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ABSTRACT
PART I

In the Heisenberg model, the hamiltonian describing a
linear array of tightly-bound electrons that are exchange-coupled

to their neighbors is

8L - =2 = <
e 2108 S 30985, -4

-

where -1 < 8 < 1 is the alternation parameter, Sj is the electron
spin on the jth site, and J > 0 (antiferromagnetic coupliﬁg). The
solutions of the one-dimensional antiferromagnet are studied by
transforming to pseudo-spin opefators similar to those used by
Andérson in superconductivity theory. In a self-consistent
ﬁolecular-field approximation, the ground state energy, the exci-
tation spectrum, and the coherence between antiparallel spins are
found for arbitrary & and temperature. At 0°K, the solutions
agree with or improve upon previous calculations of the properties
of the regular (8 = 0) or the alternafing (8 # 0) antiferromagnet.
For T > 0, good agreement is found with fhe experimental paramag-
netic susceptibilities of organic crystals whose SPin properties
may be represented by a regularor an alternating antiferromagnet.
The temperature dependence of the excitation energies agrees with

the observed behavior of the singlet-triplet energy gap in. triplet



exciton systems. The high temperature and weak alternation

extension of triplet exciton theory is presented.

PART II
Certain organic crystals consist of linear chains of

antiferromagnetically-coupled, tightly-bound electrons; their EPR
(electron paramagnetic resonance) properties are discussed in
terms of triplet excitons. We consider a deformable lattice and
investigate the influence of phonons on triplet excitons. For
low exciton density (i.e., at low temperature) the excitoné, on
'.éccount of the phonons, are localized and diffusional; they

resemble chargeless polarons in the strong-coupling limit; A
general expression for the rate, and its temperature dependence,
of an exciton process in a phonén bath at thermal equilibrium is
fOuhd. In particular, we obtain the diffusion constant for exci-
ton motion, the activation energy for diffusion, and the rates of
exciton creation and annihilation; we estimate these parameters
for Wurster's blue perchlorate. Even at 0°K, diffusional excitons
are mobile enough to account fqr the absence of hyperfine struc-
| ture in the EPR spectra. Modifiéations, due to the.phonons, of
the parameters of the effective exciton hamiltonian are obtained
- and a spin—independent,'phonon-coupled répulSion between excitons

is rederived.
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I. THEORY OF THE LINEAR HEISENBERG ANTIFERROMAGNET.

APPLICATION TO PARAMAGNETIC EXCITATIONS

IN ORGANIC CRYSTALS

Abstract
We consider a iinear array of tightly~-bound electrons
that are exchange-coupled to their neighbors. The hamiltonian,

in the Heisenberg model, is

Ny . - = ;l_'.

where & is the alternation parameter and the exchange integral J
is positive, corresponding to antiferromagnetic coupling. We
investigate the solutions for the one-dimensional antiferromagnet,
for any /6/< 1, by transforming the hamiltonian first to Fermi
creation and annihilation operators and then to pseudo-spin
operators similar to the ones used by Anderson in connection with
superconductivity. We thus take into account the coherence
between antiparallel electrons in a self-consistent manner. We
eiploit the similarity between the linear antiferromagnet and
superconductivity theory to obtain the ground-state energy and the
excitation spectrum for arbitrary & and témperature. We thus
obtain a complete thermodynamic description. In particular, we
calculate the paramaghetic susceptibility and compare it with
experiment. '

At 0°K, the solutions we present agree with or improve

upon previous calculations, for either the regular (6 = 0) or the



‘alternating (8 # O)Iantiferromagnet, of the ground-state energy,
the excitation spectrum, and the short-range order. Using the
finite temperature extension of the theory, we find good agree-
ment between the calculated and the experimental paramagngtic
susceptibilities of organic crystals whose structures, so far as
spin properties are concerned, may be approximated by either the
regular or the alternating antiferromagnet. The temperéture
dependence of the excitation energies, a many-body effect déscrib-‘
ing the decrease of coherence between antiparallel electrons with
increasing temperature, agrees with the observed behavior of the

" singlet-triplet energy gap in paramagnetic exciton systems. Thus
we obtain the extension of exciton theory to arbitrary temperature
and alternation. Thé electron pairs forming triplet excitations '
are, for any alternation, incréasingly séparated at high tempera-
tures, where, as expedted, the électroﬁs behave‘like a paramag-

netic gas.



I. Introductio:n

We consider a system of N electrons, each tightly local-
ized on a.fixed site.' The N sites, which may be either atoms or
molecules, form a one-dimensional array; they are numbered con~
secutively from 1 to N, and they form a ring, so that site N+1 is
the same as site 1. We consider the exchange interaétiohs between

neighboring electrons. The hamiltonian for the spin system is
hl

. n- 1-n J4u S5 S I R

Here Sj = 3 1is the spin associated with the electron on the jth
site. Jj,j+l is the exghange integral for the electrons on sites
j and j+1. In the case of antiferromagnetic coupling, to which
we restrict the discussion, the exchange integrals are.pdsitive.
For the particular case of alternating exchange integréls, the
hamiltonian is

H = Z {J(H-&) S, .- 3‘2.'&1—[ ¥ J("’S)S:_{—S;' - D"}) 1.2

23-‘ 2

where -1 < & < 1 and & is the "alternation" parameter. Equation
I.2 is the hamiltonian for the one-dimensional alternating Heisen-
berg antiferromagnet. The purpose of this paper is to investigate
its solutions.

The regular (& = 0) Heisenberg antiferromagnet has been
investigated many times, and some of its properties have been

found exactly. The treatments fall into two classes. The first
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class'is based on tﬁe formalism invented by Bethe (1), in one of
the first discussions of the linear antiferromagnet. The second
class is based on the reduction of the hamiltonian to Fermi
operators (2-5). There are a number of difficulties assdciated
with both methods, and it is not difficult to find contradictory
statements about the properties of the regular antiferromagnet in
the literature. The discrepancies, for the most part, hinge on
whether or not there is a gap in the excitation spectrum. We
shall have to adopt a definite point Qf view in this matter in
order to discuss the properties of the regular antifefromagnet at
finite temperatures. Although we shall not be able to make rigdr—
ous statements, we shall present at least a partial reconcilia-
tion.

Bethe's formalism gives, in several instances, exact
results in the limif of an infinite (N —«) system. Thus Hulthén
found the ground-state energy of the regular antiferromagnet (6),
and Des Cloizeaux and Pearson found'a class of elementary triplet
excitations and no energy gap (7). Griffiths extended their
résults to excitations of higher multiplicity and attempted to
find the properties of the regular antiferromagnet at finite tem-
peratures (8,9). In Bethe's formalism, there are two classes of
solutions. For the case of antiferromagnetic coupling, the lowest
energy state for a fixed total SZ always falls into the class
which is mathematically tractable (1,8). Griffiths assumed thag
he need consider only this class of solutions, which include the

ground state and the excitations found by Des Cloizeaux and



Pearson, to construct the partition function. He then showed that
in fact the finite-temperature properties of the regular antiferro-
magnet seem to depend entirely on the other class of solutions (9).

In order to obtain, at least approximately, properties of
the regular antiferromagnet for which the Bethe formalism was en-
tirely unsuited, Anderson (10) and Marshall (11,12) extehded spin~
wave theory, which is entirely adequate for the case of ferromag-
netic coupling (J < 0), to antiferromagnetic coupling (J > 0).
Their formalisms, in. terms of Bose operators, gave unéxpectedly
good results for the case of spin-# particles, where drastic
assumptions had to be made. Several authors theﬁ'reduced the
hamiltonian for the regular antiferromagnet to Fermi operators
(2-5). Once end effects had been considered in detail_(lZ), the
hamiltonian could be expressed exactly in terms of Fermi operators.
Approximations had to be introduced,.however, because the hamil-
tonian_could not be diagonalized. Several attempts to obtain
solutions have been reported (5,13-16). These treatments yield
: aﬁproximate ground—stafe energies only. But fhey give an excita-
tion spectrum. Since the prbblem has been feduced to that of an
interacting system of fermions, it is straightforward to calculate
.the thermal.properties of the spin system by using étatistical
mechanics. |

The method we present falls into the second class. We
express the hamiltonian, béth for the regular and the alternating

antiferromagnet, in terms of Fermi operators. We then introduce



a pseudo-spin formalism very similar to the one used by Anderson
in connection with superconductivity (17). The hamiltonian, for
the special case of antiferromagnetic coupling, is solved in a
self-consistent molecular-field approximation, for arbitrary
alternation and temperature.

The pseudo-spin formalism makes it possible to take into
account the coherence between antiparallel electrons. That such
coherence is important is evident from the simple example of two
~electrons on two sites. The ground state singlet function,

1
£

tions ale or Blaz, in which each electron has fixed SZ on each

(onlB2 - Bla2) has lower energy than either of the product func-

site. Marshall (11) recognized that exchange between electrons
with antiparallel spins'is intrinsically more complicated than
exchange between electrons with parallel spins, but did not
incorporate this into his approximate treatment. We géneralize
the coherence between antiparallel spins to the case of many
electrons. The solutions we obtain-are therefore éonsistently
better than ié possible with just a Hartree-Fock molecular-field
approximation (5,18,19).

| We obtain solutions for arbitrary & and temperature. In
the limit of 0°K and 6 = 0, that is, for the regular antiferromag-
net at absolute zero, we reproduce the results obtained by Ruij-
grok and Rodriguez (14) by a variational calculation. We then
find, using second~order perturbation theory, the ground-state
energy to within 0.1% of the exact value. In the other limit, for

strong alternation (6 = + 1), we have non-interacting systems of



two electrons on two sites. The ground-state energy is then given
exactly by the pseudo-spin formalism.

Organic molecular crystals have been of considerable ex-
perimental'and theoretical interest recently (20). Many of these
crystals, as far as their spin properties are concerned, are
“believed to be composed of essentially non-interacting chains (21).
The components of the chains are ions or free radicals, bn each of
~ which there is a tightly-bound unpaired electron. If we consider
the molecular integrals J to be parameters to be determined
experimentally, the hamiltonian for the tightly—bound'unpaired
electrons is just that of the one-dimensional alternating_antifer-
romagnet. Crystals corresponding to both of the extreme cases &
=0 and 6 = 1 have been postulated (22,23), as well as crystals
corresponding to intermediate cases (24, 25).

The most successful theory of the spin properties of these
organic crystals is due to Lynden-ﬁell and McConnell (24). The
model we present reduces, for low temperatures and large alterna-
tion, to their treatment. We also obtain the temperature range
iﬁ which it is a good approximation to assume, as they did, that
exciton-exciton interactions are negligible. We obtain the para-
magnetic contribution to the magnetic susceptibility of organic
crystals exhibiting exciton behavior. Our results agree with
experiment both in the case of the regular and the strongly alter-
nating antiferromagnet. We also find the decrease in the singlet-
triplet energy gap with increasing temperatdre that has been

observed experimentally for strongly alternating systems (33).
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In section II, we transform the hamiltonian of the Heisen-
berg antiferromagnet several times and finally express it, for
arbitrary alternation, in terms of pseudo-spin operators. In
sectioﬁ III, we present the self-consistent_éolution for the
alternating antiferromagnet at. 0°K. In section v, we_exfend the
discussion to finite temperatures and find an expression for the
magnetic susceptibility. Results are presented in séction V. The
results are compared with previous theories and with experiment in

section VI.
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II. Transformations of the Hamiltonian

The alternatlng antiferromagnet has translational symmetry.
The wave number k is therefore a good quantum number. In addition,
for any 6, the hamiltonian is isotropic. The total spin and the z-
component of the total spin are therefore good quantum nuﬁbers.
Finally, except for the arbitrary labelling of the sites, the
hamiltonian is invariant under 6 - -8. We thereforelcoﬁsider only
0 <6< 1.

We first express the hamiltonian for the alternating anti-
ferromagnet in terms of Pauli opefators. We define P; = S;; as
usual, S;==S§-+i8§; X, y; z form an arbitrary cartesian coordinate
system. Then Pj = Sg and, for spin %, S? = -3 + P;Pj. It is easy
to verify tha# any combination of P;,Pj commutes for different

sites. For the same site,

Fogh B} Yol o
[P, Pl = [?',?zy],'o , [?,?1]+ =0 II.1

where [ , ]_ and [,]+ denote the commutator and the anticommutator,

respectively. The hamiltonian in terms of the Pauli operators is
\ ¥
H = Z{_JPj F_j + '2!'3(?;?1“ 4)1-(?) -+ ljg( l)é<
P"PWP LR (PR U A A AR N

IT.2

The sums are from j = 1 to j = N. We may interpret P;, P5 as
creation and annihilation operators. P; creates a unit of z-com-
ponent of spin and P3 annihilates a unit of z-component of spin'

on the site j. We choose to work with the complete set of states
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in which the z-component of spin is given on each site. The
vacuum state is defined to be the state in which § = -z on all

the sites. A "particle" in state j then means that site j has

We next transform to Fermi operators. The creation and
e s . + s .
annihilation operators fn, fn create and annihilate, respectively,

a unit of z-component of spin on site n,

+ Cn F
{:n = .(‘— ‘) " PV\
‘G“ - (_‘)G'h .Pn , II.3
where
n-1\ + n-1

— - +
Cn = Z. Pj P = Z -Y',,‘gn . II.4
The anticommutation relations are

R R L= DA =0, 16 8,0 =8,

The operators ?,, which appear as exponents, in general make the
transformation useless. However, when an operator?contains at
mdst interactions between sites which may be labelled by consecu-
tive integers, the factors (—l)‘rn all become unity. The hamil-
tonian operator for the alternating antiferromagnet has this
property. Writing SZ and 82 in terms of Pauli operators, we see
that only the former involves at most interactions between con-

secutively labelled sites:
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S, = 2 o= -In Z‘P;Pﬁ
)

- : + .

51 = 5-5 (5-5" |) + S+S = 55(53-0 T Z‘-P3 ‘F'f . e
g}

Our inability to find a simple expression for 82 in terms of Fermi
operafors will make it difficult to classify ouf final states by
the total sﬁin angular momentum. As discussed by Marshall (11),
the ground state is a singlet for antiferromagnetic coupling.
There are then N particles; SZ vanishes. The expectation value
of 52 is negligible (11), of order N rather than N2, for any state
with 2N sites with s, = % and #N sites with 5, = -%, as is also
evident from II.6. We use a linear combination of stateé with
vanishing total SZ to construct an approximate ground stafe, with
<% /8% S 1/N. The apparent loss of the quantum number S is
fhe»biggest disadvantage of the transformation.to Fermi operators.
Nevertheless, using other results, we may associate a fixed S
with any state.

End effects, that is, the interactions between sites N
and 1, may be included exactly (13,26). We use the notation of
_reférence 26 and summarize the_conclusioné. For simplicity, we
always take N to be even, so that the ground stafe is.a singlet.
We define the total number oﬁerator o,

N
¢ = ;i- 4: %h
4=\ .

II.7
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As shown in references 13 and 26, we must specify whether the
expectation value of ¢ is even or odd in the ground state. The
parity_a is defined to be 1, 2 for & odd, even. Since o = Sz +
2N, o (and hence a) is a good quantum number; we may work in fhe
subspace with fixed energy and parity. |

The exact.hamiltonian for the'alternating antiferromagnet,

in terms of fermicn operators, is

&) N L N-‘l Nyt u
HT = 2-J85.+ ) 130+ 8¢ £ Fua Fon o)

n=) rimy

N I
-<-n°‘i3(\+e(—f>f")(;;&‘»c{‘%N) + 2 DA

I.8

Even solutions of }403 and odd soluticns of }{0) are solutions
of the hamiltonian.

The translational invariance of the antiferromagnet may be
used to further reduce the hamiltonian to more nearly diagonal
form. The operators a;, 8y create and annihilate, respectively,

a unit of z component of spin in a state with momentum fik.

N .
% _ 4 Rn 3
% = N 'Z% < gh
II.o
N .
1 -kn
a = = !
k ﬁq Zi. e '$n .

3
n

The usual anticommutation relations for Fermi operators are obeyed:
+ + - + _
[ %, ]+ = [a, “k'L. =0, [ak,ak.]: Sy +  II.10

The inverse relations are
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A -ikn +
$n JEI 2; e Ay

IT.11

£ A 2; ikn

h JN € Qg -
K

The values of k depend on the parity. BAs shown in reference 26,

~ they may be found from the condition

LN
e = (). II.12
Since N is even by hypothesis, there are two cases:
: L el (N-2)w
x = 1 k=0, N, ¢ N_,...,:t———ﬁ)—)ﬂr,
T 31 _ IT.13
°‘=_.2. k=iN,i—’i—) . ’i(N‘\;)“‘.
- The transformed hamiltonian is
) % ¥ 8, + -k 4 ik
H %J{(\-st)aqu + 2 (0n0E 00, )
“« 7 ik k) %D ey II.14
AR TR TN £ 3 BAR
ky Ky ky ky K, ky ksky ki Ko kg Ry
" _
kotky=kgthy Kyt Ky =Kyrky+Tr
o
" 2& " denotes that the sum runs over the values of k appropriate
K ' v

to the parity o

The quadratic part of the hamiltonian is diagonal only for
the regular (8 = 0) antiferromagnet. For & > 0, the lattice has
%N equivalent pairs of sités, rather than N equivalent sites.
Thus a linear combination of the operators_in equatibn II1.9 is

required to diagonalize the quadratic part of the hamiltonian.
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The excitation spectrum breaks up into two branches, separated by
_aﬁ energy gap, as in the familiar case of lattice vibrations.
Before we finish the diagonalization of the quadratic terms, we
examine several c-number.terms in the interaction (the quartic)
part of the hamiltonian. We pick out the terms that have non-
vanishing expectation values in the ground state for the best
zeroth-order fuhctions.

The excitation density p is, by definition,

_(_y_ _ 1 ¥ _ % 4
N N ;—gr\{:ﬂ - Zk-‘aqu . IT.15

’1 .
il

Since SZ = N(p - &) and SZ commutes with the hamiltonian,‘p is a
good quantum number. We choose, therefore, a representation in
%) . :

which p and ]4( are simultaneously diagonal. The parity is
then also diagonal; sincé,a =1, 2 for o odd, even. The term
k2 = kS,in the first quartic term of II.14 involves only p; it is
the Hartree term, _ _ |

®* J x + 2

=~a.a 4.4, =
g? N KKK JN() . II.16
The exchange term is the term kl = k3 in the first quartic.

term of II.14,

x
N cos(k-k) a+.a+a Q= - *J » vy 4 :

Kk'
kK#k' kk ‘f(. IT.17

+ s'mksink' a;akazlakl } .
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As usual, the exchange, or the Fock, term has the opposite sign
from the direct, or the Hartree, term. The antiferromagnet has

s ymmetry in k and -k; that is, clockwise and counterclockwise
motion are equivalent except for direction. The ground-state.
expectation value of the second term-in;II.l7 therefore vanishes .

We define the c~number B

PR S |
B =~ N <§—°°5k°qu>. II.18

The ground-state expectation value is understood. Thé expecta-
tion value of the exchange term is -1/4NJ62. Since we have not
omitted a value of k in the definition of B, this result is cor-
rect to order l/N. The'expectation value of.azék, the number
operétor, is in general temperature-dependent. B is therefore a
function of temperaturé. The direct and the exchange terms are
the only terms in the qﬁartic part of the hamiltonian fhat
include only the number operators. p and B thus correspond to
the terms kept in a Hartree-Pock calculation.

We have yet to consider the coherence betﬁeen electrons
‘with antiparallel spins. It is evident from II.14 that, for & >
O, electrons with.unlike Sz’ in states k and k + m, are to be
paired. Self—consisfency then requirés that we treét as c-numbers
.all terms in the quartic-part of the hamiltonian which involve.the
aperafors'a;§k+ﬁ. We shall see that, even for the regular.(6.= Oj,
antiferromagnet, there is such pairing, at least at low tempera-

tures. In other words, the ground-state eXpectation values of the
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oiDerat-ors a,:('ak - do not vanish, at low temperatures, for any
_alternation These operators, as well as the number operators,
_must be included in a self-consistent treatment

It is stralghtforward but sllghtly ted:n.ous, to Ple out
the terms in a\ka.k . -in the quartic part of the hamiltonian. We

obtain, using II.15,

| : ' o . ' .
T ) ®
HT == Ngl-pr Hrea +V s II.19

where
| ©) _ x ' + - +
. H“'cd - J Zk_ {CaOSkaqu - Ststn.quakﬂ }

kk‘
Y ~ IL.20,
(1 sinksink®) g - 0y Gy, Qg+ 28icosksink’ o, G

t o+
+ sinksink' akak“k'“k' + Coskosk Qk,_wakaz, ak_.w}

and
@g) - J ‘(k3 k:. + 4 | -
__ Z %3, + JSZ u“‘k’)* a:aa, .
kkzkak't klk k.!k? k' k“ IT.?
k"}’kl k;'\'k‘f . ‘sz kJTk,’-ﬂT et
L ks_, Ke; kz."‘: kaﬂrik'f*“ k,# k;_, kq, kﬁ'ﬂ,kw“’

No approximations of any kind have been made thus far. The hamil-
tonian II.19 is exactly equivalent to the hamiltonian I.2 for the
alternating antiferromagnet, provided that we take the even solu-

tion of 'H@ and the odd solutions of Hm . The reduced
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hamiltonian, equation II.20, is formally very similar to the

reduced hamiltonian solved in the B.C.S. theory of superconductiv-

ity (27).
_ We define two c¢-numbers associated with the operators
+ . | |
S Fetm®
_ . X
A= J<C2 aa
N Z{ K Zkrw ? IT.22
¢ = 2 (Y isnkdiGg, )
N " K5+ /. II.23

Since all the k values are included in the definitions of A and &,
the.reduced hamiltonian in terms of A, ¢, and B is correct to
order 1/N. A and ¢ are, like B, temperature-dependent. We shall
see that A represents, roughly, the coherence between antiparallel
electrons in the case of the regular or the weakly alternating
antiferromagnet, while g represents, roughly, the coherence for a
strongly alternating.lattice. The last two tefms in IT.20 both
have vanishing expectation values iﬁ the ground state.' We have
already shown that the expectation value of the first term
vanishes. We show that the expectation value of the second
vanishes after we transform to pseudo-spin operators. _
We wish to obtaiﬁ self-consistent solutions for }{fj: s
B, A, and &. In general, this is no easy task, as is sﬁggested,
fof instance,'by the complexities of spin-wave theory, for ferro-
magnetic coupling, in the case of an arbitrary number of reversed

- spins. For antiferromagnetic coupling, it is known that the ground



19

state is a singlet for:even N (11). _Thefe.are N reversed spins, -
so that p = 4. For p =.%, in the limit of large N; it is possiblev
to solve }4:; exactly. It is essential that we have J > 0, so
that -we shall be concerned only with antiférromagnetic coupling.
Also, since we must have p very nearly equal to %, we conéider
only the case of no applied external magnetic field. It is
straightforward to generalizé to the case of a weak,‘coﬁstant,
external magnetic field.

Each fermion is a filled state of II.20 and represents a
spin with SZ = %, while each empty state represents a spin with
s, = -%. For p = 4, or 3N fermions, the ground state is the
state in which the states -m <k < -%m and &7 < k < m are full.
We have already chosen the zero of energy for }{;& at the Fermi
level when p = 4. We now restrict the discussion to a subspace’
of the total set of k states. We consider the subspacé in which
the states k and k + m héve, for all k, unlike Sz;ﬁ It is easy to
show that the ground state in the Hartree-Fock approximation lies
in this subspace. We call this state the unrotated Fermi state,
fbr_reasons which will become evident later. The exact ground
state of }filx.also lies in this subspace. |

We ﬁow define pseﬁdo-spin operators analogous to the ones
introduced by Anderson in connection with superconductivity (17).
There are, for both a = 1 and a = 2, 3N states -3m < k < 2. We.
use these k-values to label the pair states k, k + m. Each pair

1

state is considered to have pseudo-spin SZ = 5 if the states

(k, X + m) are (empty, full) and pseudo-spin SZ = -4 if the states
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(k, k + m) are (full, empty). Thus, for instance, in the unro-
tated Fermi state, all the pseudo-spins have S, = +%. If the
pair sta‘ce k, k + m has pseudo-spin SZ = +3 and we operate with
a;ak+n’ we obtain pseudo-spin SZ = —%; if the pair state has
pseudo-spin §, = -%, the operator al-:ak+n anhihilates the state.

Therefore a]:ak - behaves like a lowering operator for pseudo-

-+

spins. It is easy to verify that, in the subspace spanned by

k, k + m with unlike z-components of real spin, for -3 < k < 3w,

3 + * .
S = — (dy O = Ay Finr)
Lot _ +
- qk = Aen A II.24
L - ¥ '
2 qk = Oyay

J

where the ¢'s are the well-known Pauli spin operators. As usual,

+ X

_ Y - _ X LY . ' '
o = 0+ i and % T % oy - The Pauli operators also— obey

the usual commutation relations,

b oq : :
[qk ;q‘ka ]__. = 116::81«, , i,j,1 qyclic. II.QS

H )

The expressions for red ’ B, 4, 'and ¢ all have simple

forms in terms of the pseudo-spin operators:

5 ' Y .
P = N <% """(’kq:a 7 . II.26a
. 2 % X '
A= N <%— \ 7 | IT.26b

_;_- % 4 B
%= N <Z Smqu > | - II.26c
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@ __ ST LS sk 3. 0.
Hred. = 5»? J{ (1 Nwzk‘,kcoss‘qu Jeos ka +SSka‘E}
%

NI R T |

N g—Q {G—k T+ Smkm\&’k‘wjj+18<osksink'c‘f¢\‘f,} | II.26d
k£k' , .

In equations II.26a-d, the range of k is from -im to 3m, ?unning‘

over the values specified in II.13. We show now that the last'

term in II.20 has vanishing ground-state expectation value.

. y___.+ _+.
Since oy = 1(akak+ﬂ ak+nak)’

35% oa gt |
N Z coskeosk G:*“aqulakl+“ =-J Z_tOSKCOSk’G_%Q’% - IL.27
kk’ . N Kk‘ k k’ ) -
K4k - ke k'

where, in the first term, the range of k,k" is from -m to m and,
in the Second, from -7 to 7. Since crlz is odd under timé rever-
. v | o 9 . .

sal, the expectation value gf ﬁ Z c,oskq'k - vanishes in the
ground state. K o

.We summarize briefly the development in this section. We -
rewrote the hamiltonian (equation I.2) for 'the oné-dimensional
alternating antiferromagnet in terms of (a) Pauli operators, (b)
Fermi operators in position space, and (c¢) Fermi operators in
momentum space. We obtained the exact expression's. IT1.19-21. We
.then used the good quantum numbers at our disposal, defined c-num-
bers, and, for the special case p = 3, rewrote a part of ﬁhe
hamiltonian in terms of pSeudo-spin.operators (equatiéns II.26a-d).

V(a)

We now . ignore in IT.19) and solve the rerﬁaining part of the-

hamiltonian exactly in the limit N - .
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(a)

red at Absolute Zero

ITI. Solution of H

We seek the T = 0°K solution to equations ITI.26a-d.
Instead of finding explicitly the Bogoliubov canonical transforma-
tion (29) that diagonalizes }{red , we use the equivalent, and.

for our purposes more convenient, formalism of Anderson (17).

@) -
}{re& may be written in terms of a pseudo-field By
() L SR S Y
Hyea = = 2 By T ITI.1
k .

—h

The components of the pseudo-field Bk are obtained by differenti-

ating II.26d with respect to cﬁ, ai, and “i’ respectively;

Ba = J(y+8E)cosk III.2a
J(Sh + E) sink - III.2b
3’; = JA | - III.2c

‘
By

where a = 1 + 8. The pseudo-field components depend explicitly
oﬁ the parity, since X , &, and A depend on «. Each pseudo-spin
- is to be quantized parallel to the average field it sees.  The
molecular field is treated as a classical vector (30). It turns
out that for large &, A vanishes. We therefore consider separately
the two cases A2 > 0 and A2 = 0.

For case (a), A2 >0 and 0 < 5 5 6o, where &, = 0.11905

is the largest & for which A > 0. It is evident from figure 1

that:
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Fig. 1. Method of solving ){S:d . The pseudo-spins
- are quantized along the molecular field,
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tan - 3‘; 8y~ B i ITI.3
| B, A o
and that
tan 6, = % = (@:Y"'(‘B:)I)L - 5
} B& o ITI.4

In the ground state, the pseudo-spins are along the molecular
. . Z _ V _ oo . X _ o .
field. Since ) cos ek, o sin ek sin ‘Pk, and o) sin Gk

-C0S ¢k, we obtain from II.26a-c, II.3-4

g= y-1 = & (3+5%8)q %‘ cosk
| (-8%)(y>- ¥ %) s O “ ik III.5a

I S N
l N I(l—?:‘)(y-.gz) % J‘Tﬁ—;& ) IIT.5b

g = _?_-__:(_E +8%)9 ® o gintk ITI.5c |
N Jq_gz)(g._ Ez,) % \h_ qzs.mxk )
where, for. A% > 0,
L _ -8y~ %59 ¢ |
A® "’QTSZ)I ' III.6 ,

In the limit of an infinite system (N - =), the sums may
be replaced by integrals. h s A, and ¢ are then exact, and they

no longer depend on the parity. III.5a-c, III.6 then reduce to a
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set of three coupled integral equations,

2 I
TO-8Y-%) 9 K@ ) III.7a
(g +&y)
f = %ﬁﬁ RGN III.7b
= v = 438 _ 2@
p= y-I m {qK(q) —é—} . III.7c

Here K(q) and E(q) are the complete elliptic integrals:of the

first and second kind (31), respectively, and D(q) = K(q) - E(q).

¢ and b are eliminated. The resulting self-consistency, or

master, equation is

ri-

AU 2 |
z D(‘i){ |+ 8[(1(q1K(q)e'D(q))) ]} i . IIL.g

After solving III.8 for g, we have the full solution,

since

_ K o |

\ - ..D(CO(“'SI) > : I III.%a
_ oy D@) | |

C]"K(‘D‘:D(C() : | . III.9b_

A = { (- 81)2 §2) - 4 +58) }%_ e

The contribution of the term in p, -1/4NJ, in II.19 is included

in all the energy results we give. The ground-state enefgy is,
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from II.26d, III.%a-c,
EY9N = K e £ ¢
IN T 5 Q’Sl)(ﬁ‘K(q)‘D(q))l}
—_ - _\E}_{ Xl"'Az-l' §l+l\8§} )

IT1.10

For the.special case & = 0, the master equation and the ground-
state energy are identical with the results obtained by Ruijgrok
and Rodriguez via a variational calculation (14). It is evident
from III.9b that ¢ =0 1f & = 0; then Bg = 0 for all k. The
pseudo-field lies entirely in the x; plane for the regular anti-
ferromagnet, which is therefore characterized by one non-vanishing
cocherence parameter, A.

We consider next case (b), where A2 = 0. As shown in
figure 2, the maximum value of 6 for non-vanishing A is a decreas-
ing function of temperature. Thus there éxist ranges df 6 in
which we have two sclutions; for instance, the range 0 < § < &,
at 0°K. Por an infinite system, we need consider only the solu-
tion.corresponding to case (a) when there is a choice. Since the
eﬁergy per site is slightly lower for case (é) than for case (b),
the difference in the total energies becomes infinite as N — .

When A2 = 0, the coherence between antiparallel spins is
"~ due entirely to the alternation & (¢ vanishes for & = 0). The
pseudo-field is then entirely in the yz plane (cf. fig. 1), so

that the only undetermined angle is ek. Using the same argument

as in case (a), we find
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b
- By S
'tCW\ gk = —B—E = Yt%k = E‘E CITT.11

where

}-}—8 ‘g ITT.12

and 0 <Y < 1. For the ground state, since Ukz = cos_ek and ai

= sin &

o We have

- = [T % sint K : -
£ = N VI=9* E— ||_qzs\'“=k ’ III.13a
X os?k

2.
==
3 N K - itk

-
i

ITT.13b

2 .
1 -9y © and the sums are over the range -3m < k < 3m.

h

where q2
In the limit of an infinite system, -the sums become integrals, and

the master edquation is

R (E+ K@) - D =y LU B

III.14
e - 8
The c-numbers ¢ and -B are
=
¥ = ‘%—f ’Lqia"D(OD', III.15a
P=3-1 = %( K(‘i)'; ]-)-Sﬂi)-) III.15b
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The ground-state energy- per sife is
(b) _ i 2 2 ' ' ,
ET/IN = - w y +'§+18‘§})}, III.16

For both cases (a) and (b), the solution is equivalent to
a Bogoliubov canonical transformation. We now obtain a B.C.S.-
Bogoliubov-type ground-étate function by means of a pseudo-spin
rotation (30). The characteristic féature'of the ground state is
the coherence betweén filled aﬁd émpty states (17,27;29). For the
alternating antiférromagnet, the éoherence is between‘électrons
with unlike real SZ. | |

In the singlet ground state.of the simple system‘of two
electrons on two sites,'f-;(_ouls2 - BlaQ),_the‘z—component df spin_
for each electron has Van?shing’expectation value for each site.
The product functions alBQ and Blaz, on the other hand, give
.expectation values of +% or -3 for the z—compohent of the spin of
either electron on either site. The generalization to the case
of many electrons on many sites is fhat the expectation valﬁe of
Si in the ground state is not just +%, but ﬁay'assume intermedi—
ate values. The ground-state wave function for the states k, |
k + m, expressed in terms of spin functions, is ukak8k+ﬂ -
kakak+n5 however, Uy and vy are in general not !/{’, although
/uk/2 + /Vk/2 is always equal to unity. The transformation back
to spin operators is obtained by considering the states to be
X

+ 1, k + T, +.e K1yp k

1 2° T2 ~ N
where -3m < k; < #7 for all i and the order of the k;'s is arbi-

labelled in the order kl, k + 1T,

trary. The Fermi operators a;, a) are transformed back to spin
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operators: Br = (—l)o-ka+ P. =-(—Z|.)(rk where o, is the partial
p %k kK’ “k ' k |

occupation number, defined by analogy with equation IT.4. 1In the
subspace of different S for the states k, k + m, we always have
a phase factor -1 between the two states (akBk_l_ﬂ and Bkak+ﬂ) with
unlike SZ which may be constructed for the states k, k + ﬁ. By
constructing the gréund-state wave function entirely out of such
components, we take maximum advantage of the coherenée.

The unrotated Fermi state is

z
() =™ +
oe > = k;ﬂ:x Oyay 10Y , ITI.17

where /O > is the vacuum state, in which all electrons have real
S, = -1, and the N values of k in the product are those allowed
by II.13. The vacuum state is even. The operators az, 3 change |
the number of fermions by one (or annihilate the state} and there-
fore change the parity of the state (26). Hence the unrotated
Fermi state is even (a = 2) if 2N is even or odd (a = 1) if &N is
odd. In the former case, the ground state haé an even number of
férmions, while in the latter an odd number. In terms of the
pseﬁdo-spins, the unrotated Fermi state is the state in which all
the pseudo-spins have SZ = £. We have rotated the pseudo-spins in
both cases (a) and (b) so that they lie along the moleculaf field.
: The ground-state function of }{S24 is the state in which all the
pseudo-spins have Sz'= £, where z' is along the molecular field.

In general, we rotate through the angles ¢k and ek; The rotation

operator, in Messiah's notation (32), for ¢k’ ek as defined in
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figure 1, is

| io«d ip
R(-4i,8,,0) = e 2% 28I

ITT.18
Q]
The ground state function for -Hred is, therefore,
I . 3
® 0, e L
& >= T e T W 3OS 13 III.19
--% @F >)

where the values of k are those allowed by II.13. Using the
_properties of the spin operators and the relation tf gE?) = 0,

the ground state is
©) = & 1 + + .
‘ @o > o T‘E {Cosl‘Pk + (qk.m- akﬂ'{ - qk.ak)l Sl'h'i(Pk}ﬁ

{@s26 + sinB, ayayn} | 32

The parity of the ground state is the same as the parity of the

IIT.20

.unrota,ted Fermi state, since the two states differ _from each other
only by a rotation.

The léwest excited states of H(r:)d have one more or cone
fewer fermion than the ground state. They therefore have parity
opposite to that of the ground state. The states with one more
or one fewer fermion are degengz_rate. Their excitation energies
are expected to be equal to the magnitude Qf the molecular field

they see:

I

case (a) E?) = RBK JJA +Q+ S‘g) l-qsmk IIT.21a

case (b) E(:‘ lBkl = J (k-t'g g) J\-—q"sgv"‘-k . III.21b

il
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We note that, because the parity has changed, the sums in III.Sa-c
and IIT.13a,b are over entirely different k-values for the excited
states than for the ground state. In order to obtain excitation
energies, the energy per site must be calculated to order_l/N;
pather than just to order 1. The calculation to order 1/N is
given in appendix I, for the special case of the regular (8 = 0)
antiferromagnet. As expected, the excitation energy.III.Qla is
found. We therefore assume, as is usual in superconductivity
theory (17), that III.2la,b represent the excitation energies in
general. This assumption undoes the exact treatment of the end
~effects and is reasbnable in the limit N —» e,

As a simple example, we consider the regular antiferromag—.

net. Since ¢ = 0, ¢k = 0 for all k. The ground state is, from

III.20,
léf,‘ 7= T‘[“ ( cos éek-r SM{SKQJQGK,N)@;F}_ o III.22
The u-v canonical transformation that diagonalizes .7{$; is,
for & = 0, o |
/yh:- = uk QI T qu-;;‘l"ﬂ'

ITI.23
Mk = Ul T Vi ak-\"ﬂ'

\ .
)/2- 5oV = sin © =

. 1
where U = cosso. Y

|
= g+
e Al
__'_(t_ COSk ‘/ )
[P IZF:TE:;;T;\ > & 4y = 8, and 41k, qqk‘are Fermi

creation and annihilation operators. The variational calculation

of Ruijgrok and Rodriguez (14) reduces to this transformation.
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)
}*tld becomes
I

£

~iNT = -
Hr ~ %N Nje+kz £ (nkﬂk"'y‘k‘m’y\kw) IIT.24

-

where E— K(q) , g = 0.9505389, and e = J\/Az + 3200321{ .
TT
These results may be obtained by setting 8 = ¢ = 0 in case (a).

In the ground state, the states -m <X < -37 and #m < k < 7 are
f£illed. III.24 thus represents particles and noles with identical

excitation energies, as shown in Zigure 3. They are the elemen-

() :
tary excitations cf }hvd for the special case & = 0.

An equation like III.24 may be written for the alternat-
| (a)

ing antiferromagnet. For case (a), we replace 6 by E

eéa) (ITII.10 ané III.2la, respectively); for case (b), we replace

andg € by

€ by 7 ang &, by alib) (III.16 and ITT.2.b, respectively). The
coefficient Uy and Qk of the fermion operators 41;, 4lk are
functions of the alternation. The elementary excitations are
a&gain particles and holes with identical dispersion relations.

At 0°K, there is an energy gap in the spectrumn of HSZi fecr any
6. The excitation spectrum for arbitrary & may be represented by
figure 3. For O > 0, there is an energy gap at any temperature,
as expected from the lower symmetry of the alternating antiferro-
magnet; figure 3 thus represents the excitations cof }ﬁzd for

6 > 0 at any temperature.

The commutation relations

Y .
[Sg,ﬂk]-‘ , [Ss,"'\k "Mk CEKE) crraos
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are valid for arbitrary values of W Vi in IIT.23. We construct

the arbitrary state /X >, -7 < k; < £,
=n nt.. *
|X7 Mk, "k, 'r‘kn’qkh:fﬂ “ Mgz | @éf’) III.26

. . P
which has n particles and m holes. We now suppose that /®£%> is
the exact ground state function of the entire hamiltonian. For
antiferromagnetic coupling, the ground state has vanishing real

Sz. Using III.25 repeatedly, we have, in units of H,

S 1%> = (-m)[ 1> . . ;11.27

We may therefore associate a positive unit of z component of spin
with particles and a negative unit of z component of spin with
holes. This result is independent of the coefficients uk, Vk (or,
equivalently, of the angles ¢k’ ek that describe the péeudo—spin

rotation). It therefore holds for any alternation 0 < & < 1.

We see above some of the differences between the exact and

)

the reduced hamiltonian. Neither SZ nor 82 commute with 74red s

although the expectation value of SZ vanishes and that of 82 is
negiigible in the ground state of }{gzi. SZ is related to the
number operatdr: s, =N (p - ). As in the theory of supercon-
ductivity, we have had to relax the condition that the number
operator be a good quantum number. We only specify its expecta-

tion value.
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IV. Extension to Finite Temperatures

The solution of a hamiltonian like }{égé at'finife tem-
peratures has become a standard technique (30). We use again
_Andersbn's pseudo-spin method. In effect, we are solving for the
Gibbs free energy of the. many-body system. We immediately exclude
the trivial case & = 1, the case of nbn—interacting pairs of
electrons on two sites, since then we do not have, even'for N - o,

a macroscopic system. For O < & < 1, in the sense of an ensemble

average, the magnitude of the.pseudo-spins is (17,30)

(g, > = tanh JKBT;L | Wl

where k is Boltzmann's constant and /Bk/ is the magnitude of the
molecular field (ecf. IIIa-c). In order to take into account all
thé excitations possible, and not just those in the subspace of
unliike real SZ for states k, k + m, we replace T by 2T. The rea-
son is that we double the number of.excitations, ahd hence the
entropy, since the excitations of }{igg are non-interacting.
Doubling the excitations amounts to replaciﬁg T by 2T in the free
energy (30).

We may use these results from superconductivity theory,
in spite of‘the fact that when we introduce statés with total SZ
different from zero, we change the term -NJp(l - p) in the hamil-
tonian II.19. In the case of no applied magnetic field, antifer-

romagnetic coupling, and large N, the probable deviations from

p = & are of order 1A/N. The deviations of -NJp(1l - p) from
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-1/4 NJ are therefore of order 1/N, or of the same order as the

(a)

errors we have neglected in the solution of }{red’

We set My =lBﬂ/2kT. The finite~temperature forms.of B, A,
¢ are obtained by substituting IV.1 (with T replaced by 2T) in

II.26a-c:

F(T) = "2\:" Zo‘ COSk cosS ek’tom‘l\}/lk 1V.2a
K ’ '
[+

A(T) = ﬁ % sinekcosqktamhpk, IV.2b

E(T) = -?Z'bs %9‘ Sihksihekﬁhc?ktahk)}k- IV.2c

The values of k are from -3m to $7. We also define the integrals
K(qg, 1), E(q,p) which reduce to the complete elliptic integrals of

the first and second kind, respectively, in the limit p - ® (that

iS, T = OOK);
Kig,w) = ¥, do Tran(pi=give) v.3a
J1 -qzsih"e
I
- Z (% 2,2
E@q,p) = F 5,, do [I-q*sine fawh(ﬂJl-q’sin“e). IV.3b

As before, D(q,u) = K(q,u) - E(q, ).
The development is exactly as in the 0°K case. The pseudo-
spins are quantized along Ei, and the molecular field is treated

as a classical vector. We again distinguish between case (a),
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AQ(T) > 0, and case (b), AZ(T) = 0. For AZ(T) > 0, we substitute
8(T), A(T), &(T), K(Q:H): and E(q,p) for B, A, &, K(q), and E(q),

respectively, where

a J
pO = S U@+ G ey .4

After taking the limit N - «, we obtain the master equation for

case (a)

= = 200 {1+8 [(gmae - ks

2(q*K @, ~D(q, 1) Iv.5
The temperature~dependent value of q is
L =8) V(M) - £ ()

= Iv.6

N+ (YM+ SECHY

The expressions for B(T), &(T), A(T), and E(a)(T)/JN are given by
III.%~-c, and III.10, respectively, with K(q), D(q) replaced.by

K(Q:u); D(Q;M)-

For case (b), the expression for u is

® J
po= o (A 3E). 1.7

In the 1limit N — «, we obtain the master equation

(T + Kig,) = D@ p) = Dig | T U= 80=F)
2 ) = g, p (‘],M){ﬁ__(f_s 7.

Iv.8
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where the temperature-dependent value of q is
. G - S")(g‘ M- £7¢(7) |
1 (W) + SEMY® V.9

B(T), &(T), and B(b)(T)/JN are given by III.15a, b, and III.16,
respectively, with K(q), D(q) replaced by K(q,u), D(q,n). When-
ever pbssible, we choose the scolution corresponding fo case (a),
as in the previous section.

The ground state, III.20, is changed only in that @, , ek
(or, equivalently, uk,.vk) are temperature dépendent.‘ The parity
of the ground state and of fhe.excited states remains unchanged.
There are again sN excitations (particlés) with real SZ = 1 and
2N excitations (holes) with real §, = -1. The particles and
holes have the same spectrum (cf. fig. 3). However, the excita-

tion energies are temperature dependent,

( T
case (a) & = [By| = NE@+(mr SEmpdI-gmairk,  TV-10a

® o '
case (0) & = |By|= J(y(M+ SEM)JI-g'msiwk . T

A(8,T) decreases with increasing T and vanishes at a
critical temperature Té (8). The regions in which A(S,T) > 0 and
A(8,T) = 0 are shown in figure 2. The regular antiferromagnet has

the highest critical temperature, determined from

Iv.1lia

T
| (5(T¢) - B(T‘-) - = ;2; &wcosGtanh ( Mws@)
2KkT, |



40

]

L Iy (T | ,
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The value of TC(O) is, in units of J/k, 0.2848. For T > TC(O),
the excitation spectrum of the regular antiferromagnet has no
energy gap. The equations theﬁ reduce to the Hartree-Fock
équations for the regular antiferromagnet (5,18). A(8,T) thus
represents a coherence that occurs only at low temperatures,
where, since the coherence results in an energy gap, it profoundly
influences the properties of the regular antiferromagnet. _A(é,T)
is therefore very reminiscent of the energy gap in superconductiv-
ity theory. |

The weakly alternating antiferromagnet (0 < & < §,)
exhibits a second-order transition at T = Tc’ where A vanishes.
There exist general arguments forbidding transitions of any order

in one-dimensional systems (41,42). The transition is therefore

(o)

spurious. We have another indication that the solutions of }{red

are approximate. In particular, the introduction‘of a molecular

field, an infinite-range interaction in k-space, makes transitions
possible. Slightly below the transition temperature, we have two
self—consistent solutions, corresponding to caseS'(a) and (b),
with very nearly the same energies per site. The interaction V(a),
although perhaps usually negligibly small, may then become import-

and. The fact that, quite rigorously, the transition at T = 'I‘c is

not first-order, even in the molecular-field approximation, is
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encouraging. By contrast, in superconductivity theory, a first-
.order change is ruled out'experimental;y; it is therefore assumed
that the phonons remain unchanged during the transition. Since
it is a three-dimensional system, a second-order transition is
allowed and, in fact, observed.

The approximate solutions we present for the_Weakly alter-
nating antiferromagnet agree, through the first derivativeé of the
free energy, with the analytic properties of the true free'energy.
For stronger alternation (& > 6,), there is no problem, since
fhen A vanishes identically at all temperatures. Excépt near Tc’
it should be a good approximation to heglect V(a).. In the.follow—
ing, we shall not need the temperature derivatives of the free
energy; we use only the excitation spectrum.

We conclude this section by finding an expression for the
magnetic susceptibility. The ground state of the fegular antifer-
romagnet (N even) is known to.be a singlet; both S and SZ are good
quantum numbers. The class of elementary excitations found by
Des Cloizeaux and Pearson for the regular antiferromagnet are
tfiplets (7), a result that is expectéd from any isotropic system
of spins whose ground state is a singlet.. The ground state is a
singlet and S, SZ are good quantum numbers for the alternating
antiferromagnet also. The N electrons may be classified as %N
sets of two electrons, with each set having a singlet and three
triplet states. We have found 3N excitations with Sz = 1 and 3N
excitations with SZ = -1; the excitations are degenerate in paifs.

We identify these excitations as two components of triplet states.
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It turns out that the SZ = 0 components of the assumed triplets
‘have excitation energies that are exactly twice the excitation
| energies of the SZ = %1 components. Since we have lost the
classification of states by S and have truncated the hamiltonian,
it is not surprising that we have artificially introduced.an
energy gap between states that are in fact degenerate. We assume
that the excitations of the alternating antiferromagnet are trip-
lets, with excitation energies IV.10a,b. We also assume, for
reasons we discuss in sectioﬁ VI, that there are negligibly few,
if any, low;lying collective excitations. |

The susceptibility of independent triplets has beén found
in connection with the theory of paramagnetic excitons (24). The
derivation is straightfofward if it is recalled that the triplets
resemble fermions and that only one of the three states of the
triplet may be occupied at any time. In the limit N —»5, the
magnetic susceptibility per site of the alternating antiferromag-

net is

case (a) x(a) =1 gt ._L_S'J’Ede . l IV.12a
| | s e %e KT 7, 5 expf Em(e)/k-r} g
. X
©) = —LL 52 _..‘.— 49 I .
e ) U= Ty L% — Ter@ok]

where Ie is the electronic g factor, Be is the Bohr magneton, and

the excitation energies are given by IV.10a,b.



43

V. Numerical Results

- The numerical results we present in this section are the

(a)

red - (1/4)J0N in the limit N - =; that is,

exact solutions of ?{
tﬁey are the exact solutions of }{(a) -yl for p =.%. The
" master equations IV.5 and IV.8 are solved fop q, for fixed wvalues
i of p and 6, with the aid of an IBM 7090 computer. k s g, A, and
E/JN are then obtained, for case (a), from equations III.9%a-c and
III.10 and, for case (b), from equations III.l1Sa-b, and III.16,
where K(q,w) and D(qg,u) nave been substituted for K(q) and D(q).
These parameters are cobtained as functions of the reduced tempera-
ture kT/J. From IV.1l0a-b, we obtain the energy gap, e%_ , and the
- band width, &. - E:% , for the single excitations corresponding
to cases (a) and (b), respectively. The magnetic susceptibility
per site is given by IV.1l2a-b. Whenever we have a choice, we
_Choose the solution corresponding to case (a). We have found the
parameters that deséribe.the 21 antiferromagnets & = 0.00, G.05,
0.10, ...,0.95, and 0.99 in the temperature range O < kT/J < 2.2.
fhe tables may be found in appendix III. ~ The results are, for
the most part, accurate to at leasf five significant figures.

We consider first the behavior of the two coherence
parameters A and ¢. The behavior of A($,T) is summarized in
figures 2 and 4. For & > 6, = 0.11905, A vanishes even at 0°K;
The highest reduced temperature for non4vanishing A occurs for the
fegular antiferromagnet at kT/J = 0.2848. The behavior of ¢ as a

function of kT/J is shown in figure 5 for & = 0.00, 0.05, 0.10,
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Fig. 4. The temperature dependence of the coherence
parameter A for fixed values of
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O.25, 0.50, 0.75, and 0.99. The maximum value of t is &, which
occurs for the completely alternatihg (&6 = 1) antiferromagnet.
In the limit of infinite temperature, ¢ goes to zero asymptoti—
cally, a result we expect for any coherence effect.

B, or B - 1, is shown in figure 6 as a function of kT/J
for 6 = 0.00, 0.10, 0.25, G.50, 0.75, and 0.39. B represents the
tendency of excitations to remain in the low-energy statés_of a
band. It is also the parameter that expresses the exchange term
II.17 and is therefore found in any Hartree-Fock treatment. The
energy gap in the Hartree-Tock approximation (A = ¢ =.O) is, from
IV.10a-b, J(1 + B)é. (When setting A = ¢ = 0, the master. equation
musf be solved again; thus B will not be the same in the Hartree-
. Fock solution as in the solutions we present.) The energy gap

J(1 + Bjé is largely due to the alternation of the exchange
integrals. It depends on the coherence between electrons with
'.unlike_SZ only to the extent that B is slightly larger when the .
ccherence is included. The preseﬁce of this intrinsic energy gap,
which goes asymptoticailylfo Jd as T'—>m, stabilizes the spin
s?stem at low temperatures.' Thus the parameters describing
strongly alternating aﬁtiferromagnéts (cf. figs. 5-10) all remain
at their absolute zero valués up to higher reduced temperatﬁres
than the parameters describing weakly aliternating antiferromagnets.

The ground-state energy per site is shown as a function
of kT/J in figure 7 for 6 = 0.0C, 0.10, 0.25, 0.50, 0.95, and
6.99. The asymptotic value, for any alternation, is -1/4 as T -~

©; -1/4 is just the constant term in the hamiltonian I.2 of the
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spin system, so that, as expected, the high temperature contribu-

e

tion of the terms Sj-Sj+l vanishes. Except for small 6 (8 < 0.2),
the ground state energy is essentially linear in §, as is evident
from III.16 and figures 5 and 6.

The minimum energy gap, el% , and the bandwidth, éo - ex,
are shown in figures 8 and 9 as functions of kT/J. At low tem-
peratures and for small &, the energy gap is almost éonétant, due
to A. The bandwidth is reduced by the energy gap; it is smaller
than in the Hartree-Fock approximation. The asymptotic value of
the energy gap, Jbd, is also shown in figure 9. The ehergy gap
decreases by a factor of two between low and high temperatures
for 6 = 0.99 and by more than a factor of two for smallerﬂalterna—'
tions. The\bandwidth remains approximately conétant as a function -
of temperature, especially for large &. In effecf, raising the
temperature lowers the entire band but does not, to a first
approximation, change the bandwidth. The low—temperature behavior
- of the antiferromaénet is determined by the energy gap. For the
same J, the enefgy gap at 0°K may be as small as AJ = 0.51313J
fér_the regular antiferromagnet or as large as 2J for.the com-
pletely alternating (6 = 1) antiferromagnet.

The magnetic susceptibility as a function of kT/J is shown
in figure 10, for & = G.00, 0.10, 0.25, 0.50, 0.75, and 0.99. The
. low-temperature behavior is an exponential divided by T, as is
expectéd for a collection of non-interacting triplets. This ideal
behavior persists as loﬁg as the energy gap remains at its 0°K

value; then, since the energy gap decreases, the susceptibility
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" is greater than in the ideal case. The shift in the maximum of
X(é,T) to higher T for large & is another consequence'of the
larger energy gap found in the strongiy alterhating antiferromag-
net.. The asymptotic behavior, for any 6, is X - 1/T (to order

'l/T2), which is the expeéted result for a paramagnetic gas.
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VI. Discussion

In this section, we compare the results of the present
method with those obtained in previous theories and with experi-
ment. We consider first the connection with previous theories of
the regular antiferromagnet. We then consider the connection with
theories of the alternating antiferromagnet, especially in the
case of strong alternation and low temperature. Next we-consider
experimental results and fit the paramagnetic suséeptibility of
organic crystals, for both the regular and the alternating anti-
ferromagnet. The concluding remarks are concerned wifh a brief
discussion of phonon-coupling.
A. Comparison with the Theory
of the Regular Antiferromagnet

The ground-state energy per site of the regular antiferro-
magnet in the Hartree-Fock approximation (A = € = 0) is E/JN =

-(1/4 +-% +-l2) = -0.66923, as is evident Irom I1.19 since B =-%-

when the N Eowest states are occupied. We have reproduced
Rodriguez‘s first result (5). (In his notation, the hamiltonian
céntains the factor 2J réther than J.) The ground-state energy
obtained by Ruijgrok and Redriguez by a variational calculation
(14) is just the solution of A}(ézé at 0°K for & = 0: E/UN =
-0.68229. This resulf is typical of the Best zeroth-order esti-
mates available (14,16). It is also essentially the result

obtained by a field-theoretic treatment of the quartic term, using

the Hartree-Fock states as zeroth-order functions, but without
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introducing explicitly the coherence between electrons with unlike
Sz (18).

_ Since the exact ground state energy (28) is, to five sig-
nificant figures, E/JUN = -0.69312, it is evident that the effect

of coherence is substantial. Using as zeroth-order states the

(o)
red’

order correction to the ground-state energy. Perturbation theory

solutions of ?1 it is straightforward to find the second~
is expected to give rapidly converging results on account of the
energy gap. The second-order correction for thé regular antifer-
romagnet is found in appendix II. We find E/JN = -0.69251 . which
is less than 0.1% higher than the exact result.

| Another measure of the accuracy of the ground-state wave
function of the regular antiferromagnet is the short-range order.

The short-range order, by definition, is
2
M= N <Z S Sjﬂ j VI.1

where the ground state expectation value is understood. Neglect-
ing_V(a) in II.19, we reproduce the result of Ruijgrok and

Rodriguez (14): m = 0.295. The exact value is (28) n = 0.298,
(a)

red there-

so that the agreement is good even in zerotnh order. }{
fore provides a good description of the ground_state of the regular
antiferromagnet.

We turn next to the question of an energy gap in the exci-

tation spectrum of the regular antiferromagnet. There is an

energy gap in the spectrum of }{igé, which has been found
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. explicitly in appendix I. However, for & = 0, there is no unique
pairing condition; the quadratic part of the hamiltonian is then
diagonal in terms of the ak's. By pairing, not k, k + m, but,
for instance, k, k + m - ¢, we expect to find low energy states
of high multiplicity. (Since there are then fewer than N pair
states, the states we construct will be degenerate in the zeroth
order, and consequently should be assigned high multiplicities.)
Thus we expect to find "collective" excitations for the regular
antiferromagnet. That is, we expect to find excitations in which
- @& macroscopic number of spins are oriented differently than in
the ground state. That collective modes of some sort should exist
has.been shown by Anderson, again in connection with superconduc-
tivity; the regular antiferromagnet corresponds to his "neutral
Fermi gas" (17).

The triplet eXéifations found by Des Cloizeaux and Peérsoﬁ
_(7) are collective states of the exact hamiltonian. . In the Bethe
formalisﬁ, the wave number k is allowed to become complex (1).
But, in the case of the ground state and the low-lying triplets,
vk\is real and is identical Qith our definition of the wave number.
Since the wave numbers of order N spins are changed from their
ground state values, the tripiet excitations found by Des
Cloizeaux and Pearson are collective excitations. They are not

separated from the ground state by an energy gap. They, like the
(o)

excitations of }{red’

show the separation of the system into two
sublattices, as shown in figure 3. The separation into sublattices

has been discussed elsewhere (7,14), but it is not completely
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understood. Griffiths extended the exactlresults of Des Cloizeaux
and Pearson to states with higher multiplicities. The excitations
he considers are alsoc collective; they are essentially excited
states of the whole lattice_and.represent but a few of the possible
number of states (8,9).

We identify the states found by Des - Cloizeaux and Pearson,
and by Griffiths, as the collective excitations we neglected by
truncating the hamiltonian. We cannot offer anything like a
rigorous justifiéation.' The results of Griffiths (9) then show
that the thermal properties of the regular antiferromégnet do not
depend on the collective excitations at any finite temperature.
The'reason, as expected, is that there are too few collective
states. We sﬁmmarize these tentative conclusions. The coherence
‘ bétweén electrons with_unlike SZ introduces, at low temperatures,

- an energy gap in the single excitation spectrum of the'regular
antiferromagnet, that is, in the excitationslof }{égé. There
also exist collective ﬁodes, for which there is no energy gap.
The thermal properties of the system are entirely determined by
the far more numerous single excitations.

B. Comparison with the Theory of

the Alternating Antiferromagnet

We consider first the limit 6 = 1 and 0°K, the case of a
non-interacting system of pairs of electrons on two sites. The
ground state energy is, by inspection, -1.0J per site. From
III.12, III.13a,b, we have q = L, £ =% and Y = 3/2. The

ground state energy is therefore, from III.1l6, -1.0J per site,
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(a)

i m
red 187 fron

the exact result. ‘I‘he excitation energy of H
IIT.21b, 2J,and, for both the particles and the holes, the band
has collapsed into a 2N-fold degenerate line, as expected. How-
ever, the SZ = 0 components of the 3N triplets have excitation
energies 4J. As we have already discussed in connection with
the magnetic susceptibility, the appearance of this state with
twice the proper excitation energy occurs for all & and‘T and is
a consequence of the truncation of the hamiltonian. The Hartree-
Fock solutions may be obtained by setting A = g.z 0. in the
‘equations describing the alternating antiferromagnet,-in which
case we reproduce the treatment in reference 19. By taking into
account the coherence between antiparallel electrons, we always
obtain lower energies.

For & > 0, the lattice has lower symmetry. An_energy gap

is expected even from simple band theory. In the Hartree-Fock

approximation, the gap is Jék , wnile if we include the coherence

between antiparallel electrons, the gap is J\/hz + (66 4&&)21
Furthermore, for & > 0, the pairing condition is uniquely defined,
since, unless k and k + m are paired, the quadratic. part éf the

" hamiltonian is not diagonalized by the transformation. We do not
éxpect, therefore, to find low-lying collective modes. High~"
energy collective modes exist: for instance, for small & and low
T, case (a), case (b), and the Hartree-Fock approximation repre-
sent three different solutions, with increasing energies per site,
in which a macroscopié number of spins nave different ground_state

orientations. In the limit of an infinite system, the solution
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with the lowest energy per site is sufficient for an arbitrarily
accurate thermodynamic description.

The hamiltonian for the alternating Heisenberg antiferro-
magnet is the "exciton" hamiltonian in the theory of paramagnetic
excitations in organic crystals (24). Many organic crystals have
structures corresponding to essentially non-interacting chains of
molecules (21); their spin properties may therefore Be studied by
one-dimensicnal modeis. A successful low-temperature and strong-
alternation theory has been obtained by McConnell, Lynden-Bell,
and Montgomery (16,21,245. We define J., and J2 to be the exchange

1
integrals J and J' in their notation: J, = J(1 + 8) and J

1 2 =
J(1 - 8). The excitation spectrum at 0°K is (16)
1 s : \/
Ex = J(1+3) (Q+8)-—(l-8)wsx>" VI.2
) .
where W = O,_i-%; s eee * ﬁELj%JilE , T, and the 3N excitations

are triplets. Since W = 2k and sinZk = (1 - cosék), we may
rewrite the ekcitation energies III.2la-b at 0°K to have the same
fdrm as ei . |

For 6 < 1, the derivation of the exciton spectrum VI.2
involves the introduction of unphysical states, but at 0°K and
" for & # 0, the number of these states is nof largé (16). Without
introducing unphysical states, but neglecting exciton-exciton
interactions, Lynden-Bell and McConnell (24) obtained the excita-

tion spectrum

L = T+~ 2-8eosn),  vrs
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which is just the first two terms of the expansion of VI.2 in
J2/Jl < la_-VI.S is usually uséd for comparison with experiment,
since it may be used even at finite temperatures, provided only
that the exciton concentration is small. In this model, the
alternating antiferromagnet is considered to consist of 3N pairs
of two electron sites in position space. The exchange interaction

J, and the part of J, that corresponds to exciton motion are

1 2

treated exactly. The terms in J2 that represent exciton-exciton
interactions and exciton creation and annihilation processes are
to be included by using perturbation theory.

The important parameters, for any treatment of the alter-
nating antiferromagnet at low temperatures, are the energy gap in
the excitation spectrum and, to a lesser extent, the excitation
bandwidth. Tne former determines, roughly, how many excitations

there are at any temperature, while the latter gives, roughly,

the density of states. The minimum energy gap at 0°K is

J4/(1 + 6)26,~%J(1 + 38), and JV/Z2'+ (§-+656)é for the excita-
tions e%\, e%% ; and those of the present method, respectively.
Tﬁe_minimum energy gap 1s shown as.a function of & in figure 11.
The bandwidths for the three cases are, respectively, JE/?ET:T7;E?‘
(1 -+/33),9(1 - 8), and J(V2% + (g + 6y )2 - /A2 + ( 3 ¥ 60)2),

they are shown in figure 12. It is evident that, for 6 2 .4,

there is quantitative agreement. The pseudo-spin formalism there-
fore reduces, for the case of strong alternation and low tempera-
ture, to the exciton theories of McConnell, Lynden~Bell, and

Montgomery.
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Fig, 11. Comparison of. the 0°K minimum énergy zap for (I)

the exciton theory of Montgomery, (II) the exciton theory
of Lynden-Bell and McConnell, and (III) the present work,
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Fig. 12. Comparison of the 0°K triplet exciton bandwidth

for (I) the exciton theory of Montgomery, (II) the

exciton theory of Lynden-Bell and McConnell, and (III)
the present work.
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The temperature range over which the results of Lynden-
Bell and McConnell are valid may be obtained from figures 9 and
10. As long as the minimum energy gap and the excitation band-
width are cénstant, it is a good approximation to neglect .exciton-
exciton interactions. . At higher temperature, the inclusién of
“exciton-exciton interactions would lead to new quasiparticles.
The energy gap and the bandwidth are then temperature-dependent.
The temperature-independent parameters are suitable up to moder-
ately high (kT/J ~ .5) temperatures when the alternation is
strong. | '

The decrease in the effective singlet-triplet energy gap
with increasing temperature has been observed (33); and a purely
phenomenological theory has been proposed by Chesnut (34).
Chesnut assumes a hamiltonian that describes triplet excitations
with strong attractive interactions, tentatively attributed to
lattice distortions. The interactions are neglected in the entropy
term. The resulting Gibbs free energy naturally describes a sys-
tem in which the excitation population increases more rapidly
with temperature than if'there were no attractive interactions.
In effect, he introduces a molecular field whose strength is an
arbitrary parameter.

The model we present gives changes in the singlet-triplet
energy gap that are of the right order; as shown in figure 9, the
energy gap decreases by at least a factor of two. The decrease
in the effective singlet-triplet energy gap is a many-body effect

arising from the temperature dependence of the parameters
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describing the spin system. The excitations, found at any tem-
perature by minimizing the Gibbs free energy, always have spins
SZ = + 1, but their energies are functions of temperature. Other
properties, which also depend on the coherence, such as the band-
width, are also temperature-dependent, since the amount of
coherence must be determined for every temperature. The excita-
tions are independent in the approximation of neglecting-v(a).
Thus the change in the excitation energy is not associated with
either an attraction or a repulsion among the quasiparticles.
Another, probably smaller, change in the singlet—tripiet energy
gap, which also has nothing to do with interactions between
excitons, is due to the change in the exchange integrals as the

crystal expands thermally.

C. Comparison with Experiment

| We consider the organic crystals BDPA (22,35) and (C2H5)3—
_ ﬁH(TCNQ); (23,33). Their properties are discussed in the
references cited. It is sufficient, for the present discussion,
to note that BDPA may be considered to be a regular antiferromag-
net, while (C2H5)3§H(TCNQ); appears to be a strongly alternating
antiferromagnet. Thus they represent the two extreme cases. We
consider the paramagnetic susceptibility of these crystals. The
diamagnetic contribution to the susceptibility is assumed to
remain constant in the temperature ranges discussed.

An Ising model has been used to describe BDPA in reference

22. The electronic specific heat was used to evaluate the exchange

integrals. The value found, in units of k and in our notation, is
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J' = 5.2-6.0°K (35). Since‘the.low—temperature specific heat is
.,dOminated-by‘the energy gap, which in the Ising model ist', we
- set AJ =J'; thus J = 10-12°K. We use the‘Value J = 11°K in
figure 14 to compare with‘déta on the Knight shifts, which aré
proportional to the magnetic‘susceptibility;‘ The verfitai scale
'was adjusted arbitrarily. - The lowest temperatﬁreé correspond to
" less than 2°K; at such low temperatures,limpurities maywcause too
High.a signal and, as shown by the three values at 4°K,fthe
experimental uncertainties are considerable. | |

| The results we present are for a syétém of noﬁ-interacting
»éhains, each éf which is a regular Heisenﬁérg antiferrdmaghef;' -
g The'dashed curve in figure 14 repreSéﬁts the results dkariffiths
(36),‘whq solved numericaliy the regﬁlar'aﬁtiferromagnet with'lO'.
spins. The Isingvmodei; as shown in reference 22, gives rathef
bpoorer fit. This is not Surpiising, since the hamiltonianvis
badly-trﬁncated‘in the Ising calculation. Our resulté, exéept
for the diffiqult_region of very low temperatures; give a somewhat:
better fit thanbthe numericél results of Griffiths. However, the
eiperimental points'éhow considerable variations (cf. reference
22).

In (CQES)3§H(TCNQ)£’ there are fwo unpaired electrons on
four TCNQ molecules; the lattice is formed by the TCNQ's. The
system is apparently stronély alternating; it is described rather
well as a'collectioﬁ of triplets (23,33). The low-temperature
singlet-triplet energy gap observed experimentally>is 0.034 ev.

We set & = 0.99 and J(8y + E) equal to the energy gap. J is
X *+8) equal , |
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therefore 0.017 ev. The fit with the experimentally observed
susceptibility is shown in figure 14 for.J = 0.0175 and an arbi-
trarily chosen vertical scale. The dashed line represents the

susceptibility of non-interacting triplets,

.
o —_—
* T 1+ e.AIkT vi.4a -

Wl |~

'Qhere A is the singlet-triplet energy gap. The dashed line is,
if the diamagnetic contribution is included, perhaps ﬁithin
experimental uncertainty for KT/J up to thé temperatufe at which
the maximum susceptibiiity is 6bserved (33).

| It is evident that, unless the change in the singlet-
triplet gap is included, the susceptibility may be fitted either
at high or at low temperature, but not at both. At low tempera-
tures, the exciton density is low and the temperature-independent
parameters of the Lynden-Bell and McConnell theory give a goodA
description. If, as is usually done, the exchange integrals are
estimated from low temperature experiments, then the singlet-
triplet gap will be overestimated unless the temperature dependence

of the parameters is included.

D. Conclusion: Effects of Lattice Vibrations
The present model gives good agreement both. with previous
theories and with experiment. The properties of the regular or

the alternating antiferromagnet are obtained at any temperature.

(a)

“ince the excitations of }{red

are independent, we may easily
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calculate any property of the spins by using statistical mechanics.

a) is a rather
ed

good approximation of the entire hamiltonian. In any case, as

As we have shown, the truncated hamiltonian }{g

shown by the second-order correction to the ground-state energy

of the regular antiferromagnet, we may use the solutionsvéf the
truncated hamiltonian as zeroth-order functions in perturbation
célculations{

We are especially interested in the electronic properties
.of organic crystals that show paramagnetic excitations. Of course,
the molecules on which the electrons are strongly.bouhd are not
stationary, but vibrate. Before attempting to calculate ﬁbre
accurately the électronic properties of these crystéls via pertur-
ubatidn theory; we must take into account the effects of lattice
vibrations. When the two electrons forming a triplet excitation
are on adjacent sites, théy may interact very strongly with the
lattice; for instance, the electronic wave function may well
change, as in_H2, from'a'bondihg singlet to an antibonding triplet
_'State, thus increasing the intersite diétance (37). The effective
lméss of the excitons may then be as large as lO4 or 105 electrons
{(37,38). Such behavior is possible for.strongly alternating
lattices at low temperature$§ the excitons then become diffusional
(37).
A measure of the closeness of the electrons forming a

triplet excitation is the value of nil - Mg Here m is the order
parameter VI.1l and the subscripts indicate that the expectation

values are to be taken in fhe states S = 1, SZ¢= land S = 1,
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SZ = 0. 2z refers to'thefmolecular axes X, y, 2 that'diagonalizethé

effective " spin hamiltonian.. The spin hamiltonian VI.S5 is usually

used to present experimental data (39)

Hue = DSy + E(Sp-SH). VLS

The parameters D and E express the dipolar interaction between
two electrons, on adjacent sites, that form a triplet (39).

The hamiltonian I.1 for the alternating antiferromagnet
is isotropic. Thus we may choose the z-axis along which we quan-
tize the spins to be the z-axis of the frame which diagonalizes

2 XaX
| N § 555541
state S = 1, Sx = 0 is therefore the same as the expectation value
2 ZaZ
of N ? Sj8j+l
represent the states S = 1, SZ = 1land S = 1, Sz = -1, then the
1

2

value N1 = Mo in the limit N - =, is then easily evaluated,

VI.S5. Furthermore, the expectation value of in the

in the state 8 =.1, S = 0. If /1,1 > and /1,-1 >

state =1, 5 =0 is (/1,1 > - /1,-1 >). The expectation

'71" - /']\'o = - -‘i' {(h" ‘)(b"]—)"t‘ Al’+ g"-\'l&gk} . VI.6

The behavior of 3 1 is shown in figure 15. For

4 ('ﬂll - nlo)
8§ = 1, at 0°K, the unpaired spins must be adjacent, so that the

full value of the dipolar interaction is obtained; we have normal-
. 3 1 . . .
d that < . T mb f sites
ized so that 2 (“11’“10 is then unity he average n; er Z site
hich the triplet is distributed is, v hly, =
on whi e trip is distribu is, very roug .y, Z Tiy1-Ti1g) ’

from the probability that the unpaired spins are adjacent and
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Fig. 15. Rough estimate of the number of sites

separating two electrons that form a triplet

excitation at 0®K.
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since the dipolar interaction is negligible unless the electrons
are adjacent. At low temperatures, the two electrons forming a
triplet are close together for & 2 .5. For the regular antiferro-

M1~ ™o ,
lation in which V(a? is neglected. The unpaired electrons are

“magnet at 0°K, vanishes within the accuracy of a calcu-
* then very far from each other. Finally, in the high-temperature

limit, since B-ﬁ land €, A -0, - 0 for any alterna-

11~ Mo
tion. The triplet excitations then correspond to two non-
interacting doublets. At high temperatures, we therefore have,
for any alternation, a paramagnetic gas of spin % particles,
which is the expected result.

When the spins corresponding to a triplet excitation are,
on the average, separated by more than one site, they are essen-
tially independent and have no convenient way in which to distort
the lattice. Phonon-coupling is then expected to be weak. In
the case of a rather strongly alternating lattice and low tem-
perature, although the phonon-coupling is strong, the phonons
produce only a few éhanges in those features of the spin system
which are of interest in EPR experiments (37,40).
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Appendix I
We calculate the energies of the states of the regular

éntiferromagnet with 3N + 1 or 3N - 1 fermions. These states form
a band and are the lowest- lylng excitations of }{(a). To find
the excitation energies, we must calculate the energies per site
to order 1/N rather than to order 1 as done in section III. The
iN-particle excitations, as discussed in section III, have SZ = 1
and are degenerate with the #N-hole excitations with s, = -1.
Since the excited states have opposite parity to that of the
ground state, the k-values allowed by II.13 are different. Thus
the sums appearing in the solutions must be evaluated again. How-
ever, for the 3N k—values between -3m and 3m, for either a = 1 or
a = 2,

I

N };_ £(sitk+R) = ,—:,‘ Zk Hsitk)  + 0(,’1{1),

1.1

where f(sinzk) is any function of sinzk. Since we always have to
sum over k, except for a few terms, symmetrically from -3m to 3w,
there is cancellation, and the sums over the k's may, to order
1/N%, be interchanged.

 The excited states are states in which the pair state k,
k + m, instead of lying in the subspace of unlike S,, is in the
subspace of like Sz; that is, k and k + 7 afe either both filled,
which corresponds to a particile excitation, or both empty, which
corresponds to a hole excitation. Iﬁ either case, the subspace

of the pseudo-spins, in which we take advantage of the coherence
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between ‘statés with unlike SZ, is decreased by one pair state,
with -3m < k < 3m. We define e(k) to be the difference between q
for the excited state with wave vector +k and q for the ground
state. For 6 = 0, using 1.1, we evaluate e(k) by finding the
difference between the two master equations III.8 which may be
written for the excited and the ground states:

| l—q" i tsintk \
€ = —— ToEEe 4 ()
q Kq)- 2 J1-grsintk | 1.2
In 1.2, since the right-hand side is at least of order l/N, we
may use q and k corresponding to either the excited or the ground
state.

The change in energies for the two states is

S ﬂ_q > x ] § {
ET(K)"'E ="" “1{15_1‘1-:‘?@‘ Z-rq-\-i(k'))smk'} 1.3

where ET(k) is the energy of the triplet state, E° is the energy
of the ground state, a is the parity of the ground state, and 8

is the parity of the triplet state. The superscripts B, k denote
that the sum is from k' = -3m to %m, using the values specified in
TI.13, and that the states k, k + T are either both empty or both

full. Using 1.1 and 1.2, we find for -$m < k < %m

E' (k) -
NJ = NJ\ + A f—qskarol(-‘,@), 1.3

\
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- where, to order 1/N, q and k may correspond to their values in
 either the ground or the excited state. 1.3 is‘just.the excita-
~ tion energy III.2la for the case of the regulaf antiferromagnet.
Theréfore, at least for the regular antiferromagnet, the excita-
tion energies are just the magnitude of the molecular field seen
by the_pseudo-spins. As discussed in section III, this result
would be true in general if we neglected end effects and is con-
séquently expected to be valid in the limit N - «= for the

alternating antiferromagnet.

Appendix II

We consider the regular antiferromagnet and calculate, in
the limit N - ®, the second-order correction to the ground-state
energy. For & = 0, the second sum in the perturbation II.21

vanishes. The perturbation is

v® = Z V(q,kKk') = = Z_COS
%k K AN
q%0,T; K'# keq, keqen

‘1%«‘ k-q YOy, 21

where -m < q, k, k' < m. The second-order correction to the

ground-state energy is

o _ Z @J Zv(q. k‘)}q,k.,k)(a,k,,kl\ V'K k"))§>
N £ kuk)

where /&.> is the ground state, /q,kl,k > is the excited state

2
obfained'by operating with V(q,kl,kz) on thé ground state, and
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E(q’kl’ké) is the excitation energy of the state /q,kl,k2>u We
immediately have 6qq" s éklkg , and ékzkg , Since each tefm in

(a)
v 1’72

dlways annihilates two particles and then creates two particles.

produces just one state /q,k.,k, >. The operator V(q,kl,kz)

There are always two ways of returning to the ground state from

the state /q,kl,k2 >. They correspond to replacing the particies

to their original states (q' = q, ki = kl, ké = k2) or to inter-

' ——
1=
Performing the sums over the &

changing them first (q' = g, k ks k. = k.). Thus we have
: 27 "2 1 _

) 26k1ki , and b

qq"’ koky
functions, we obtain

£ o _ 2T §% 1B IV(gk,K)]g, K,k
N* )
QIRJk' E(q) k, k')

The ground state of the regular antiferromagnet has al-
ready been obtained in III.22. Since, for k # k', a;ak_,_Tr commutes

with a;,+ﬁ, the ground state may be written

-3
18y = T {costty Gy + sinkB 4 3y | 2.4

k<3

We take the kth component of the product and operate with 3y s
+  _+ . 1, 1

g’ ¥er B’ respectively, where -zm < k < gm. 3y and e trr
give the vacuum state, with coefficients Vi = sin%ek and U =

. . + + . .
cos%ek, respectively, while 3y and 8 4 give the doubly occupied
state /k,k + w >, with coefficients w and v, , respectively. If
we take the k and k' components, with -3m < k,k' < #w and k # k',

we may obtain similar results for the eight possible pairs of
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creation and annihilation operators inveolving k and k'. We now

write

Ve Z_ Z_ V(‘hkk) : 2.5

9,k =

where -3m < k,k' < &7 and -m < q < m. It is straightforward to
obtain the coefficients in terms of Vi and Uy which result when
we operate with Vi(q,k,k') on the ground state.
Finally, each of the four terms of the matrix elements

< q,k,k'/v(a)/éo > is written as a sum of four terms: -3m +
'k"<q<%—n-k;'-%ﬂ-k<q_<—-§—n+k'; 2m -k <q <30T+ k';
and -m < q.< -3m - k, £7 + k' < q < m, where we still have -3m
< k,k' < #n. After some manipu,lation,. it is 'evident that the
various ranges of q may be recombined. Thus

N costq

EQ'\ = - 2;—5 Z_ { U (kﬂ)vl(k')-r\lz(kmu’(k')} 2.6
N? g E( ) | ,
{UHK-VR+ VKU,

_where -m < q <, -47 < k,k' < $m and

i cos K
1 = 7 (1
u (k) b} | + E.(K)) 0. 74
10y = L osk o
ViK) = (1= Ca(i)) 2.7b

£(Kk) = \/\—'XS\ vk

2.7c



78

Elq,k,k) = —\}-(E(k)-\—‘é(k')-i— e(k+q)+ EK-9) 2.7

- In the limit N - », the sums may be replaced by integrals. We

simplify by using the symmetry properties of the functions and

obtain

z coézg
35;"[&8 X))+ P+ 2(;«-3)1-2(‘.‘ 3) {|+

™

@ . A
Lo — 4

'S
IN Y e %

2.8

4 CosXumY s (X+3) w3y~ }
£00) Ely E(x+3)ECY-3) J

For 6 = 0 and 0°K, the values of B and )Y are, respec-
tively, 1.57030 and 0.9505389. The integrations were performed
numerically with the aid of a computer. The second-order cor-
rection to the ground-state energy of the regular antiferromagnet

is
E‘Z-)

D

IN - 0.010271 . ) s

Appendix IIT

The tables presented in this appendix are numerical
solutions for the linear antiferromagnets, with & = 0.00, 0.05,

0.10 ... 0.95, 0.99, in the temperature range 0 < kT < 2.2J.
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IT. PHONON EFFECTS IN TRIPLET EXCITON THEORY

A LOCALIZED, DIFFUSIONAL MODEL FOR EXCITONS

Abstract

Tonic organic crystals such as Wurster's blue perchlorate
and various TCNQ salts'consist of linear chains of free radicals.
The EPR (electron paramagnetic resonance) properties of these
crystals have been successfully discussed in terms of triplet
excitons, especially for low exciton densities. We consider a
deformable lattice and investigate the influence of phonons on
the triplet excitons. For low exciton density (i.e., at low tem-
perature) the excitons, on account of the phonons, are localized
and diffusional; they resemble chargeless polarons in the strong-
coupling limit. A general expression for the rate of an exciton
process in a phonon bath at thermal equilibrium is obtained. The
temperature dependence of the rate is found. 1In particulér, we
obtain the diffusion constant for exciton motion, the activation
energy for diffusion, and the rates of exciton creation and anni-
hilation processes via lattice phonons. We estimate these
parameters for Wurster's blue perchlorate. Even at absolute zero,
diffusional excitons are mobile enough to account for the absence
of hyperfine structure in the EPR spectra. We also obtain the
modifications of the parameters of the effective exciton hamil-
tonian due to the phonons, and we rederive a phonon-coupled

repulsion between excitons.



104

Introduction

We consider a one-dimensional lattice of free radicals,
on each of which there is a tightly—bound unpaired electron. We
assume that the lattice alternates, as shown in figure 1. A pair
of nearest-neighbor free radicals form a site; the alternating
lattice is therefore a regular array of sites. The two unpaired
electrons on a site may be in either a spin-paired singlet state
or a spin-parallel triplet state. We assume that the coupling is -
antiferromagnetic, so that the exchange integral is positive.

The singlet state is then the ground state. The triplet excited
states, on account of the interactions between electrons on
adjacent sites, are mobile. These mobile triplet states are the
. paramagnetic (triplet) excitons that are the lowest-lying excited
states of certain organic crystals. The crystals are ionic free
radicals, such as various TCNQ salts (1,2) and Wurster's blue
'_perchlorate (3). 1In these systems, the triplet states afe
accessible thermally.

The electroniq pfdperties of the tightly-bound electrons
may be understood from a oﬁe-dimenéional'model (4,5). Lynden-Bell
and McConnell have diséuséed, in a paper we call A (5), the prop-
erties of triplet excitons on a rigid, alternating lattice, with
.exchange integrals J > J' > 0. In the approximation of not
including ionic states or higher excited states, the hamiltonian
is just the exchange hamiltonian (equation 1.1). The conclusions
in A may be summarized as follows: +to good approximation, the

triplet excitons on a rigid lattice are waves; they are
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essentially fermions; their energies form a band whose width is
Jr. |

The temperature dependence of the exciton lines observed
by EPR (1-3,6) may be understood roughly on the basis of A, pro-
vided that J' is some two orders of magnitude smaller than J.
However, the alternation of the WBP (Wurster's blue perchlorate)
lattice is probably quite small (7); above the transition tempera-
ture of 186°K, the lattice does not alternate at all (8)f Such a
large variafion in the relative magnitudes of tﬁe exchange infe-
grals is therefore unexpected. Furthermore, the exciton line-
broadening ‘and line-merging rates as functions of temperature
show different activation energies (2,3); this property cannot be
prediéted from the model in A. By considering a deformable
lattice, McConnell and Soos, in a paper we call B (9), found a
spin-independent, phonon-coupled repulsion between triplet
excitons. The repulsion explains the temperéture dependénce of
the line broadening (lQ) and also gives the appropriate exchange
narrowing for J' of the order of J. However, the model used is
essentially that of localized excitons.

We show that, due to the rapid scattering of excitons by
phonons, the delocalized description used in A is inappropriate
- and that a localized, diffusional model is indicated. In order
to do this, we deriye the properties of excitons coupled to a
phonon bath, which for simplicity we take to be the same as in B.
The one-dimensional model we consider is inherently more tractable

than the three-dimensional model used in ‘the analogous,:
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extensively studied problem of the interactions of localized
electrons in polar crystais. Diffusional excitons may be con-
sidered to be chargeless poiarons,vwith very strong coupling to
. the lattice. Delocalized excitons, on the other hand, resemble
metallic electrons. As in polaron theory, the localized, dif-
fusional picture is appropriate for low exciton concentrations.

The effective masses of the localized, diffusional exci-
tons may be so large that an inverse Born-Oppenheimer apbroxima—
tion is required; the éxcitons move slowly compared with'lattice
vibrations. This approximation is valid only at low temperatures.
As the temperature is raised, the excitons becomefincreaéingly
more mobi;e and, provided that J' Z typical phonon energies,
eventually move rapidly compared with lattice vibrations. Their
effective masses decrease by several orders of magnitude. The
relative rates of lattice vibrations and quasiparticle (exciton)
rﬁotion thus determine the" appropria;te approximation scheme.

In section I, we discuss the model, the exciton-phonon
hamiltonian, and the approximations. In section II, we find tﬁe
- distortions of the lattice, both in real and in wave vector space,
due to an arbitrary exciton distribution. In section ITI, we

derive a general expressic_)n for the rate, and its temperature
dependence, of an exciton tranSition. The site-to-site jumping
frequency &3 and the diffusioh constant for localized excitons
are found in section IV. We show that the jumping rate is high
'enough to account for the absence of hyperfine structure, even

at very low temperature. This removes what had been the most



107

serious objection to a localized, diffusional model. The high-
temperature activation energy for diffusion is found. In section
V, we estimate the rate of exciton creation and annihilation via
lattice phonons. Lattice-phonon processes are compared with
radiationless transitions wvia intramolecular phonons. In sectién
VI, we present the justification for a localized, diffusional
model and discuss the modifications, due to phonons, of the

parameters of the effective exciton hamiltonian.
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I. Model for Excitons, Phonons.
The Exciton-Phoncon Hamiltonian

The exchange hamiltonian 1.1 is also the hamiltonian for
an alternating linear antiferromagnetic chain. Both the regular
(J' = J) and the alternating (J’ < J) antiferromagnet have been
considered several times (for further references, see reference
ll)._ It may be shown (11) that the description used in A is ade-
quate for the case of strong alternation (J' 5,1/3 J) and low
temperature (kT S £J). It is inherent to the model in A that the
two electrons forming a triplet excitation are always adjacent in
- position space. This aésumption is satisfied for strong alterna-
tion and low temperature (11). Unless the two electrons are
adjacent, the electfostatic phonon-coupling we describe does not
exist. The two electrons forming a tfiplet excitation then do
not distort the lattice, 'so that phonon#coupling is'expected to
be weak. We restrict the discussion to the case of strong alterna-
tion and low temperature. The exciton model used in.A will alwayé
be used in fhe following.

The triplet excitons of A are now considered on a deform-
able iattice, shown in figure 1. The exciton hamiltonian for the

rigid lattice is (5)
N/2

H:_ - ).Z.'.{J:é:n."l:.u-\ * J‘ju"z:nﬂ}
= }{o v 7{1 * \ix * }{5

1.1
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Yo 4 Jl :
— ¥ +

Ho't‘ H\ = nz; {Jtn th - q—(tntn+g+tn+sth)} 1.2

N/a, J' — —
Hz = Z. —LF Sh. Sn-ﬂ
n=,
1.3
I
~H3 = — Xterms creating or destroying excitations.

—
’jn = % is the electron spin on the nth molecule; the molecules 2n,

én + 1 are nearest neighbors and form the site n; t;, tn are the
exciton creation and annihila’cion operators, respectively, for the
nth site; En = 1, 0 is the spin at the nth site if there is, or

is not, an exciton on the site"

To discuss a deformable lattice, we must consider the
phonon-coupling arising, as shown in B, from the distance depen-
dence of the exchange integrals. Hpe is the term in the hamil-
tonian which describes the coupling due to the linear term in the
Taylor expansion of the exchange integrals. We neglect all higher
order terms in the expansion. Unless otherwise indicated, all
quantities are évaluated at théir no—exditon equilibrium positions.

Thus we have

° .
He. = jf]‘e. + H?e ) 1.4
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where
N/Z. —_— -
= . ! n
}{pe - e { QE%_*QL “&lﬂ JSZ\L*QL *&&ﬂ,}
1.5
Ny
. +
Hy = vpl'ﬁg“t"t“ 1.6
.‘-
Hs = ~ nZ=-? 'LTAn (tntnﬂ"’tm\tﬂ) . 1.7
] '
j = 5;' and j' = 5; are the derivatives of the two exchange

integrals with respect to the intermolecular distance; 6 =

d d A =d

on’ fn Edoy - d2n—l’ where d, is the displacement from

2n+l
equilibrium of the nth molecule; }{6 and 1{7 are just }{2 and
H 5 multiplied by j‘An/Cr in each term. The alternating
lattice consists of N molecules and.%N sites. M is the mass of a
molecule (or free radical, etc.); a, b, and c¢ are the distances
specifying the free lengths and the unit cell; G and g are force
constants.

We assume that the discussion may be restricted to a har-
monic phonon hamiltonian and to an electronic perturbation that
is linear in the molecular displacements. A linear perturbation
will give new equilibrium positions, but will not change the

normal frequencies. This approximation is a frequent starting

point for discussionsof electron-phonon interactions (12-14).
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If an excitation is placed on site m, the electronic wave function
of m is changed from a bonding S=0 to an antibonding S=1 state; by
"bonding" and "antibonding".we of course refer only to the contri-
bution of the two electrons which are unpaired in the free
molecules. The pair 2m, 2m + 1 will move apart. The perturbation
corresponds to a change in the singlet-triplet energy gap and is

just'a term of }{4,

Vi = ‘['ilgm . 1.8

Distortions arising from the perturbation 1.8, when there
is an exciton on the mth site, are the only ones we consider.
Thus we explicitly include only j; the effects arising from j'
will be included only in an avérage way, &s discussed in section
VI. In fact, j' has but second-order effects on, for instance,
the line shape (15). It is evident physically that, if we con-
sider a site of the strongly alternating lattice to be a
"molecule, " the excitation energies of the "molecules" should
depend on j in the first order and on j' only in higher order.

The ;attice is "tied down" to simulate the three-
dimensionality of the actual lattice; G = 0 for the "free"
lattice. It is impossible to separate exactly the longitudinal
and the transverse phonon modes, because in general the polariza-
tion directions on the phonon modes are not simply related to the
lattice directions. Tne coupling with the roughly transverse

__phonons is expected to be weak (14). A general qualitative
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feature of the roughly longitudinal mode is that it is shifted to
higher energies relative to the free lattice (14). By tying down
the lattice, we approximate érudely.this feature of the actual,

extremely complicated phonon spectrum. The model is, however,
entirely inadequate in that it suppresses entirely low-energy
phonons (16). We shall return to this point.when we discuss the
scattering of excitons by phonons in section VI. It is evident,
therefore, that we cannot, for instance, discuss the phonon heat
capacity in terms of the present model. On the other hand, that
the excitations are localized and diffusional does not depend on
tying down the lattice.

The force constants between nearest (intra-site) and next
nearest (inter-site) molecules are chosen to be the same. This
assumption removes the energy gap between the acoustic and the
optical phonon moces. The phonon spectrum of the alternating
lattice then reduces to the spectrum of a regular lattice with
lattice spacing 3c = 3(a + b). The more general case of alternat-
ing force constants leads to similar vesults if the lattice is
tied down (15).

When there are no excitons on rhe'iattice, the phonon

hamiltonian is
X Pa :1 2
He = 21 o0+ 2] - 2404, Lo

where A = 2 + G/g and p is the momentum of the nth molecule. We

transform to wave vector space. The phonon wave vector q is
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restricted to the first Brillouin zone. We obtain

e = Z{-Bseyy + IMGEL,]

q 28425
1.10
2
{ 2 3
= Z it‘wﬂ( L‘ - 5—-2. ))
g 5
- 21mm _ 1 1nt. . .
where q = “x= , m = 0, #1, . . . +(gN-1), gN; the dispersion
relation is
Wq = V(- 20 E) 111
§q are the normal coordinates for the regular lattice
- N . he
~§ = Z d \q =
q W & & ¢ ) 1.12

and Cq are dimensionless, real normal coordinates,

N d, cosq e S0
§q = fl___Mwﬁ Z 2" q;' 17 1.13
WN T\ dy singas g<o .

The Qq are convenient for the present problem (17), since we in-
troduce narmonic oscillator functions explicitly.

We summarize below the various approximations. (a) The
electrons follow the motion of the nuclei adiabatically; this is
the familiar Born-Oppenheimer approximation. (b) The unpaired
electron on each molecule is always in the molecular electronic

ground state. The triplet excitons are the only electronic
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excitations possible at the temperatures considered. (c¢) The
lattice may be approximated by a harmonic model. For the most
part, tying down the lattice is not crucial: the consequences
of not doing so are that the self-energy (equation 2.9) is
increased, while the phonon-coupled interaction between excitons
(equation 2.16) vanishes. Thus we not only assume that the lat-
tice is harmonic, but also replace the three-dimensional lattice
with an effective one-dimensional model. (d) The interactionsl
of an exciton with the lattice may be approximated by the linear
term in the expansion of the exchange integrals. Thus we consider
explicitly one—phonqn processes only. (e) The lattice is adia-
batic with respect to the excitons. Tnis approximation is dis-

cussed in the next section and is justified in section VI.
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II. Distortion ox the Lattice
Due to localized Excitons

It is known that localized excitons may have very large
effective masses (18,19). It may therefore be appropfiaté to
- make an inverse Born-Oppenheimer approximation: the molecules
follow the motion of the excitons adiabatically. The presence of
an exciton on site m will displace the qth normal coordinate by
an amount em(q). The normal frequencies are unchanged, since the
perturbation 1.8 is linear. We show in section IV that in fact
the exciton remains on a site for a time long compared with
lattice vibration periods. We assume therefore that the molecular
coordinates have time to rearrange completely for a given exciton

distribution.

(a) One Exciton, at Site m

If there is an exciton on site m, the phonon hamiltonian

N z '
?
Hy = Hov Ve = 24 i+ 20v-24,40) - ey, 2-2

We introduce the coordinates

Yimer = dz.m-a—n - ‘x'@.&
_ 4 r } 2=1,1,3 5.0
‘hmﬂ-l" mel=-4 + Ry ,
where a = |31 /g and the fl(k) are undetermined functions. We

substitute 2.2 in 2.1 and require that all terms linear in the Y&'s

vanish. This will be the case, provided that
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?\'Fl + (-F"'-%.) -1 =0
?\{:1 - ('c',q.n* +)=0 , A=2,3,... . 2.3

For an infinite (N - ») lattice, which we assume, the solutions

of 2.3 lead to an infinite continued fraction,
' I

2‘?(7\) = > - \

N -

The solution we seek must have the property that fﬂ -0 as f - o,

2.4

since the effects of the perturbation far from the mth site must

be negligible. Using this condition, we find

o A— vy
%(7\) = 2 L ) 2.5
ton= z(-v85%), .

-1 - |
'FQO\) = -le ) x () i?\-\—(ﬂ y 4= 2.)3)-.... 2.7

Thus we have

Hy

il

28 LN Yo V20 TRV B Yoy

X

J

- U (T S} - A

AR = T10-AE) = Lro. 2.9
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CE = Qq - em(q) is the qth dimensionless, real normal coordinate
when there is an exciton oh site m. The quantity A()A) is just
_ the self-energy correction evaluated in B by a totally different

method.

From 1.13, 2.2, 2.6, and 2.7, we have

gq<

s SQamel

Em@) = meq Z “(Q){c? . ) 170 2.10
A=~ o0 5"‘32:(7-’”2) q40

where a(4) = + }j]fﬂ(l)/g for £ > 0 and £ < 0, respectively. We

use 2.7 to sum 2.10. After some manipulation, we obtain

: .9t : |
Mg 14l -2sin g {sch(m-l-r,)) G20

Em(Q) = | —" = .
m {9 AN 3 O-2cos L) cosqe(mry) o 2.11
q
wa "3\ 4sm l-}SlV‘ 2 (cos qc(m+ /4) q7o
m(‘ﬂ EVWH(q) (>\ ZCDSS—) {Sw;clc (‘M'\';/:f) q<0.2.:L2

If we sum over the first Brillouin zone the square of 2.11 or
2.12 with an even function of q, we obtain results_which are inde-
_ pendent of the site m. This property will always guarantee'that
various results be independent of the site; this must of course
be the case, since all the sites are equivalent.
The self-energy is the ﬁegafive of the energy required tb
distort the normal coordinates by an amount em(q), as may be veri—

fied by evaluating the sum éxplicitly,

Ay = Zq-_i‘ﬁwq'(fm@ﬂf = -%--,‘—_( f;}f—f). - 2.13
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As expected, the new eQuilibrium positions correspond to a lattice
on which each mdlecule has beeﬁ moved away from the exciton by an
amount |j]£,(A)/g; this is immediately evident from 2.2 and 2.7.
The self-energy, which may also be obtained by summing over the
distortions in real space, corrects for the effect of a non-
vertical transition. By distorting a site (increasing the equi-
librium separation between the two molecules) the creation of an

exciton decreases the singlet-triplet energy gap.

(b) Two or More localized Excitons

We suppose that there is an arbitrary distribution of
excitons on the lattice. Since the perturbation 1.8 is linear in
the molecular coordinates, the distortion of the gth normal
coordinate from its equilibrium'position is just the sum .of the
distortions due to each exciton. As before, the normal coordi-

nates are unchanged. Hence we have

b= i w, I\ _ i —
He Zq_{zh ‘\(.(‘gq) 3.(‘%,),)} &M | 2.14

where (' = ¢ - T em(q) is the gth normal coordinate for the
a 49 m (oreupied)
arbitrary, but fixed, exciton distribution and

g = 2 ll’ﬁwq{z'ﬁm(q)}z_ 2.15
q=-w -

(occupied)
The square terms in E(\) will each give rise to a self-energy

term. The cross terms may be evaluated directly. Théy depend on
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im - m'] only; for m # m',

- | 2, &
—; 3 By En(@) Em (@) = -35;_ > (-

?: \m-m'l

Z
h) T \w\-»\'l) )\1? )  2.16

where (P_/ﬁgm,/) is the binomial coefficient and A > 2 for G # 0.
We have rederived the phonon-coupled exciton-exciton repulsion
described in B. For X = 3, the interaction is to good approxima-
tibn a nearest-neighbor repulsion, which in the notation of B is
called V(2). Hence, if we have p excitons, distributed on the

lattice so that there are p' pairs of adjacent excitons,
EM) = p Q) =7 VQ). 2.17

For A = 2, the "free" lattice, the repulsion vanishes. For A
slightly larger than 2, the repulsion may not be approximated as
a nearest-neighbor interaction. We assume, as in B, that k.is

about 3.
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III. General Expression for
Rates of Exciton Processes

The localized exciton states are not even eigenstates of
the rigid lattice exciton hamiltonian }{Z. The time development
of approximate eigenstates may be found by using the time-dependent
Schrodinger equation.' The general expressioﬁ for the rate of

transition from an initial state /a> to a final state /b> is
2T 1
Wee = T KBIMIDITE(E,~Ea) . 3.1

3.1 is one of the forms of the Golden Rule of time-dependent per-
turbation theory (20). Eb and Ea are the energies of the states
/b>and /a>, respectively, and M is any operator connecting the
two states.

The problem of finding the rates of electronic transitions
in the presence of an harmonic phonon field has been extensively
studied (21-23,17). The parameters that correspond to em(q) are
ﬁsually too difficult to evaluate. The exciton-phonon problem we
consider is tractable, however. Firstly, it is a one-dimensional
problem; secondly, the nature of the exciton-phonon interaction is
straightforward, at least in the first approximation; thirdly, the
excitons are described by spin functions, which here, as in
general, facilitate the calculation of matrix elements. The dis-
cussion of Ehe exciton-phonon problem we present follows closely
the electron-phonon discussions given by O'Rourke (22), Vasiieff

(23), and Trlifaj (17).
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(a) Expression for Wba

The initial and the final exciton states are /a > and

/b >, respectively. The initial state may contain an arbitrary
number of localized excitons. The phonon states, for exciton

configuration /a> , are.

N

\—V-\\"} = T\- \n%)) 3.2

9=
a . . . . . .
where /nq > is a normalized harmonic oscillator function, with

energy nZ‘ﬁw The energy is independent of the configuration,

Q"
since we consider only the perturbation 1.8. The index a denotes
that Qz = gq - ea(q), where ea(q) is the equilibrium displacement

of the qgth normal coordinate for the exciton configuration /a >.

Thus the initial state of the (exciton and phonon) system is

laRey = 1T 1ngy. 5.3
14

a a a a X
The vector Ti° has components (n- , n ). The exciton

’ .. .n
hamiltonian }{e (equation 1.4) has matrix elements M(R) connect-
ing /a > and /b >. M(R) is expanded about the no-exciton equi-

librium position and only the linear term is retained

M(R) = M(R)+ M@®R)A, R=R+A. 3.4

A is the difference between the coordinates of two adjacent
molecules; that is, either A =6, or A =4, 4= 1,2,...3N.

The transition rate W, is found from 3.1 and 3.3,

. . 2n o .a by g ' R
W = = 2 F(mKn*b\mMAm“aXS(Eb-,-,s—Ea-,-,a), 3.5

AT
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where M and M' are evaluated at Re. Equation 3.5 includes all
possible phonon paths; p(ﬁa) is a weighting factor expressing the.
s e . . _
1n1t;a; phonon populations. Ebﬁb and Baﬁa are the final and
initial energies of the total system. We always assume that the

phonons are in thermal equilibrium. The probability p(Ti&) of

=} a a

finding the phonon distribution (n_ , n> ,...n_ ) is
q, Q. AN
s _vd huy
p () = ﬂ{en“kT 2 —n:-%‘:)“} 3.6
q /> e '

w%=o

We define Bq ='ﬁwq/kT and perform the sum in the denominator,

?(—ﬁq) = (’g\-ls\v\\n E;-)w\,{-%_?ﬁ(n:+%‘)}. 3.7

Although nz is independent of g; we retain the index to specify
the staté.

The system energy is fbund from 2.17. The exciton con-
figuration /a > is assumed to have a excitons and a' pairs of
adjacent excitons. The phonon-coupled repulsion is approximated
by a nearest-neighbor interaction. J is the singlet-triplet
energy gap for the undistorted lattice; Jo = J -A is the

observed (renormalized) singlet-triplet gap. Thus,
- = ) {
Eane aJo + a'V(2) + Zq-t\“’q(”:“'"i). 3.8
We define hwa = ado + a'V(2) and W = W, - W

a’
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Following O'Rourke (22), we introduce the integral repre-

sentation of the delta function

S(Epwy ~ Eawr) = 21\,“ f dt M‘?{ (E,,-;‘\.—Eq-a*)}

3.10
= o5 [t o i erp(it 2 y (=),
Substituting 3.7 and 3.10 in 3.5, we have
I :
Woa = 33§ dt Compiwid) 7 (Tasink 1) enp {- 2 lngrig-
mRe 4 1 ! 3.11

- g ]}T(anblmms\nqa)\

It is shown in appendix II that after expanding A = % A(q) all

the cross terms in 3.11 are negligible. Thus

W, = %‘L’-_Ld't (wrp W, t) Z_ (szsm\n w;c‘:{ Z_[(n,fn-,_){;<1
| [ 3.12

- it(ng-ng )wa}{q ':Ml‘|<n;1v\';>|1+\m'\‘ %Kn‘;-w‘z')lvqxzﬂ\@\:l hi‘pl‘}.
| 1*q
We now define G (t) and H (t) _

Gqt0) = an_ Asinh = 6“ ) Kng\ng>"expi- [(nq 2)Bq ~ itng-ng i ]} 3.13

Hq ()= V\qdzn‘r‘l(smh -f_i)Kn‘," ‘A-(q)\‘nb‘z‘”‘? {" [(":l *3) fqa~ R (“; -hy Jwy ]} 3.14
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Both Gq(t) and Hq(t) play the role of correlation functions. We

thus obtain the following expression for wba:

54 ' -é‘_ S: (QM? oy )[IM\ -ITGI‘]@:)'P IN'ILZI-H@.” G“(t) 2.15
9’

7 Y
(b) Evaluation of Wy o

Both O'Rourke and Vasileff have evaluated Gq(t); they

obtain

G ® = axp{- lev@)- Eo.(-q)]

[@n *l)(\-wswt)—\smux‘t}} 3.16
where Eq = l/(qu - 1) is the mean occupation number; thus we have
used the fact that the phonon bath is in thermal equilibrium.
Rather than repeat the calculation here, we give in appendix 1 fhe
evaluation of Hq(t). Once the derivation of Gq(t) is knqwn, any
new expression such as Hq(t) is easily evaluated in an analogous
manner. We assume (as mentioned abdve, this is the only case we

need consider) that the process considered involves the molecular

coordinates dz and d2+l' The expansion of Az = d£+l - dﬂ is,
from 1.13,
| cosa
d\L = Z ’—_E&_— ‘S { sq 2 ‘V/o 3,17
' AMNW : :
q | “ S\V\q LZE q(o R

rein 3 ei 8e '
A, = ) A () = Z_ B 5 { Errnila) g 3.18
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We therefore obtain

o & R age
\<nqlA,_(q)\V\2‘>l— Mch‘ls‘“T l(n;qulnﬁl)lz, q70. 3.19

In 3.19 we have grouped +q together, since the rest of Hq(t) does
not depend on the sign of a- Thus Hq(t), like Gq(t), is indepen-
dent of the site.

Except for the distoftions of at most two excitons at
sites £ and 4 + 1, the distortions are the same for /a > and /b >,
since except for one or two excitons, they have the same exciton
configurations. The mean occupation numbers are also independent
of the exciton configuration. Thus Hq(t) and'Gq(t) are independent
of the exciton distribution on the rest of the lattice. As shown

in appendix I, for -m < qc < n;

H &) = (V\q 3 )cos* -—3-){ - 2itanh §“’ta __‘L-H ’fm‘ﬁ—} . 3.20
| e.‘(a hsidd [MNuwyg -

" Since the sum is symmnetric in q, we have divided by two and
extended the range of q to include the whole Brillouin zone.

Using 3.16 and 3.20, we evaluate W The integrand in

ba’
3.15 is quite small unless t is so small that, for all wq,
wqt << 1l. But, for such times, we may expand siant and coswqt
and thus obtain Gaussian integrals. Following Trlifaj (17), we
- define
. oy ' 2
Ap, = Woa ¥ szq( €5(q) - €a(q)
ba S .
3.21

% (£4(9) - Ealg) 2g (Fy+ £).
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The condition for the evaluation of the integrals by the present

method are

|Agal Bi, >> Wq  (allq). = 3.22.

W is evaluated in appendix IIT; we find

ba
C \
’%Fz - Bea Tty 1M|Z

.nﬁ‘r

[(“q D+ 5%“: ]} 3.23

(c) Temperature Dependence of wba

Bia does not vanish, even at 0°K, if the distortions

eb(q) and ea(q) are different, even though the occupation numbers

Hq then vanish. Thus the transition rates we consider are finite

even at 0°K. In the high temperature region kT X hwmax

q

Bb = lkT( lAba‘_ wb,ﬂ

a . ' 3.24
‘V\

Thus, for high temperature, .
1 Ppa,

A1k 4kT((Ab.\—wb..)
Wba } kT(\Ah.\ wba)e. { lMl |(\_J§%’.}'3'25

The term in quba/QBba has been omitted; we show in appendix IIT
that it is negligible. We may therefore define the activation
for the exciton transition /a > -~ /b > to be
3
V\F\ba
4(\A\,,\—com') 3.26

energy AEba

ABEw =
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Tt must be stressed that unless the conditions 3.22 are satisfied,
we cannot obtain 3.23; the conditions 3.22 are not always ful-
filled. If we wish to extend the concept of an activation energy

to lower temperatures, we must generalize to include temperature=

dependent activation energies such that

AE(M
KT <

im . 3.27

T=>0
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IV. Exciton Jumping Rate.
Activation Energy for Diffusion

The processes described by the hamiltonian 1l.1-7 are
exciton jumping, exciton creation and annihilation, and exchange
interactions between adjacent gxcitons. The fastest of these is
the jumping of an exciton from one site to the next. The rela-
tionship between the diffusion constant D and the jumping rate uS
is simply D = uBCQ, where ¢ is the distance between sites (17).
wj thus gives the basis for a diffusional description of exciton
motion. uﬁ must satisfy two conditions: it must be large enough,
even at very low temperatures, to account for the absence of
hyperfine structure in the EPR spectra, and it must be small
enough to justify the adiabatic approximation (e).

The matrix element for exciton jumping is obtainéd from

Hl and HS (1.2 and 1.5, respectively)

_JRYL iRy, |
M(R) = TA’ 4.1

where J' and j' are evaluated at the no-exciton equilibrium
position. We consider the process in which an exciton on site m
jumps to site m + 1. Site m + 1 must tﬁerefore be empty origi-v(j
2
nally; the probability that'site m + 1 is unoccupied is 1 - pe-

~ 1, where p is the exciton density. Since the distortions are

additive, ea(q) - eb(q) reduces to em(q) - €

m+l(q). Since wq is

an even function of q, Aba’ Bba’ and uﬁ are independent of the
site m. We assume for the moment that there are no excitons on

the sites m - 1 and m + 2. The initial and the final states are
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then degenerate and w o in 3.9 vanishes. We have from 3.23

| =L [27 ""BjT Ja . (4os hsed oo :
Wy Jﬁg—; e %9 {(—4-) + Qﬂ % MNU:ﬁ [(V\q“'"i)"’ % %]}, 4.2
A‘ = 3 qu( Emlq)- Cwn(q)” = ™ (Z—LO‘\"' V(z)) 4.3

B.s % wq (iw\@{)" Ewm(‘i)) (ﬁq“‘ '%.) .

2.16 and 2.17 have been used to evaluate Aj. ARt 0°K,

0 £ 03 |
B5 = Tij __%éj jéE o | 4.4,
t\(; ~

and, for kT << ‘Fuuq, very approximately,

R

Bj. B (\-\- KT(MR)VL) 4.5
We estimate the magnitudes of the parameters for WBP. We
uée the estimates from paper B A=2 + G/g ~ 3 is reasonable;
j2/g is a typical energy term that 6ccurs in the self-energy and
the exciton-exciton repulsion; it is estimated to be between
1000 and 8000 cm—l, with the smaller value perhaps more probable;
h(g/M)% is a typical phonon energy, or about 30 to 60 cm_l; thus
B; ~ 50 g/M. The values of A and V(é) may be found in paper B
or calculated from 2.9 and 2.16; 2L + V(2) ~ 0.60 5°/g. Thus

A ~ (e, 4 | 2 |
13% 100 (’%‘:ﬁ %) ~ 9. 4.6
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Finally, to obtain a number, we set J' = 100 cm-'-L and (j')2/g =
1000 em™%; at 0°K,
o

e .
“3 A 3—8_;;- ¢ {(’-I)Z""Zz‘;’\qt\\]g-}” 4xlo Sec‘, 4.7

while, for moderateltemperatures (ﬁq ~ % or T ~ 60-70°K), the

jumping rate is about lOlO sec-l. Although the estimates abové
aré very definitely of the order of magnitude variety, it is
evident thatvuﬁ is substantial even at 0°K. The estimate of w
agrees with the order of magnitude estimate (10) of the jumping
rate required to account for the absence of hyperfine structure.
Furthermore, the jumping rate is some two orders of magnitude
smaller (at moderate temperatures) than typical phonon frequencies.
Thus the approximation that the molecules are adiabatic with
respect to the excitons is a good one.

The exciton model we have been using neglects exciton-
eiciton interactions that are quadrgtic in the exciton density;
it is therefore restricted to low exciton densities (11). In the
following, we shall meén‘by "high" temperature the temperature
range hwzax < kT < $Jo, where Jo is the observed singlet-triplet
separation. The high temperature form of the jumping rate is

obtained from 3.26

V) | \A\
- "1“ -+an iR, e
=g femy e (R T o) o
A'1 = —E(Z'A‘ + V(). |
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Using‘3.27, we obtain the activation energy for diffusion

AE, = RIAY AR VO,

i T T T Ty +2

ABj has a straightforwerd physical interpretation. If we imagine
that the "activated complex' ie half an’exciton on adjacent sites,
éEj is just the energy difference between the intermediate and
the initial state. The activation energy is the energy needed to
delocalize an exciton equally on two adjacent sites. We note
that a well-defined, temperature-independent activation energy is
found only when the phonon field is reasonably populated.

For completeness, we mention that there are two other
exciton jumping frequencies. They correspond to Having one exci-
ton on either site m - 1 or m + 2 initially. The former is the
rate at which an exciton adjacent fo another exciton jumps to the
next site; the latter is the rate at which an exciton which is
one site removed from another exciten jumps to the site next to
the’exciton. Fer these procesees, hw |

ba
tively, rather than 0. It is easy to find the modifications to

is - and + V(2), respec-

4.7-9. Since, in the model we use, the excitons repel each other,
the former rate is slightly higher and the latter slightly lower
than the rate when W = 0. The high-temperature activation

energies for diffusion are, respectively,

cJL V@))

V(z) = E,(\- V(’v))
_A.-\'V(J-)

|
AR, = (:/:‘\.‘_ + M%l) - _ V@& =&+ V(’))
| 2A+VQD

I+ ———
4.10




133

In 4.10, we have set Eo equal to the activation energy for dif-

fusion when w

ba = 0 and have used the property that >> V(2).
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V. Creation and Annihiiation'of Excitons

We consider in this section exciton creation and
annihilation processes via lattice phonons. However, phonons
corresponding to intramolecular vibrations are also important.

The connection between the high energy (300 cm_l) intramolecular
modes and the low energy (100 cm_l) lattice modes is discussed by
Davydov (24). He shows that the intramolecular normal frequen-
cies are split into narrow, guasi-continuous bands in a crystal.
For the complicated crystals in which triplet excitons are
observed, there are therefore some 3n-6 phonon bands correspond-
ing to internal vibrations, where n is fhe number of atoms per
molecule. These modes should provide phonons throughout the
energy range 300-3000 cm_l. The dispersion relations would Dbe
difficult to find, even for a harmonic model, and it would also
be necessary to have detaiied knowledge of the force constants.

A detailed qualitative analysis of the radiationless decay
of a triplet via intramolecular phonons is available (25). Since
the excitons are on a pair of molecules, whose internal vibrations
are almost completely independent of each other, the coupling with
intramolecular phononslis expected to be mﬁch weaker than.in the
case discussed in reference 25, where the triplet is on a single
molecule. Exciton creation and annihilation via intramolecular
phonons is therefore expected to be negligibly slow compared with
lattice phonon processes. The intramolecular transition rate is

essentially temperature independent.
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Examination of the exciton hamiltonian 1.1 shows that
there are two radiationless creation and annihilation processes.
Two adjacent_excitons may be created or annihilated; an exciton
- may be created next to an exciton and one of a pair of adjacent
excitons may. be annihilated. The exciton spin S and the z com-
ponent of spin SZ are cohserved in each process. All the processes
-involve the exchange integral J'.

We consider first exciton annihilation and begin with pair
annihilation. Tne initial state contains a pair of adjacent exci-
tons; the final state has two fewer excitohs and no excitons on
the sites occupied by the pair. For simplicity, the sites
édjacent to the pair are assumed to be empty. Using 3.8, 3.9, and

3.21, we find

Wg = = 21Jo = V@
® A, = —2(T, -+ V).

5.1

Since _A.Z.Jo, fA is not large compared with‘hwq, and the inte-
grals cannot be evaluated by the method of section III. We
consider next the annihilation of one exciton from an isolated

pair of adjacent excitons,

Wq = -J, =V
£ Ay = - (Jo- A+ V().

5.2

Again, the condition that hA >> ﬁwq is not satisfied. The calcu-
lation of annihilation rates therefore requires a more accurate

integration in 3.15.
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Fortunately, the inequalities 3.22 are satisfied for
creation processes. If the system is in thermal equilibrium, we’
thus also know the annihilation rates. For the creation of an

isolated pair of excitons,

AL = l(J,TJL), 5.3

while for the creation of an exciton next to an exciton,

whe = o+ L V. 5.4

The A's satisfy the inequality 3.22; the B's are always comparable

to Bj, which satisfied 3.22,

- | o (w s L
B, = Z_(Em(q)i-'iml(q)) Wy (g + %),
2 2 5.5
Bey, = Zq_(z,.c«o) Wy (Hq+1).
For low temperatures, we set B = B°,_its value at 0°K, and neglect

p compared with unity,

> o
o L En - Acz/zga

wa = wIE < TN k), s

Aci/2B:
- Neif2B .
0 .L_,m “Te, @Y A
p-— r) ~. —— 5-7
Wey PJ"\’L Bcle {Ks\) il % M 3(,}'

The high-temperature expressions are easily obtained.
Since

2
Bz = KT(2A-V@) g
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B, = %kT_}\_, 5.8
we find
_V@) _ A:y/g
= (- _ "y bX 25c2 J
o =teec S £ G T ) s

V() 1V B '
T KT , 2Be ey
Cl ()(i pe K )-%— {(__)z ‘(3‘23@(" _;\__7-_ }.5.10

The activation énergies AE , and AE_, are found from 3.27, 5.3,

5.4, and 5.8,

(T +N)°

Ake S A - VR 5.11
2
AECI = (j°+—A.*V(%2)_- 5.12

4 A

That 2ABCl > AEC2 is as expected. The site adjacent to an exciton
is compressed and therefore a poor site on which to create another
exciton. As is the case of exciton jumping, there are several
other, almost equal, transition rates. They correspond to crea-
tion processes in which the final stéte is not an isolated pair
but a pair adjacent to an exciton.

The approximate values of the WBP parameters introduced
in the previocus section are used to make rough estimates. In

addition, we assume that Jo Z.%.ﬁL, which is probably good to
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within a factor of two. At moderate temperatures (nq ~%o0r T ~
60-70°K),
W . ~ 10% sec™t
c2
5.13
7 -1
wcl ~ pl0° sec

The very rough estimates 5.13 show again that the exponential
e_Az/2B which dominates the rates at low temperatures is basically
a phonon effect.

The rates discussed above are faster than intramolecular
radiationless transitions except at very low temperatures. In
contrast to the allowed electronic transitions we have been con-
sidering, the intramolecular process involves a forbidden'transif
fion and is an example of spin;lattice relaxation. It is typical
that there should be several mechanisms, each of which can be
estimated only very roughly. Exciton creation and annihilation,
by any available process, may also be considered to be random
motion of fhe excitons, since in the steady-state systems we dis-
cuss the number of excitons remains constant. The creation and
annihilation of excitons therefore also contribute to the averag-
ing out of the hyperfine structure. However, they are negligibly

slow compared with the-jumping rate.-
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VI. Discussion

(a) localized Exciton Approximation

We have presented in the preceding sections some df the
properties of a siﬁple model for phonons and localized, diffusional
excitons. In this section, the assumption of a localized and dif-
fusional model is justified for dilute exciton systems. The
problem of delocalization is considered first.

It is straightforward to show that if the exchange energy
varies linearly with iattice distortions, an exciton on an harmonic
lattice will have an energy minimum if it is localized on one site.
We consider N uncoupled harmonic oscillators and put 1/N exciton
on each. The perturbation 1.8 is -(j| x/N, where x is the distor-
tion of each site. The energy is

EMN) = J - Z_ mx + Z(?h -‘l—aXT\) '. 6.1

n=i N=i

= By L4
E(N = J + n;; d"‘) lgN. 6.2
where dn = %X, —ljugN. The energies of the displaced oscillators
are unchanged, since the force constants are unchanged. E(N) has
a minimum for N = 1. This conclusioh holds quite generally even
for tied down or coupied oscillators. The important assumptions
are that the exchange'energy is linear, thét-there are few exci-
tons, and that the coupling is a distortion of the sites (that is,

that the two electrons forming a tfiplet state are always
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neighbors in real space, an assumption that is valid for J' << J
at low temperatures (11)). Delocalized excitong form a band with
width J'. The center of the band is A highef than the localized
exciton eﬁergy levels. Since the self-energy is of the order of
the observed singlet-triplet energy.gap Jo, at low temperatures
(kT << N ~ Jo) the excitons are essentially completely in the
localized states.

| The problem of delocalization has been thoroughly investi-
gated in another context, in polaron theory (26). A dilute system
of excess electrons in a polar crystai gives rise to polarization
wells. Iocalizing an electron in its polarization well substan-
tially improves its energies compared with free electron energies.
Pekar considers a fixed polarization well, that is, a fixed
electron, and solves for the mbtion of the nuclei (27). This is
entirely in the spirit of section II, where the molecular motions
were found for a fixed exciton. Pekar's treatment has since been
replaced by a calculation which, although physically more.involved,
gives substantially better energies (28,29). Basically, this
'result_reflects the fact that it is not a very good approximation
in polar.crystals to assume that the nuclei are adiabatic with:
respect to the polarons. We therefore heed to consider the exciton
problem in greater detail when the'jﬁmping frequency uﬁ approaches
the phonon frequencies; fhat is, fdr elevated temperatures. At
high temperatures, however,'the exciton model we have been con-

'sidering fails.
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Chesnut has proposed a purely phenomenclogical theory for
dense exciton systems (30). Phonon-coupling plays a significant
roie in his theory, as it is taken to be the probable cause of
the decrease in the singlet-triplet energy gap with increasing
temperature (cf. 6.4). Within the framework of the Lynden-Bell
and McConnell exciton theory (5), it is straightforward to repro-
duce Chesnut's results, provided it is assumed that the lattice
is distorted, not locally, but uniformly by each exciton. The

perturbation 1.8 then becomes, for exciton density p,

V() = - m{)g‘ 6.3
The exchange integrals J and J' are now temperature dependent,
and J decreases with increasing temperature,

Jig = J- & e

K}
6.4

J(py = T + % TP -
The coefficient of the term in p in’ 6.4 corresponds to Chesnut's
€y (30) both in sign and in magnitude. If we introduce further
simplifying assumptions, we may reﬁroduce Chesnut's theory in its
entirety. It is evident that the crucial assumption is that the
distortions are uniform. This would be the case if the excitons
moved rapidly compared with molecular vibrations, so that the
lattice could not rearrange locally. A molecular field approxima-
tion such as Chesnut's is then appropriate.

At low temperatures, for strong alternation (J' < 1/3 J),

the distortions are local and the excitons are diffusional.
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Therefore Chesnut's model is restricted to high temperatures and,
perhaps, to weakly alternating systems. A self-consistent solution
of the rigid-lattice exeitoﬁ hamiltonian 1.1, for any J' between

0] aﬁd J, predicts the decrease in the singlet-triplet energy gap
with increasing temperature (11); the decrease has been observed
experimentally (31). Thus it is not clear that the phonon-coupled
interaction of Chesnut has to be postulated. That the phonon-
coupling remains unchanged with increasing temperature is also
untenable, since the mean separation between the electrons forming
a triplet excitation increases with temperature, thus changing,

and probably weakening, the phonon-coupling (11).

(b) Diffusional Exciton Approximation

It is an obvious impro?ement bf the theory to use the
translational symmetry of the lattice and to'classify the exeitohs
by their wave vectors. H, and '}h- in l.QImey be diagonalized by
tfansforming to the Fermi creation and annihilation 6perators a;

and 3y in wave vector space (32,33)
= .
Ho + H[ Zk_ EK akak 6.5
where

Ex = J - ';:‘_J'wskc.

2w 6.6
k= oy m=0,xl,... t5-l

.N-..c
I.}

)

The k-state description and the possibility of local deformations

were discussed from the first for triplet excitons (34). We show
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now that, except for a very rigid lattice, the k-state description
gives negligible improvements in the energy and is misleading.

We construct excitoﬁ k-states from the localized exciton
states and the distorted harmonic oscillator functions 3.3. For

one exciton,

.tk. .
(—'=Z 15> e “Qgtngz 6.7

where k is the wave vector of the exciton and is restricted to
the first Brillouin zone, /j > is the spin function indicating
that there is only one triplet, at site j, on the lattice, and
the normalization shows that there are 3N sites. The phonon
functions are normalized individually and, at the end, we always
assume that the phonons are in thermal equilibrium, sc¢ that the
occupation numbers nq are replaced by the mean occupation numbers
7, '

We define Jéff as the effective exchange integral for
exciton jumping. As shown in appendix IV,

J' of J W <—§ l] Yhﬁ) 6.8

€

Jéff is the parameter that replaces J' in the dispersion relation

6.6; it represents the parameter in the effective exciton hamil-
tonian that describes exciton motion. The evaluationef][< ﬁ%+l]ﬁé>

1

for the lattice in thermal equilibrium is given in appendix IV;
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we find

TAT =iy 46 9(\-@59)__
];\'(hﬁ Ing'> = exp{- c;’ﬁr S -;t—s";\ 1«.059)’5 6 ,_} 6.9

where qc/2 = € and ﬁe =T If the lattice were rigid, which
amounts to setting j = 0 (since, as is evident from 1.8, the
lattice is then unperturbed) the overlap would be unity, as
expected. As the temperature is raised, the overlap decreases.
Pnysically, raising the temperature increases the mean energy

and gives increasingly rapidly oscillating phonon wave functions;
rapidly oscillating functions have small overlaps when displaced.
That the exciton bandwidth is decreased by phonons is known
(34,35); it is also known that the bandwidth decreases with in-
creasing temperature in polaron theory (36).

The overlap is estimated in appendix IV af 0°K, where it
is largest. We use again the WBP parameters estimated in section
IV and find

W <n ‘“\Rﬁ) ~ 15 6.10

Thus the improvement in the exciton energy for k states is very
small, less than 0.1% per exciton. It therefore seems to be
largely a matter of convenience whether to use k states or local-
ized states.

However, the excitons are rapidly scattered by the

phonons. The terms M, and He (given by 1.6 and 1.7,
y s Y
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respectively) scatter excitons from one k state to another, as is

evident from their representation in wave vector space,

‘ o Qe
oy G -V T
H 'H = Zh, (SW\-—')Q , _ i i C + -+
‘Lt* s Zk MNwy™ " % '1‘{‘ %Q °°5(§.(k+'§.'))}(b¢i‘b_q)qquq-&ll

)

The Bose operators b; and bq are the phonon ereation and annihila-
tion operators; q and k are the phonon and the exciton wave
vectors,'respectively.v The transverse phonons have been omitted
in 6.11. Two~-phonon Orbach precesses have also been neglected.
Thus it is a consequence of the approximations that there are
apparently no phonons with sufficiently low energies to be used
in 6.11 for the very narrow, of order Jéff,'exciton band.

In any actual lattice, there will be low-energy phonons,
both’longitudinal and transverse. Using the Golden Rule fer_time-
dependent perturbation theory, we make a rough estimate of the
‘scattering rate. Depending on whether a phonon is created or
annihilated (37),

A o
W, ~ (7\4\"'%.)'%132#]—%‘ ) - (ereation)  7 6.12.

-zv N : '
VJ; ~ nq ‘—2—7 'Jii- ) ~ (annihilation) 6.13
§Jatg M ' '
It is emphasized that 6.12 and 6.13 are only rough estimates. The
phonons used are not in the model we have been using; their dis-
persion relations are not known. The exciton dispersion relation

is given in 6.6. The phonon density is assumed to be N/2wc and
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ﬁq represents the mean occupation numbers of the low energy longi-
tudinal phonons used in 6.12, 13.

Using the estimates for WPB, we have

Wy~ (ngt)) 0" sec’

S 6.14

-
sec

W, ~ T 0
Even if the estimates in 6.14 are high by twc or three orders of
magnitﬁde, the scattering is rapid. For an exciton near the
bottom of the band, %J'eff(i—coské) = Jéff(kc/Q)2 is the kinetic
energy and v = fik/M is the velocity; hence we have the effective
mass M of order 10722gm, which is of the order of the mass of a
Wurster's blue radical ion, and v of tne order of 10" sites per
second. Thus the exciton is scattered many times in going from
one site tb the next. The rapidly scattered exciton would in fact
appear to be undergoing a random walk motion. A diffusional model

is therefore appropriate.

(c) Parameters of the Effective Exciton Hamiltonian

An exciton sysfem placed in a phonon bath may be described
by an effective spin hamiltonian, as given in appendix IV. 1In
spite of the interactions with_the phonons, the excitons must
still be described by & singlet-triplet energy gap and by other
parameters that express exciton motion, exciton-exciton inter-
actions, and exciton creation and annihilation. Only a term such
as a phonon-coupled interaction between excitons changes the form

of the exciton hamiltonian. Otherwise, the effect of the phonons
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is to alter the meaning of the various parameters appearing_in the
exciton hamiltonian for the rigid lattice

We have shown in secfion iI that the singlet-triplet
energy gap, the parameter appearing in the term }{0(1.2), is
renormalized. We have also shown that Jéff for exciton moticn,
the parameter in the term }t (1.2), involves a phonon overlap
integral (see 6.8) and is consequently small. Similarly, it may'
.be shown that the parameters appearing in 5743 (1.3), which
describe exciton creationland annihilation procésses, are all.J’
times a phonon overlap integral. They are therefore also sub-
stantially smaller than the rigid lattice parameter J'. The
exchange Zinceraction between adjacent excitons, given by the term
}h (1.3), connects states with the same exciton distributions.
Hence the lattice distortions are all the same and the phonon
overlap is equal to unity. The parameter expressing exciton
exchange is therefore 1/4 J7, evaluated at tﬁe equilibriﬁm posi-
tion of the adjacent molecules of a pair of adjacent occupied
sites.

We therefore have a narrow exciton band of order Jéff,
localized, diffusional excitons with large effective masses, and
& phonon-coupled repulsion between excitons. At the same time,
~J'" may be of the order of J. The reconciliation of these proper-
.ties, as suggested in the introduction, indicates that cur dif-
fuéional model is consistent with the available low-temperatﬁre
experimental data. The present discussion is not easily extended

to high (kT > 2J) temperatures, since then both the exciton model
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and the exciton—phonon'intefaction must be reexamined. It appears
that the excitoﬁs then move rapidly compared with lattice vibra-
tions. Since the electrons forming an exciton are, on the average,
increasingly separated, the phonon-coupling changes, and probably
decreasses, with increasirg temperature (11).

The model we have presented is an oversimplification of
both the phonons and the excitons. In particular, the phonon
spectrum must in detail be quite different from the one-dimensional
spectrum we consider. Even such a minor change as the slight
alternation of the force constants, wnich is physically obvious
since the free lengths alternate, introduces an optical branch.
Blthough the nature of the results are unchanged, the mathematics
become far less tractable. At present, the uncertainties in the
varicus parameters describing the excitons are such that we could
have consistently replaced the dimensionless sums over the phonon
frequencies wq by unity. As long as we are interested primarily
in the excitons, the exact nature of the phonon spectrum is in

fact not crucial.
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Appendix I. Evaluation of Hq(t)

The basic identity used to evaluate Gq, Hq, and similar

expressions is the Slater sum (22),

=2 e—(k*'Lz)E
(xX{€) =
I.1
= oo ol il rexFeomi g,
where Hk(X) is the kth Hermite polynomial. Introducing
}\q = Fq"‘i“’qt» /uq=-iwqt) 1.2
we write, following O'Rourke (22),
G ®) = Sin‘n%.’%q Sded { )
9 -l (xry-
'\'l',’Sm\n?\qs\nh)l ‘AW ( 1718, @) anhiz
I.3
t(x-y)eothy Mq + (k4= 2Sq(q))’”cavnln—;:?\ti + (x-kg) coth 17\{)}
Using 3.14, 3.19, and I.3, we obtain
Sinh = L IS
o S g
sinhNgsinhpg M O3 T -

(x4 =28, (@) F-tankjlq + Grleothaperetid) ther 26l x
tan z?\q] f

We define

il

0 = tanhing + tanhipg
Ny = cothidg + cothfyg I.5

i\
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Using the definitions I.5, we have

sih3fq 4 sinae 2 el g

= : - T Mg~ Eall 'l‘ma\'\“i .

Hﬂ(t) W&Sin‘n)\qslm\n,}q MN Lq %?{ R a q) h‘}

Jutgeref ‘ﬁh‘@“@*“*&fﬂﬁ_&f‘“ exet- DG +
2%(%(11-2'-1(‘\)-—155]}

The integral is evaluated by completing the square in the

1.6

exponent. We obtain
sinhz %q ‘b‘siﬁ% 27 JC‘\"'D'?:{L . E{ |
| s'svxh)\q sinhpq MN Wy -Qﬂ-‘\-c‘ l_ﬂqﬂz{‘ _(1_;‘,]
A . %
o~ & Q@ tanhipy ~ Eallaning t 1

-

Hy®) =

I.7

It is straigntforward to prove the identities:

J_S'm\r\ ';‘Z(é'q ot _ |
\]—S-‘“»\)\c‘sw\hpq —Q-q—‘\“‘ | J

- & Q) tanh3 ftg — Ex(@tanhi N+ _%1_ = — 2 (&@-59) [aRgd te
| 9

(- coswogt) — isinwqt].

Since gi/ﬂz is of order 1/N smaller than Ai - QZ/AiQé,

._A.q ‘_D.c‘ _éz_

= (7, +& * ) . .
2_/\3\_[)_;- + ‘Qz‘i o Q’“l*‘zXCos ikwqf)(l-'lnfawk.@g{-an‘%__bn z-t)fc 9
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We therefore obtain
Gqlt) = ore '-i(z,,@ &) (unq»f )= cosuogt) - lsmwt)}

_ hsidt- \ )t
) = m (e DHeo L1 2t St - e .

Bppendix II. Derivation of Equation 3.12

We show that the cross terms in 3.11 vanish, so that the

transition rate wba may be written as in 3.12. We define Lq(t),

Lty = 2 2(sinh @)(n‘glng > ng |A@I NS> expf-

o2, II.1
(B £)fq - it —ndeog]} -
The cross terms in 3.11 may be written in terms of G _(t) and
Lo (),
' = = Swdt( £
Wy, = B4 @i, 0{2mM 5 | 60T 6o +
9’ q+9'
II.2
M L, Bl T G,

959" 444"

where ziu means q # q". We wish to show that Wga vanishes. If
the nogégl coordinates were not distorted, the proof would be

trivial. Then Lq(t) vanishes identically, since for two different
harmonic oscillator functions the overlap vanishes, while for the

same function, the expectation value of the position coordinate

vanishes.
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Using the Slater sum I.1l and the definition I.2,

L. @)= sin hﬁ ' I {‘I_Sin%sin%_s(%-‘i) q70
17 a ke s‘nhluq MN 2sin$ros Tet) qeo, T

A

Iq&) = SS xdxd‘é URp {— 1[? [.QH"‘I '7-9»(‘13)1‘&@\41«\*2/.1‘:‘ +
. Teo i1.4

(= P {eotn g +eoth T0) + (ery- 25,9)) tanhi Aq]}.

We nave assumed that the process considered involves the adjacent
molecular coordinates dj& and d£+l; we have also used that M and
M’ are real, which is a property of the exciton hamiltonian 1.1.
Using I.6, integrating as in appendix I, and using the identities

1.8, we have

5q
Iq(‘t) = ._Q. J\_ ._O.. Gﬂ(t> II.5

L (t) ‘ Eq C‘ (‘b) ZSW\ Slh 2_(2."':.) q70 .
! MNw ‘{ {ZS\V\ Cosﬁ—-(ﬂ-r‘;'.) g<o0 . e

The first part of II.6 is just Az(q), as given in 3.18, except
that gq nas been integrated out. This expression is independent
of the number of excitons on tﬁe lattice. Thus Az = 2 Aﬁ(q) is
éompletely détermined by the particular form of the lattice dis-
tortions arising from the excitons on site L or £ + 1. In all
the cases that arise with the exciton hamiltonian 1.1, the pertur-

bation is a distortion involving the coordinates of adjacent

molecules.



153

On the other hand, §q does dépend'on the exciton configu-~

rations /a> and /b> We generalize 2.11,

£q = £y (qrtanhz g + Ealqitannidg 1.7

fb)a(q)':- %_ ‘}{’\%‘)‘I %(—ZSM%‘) sinﬁfc(h%_) q70 .6

. ~2cos 38) \ o5 3870, L .
(occupied in ba) (Mleos 3 ) 4o

The sum is over the sites that are occupied in{Blhi), We assume,
‘as in_section IT, that the lattice is infinite (N -» «); there are
then an infinite number of excitons at any finite temperature.
Furthermore, since the excitons interact only through short-range
forces, the exciton distribution is random. Then the sum over

the occupied sites in ITI.8 giveé

€,(9) = &a () =0. 1.9

However, a quantity like eé(q) - eb(q) does not necessarily
vanish. For the processes examined in sections IV and V, /b >
and /a > differ by either the position or the existence of one or
two excitons. Thus, regardless of the overall exciton distribu-
tion, there is exact cancellation of all but the distortions due
to one or two excitons. Therefore eb(q) - ea(q) is of order
WARE

The cross terms therefore vanish because the system is
large. They may be divided into two classes which contain“one-

and two factors of Lq(t), respectively. While they are of order
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1/N and l/N2, respectiVely, of the analogous square terms, there
are N and N2 times as many of them. It may be verified by direct

integration that the size of Lq(t) is not enough to justify the

' neglect of the square terms.

Appendix III. Evaluation of W, (3.15)

We consider the first term in the integrand of equation

3.15,

I‘T 6 = orp{- %— FLCAORENCON [;zv\q+n(\_<ow,‘t)-asm{c]}; ==

As we show below, there exists_a t =T such that, for any wq,
.wdt << 1 and that the integrand is negligible for t >T . We
.expand coswqﬁ and siant and ngglect terms beyond the qu;dratig.
The integral then reduces to a Gaussian integral if we complete

the square,

Q) lMli

Wi = Ceemfiag Sa, e
‘where Aba and Bba are defined in 3.21. Integrating, we have
' : 2 |
o IM* 37 - Pba [2Ba |
\A/ = T2 |/ e III.3
ba f Bba. )

Tt is evident from III.2 that the integrand oscillates rapidly ’
for t 2T if Aba >> wq; and that the integrand is small for

2 . . ‘ . . - 0 .
tR"T if '}Bba >> wq These conditions are given in 3.22 and

justify the approximations made to obtain III.3.
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The second part of 3.15 is evaluated in the same way.
The conditions 3.22 are again needed. Using 3.20 and III.1, ,we

' find after some manipulation

@ M - Aea B
qu‘ £ -%‘—i.i- e q/ ba Z + SW\ --- [E.T.‘ {
| 1 MN “)‘( VBba III.4
— 3wy | wg Aba
(nq"'le-‘. g .ﬁm( \)a—Bbq)) T Zq Bia }.

. ‘ 2
Since B, >> “y and (Ab - By )/Bba < 1, we may neglect the second

term. Thus, we find

-A /2.'5 ¢
@ IM']*  —Fba/2Ppa
th = T é 277 fsin L{-{ﬁ +! +2‘iﬁé¢f ITI.S
At high temperatures, kT > 'ﬁwq,' and if w o= 0,
- Poa fwg III.6

2 Boa | YKT

Hence we introduce no serious error by neglecting the second term
at high temperatures. Replacing the sum in III.S by an ‘integral

(that is, letting N — «), we obtain

“w (AW
Wf—) = ”::l. Th e HKT L0-2Y 1117
& % g% VKT (1]~ Wog) g(-/8 ).

We combine III.3 and III.S5 to obtain wba in 3._23.

~

Z)’
~
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Appendix IV. Evaluation of TJ'< ﬁ%+l/ﬁ% >

. 1
As in paper B, the effective exciton hamiltonian may be

written

.H'e‘%f = é{l{t:—\tn - %Jeﬁ Q(:‘thﬂ'l' t;+|th)} + R+ )-}3 +Hi )

Iv.1

wﬁere the self-energy correction is included in the first term to
give the observed éinglet-triplet splitting J,. The parameter
‘describing exciton motion is Jéff and is found below. The parame-
vters J' appearing in 1.3 must be suitably reinterpreted, as dis-
cussed in section VIc; otherWise, ){l and .HS in 1.3 and in
IV.1l are identical. }h is the phonon-coupled repulsion between
éxcitohs, which we are approximating‘by a nearest-neighbor inter-
action,

Hy = 'Lz Ev‘_ V(l)t:tnttmthﬂ . V.2
The,effective exciton hamiltonian IV.1 is obtained by integrating
out the phonons from the matrik’elements of the exciton-phonon
hamiltonian l1.4. For instanCe; we use the Wave functions 6.7 and

the part of the hamiltonian expressing exciton motion to find

Jéff; |
I ke i ke . |
KM, ionl K = = {e cg“‘?‘"“; 7¥e I‘K"‘?M‘rb}- V.3
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. 5 541 o _ 3,.3-1
Since < i3 /nd T > = < n >
* q/nq | " >

k] Hy i 1K = —-31-'<coska)g <ndlni"s .

v.4

Thus the parameter expressing exciton motion is
| _ -—,3 6+|
Jegs = J ﬂ <ng | V\ .5

We consider the overlap between two displaced harmonic
oscillator WaVé functions. We suppose that the displacement of
one with respect to the other is known. The Hermite polynomial
centered at a may be expressed in terms of Hermite polynomials.

centered at the origin (38).

: n ‘ n-m
Hyx-ay = 2 29 by .6

m=o m! (n-m)!

We wish to evaluate the overlap between the two n-quantum harmonic
oscillator functions %;(x) and ﬁ;#x—a), centered at the origin

and at a, respectively. We have

IV'7

<t Py (x-a)) = 5 e "L‘&H (4+3)H,(4- %) .

1
where N_ = 1/(J7 2™"n1)®. Using the expansion IV.6 and the

orthogonality of the Hermite polynomials, we obtain

| | _ahr \
ca) = o SN gtnk
{ta (X)l‘h?(x»“) e kzzok!@_k)‘_( 2) ,  Iv.s
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» : - aq a
+1 4 \ -k
M<nd™ nd> = T[ezz__i__(a)"‘i .9
q k=o k‘(h k)
Since we have expanded / ng"'l > about the equilibrium position of
/n?_1 >, aq‘z 3+l(q) E.j(q). Using 2.12 and combining + ¢, we '
obtain '

a Z

. = Moy g siwde st 45 o
AN 2wy 0 T WO

- ai goes as 1/N. We expand the product to order l/N2, take the
‘1imit N - @, and rearrange,
2

i <v\?1+| l"‘%.> = OI*P{‘ %_ ﬁﬁ_(y\q-r-;—_)}. V.11
q |

2

‘The phonon overlap has been calculated for an arbitrary phonon
distribution. We now specialize to the thermal equilibriﬁm distri-

bution. As expected, the overlap does not depend on the site j,

el oA a8 s;w(\-cos), 4t
W <7 lV\q> JU)Q\){ 3%‘\{; S T O oy ALE )}IV 12

Using the parameters for WBP eétimated in section III, we’have,
at 0°X,

— 1+\‘V\1> ~ ‘0_3 ' :
'[‘F < Ny q . © IV.13



159

References

1. D. B. Chesnut and W. D. Phllllps, J. Chem. Phys. 35, 1002
. (1961). ‘
2. M. T. Jones and D. B. Chesnut, J. Chem. Phys. 38, 1311
(1963).
3. D. D. Thomas, H. Keller, and H. M. McConnell, J. Chem. FPhys.
39, 2321 (1963).
4, H. M. McConnell and R. Lynden-Bell, J. Chem. Phys. 36, 2393
© (1962).

5. R. Lynden—Bell and H. M. McConnell, J. Chem. Phys. 37, 794

(1962).
6. D. B. Chesnut and P. Arthur, Jr., J. Chem. Phys., 36, 2969
(1962).
7. E. Hughes, B. Kamb, and H. M. McConnell (unpublished wofk).
8. J. D. Turnef and A. G. Albrecht (unpublished work).
9. H. M. McConnell and Z. G. Soos, J Chem. Phys., 40, 586

(1964).

10. D. D. Thomas, A. W. Merkl, A. F. Hildebrandt, and H. M

 'McConnell, J. Chem. Phys. 40, 2588 (1964).

1l. Z. G. Soos, to be published.

12. H. Fréhlich, Proc. Roy. Soc. (london) A215, 291 (1952). |
This approximation has been used in all the subsequent dls—
cussions of superconductivity. .

13. J. Bardeen and D..Pines, Phys. Rev. 99, 1140 (1955).

14. J. M. Ziman, Electrons and Phonons, chapters 1 and 5,

'~ (Clarendon Press, Oxford, 1960). :

-15. J. I. Krugler, Thesis, Cal. Inst. Tech. (1965).

16. D. B. Chesnut, J. Chem. Fhys. 41, 472 (1964).

17. M. Trlifaj, Czech. Journ. Phys. 6, 533 (1956).

18. M. Trlifaj, Czech. Journ. Phys. 8, 510 (1958).

9. J

. Franck and E. Teller, J. Chem. Phys. 6, 861 (1938).



20.

.
22.
'23.
24.

25.
26.
27.
28.

29.
30.
31.

32.

33.

34,

35'
36.

37‘

38.

160

See, for 1nstance, A. Messiah, Quantum Mechanics, chapter 17
(John Wiley and Sons, New York, 1962).

M. Lax, J. Chem. Phys. 20, 1752 (1952).

‘R. C. O'Rourke, Phys. Rev. 91, 265 (1953).

H. D. Vasileff, Phys. Rev. 96, 603 (1954).

A. S. Davydov, Theory of Molecular Excitons, (McGraw-Hill,
New York, 1962). :

'G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962

(1962).

For a review, see H. Frohlich, Advances in Physics 3, 325
(1954).

S. I. Pekar, Research in Electron Theory of Crystals (Moscow,
1950; Translation Series, AEC, Div. of Tech. Inf., 1961).

To Dc Lee, F- En LOW, al’ld Do PineS, PhyS- Rev- _9_9, 297
(1953).

T. D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).
D. B. Chesnut, J. Chem. Phys. 40, 405 (1964).
R. G. Kepler, J. Chem. Phys. 39, 3528 (1963).

H. M. McConnell and C. G. Montgomery, J. Chem. Phys.lgg, 252
(1963).

D. B. Chesnut and A. Suna, J. Chem. Phys. 39, 146 (1963).

H. Sternlicht and H. M. McConnell, J. Chem. Fhys. 35, 1793
(1961).

R. E. Merrifield, J. Chem. Phys. 40, 445 (1964).
W. Siebrand, J. Chem. Phys. 40, 2223, 2231 (1964).

Z. G. Soos, Proposition II, Cand. Exam., Cal. Inst. Tech.
(1964) (unpublished).

P. M. Morse and H. Feshbach, Methods of Theoretical Phy81cs,
p. 787 (McGraw-Hill, New Ybrk 1953).




III. PROPOSITIONS



Proposition I:

162

|Reprinted from the Journal of Physical Chemistry, 88, 3821 (J864).}
Copyright 1864 by the American Chemical Bociety and reprinted by permission of the copyright owner.

Derivation of the Chronoampecrometric Constant for Unshielded,

Circﬁlar, Planar Electrodes'

by Zoltan G. Soos and Peter James Lingane

Division of Chemistry and Chemical Engineering, California Institule of Technology,
Pasadena, Californta  (Recetved July 8, 1964)

We have calculated the chronoamperometric constaut for a circular electrode of finite size

and have shown that it can be expanded as a power series in 4/ Dt/ p.

The coefficient of

the term in 4/ Dt/ po is 2.26 and is in agreement with experiment. This coefficient is calcu-
lated by exploiting the equivalence between this problem and the corresponding heat

conduction problem. -

I. Introduction
The familar Cottrell equation?

it ngD"
A -

does not adequately describe the current—time behavior

observed with electrodes of finite size at times longer '

than a few seconds.? Therefore, we have calculated the
current-time behavior for a circular electrode of radius
po and have shown that the chronoamperometric con-
stant can be expanded as a power series in A/ t/p; the
coefficient of the term in v/ Dt/ p is calculated. To do
this, we have exploited the similarity between this
problem and analogous heat conduction problems by
adding current sources in direct analogy to the heat
sources added in heat conduction problems. We dis-
cuss only the mixed boundary condition problem in
which the concentration is fixed at the surface of the
clectrode; the solution to the Neumann problem
(chronopoientiometry) may be obtained analogously.
If we neglect the effect of turbulence and of convec-

tive stirring, then the current passing through the area
A is simply

1 = nF %A{A = n§DVgE-A (1.2)

where ¢ is the current in amperes, n is the number of
cquivalents per mole, D is the diffusion coefficient in
cm.?/sec., and @ i8 the electrochemical potential. If
the solution contains a large concentration of support-
- ing clectrolyte, the transference number of the electro-

active species is essentially zero. Under these condi-
tions,* the diffusion equation reduces to

%(-’;‘ = DVC
where C; is the concentration in moles/ce. of the ith
electroactive species.

In the presence of excess supporting clectrolyte, the
compact double layer®® can be approximated by a
parallel plate condenser whose plates are separated by
one or two molecular diameters. Therefore, the charge
on the double layer for a circular electrode of radius po
will be uniform until p — p, approaches the thickness of
the compact double layer (¢/. Fig. 1). Since the metal-
lic electrode is an equipotential surface, the uniformity
of the double-layer charge requires that the potential
at the outer IHelmholtz plane also be uniform until
p — po approaches the thickness of the compact double
layer. Very close to the edge, the potential at the
outer Helmholtz plane wiil decrease with respect to the
solution potential.

Therefore, it is very reasonable o assume that the
concentration of the electroactive species will be uni-

(1.3)

(1) Contribution No. 3141 from the Gates nnd (‘rellin Laboratories
of Cheniistry.

(2) F. G, Coturell, Z. physik. Chem., 42, 385 (1902).
(3) P. J. Lingune. Anal. Chem., 36, 1723 (1944).
{4) H. L. Kies, J. Electroanal, Chem.. 4, 156 (1962).
(8) D). C. Gruhame, Chem. Rer., 41, 441 (1047).

(6) R. Parsons. "'Advances in Flectrochemistry und Electrochemical
Engineering,” Vol. 1, P. Delahay and €', W. Tobius, Ed., Interscience
Publishers, Inc., New York, N. Y.. 1881, Chapter L.
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Figure 1, Model for the circular disk electrode.

form at the outer Helmholtz plane of metallic electrodes
of finite size and in the presence of excess supporting
electrolyte if the concentration is governed by the
Nernst eqquation.

II. Formal Solution

We will first consider the oxidation of & single insol-
uble species to give a soluble produet, e.g., the generation
of silver ion into a solution initially free of silver. Our
clectrode is a circular planar disk of radius py situated
in the z = 0 plane {(¢f. Fig. 1). This electrode is poten-
tiostated at & fixed potential E, and it is assumed that
the Nernst equation is obeyed. This guarantees that
diffusion and not the electron-transfer step will control
the current, Observe that under these conditions, the
concentration at the surface of the electrode will con-
tinucusly increase with potential and no limiting current
will be achieved. This approach is purely one of con-
venience and is taken to achieve greater generality as
will become evident in the Discussion section.

The cylindrical symmetry enables us to write the con-
centration as C(p,z,l). The boundary conditions for
C(p,2,l) are :

C(E) p< o t >0+
C(pyoyt) { 0 2> o { = (0t
oC
S (pyorl) = 0 P> M t> 0+ (2-1)
0z
C(p,z,0) = 0 z2>0
lim C(p,z,t) = lim C{p,2,l}) = 0
o = @
(2.2)
lim C(p,2,l) = CHFE)
[
We use the superposition theorem and write
C(p,l,l) - Cl(p,l,l) + C"(Przrl) (2'3)
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1n general, the surface of an electrode can be repre-
sented by a continuum of current sources whose dis--
tribution and strengths are time dependent. The
source distribution for an infinite planar clectrode is
time independent and is uniform over the surface of the
clectrode. The time-dependent sources of C'(p,2,t) are
chosen to be equivalent to such a uniform distribution
for p £ patl = 0. Therefore, ("(p.z,l) is cquivalent,
initially, to the concentration distribution at a cireular
gection of an infinite eleetrode. At later times, radial
diffusion causes the sourees of ( .‘l(p,z,t) to decrease near
the edge of the clectrode and apparent sources to ap-
pearat p> p.  The sources of C'{p.2,0) couid be chosen
so that the boundary condition (2.1) is satisfied a1 all
times.  Alternatively, the sources of €' (p,z,0) tiight be
chosen so that the total flux from the finite electrode into
the region p < py is the same as from the infinite elee-
trode. We shall adopt the second condition because we
wish to approximate the sources for C'(p,2,0) by a line
source. Such an approximation gives a nonuniform
concentration at the surface of the eleetrode. Ob-
viously, an exact solution must satisfy both conditions
simultaneously.

The snalogous heat conduction problem is that of a
circular hot plate whose sources are chosen so as to keep
the heat flux from the plate into the region p < po the
same as the flux from a circular section of an infinite
hot plate whose temperature is uniform and time inde-

pendent.
The initial conditions for C(p,z,() are
. C(E) PS
i = <
¢o00m = 4 "Sh @y

Since the diffusion eqquation contains only a first deriva-
tive with respect to time, it is convenient to make the
partial separation ’

(Npzd) = (Og(p,Hf(z,0) (2.5)

where ("(FE) is the concentration at the outer Helm-
holtz plane and f(z,f) and g(p,f) are dimensionless func-
tions to be determined. It is evident that under eer-
tain conditions, such as ¢ = 0 or p — 0, the solution
must reduce to the solution for the infinite planar elec-
trode. Hence, f(z,f) corresponds to the well-known
solution for the infinite planar electrode”

2
f(z,t) = 1 — erf (2\/"{)

and g(p,) represents the effect of diffusion in the radiai
direction. [Furthermore, the initial condition for g(p,t)
is

(2.6)

(7) P. Delnhay, “New Inatrumental Methods in Flectrochemistry,”
Interscience Publishers, Inc., New Yurk, N. Y 1954, Chapter 3.
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P> po @0

1

Z(p0*) = Jm

g(p,t) must satisfy the radial portion of the diffusion

equation,

g(pt) may be obtained via a Hankel transform.?

Ouly zeroth-order Bessel functions appear because of

the eylindrical symmetry. The integrand is a solution

to the diffusion equation for each value of &, and hence
g(p.t) i8 a solution.

g(ol) = j; " kdk £(k)e =P o(lp)
(2.8)
(k) = f odp g(0.0)o(k)

As is shown in Fig. 2, g(p,!) is a step function at ¢ =
0+; at later thimes, tho time dependence of (2.8) gives
different superpositions of the Bessel functions and the
step-function decays. This decay expresses the fact
that there is radial diffusion.

Since C'(p,2,!) satisfies the boundary conditions only
at t = 0+, it is cvident that a current source must be
added toward the edge of the electrode to maintain a
uniform concentration distribution, This current
source will produce the concentration CM'(p,z,8). Once
we have caleulated C'(p,2,1), we will be able to determine
the position and the strength of the current sources

that produce C''(p,2,8).
- The current flowing through the electrode is given
rigorously by the gradient with respeet to z of the con-
centration evaluated at z = 0, p < po. Thercfore, the
current density corresponding to C*(p,z,0) is

i 2 Yol
S = D - i =
'l’b"oz i Pn’ j:) ( 0z ) pdp
' nﬂ’DC"
- f dog(pl) >0 (29)

’e) = [ kdke= k)

j; o'dp’g(p’ 0)Jolkp’) (2.10)

By reversing the orders of integration freely, it is pos-
sible to show that for an arbitrary g(p,0%) the current
density is an expansion in powers of 4/ ¢/ po.

III. Special Case: One-Component System

A. FExpressions for g(p,l). We now consider in de-
tail the properties of C'(p,2,!). The initial conditions
are fixed by (2.4); f(z,f) is given by (2.6); g(p,0%) is
the step function defined by (2.8). We integrate (2.8)
to obtain
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)
k
The exponential in (2.10) is now expanded in & Hankel
transform.  Only zeroth-crder Bessel functions appear

because of the symmetry in the k-plane. The inverse
transformation reduces to a Laplace transform.?

f(k) = j: o'dp’g(p' 0*)Jo(kp’) = 3.1

e = f " gdedolke)flg) (32
1]
o) = f" l.-dke"”mJo(k‘I) =
2th dye"”""(\/o \/y) o

Combining (2.9), (2.10), (3.2), and (3.3), we obtain
I -
glot) = 5D L gdge 40t X
j; Jolkq)Jo(kp)J 1 (kpo)dk (3_.4)

The integral over the Bessel funetions is a special case of
the formula of Sonine and Dougall. '

A
— —~g¥/4iu
Kot = 5o [ e A loma) (35

Alp,p0,9) =
* ' st > (p + ¢)?
2 2 2
cos™! (p__i‘_zg.—_po) (P + q)! > pn’ > (P — q)|
A . «qp .
Y (b — > p?
(3.8)
Henee
) 1 pte 0
L m E(P,l)=1+“f . Gge 4Dt 3¢
’ T Jw—p
' (3.7)
o ( - (a’ e p))
cos - et
¢ 2qp
1 e+ m o
p>p glot) = f dge ™ 4m X
o
(3.8)

o ()

(8) P. M. Morse and H. Feshbach, ‘ Methosds of Theoreticul Physics.”
MeGraw-Hill Book ('o., New York, N. Y.. 1953,

(9) W. Magnus nnd F. Oberhettinger; “Formuins and Theorenws for
the Functions of Mathematical Physics,” Cheisen Publishing Co.. New
York, N. Y., 1949, p. 132

(10) W. Magnus nnd F. Oberhettinger, thid., p. 37




In order to evaluate the intégrals in (3.7) and (3.8),
we first evaluate dg/0p(p,l). We can easily verify (or
observe from the boundary conditions) that dg/ds(p,0+)
is & 8-function of unit strength.

«.g == - ® 3 | p |
o (00%) = = s fo kdkJ 3 (k p).J 2 (K po)

L =0+
3.9)
= —&p — po)
>0 X0 = = 2 [ dpePon/i)ilon/ 0
(3.10)

|
I
|
|
!

Po ppo\ et

— I 4Dt

2Dt (21);) ¢

The Laplace transform® in (3.10) gives the modified
Bessel function of the first oraer.

We define Ag(p,t) to be the deviation of g(p,t) from
the step function g(p,0+).

Ag(pt) = glot) — 1
= g(p,t) p> o (3.11)

We now obtain an expression for Ag(p,t), p < po. It is
evident from (3.7) that g(0,f) = 1forall? > 0. Equa-
tion 3.10 then gives

p< m

PO s
glod) — g0, = f S (P00 5 S m
o Op

(3.12)
po [, [p'p eVt
2th h (21)) - de

po?/2Dt, and 8 = Dt/ py? =

Ag(p,t)

If weset x = ppo/2Dt, x0 =
1/2x0, we find

Agxl) = —e /% j;x I;(x)e""”di (3.13)

We use the properties of the modified Bessel functions!
and integrate (3.13) by parts repeatedly.

ag(xt) = —e‘*ﬂ{io (26T, (e — 1} |
(3.14)
= p~ %/2 — g PVADL PP
) {1 go( ) (2Dt)}’
p < Po

where 7, is the modified Bessel function of order ».

B. Correction lo the Currenl Densily. Expressions
3.13 and 3.14 will be used to evaluate g(p,f). Before
we perform this calculation, which requires a variety of
special conditions, we will evaluate the decay in the cur-
rent density al the eleclrode duc to the apparent. motion
of the current sources for C'(p,2,f) 10 p > po it the z =

» Z vl (x)
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0 plane. - We replace g(p,0) in (2.9) by Ag(p,l), except
for constants, we have

Pe po’ _%
f pdpldg(pl) = g -
0

» _hiter o e\ [
j:) pdpe 1 .§> (m) L (25:)
(3.15)
LY g [
°* {2 Po -goj:)
(28r)%e™ "1 (:c)xd.r}

We integrate by parts repeatedly to obtain

fxo "1™ (2)dr =
o
> 2
> (28x,)"

S L (xp)e ™"
w—t1 Zﬂv-f-l MAAD.

(3.16)

Substituting (3.16) in (3.15), we have

LA

Xo -
f pdpAg(pt) = e 4 X
0

LA 2
o, ..;o vl, (2Dl)} 3.17)

Using the recursion relations for the modified Bessel
functions, we find

L — 2Dle

/2 Z] 1@ — L@

2 g

(3.18)

ol lo(@) + $(x)}
Substituting (3.18) in (3.17), we obtain

Xo p02 _ﬂ:
f Melopdp = — 2 o din
[

[ 2 P\ _ teya m}
{Io (2Dl) + 1, <2Dt> e | (3.19)
Hence

Az - nffD("f e Poi) (_ﬂ?f)
‘/;h h {10 (2Dl + I 2Dt
P+na'/4m} -(3.20)

Equation 3.20 is an cxact expression. The current
sources for C'(p,2,!) have an initial uniform distribution
over the surface of the electrode that is identical with
the time-independent distribution of the current sources

(1) Il B. Dwight, *Tnrbles of Integrals and mher Mathemutieal
Duta.” The Macmillun Ca., New York, N. Y.,
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Figure 2. Plot of g(p,!) as a function of p illustrating the
redistribution of the sources of Ci(p,z,t). po =
0.2 cm., D = 1 X 107¢ cm.?/sec.

> for the infinite planar electrode.
sources for C'(p,2,!) are redistributed in time because of
radial diffusion; the sources near the edge of the elec-
trode decay, and apparcnt sources are found outside the
electrode (p > po). g(p,d) -is identically unity for the
infinite planar clectrode since there is rio radial diffusion
in that case.

C. Evaluation of g(p,t) for Experimental Conditions.
In order to find g(p,t), p < py, and thus determine the
position of the sources that we shall use for C'"(p,2,1), it
is convenient. to specialize the experimental conditions,
ie., po 2 0.2 em., D ~ 10-5 em.%/sec., ¢ < 100 sec.

Under these conditions, p?/4Dt = xo/2 > 10. From
the definition of I,(), it is evident that /, , 1(z) < I,(x)
for all v whenx > 0. Hence, we have from (3.14)

2,1+ p? i g
B "_PL) (4’—) =
|ag(pt)| < e 3B I, (2Dt ?-:B P

#1 0t
e~ A I, (pp") o

; . l
2Dt/ 1 - o/ (3.21)

2 < P

3, and we lﬁay use the large
We then have, for 0 <

For p = py/4, x0/4 2
argument expansion of Jo.!!
4 < Po/ 4

However, the current
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lagle,)| < |ag(po/4,8)| =

ox,
e 32 1
4y —— [1 + or :I ~e (3.22)
TXo Xo
2 .

Hence we observe that Ag(p,l) is negligible for p < py/4.
Equation 3.21 is an upper bound for [Ag(p,b)], since, in
it, we have replaced all of the modified Bessel functions
by I, For example, eq. 3.21 gives [Ag(0,))| < e~
while Ag(0,t) = 0 (for all {) from eq. 3.14. For p.,/4 <
p < p,, we may use the large argument expansion of the -
modified Bessel functions in eq. 3.12 throughout the

entire range of the integration.
x dy 3
—e""«’f e —(1——...)
xo/4 V2ry 8y
(3.23)
—fix, -9}

/4 V2ry 8y

Since x,/4 > 5, it is straightforward to integrate (3.23).
Hence

Ag(p,t) = B
(1ot (57)) - va " X
S () persa
T (3.24)

bl

Ag(x,t) =

0

<P
P

Expression 3.24, which has the expected form, may be
obtained directly from (3.7) by taking p = py — Aand
letting A —» O after the integration. If weset p = py itk
(3.7), the integrand is indeterminate at ¢ = 0; when the
integration is now performed, -only the second term of
(3.24), evaluated at p = p,, is obtained.

Smce the derivative of g(p,!) is continuous for ¢ > 0,
we may usc an expression similar to (3.12) to evaluate

g(p)t) for p> P

P
Aglpt) = 1 + Aglonh) — 2D‘f h (;D‘;) X

_ )4+ pt
e 0 dp >0
(3.25)
\/Dt

- .1/, (1 — erf (;‘;ITP;)) 2:/— Po

ol (42))




B

The next ternr in eq. 3.24 or 3.25 is negligible for the
times of interest. Since f(0,t) = 1, the deviation of
C'(9,0,0) from C° for p < py ie C® times expression
3.24.

D. Sources for and Caleulation of C"'(p,2,0). - g(p,t)
i plotted as a function of p for various values of ¢ in
Fig. 2... It is evident that, for { < 25 sec., deviations

from the step-function initial condition are important.

only within 0.02 to 0.03 cin. of the edge of the electrode.
Of course. this is precisely what is expected, especially if
the analogous heat problem is considered. Therefore,
we need a current source of radius of about 0.01 em. at
the perinieter of the electrode, placed so that the outer
edge of the source is at p = p, if the boundary condition
(2.4) is'to be satisfied for all times. Such a time-de-
pendent sourece, which arises from the decomposition of
the concentration in (2.3), defines the diffusion problem
for C"(p,2,0).

As a first approximation, we consider a time-inde-
peudent source at p = pp. This should be a good ap-
proximation for short times since, for short times, (3.24)
shows that the source is essentially at the edge and,
as is evident from the large argument expansion of the
modified Bessel functions, (3.20) shows that Ai/xpe? is
essentially time independent.

. o
ai _ nD2C {1 +0 (QD} (3.26)
p

4 TP o

In the same spirit, we may, for short times, approximate
the source by an infinitely long, straight wire and express
the concentration at a distance r from the wire as

0 «
gy = £ 9 o
2x Jopvm 2
Ca . r?
- ;Ei (— 4Dt) (327)

where Ei(x) is the expouential integral. o is the
strength of the source and will be evaluated below, This
solution is borrowed from the analogous heat conduc-
tion problem.!?

It is not convenient to satisfy the boundary condi-
tion (2.1) by requiring that the sum of CYp,z,t) and
C™(p,z,t) be uniform and time independent at the faece
of the electrode, since, by lumping the correctious into a
line source, we have introduced a singularity. We
may, however, as an alternative condition, match
fluxes. Since the exact sources of C™(p,z,t) have
“radii” of about 0.01 cm. for ¢ < 25 sec., the approxi-
mation of a line source should be excellent for r 2 0.01
em. (¢f. Fig. 2). Once outside the source distribution,
its detailed composition beconies unimportant; as‘in a
multipole expansion, the major efiect is found by put-
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ting a point source at the center of the distribution.
We will approximate even further and place the source
at the edge of the electrode instead of near the edge.

The current flowing from & straight wire is radial by
symmetry. At a line source of strength a, the current
per unit length is

t = nFD2xr Sb; C'r)|,e0 = —n3DC% (3.28)

It is evident from Fig. 1 that the symumetry in the z =
0 plane requires that the flux flowing into the region
where z > 0 is just half the total flux from a source
whose intensity is twice the intensity of the actual
source. Thus (3.28) will be correct if &« is taken to be
the actual intensity per unit length of the line source.
Furthermore, at least for short times, the flux into the
region p < o, is the same, by symmetry, as the flux into
the region p > p,. The total flux from a line source of
length 2xp, is

o~ _ 2 sDCva

7p,* Po

(3.29)

Half of this current will flow into the region z > 0, p
< po. Hence

Vaiy = — A (3.30)

where A7 is given by (3.20). These two currents have
opposite signs since the source for C'(p,z,l) is to cor-
rect. for the effeets of radial diffusion. Thus we ob-
tain

a= (3.31)
"

The correction current density is therefore

i _ _nsDC 4 /D

g VDt Vx s
E. Total Current Densily and Concentralion Profiles.
The total current density is the sum of the current
sourees for C'(p,z,t) and eq. 3.32. The (folal current
density due to the sources of C'(p.z,0) is (¢f. eq. 2.9)

3 D ©
L, —nFC0 J—' f g&(p,0) pdp
nt Jo

wpy
~ngC* ‘/Q {1 +0 (9—‘,»
=l Po-/)

(3.33)

(3.32)

i

Therefore, the total current is

(12) L. R. Ingersoll, 0. J. Zobel, and A. C. Ingersol, “Heat Conducw
tion,” MeGraw-Hill Book Co., New York. N. Y., 1948, p. 146.
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i n3DC° {

xp? /xD

Yo (2)
(3.34)

Although the boundary condition (2.1) is not satis-
fied in detail on the electrode, it is evident that, if the
line charge is redistributed near the edge, the concen-
tration could be calculated even at the face of the elec-
trode. The current correction would, however, be
very nearly the same since the flux from a source dis-
tribution niay be found by calculating the flux from the
equivalent point source.

We have overestimated the correction in (3.30) since
the center of the correction source is actually at p <
p, rather than at p = p,. Thus slightly more than half
of the flux goes into the region p < p,- This effect is
only of the order of a few per cent for t < 25s8ec. At
longer times, when this effect becones larger, the as-
sumption that the added current is a line source ap-
proximated by a straight wire also becomes untenable.

Cpz,t) and CM(p,z,l) are given by (2.4), (2.6),
(3.24), (3.25), and (3.27). As discussed above, C*(p,
2,t) is a poor approximation for distances smaller than
the dimensions of the sources of C¥(p,2,t). The di-
mensions of the sources of C'(p,z,t) may be estimated
from Ifig. 2 which shows the region for p < p, where
Ag(p,t) is appreciably different from zero. For ¢ <
25 sec., a distance of about 0.01 cm. from the edge of
the electrode is sufficient to ensure being outside the
source. We therefore have, for t < 25sec. and r 2 0.01
cm.

Clozt) = C'(p2t) + C"(p,2,t)

1 - crf(a\j—ﬁt)
1 +/Di

[ (r o (G50))

Cllpzt) = C° - =
(p,z) 2_\/_[ 2

1 r? Po
—- il - = < Po
2t Ei( 4Dt) 0<r<,

0 ggﬁr<w

C"(p,l,t) = ("

(3.36)

wherer = [22 4+ (p ~ p‘,)’}‘/’.
Near the electrode, the concentration may be found
more accurately by replacing our line source by a series

[ (- et (7)) - 5 M2t o)1 - et (575))

1.0

clp,2.t)/f(z,0)

<)
[+]

1 1
o.i18 [sX} ¢

Picm

i
0. 0.19 0.1¢

Figure 3. 'Typical concentration profiles for
C(p,2,l) and (Y{p,2,t): z = 0.01 em,,
oo = 02em., D =1 X 107 em.2/sec.

of line sources and then replacing each line source by a
finite source. The strength of such sources is still de-
termined by Ag(p,f). As is evident, such a procedure

. approximates the exact solution more and more ac-

curately. However, in order to obtain the exact solu-
tion, both the location and the strength of the sources

Po
0 < p<--
>0 1

e'(’;;;)’](l — erf (5721—;2)) ;:—" el pm

p<p< o

(3.35)

for CY(p,2,t) must be time dependent. Thus, the
mathematics becomes counsiderably less tractable.
The simple model discussed in this paper is therefore
useful in that it provides an accurate value of the total
current density and, except very near the electrode, ac-
curate concentration profiles.

IV. Discussion

A. Generalization. Our solution can be readily
converted into the more usual situation where the solu-



tion  originally contains the electroactive species at

concentration (® and the produet is insoluble. This is
‘done by the simple transforination
C’(pyzvt) =(" - C(p,z,t) (4~1)

where  C'{p,2,t) .is the transformed concentration and
C(p,2,f) is given by (2.3). Under these counditions, eq.
3.34 will be valid at all poiuts on the {-£ curve if C? is
replaced by (0 = C(p,0,,£).

This treatment can be extended to include the more
general system where both the oxidized and reduced
species are soluble and the solution is initially free of
the reduced species.  We decompose the concentration
of both the oxidized and reduced species into the two
‘components  CX{pz,t) and C'(p2l). We require
the additional boundary conditions that the ratio of the
concentrations of the two components at the outer
Helmholtz plane is fixed by the Nernst equation and
that the sum of their fluxes is zero at the electrode.’
The current on the diffusion plateau will be independent
of the reduced species and will again be given by eq. 3.34.

It is evident that an analogous approach can be used
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to obtain a solution under different boundary conditions,
such as a constant concentration gradient at z = 0.

B. Comparison with Experiment. The theoretical .
value of the chronoamperometric constant is obtained
by rearra.nging eq. 3.34.

=nsJD{x+ 1 —‘/D‘+o(m)}» (1.2)

The coefficient of the first ter has been evaluated ex-
perimentally for p, = 0.258 e and 0.01 < v/Dt/p, <
0.08 for a varicty of systems.? The experimental value
of this coefficient is 2.12 & 0.11 (959, confidence level)
and is in agreement with the theoretical value of 2.26;
the agreement is especially good since the latter is &
slight overestimate. '
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Phonon-Coupled Interactions between Paramagnetic Excitons*

" HARDEN M. MCCONNELL AND ZoLTAN Soost
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It is shown that exciton-phonon coupling in solid free radicals leads to a spin-independent repulsion be-
tween paramagnetic excitons. This repulsion may make a significant contribution to the activation energy
for spin-exchange line broadening that is observed in the paramagnetic resonance of a number of solid free

radicals,

INTRODUCTION

?REVIOUS theoretical treatments'? of paramag-
netic excitons in solid free radicals have neglected
“exciton-phonon coupling, even though it is quite likely
that the exciton—phonon coupling is large. This neglect
is justifiable from a phenomenological point of view to
the extent that the form of the spin Hamiltonian for
the problem is independent of exciton-phonon cou-
pling. In the present paper we shall describe briefly a
spin-independent repulsion between triplet excitons
that is not represented by the previously described
triplet exciton spin Hamiltonian. This phonon-coupled
interaction between triplet excitons may make a
significant contribution to the activation energy for
spin-exchange line broadening that is observed in the
paramagnetic resonance of a number of solid free
radicals.?—*

MODEL

In the solid free radicals that show triplet exciton
paramagnetic resonance,>® the exciton motion is prin-
cipally along linear free radical chains. The simplest
example to consider is Wurster’s Blue perchlorate where
each radical in the chain is a positive ion, and where the
distances between the ions are presumed to alternate
in the low temperature crystal structure.® A schematic
of this alternating linear array is given in Fig. 1. The
spin exchange interactions between the spin &, on the
‘uth molecule and its nearest neighbors are given by

* Sponsored by -the National Science Foundation and by the
“U.S. Atomic Energy Commission.

T NSF predoctoral fellow.
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the spin Hamiltonian?

2 Bt J'Cn B

n=1305....

3C,= (1

Here €.=14. As has been pointed out previously,? this
Hamiltonian can be written in the form

30e=Co+30,+30s-+3C, 2

where -

GCQ=J Z ’n+tn: (3)
n=1.3.5,000,

oy=—17 Z ln+(tn+2+t"—2)’ (#)

n=13,5,...,

=1 5 SuSun, ®

n=1.3.5,...,

3Cs=§J'X (terms creating or destroying excitations).
' (6)

In these equations £,* and ¢/, are operators creating and
destroying triplet excitations on the pairs of molecules
nand n+1, and S, is the total spin angular momentum
operator for the pair of molecules # and n+1, S,=
S,:+&.1. In Eqs. (3)-(5), n takes on only odd
values, =1, 3, 5, +++. The Hamiltonian term 3C; gives
the spin dependent exchange interaction between ad-
jacent triplet excitations. As in the previous work,? we
assume that J>>J’>0. The eigenstates of the free
exciton gas Hamiltonian 043¢, are given elsewhere;.
the elementary cexcitations have fermionlike prop-
ertics.27® The term in 3C; can be neglected (or simply
treated by perturbation theorv) when J>>J'. The
term in 3C; which gives a spin-dependent exciton-
exciton interaction is probably small compared to the
repulsion between the excitons due to the phonon-
coupled interaction described below.

We consider only the phonon spectrum of the lincar
lattice sketched in Fig. 1. The displacement of each
molecule from its equilibrium position in the chain
direction is d, and the molecule-molecule interaction
is assumed to be harmonic, }g(da—d.41)% For sim-
plicity, the same force constant g is used for the cou-

7D. B. Chesnut and A. Suna, J. Chem. Phys. 39, 146 (1963).
* H. M.! McConnell and C. G. Montgomery, J. Chem. Phys.
39, 252 (1963).
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pling of molecules » and n+1-as for # and n—1. The ,

three-dimensional character of the real lattice is intro-
duced by including in the potential energy of the
phonon Hamiltonian terms of the form Gd 2+ Gd... 2+
+«+ which hinder the otherwise free translational mo-

, tion of the linear lattice in the chain direction. With
these potential terms the phonon Hamiltonian is
(except for zero-point energy) :

(7

(8)

where b+ and b, are phonon creation and annihilation
operators, and where m is the mass of each molecule,
and A=2+1G/g.

The exciton-phonon coupling arises through the
distance dependence of the exchange integrals

=Ty j(dusimdn) +-o-. (8)

We include only this linear term in the displacement,
and neglect the distance dependence of the much smaller
exchange integral J’. The exciton-phonon coupling
Hamiltonian 3. can then be written '

E 3Ce(n),

ne=1,36,...

3e(n) =jtattn(dnp1—dn),

3 p= Zflwkb/{fbk,
* .

we= {2g[ (3x) — coskY/m}3,

3C,= 9)

or
3ee(n) =jN—Y,*, 3 (2h/max)} sindk
k

X exp[—ik(n+3) (b —b). (10)

Here N is the number of atoms in the chain. For
J'& i, 3C; can be treated as a second-order perturba-
tion on the momentum eigenstates of 3¢,+3C,, or on the
localized eigenstates of 3C. In the latter case, the
second-order energy V(n—#') that depends on the
distance between the localized excitations # and »’ is

V(n—n')=—=23 (Fa) ™ (n, n';0 | 3.(n) | n, n'; k)

X{n,n'; k|3 (') | n,n';0), (11)

where | n, #'; 0) and |, #'; k) represent quantum
states of the linear chain where spin pairs #, #-+1, and
n', n'41 are excited to their triplet states and where
there are no phonons ( | #, #’; 0)) and a single phonon
of wavevector k(| #n, #'; £)). When A>>2, the above
summation is readily evaluated by a power series
expansion, with the result

V(n—n') =73/ gin—n'l, 12)
Equation (12) gives the lowest-order contribution to
V{n—n') for a given | n—n’'|. An exact expansion
good for all values of A (but only valid to second-order

734

— @

© @ ©), ®

"G""

F16. 1. Schematic of alternating linear array of exchange-
coupled molecules.

perturbation theory) is

4

"<"'"’5=’f(‘“f),.;?;.(;-?-;-m)fa- (s
where
G=ra=r)

is the binomial coefficient.

From the foregoing results we see that the effect of

the phonon coupling of the triplet excitons is to give

rise to an effective Hamiltonian of the form
=32,V (=) bbb,

n,n’!

(14)

For n=n' in Eq. (11) one obtains the “sclf-energy”
for a single exciton, which is

V(0) ==5%/2g{1-[(x—2)/(x+2) }}.

DISCUSSION

The model used above for the calculation of phonon-
coupled interactions between triplet excitons is cer-
tainly sufficiently realistic to show the existence of
this effect. Although it is difficult to make a reliable
order-of-magnitude estimate of the repulsion potential
V(n—n") for a particular crystal at the present time,
the discussion given below does strongly suggest that
this potential may be very large indecd in the crystals
of interest.

It is known that the Wurster’s Blue jon, and also
TCNQ ions, dimerize in solution.®1® The shortest inter-
molecular distances between the ions are almost cer-
tainly of the order of R~3—3.5A. At this distance the
exchange or bonding force!! pulling the molecules- to-
gether is of the order of j=0J/3R, and the dominant
force pushing the molecules apart is the coulomb repul-
sion, of order ¢?/R®. Thus, at the equilibrium inter-
molecular distances, j~¢?/R2 In the crystal lattice of
Wurster’s Blue, the dominant contributions to the
force constant g must be of the order of the contribu-

( 9 K7.) H. Hausser and J. N. Murrell, J. Chem. Phys. 27, 500
1957).

1D, B. Chesnut (private communication).

11t should be noted that our arguments are essentially inde-
pendent of the extent to which charge-transfer effects contribute
to J and f providing that the intermolecular charge transfer does
not approach 1009 in the singlet ground state of a free-radical
pair. :



tions of the coulomb repuisions between the molecules,
" which is g~¢*/R% Thus, the factor j2/g that appears
in Eqgs. 12 or 13 for V(n—un') is of the order of /R,
which is of the order of 1 eV. Further, if we assume that
.the two force constants g and G are of the same order
of magnitude, then the repulsion potential is quite
. large for adjacent localized excitations. For example,
when g=G, the factors involving X in Eq. (13) give
V(2) =0.06452/g, which is of the order of 500 cm™.
The above repulsion potential must contribute to
the activation energy for exchange broadening of the
fine structure lines of exciton paramagnetic resonance
spectra. That is, in all the solid free radical exciton
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spin-resonance spectra that have been observed thus
far, the exciton concentration varies as ~ exp(—J/&1
(at low temperatures) whereas the spin exchange line
broadening varies as exp (—AE/kT), and in general,
AE> J. For example, the excess activation energy for
spin-exchange broadening, AE—J, is equal to 146
cm~! in Wurster’s Blue perchlorate, and is even larger
in some of the TCNQ salts? In Wurster’s Blue perchlo-
rate it has been shown that this excess activation energy
cannot be attributed to an activation energy for diffu-
sion.® In the light of the present calculations this excess
activation energy may very well arise from the phonone
coupled repulsion bétween the triplet excitons.
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Proposition III

Motional Narrowing in One-Dimensional Exciton Systems

- Abstract

The hypérfine interaction betweén a triplet exciton and
nuclear spins is averaged out if the excitons are not stationary.
We consider motional narrowing for localized, diffusional excitons.
We show that, in abone—dimensional system, both the exciton jump-
ing frequency o and the lifetime of the excited state l/uuL must
be included, even when ug >> w; . When ug >> Wy, & Lorentzian
line is found, in agreement with experiment. Also, the dependence
of the line-width on the jumping frequency agrees with McConnell's
result. The calculation we present is a specialization of

Anderson's theory of motional narrowing to a one-dimensional

system.

I. Introduction

The theory of line-shapes in magnetic resonance is inti-
mately connected with the theory of relaxation and is consequently
of central importance. A general theory of magnetic resonance
~ absorption has been presented by Kubo and Tomita (1). The theory
of line-shapes and relaxation has been further considered by Kubo
(2). The narrowing of spectral lines has been of interest from
the first. Exchange narrowing was demonstrated by'Gorter and Van
Vlieck (3) and by Anderson and Weiss (4). Motional narrowing was
discussed by Bloembergen, Purcell, and Pound (5), and a mathemati-

cal model based on their ideas was proposed by Anderson (6).
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It is the purpose of such theories to relate the absorption spec-
trum to a correlation function. The correlation function then
characterizes a systemj it must be guessed or calculated for each
case considered. Our purpose in the following is to study the
motional narrowing of the hyperfine interaction in one-dimensional
exciton systems.. We modify Anderson's theory (6).to fit a one-

dimensional model.

IT. The Model

The low-temperature electronic properties of certain
organic crystals may be described in terms of paramagnetic
(triplet) excitons (7,8,5). The crystal structure is such that a
one-dimensional model is indicated (8). .There is a tightly-bound
unpaired electron oﬁ each 6f the molecules forming a.lineér array;,
If we neglect the moliecular vibrations and all but the low-lying
triplet electronic excitations, the hamiltonian describing the

tightly-bound electrons is

Nfa
Ho= 2 135 S + 75,5, &
24 Tlaty . -
i= L 2j Tl
where there are N molecules in the chain, 'S:ﬁ is the electron

spin on the 2jth molecule, and J > J' > 0 are the exchange inte-
grals for antiferromagnetic coupling. This phenomenological
hamiltonian is due to Heisénberg (10) and has long been the basis
for theoretical investigations of ferromagnetism and antiferro-
magnetism. We will consider only the case of strong alternation

(J' < 1/33) and low temperature (kT < 1/2J). Under these
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conditions (11), the excitations are triplets and the two unpaired
electrons forming a triplet exciton are adjacent in real space.

By considering the effect of longitudinal phonons, it may be shown
that the triplet excitons are localized and diffusional (12). The
triplet excitons are confined to a random-walk along the chain.
The jumping rate is w, -

We consider the transitions between the levels of the
triplet exciton. In high magnetic field, the transitions are
between the Zeeman levels of the exciton; in zero field, they are
the zero-field transitions that arise from the dipolar interaction
between two electrons forming an exciton. For intermediate mag-
netic fields, linear combinations of the Zeeman and the zero-field
levels are required. We concentrate on a particular transition,
with frequency wt. The pair of adjacent molecules to which a
localized exciton is restricted contains a number of nuclei with
spins. The hyperfine interaction between the exciton spin and the
nuclear spins modifies slightly the transiton frequency w_. We

t

define Aw = w - w_ to be the deviation of the transition frequency

if the nuclear spins are included. In general, w_ >> /Aw/ and Aw

is symmetric about . We aiso define wg to be the mean square
breadth of the line in the absence of motion.

The nuclear spin orientations are random. To simpiify,
- we assume that the‘nuclear spin orientations may be considered to
be fixed. Since each of the pair of molecules contains a number

of nuclei, the frequency distribution Aw is Gaussian; the

Gaussian approximation is rather good even if there are but 6-10



176

nuclear spins (4). Even if we include nuclear spin relaxation,
the nuclear spin distribution is independent of time for a system
in thermal equilibrium. The preceding may be summarized by say-
ing that Aw(t) is a stationary Gaussian random function. In the
absence of motion, a Gaussian line, or if the hyperfine lines can
be resolved, peaks wnose envelope is a Gaussian line, would be
observed. The line would be centered at wt and its width would
be wp.

Finally, we need to know the lifetime l/wL of an excited
state. In a one-dimensional system, Wy is important even if the
jumping frequency wj is much larger than wp . The reason is that,
in one dimension, a random walk is highly correlated: there is a
50% probability that the exciton jumps to the site it has just
vacated. Thus the usual three-dimensional approximation that
there is no back-jumping breaks down. We note thaf Wy may contain
contributions that affect the line shape in different manners .

For instance, there is the relaxation, due to the hyperfine inter-
action, of the exciton levels (SZ changes but S remains fixed).
There is also relaxation, due to vibronic coupling, in wnich the
triplet state is annihilated (S is not conserved). Finally, there
are exciton creation and annihilation processes via lattice
phonons (S and SZ are cohserved). These processes, unlike the
relaxation processes, do not broaden the line directly. In gen-

eral, we must have wL_z wp. If Wy is entirely determined by

relaxation processes, then W = wp; if there are exciton creation
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~ and annihilation processes which do not broaden the line directly,

then wL > wp.

IIT. The Correlation Puncfion

We construct first the function gAw(T) = ¢Aw(T)w§' gAw(T)
expresses_the probability that if, at time t = 0, the transition
occurs at wt + Aw, thén at t = T the transition still occurs at
w£v+ Aw. We construct an ensemble in each of whose replicas there
is, at t = 0, an exciton on a site such that the transition fre-
quency is W + Aw. Since the frequency distribution Aw is sym-

metric about Aw = 0, it is straightforward to show that
g, (T) = PO, 1), (2)

where P(0,T) is the probability'that the exciton is at its
original position at t = T. |

We assume for a moment that W, = 0; that is, that the only
interruption of the resonance is by‘exciton diffusion. Since the
éxciton is executing a random Walk in one dimension, fhe proba-
bility distribution expressing the exciton distribution at t = 7
“i§ a Gaussian centered at the site on which fhe exciton was at
t = 0. Using the identity.‘

- -tn"

e = Ji E—. €~'Tr1.h1/t | - '
. t | S

n= -« C - )

it is easy to show that, to better than 10%
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)

. . .
. | 0<£&LT £ :m'wi
(O)t) - i ¢ oo (4)
Jlﬂ'w‘{c lTHA)]' <7 *
We now remove the restriction that w, = 0. The finite lifetime

L
of the excited state on a given site gives an exponential decay.

Thus we obtain

~W, T |
0<¢ 7T & 7.
2 = 2TW,
G0 (® =W @pu(0) = e WT | s
Va7 u);"\:' 2mW; (Tl 0.

The case of interest is wj >> wL<3.wp. The approximation for
ﬁAw(T) is always better than 10% and, for T > l/nuﬁ, better than
1%.

We restrict the discussion to a single electronic transi-
tion, with mean frequency w . As shown by Anderson (6),'the‘

absorption spectrum is

S“’ (AW T

T(aw) = wotte Gf("*) ] (6)

-

P(7) is the correlation function. If Aw(T) is a stationary

Gaussian random function (6),

T
9(9 = fvw{—w; fa”‘“t-xﬁ?w(x)}. (N

We now calculate #(T). Substituting in equation (7), we find
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_ _ w; rL- "wl..t
§(t)= m{ WL[Tﬁerg@@ o B .,.E‘Y&)—‘:_Lu&l—@]}(e)

where we have neglected the contribution from the region 0 < x <
: ,
2w, - For T< 2/wL, if W >> wy, P(T) ~1. For T > 2/wL,

z

T
§(x) = MP{'E%—J\_ l. (9)

Although, for T < 2/wL, P(7) is more complicated, it may be shown
that $(T) is a monotonically decreasing function. ®(T) may be
approximated to better than 1% by $(T) as in equation (9), even
for 0 < T < 2/w., provided that 10™* Wy~ ~
We use equation (9) to perform the integration in equation
(6),
2

2__:fﬁl_
I (AUJ) —_ sziw\_

(10)
Pl

2 ' g
Qw)” + ()
QH%UJL
The absorption line is Lorentzian, with width

2z
w
>\ = ‘_—‘L— * (11)
J 209; Wy
In the three-dimensional problem, the width is wg/uﬁ (6)., The
restriction to a one-dimensional random walk necessitates the

inclusion of w; as well as uﬁ. As perhaps should have been

expected from the greater correlation, due to back jumping, in
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one dimension, there is less motional narrowing. Motional nar-

> <
L N,wp. For ua wL,

the approximations made to evaluate $(T) must be modified. In

rowing still occurs when uﬁ >> wp, since @

the case of slow jumping, the expected line is the unnarrowed

Gaussian.

IV. Discussion

The preceding calculation is restricted to localized,
diffusional excitons. The justification for such a model is given
elsewhere (12). Since we have entirely neglected all exciton-
exciton interactions, the calculation is restricted to low tem-
peratures. For instance, to temperatures such that the mean time
between an exciton-exciton collision is greater than the lifetime
of the excited state. The parameters we have introduced may be
estimated. The exciton jumping frequency uB may be evaluated

explicitly (12). The frequency w. is more difficult to evaluate,

L
since it includes several effects. The creation and annihilation
of excitons via lattice phonons may be calculated (12). At very
low temperatures, relaxation processes are the dominant mechanisms.
Thus, at least as a first approximation, w, may be set equal to
the observed line-width.

By setting w; equal to the line-width W, of the observed
Lorentzian line, McConnell has obtained a qualitative estimate of
motional narrowing for localized, diffusional excitons (13). We

set A = wp to be the hyperfine interaction in the absence of

motion. Substituting in equation (11), we obtain
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| |
Wiog = A(SbyH
i = — ) - (12)
_ 1005 '
Except for the factor of 2 in front of w., this result is identi-
estimate J

cal with McConnell's? We may now turn the argument around and
use equation (12) to estimate the jumping frequency wj. The
estimates are consistent with the calculated values (12). It
appears, therefore, that the motional narrowing of the hyperfine
interaction in paramagnetic exciton crystals may be understood on
the basis of previously derived theories of line-shapes. We note
that, because of back jumping, the correlation function for the
one-dimensional system we have considered is qualitatively differ-

ent from the correlation function for the equivalent three-

dimensional system.

Acknowledgments.--The author would like to express his
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Proposition IV

- A Suggestion for Many-Body Calculations

vastract

It is proposed that field-theoretic techniques be applied
to many-body problems after the best possible zeroth-order basis
set has been obtained by canonical transformations. A criterion
is suggested to help decide what are the best zeroth-order states.
Although highly non-rigorous, it is hoped that the discussion will

suggest how to attack many-body problems.

I. Introduction

It is now accepted that perturbation theory, even to
infinite order, will not necessarily solve a quantum-méchanical
problem. A somewhat less shocking statement is that, in other
cases, perturbation theory must be carried to infinite order to
obtain méaningful results. The failure of what may be called
"second-order perturbation theory" has resulted in a number of
attempts at reformulating'the probiem of a closed system of inter-
acting particles. The field-theoretic techﬁiques developed by
Feynman, Dyson, and others for quantum electrodynamics became the
foundation of a variety of many-body treatments.

Recently, there has been great interest in many-body tech-
niques in several areas of physics. After their introduction in
quantum electrodynamics and in nuclear physics, many-body

techniques were extended to older problems in solid state physics.
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Examples are the problems of metallic electrons, of polarons, of
superconductivity, and of superfluidity. An excellent set of

reprints of solid state problems may be found in The Many-Body

Problem, edited by Pines (1). Another established area in which
many-body techniques are increasingly used is that of quantum
statistical mechanics. The possibility of wprking with strongly-
interacting systems and of considering easily finite temperatures
are the main advantages of the field-theoretic formulation. A

detailed discussion may be found in the Methods of Quantum Field

Theory in Statistical Physics by Abrikosov (2).

The reprints in Pines's book suggest that the primary
goal of the early investigators was to reformulate specific
problems, rather than to create general field theories. Also,
trhat considerable intuition was used to pick out the important
processes and to make the problems more tractable. Hence the
variety of names associated with rather similar operations in
different problems. It is largely because to the physical insight
used in connection with each problem that such mathematically |
formidable problems could be handled. On the other hand, field
theory, like perturbation theory, is a formal framework. In
principle, all that is required is a knowledge of the statistics,
either Bose or Fermi, that the particles or the quasiparticles
obey. No physical insight is needed.

Canonical transformations have long been a standard tool
in physics. Perhaps the most ubiquitous is the transformation

connecting real and momentum space. In principle, a canonical
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transformation is capable of giving the~best possible one;particle
functions and energies; that is, the best possible zeroth-order
basis set. This is the natural basis set to use in further calcu~
- lations, whether by perturbation theory or by field theory. The
success of the Bloch electron model.in metals, of the Hartree-
Fock treatment of electronic structure, or the Bardeen, Cooper,
Schrieffer (B.C.S.) theory of superconductivity suggests that

most of the physics may be understood if the best possible basis
set has been found. There is always an element of uncertainty
and intuition in the choice of a basis set, even though of course
the evaluation of energies for a given basis set is completely
rigorous. For instance, the Bloch states must be replaced by the
B.C.S. states for electrons close to the Fermi surface in super-

conductors below the transition temperature.

IT. Discussion

It is evident that a criterion is needed to indicate what
is the best basis set. In particular, we need to know in what
instances the usual zeroth-order states, which are largely
obtained from symmetry considerations, arelinadequate. Then we
could use physical insight to construct, via a canonical tréns-
formation, the best basis set. Either perturbation theory or
field theory may then be used to study the effects of correla-
tions; the latter is more general. Rather than providing two
general methods of handling many-body problems, canonical trans-

formations and field theories complement each other.
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We consider briefly metallic electrons. If the inter-
action between electrons is entirely positive, like the repulsive
Coulomb interaction, the Bloch states, which reflect the symmetry
 of the crystal, form the appropriate basis set. On the other
hand, if the net interaction is negative, that is, attractive,
then the B.C.S. states are the correct basis set. It appears,
therefore, that improvements upon states dictated primarily by
symmetry considerations are possible only when there exists at
least a region in which the interaction between pérticles is
negative. This is a necessary, rather than a sufficient, con-
dition. Physically, it is obvious to attempt to improve the
total energy by using, wherever possible, quasiparticles which
include the attractive interaction between the real particles.
Thus, in the B.C.S.-Bogoliubov formulation, only electrons very
. near the Fermi surface, where the inferaction is the most negative,
are in states different frdm the Bioch states. Similarly, for the
linear Heisenberg antiferromagﬁet, whether regular or alternating,
the Bloch states are modified the most near the Fermi surface (3)-.

Although we have no definite criterion for obtaining the
best zeroth order functions, we have at least a clue: to look
for regions in which the interaction between particles or quasi-
particles is negative.

In conclusion, we note that neither perturbation theory
nof field theory is likely to yield resﬁlts except after con-
siderably more manipulation than is usually required. For an

isotropic system in a macroscopic box, a pair-wise interaction
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in real space gives, in momentum space, the interaction term

. . | ,
V(k,-k.) a \ (k, + k, +k, + k, + 2nv
2753 aklékz k3§k4 1 2 3 4 (1)
v = 0, il,....)

For fermions, the creation and annihilation operators a+, a, are
Fermi operators; for bosons, they gre Bose operators; the restric-
tion on the k's expresses the conservation of pseudo-momentum.

In the case of fermions, the Bogoliubov canonical transformation

is

_ +
e T W T My (2)
+ * + R
M & Yk T %Ew
with the restrictions
2 2
[u/c+ /v /[ = 1
K k - (3)

ukv—k + u_kvk = 0.

The operators n;, M aré also Fermi operators. They define the
appropriate quasiparticles when there is an attractive interaction
between the real particles. (Otherwise, Uy and vk are never both
different from zero.)

In general, the integral equations that yield Ues Vo may
~only be solved for the separable potential V(k,k') = V(K)V(K'). |
.Let us assume that we haQe obtained this solution. Now, to do

either perturbation theory or field theory using the‘hk's as a

basis set, we must transform the interaction term, using the
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inverse of the transformation (2). The potential then contains
16 terms, ranging from terms containing 4 creation operators to
terms containing 4 annihilation operators.‘ Even if the terms are
- combined, there remain 5 types of terms, with operator structures
+ + + _+ + + _+ + _+ +
M MMM T Ty T e Thy Moo MhesMe? ey Moo Tl They? 209
nklnk2nk3nk4. Only the third term conserves the number of quasi-v
particles. A similar result is found in Bose systems.  An
interesting calculation by Hugenholtz and Pines (4) for an inter-
acting Bose system at abéolute zero, in which the Bose condensa;
tion is explicitly included, demonstrates the possibility (and
the difficulty) of applying field-theoretic techniques to problems
in which the operator sfructure of the interaction term is more

complicated than in (1).
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Proposition V

Formal Model for Second-Order Transitions

vastract
A model is presented for transitions of the second order.
The model is based on a "phase" parameter m which is discfete for
. first-order transitions and continuous for second-order transi-
tions. A minor difficulty in the formal representation of second-

order transitions is thus resolved.

I. Introduction

Discussions of second-order transitions and phase changes
may be found in standard texts (1,2). The usual definition of a
first-order phase change is that, at the transition temperature
and pressure, the Gibbs free energies of the two phases, GI(T,P)

and GII(T,P), obey the relations (2)
Gy = G |
‘ ’ - (1)
361 }éfﬂ
2T 2T

We omit the possibility of such metastabie states as those involv-
ing superheating or supercooling. The observed free-energy curve

- for a system in thermal equilibrium is shown in figure i; it is
the curve corresponding to‘the‘phase with the lower free energy.

" The discontinuity in the Slope ét'the‘transition temperature gives

vthe‘entropy change,
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Fig. 1. Schematic representation of a first-order
phase change. The Gibbs free energy for the system
in thermal equilibrium is the curve corresponding to
" phase I for TL T, and to phase IL for T>T,.
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& 6
AS =5¢751 = F T F - (2)

- In the same way, a second-order transition obeys the relations

651 =i Ca][

QGh; _ 3651.
= = 37 (3)
3 6z =% Q_"_C:un

2
ST 2T

at the transition temperature Tc' The second derivative of the
free energy with respect to temperature is discontinuous at Tc'

The change in the constant pressure heat capacity is given by

2 A
AC = Cg -Cr = Tc{a-——qi" é_@n}. (4)
| 1 T
It is straightforward to generalize to transitions of arBitrarily
high order (2). A similar set of rélatidns may be found if the
pressure, rather than the temperature, is varied.

We wish to draw a diagram such as figure 1 to describe a
sécond—order transition. We suppose that the free energiés and
their first derivatives with respect to temperature are equal at
TC, but that the second derivatives are not equal. Then, as
shown in figure 2, the curves cannot cross and no transition
- occurs; one of the phases‘has a lowef Gibbs free energy both above
and below Tc' If the cu;vés crossland the‘first derivatives are

equal, then the second derivatives must also be equal at Tc;
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b e v e - -

Fig. 2. Attempted tepresentation of a second-order
transition. GI=GII and Gi=GiI at Tc’ but Gi' + Gii.

There is no phase transition, as phase 1 always has
lower free energy than phase II.

I
Te T

- ———— v -

Fig.3. Attempted representation of a second-order
transition, GI:GII and Gi=GiI at Tc, and the curves

cross. But the second temperature derivatives of the
free energies must be equal at T,, so that the

transition is of the third order.
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this situation is shown in figure 3. A third-order transition
would occur. Guggenheim shows his awareness of the difficulty by
refusing, for physical reasons, to extend the free energy curve

for one of the phases below the critical temperature (2).

IT. The Model

Tt is not our purpose here to discuss the physical differ-
ences between first and second-order transitions. We merely note
that second-order transitions usually involve continuous rear-
rangements in crystals or in liquids and are consequently'
intimately related with order-disorder phencmena. Let us define
a "phase" parameter m such that n = 0 for a system well below its
transition temperature and m = 1 for the system well above its
transition temperature. For inétance, in the first order transi-
tion ice - water, m = 0 refers to ice and n = 1 to water. For
second-order transitions, m may be defined in terms of the order.
We leave the specification of n deliberately open; it may be
defined rigorously for any given system. Examples of second-
order transitions are the Curie point in ferromagnetic substances,
 where n would be related to the spontaneous magnetizatidn, and
the 2.2°K transition in liquid helium.

It is proposed that the difference between first and
second-order transitions may be formally understood from the tem-
perature dependence of m. In first-order transitions, m changes
discontinuously at the transition temperature. Alternatively, we

"may think of 1 as a many-valued function at the transition
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temperature. Thus a system with a first-order transition is not
uniquely characterized if the transitipn temperature and pressure
are given; m must also be spécified. Two phases may coexist at
the critical temperature; the situation is described schematically
in figure 1, except at the critical temperature, where the diagfam
does not contain enough information. A second-order transition,
on the other hand, is characterized by a continuous, single-valued
n. Thus we have a continuum of phases, corresponding to 0 < n < 1,
each of which successively representé the lowest free energy
phase. This scheme is shown in figure 4. The observed free
energy is the ervelope of the curves in figure 4. It is evident
that two different phases never coexist, even at Tc'

Several consequences follow immediately from the model.
First, the difficulty mentioned about the formal representation
of second-order transitions has been resolved. Bylplotting
S = - {%% , it is evident that, although the first derivative of
the free energy, the envelope of the curves in figure 4, is con-
tinuous, the second may be discontinuous. Second, the transition
occurs over some interval AT, which in most cases is rather small.
Formally, a second-order transition resembles a succession of
first-order transitions which are "infinitesimal" in the sense
that the entropy changes'are very small. Hence the difficulty,
in cases with very small AS, in distinguishing between first and
second-order transitions. Finally, we note that although second-

order transitions are frequently called "phase changes,"” they
y
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Fig. 4. Schematic representation of a. second-order
transition. The Gibbs free energy is the envelope
of the curves. ’
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never correspond to phases in equilibrium. Even at TC, there is

only one phase present for a system in thermal equilibrium.
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