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ABSTRACT

This dissertation is in two Parts. Part I consists of a paper
on the effect of small angle scattering on a pulse of
radiation, and an analysis of the particular case of X-rays
scattering off interstellar graims. Part II concerns the
excitation of SiO emission lines around evolved stars. There
are two papers, the first on 'thermal' emission lines and the

second on maser emission lines. Each paper has its own abstract.
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ABSTRACT

We have analyzed in detail the general problem of the propaga-
tion of a pulse of radiation through a uniform medium containing
small angle scatterers. Simple expressions for the first moment
of the arrival time deléy and for the second and fourth moments
of the arrival angle of the pulse photons are given, valid for any
optical depth. Using the first two of these we find a simple method
of distance determination. Joint and individual distribution fune-
tions for arrival time and angle are derived in the small and large
optical depth limits. An exponential tail in the arrival time
distribution is characteristic in both limits. The analysis has
been applied to a burst of x-rays from a source near the galactic
center propagating through the dust of the interstellar medium.

The grains responsible for interstellar reddening caan have very
little observable effect. However, the observed lengths, energy
dependence, and variability of the burst tails can Be readily
accounted for by a population of large ~3u grains. We derive
useful constraints on the grain distribution from observations of

the burst tails.

Key Words: distance determination, grains, scattering, x-rays,

X~ray bursts



I. INTRODUCTION

Since the first detections of intense bursts of cosmic x-rays (Babushkina
et al. 1975; Grindlay et al. 1976} a-large number of x-ray burst sources have
been discovered. Comprehensive reviews of the qbservations have recently
appeared (Lewin 1977; Clark 1976). The interested reader is urged to consult
those reviews and the references therein, since we summarize below only those
data relevant to ouf discussion.

The majority of burst sources have been observed in the range 1.2-30 keV;
the burst activity is most prominent in the range 3-20 keV. A typical burst
has a risg time of 1-2 sec, ; Ypeak" 1aéting a few seconds, followed by an
"exponential tail"” with a decay time of 10-20 sec. In most sources the tail
is noticeably longer in the lower energy chanmels — that is, the burst séeca
trum softens in the tail. A well-documented, typical source is MXB 1728-3k
for which a seven burst composite (Lewin_gg_gl. 1978) displays the character-
istic behavior described above. It was noted for this source that after the
"burst" of ~ 20 sec the background was enhanced, the Aata suggesting a second
underlying tail with a time constant of 50-200 sec. This longer tail is most
pronounced in the lowest energy channels.

| The distribution of burst sources on £he sky is strongly concentrated
around the galactic center and flattened toward the plane, strongly suggest-
ing that the space distribution is in fact concentrated toward the galactic
center,

The tails on burst'profileshand the likely concentration of sburces
towards the galactic center have led us to consider the effects of propaga-
tioﬁ through 10 kpc of dusty interstellar medium on a brief burst of X=TaYS.
We have concluded that the very small angle scattering of x-rays by inter-

stellar grains may easily account for the burst tails seen from many burst



sources. Conversely, we are able to derive constraints on the grain number
and size distribution from the burster data. In $§I1 we present the hypothesis
and motivate the later discussion with order of magnitude estimates, X-ray '
scattering by grains is briefly reviewed in §III, and in §IV we carefully
study the development of a pulse of radiation‘'as it propagates through a
medium containing small angle scatterers. We have considered all optical
depths. Many of these results are quite general and.may be useful in contexts
other than x-ray scattering by grains, Our model-for the development of x-ray

burst profiles is confronted with the data ia §V, and we discuss future

prospects.

II. AN OVERVIEW

Overbeck (1965) first consiéered the scattering of x-ray photons by
interstellar grains. He proposed the hypothesis that all of the x-rays seen
from the Crab nebula originated in the pulsar, and that the diffuse, unpulsed
component was a halo of scattered radiatiom. [However, a recent anaiysis by
Ryter (1970) shows that the optical depth to scattering along the lipe of
sight to the Crab is almost certainly too low, and this hypothesis should be
discarded.] The scattering of x-rays by grains was discussgd further by
Slysh {1989) and Hayakawa (1970), who analyzed somewhat more carefully the
intensity structure of an x-ray halo around a steady point-like x-ray source.
Trimmper and SchEnfeléer (1973) have considered the case of singly scattered
x-ray§ and propose a scheme of distance determination based on observing
(in a narrow energy band) the time vériations of a Qmall angular region of

the halo around an intrinsically varying x-ray source. For most observable



sources this scheme demands too much from the data; we present a more power-
ful technique in this paper.

The x-ray burst sources are much more promising objects for an anmalysis of
scattering effects than sources that have previously been considered, for several
reasons. The first is their very brief, intemse wariability, so that one
"may estimate the efficiency of scattering precisely. Their spesctra are
prominent in the energy range {2-20 keV) where interstellar absorption is
relatively unimportant, but where scattering may Bg significant., Since there
exist many observations in several energy chamnels, it is possible to test
the hypothesis that grain scattering is responsible for the tails of the
bursts., Finally, since their distribution on the sky shows such a strong
concentration to the galactic center, one may assume {with some confidence)
that they are indeed clustered arcund the galactic center and are ~10 kpe
distant from us. This statistical estimate of the distance allows us to
infer properties of the grain distribution éver a large path length through
the disk of our galaxy.

Before proceeding with detailed calculations, we estimate the magnitude
of some of the effects of scattering of x-rays by grains. If © is the typical

scattering angle when a photon of energy e scatters off a grain of radius a,

then

g ~_..?.\__ - 7 (}}_J'_) (é—ﬂ) arc sec .
2xa a €

If there is a uniform distribution of grains along the line of sight,

the typical time delay t of photons scattered once is

2

2 2
O°R 11\ (6 keV R
t~ 8c 130 ( a) ( € ) (10 kpc) sec

where R is the distance to the source and ¢ the speed of light. This ié



a considerable delay; notice that for the small (~ 0.1p) grains generally
believed to be responsible for interstellar reddening and extinction, delays
~ 1015' sec are produced. Clearly the optical depth to scattering by these
small grains must be very low, or the short bursts observed would not be
possible. If this scattering process is responsible for the ~ 10-sec tails
observed in the bursters, then ~3 1 grains must be doing the scattering. -We
will have to estimate the optical depth to scattering by such grains.

The total scattering cross section o of a2 grain with radius a is

2
cs=ana

vhere the scattering efficiency Qg (discussed in $I1I1) varies with radius
in the rather complex way shown in Figure 1. It may be approximated for ouw

purposes here (and for the typical material magnesium silicate) by

| 2, \2
Q, =~ 0.7 (ﬁ—k—?y—) _ (—"—) if Q<1

Qs = 2 otherwise

The “"break" in the shape of Qs occurs when a = lp in the example.
There is a useful and fairly general constraint on the grain distribution,

based on the total mass density of material available to make up the graims.

We can write

Ly 3 ~26 -3
- a n <5 x 10 cn
3 gPg &

where ng is the number density of grains in the interstellar medium, pg is
the grain mass density. We have assumed the canonical mean interstellar gas

density, and that 3 percent of the mass is in heavy elements. It is probable



that most of the heavy elements are locked up in grains. Since the 6ptical
depth, T « a.hng for small grains, and T « a2ng for large grains, the con-
straints above will admit T ~ 1 only for a range of a centered around

a~ lu. A careful calculation yields:

0.3 pS2az<3u for 6 keV photons and MgSiO, grains.

3

A similaf calculation may be based on the visual extinction to the galactic
center, which is generally taken to be 25 magnitudes (Becklin and Neugebauer
1968). Siuce reddening as well as extinction is obse;ved, the grains re-
sponsible must have a £ 0.2 p. Using the argument based on masé density

above, and the Rayleigh scattering cross section we find that
0ipSaso2p .

These two sets of limits are not (as they may appear) contradictory since
they refer to two different populations of grains. We simply require that
a significant fraction of the maés be in each of these t&o populations.
These calculations have all assumed that all grains have the same radius.
This is an oversimplification, but thehlimits above do refer to typical sizes
of the grains responsible for these processes,

Ve note finally that, given 25 magnitudes of visual extinction to the
galactic center, every photon passes through many grains. It is only be-
cause QS << 1 for most of the grains that the x-ray optical depths are so

low.



III. THE SCATTERING OF X-RAYS BY GRAINS

We need to know the total and differential cross sections for the
scattering of x-rays by grains. A brief review of the assumptions and re-
sults is presenied here, and we refer to van de Hulst {1957) for a detailed
discussion.

Previous authors (cited in §I) have used the "Rayleigh-Gans" approxi-
mation for spherical grains. Each volume element of the grain is polarized
by and in phase with the incident wave, and so acts as a source for a
scattered wave amplitude. The sum of scattered gmplitudes is sharply peaked
in the forward direction. (Even though the enerzy of the photon may greatly
exceed the binding energy of the electrons in tﬁe grain, the momentum im-
parted to an electron in this forward scattering is too low to change its
state and thus distinguish it. We could sum scattering amplitudes for all
of the electrons quantum mechanically and obtain the classical reéﬁlt.) The
validity of this approximation requires |m - 1| << 1, where m "is the re~
fractive index; and |p| = (bma/A)|m - 1] << 1 where p is the phase shift
across the grain. The first of these assumptions holds in all.situations

~we consider, Using I-IgSi.O3 to provide a "typical' value of m:

fol 211 (-S—f;—e‘;)—l (—f‘;) . | (1)

We see that the second assumption holds in the situations discussed by
previous authors of x-ray scattering by the grains responsible for inter-
stellar reddening, but is clearly invalid for the larger grains we consider
here. Accordingly, we relax this conditien in favor of the “anomalous
diffraction’ approximation where the conditions lm - 1] << 1 and (exa/7) >> 1

are required., In this case the phase changes through the grain are evaluated
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using ray optics. The Rayleigh-Gans formulae are still appropriate for
limiting cases where p -+ O.

We show the "anomalous diffraction" differential cross section,
l/o-T dg/dz [where z = (2na/A)8 is the appropriateiy scaled angular co-

ordinate and g, is the total cross section], for the typical case |p] =4

T
in Figure 2. On the same figure the Rayleigh-Gans case (o~ 0) is plotted.
The difference between the two curves is certainly no'larger than the error
made in assuming the grains are spherical. Since the Rayleigh-Gans solution

is simple and analytic we will use it whenever we need an explicit form for

the angular distribution. It is,in the small angle limit:

T

g
dz

niE

1 .2 '
= i; (2) (2)
where jl is a.3pherica1 Bessel function of the first kind.

The scattering efficiency Qs’ defined in $§I11, is plotted agaimst

PR

= Re{p} on Figure 1, for the special.case of 6 keV photons and MgSiO3

grains. The parameter B gives the relative importance of absorption:

0.15 1 keV
0.095 3 keV
tan B = Ri&i:?l = at €= . (3)
0.034 & keV
0.020 9 keV

(Note that in all these treatments diffraction is treated as scattering so
an amplitude for absorption leads to an amplitude for scagtering.) On

the same.plot are the absorption efficiegcy Qa’ and the scattering effi-
ciency Qo for non-absorbing grains (i.e., g =0).

There are four regions of interest. The first (not shown on Fig. 1)
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occurs where Pp < 8/3 tan B, so that Qa > Qs' The second, where
8/3 tan B < Pp < 1, is a region where QS == QO and the Rayleigh-Gans approxi-

mation is useful. In this regime

Q =2 (g%i)a |m--1|2 =% pi (l-rtanzs) «<1. )
When 1 < Pr < 0.03/tan£g Qs departs significantly from Qo because of the
increasing importance of absorption. The Rayleigh-Gans differential cross
section is useful in a general sense {see Fig. 2) but now Qs ~ 1 [quite
different from eq. (k)]. Finally, when pp > 0.3/tan B we have Q, +Qq, ~1.

For Mng'.O:5 grains this corresponds to

o 2b
(’ﬁ)(s keV) Z 05 -

In this regime it is unlikely that one can consider multiple scattering

because absorption is so important,

IV. THE SMEARING OF TEMPORAL AND SPATIAL STRUCTURE -

BY SMALL ANGLE SCATTERING

We derive here some formulae that show how the temporal and spatial
structure of a source of radiation is smeared by small angle scattering of
the photons as they propagate to the observer. These formulae are all de-
veloped under the assumption that the resultant angle of the photon trajectory
after any number of scatterings is small. This requirement keeps the anaiysis
in a quantitatively different regime from that of random walk analyses, and
the results are qualitatively different. In subsection (a) we derive some

exact formulae for the second and fourth moments of the distribution of
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arrival angles of the photons and the first moment of the distribution of
their delays. These formulae provide a powerful tool for analysis of
observational data. In (b) a general equation describing the evolution of
a burst of radiation is derived. Approximate solutions valid at low and
high optical depths are developed in {c) and (d) respectively, and compared
in (e). These analyses are specialized to the case in which the source of
radiation is point-like in space and time; and the scatterers are uniformly
and randomly distributed in space. In (f) we give simple relationships
between this special case and some more general cases. In (g) we show how
to use the results to analfze observational data.

We will use the symbol P(OgB,...;A) for any probability density function,
where the @,8,... represeat the random vgriables, and A represents some
parameter. The precise meaning of all the variables will be obvious in con-

text.

a) Moments of the Photon Distribution

We use © to denote a scattering angle, ¢ to denote the angle a photo.
trajectory makes to a radius vector, t to denote delay {with Tespect to an
unscattered photon) and R to denote the distance betwean source and observer.
In Figure 3 we have schematically shown the progress of a photon that scatters
several times. We have oriented axes so .that the photon starts out along the
z-axis, Suppose there are n scattering events between the origin and radius

R. The expected walue of @i at R is given by

5>
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where §j is the azimuthal angle of the jth scattering; all other new quanti-
ties are defined in the figure caption. If we expand the squares in equa-
tion (5) the expression may be simplified rapidly. The gi are uniformly
distributed independent random variables, so terms like (cos gi) vanish.

The éi are independent random variables drawn from a distribution with fec;nd
moment (02). 1f we express the zi in terms of their partial sums s, = li Ij
and note tbét the {si} are an ordered sample of n numbers drawn random:ll;o

from the interval (O,R) we can show that

2

ﬂ‘?ﬁ}?%(g ) . (s2)

The number of scatterings is a Poisson random variable with mean ¢, so the
expected value (cpz) averaged over n is:
2 T .2y
(97) =5 {8 . (8b)

_ [ CT
The central assumption in all of §IV is that (:92) << 1. A similar, but much

mora tedious calculation yields
2 L
b 21 2,2 9 (9
@ =2 (697 + S (1)

This expression shows that for large T only (92) is needed to determine (q:h).

This is true for all the higher moments of p, and we see that for large 7

the disﬁribution function of @ is determined entirely by the quantity 1’(92).
We use an alternmative procedure, analegous to that used in the analysis

of Browniam motion, to find the mean time delay. We consider a photon ini-

tially traveling along the z-axis, scattering through a small angle 6. It

is clear that

lAyl = ¢B; (Avx) = (Avy) = 03 (sz) = - ;l— c{(67).
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We can use this to represent the evolution of the photon velocity with time T:

d 2
T Y= 2 o6) ¥+ E(T) (8)

where » 1is the scattering coefficient and F is a fluctuating quaatity with
mean zero. By taking the dot product of equation (8) with r {the position
vector at time T), taking an ensemble average and noting that v-v = c2 we
obtain the simple equation
d2 2 1 2, d e 2
——T—é-(r)+'-gcn(9)—d—,-f(r)=2c .
d
Solving this equation and keeping only terms to first order im small quanti-

ties:

(%) = ¥ (1 - ﬂf)—)

6

where we have picked out the time at which ¢T = R. . However, we really want
3
e{t) =R - (r), but the difference between (r) and (re)? is second order in

1(92), i.e. (re) —_(r)2 = {(pulse width)e), S0 we may write:

(t) = —1-15-':__3 (92). . (9)

b) The Evolution of a Point-Like Burst of Radiation

o s . 2
In what follows it is convenient to use [ = ¢ , 7 = nct and 1 as our

independent variables. We define the probability density function for the

distribution of photons at optical depth t by:

P(Q,‘y;'r)dgdy = probability that a given photom has [ < <p2 < g+ dg,

(10a)
and 7y < uct < ¥y + dy at optical depth 71
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with normalization

b o

Jdﬁj ay P(C,y;1) = 1 (10b)
0 0

and initial condition
P(C,y; T =0) = 8(0) 8(y) ' {10c)

Consider the evolution of P from 7 to 1 + dt in the absence of scattering.
We follow the particular trajectory shown in Figure 4, We can see immediately

from the law of sines that:

T

The increment in time delay is

dy = PQ-dr=%c¢dr

where we used the law of cosines and kept only terms of lowest order in dt.

Keeping in mind the conservation condition in equation {10b) we can write:

P(§~—2£§—T—, Y+%CdT;T+dT)(1—z_§_T)= PO, ¥3 T) (11a)
from which
JP ='ZP_ L. . 2C0PF © (11B)
o7 T 2€ay T 3

The evolution of P due to scattering is just the familiar radiative transfer

equation in a scattering medium:
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P _ c
%; = -P + .[P(g' > v 7) s, ag (12a)
(¢}
with
S{C,¢' )4’ = Probability that a scattered photon shifts from

t=¢ tog <g' < +a (120)

Putting the pieces from equations (11b) and (12a) together we obtain the

equation that describes the evolution of P:

-a—Ii = _2_ - _ 1. lP' _%‘C_ B__E_ , . , . ,
a7 (‘r l)P 28% Y T oac t J‘P(c » vi 7) 8(g.gMag’ (1)
5 _

Ve need to evaluate the function S in terms of the differential cross section
evaluated in §III. This is given by the integral:

2 .
| 1/2
s(c,¢') = ;}; -3% (e = [g’ +T - 2\,§ ¢’ cos p] )g' dp as)
(4] - .

"Equations (13) and (14) together with the -initial condition in equation (10c)
provide a prescription that completely describes the evolution of a pulse of
radiation; In the general case, these equations may only be solved numérically.
In the next two sections we study the limits of low and high optical depth
analytically.

The observable quantity is I(@,t), the specific intensity (with units

photons cm—z s-l ster—l). If the pulse consists of N photons then:

2 .
I(p,t) = -1%55 P(p°, xctsT) 15)
4 R :

¢) The Limit T > O

We can derive a simple analytic expression for the distribution in time

delay and angle for those photons that have only scattered once. It will be
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convenient here to use o and I = 2ct/R = 27y as our independent variables.
If we denote this distribution by P1(¢,F) then as 7 —» 0, we have to high

accuracy:
Ple,T5 1) = (1~ 1) 8(p) 6@) + 72, (9.1 | (16)

The locus of scattering sites giving a fixed time delay is an ellipsoid of
revolution (Fig. 5) with foci at the source and observer. This geometrical .
éonstruction was used by Triimper and Sch¥®nfelder (1973); we present here a
more.complete computation. The. problem was also discussed by Morrison and
Sartori (1969) in connection with supernova light curves, and their results
were applied to x-ray bursters by Grindlay amd Gursky (1976b) and Canizares
(1978). These latter authors considered large angle scattering in the vicinity
of the source, where the surface is nearly a paraboloid. We consider here
small angle scattering all along the line of sight; our geometry is almost
cylindrical.

The distribution of scattering angles-is just éL- g%-, and & (defined in
Fig. 5) is unjformly distributed between 0 and 1. Uzing the geometric rela-~

tionships between 6,2 and ¢,I" we find {cf. Trumper and Schonfelder 1973)

1 1 do T
P () = ——p — —2(0=9¢g+= an
1 I+ ¢2 St ( )

We now compute a particular example of Pl’ for the case where all of the
scatterers are spheres of radius a, and the scattering function is that for the

Rayleigh-Gans case discussed in §III. In view of the convenient scaling

properties with a and A we introduce scaled variables.

\2
v (B e o= ()
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The quantity evaluated will actually be P(xz,n) because, as we showed in
equation (15), this is proportional to the specific intemsity. The result is
. 2
) 330+ )
Pl(x M = 2 ———— (18)
X +t7
This function is plotted in Figure 6,'where the relationship with intensity is
explicitly given. The singularity about the origin is, of course, integrable.
We discuss this figure more carefully in (e);_
2
We can find from equation (18) the distributioms in X and T} separately.

The former is:
. 2
2 2 [ [3,® _ .
Pl(X }y = X ‘;—— dy 19)
. X

%ﬂ}?)'is proportional to the time integrated specific intensity in the burst,
and is plotted against x im Figure 7.

The integral over xz is not so easy to simplify, but a form convenient for

computation is:

P jl(x + ﬂ/x) 2 o :
P(D = aj — xdy : (20)
x +7

This quantity is plotted in Figure 8.

d) The Limit 71> @

In this limit every photon has undergone many scatterings, and conse-
quently the width of P in f is large compared to the width of s(g,gf) in
c - g'. This permits us to expand the integrand in equation (13) in a Tayloex

series about {. Keeping only terms of comparable ovder yields zeroth, first

and second derivatives of P with respect to . The coefficients are easy to
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2
evaluate in terms of ¢ and (6°). The resulting equation is

2
2 1 P 2 2 2
35”?P“icg—y+(<9>+“.f>§—§+c<e>-:—g§ (21)

The solution of (21) is imvolved and has been left, for the interested reader,

to an Appendix. The result is:

PC,viT) = —5 G( i v ) (22)
(I w87y (e

where G(x,y) is given by an integral expression derived in the Appendix.
This expression for G may be easily computed nﬁmerically. We have plotted
G(x,y) in Figure 9. This expression completely describaé the asymptotic
behavior of a burst as ¢ — «. We discuss the shape of G, ard cowmpare it with
the similar function derived for the limit 5 — 0, in (f).

If we integrate equation (22) over y we obtain a particularly simple

expression:

P(C;T) = 5 exp {— 35-2—} (23)
{8 (8" :

i.e., the brightness of the halo, integrated over the pulse, is a Caussian in Q.

The integral of equation (22) over (glves the distribution in the time delay y:

(=<3

2 22

Ply;r) = D E (_1)n+l n2 exp -en wy (24)
2,2 2 2
(67 n=1 Tt {97)

This function is plotted in Figure 10, vhich shows the sharp rise followed by

an exponentizl decline. A similar result derived quite differently by Williamson
{1972) in the context of radio Pulsar pulse broadening. 1t is clear from tha series
above that once 7/T2<92) 2 1, only the leading term in.the series is important —
this leading term is dashed in Figure 10 to show how rapidly this asymptote is

approached.
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e) Some Comments on the Distribution Functions

It is clear that our solution for P(g,y;T) in the low ¢ limit is the
appropriate case for the x-ray scattering problem, however the other limit is
intfinsically interesting and may have greater utility in other circumstances.
The differences between the two are strikingly illustrated by the differences
between Figure 6 and Figure 9, which give the joint probability density functions
in @2 and t for the two limits, with appropriate scaling of coordinates. Recall
that Figure 6 is just the distribution for singly scattered photons, and the
full distribution includes a §-function in @2 and t at the origin, for the
unscattered photons. For the singly scattered distribution there are many
photons with small time delay, whereas with ¢+ - «© there are almos; no photons
at low time delays (cf. also Figs. 8 and 10). .The singly scattered photons
are unlikely to have very low @2, since there is very little solid angle for
scattering directly forward. Contrast 7 » =, where these effects wash out
and there is a concentration of the halo towards the center, except for the
large time delays. [The integrable singularity in the singly scattered
distribution is a general property of eq. {17) and hence will occur in a&y
scattering situation.] The distribution for v > @ is smooth and independent
of the shape of the scattering funcrion; this property was indicated in ﬁhe
comment following equation (7).

The tails of the x-ray bursts are well fit by exponentials. The singly
scattered time delay distribution [eq. (Eoll is represeﬁted very precisely
by the analytic fit

1.h o957

(M =12 + 0.9 (2s)

which also represents the data very well.
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We have extensively checked all our apnalyses with Monte-Carlo computa-
tions, which confirm all of the above statements. In fact the distribution
P(M) given by equation {20) gives a reasonable representation of the results
even when 7 = 1, and 26 percent of the photons have scattered more than once.
The effect of multiple scattering is to reduce the slope uf the decaying
exponential. It is interesting to see how rapidly the asymptotic distribu-~
tion is apbroached as Tt :‘ulncrease.s.. By T ~ 5 the general shape is clear,
but the depth and width of the valley at small -time delay is not reached
until T 2 20. The individual distribution P({;t) approaches the asymptotic
form to within a fejv percent by 7 ~ 10, but P(7;‘r) does net reach its asymp-
totic form until T > 20 because the-number of photons with small time delays
decays slowly. Beyond this valley, however, the asymptotic form is an ex~

cellent approximation for 1 2 10.

f£) FExtending the Results

Equation {10) describes an instantaneous pulse of radiation. If the

pulse at the source has a normalized profile £(t) then:

rc

P,(£,7;7) =f/ :z(—”i) P(C,7 - 7'57)dy (25)
A |

where P£ is the observed distribution fgnction and P is the distribution
function defined in equation {10). A similar convolution integral shows
the smearing of angular structure due to scattering.

It is more interesting to consider the pessibility that the scatterers
are not uniformly distributed along the line of sight. We mentioned earlier

the work of Morrison and Sartori on a small scattering region around the
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source. In a more general case, suppose the source of radiation is surrounded
by spherical cloud of scatterers, of radius R, and optical depth 7,. The
distribution of angles and time delays at the surface of the cloud, P(g,ct;R*)
say, is given by the analysis above. Suppose the observer is at a distance

R >R, from the source, and that no scattering occurs between the cloud and

the observer. Then we geometrically compute the distribution seen by the

observer:

*

2 R -R
P({,ct;R) = (%)2 P(Qz{- , et — %(Ti) R g;R*) (27)
' Ry

We note that this is the general solution of equation (11b) for R > R, with
an initial condition at R,, if we replace v by R and vy by ct in the differential
equation. In this situation we may also calculate moments as in (b), with the

small modifications

Ts (R z
& %
&) = —;(—R—) )

R, - R ~-R
o - need (L5

Similar relationships between the distribution function defined in equations (10)

(28)

and those appropriate to other distributions of scatterers exist. Fundamental
to all of these analyses.is the solution of equation {13).

Anothe; case that may be considered occurs when there are very few
scatterers, each of significant cross section. This description would be
appropriate in the x-ray burster problem if all of the dust in the galactic
plane were concentrated into a few dense clouds, each of which could then be
regarded as a single scatterer. The scattering of photons traversing the
universe by a cosmological density of collapsed cbjects (cf. Press and Gunn

1973) is a further example. We will not analyze either of these cases here.
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§) Analysis of Data

The results derived above have some general features that can be particu-
larly useful in the analysis of data. We consider first the moment equations.
These may be very useful tools for studying the x-ray bursters as measurements
with better angular resolution become available. Once the halos are resolved,
the two moments (@2) and (@4> can be estimated (note that all of these mouents
include the unscattered component.) Under the (surely reas;nable) assumption
that the bursting object is point~like, the optical depth may be estimated from
the ratio of the integrated energy in the halo to the total energy. Using
these three numbers and equations (6b) and (7) we can estimate {Oz) and (94)
for the scatterérs, which give useful information about the grain distribution.
Accurétely estimating the mean time delay for the burster sources will not be
easy, because it seems that the original burst has a width of a few seconds.
However, an estimate will be possible, and we can use equations (6b) and (9)

to obtain

R o= S8, (29)
L C
a purely geometrical distance to the source! With simultaneous data in many
narrow energy bands we could better determine R by estimating (t) and (@2)
in each band. A graph of (t) versus (@2) should be a straight line with slope
4R/c. Obviously this estimate depends on the assumption that the dust is
rather uniformly distributed in the disk.
This procedure is superior to that of Trumper and Schinfelder in several
ways. First, it depends only on simple moments of observable quantities,
rathe? than dubiocus model fitting. It is independent of any property of the

scatterers, whereas their formulae explicitly include their maximum scattering
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angle. Finally, our procedure is valid at any optical depth, whereas they
have considered only singly scattered photons and consequently can be accurate

only at very small optical depths.

V. COMPARISON WITH OBSERVATIONS

We discuss here the x-ray burst profiles in terms of our amnalysis. Ouly
time data are available, agd the shapes of the.bursts indicate that the dust
is optically thin to scattering. A general estimate of the power in the tails
yields 7 =~ 0.5, so that the smail 7 limit is appropriate.

a) The Exponential Tails

There are a number of tests of the hypothgsis that grainé are responsible
for the tails in the x-ray bursts; Since the mean time delay is proportional
to 3-2 (vhere e is the photon energy) the tails should be longer in the lower
energy channels (i.e., the spectrum should soften in the tails). The number
of ~ 3p grains invoked must not violate any upper limits obtained in other
spectral ranges. In any narrow energy ;hannal the shape of the tail should
be constant frdm burét to burst, and there should not be any structure in the
tails that cannot be modeled b}’the convolution integral in equation (25).

The restriction to narrow energy channels will eliminate confusiom that occurs
when the intrinsic. spectra of the bursts vary.

Some of these criteria seem to be violated by the observations of some
sources. The globular cluster source, 3U1820-30, exhibits spectral hardening
in the tails. The tails have been observed to vary_and in one observation
almost disappeared. However, the globular cluster NGC6624 is not highly red-
dened (and probably not 10 kpc distant either: Liller and Liller (1976) give
‘EB—V = 0,40 and R = 5.0 = 1.0 kpc). It is true that the large grains we invoke

would not contribute to the reddening, but a reasonable assumption is that
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their distribution follows that of the small grains. We conclude that there
are too few 3y grains obscuring NGC662L to produce any observable effect, and
that the tails are not produced by grain scattering. There are two other
instances in which the burst spectra are reported to harden. One of these

is KGX 345-6 (Babushkina et al. 1975 ; Sagddeev 1976). The measurements
here are at such high energy (40-200 keV) that is is not even clear that the
objects belong to the same class. At these energies the scattering process
will not produce an observable tail so we do not discuss their data. Grindlay
and Gursky {(1976a) reported that XBl608-52 showed spectral hardening during
two bursts observed in earlier Uhuru data. They observed ~ 10 sec fragments

of these bursts containing sharp rises but po clear decline [a lower limit

to the decay timescale is 30 sec; Belian et al. {1976) had estimated upper

limits of ~ 130 sec]. During these fragments the spectra hardened. However,
- 4

two other events for which the rise occurred before the source entered the

field of view had much softer spectra, suggesting that this object exhibits

the 'standard' behavior but with a longer time constant. In view of the in-

conclusive state of the data we do not consider this source a counter-example

to our model.

However, it is the property of most bursters that the spectra soften during
the tail (Lewin 1977). In fact, the bursts for most cbjects show very
accurately the time structure we would expect from this process, given an
intrinsic burst having a2 sharp rise and width of a few seconds. The fraction
of the power received in the tail is also a decreasing function of énergy, as
we would expect. A well observed, archetypal source is MXB 1728-34 (Hoffman
et al. 1976, 1977). In the former paper their Figure 2 clearly shows how
the time constant of the decay falls with increasing energy. This behavior

is clear in Figure 3 of their second paper, where the decreasing fraction



of power in the tails with increasing energy is also evident. Data in
narrower energy channels would test the 6_2 prediction quantitatively.
Vfle conclude that the short tails observed in most of the burster sources
could indeed be the result of scatteriné along the line eof sight by 31 grains.
The anomalous behavior of 3U1820-30 does not contradict our model, and the evidence
for anomalous behavior in XKGX345-6 and XB1608-52 is mot sufficiently convincing
to discount this model. for the other sources. Unless grain scattering can
be discounted, astrophysical models that produce a softening tail in the
vicinity of the source are unnecessary.

b) The Enhanced Post-Burst Emission from MXB1728-3%

Hoffman et al. (1977) report an "enhanced emission" from MXB1728-34 fol-
lowing seven relatively hard bursts. Tﬁey present a composite time series
that exhibits all of the properties we ascribed above to dust scattering,
but with a longer timescale and smaller amplitude. The enhanced emission is
evident up to » 150 seconds followiﬁg the burst at 1.2-3 kev; up to ~ 120
seconds at 3-6 keV, and ~ 30 seconds at 6-12 keV and vanishes in the higher
channels. The fraction of the pulse in these decays is ~ 34Z at 1.2-3 keV,
~ 15% at 3-6 keV and down to ~ 3% at 6-12 keV (Hoffman et al. 1977, Table 2).
These observations are entirely consistent with scattering of a small fractiom
of the x-rays by_lu grains.

There is one possible difficulty, however, Hoffman et al, (1977) state
that four earlier bursts from MXB1728-34 do not show this enhancement after_
the bursts, 1If this is correct (i,e., there are sufficient counting statistics
to discover this weak enhancement} then the post-burst enhancement is probably
intrinsic to the source. The authors also note that Lewin et al, (1976)
observed no post-burst enhancement in MXB1906+00, but the counﬁing statistics

in the latter measurement are not sufficient to rule ocut an enhancement



similar to that of MXBL728-34. A careful survey of all the bursters for this
phenomenon could settle the question unambiguously: if 1y grains are re-
sponsible for the post-burst emhancement in MXB1728-34, then similar behavior

should be found in most of the other sources.

¢) The Interstellar Grains

We saw in §II that we could have ; Z 1 when 0.3u € a £ 3p without
violating upper limits given by the density of matter. We now investigate
.whether or not these large grains produce cbservable effects in another
spectral range. We will use M{B1728-34 as an archetype for this comparison,
It is evident that in the energy range 3-6 keV about half the total power is
in the tail; this implies 5 ~ 0.5. We are considering a distribution of grain
sizes whose x-~ray scattering optical depth peaks at 31 (2nd perhaps also at Ipu).
The only other measurements sensitive to this population of grains are infra-
red observarions of the galactic center.

These grains have an extimction efficiency Qe ~ 2 for most infrared wave-
lengths at which measurements are made. Consequently thej contribute a “grey”
opacity that produces no reddening of radiation. This "grey"” extinction is
obt;ined by subtracting selective extinction (from a measurement of reddening)
from total extinction {which must be obtained.indirectly). Nehgebauer EE;E;-
(1977) estimate the total extinction to the galactic center, at 2,2, by
observing the Brackett y recombination line, whose intemsity can {(in principle)
be predicted from a 5GHz measurement of the free-free emission from an HII
region. They assume a temperature of 104°K for the HIL region avnd that all of
the 5GHz continuum arises there. They estimate 373 of total extinction,

They fit a reddening curve to their measurements in several colors and obtain
277 of selective extinction. This iadicates a "erey" extinction of ~ 0?6,

but in fact the data are comnsistent with anything between 0™ and e 1" of grey
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extinction. This is the best estimate of the extinction Que tg large grains, -
and is entirely consistent with the hypothesis that the tails of the x-ray
bursts are due to scattering.

Our analysis can place more reliable limits on the grain distribution.
From the observation that only ~ 1/2 of the photons in a given burst (between
3-6 keV) are in the tail, we argue that the total "grey" extinction to the
objects due to 3 grains is < 0.5. Should further observations invalidate
the hypothesis, this upper limit &ill.be lowered. Using the data discussed
in (b) we find that the "grey" extinction due to lp grains < 0%7.

We note in passing that thére is indirect evidence for unusually large
grdains in front of stars on thé periphery of large dense clouds (Breger 1977
and references therein).

Several predictions of our proposed model can be tested with instrumenta-
tion on the latest generation of x-ray astronomy satellites. With its large
‘rollecting area, high energy resolution, and pointing capability HEAG-A can
test the predicted €_2 dépendence of tail e-folding times. The high resolu-
tion imager on board HEAO-B (to be launched in late 1978) will be capable of
detecting the predicted brightmess distribution in halos around x-ray sources
in the energy band 0.2 X ¢ < 2 keV; the search for such halos is one of the
mission objectives. If‘and when such observations are made, the analysis
presented in this paper should yield more than confirmation ox denial of a
grain scattering model for x-ray burst tails: It should yield much useful
new information about the size and space distribution of interstellar grains.

We thank Peter Goldreich, Scot:r Tremaine, Gordon Garmire, Michael Jura,

and Walter Lewin for helpful comments and (or) encouragement.
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APPENDIX

We start with equation (21) and immediately introduce a change of

variables:

\
x = ——QE
7{87)
. Ly
y = >
Tz(ez)
T = T
J

The equation becomes:

2
P Xy af . QP AP
A - = + + - 4+ x &=
We can separate variables:
P(x,y;1) = T(v) G(x,y)
and obtain the two equations
T = T2+k
and
2
x28% ¢+ 0 ¢+ 2y-102% _ w = o0
axZ 7 dx 277 3y

wvhere k is the separation constant. We recall that P must satisfy the

(A1)

(a2}

(a3)

(A4a)

(A4b)

normalization condition given by equation {10b). It is clear that the form

in equation (A3) can only satisfy this condition, given the solution (A4a),

if

(A5)
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So we are left with the parabolic partial differential equation

9

x 28 4 (l+3x)g—§-+ (2y—~%—x)g~g~+5G=0 _(46)

ox

This equation is second order in x, but we do not have two boundary conditions
in x. However, the fegular singular-point at thg origin tells us that one of the
two independent families of scolutioms (given an initial condition in y) will be
irregular in x at the origin, and may be discardad. The normalization condi-
tion uniquely fixes the arbitréry multipiicative constant in G, We know that
G(x,y = 0) = 0 since if there is no delay, then a photon can have no finite
value of x,

Before proceeding to the general solution,.if we Integrate (A6) over y

we obtain:.

2% 4 1+30% &+ 3¢ =0 ' (A7)
dx2 dx

where we shall understand that G(x) is the integral of G{x,y) over all-y, and
similarly for G(y). The regular solution of (A7), appropriately normalized,

is:

Gx) = 3 e ¥ 4 (A8)

We proceed to solve (A6) for x> 0, y = 0 by extending the domain to include
the entire xy plane, and then defining G(x,y) = 0 if either x < 0 or y's 0.
This device enables us to use a double Fourier transform, whose utility

becomes obvious later:

© -]

T (s,v) =f oisx dxf e gy G(x,y) (a9)

-0 -0
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Transforming (A6) yields:
_is? 1538 | 938 | 4% -
(-is 3s + 7 t) s 2t 3t is G o . (A10)

We seek the characteristic surfaces of (Al10):

5 ds n _ 4t _ 46 (A1D)
-is" -3+ 5 ¢t -2t is@
for which the general solution is:
/ ive i, - si
Bs,t) = 93 v (a12)

|
ive Yo ~ 8Yq ive 3o - 83y

where & is an arbitrary function and the j's and y's are spherical Bessel

and Neumann functions with argument & [e.

We have to pick out the particular function & which satisfies 'our re-
quirements. This turns out to be straightforward. We perform both Fourier
inversions and then -integrate over y. For the correct choice of & this
should yield (48). 1If we integrate over y first a ®-function in t is ob=

tained, so that the t inversion is them trivial. By identifying the remain-

ing integrand with the Fourier transform of (AB) we find that & is a constant:
&= -i. (A13)

Some further manipulation yields the integral expression for G:

, 2 Ia(P)
- 21 P2 902 = xp P
Glx,y) = f dp 3@ exp { 2py - xp 51(")} (A1)

where the countour C approaches the origin in a straight line from (l+ i),

and then goes out to (1-1i)® in a straight line. The integral in (Al4) is
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easily evaluated numerically, and this is the expression plotted in
Figure 9.

Finally we compute the integral (Al4) over x. The x integral is trivial,

so that:

2
- 21 b 2%y
G(y). - ) dp jo(p) e (AlS)_

The contour may be closed and then (A15) evaluated by summing the residues

at the poles, The result is:
2 < ol 2 -2l
) = 4t Y DTt T (A16)
n=1

" This is plotted in Figure 10,
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Fig. 2.

Fig. 3.
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FIGURE CAPTIONS

The efficiency factor for both scattering and absorption is
plotted versus the real part of the phase shift of a ray across
a grain diameter. Qo is a scattering efficiency if there is no
absorption; this curve scales freely with A,  and m-1. Q; is
the scattering efficiency, Qa the absorption efficiency for the
particular case tanp = 0.034 (e.s., MgSi0, at 6 keV). The

upper scale illustrates the example of MgSiO3 grains and 6 keV

photons.

The normalized differential cross section is plotted versus the
appropriately scaled scattering angle. The Anomalous Diffraction
curve is appropriate to the problem discussed in the text, but
the analytically simpler Rayleigh-Gans curve is used for compu-

tations.

The progress of a photon (wiggly line) suffering occasional
scatterings is shown. Without loss of generality we assume that
the photon starts out along the z-axis, and after its first
scattering remains in the xz-plane. The li are lengths between
vertices, the §i are azimethal angles, the @; are angles made

to a radius vector.

The geometry used to derive equation (1la): O is the origin, P
and Q are the intersections of a photon trajectory (wiggly line)
with two radius vectors. The lengths of the radii are given in

units of optical depth.



Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

W
(6>

The geometry used in the evaluation of the singly scattered
photon distribution. The loci of constant delay are confocal
ellipses. The arrival angles (@) and delays (t) are simply
related to scattering angle (©) and fractional distance (),

whose distribution functions are knoun.

The joint probability density function P(Xz,ﬂ) for singly

scattered photons (Rayleigh-Gans cross section).

The normalized intensity distribution of the halo of singly
scattered photons, when integrated over time delay (Rayleigh-

Gans case). The asymptote {2/15X) for small X is showm.

The probability density function P(7) for singly scattered
photons (Rayleigh-Gans case). The analytie fit, equation (25},

is dashed where it differs noticeably from P(7).

The function G(x,y) which describes the joint probability
density fumnction in me and t for photons in the limit

T >> 1.

The function G(y) which describes the probability density
function in t for photons in the large t limit. The leading

term in equation (25) is dashed.
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ABSTRACT

We have investigated the excitation of the microwave lines
in the ground vibrational state of the Si0O molecule in the expand-
ing envelope of cool Mira-type stars. The rotational levels are
excited when an $i0 molecule absorbs an 8p photon and is left
in the lowest excited vibrational state; the spontaneous decay
of the excited vibrational state preferentially leaves the molecule
with a higher rotational quantum number than it had before. In
all of the cases investigated the majority of the microwave tran-~
sitions were optically thick, and photon trapping causes the ex~
_citation temperature to increase with optical depth in such a
way that the antenna temperature measured by a distant cbserver
is proportional to the flux of Si0O leaving the star, to the square
root of the ambient 8y flux and inversely to the squéie of the
asympiotic velocity. We have analysed the reported detection of
J=2+1, v=0 emission from three Miras and VY CMa, and find that
the flux of Si0 leaving the stars is very low. This indicates
that either they are losing very little mass, or more probably that
grain formation very effectively removes a large fraction of

gaseous SiO molecules.
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§I. INTRODUCTION

Our understanding of mass loss from evolved stars has been
considerably improved by the observation and ihterpretation of
radic molecular lines arising in the expanding envelopes sur-
rounding such stars. The most thoroughly studied molecular

lines have been the maser emission lines of 0H, H.,O0 and SiO,

2
which have been observed towards many oxygen~rich Mira variable
and M supergiant stars. The non-linear character of maser
emission creates many difficulties in the interpretation of

the observed spectra, and these problems motivate a deeper study
of non-maser lines.

Many non-maser molecular emission lines have been observed
in the expanding circumstellar envelope around IRC+10216, an
object which appears to be an outstanding example of a class of
carbon-rich stars (Zuckerman et al. 1976). The excitation of
these lines has been analyzed by Morris (1975) and Kwan and
Hill (1977). Re#ently, the increased sensitivity of radio re-
ceivers at millimeter wa&élengths has allowed the detection of
non-maser emission from Si0 in several oxygen~rich objects (Buhl
et al. 1975) and from CO in a number of carbon- and oxygén-rich
objects {Zuckerman et al. 1977). In all cases these "thermal"
lines are broad compared to those arising in galactic molecular
clouds, characteristic of the expansion of the envelopes ;t
velocities between 6 and 20 Km s_l.

In this paper, we consider the non-maser emission from SiO

in oxygen-rich circumstellar envelopes. By analysing the excita-

tion processes and calculating line profiles, we hope to demonstrate
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that non-maser emission lines may provide the most powerful
means for determining such important physical parameters.as

the mass loss rate and the fractional abundances of many common
molecules. The observations by Buhl et al. (1975) of the J=2+1,
v=0 Si0 line are limited to only 4 stars, but the:e is every
reason to expect that such measurements can be extended to a
large number of objects. Reid and Dickinson (1976) have used
these observations to help solve the long-standing problem of
the determination of true stellar velocities. Their interpre-
tation is unambiguous if the v=0 Si0 lines are not inverted and
arise symmetrically ffom the entire envelope. The results
presented below indicate that these assumptions appear to be
valid.

We show in §II that the "thermal" SiO lines are ultimately
excited by the 8u infrared radiation field rather thrn by
collisions, and decribe how the excitation process works. The
detailed radiative transfer calculations for molecules in a
spherically symmetric,. expanding, circumstellar envelop? are
described in 5III. In §IV, the resulting line profiles are pre-

sented, and in 58V these are compared to the existing observations.

§XII. EXCITATION OF THE ROTATIONAL LEVELS

We will first illustrate how the absorption of 84 photons
can populate levels of high rotational gquantum number (J) in
the ground vibrational state, (v=0) and then show that this
process is more important than collisions with the H, molecules

2

in the envelope.
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The rate of absorption of infrared photons per moleéecule in

a given rotational level of the ground vibrational state is:

A_
_ hv _ W R,,2
Rpg = lexe Gg ) - D @ ()

where A is the Einstein A coefficient for the v=0=*1 transition
of Si0 (A = 4.1 s_l, Hedelund & Lambert 1972,) T, and R, are'
the surface temperature ana radius of the central star, W is the
factor by which the 8y flux exceeds the direct stellar contribu-
tion (due ;o dust re-emission) and r is the distance from the
center of the star. |

After a molecule (with initial rotational quantum numbexr J)
has absorbed an 3u photon, it almost immediately re-emits
another photon and decays back down to the ground vibrational
state. The branching ratios between different vibration-rotation
transitions will produce an average upward shift in the rotational
ladder. If we define b+, b and b~ to be the fraction of 8yu
observations that lead to a shift in J in the ground vibrational

state of +2, 0 and -2 respectively,‘then:

+ 2 _
b = 3 J=0
- 2 -
=5 J=1
_ (J+2) (J+1)

(2J+3) (23+1) T2

b = 0 J=0, 1
{(I-1)J 352

{(20-1(2J+1}
p° = 1-b" -b~

In this way the Sp photons preferentially populate the

higher J levels in the ground vibrational state. The even-J
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and o0dd-J ladders do not communicate via the infrared phlotons and
are coupled together only by spontaneous emission in the micro-
wave transitions, and by collisions. 1In general the collision
rates greatly exceed the Einstein A values for these transitions.
The first-order separation of even and odd J ladders only becomes
important when there‘is some tendency to invert microwave transi-
tions (which may occur if some of the infrared transitions be-
come optically thick) and we stress that no computed inversion
in the v=0 microwave transitions can be believed unless collisions
have been included in the calculation. In the computations pre-
sented here the microwave emission distributes the pcpulations
about equally between the o0dd and even J levels, and hence the
inclusion of collisions would have made a negligible difference.
This was tested by including collisions in the computation of a
test case.

We now show that this infrared pumping rate is faster than
the collision rate in redistributing population among the ground
vibrational levels. The net collision rate out of a level is

approximately:

L Movw

Rc a2 - t
dnr mH2 v

where M is the mass loss rate for the star, V the expansion

1s

velocity, v [(assumed to be 2 x 10 cmz} is the cross-section

for collisional transitions, m, is the mass of the hydrogen
2

molecule and Ve is the mean thermal velocity of the hydrogen

molecules. If we assume T, = 2000 °K then
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IR ,
= & 56 x (§) x (2"10 Mo YT )x (v x (R 2
c M 10 km s~ ! 5x10! 3cm

o
x(lg K )1/2
g
where Tg is the gas temperature. For reasonable physical parameters,
RIR is much greater than Rc’ and the 8y photons seem to dominate the
excitation of the rotational levels. The computations described in

§IITI support this conclusion. If M were as high as %10_5

M_oyrt
(]
then collisions might begin to have an effect upon the excita-
tion, but it is unlikely that ﬁ is that high in the objects we
are modelling. Note, however, that as ﬁ inﬁreases, W will increase
because the amount of dust available to convert stellar photons
to 8y photons increases. This will partially counteract the in-
creasing importance of collisions.

The conclusion that infrared excitation dominates holds
true only as long as the vibration-rotation transitions are
not cpticallyAthick in the radial direction. For the range of
physical conditions considered in this paper, the radial optical
depths in the 8 y lines are indeed less than unity. However,
we have assumed throughout that AV, the local linewidth due to
thermal broadening plus microturbulence, is ~1 km s_l. If AV
is actually much less than this value, the radial 6ptical depths
of the infrared lines, which are inversely proportiocnal to AV,
may exceed unity in spite of the finite wvelocity gradienﬁ in the
radial direction. In this paper we have assumed that the radial

optical depth at 8 u is small, both in the lines and the contin-

uum, in the outer regions where the gas has approached its
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asymptotic velocity to within AV. If microturbulence does not
contribute to the linewidth -then AV <<1 km s—l and extinction

of the infrared lines, and thus also collisional excitation,

must  be taken into account.

§IITI. RADIATIVE TRANSFER CALCULATIONS

We assume a spherically symmetric envelope expanding
away from a star which is losing mass at a constant rate. Minor
deviations from either of these assumptions will not appreciably
change the conclusions of this paper. The circumstellar material
is presumgably being accelerated radially with an ever-decreas-
ing wvelocity gradieﬁt'until it arrives at its asymptotic velocity.

| As will be shown, most of the millimeter-wavelength SiO

emission comes from the ouéer envelope (r > 5x1016 cm) well re-
moved from the star. In this region we may safely assume that
the expanding material has arrived at ité asymptotic velocity

to within the thermal velocity-wiaﬁh of the éas (Goldreich and
Scoville 1976). Thereforé, we can also make the assumption that
the outer envelope is expanding with uniform velocity, Vor which
simplifies the calculations.

A given molecule, at rest with respect to the expanding
material, is thus in radiative contact only with other molecules
which lie in the cone whose apex is centered on the star, and
whose axis passes through the given molecule. (Two molecules
are in radiative contact if their relative velocity is smaller
than the local linewidth due to thermal broadening plus micro-

turbulence.) The apex angle of this cone, assuming a rectangular
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local line profile, is given by 8 = 2 sin—l (AV/Va). Because
expansion velocities of envelopes of Mira variables and M super-
giants are large (5-20 km s_l) compared to what one might expect
the local linewidth to be (<1 km s—l), 8 is generally quite
small. This simplifies the radiative transfer problem: to derive
" the radiation field at a given point, we have only to deal with
the relatively simple geometry bf a long, narrow cone. Thus
the problem can be reduced numerically to a one-dimensional in-
tegration by dividing the narrow cone into radial zones (disks).
The level populations in each zone are found by: 1) summing the
radiation field from all zones in the cone and from the star, 2)
using the resultant angle—averaged line intensities in a statis-
tical equilibrium calculation to get the level populations, and
3) repeating this procedure iteratively until the level populations
in all zones relax to a solution.

In deriving the radiation field in .a giveﬁ rotational line
at the center of a given zone, we consider four contributions:
1) radiation from external zones, 2) radiation from internal
zones, 3) radiation from the given zone, and 4) the cosmic back-
ground radiation, reduced by an optical depth factor and averaged
over angle. The intensity contribution of each zone at a given
point has been modified appropriately for the intefvening optical
depth and for the solid angle subtended by the zone at the given
point. Furthermore, the interior or exterior zones which are
velocity shifted by more than one linewidth from the given zone
are excluded from contributing to the intensity in the given zone.‘
The velocity field is taken from Goldreich and Scoville (1976).
As it happens, zones are rarely excluded because the velocity

gradient at the large radii being considered is rather small.
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For our numerical calculations, we found it adequate to divide
the cone of radiative contact into 32 zones. The outer radius
was taken to be 3.0 x 1017 cm, the radius at which the excitation
temperature across the transitions of interest becomes approxi-
mately equal to the background radiation temperature. Only
about 10% of the total intensity in the J=1-0 line arises be~
tween 1.5 and 3.0 x 1017 cm; for transitions between higher
levels, an even smaller percentage of the total flux arises
in this region. Nineteen rotational levels in each of the
lowest two vibrational stateé were included in the calculations;
higher vibrational states were not included because the
Av=2 line strengths are much smalier than those for f4v=1, and
because the v=1 rotational level populations are negligibly

small.

As mentioned in §II, we normally assumed Av=1 km s_l

1

(with the exception of the calculations for Va = 10 km s ’

for which AV=0.6 Km s—l). An investigation into the dependence

of the results upon AV revealed that the calculated line inten-
sities are rather insensitive to AV: a factor of two change

in AV in either direction causes only about a 10% change in

line intensities in the opposite direction. The effect of de~
creasing AV is 1) to increase the radial optical de@th, which

in turn increases the importanée of trapping of the millimeter-
wavelength photons for determining the level populationsl[the
optical depth perpendicular to the radial direction is independent
of AV - see eqn.l of Morris (1975)], and 2) to change the geometry
by narrowing the cone of radiative contact. Only the first of

these effects will change the line intensities significantly. If

AV is decreased to less than 0.5 km s—l, then extinction of the
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8 py lines might become important and thé calculated rotational
line intensities would correspondingly decrease.

The results of this paper are expressed as functions of
three parameters: the asymptotic velcocity of the ejected
gas, the mass loss rate of Si0 molecules from the star, and
the.flux of 8 u photons arising near the star. Three values
of the asymptotic velocity are considered: 6, 10, and 17
km s_l, covering the range observed in the non-maser Si0O lines
and the OH and H,0 masers. The mass loss rate of 5i0 is
expressed as the product of ﬁ, the total mass loss rate, and
£, the mass fraction of Si0 in the ejecta. For simplicity, we
assume that f is constant in the envelope.

The variation with radius of the excitation temperature
(Tex) and the optical depth perpendicular to the radius vector
(t) are shown in figure 1 for three values of fﬁ. As fﬁ
increases, T ilncreases approximately proportionately, as might
be expected. As T increases, the number of trapped phaotons in
the microwave lines increases, leading to the increase in the
excitation temperature of those lines. Note that for the assumed
physical parameters, the optical depth for the rotational lines
is only moderately large tangentially whereas it is very large
in the radial direction. Therefore, a photon preferéntially
escapes tangentially.

Because of the greater area subtended on the sky at larger
distances from the star, most of the flux in the J=1-+0 line

arises between 5 and 2 x 1016 cm. The inversion found in



the 1+0 iine in the zones nearest the star does not affec¢t the
total fluxes very much becavse it occurs over such a relatively
small volume. However, our zones may be too coarse to assess
it properly. Furthermore, such inversions tend to disappear
when collisions are included {see below). We consider the
possibility of maser radiation arising near the star as a
separate problem and will address it in a later paper in this
series. Higher-lying rotational transitions behave similarly
to the J=1»0, except that they do not display inversions close
to the star, and their excitation temperatures decline more
abruptly away from the étar. -

The curves shoﬂn in figure 1 have been calculated under
the assumption that collisions have negligible importance in
determining the level populations. To test this assﬁmption,
the calculations were redone with the inclusion of collisions.

5

A total cross section of 2 x 161 cm2 was assumed for 8i0,

the kinetic temperature of the gas versus radius was taken fronm
Goldreich and Scoville (1976), and ﬁ was assumed to be 1.3 x 10—6
Mo/yr. The resulting curves are negligibly different from those

in figure 1 with the exception of the inner few zones, which
contribute very little to the total intensity. The calculated line in-
tensities (table 1) are also negligibly different between the

models with and without collisions. Therefore, we feel justified

in neglecting collisions throughout the remainder of this paper,
although when precise observations become available, it will be
worthwhile to redo the calculations with the inclusion of

collisions for those situations in which the total mass loss

rate exceeds a few times lO"6 Mo/yr.
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The flux of 8 u photons is estimated by assuming that the
central star has T, = 2000 K and R, = 2x1013 cm, and that dust
immediately surrounding the star converts much of the optical
and near-infrared stellar flux to 8u photons. To parameterize
this, we multiply the stellar 8 p flux (that would occur in the
absence of extinction) by a factor W. If we imagine that the
dust reradiates the stellar luminosity as if it were an optically
thick, spherical surface, then we can calculate the maximum
possible W as a function of the radius of that surface. In this
way we find that W < 10.6 (19.6) for a star of surface temperature

©2000 K (2500 K), the maximum occuring when the surface has a
radius = 19R, {31R,). Observations of cool stars undergoing mass
loss (e.g., Gehrz and Woolf 1971; Gillett et al. 1971; Hyland
et al. 1972) indicate that W varies between 1.5 and 10. We vary
the 8 p flux by investigating three values of W: 2, 4, and 8.
Figure 2 shows how Tex and 1T vary with radius for three values
of W. An increase in W increases Tex at all radii because the
increased 8 y flux forces the rotational levels closer to thermal
equilibrium at the high effective temperature of the infrared
radiation field. The optical depth decreases as W increases,
however, because more of the population is pushed to higher rota-

tional levels at the expense of the populations of the lower levels.

§IV. LINE INTENSITIES AND PROFILES

After the solution for the level populations was found, the
emission was integrated numerically over the envelope according
to equation(é)of Morris {1975). The assumptions which led to this
equation are the same as are inoned in the present paéer, notably

AV<<v _.
a
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The assumed beam response function for each rotational line
is a Gaussian with a full halfpower beamwidth equal to that of
the 1l-m NRAO radictelescope at Kitt Peak, where observations cf
the circumstellar Si0O lines have all been made to date. In fact,
since the size of the emitting region is smaller than the assumed
telescope beam size in our model where the source is 500 pc dis-
tant, the results are not sensitive to the form of the beam response
functions. Furthermore, the dérived intensities can be scaled
down for telescopes with larger beam widths simply by the ratio of
main beam solid angles. For telescopes with significantly higher
resolution than the 1ll-m ﬁelescope, or for objects much closer
than 500 pc, the beam response function becomes important for
determining the shape of the line as well as the intensity. For
kexample, if the emitting region is resolved, a double peaked
structure probably would be seen in the center of the region.

Table 1 lists the peak intensities (in terms of antenna tempera-
ture assuming no telescope or atmospheric losses} derived in our model
calculations for the J=1+0 through J=4-+3 lines. The most interesting
result is that the antenna temperatures vary almost linearly with fﬁ
for these transitions. This numerical result and the others presen-—
ted below can be derived analytically; Appendix I gives a derivation

of the dependences of T, upon the various input parameters. Because

A
all but the J=1-+0 transition are optically thick throughout the
envelope in all cases, we have here a clear example of photon trap-
ring in a microwave line. If in a given model the number dénsity
of molecules increases, the number of trapped photons increases

because of the increased optical depth, and thus the excitation

temperature increases proportionately. The approximately



linear variation of TA withfﬁ(énd thus with optical depth}ovér the whole

range of parameters which were considered suggests that one may
easily extrapolate our results to larger or smaller values of fﬁ
Of course, in the optically thin limit, the line intensities in-
crease linearly with fﬁ, but in this case it is the increaée of
17 rather than Tex that is directly responsible for the intensity
increase. The line intensities vary with W less strongly than
linearly--over the limited range investigated, TA o W0'4—0'6.

For given values of fﬁ and W, the line intensities decrease
roughly as Vaﬂz. This can be seen from table 1 by interpolation
and the use of the linear dependence of TA on fﬁ. The reasons
for this are twofold: 1) for a given fﬁ, the density at any
point is inversely proportional to Va (conservation of mass flux
across any spherical shell centered on the star), and 2) the
apex angle of the cone of radiative contact is inversely propor-
tional to V,- Therefore the expression for T contains two factors

—-1.%

: -2 .
of Va We noted above that TAa T, and so TA o VA . This

*This is true of equation (1) of Morris (1975) if one notices
-1

-that k o Va

implies an observational selection effect against the detection
of "thermal" radiation from molecules in circumstellar envelopes
with relatively large asymptotic velocities. This bias would not
arise if such objects had high mass loss rates, but this is unlikely
because the radial momenta of the envelopes becomes in probably
high.

If the intensities listed in table 1 are all corrected for

aperture effects, i.e., if relative beam dilution of the signal
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is removed, one sees that the 2+1 line is intrinsically the
strongest in all cases. Thus it is no surprise that this is the
first and only line detected to date. The relative line intensities
vary as the physical parameters of the envelope vary and thus

a measurement of, say, the J=2+1 and 3+2 lines in the same object
would help sort out the values of fﬁ, W, and the distance to

the source.

In all of the models which were investigated, the J=2+1 and
the next few higher-lying transitions are optically thick. Morris
(1975) has pointed cut that optically thick lines arising from
spherically symmetric, uniformly expanding envelopes have para-
bolic line profiles. Such is the case with our calculated line.
.profiles for the J=2-+1 and higher transitions. The J=1-»0 line, how-
ever, often has an optical depth that is small or near unity, and
therefore the profile has a shape that is intermediate beéween
rectangular and parabolic. Because the profile of the J3=1+0 line
varies with the physical parameters of the circumstellar envelope,
it prdvides useful independent information on the envelope para-
meters. With this in mind, we display in figures 3-5 the calculated
J=1+0 line profiles for wvarious values of_Va, fﬁ, and W. The
indicated antenna temperatures scale with distance as (500 pc/D)2
unless D is much smaller than 500 éc, in which case the line shape

and intensity are affected by the form of the beam response function.

§V. COMPARISON WITH OBSERVATIONS

Ideally one would have 5 important pieces of information

from observations of the non-maser SiO lines towards a given star:



8L

1) the line center velocities, which yield immediately the stellar
velocity (Reid and Dickinson 1976), 2) the full line widths which
lead immediately to the asymptotic expansion velécity, Va' 3) the
shape of the J=1-+0 line, which gives an indication of the mean
optical depth of this line, 4)the absolute intensity of a given line,
and 5) the relative liné intensities. Measurements 3, 4, and 5,,
if accurate enough, can in principle provide a determination of
£ ﬁ, W and the distance to the star, D, through a detailed compari-
son with the calculations. If W and/or D are independently deter-
mined from infrared or optical.observations, then the remaining
guantities can be fitted quite simély to our model. In fact, W for
a large number of stars can be determined from existing infrared
observation apart from a dependence on D. Note that for a compari-
son with observations, W must reflect not only reradiation by'dust
i.s in our models, but also the differences between our standard
star and the actual stars under study.

The observations to date consist.of only the J=2+1 line mea-
sured towards 4 stars. Therefore, we need to derive both W and
D from independent observations. To see how strongly the result
depends on measurable and assumed quantities, we start with the

result discussed in §4 that

% L)
(1) P o W fM
A v ? D2

a

The dilution factor W can be expressed in terms of the mea-

sured 8 y flux from the star, F the estimated distance D and

8y’

©  of our "model star” (a 2000 °K spherical

8u
black body with radius 6x1013

the specific luminosity L

cm. ) The distance to each of the
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stars analysed has been estimated from the measured visual flux
Fg, and an assumed visual luminosity Lv. Solving (1) for £M, and

using these new quantities we obtain

(2) £ & o T, V 2 LBu Lv. &

Notice that f& depends strongly only on quantities that
can be easily meésured, and rather slowly on the least understood
parameter, the assumed luminosity LV. The gquantity fﬁ is quite
well determined; an independent estimate of either f or ﬁ could
be used to obtain the other.

The application of our calculations to the observations made
by Buhl et al. {1975) is presented in table 2. The second and
third columns list the estimates of D and W which we have extracted
from the literature. The fourth and fifth columns give the values
of Th and Vé which are indicated by the Sip observations. Eguation

(2)has been used to derive 'fﬁ listed in columnsix; the constant of
proportionality in this equation wasAfouna from thé most appropriate
model in table 1 (althaugh the gist of section IV is that this
"constant" is indeed quite constant over a large range of parameters,
we use the closest model to minimize as much as possible the devia-
tions f;om equation l). The estimates of fﬁ for all but VY CMa
have been corrected slightly for the fact that these stars appear
to be close enough (much less than 500 pc) for their envelopes to
be partly reéolved. Column eight gives the minimum total‘mass loss
rates ﬁ, which were derived from the values of fé under the
assumption that all of the cosmic abundance of silicon is in the

form of Si0O molecules ([Si0] /[H,] = 6x10™° by number, or £ = 1.32x107°).
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These minimum mass loss rates are disturbingly low. If
we assume that the infrared excesses in these stars is due to
reradiation from dust heated by stellar photons, then from the
momentum transfer of the stellar radiation to the dust, and
from the asymptotic wvelocity of the material, one may estimate
a mass loss rate. Goldreich and Scoville in this way obtained
a typical mass loss rate of 3}(].0-'5 M@ yrﬁl for the OH-IR stars.
Gehrz and Woolf {(1971), on the other hand, deduce mass loss rates
of l-—2xl()-'G Me yr_1 from infrared observations of the first three
stars in table 2.

In either case, it appears that SiO in these envelopes com-
prises only a small fraction (< 10%) of the availahle silicon,
assuming cosmic abundances. These fractions are remarkably small,
gives that model atmosphere computations (Vardya 1966
Tsuji,1973) indicate that most of the silicon is processed into
Si0 in the outer parts of the stellar atmosphere; It is very
likely that grain formation becomes efficient in these envelopes,
and thus that a large fraction of the SiO is processed into some
form of silicate graims. It is surprising, however, that the
grain formation and growth processes are so efficient that such

small proportions of Si0O are left in the outer parts of the envelope.
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TABLE I

Calculated Peak Line Antenna Temperature (XK)
For D=500 pc, T,=2000K, R,=6x10'3cm
T

-1 -1 © 100 -1 A
va {Km s )_ AV{Kkm s ") W fM (10 M@yr ) 10 21 32 43
6 1 4 0.87 .070 .342 .435 .354
6 1 4 1.74 .128 .804 .906  .749
6 1 4 3.48 .254 1.964 1.978 1.396
6 1 4 5.80 .321  3.208 4.827 2.979
8 1 4 5.80 .217 1.668 1.953 1.579
10 0.59 4 1.45 .057 .233 .278 .209
10 0.59 4 . 2.90 .095 .448 .557 .447
10 0.59 4 5.80 .171 .912  1.109 .932
10 1 4 5.80 151 .934  1.136 .975
17 1 2 4.93 .042.  .188 .237 .183
17 1 2 9.86 .069 .391 .516 .429
17 1 2 19.72 .126  .B95 1.212 1.066
17 1 4 4.93 .064 .270 .327 .249°
17 1 4 9.86 .108 .528 .655 .529
17 1 8 4.93 .095 .379 .479  .367
17 L ‘8 9.86 .158 717 .908 .750
17 1 8 19.72 .266 1.385 1.756 1.484
17 0.5 4 4.93 .070 .287 .331 .247
17 2.0 4 4.93 .057 .245 .315 .246

with collisions:

10 .59 4 5.80 . .163 .923 1.02 .789



TABLE 2

Comparison With Observations

(1) (2) (3) (4) 8 (5) 19 - {6) . (7)
Star D(pc) W T, (K)" V (Kkms ™) f£M (Ms/yr) Moin M /yx)
R Cas 195t lo.60° | 0.47 8.9 1.0x107 10 7.7x10"8
W Hya 100t jo.67%] 0.30 6.8 1.5x107 1t 1.1x10°°
R Leo 1502 |0.86°| 0.35 3.9 9.8x10 2 7.4x107°
Vy Cma V4oo3 14.7'| 0.32 36.7 9.2x1071° 6.9x10"

1500% | 206’ 3.8x107° 2.9x107°

Notes to Table 2:

1) luminosity distance from Wilson et al. (1972)

2} luminosity distance derived with same assumptions as in Wilson et al.
(1972) and .IR data of Gillettet al. (1971)

3) luminosity distance from Hyland et al. (1969)

4) suggested by Herbig (1969)

5) derived using IR data of Gillett et al. (1971}

6) derived using IR data of Gehrz and Woolf (1971)

7) derived using IR data of Hyland et al. (1972)

8) Buhl et al. (1975)

9) Reid and Dickinson (1976}
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APPENDIX

A Model for the Excitation of the Microwave Lines

It is instructive to try to make a simplified, analytical model for the
excitation of the microwave lines im SiO. In this appendix we describe the
excitation of an idealized model of a diatomic molecule, which has only one
rotational ladder of scalar levels. The levels will have the usual energy
spacing, but the statistical weights are now all equal to unity. The trans-
fer of population that occurs via the excited vibrational state in the real
Si0 molecule is here represented by an imposed upward transfer of population

between levels J and J + 1 given by:

RJ+J+1 = (nJ - nJ}l) B, gv * (A1)

Where the n, are the level populations, gv is the profile averaged mean
intensity at 8u and B, is an "effective" value for the Einstein B coefficient
for the 8u transitions in S§iO. ﬁe have éssumedABv is constant for all the
transitions, and an appropriate value for Bv is hélf the asymptotic value of
the true B coefficient, as J becomes large. The half arises because in the
real molecule ~ half of the excitations to the excited vibratiomal state
result in spontaneous decays back ‘into the original level.

We have also ignored the fact that in the real molecule thé 8u transitions
shift population in steps AJ =4 2. This greatly simplifies the calculations,
and does not overlook any essential feature of the excitation mechanism. As
mentioned in § IT the near decoupling of the odd and even J levéls is umimportant

in this situation.
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The net downward tramsfer of population is via the wmicrowave transitions:

R (a2)

3l = Py Ay s Pra -

Here AJ I+l is the Einstein A coefficient for the transitiom, and
y

BJ I+l is the escape probability for the photon. Streaming velocities
2

greatly exceed the local turbulent velocities in this problem, so that the

escape probability is locally determined. It is given by (Castor, 1970)

J, J+1 (M)J . (a3)

0 T3, 3+1 ()

1{1 - exp[-1

By, a1 ™ .(

TJ I+l (n) is the optical depth in the transition, along a ray making
’

an angle 6 = arccos (1) to a radius vector. Note that the dependence of the

variables on radius has not been explicitly included. Continuing:

B(n_ -n_.)
_ . her r J J+1
e Wy TEramy gy (&)
TH \dmz

Where B is the Einstein B coefficient for the rotatiomal transitionms,
and all other symbols have their usual meaning. Since these lines are

optically thick, we may substitute (A4) into (A3) and obtain

_ 8nV }:_ _‘?_L“_V_
Py, 341 = Sher B (o) - ) (1 5 ) : (a5)



At large distances from the star the gradient of the streaming velocity

is asymptotically zero. We now evaluate the right hand of (A2) to obtain:

. _ 1ew(s s 1)° ( B ) (86)
J-J+l 3r KIOB n; - nJ+1

Where KlO is the wavelength of the J = 1 » O transition. If we define

2 167V
2o dew (a7)
3\ B gv

10 v
then using equations (Al), (A6) and (A7) we can form a difference equation
for the level populations:
2
)

2 3
(nJ R % (J + 1) RATS I (a8)

This can be solved approximately, when q2 is small compared to n,

yielding

ng(\/—no-—% nf/z)z .  (a9)

We will also need to express n, in terms of the total number density of

the molecule, N:

R R A R L (A10)
(o]
e
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To estimate the number of photons emitted by the cloud, ¥, we mneed to
integrate equation (A6) over volume, since each net downward transition
results in a photon escaping to infinity. It is easier to use {AT7) together

with (A8) and (AlO) to obtain:

X
C

2 :5/2( /6  n/12 5/2)
= } - - . .
7G}J+1 So hnr” dr Bv ﬂv (I + 1) 1.11 q N 0.2 (3 + 1) (A11)

Since we are interested only in low lying levels we will neglect the
second term in the large brackets from now on. The integral is proportional
b ) . '
to rc3/ (where r_ is the outer radius of the line emitting region) and we

choose r. to be that radius at which the optically thick assumption fails:

L
Yo " BB W - (a12)
r
where we have used (AL) and set T,y =1 and b = 0. We now evaluate the flux

in the line at a2 distance D from the cloud, assuming D >> r. , and obtain:

(hc)7/hB 3/th5/12 2 5/12,7/6
% (line center) = 6.98%x 10~ J 3 E HE

VI, J+1 A v/ p

)(J+1)3/2 , {(A13)
10

where we have introduced some new quantities. 5 is the number of Si0
molecules passing through the inner edge of the cloud per unit second, so

that

[NaJ

. (A1k)
hﬁrQV ’
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iép is the specific luminosity of the central star in 8u photoans,

so that

g = = (A15)

hnr
In evaluating the numerical constant on the right of equation (Al2) we

assumed that the line profile of an optically thick line is parabolie, so

that the flux at line center seen by an observer at a large distance D is

related to WJ’J+1 by:
he %
3 J, J+1
¥ (1ine center) = —= —_— . (Als)
V1, 3+l S

Equation (Al2) exhibits the dependences of the flux on the parameters
fairly well. 1If we look more closely at how the flux depends on the input

parameters, we find that:

' 1/2
£ S 1/6
7, « ( &lvg )(1 1%2_‘]1[3) ) (A17a)

8p

We see that the flux nearly varies as very simple powers of £, , S
and V. The dependences in the first bracket were motivated in § IV, in
particular we mote that at constant fractiomal level population, the optical
depth in each line varies as SV °. 1In this regime photon trapping ensures
that the excitation temperature is proportional te T, and the gradual transfer

of population to higher levels with increasing 8p flux shows in the fact

)
that the emission rate goes ounly us fépl/h . The second, slowly varying
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factor, shows how F varies due to the fact that the number of levels which

are significantly populated varies, slowly, with the input parameters.
In this appendix we have used £Bp (e W), S (x ®1) and z, (e TA) since

the equations are simpler when expressed in terms of these quantities. We

may rewrite (AL7 a) to see:

T

A 72 G112 (173

«(“1/2 fi‘) ( (i '/ ) (A17b)

We note that in different situations the choice of cloud radius in

(A12) may be inappropriate. It may occur that the 3°K isotropic background

is important in the excitation, and so the cloud may terminate where the

excitation temperatures fall to 3°K. Another possibility is that ne may

become comparable to n_, in which case (A9) loses its validity.

Finally, if the microwave transitions are optically thin ﬁhroughout

- the envelope, instead of (a12) we would have:

2 2

F (Line center) = '%é (hc)s/
Vv D

1/2
B B \l1/2 & S 3

k. 3 Su (3+1) (A18)
1"J',.]I«&-l

Mo

where the dependences on envirormental parameters are nearly the same,

but on the molecular constaunts very different.
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FIGURE CAPTIONS

Fig. 1 Curves of excitation temperature (Tex)and tangential
optical depth (1) of the J=2+1 transition as a function of R,
the radial distance from the center of the star. Three curves
are shown for each parameter, each corresponding to a different
value of the mass loss rate of 510 molecules from the star,

£fM. The Bu flux is four times the direct stellar contribution

in all cases.

Fig. 2 Curves of excitation temperature (Tex) and tangential
optical depth (r) of the J=1+0 transition as a function of R,
the radial distance from the center of the star. Three curves
are shown for each parameter, each corresponding to a different
value of W, the factor by which the 8y flux exéeeds the direct
stellar contribution. The mass loss rate of SiO moleculeé is

10

held constant at 9.86x10 M0 yr_l in all cases.

Fig. 3 Line profiles for. the SiO.J=1+0 transition from the model
circumstellar envelope at a distance of 500 pc and having an asymp-
totic velocity, Va' of 10 km s‘l. The different profiles result
from different values of f&, the mass loss rate of SiO,

indicated in units of 10‘10 Me yr~l. The J=2+1 profiles are
almost always parabolic and thus are not shown; the parameter X

indicated for each profile gives the ratio of peak

antenna temperatures for the 2+1 and 1+0 lines as measured by
an ideal antenna.
Fig. 4 Same as for figure 3, but with Va=6 km's~l, and different

.

values of fM.
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FPig. 5 Same as figure 3, but with Va=l7 km s—l. The dotted

curves are for fM = 9.86x10-10 MO yr_l and the so0lid ones for

M = 4.93x10~10 M0 yr_l. The different curves result from dif-
ferent values of W, the factor by which the 8y flux exceeds the

direct stellar contribution.
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ABSTRACT

" We have investigated the excitation of the microwave lines
in the excited vibrational states of the SiQ molecules in the
expanding envelopes of cool Mira-type stars. The excited vibra-
tional states are populafed principally by the absorption of 8p
photons. The inversidns occur when the gas temperature exceeds
the excitation temperature of the vibrational levels, and upward
vibrational collisions selectively populate higher rotational
levels. The masers are all saturated. We discuss the line
profiles, and show how.the profile is determined By the velo-
city gradient and the ambient radiation field.

The Si0 abundance requirea'for the masers is large. We
discuss this in the light of our earlier calculation that the
abundance is low in the outer envelope, and argﬁe that grain

formation is an efficient process.

Key Words: masers —- molecules, circumstellar radiative transfer
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I. INTRODUCTION

In an earlier paper (Morris and Alcock 1977, hereafter referred to as
Paper I} we analysed the excitation of the non-maser emission from SiQ
molecules in oxygen-rich stellar envelopes. We showed that the rotational
transitions in ;he ground vibrational ladder were very efficiently excited
by the absorbtion of 8u photoﬁs.- Using this calculation, we were able to
estimate the number of Si0 molecules in the circumstellar envelopes for
which observations of v = 0 rot%tional lines exist. This may be used,
together with independent estimates of the mass loss rates and the mole-
cular abundances, to estimate the efficiency of grain formation in these
envelopes.

In this paper we look at the excitation of the masers in the rotational
lines in the first and second excited vibrational states of Si0. We also
compute line shapes for our models (as we did in Paper I) and, because there
exists some confusion in the literature about maser line shapes, discuss in
a fairly general way these lines are formed.

Geballe and Towres (197%) proposed radiative pump mechanisms that
depend on chance coincidences between variou; lines In the Si0 spectrum.
Their model is not able to explain the richness of the 5i0 maser spectrum,
and in particular fails to explain the J = 1+ 0 line in the second excited
vibrational state. Kwan and Scoville (1974) peinted out the importance of
radiative trapping in the ex;itation_of vibrationally excited Si0. Their
paper clearly describes many of the key features of any Si0 excitation
mechanism. They did not discuss the maser in the second excited vibrational
state, and unfortunately their numerical calculations ;uffer from an incor-

rect value of the Av = 2 transition rate. They did not discuss maser line
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Ashapes. Deguchi and Iguchi (1978) discussed radiative pumping of the $i0
maser, but did not adequately describe the pump cycles fheir

numerical computations produce. .They did not take saturation of the masers
into account, even though Kwan and Scoville had shown how saturation in one
tr#ﬁsition could lead to an inversion ir the next higher transition. We
will show below that their model would produce the wrong line shapes.

Olnon (1977) discussed the line shape for masers formed in expanding
envelopes, but (as we show in 8III) his discussion is incorrect. The cor-
rect description of the shape cf'the 1612 MHz OH maser lines was given by
Elitzur et al. (1976) aund Kwok __e__c__i;_ (1975), and we will generalize this
discussion to cover masers formed in all regions of the envelope.

In the next section we briefly summarize the key observations that this
paper discusses. In $III we show how the maser emission line is formed, and
discuss its shape carefully. 1In 8IV we describe in some detail the numerical
calculations of the excitation of the masers iq Si0 and present the results.
We compute line shépes for these models. In 8V the pump cycles for each of
the masers is discussed carefully, and the results are compared with the

observations. In 8VI we discuss the implications of these results.

II. THE OBSERVATIONS

The observations of the objects around which SiQ masers have been
detected has been extensively reviewed by Olmon (1977). We present only
those features we are concerned with here. The masers occur around cool
giant and supergiant stars (typically long period variable stars) which
are believed to be losing mass (see e.g., Gehrz and Woolf 1971, and ref-

erences therein). The transittions that have been detected are v = 1,
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J =1 » 0 (Thaddeus et al. 1974, Snyder and Buhl 1975); v=1, I3=2~>1
(Snyder and Buhl 1974, Kaifu et al. 1955); v =1 J=3~ 2 (Davis et al.
1974); and v = 2, J = 1 > O (Buhl et al. 1974). There have been unsuccess-
ful searches for masers in the transitions v = 0, J=1->0; and v = 3,
J =1+ 0 (Buhl et al. 1974). “Thermal” emission in the v=10, J=2=>1
line has been detected (Buhl et al. 1975); we discussed the excitation of
this liné in Paper 1.

The lines are either double peaked, with a typical separation of
~ 8 km s—l, or singly peaked. Where 1612‘Mﬂz or 1665/1667 Miz OH masers
coexist, the Si0 emission falls midway between the (H emission peaks. Some

of the stars are also 22.2 gHz H,_ O maser sources: the H_O maser lines are

2 2
generally single peaked at a velocity between the 3i0 peaks {if the S5i0
line is double peaked) or mearly coincident with SiO peak (if the Si0O line
is singly peaked). 1In general the st;uctur; of the lines in the different
transitions is similar for any given star. Not all of the transitions are
detected in all of the stars.

The lines are observed to vary in phase Qiﬁh the light curves of the

stars, and two objects have been reported to vary in a few days (Spencer

and Schwartz 1975, Balister et al. 1977).

III. THE LINE SEHAPE

The previous work mentioned above has largely concerned the mechanisms that
leads to population imversion in the various microwave lines for which non-~thermal
emission has been observed. Of these only Elitzur et al. (1975) and Kwok et al.
-(1975) discussed the shape of the microwave line that would be observed at infinity

for their wmodel of the 1612 Miz OH masers. Olnon (1977) attempted 2 more

. -~
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general discussion of the determination_of maser line shapes around cool
gilant and supergiant stars. He used this discussion to analyse the lines
of OH, H20 and Si0 and infer details about the expanding envelopes of these
stars. We will show below that his discussion is incorrect. We present
here a fairly detailed description of how fhe velocity field, optical dapth
and source function of an inverted transition produce characteristic emission
line shapes. Using a simplified model of a maser in an expanding envelape,
we demonstrate how it is possible to approximately infer the location of
the maser and-the logarithmic g?adient in‘the vicinity of the maser from
the observed line. This inverse procedure ;s not unique, and is somewhat
sensitive to the assumptions made, but provides new information about these
envelopes.

We assume throughout this section.that the envelope around the star is
spherically symmetric, and that the material is accelerated from tﬁe surface
so that itg velocity 'is a monotonically increasing function of radius. The
escape probability formalism is not used in this section, but the notation
is similar to that used by Castor (1970} where a fuller description of the
input quantities is presented. The interested reader may wish té refer to
this earlier paper.

The source function in a given transition at a radius r is:

s(r) = —p° “,/“i- - (1)

where Yo is the frequency of the transition, n, and n, are the fractional

I
sublevel populations of the lower and upper levels, respectively. All

unspecified symbols have their usual meanings. The optical depth in the

line of radius r and along a ray at angle O = arccos (u) to a radius is
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given by:
- 1o(7)
T(ril-‘-) = 2 (2)
1+ o(c)u
where
e e
o) = T (e8), , vy (g - ) (3)
and
d inV
o) = gzt o (4

where V(r) is the expansion velocity at radius r. In the integrals needed
to evaluate the flux in the line at a given freﬁuency v, we have to inte-
grate over a surface of constant Doppler shift to a distant observer (see

Fig. 1). This specifies the value of pu:

<) 2

The line will have a local width due to thermal motions and micro-
turbulence. We will assume that this local velocity width is small compared
to the streaming velocities. If the normalized local profile is ¢(v - vo),

we define

y(z,v) = fv* Flv - vg) dv - (ea)

ve = (v = vp) {1 . et rg)l/e} . (eb)

pr

With these quantities we may evaluate the ratio of the flux Fv in the line

to the continuum flux Fc’ when these are measured by a distant cbhserver:

= P, +P_ +P_+ B (n
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et 2r dr S(r) 2 “To
ERL ] Gt S
r (v)
P o ar ( { “To¥ } )
P = ex -1 8b
2 'rrm(v) rc2 ? 14+ oue (&)
rP(V) 2r dr S(r) 2 %o f "o
P, = £ T 2\ 1 '(ex {—~————~—} - ex [_______.} 8c
S I;m(v) rcg L (1 + o) F 1+ 0“2 ° 1+ gga ) (8e)
= ov dr BB 2 o\
P, = J‘rp(v) > rc2 —I: (L + au) (exp{-;:—;—é} - 1) . (8d)

In these equations Ic is the specific intensity in the continuum at the
surface of the star; it is usually set" equaltto the Planck function at the
stellar surfaca temperature. 1‘BB is the specific intensity of the 3 °k

background radiation, and . is the radius of the- central star. The two

frequency dependent radii rm(v) and rp(v) are shown in Figure 1. They are

defined by
vz (v) Vaev
( mc ) - - 0 (Sa)
0
fp(v) = rc(} - pz(rp(v)))-l/2 (9b)

The expression for the Fflux in the line has been brokean down into these
four pieces because they represent physically distinct parts of the process.
P1 evaluates the amplification by the maser of its own spontaneous emission,

under the assumption that the central star is transparent. . It is symmetric
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about the line ceatre, and depending on the location of the population

inversion may have a single peak at v,

o OF two peaks at ~vo(1 + V() /c).

In those situations where the maser inversion occurs, a singificant distance

from the star, Pl is usually the dominant component.

P2 evaluates the amplification by the maser of the stellar continuum.

Because of this, only frequencies blueshifted from v, are obsarved. It

generally peaks at a frequency significantly blueshifted from Vo* In masers
where the population inversion is fairly close to the star this component

usually dominates. The .ratio of the peak intemsity in P1 to the»peak inten-

sity in P2 is approximately given by

P 2
1} s(xr) dtaV (r

g} <52 S RL ) (10).
2 c c!

where the right-hand side should be evaluated at the radius where
—To(d Ia r/d fn V) is maximized. Using equation (1) and expressing tc
in terms of the stellar surface temperature Tc (in the Rayleigh-Jeans

approximation singe ch >> hvo for all microwave lines):

P 2
1 O d iV (r
Max{?} P (-‘-—' - 1) - 3 Iis = (I‘ ) . (11)
2 c c
P3 is a correction to Pl which subtracts out that portion of.P1 that

is absorbed.by the central star. Ph evgluates the amplification of the 3 %k
béckground by the maser. This is not often likely to be impertant, with
one possible exception. The model for the 1512 MHz OH maser published by
Elitzur et al. {1976) would have P,4 about 20 percent of Pl' If the inversion
were more pronounced, Ph might dominate.

The apparent complexity of equations (8) disguise their primcipal

features. To demonstrate these we will construct a simplified three
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parameter set of models of a "maser" around a "star" that is losing mass.
No discussion of the origin of this "maser" will be made, but instead the
run of velocity, source function and optical depth with radius will be

specified a priori, and then.simplified versions of the integrals im equa-

tions (8) will be evaluated. We will set r,=1and I_ =1 since they scale

out of the equations. The velocity field we will use is:

V() = tach(* = ) (12)

where e is a parameter that determines how close to the star the accelera-
tion occurs. In Figure 2 we plot V aud d fn V/d fa r for the various e
used. On this same figure we show the (appropriately scaled) velocity field

determined by Goldreich and Scoville (1976). The optical depth of this

"mager" will have the radial dependence: .

to(x) = -7, exp{_ (f_::;rg_if} ) (13)

where Ty is a parameter that locates the "inversion' and TN parameterizes
its strenzth. 1In these models we will ¥aka S(r) = -1, a simplification that
is not strictly consistent with the assumed variation of thé optical depth.
However, in most situations the variation of S{r) is much slower than varia-
tion of the exponentials in the integrands, so this assumption does not

gualitatively change the results.

The two integrals we calculate are:

=..'m T dr + 2 - & '—':-L} La
B, Irm(v)z dr(1 ou)(l }c.p{1+cu2) (1ba)
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r (v)

P - -To } )
P = 2r dr |exp {———5 - 1 . 1hb)
B Irm(v) ( ’ {1 + qua (

gA is precisely P1 for the simplified case presented here. 1In the limit

that the Doppler width of the line may be neglected, the function y defined

B 2

and of course in this sit-

in equation (6) becomes a step function and then P_ = P_. As mentioned
before, PS is merely a correction factor to Pl’
ugtion Ph is just P1 multiplied by an appropriate constant.

In Figures 3, I and 5 we have_ploﬁted P, and P, for a representative
set of the parameters. These illustrate the priuncipal features of the line
formation process. 1In Figures 3a and 3b the effects of moving the "accelera- .
tion region" further away from the starlare seen. In the case where *m

most of the acceleration occurs close to the star. The logarithmic gradient

= 0.5,

{and hence g) is large in the vicin;ﬁy of the maser, and the greatest optical
gains (see eq. [2]) a?e along rays perpendicular to radii. Because of this,
most of the amplification of spontaneous emission occurs in directions nearly
perpendicular to.radii, and ?A peaks strongly about the zero of relative
velocity. As the acceleration region moves futher away from the star, the
logarithmic gradient in the vicinity of the inversion approaches zero (see
Fig. 2) and the amplification becomes predominmantly radial. In the most
extreme case shown in Figure 3a the line peaks very close to the asymptotic
radial velocity and there is a deep minimum at the stellar velocity. The
situation for PB (see Fig. 3b) is quite different, especially when ihe
acceleration occurs very close -to the star. This is because only material
directly in front of the star (see Fig. 1) can contribute. There is always

a minimum at the stellar velocity, and a peak in the emission line which

becomes more intense, narrower and toward larger radial velocities, as the
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acceleration region moves futher from the star.

In Figures ta and L4b the op