the implications of our definition of rate coding on the tradeoff between temporal resolution 

and amplitude resolution, the interpretation of real neurophysiological data and alternative 

theories of spike coding. 
e 

For definitions of terms and notation in this chapter, please refer to Section 1.1. 

3.2 The IFC as an amplitude quantizer 

The goal of this section is to define the rate code imple~nented by the integrate-and-fire 

circuit (IFC) in terms of amplitude quantization. We therefore begin by introducing the 

idea of amplitude quantization and then develop the theory of IFC rate coding as a form of 



amplitude quantization in the three stages. In the first stage, we analyze the ideal uniform 

quantizer in order to develop necessary techniques and methodology. In the second stage, we 

introduce the sigma delta quantizer, which is an ideal uniform quantizer with preintegration 

of its input and postdifferentiation of its output. While no direct physical implementation 

of the sigma delta quantizer exists, it serves as a useful tool for analyzing the IFC, which 

is defined in the third stage and shown to be functionally equivalent to the sigma delta 

quantizer. In the last part of this section, a model of the soma is presented and compared 

to the IFC. 

3.2.1 Amplitude quantization 

An amplitude quantizer converts an analog valued input signal s into a digital or quantized 

signal q whose amplitude values belong to a countable set of quantized levels. Since the 

quantized signal q is intended be an approximation of the input signal s ,  the quantizer selects 

each individual amplitude value q(t) by choosing the quantized level which is closest to the 

amplitude value s ( t ) .  A block diagram of the amplitude quantizer is shown in Figure 3.1. 

ANALOG SIGNAL 
S - QUANTIZER 4 

w QUANTIZED SIGNAL 

Figure 3.1: Block diagram of the amplitude quantizer. A continuously valued signal s is 
passed into a quantizer which converts it into a quantized signal q whose amplitudes belong 
to a countable set of quantized levels. 

In the context of the neuron, the motivation for quantizing the dendritic current signal 

s wit11 the IFC is so that it can be transmitted by the fast, highly reliable mechanisms of 

the axon. When neural computation is performed in the analog domain, the neuron which 

receives the quantized transmission must convert it back into analog form of s with as little 

information loss as possible. Since quantization can be usefully modeled as the addition 

of an uncorrelated noise source, the conversion of the quantized signal back into an analog 

signal can be accomplished with a linear filter, a role which can be fulfilled by the dendrite. 

This is illustrated in Figure 3.2. 

The IFC is a member of a class of quantizers known as uniform quantizers. In a uniform 

quantizer, the N quantized levels are sequentially spaced apart by the step size parameter 

A. A useful analogy is to consider a ruler to be a uniform quantizer of distances, where the 
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Figure 3.2: Block diagram of the integrate-and-fire circuit (IFC) used in the context of 
neural transmission. The analog valued dendritic current s is transformed by the IFC, a 
model of somatic spike rate encoding, into the quantized spike train q .  The axon carries the 
spike train q to its destination, the target cell's dendrite, which is modeled as a linear filter 
H. The filter H has a low pass response, which serves to convert q into an estimate of s. 
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step size A is the spacing of the ruler's markings. The ideal uniform quantizer has an infinite 

number of quantized levels: all integer multiples of A. Denoting the quantizing operation as 

Q, we can formally write the operation of the ideal uniform quantizer as 

where 1.1 denotes the greatest integer operation [Jayant and Noll, 19841. Figure 3.3 

illustrates the function Q(x) and the quantization of a sample waveform s. 

Although the theory developed below is for one dimensional, time varying signals, we use 

the quantization of pixel luminance values in examples because it provides an excellent way 

to visualize the various effects of quantization. Each of the 512 horizontal scan lines of the 

image will be treated as if it were a one second long, time varying signal and independently 

quantized. Since there are 512 pixels in each scan line, the maximum frequency present 

in the signal is 256Hz. An advantage of using an image is that neighboring scan lines are 

naturally highly correlated, allowing for the demonstration of spatial integration. The image 

used throughout is the IEEE standard photograph "peppers," which is shown in Figure 3.4. 

IFC 

3.2.2 The ideal uniform quantizer 

In the analysis of the ideal uniform quantizer below, we derive condition under which the 

nonlinear process of quantization can be successfully approximated as the addition of an 

independent noise source. This condition is an upper bound on the quantizer step size A. 

The analysis in this section is based on [Lipshitz et al., 19921 and [Gray and Stockham, 

19931. 

H -  

 he greatest integer operation 1x1 returns the greatest integer which is less than or equal to x. 

e ESTIMATED SIGNAL 
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Figure 3.3: Left: The output of an ideal quantizer with step size A of one (solid line), 
plotted with the identity function for comparison (dashed line). Right: A sample waveform 
s (dashed line) plotted along with its quantized representation q (solid line). 

In order to formally analyze the uniform quantizer, we define the quantization noise E ,  

to be the difference between the quantizer's input and output: 

Note that for the ideal uniform quantizer, the value of E is constrained to the interval [- $, 4). 
The quantized signal q can be represented as sum the signal s and the quantization noise E ,  

as illustrated in Figure 3.5. 

Calling E quantization noise is actually a misnomer at this point since the value of E is a 

deterministic function of signal amplitude, as is illustrated in Figure 3.6. A more accurate 

label for E would be signal-dependent distortion. Figure 3.7 illustrates the distorting effect, 

of a uniform quantizer with a large A applied to the luminance amplitudes of an image. 

We show in the following analysis that if the signal is mixed with additive noise before 
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Figure 3.4: Left: Various effects of quantization are illustrated below by quantizing the 
pixel luminance values of an image. Each of the 512 horizontal scan lines of the image will 
be treated as if it were a one second long, time varying signal and independently quan- 
tized. Right: The IEEE standard image "peppers" which is the actual image used for the 
illustrations. 

it is quantized, the quantization noise E can be approximated as a signal-independent noise 

source. This noise can either be added artificially or, as in the case of the neuron, be inherent 

background noise in a physical system. The mixture of signal and noise before quantization 

is illustrated schematically in Figure 3.8. 

The added noise is a Gaussian white noise source n with a mean of zero and a variance 

of 0:. Furthermore, we assume that both the signal s  and noise n are bandlimited, and 

the noise source has the greater of the two bandwidths: 0, > 0,.  Since neither s and n 

have signal power over the frequency 0,) they can be represented using samples taken at a 

sampling interval of & seconds. 

With the addition of noise, the relationship between s  and E becomes stochastic. The 

value of E has a probability distribution, and because each noise sample n [ k ]  is an indepen- 

dent Gaussian distributed random variable, the distribution of ~ [ k ]  is 

Note that the distribution of ~ [ k ]  is a function of the signal amplitude s [ k ] .  However, the 
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Figure 3.5: Block diagram of the equivalent model of quantization as the addition of quan- 
tization noise E .  

greater the amplitude of the noise relative to the quantizer step size A, the less influence the 

actual value of s[k]  has on ~ [ k ] .  This is illustrated in Figure 3.9. For on which are small 

with respect to A, the value of E is strongly influenced by s  [k] .  However, when on 2 4, the 

distribution of ~ [ k ]  is approximately that of a uniformly distributed variable on the interval 

[- 4, 4 ) , independent of the value of s [k]  : 

So for on 2 4, we approximate ~ [ k ]  as being statistically independent of s [ k ] ,  and its label 

quantization noise is then appropriate. If it is possible to subtract the noise source n after 

quantization: 

q[k] - n [ k ]  = s  [k]  + ~ [ k ]  (3.6) 

the result s[k]  + ~ [ k ]  is well approximated as the signal s  plus a white noise source uniformly 

distributed on the interval [- 4 , 4). Adding an artificial noise source, quantizing, then 

subtracting the noise source is known as subtractive dither; an example of its use is shown 

in Figure 3.10. 

However, the scenario in which we are primarily interested is not as straightforward as 

subtractive dither. If the noise n represents background noise in a physical system, it is not 

possible to subtract it out. It is therefore important to characterize the sum of the noise n 

and the quantization noise E .  To do so, we define another variable, the quantization error e, 

to be sum of n and E :  
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Figure 3.6: Graph of the value of quantization noise E as a function of quantizer input for 
an ideal uniform quantizer with step size A = 1. 

The quantized signal q can then be represented as sum the signal s and the quantization 

error e,  as illustrated in Figure 3.11. 

For the sake of clarity, a summary of the notation used in this section is presented in 

the table below: 

I I  rz 11  Additive white, Gaussian noise source 

s 

4 

I I E 11  Quantization noise Q(z) - z 

Signal to be quantized 

Quantizer output 

II 6 I/ variance of noise source n 

e 

A 

Quantization error n + E 

Uniform quantizer step size 



Figure 3.7: Left: Result of passing luminance amplitudes of each scan line of the image 
in Figure 3.4 through a five level uniform quantizer, illustrating the distorting effects of 
signal-dependent quantization noise E.  Right: The quantization noise E itself, obtained by 
subtracting the original signal s from its quantized version q.  

Although the quantization error e has a complicated relationship with the signal s, we 

show below that when a, > 4, the first and second-order statistics of the quantization error 

e are well approximated as being independent of the amplitudes the signal s. To second- 

order, the combination of the noise source n and the effect of the quantizer can then be 

approximated as a single, additive noise source. 

The mean of e[k ]  is 

which integrates to 

- erf a(i - 1 ) )  
2zz-w 0d a d  

Note that since n has a mean of zero, the mean of e[k ]  is also the mean of ~ [ k ] .  As is 

illustrated in Figure 3.12, for 0, 2 4, we can make the approximation 
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Figure 3.8: Block diagram of the noise added prior to quantization. A continuously valued 
signal s is summed with a zero mean7 Gaussian white noise source before being fed into the 
quantizer. The noise may be artificially added or inherent background noise in a physical 
system. 

For a complete second-order characterization of e ,  the autocorrelation R,,[m] = (e[k]e[k + m])  

must be characterized. For r n  = 0, this is the variance of e[k], which can be expressed in 

terms of its component correlation terms: 

(e[k12) = (&[k12) + 2(&[k]n[k1) + (n[k12) (3.12) 

Since (n[kI2) is o:, and when a, 2 +, the quantization noise E is well approximated by a 

uniform random variable over an interval of width A, so 

a a2 
For a, 2 -, ( ~ [ k ] ~ )  = 2 

The remaining term 2 ( E  [k]n [k]) has the value 

which can be reduced to 

As is shown in Figure 3.13, when on 2 $, we can make the approxilnation 

a 
For 0, 2 - , 2 (E  [k] n [k] ) = 0 2 

Using the two approximations above, the variance of elk] can be approximated as 
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Figure 3.9: The distribution of quantization error t [ k ]  for a uniform quantizer with step 
size A = 1 with three different standard deviations of the additive Gaussian noise source n: 

A A Left: on = a, Middle: on = 7 ,  Right: on = $. Each graph displays the distributions for 
three representative values of the signal amplitude s [ k ] :  0.25 (dash-dotted line), 0.5 (dashed 
line), and 0.75 (solid line). In the graph on the left, the quantization error is systematically 
dependent on the signal amplitude, but by the graph on the right, the quantization error is 
approximately statistically independent of the signal amplitude. 

a a2 
For on - 2 (e[k12) ~ - + o i  12 

Next we consider the terms of (e[k]e[k  + m]) for which m # 0. For on > 4, the values of 

both e[k + m] and elk] are approximately independent of the values of s [k  + rn] atid s [ k ] .  

Furthermore, different samples of the white noise source n are statistically independent. The 

samples of e are therefore approximately statistically independent, and so 

a 
For on > - and m#O, ( e [ k ] e [ k + m ] )  = ( e [ k ] ) ( e [ k + m ] ) = O  (3.18) 

2  

The entire autocorrelation of e is approximately 



Figure 3.10: Left: Result of first adding zero mean, Gaussian white noise n with standard 
deviation 4 before passing the scan lines of the image through a five level uniform quantizer, 
then subtracting the noise n so that the only noise remaining is signal-independent quan- 
tization noise E. Quantization noise in this case is well approximated by the addition of a 

A A white noise source uniformly distributed on the interval [- T ,  T ) .  Right: The quantization 
noise E itself, obtained by subtracting both signal s and noise n from the quantized image 

4- 

To second-order, when On 2 4, the error signal e is a zero mean white process with variance 

of o i  + and a bandwidth of 0,. The validity of this approximation is illustrated in Fig- 

ure 3.14. As discussed at the beginning of this section, the condition for which quantization 

can be approximated by the addition of an independent noise source is 

which we will refer to as the uniform quantixer design rule. The practical utility of this rule 

was demonstrated empirically in [Lipshitz et al., 19921. 

We next discuss an important reason that a linear model of quantization is useful. If 

0, is significantly larger than 0,; a low pass filter can reduce the quantization error. If the 

quantized signal q is passed through a low pass filter which rejects frequencies over R,, the 

signal s will be unaffected, but since the power of the quantization noise e is distributed 

evenly between zero and a,, its power will be reduced by the factor 
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Figure 3.11: Block diagram of the equivalent model of the combination of the additive noise 
source and quantization as the addition of quantization error e. 

f in 

which is a quantity known as the temporal oversampling ratio. To understand why this 

works, suppose that the temporal oversampling ratio was M. For every sample of s ,  there 

would be the equivalent of M samples of q, but each of those M samples contains a different 

random amplitude of quantization error e. A low pass filter can average those M samples 

together to reduce the power of the quantization error by a factor of M. If the quantization 

error were signal-dependent, a linear filter would not be nearly as successful in reducing its 

effects. 

Similarly, suppose the signal s was quantized M times such that each time, the noise 

source n had a different random value. This number N is known as the spatial over.sampling 

mtio .  By the same logic as above, each of the N quantized versions of s would have different 

random quantization errors. Averaging together the N quantized signals would reduce the 

quantization error by a factor of N. This technique not only works for a single signal 

quantized multiple times, but also for the quantization of multiple signals which are highly 

correlated. 

In the context of neuroscience, these two processes are known as temporal integration 

and spatial integration, respectively. Since they are independent mechanisms, they may be 

combined into spatiotemporal integration which can reduce total quantization noise power 

by a factor of NM. Spatiotemporal oversampling can be illustrated in Figure 3.15 by taking 

advantage of the fact that the neighboring scan lines of an image are highly correlated. 
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Figure 3.12: Graphs of the mean of quantization error e[k] of an ideal uniform quantizer 
with step size A = 1 as a function of signal amplitude s[k] for three different noise levels: 

A A Left: On = E, Middle: o;, = x, Right: cr, = $. The graph on the left resembles Figure 3.6, 
but by the graph on the right, the mean is well approximated as zero. 

3.2.3 The sigma delta quantizer 

The next step toward a quantization theory of the IFC is a novel analysis of the sigma 

delta quantizer which we have developed. A sigma delta quantizer passes its input through 

a cascade of an integrator, an ideal uniform quantizer, and a differentiator, as shown in 

Figure 3.16. Given its use of an ideal integrator and an ideal uniform quantizer, the sigma 

quantizer is impossible to realize physically and is only useful as mathematical construction 

for the purpose of analysis. However, we show in the next section that there is a quantizer 

with a simple physical implementation which is functionally equivalent to the sigma delta 

quantizer: the integrate and fire circuit. 

The sigma delta quantizer is a continuous time, open loop version of the sigma delta 

modulator, which is a common form of analog-to-digital converter [Candy and Temes, 19921. 

The sigma delta modulator has been extensively discussed in the engineering literature, and 

while the approach taken below is related to the work of [Galton, 19921, the particular 

derivations, approximations and results presented are new. 
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Figure 3.13: Graphs of the correlation of noise n[k ]  and quantization noise e[k]  of an ideal 
uniform quantizer with step size A = 1 as a function of signal amplitude s [k]  for three 

A A different noise levels: Left: on = E, Middle: on = 7 ,  Right: on = 9 .  The solid line 
represents the correlation value, and the dotted line is drawn at 0:. For the graph on the 
right, the correlation is well approximated as zero with respect to 0:. 

The sigma delta quantizer has the remarkable property that its quantization error is 

independent of the input signal to second-order for any nonzero noise power. However, the 

power spectrum of the quantization error is dependent on both the signal and the relative 

scale of on and A, and this can be used to derive a criterion for selecting A based on on 

and the bandwidth of the signal s. 

In order to label all waveforms in the sigma delta quantizer, we denote the integrated 

signal and noise as i? and n, and the differentiated quantization noise as i: 



Figure 3.14: Left: Result of adding zero mean, Gaussian white noise n with standard 
deviation $ before passing the scan lines of the image through a five level uniform quantizer, 
illustrating the sum of the signal s and quantization error e. While the quantization error has 
a complicated relationship with the signal, to second-order it is a statistically independent 
white noise source. Right: The quantization error itself, obtained by subtracting the signal 
s from the quantized signal q. 

Figure 3.15: Left: Result of passing the quantized image from Figure 3.14 through a spa- 
tiotemporal linear filter designed assuming both a temporal oversampling ratio and a spatial 
oversampling ratio of four. This reduces the power of the quantization error in the result- 
ing image by a total factor of sixteen times. Right: Result of passing the quantized image 
from Figure 3.7 through the same filter, illustrating that signal-dependent quantization error 
cannot he significantly reduced with linear filtering. 
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Figure 3.16: Block diagram of the sigma delta quantizer. A signal s plus additive Gaussian 
white noise n is integrated, quantized with an ideal uniform quantizer, then differentiated. 
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Figure 3.17: Block diagram of the equivalent model of the sigma quantizer with the quantizer 
replaced with an additive quantizer noise source E ,  just as in Figure 3.5. 
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We first examine the structure of the output of the sigma delta quantizer, q. As the 

output of the integrator S + n  varies, it crosses the quantized levels of ideal uniform quantizer, 

producing instantaneous step changes of magnitude A in the quantizer's output value. The 

derivative of these step changes are delta functions scaled by either +A or -A. The form 

of q is therefore 

- 
INTEGRATOR 

where the times { t i }  are when the integrator output is increasing across a quantized level, 

-- 
DIFFERENTIATOR 

and the times i t j }  are when the integrator output is decreasing across a quantized level: 

9 - 

DIFFERENTIATOR 

S(ti) + fi(ti) = Q(s( t i )  + n( t i ) )  and 3(ti) + fi(ti) > O (3.26) 

- 9 

~ ( t j )  + f i ( t j )  = Q ( ~ ( t j )  + i i ( t j ) )  and ~ ( t j )  + f i ( t j )  < O 
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Figure 3.18: An alternative block diagram of the equivalent model shown in Figure 3.17. 
The quantizer noise E is differentiated, then added to the signal s plus noise n. 

Therefore the sigma delta quantizer output q is a valid quantized signal because it has three 

discrete levels: zero and the peak of a delta function scaled by either +A or -A. If the 

input to the sigma delta quantizer is restricted to be non-negative, then q will only have 

two discrete levels and thus be a binary digital signal. We return to this point during the 

discussion the IFC itself. 

Paralleling the analysis of the uniform quantizer, we can make an equivalent model of 

the sigma delta quantizer as adding quantization noise E ,  as shown in Figure 3.17. At the 

output of this model, the added quantization noise is differentiated and the integration of 

the signal and noise is canceled by their subsequent differentiation. The output of the sigma 

delta quantizer q can be written as 

This is illustrated schematically in Figure 3.18. As before, we are interested in evaluating 

the first and second-order statistics of the quantization error e,  which for the sigma delta 

quantizer is 

Since differentiation is a linear operation with a DC response of zero, the mean of ~ ( t )  must 

be zero: 



so that the mean of e is zero: 

The second-order statistics are more difficult to analyze. They can be conveniently expressed 

in terms of power spectra as 

s e e  (w) = snn (w) + sni (w) + Sin (w) + Sii (a) (3.32) 

because the fact that differentiation is a linear operator can be used to rewrite (3.32) as 

The second-order statistics of e can be evaluated by determining each of the four terms on 

the right side of the above equation. To that end, we assume that n is Gaussian white noise 

with infinite bandwidth. The autocorrelation and power spectrum of n are thus 

Next, we must evaluate SEn(w) and SfiE (w). In order to do that, the approximations in the 

previous section can be used to show that n and E are uncorrelated. Those approximations 

were based on the standard deviation of the noise at the input of an ideal quantizer being at 

least $ . In the sigma delta quantizer, that noise is n. The variance of n grows monotonically 

with time since 

from which can be written 



Assuming that the integrator value was constant before being switched on at some time to,  

after a transient lasting seconds, oi, will be greater than $ from then on. This represents 
4an 

an important feature of the sigma delta quantizer, because no matter what the value of o i ,  
after an initial transient E and n can be considered uncorrelated: 

and thus 

Sfi& (w )  = SEi, ( w )  = 0 (3.39) 

The final term to define is S,,(w). Deriving an exact expression for this term is intractable 

since it has a very complicated dependence on the value of s. However, it is possible to place 

upper bounds on it as a function of A and a,. 

To do so, we first evaluate REE(O), which is the variance of E.  Again, using the approx- 

imation based on afi 2 $, from last section E can be approximated as a random variable 

A A which is uniformly distributed over the interval [- 7 ,  T ) .  The variance is then 

We next evaluate R E E ( ~ )  = ( ~ ( t ) ~ ( t  + 7 ) )  for r # 0. This will be based on the probability 

distribution of ~ ( t  + r )  given the value of ~ ( t )  , which is equal to 

where 

This probability distribution parallels (3.4) from the previous section. It is a function of the 

value of u ( t ) ,  but analogous to the analysis of (3.4), when 



it is approxinlately independent of the value of u ( t )  and therefore the value of ~ ( t ) .  Thus 

for T > $$, ~ ( t  + T )  and ~ ( t )  can be approximated as independent random variables. Since 

they both have zero mean, 

a2 
For 171 > 7, R E E ( ~ )  = ( ~ ( t ) ~ ( t  + T ) )  z 0 

40, 

This bound on REE ( 7 )  can be translated into a bound on SEE (w) .  The power spectrum in 

terms of the autocorrelation is 

00 

sEE ( w )  = / RE, ( T )  cos W T ~ T  
7r 0 

The integration of RE, ( T )  need only be computed where the autocorrelation is nonzero, which 

A2 it is only approximately for T < e: 

We can now place an upper bound on this integral: 

Substituting these results into (3.33) for the power spectrum of the quantization error, an 

upper bound can be set on See(w): 

which is independent of the signal s. The contributions to quantization error of two terms 

in the above equation are equal when 



which can be solved for w :  

Log amplitude (dB) 

Signal bandwidth u: 

Power spectrum of n 

Log frequency (Hz) - 0,' 
2k 

Figure 3.19: A schematic diagram of the power spectra of the noise n and the differentiated 
quantization noise i. The white noise has a flat power spectrum, while the upper bound on 
the quantization noise power spectrum grows as w2.&. If the signal is bandlimited below 
the point where the two power spectra cross, the quantization noise (which is the sum of n 
and i) is guaranteed to be less than twice the power of the noise n. 

If the bandwidth of the signal Rs lies below this frequency w, the noise added by the quan- 

tization is guaranteed to be at most equal to the power of n. A linear filter H can be 

used to reject all frequencies above 0, without affecting the signal. The step size A can be 

reasonably set to be 

which we will refer to as the s igma delta quantixer design rule. Note that the signal bandwidth 

is specified in radians per second. If the signal bandwidth is expressed in cycles per second 

(B Ws) , this equation is approximately 

It is worth emphasizing that although the quantization noise ~ ( t )  is independent of both 

the signal s ( t )  and noise n( t ) ,  i t s  power spectrum i s  signal-dependent. However, the power 



spectrum never exceeds the above upper bound, and following the design rule limits the 

power of E under the power of the noise n. 

The upper bound on SEE was a based on assuming that the autocorrelation was constant 

when Irl 5 6, and zero elsewhere. The actual autocorrelation decays smoothly to zero, 

and therefore the hound predicts a total autocorrelation power considerably higher than we 

typically find in simulation; it can overestimate the true value by as much as a factor of 

ten. However, even so that would only affect the above equation by underestimating A by a 

factor of -- 1.78. 

3.2.4 The integrate-and-fire circuit 

We next describe the IFC itself. The output of the sigma delta quantizer can be expressed 

which, with minor manipulation, can be rearranged to 

Subtracting q from the integrator input would therefore make the integrator's output equal 

to - ~ ( t ) ,  which is bounded on an interval of width A. This would mean that the inte- 

grator output would only span a range of A, and the quantizer need only detect when the 

integrator's output reached the bounds of this range. If the input signal is restricted to be 

non-negative, the quantizer would only need to detect when the integrator output reached 

the upper bound of its range. 

This is the idea behind the integrate-and-fire circuit. The IFC integrates its input and 

passes the result into a spike generator. The spike generator produces a delta function 

(multiplied by the step size) A6(t - ti) at the times ti when its input reaches the value A. 

This combines the functionality of the ideal uniform quantizer and differentatiator cascade 

of the sigma delta quantizer. A negative feedback loop subtracts q from the input of the 

integrator, as described by (3.55). A block diagram of the IFC is shown in Figure 3.20. 

Since the IFC is functionally equivalent to the sigma delta quantizer, the equation (3.52) 

applies for the choice of step size A as a function of a, and a,. We illustrate this with 
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Figure 3.20: Block diagram of the integrate-and-fire circuit. 

an example using the familiar "peppers" image. In Figure 3.21, we quantized the image 

scan lines using an IFC with a step size A of one. Since the image has essentially no noise, 

the upper bound on the power spectrum of i is very large, allowing for the possibility of 

a significant signal-dependent quantization error power spectrum. As can be seen from 

the image, there are striking signal-dependent distortions which appear as vertical periodic 

banding, indicating large peaks in the power spectrum of the quantization error. 

Figure 3.21: Result of passing each horizontal scan line of the "peppers" image through 
an IFC. The image has virtually no noise, and consequently the IFC encoding generates a 
high level of signal dependent distortion, seen most evidently in the encoded image's vertical 
banding patterns. 

This distortion can be reduced by following the sigma delta quantizer design rule. With 

a step size A of one, the design rule is satisfied if 



For this example, we arbitrarily set the signal bandwidth to be one fourth the maximum 

frequency of the image scan lines: 64Hz. This fixes a, to be = 5.66. When this noise 

level is added to the image before passing it through the IFC, the result is the image on the 

left in Figure 3.22. Note that there are no longer any vertical bands, indicating a lack of 

significant signal dependence of the quantization error power spectrum. 

As mentioned in the previous section, the design rule is based on a conservative bound. 

The step size A can often be set - 1.78 lower (or equivalently, an can be set lower by 

m the same factor). To illustrate this, we set a, to be -p N 3.18 to generate the image on m 
the right in Figure 3.22. Lowering a, much below this value begins to produce noticeable 

distortion. 

Just as was discussed for the uniform quantizer, spatiotemporal linear filtering can be 

used to reject quantization error and restore the original signal as best as possible. This 

is the procedure used by a recipient of an IFC encoded transmission in order to decode 

the binary valued, quantized representation into the original, analog valued signal. In a 

neural context, this spatiotemporal filter can be implemented in the dendrite. As we pointed 

out before, if quantization error is signal dependent, a linear filter will typically have very 

limited success reducing it. Strictly temporal filtering is illustrated in Figure 3.23 in which 

each scan line is passed through an IFC, then filtered with a low pass filter with a cutoff 

frequency at the signal bandwidth. Spatiotemporal filtering is illustrated in Figure 3.24. 

A final issue to discuss about the IFC is the bandwidth of the quantized output q. We 

have so far described q as a series of delta functions, which has infinite bandwidth. However, 

since the decoder low pass filters q at the signal bandwidth CIS, there is no need to preserve 

an infinite bandwidth in the representation of q. A finite bandwidth pulse shape can be 

used to signify the spike times of q. The most significant consideration is the reason for 

generating q in the first place: its binary nature must be preserved for the purpose of fast, 

accurate transmission. Therefore, the temporal extent of the pulse must be small enough so 

that successive pulses do not overlap. The minimum interspike interval is set by the length 

of time it takes the maximum signal level to integrate to A,  which is just 



Figure 3.22: Left: Result of first adding zero mean, Gaussian white noise n before passing 
each horizontal scan line of the image from Figure 3.4 through an IFC using the design rule 
from the last section. Right: Same as the image on the left, but using less noise. See text 
for details. 

Figure 3.23: Left: Result of temporally integrating each horizontal scan line from the IFC 
encoded image on the right in Figure 3.22 with a low pass filter whose cutoff frequency 
is at the bandwidth of s ,  thus reducing the power of quantization error. Right: Result of 
doing the same with the image from Figure 3.21, illustrating that a linear filter provides little 
reduction for signal dependent quantization error. 



Figure 3.24: Result of spatiotemporally integrating the image IFC encoded image on the 
left in Figure 3.22, exploiting the correlation redundancy of neighboring scan lines to reduce 
quantization error even further than in Figure 3.23. 

where sma, is the maximum signal level. This determines the temporal resolution of q: 

This equation implies that if q were represented as a sampled signal, the sampling interval 

must be at least the minimum interspike interval. In other words, there should be at most 

one pulse per sampling interval. 

3.2.5 The soma as an IFC 

Since our intention is to model the coding mechanism of the neuron soma, we next present 

an actual   nod el of the soma and compare it to the IFC. A basic circuit model of a neuron's 

soma is shown in Figure 3.25. The variable current source supplying the input signal s + n 

represents total dendritic current. The resistor and battery represent the aggregate of all 

somatic potassium channels; the conductance value g is the total potassium conductance, 

and E is the potassium reversal potential. The capacitor serves as a model for the soma's 



bilipid membrane. The voltage sensitive switch is an idealization of the spike generation zone 

in the axon hillock. The switch remains open until the voltage v reaches E + A, which is 

the threshold voltage for spike initiation. When the voltage reaches threshold, a momentary 

closing of the switch sets v from E + A to E. We denote the times that the switch closes 

as the set {ti}. At each closing, an axonal voltage spike is generated, which we represented 

with a temporally shifted delta function. The output spike train q(t) can therefore be written 

q(t) = C b(t - ti) 
i 

This spike generation mechanism is instantaneous and has no refractory period, allowing 

spikes to occur arbitrarily frequently; in order to make this a more realistic model of the 

soma, an upper limit could be set on the firing rate. The values of E, C ,  g and A are 

assumed to be constant for a given soma. 

Figure 3.25: The circuit model of the soma. A variable current source provides the input 
signal s + n. When v reaches the threshold voltage E + A, the switch closes momentarily 
setting v back to E and simultaneously, a delta function spike is produced in the output 
signal q (not shown). 

Using q(t), the equation for the above circuit can be written 

Since E represents a constant offset, it can be set to zero without loss of generality. Since 

the capacitance of the soma is fixed, we can also consider C to be a scaling constant. Again 

without loss of generality, we can normalize this constant to one. Therefore, reduced to its 

essence and solved for q(t), (3.60) becomes 



which, with the substitution 

is the same as the IFC, except for the extra term gv(t)  representing the leak in the integrator. 

Therefore, if the leak is not significant, the soma is well modeled as an IFC. The effect of 

significant leak will be addressed in the next section. 

3.3 The effect of integrator leak 

As discussed in the previous section, one of the important ways in which the somatic in- 

tegrator differs from perfect integration by a leak current gv(t) .  This cannot be directly 

accomodated by modification of the sigma delta quantizer, nor can we find the same type of 

closed form expressions as in the analysis of Section 3.2.3. 

In order to develop an approximate analysis of integrator leak, we first note that since 

v ( t )  is never greater than A, the maximum value of the leak current is gA. Therefore, if 

it is still guaranteed that v ( t )  will increase and reach the value A. However, if this condition 

is not met, v ( t )  will not be able to reach A and the soma will never spike. Therefore, the 

leak current gA sets a threshold for currents capable of spike generation. This suggests two 

qualitatively different modes of operation, spiking and non-spiking, depending 011 whether 

the IFC input is above or below threshold. 

We hypothesize that the threshold can be used for computational purposes such as the 

matched filter used in feature detection discussed in the previous chapter. I11 this context, 

we next discuss the behavior of the leaky IFC for the cases of the signal being entirely below 

threshold, entirely above threshold, and transitioning from below to above threshold. 



3.3.1 Below threshold 

If s ( t )  + n ( t )  remains below threshold, the system is entirely linear. The integrator output 

is a low pass filtered version of s ( t )  + n ( t ) ,  where the cutoff frequency is determined by g: 

where u ( t )  is the unit step function. Since the value of u ( t )  never reaches A, there are no 

spikes and thus 

None of the analysis of the sigma delta quantizer holds since the quantization noise ~ ( t )  

is exactly determined by s ( t )  + n ( t ) .  However, since there is no quantizer output, it is 

more appropriate to consider this in the context of a computationally relevant thresholding 

mechanism than in the context of coding. 

WHITE 
GAUSSIAN 

NOISE 

Figure 3.26: Block diagram of the above threshold, leaky integrator SDM approximation as 
a sigma quantizer with a constant of 9 subtracted from the input. 

INTEGRATOR QUANTIZER 

3.3.2 Above threshold 

If s ( t )  + n ( t )  remains consistently above threshold, u ( t )  will reach A and spikes will be 

generated, and thus the leaky integrator will perform the integration function necessary for 

the proper operation of an IFC. If it does indeed work as an IFC, then v ( t )  = - ~ ( t )  will be 

well approximated as a uniformly distributed random variable with a mean of 4, and the 

- DIFFERENTIATOR 



Spike rate as a function of constant input 
1 

Constant input level 

Figure 3.27: A graph of spike rate as a function of the level of a constant input. The relevant 
parameters are A = 1, g = 0.2. The solid line shows the true spike rate for a leaky integrator 
SDM and the dotted line shows the equivalent model approximation. Soon after threshold, 
the approximation is very accurate. 

following will hold: 

We therefore propose that a good approximation for the leaky IFC with above threshold 

input is a sigma delta quantizer with input 

This equivalent model is shown schematically in Figure 3.26. To test the accuracy of the 

equivalent model, we can use it to predict the leaky IFC response to constant input. From 

the leaky integrator equation, it can be derived that for a constant input s = sot, the 

average spike rate is [Scharstein, 19801 
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The equivalent model would predict from (3.67) that the average spike rate should be 

as long as s ~ c  is over threshold. A comparison of the true leaky IFC spike rate (3.68) and 

its approximation (3.69) is graphed in Figure 3.27. The equivalent model approximation is 

accurate soon after the input level exceeds the threshold value. 

The equivalent model can also be tested by simulation using a real signal. This is 

illustrated in Figure 3.28, which shows that qualitatively very similar results are produced 

by using a leaky IFC and the equivalent model. 

3.3.3 Transitioning between above and below threshold 

Having characterized the response of the leaky IFC to signals which are always either above 

or below threshold, we next discuss the response to signals which transition across the 

threshold. The case of the signal amplitude transitioning from above threshold to below 

is straightforward: the behavior of the leaky IFC switches from the spiking mode to the 

non-spiking mode. However, when the signal amplitude transitions from below threshold to 

above, the situation is more complicated. 

When the signal amplitude is below threshold, ~ ( t )  is correlated with s ( t )  + n(t) ,  con- 

tradicting a central assumption of the analysis of the sigma delta quantizer. However, when 

the signal amplitude rises above threshold, the assumption of independence between E,  s 

and n will become valid after a transient period due to the renewed integration of 7%. The 

transient period is at most seconds long, but will typically be shorter since the value of 
4un 

E is randomized to some degree by n even below threshold. Since E is also differentiated at 

the output, the net effect is typically seen as a small, rapid overshoot in average spike rate, 

as illustrated in Figure 3.29. 

If the signal is only above threshold for brief enough periods of time, E can never sta- 

tistically decouple from s and n. We believe that this accounts for the results observed in 

[Mainen and Sejnowski, 19951. This may also be a crucial mechanism for codes which rely 

on precise spike timing, such as [Hopfield, 19951. 



Figure 3.28: Top left: Result of using an IFC with a leaky integrator to encode the "peppers" 
image, which was offset so that all luminance values were above threshold, then the same 
amount of noise was added as for the image on the right in Figure 3.23. The leak parameter 
g was 0.2, and the signal amplitudes ranged between 0.2A and 0.6A. Top right: Result 
of passing the same image through the leak approximation by subtracting O.lA from the 
luminance values before passing it through a nonleaky IFC. Note that the two images appear 
qualitatively similar. Bottom left: The result of subtracting the two top images to quantify 
their similarity. The difference can be mostly characterized as noise, but a faint outline of 
the peppers is visible, representing the error in the approximation of the equivalent model. 
The difference is most noticeable at the lowest signal levels (for example, the long pepper 
on the left is the most visible). Bottom right: The difference passed through the same 
spatiotemporal integration filter used in Figure 3.24. 
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Figure 3.29: Result of averaging repeated trials of using a leaky IFC to encode a 6Hz square 
wave whose amplitude alternated between zero and three times the threshold value. This 
illustrates that there is a small, rapid overshoot which occurs when the signal transitions 
from below to above threshold. 

3.4 Discussion 

In the preceding sections, we set forth a mathematically explicit definition of IFC rate coding. 

The conversion of an analog signal into a series of spikes was shown to be usefully modeled 

as the addition of quantization noise; decoding the spikes into an estimate of the original 

analog signal can therefore be accomplished with a spatiotemporal linear filter designed to 

reduce quantization noise. In a neuroscience context, the IFC encoding is performed by a 

neuron soma, and the decoding is implemented as spatiotemporal integration in a dendrite. 

Our sigma delta quantizer design rule quantitatively defined a tradeoff between the am- 

plitude resolution and temporal resolution of a signal to be rate encoded. For an IFC with 

a given step size A, the ratio of the standard deviation of the noise 0, and the square root 

of the signal bandwidth 52, must remain constant. The standard deviation of the noise is 

inversely proportional to a measure of amplitude resolution, the signal- to-noise ratio, and 

bandwidth is a measure of temporal resolution. Therefore, for an IFC the product of am- 



plitude resolution and the square root of temporal resolution remains constant. This is 

analogous to the gain-bandwidth product of a linear amplifier. Assuming that the step size, 

noise power and signal bandwidth are fixed, the maximum spike rate is proportional to the 

maximum input signal level. Therefore, amplitude resolution of a rate encoded signal is also 

linearly proportional to the maximum spike rate. 

Since a neuron may receive at least hundreds of inputs, its spatial oversampling ratio 

is likely to be quite large. Thus even if the amplitude resolution of any particular spike 

coded input may be very low, spatial averaging over all inputs could produce a result with 

high amplitude resolution if the inputs are correlated. Since learning is thought to occur 

by Hebbian mechanisms, it is probably the case that the inputs to a neuron are correlated. 

We further speculate that due to the metabolic cost of spiking and synaptic transduction, 

neurons rate code at the minimum necessary amplitude resolution and rely on spatiotemporal 

integration to produce a decoded signal with the necessary amplitude resolution. 

We believe that a common misconception about spike coding is the false dichotomy be- 

tween a rate code and a timing code. This is due to the lack of understanding that a rate 

code can define a time scale over which rates are computed. For example, analysis of exper- 

imentally derived spike trains such as the well known work of William Bialek [Bialek et al., 

19911 are often used to argue against a rate code. However, Bialek's decoding mechanism 

was a linear filter, exactly as would be optimal from our analysis for a rate code. The results 

obtained by Bialek in the fly visual system can therefore be interpreted as a rate code with 

high temporal resolution but very low amplitude resolution. 

Coding is also too often treated as a separate issue from computation. If the summation of 

inputs is an integral part of the computation a neuron is performing, as it is in the simple cell 

model of the previous chapter, there is no distinction between this computation and decoding 

a rate code. Furthermore, a leaky IFC simultaneously implements both a computationally 

relevant threshold and spike rate encoding. In a system as efficiently designed as we believe 

biology to be, coding and computation should be closely interrelated. 



Chapter 4 Conclusion 

In the course of this thesis, we have presented two models which seem relatively unrelated, 

but have some interesting common themes. For example, our model of visual feature detec- 

tion can be interpreted as the demodulation of digitally modulated analog signals and our 

model of spike coding can be interpreted as the analog modulation of digital signals. 

Another common theme of the two models is that they can both be interpreted in terms 

of quantization. The visual feature detector quantizes the multidimensional vector represen- 

tation of an image patch, whereas the spike coder quantizes a time varying analog signal. 

Quantization involves a combination of linear processing and discretizing nonlinearities such 

as a threshold or winner-take-all mechanism. 

Many of the neural network style approaches to computational problems are based on 

continuous function approximation with nonlinear basis functions. However, the calcula- 

tion of the basis function values and the implemention of the necessary parameter fitting 

algorithms are computationally intricate. Quantization based approaches involve simpler 

computational elements and training algorithms, both of which are neurophysiologically re- 

alistic. While some work has been done, we believe that the application of the ideas and 

techniques of quantization to neural modeling remains relatively unexplored. 

We strongly feel that the paradigm of information processing is crucial to understanding 

the fundamental principles of the brain, and that significant progress in neuroscience will 

only result from a well coordinated combination of physiological and theoretical results. We 

hope that the models presented in this thesis will help toward this goal. 
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