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ABSTRACT

The purpose of this work is to understand the domain
wall dynamics in the presence of high drive fields and in-
plane fields in magnetic bubble materials. Bubble radial
expansion method is used to investigate the non-linear
region, Saturation velocity is found at Tow in-plane fields
and a drive dependent region at higher in-plane fields. The
in-plane field increases all the velocities. There is
velocity anisotropy and the wall along the in-plane field
generally has a higher velocity than the one normal to it.
The domain wall is dynamically deformed through the thickness
at high drive and in-plane fields, This deformation is
studied in the bulk of the film by transmission (Faraday)
mode and at the surfaces by reflection (Kerr) mode. The
mechanism for the defbrmation is based on the spatial varia-
tions of the effective in-plane field through the thickness.
This causes different parts of the wall to move with different
velocities resulting in a deformed wall. The characteristics

of the deformed wallare studied in detail for several samples.
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CHAPTER 1

1.7 Bubble Domain Basics

A magnetic domain in a material exhibiting a spontaneous
magnetic moment is defined as a region where the magnetization
of the material is aligned in the same direction. Two of
the simplest domain shapes that exist statically in magnetic
bubble materials are shown in Fig. (1.1). An isolated
stripe domain with no externally applied field is shown in
Fig. (1.1a). In the figure the arrows represent the direc-
tion of the local moments. An anisotropy axis exists in a
direction normal to the sample plane keeping the moments
aligned parallel to it. Stripe domains are usually very long
with random maze-like shapes with no external field applied
to the sample. The width of the stripes magnetized in one
direction is essentially the same as those magnetized in the
opposite direction. The area of the stripes with moments
pointing down in the figure is equal to the area of the
stripes in the rest of the material with moments pointing
up. The resultant moment is zero and the material is
magnetically neutral. This so-called demagnetized state of
the material is where the total energy is minimum. The

ends of the stripe may be free or they may extend to the



(b)

Fig. 1.1. Schematic of domain configurations in bubble
material (a) jsolated stripe domain with no applied field
(b) isolated bubble domain with applied field H  normal to
the film. An anisotropy exists whose axis is in a direction

normal to the plane of the sample.
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sides of the sample where they will usually be pinned. When
an external field is applied along the direction of the
anisotropy and slowly increased, the stripes that are mag-
netized in the direction opposite to the field first narrow
and then, provided the stripe ends are free, shorten.
Eventually, when the field is so high that the material is
nearly saturated, the stripes with the free ends will be-
come cylindrically shaped domains. This shape domain is
called a bubble domain. It is shown in Fig. (1.1b). A
bubb]é domain is a cylindrical region with all the local
moments inside aligned opposite to the applied field neces-
sary for its existence while the rest of the material is
aligned with the field. Bubble domains, then, are stable
only in the presence of an applied field since they exist
when the material is g]most saturated. Their diameter is
about equal to the material thickness which is, in typical
materials, a few microns.

The exact size of a bubble is dependent upon the mag-
nitude of the uniform applied field called the bias field(1 %),
As the bias field increases the bubble radius decreases. If
the field is high enough the bubble is no longer stable and
disappears. This maximum field is called the collapse

field and the corresponding radius is called the collapse
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radius, When the bias field is decreased the bubble radius
increases until a certain field where it expands into a
stripe domain., This is called the stripe-out field, This
stability range for bubbles between collapse and stripe-
out is typically 15 Oe depending on the material parameters.
The bubble domain can be moved isotropically in the

(3_5). When the

material by using local field gradients
bias field is non-uniform and not symmetrical with respect
to the center of the bubble, the bubble will experience a
net uhba]anced force due to the different values of bias
field at each point of the circumference. This unbalanced
force causes the bubble to move as an entity in the direc-
tion of the net force which will be toward the lower field.
For example when a linear field gradient is applied, the
bubble will move in the direction of decreasing bias field
where it will have a iower energy. Local field gradients
can be obtained from current loops on the surface of the
material or from another piece of magnetic material in close

proximity. This latter method forms the basis for computer

memory devices.

1.2 Bubble Devices

Local field gradients of magnitude sufficient to con-
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fine and propagate a bubble can be obtained by applying a
uniform in-plane magnetic field to a structured magnetic

overlay. Permalloy material (6,7)

is popular for such over-
lays. Permalloy is a ferromagnetic material composed of
iron-nickel a]ldy (typically 80% Ni). It has a high per-
meability at low applied fields and is essentially isotropic
in the plane of the material, The magnetization is con-
fined to the plane of the sample by magnetostatic forces
since permalloy is highly magnetic. In a bubble device the
permaT]oy is used to transform the uniform in-plane field
into a local bias field gradient on the bubble, Conceptually,
the mechanism of this transform can be understood by con-
sidering a small bar of permalloy parallel to the plane of
the bubble material and slightly removed from it, The stray
fields from the permalloy will locally modulate the uniform
bias field that 1is a]Qays supplied to keep the bubble stable.
At one end of the permalloy, in the plane of the bubble, the
field will add to the bias whereas at the other end it will
subtract. A gradient will be formed which will cause the
bubble to move to the end where the resultant field, bias
field plus stray field, is the lowest. This place is also
the position of lowest energy so that the bubble is stable
in this potential well. By arranging the permalloy bars

in a periodic pattern and rotating the in-plane field, a



6

changing Tocal gradient can be obtained and used to achieve
bubble propagation.

One of the earliest and most illustrative propagation
structures for a shift register in a bubble device is the

(5)

T and I bar ovef]ay A schematic top view of this
overlay is shown in Fig. (1.2). Although this specific
structure is not used in high performance devices any more,
it is excellent for illustrating bubble propagation. The
dimensions of the I bars are typically 24x4 microns and 0.5
microns thick. They are spaced slightly (v~ 0.7 microns) away
from the garnet layer using a 8102 layer in-between. When

an in-plane field is applied, the long permalloy bars are
magnetized in the direction of the field generating a poten-
tial well below the bar. The direction of the in-plane field
is shown by the arrows on the lefthand side of the figure.
Initially (Case A) the in-plane field is in the -y direction
with the bubble at the bottom of the I bar where it is
stable. Uhen the in-plane field is rotated /2 to the -x
direction (Case B) the position of the potential well is
shifted to the left side of the T bar and the bubble moves

to that location. As the in-plane field rotates to the |

y direction (Case C) the bubble moves to the center of the

T bar. Of course, there is another potential well at the

far end of the I bar but the one at the top of the T is
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Fig. 1.2. T and I bar bubble propagation structure. The

arrows on the left show the direction of the rotating in-
plane field. As the in-plane field rotates clockwise the
bubble under the permalloy overlay propagates in the +x
direction. A single T and I bar pair constitutes a cell of

the shift register,
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closer to the bubble so that it moves there., When the in-
plane field rotates to the x direction (Case D) the bubble
moves to the right side of the T bar. When the in-plane
field rotates to the -y direction (Case E) the bubble moves
to the bottoonf the next I bar. Hence the bubble moves
a single period each time the in-plane field rotates by
2m. A shift register is obtained with each T and I bar
combination forming a cell able to hold one bit of infor-
mation.

‘The function of information storage can be done in

(8']]). One

digital memory devices using magnetic bubbles
and zero can be represented by the presence or absence of a
bubble at a given bit location defined by the permalloy
overlay pattern. Permanent magnets are used to provide
the bias field necessary for keeping the bubbles stable.
The information is stored in this shift register style
memory in many parallel closed loops called minor loops.
Data will circulate in these loops in the presence of a
rotating in-plane field. Access to data is done by trans-
ferring (12) the bubbles to a common shift register called
the major loop. |
The major loop which links all minor loops contains the

read (13,14) and write (15) circuits. Writing in bubble

memory devices is done by locally decreasing the bias field.
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Current pulses through a hairpin shaped conductor overlay
"nucleate the bubbles. These aré then shifted through the
major loop and transferred to the minor loops for storage.
Reading is done by transferring the data in the minor loops
to the major 106p and shifting the data to the read circuit.
Here the detection of bubble is done by utilizing the magne-
toresistive effect (]5). The bubble is stretched and passed
underneath permalloy material which changes its resistance
due to the stray fields from the bubble.

(17.18) can be built

A complete bubble memory package
by housing the bubble chip between coils and permanent magnets.
The magnetic overlays for the chip are fabricated by photo-
lithographic techniques. Then the bubble chip is located
between two orthogonal concentric‘coils which supply the
rotating in-plane fie}d necessary to propagate the bubbles.

A pair of permanent magnets is added to the top and bottom
of the chip to supply the bias field. This chip-coil-magnet
assembly is then housed in magnetically shielded dual in-
line packages slightly larger than standard microprocessor
packages. Presently bubble memory packages with up to 1 Mbit

5

capacity and 10~ bits/sec data rate are commercially avaiT—

able (18).

Bubble devices have significant advantages in the in-

formation storage technology. Bubble materials are easy



10

to grow (19)

and require Tow temperature processing. They
require only one to two levels of high resolution lithography
due to simple device structure and high yields are obtained.
The stored data is non-volatile, that‘is, the information

is retained even when a power failure occurs, since bubbles
are kept stable using permanent magnets. Other advantages

of being non-mechanical are that the physical size of bubble
devices are small and they use little power. Also bubble
devices are simple to interface with other devices. In the
memory hierarchy, in terms of access time and cost per bit,

the bubble device fills the gap between semiconductor memory

and magnetic disk.

1.3 Bubble Materials

Fo? a mégnetic material to support bubbles, the anisotropy
must be directed normal to the plane and must be high enough,
compared to the magnetization, so that the sample will remain
magnetized in that direction (20’2]), The quality factor,

Q, is usually used to characterize the material. It is

defined as the ratio of the anisotropy field (Hk) to the

magnetization (4WMS)2

Hy
Q = IFH; (1.1)

The demagnetizing field energy, proportional to 4ﬂMS, is
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lowest if the magnetization is in the plane of the sample.
On the other hand the anisotropy energy, proportional to Hk’
is Towest if the magnetization is normal to the sample.

When the anisotropy field is larger than the demagnetizing
field, i.e., thé condition Q > 1, the magnetization will
remain magnetized normal to the plane and only then stable
cy]indrically shaped domains are possible. This condition
on Q distinguishes bubble films from all other practica1
magnetic materials except the hardest permanent magnets.

It has been shown that the bubble stability range is reduced
if Q is too near this Timit, Also>unwanted nucleation of

(22). To have

(9,23)

bubbles can occur in devices if Q is tbo lTow
reasonable device operation Q should be larger than 3
On the other hand if Q is too high it is difficult to nucleate
bubbles in devices. A typical range for Q in bubble devices

is 3 < Q < 8.

The bubble material requirements in devices are determined
by the restrictions on the static stability range and the
velocity of the bubble. In bubble devices the packaging of
the domains is limited to a spacing of four bubble diameters
due to the magnetostatic interaction between them. To
achieve lower costs it is desirable to make the bubbles as
small as possible. On the other hand the lower Timit on
the bit size is limited by the resolution of the photo-

lithographic technique used to form the magnetic overlays.
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Therefore the material is selected with a bubble stability
range matching the requirements of the overlay. To discuss
bubble stability it is conyenient to define the material

parameter intrinsic length (2,3) as

(1.2)

s

w

where A is the exchange energy constant and K is the aniso-
tropy energy constant. The stability conditions are found
by energy minimization using variational techniques. At

a thickness equal to 44, it is found that the domain diameter
and its dependence on thickness is minimized and the ability
of the domain to recover from fluctuations in size and shape
in the presence of coercivity is maximized (2). At this
thickness the ratio of the bias field at collapse to the
bias field at stripeoﬁt is 1.4 and the ratio of the stripe-
out diameter to collapse diameter is 3. The domain diameter
is equal to 8% at the center of this stable region. The
thickness of 42 and the domain diameter of 8% are called
preferred values in bubble materials. Another requirement
for bubble matefials is that the velocity of the bubble
should be high for high data rates in devices. Solution of

(24)

the equations of motion show that the velocity of a

bubble is proportional to the mobility



13

- Y [A

where y is the gyromagnetic ratio and o is the damping
parameter. Hence low damping materials with high gyro-
magnetic ratios are preferred. Alsoc low coercivity is
required for high velocity and small defect density for

uniform motion,

(1,4) (25)

Orthoferrites . hexaferrites
(20,26,27)

, amorphous
materials and rare-earth garnets (21,28,29)
have composition ranges where Q > 1,hence,bubble domains

are possible. Orthoferrites support bubbles and have high
velocities but the bubble diameters are so large (d > 20
microns) that practical storage densities cannot be achieved.
Also the material must be cut from bulk single crystal
materials that are hard to grow so that large wafers for

low cost are not practical. In hexaferrites small bubbile
diameters (d ~ 8 microns) can be obtained but the maximum
obtainable bubble velocity is too low for device data rates.
Also a non-uniform coercive force affects the bubble pro-
pagation. Amorphous bubble materials can support small
bubbles (d < 2 microns) and have high velocities. They

have low cost and the existing semiconductor technology can

be used in their manufacture. Unfortunately the material
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parametefs, especially coercivity, are highly temperature
sensitive and other bubble parameters are hard to control.
Rare-earth garnets have suitable properties to be used in
high performance devices, Garnets can support small bubbles
(d < 4 microns) compatible with the present state of art
photolithography. High velocities for high data rates are
also possible. The material can be grown from the liquid
phase allowing the bubble parameters to be easily tailored
for specific purposes., The large single crystal garnet
films have a low coercivity as well as low defect density.
Rare-earth garnet materials are presently used as
standard bubble materials, They satisfy both the stability
and device perfarmance requirements. They are grown as
single crystal films having the general formula (rare-earth
e1ements)3Fe50]2 with typical rare-earth elements used
being Eu, Tm, Gd, Sm, Lu, Yb. The magnetic films are grown
epitaxially on non-magnetic bulk garnet crystals having the
composition Gd36a5012 (]9). The parameters of garnet materials
can be controlled easily by changing the composition of the
garnet, The magnitude of 4ﬂMS can be adjusted by substitu-
ting non-magnetic Al, Ga or Ge ions. The required uniaxial
anisotropy is obtained during the growth process and dominates

over the cubic crystalline anisotropy. Although its origin
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js not understood well it can be controlled easily. Unless
considerable improvements are made in other materials,garnets

will continue to be the only materials used in devices.

1.4 Bubble Domain Observation Techniques

The magnetooptical Faraday effect (30-33)

is particularly
useful for observing bubble domains. This effect is the
rotation of the plane of polarization of linearly polarized
light when it is transmitted through a magnetic medium. Its
origin is due to the gyrotropic properties of the medium.
Classically the effect is explained by separating the incident
linearly polarized 1ight wave into right and left circularly
polarized waves. Each has a different effective index of
refraction through the magnetic medium, i.e., there is
circular birefringencé and the two waves travel with dif-
ferent velocities. When the two circularly polarized waves
are recombined after passing through a magnetic medium,

again linearly polarized light is obtained but with its

axis rotated by a small amount, This rotation is called the
Faraday effect. The magnitude of rotation is proportional

to the magnitude of magnetization of the

sample along the propagation direction and the propagation

path Tength.
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A polarizing microscope is most convenient for ob-

(34)Q Garnet materials are trans-

serving bubble domains
parent to green light, The Faraday rotation is generally
very small {less than 2x103 degree/cm) but the figure of
merit (rotation/absorption) is large enough for domain
observations. Light is passed through a polarizer, garnet
and analyzer in a direction normal to the plane of the
sample. The optical axis of the analyzer is rotated with
respect to the polarizer until the domains magnetized in
one direction are observed as dark while the domains
magnetized in the opposite direction are observed as

light. With this arrangement, the bubble domain can be
easily seen. Another arrangement is also convenient when
the boundary or wall between domains is of primary interest
rather than the domain itself, For this case the optical
axes of the analyzer and polarizer are perpendicular so that
domains magnetized in opposite directions are observed

as the same shade of gray. Under this condition the domain
wall separating the domains is a dark line due to diffrac-
tion in the sampie by the domain wall, Using this crossed
polarizer mode, precise measurements of the position of the
domain wall can be made.

35)

The magnetooptical Kerr effect (32-33, is very

similar to the Faraday effect only it occurs when light is
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reflected from a magnetic medium, Calculation of reflec-
- tion coefficients using the boundary conditions at the sur-
faces of a magnetic medium show that the plane of polarization
of the reflected light is rotated with respect to the inci-
dent light, This is due to the phase difference between the
right and left circularly polarized waves forming the re-
flected wave; This rotation is called the Kerr effect. Its
magnitude depends on the angle of incidence of light and
the magnitude and direction of the magnetization at the
surface. The reflected light in the Kerr effect is el-
liptically polarized as a result of the magnitude difference
between the right and left circularly polarized waves,

The properties of the Kerr effect require special
considerations for domain observations. The material must
be opaque at the wavelength of 1ight used for minimum ab-
sorption during reflection and a high figure of merit. Blue
light has to be used in bubble materials for this purpose.
Also the magnitude of the Kerr rotation is too small for
domain observation in typical bubble materials and also
the ellipticity of the light obscures the contrast. 1In a
special class of materials, bismuth containing garnets (36),
the Kerr rotation is high enough (about 0.5%) and reasonable

contrast is obtained. Using this type of material the
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domains at the surface can be observed by reflecting light
at a normal angle from the surface, The polarizer and
analyzer axes are adjusted to change the contrast of domains
with respect to each other., In the crossed polarizer mode
the domain wall is observed as a dark line as in the Faraday
effect. This mode in Kerr effect is particulariy important
to study the characteristics of the wall only near the
surfaces whereas in Faraday effect the wall in the bulk of
the film is observed. Using both the Faraday and Kerr
effects in the cross polarizer mode and comparing them,
more complete information is obtained about the character-

istics of the domain wall.
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CHAPTER 2

Domain Walls and Domain Wa]]‘Dynamfcs

The velocity of a domain wall in magnetic bubble
garnet materiai is important for device operation. The
device operating frequency in a bubble memory depends on
the propagation rate of the bubble which in turn is a
function of the domain wall velocity. In bubble films
there are limitations on the velocity arising from changes
in the internal structure of the wall. To achieve high
performance Tevels required for practical application,
it is desirable to understand the physics of these limita-
tions. The velocity of the wall under different field
conditions is of particular interest. Here the domain wall
velocity dependence on a wide range of drive and in-plane
fields has been studied.

The coordinate system most convenient for discussing
bubble domain wall physics is the spherical coordinate
system as shown in Fig. (2.1). Here the z axis is normal
to the sample plane. The magnetization, Ms’ makes an angle
of 8 with this axis. The projection of MS onto the xy
plane makes an angle of ¢ with the x axis. The

polar coordinates 6 and ¢ are functi as of the cartesian



23

Xl
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Figure 2.1. The spherical-coordinate system used to
describe the orientatian of M . The z axis is normal to

the plane of the sample. The domain wall lies in the xz

piane.
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coordinates x, y and z. When domain walls are considered,
it is convenient for them to be in the xz plane as shown

in the figure. Their motion is in the y direction.

2.1 Static Domain Wall Structure

Magnetostatics

The total static energy density in a magnetic material
is composed of terms representing anisotropy. exchange,
demagnetizing fields and externally applied fields. It is

given by
+ E +ED+EH (2.1)

Here the one-dimensional forms of the energy terms will be
discussed where the polar coordinates 6 and ¢ are allowed
to change only in tHe y direction. 'In garnet materials
there is an easy axis of uniaxial anisotropy normal to the
sample plane. The lowest anisotropy energy state is when
the magnetic moments are aligned parallel to this axis.
The wuniaxial anisotropy energy per unit volume, Ek’ due
to the magnetic moments making an angle of 6 with the

easy axis along the z coordinate is given by

E, = K sin®e (2.2)
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where K is the anisotropy energy constant in ergs/cm3.

The exchange energy is due to neighboring magnetic moments
not being parallel to each other and is proportional to
the spatial rate of change of the angle between nearest
neighbor moments,r The lowest exchange energy state is
when all the magnetic moments are parallel. The exchange

energy is given in one c¢imension by

2 2
- de . 2 .(do ;
EA = A(dy) + A sin e<——dy> (2.3)

where A is the exchange energy constant in erg/cm.

The source of the demagnetizing field energy is the diver-
gence of magnetization. This energy is the most difficult
to deal with since it is usually very complicated and most
of the time it must be approximated rather than calculated.

In one dimension, however, it is rather simple

En = ZﬂMg s1’n2

; 6 sine (2.4)

The external field or Zeeman energy is the potential energy

of the magnetization with an applied field

(2.5)
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where Hp is the combination of all externally applied
fields. Hence the total energy density, ET, is given in

one dimension by

2 2
- , 2 de . 2. (do
ET K sin 8 + A (H§> + A sin 6(3;)

+ 2nM§ sinze sin2¢- M. H

E

Wall Structure in Infinite Sample

A domain wall is the narrow region between two domains
where the magnetization rotates rapidly with respect to the
domain dimensions from the direction in one domain to the
direction in the other. Conceptually the wall separates
two semi-infinite spaces, the one with the magnetization
pointing along the +z direction (y < 0) and the one with the
magnetization pointing along the -z direction (y > 0).

The wall is centered at y = 0 and extends in the xz plane
as in Fig. (2.1)

The static wall shape can be found by equating the
torque on the magnetic moments to zero and solving the
resulting coupled partial differential equations with the

specific boundary conditions (]). The boundary conditions
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are such that 6 = 0 at y = - and © = m at y = +» , The
torque is obtained from the variational derivatives (2)
of the total energy expression Eq. (2.6). Taking the

variational derivatives

SE 5F oF
T _T_3 |1 (2.7a)
oy
SE oF SE
T . T _ 3 |1 (2.7b)
9y
we get
2 2
K sin26 - 2A 9—% + A sin26<§9>' (2.8a)
dy y
+ ZﬂMi sin2o sin2¢ =0
. de d¢ 2 2. .
-2A sin28 dy dy + 2nMS sin“8 sin2¢ (2.8b)
2
- 2A sin?s % = 0
dy

The specific solutions of interest here are

o{y) = 0 or ¢(y) = (2.9)
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and

6(y) = 2 arc tan [exp($)] (2.10)

where A =\/% is called the wall width parameter. The
assumptions leading to the wall shape, Eq. (2.10), are

(3)

called Bloch wall assumptions The most important
consequence is that there is no demagnetizing term in the
total energy of a Bloch wall since the azimuthal angle is
assumed constant across the wall (Eq. (2.9)) and there is
no divergence of magnetization. Hence in an infinite
material the shape of the one-dimensional wall is determined
only by anisotropy and exchange. The exchange energy is
minimum when the magnetic moments are parallel to each
other, and it favors a gradual change in the direction of
the magnetization. The anisotropy energy is minimum when
the magnetization is all along the anisotropy axis and it
favors an abrupt change in the direction of the magnetiza-
tion. The balance between the exchange energy and the
anisotropy energy determines the spatial rate of rotation
of the magnetization from one domain to the other and hence
its width.

The one-dimensional wall shape in an infinite material,

Bloch wall, is shown in Fig. (2.2). Here the polar angle
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Figure 2.2. The polar angle shown as a function of distance

perpendicular to the wall in units of wall width for a Bloch

wall. Most of the rotation is concentration in a region of

width mA around the center.
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is shown as a function of the distance perpendicular to the
wall in units of mA. As seen the change in 6(y) from 0
to ©® occurs mainly in a region mA wide. This width is
called the domain wall width. In bubble materials the Bloch
wall width, nA, is typically 0.1 micron . The two solu-
tions ¢ = 0 and ¢ = m are for clockwise and counterclockwise
rotation of the magnetic moments, respectively, going through
the wall in the +y directian while the shape is the same
as in Fig. (2.2). This sense of rotation is called the
chirality of a bubble.

The Bloch wall energy per unit area is obtained by
integrating the total energy per unit volume (4). The

result is

G = J Er dy = 4/AK | (2.11)

where % is the wall energy/area and ET is the total energy
expression from Eq. (2.6). Here the external fields are
taken to be zero. As seen there is no magnetization term
in the expression since the demagnetizing energy is zero
for a Bloch wall.

The domain wall shape along the in-plane field (Hix)

in an infinite sample is calculated in the same way as with
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no in-plane field applied. The only added term to the total
energy is the Zeeman term due to the in-plane field. The
possible demagnetizing field energy term is assumed zero

as in Bloch wall assumption because there is no divergence
of magnetization caused by the field and the magnetic
moments are in the plane of the wall. Without this term it
is possible to find an analytic expression for the wall

shape. The energy density per unit volume 1is

2
_ , 2 . 2 do
ET = K sin“6 - K sin“6 ot A(;y) (2.12)
- Hix MS sing + Hix Ms s1neo

where 60 = arcsin(Hix/HK). The energy terms containing
eo are the constant energy independent of the wall and
satisfy the boundary conditions far from the wa]f. Taking
the variational derivative of the total energy to find the

torque and equating it to zero gives

K sin26 - H. M, cosf - 2A —% =0 (2.13)

The solution for the boundary conditions 6 = n/2 at y = 0

and do/dy = 0 at sing = Hix/HK is
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(2.14)

(1-x+ A\/l-.xz).tan.-g—. + (1-x) -V1-x2

I —

an| — i S
(1-x- V]-xz)tan% + (1-x) +\/1-x2

where x = Hix/HK‘ This solution is with the H. parallel to
the wall in the direction of the magnetization in the middle
of the wall. For Hix opposite to the magnetization in the
middle of the wall -x has to be substituted for x in Eq.
(2.14). Note that the solution is the Bloch wall solution
for Hix = 0. _

The wall shape, 6(y), with an in-plane field applied
parallel to the wall in the direction of the magnetization
in the middle of the wall can be seen in Fig. (2.3). Here
the polar angle 6(y) is shown as a function of distance
normal to the wall in units of Bloch wall width, wA. The
wall shape without an in-plane field, Eq. (2.70), is also
shown in dashed lines for comparison. The magnitude of the
normalized in-plane field is chosen to be Hix/HK = 0.1.

In the materials of interest here the applied fields are
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Figure 2.3. The polar angle shown as a function of distance
perpendicular to the wall for an in-plane applied along the
wall. The in-plane field magnitude is 10% of the aniso-
tropy. The dotted line is Bloch wall shape with no in-plane
fie]d.
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typically less than 10% of the anisotropy. It can be seen
that neither the domain wall shape nor width has appre-
ciably changed. For all practical purposes the wall
shape, Eq. (2.10), without an in-plane field can be used
instead of Eq. (2.14).

For the domain wall in an infinite sample normal to an
in-plane field (Hiy) the wall shape is difficult to calculate
due to the demagnetizing field energy, however, approxima-
tions can be made. Here the demagnetizing field energy is
not zero since the magnetization is not in the plane of the
wall. It is energetically more favorable for the magnetiza-
tion to rotate out of the wall plane in the presence of an
in-plane field normal to the wall and divergence of magneti-
zation is present. This causes the total energy expression,
Eq. (2.6) to be complicated and analytical solutions from
the resulting torque equations are hard to obtain. On the
other hand to the first approximation the wall shape 6(y)
can be set equal to the Bloch wall shape. This way ¢(y),
assumed to be constant across the wall, is determined by a
balance between the in-plane field and .demagnetizing field.
Taking the variation of the total energy and equating the

resulting torque equations to zero gives
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8M (2.15a)

H
¢(y) arcsin(ﬁ) Hy

[ A

o(y) = 3 H > 8M (2.15b)

An analytical expression for the wall shape 6(y) is possible
when ¢(y) = n/2 (5). Here the resulting torque equations
reduce to ones similar for the case of wall along the in-
plane field but with K - K+2ﬂM§. The form of the solution
is the same as Eq. (2.14) but with K » ZWME and the shape

of the wall is similar to Fig. (2.3) for Hiy/HK = 0.1.

For materials considered here K >> ZNME and the approxima-
tion that the wall shape is the same as Bloch wall is

good as long as the applied fields are low compared to the

anisotropy.

Wall Structure in Bubble Thin Film

Bubble materials are thin films so that the assumption
of an infinite sample is not appropriate. The magnetiza-
tion at the sample surfaces is discontinuous and fields ére
present on the domain wall due to the divergence of magneti-
zation there. The components of these fields in the plane of

the sample are called stray in-plane fields. They are non-
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uniform through the thickness and affect the internal wall
structure. In the materials considered here the domain wall
width is much smaller than the film thickness and domain
size, and hence\the stray fields do not depend on the wall
structure. Calculations for different configurations of
domains are made by assuming that the wall width is zero and
that the magnetization is along the anisotropy axis at all
places. These assumptions are good when Q>>1. The stray in-
plane fields are in a direction normal to the wall plane.
The stray in-plane field profile through the thickness
in bubble thin films can be calculated by integrating
the divergence of magnetization over the magnetic domains.

The wall width is assumed to be zero in all cases. The stray

in-p]ane”ffeiaﬂféwéngn b&r
~ | TN O(F') .
b -2 [[] S (2.16)

where the field is in the y direction. The simplest case
to calculate is for an isolated wall separating two semi-

(7)

infinite domains in a sample of thickness h. The result is

(2.17)
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For a stripe array with a spacing of d between the walls

(8)

the result is

(2.18)

Ho(z) {tanh [%(Z)} }
= 1? 2n

4TTMs tanh [g%(h-zﬂ

(9)

For a bubble with a radius of s the result is

/2 2r051n6

H (z) 1 J f ¥ 1 . 1
47TMS m . A (p2 ¥ 22)3/2 (92 + (h_z)2)3/2
sin6dpdd (2.19)

Note that all the fields diverge logarithmically at the
surfaces which is'physicalTy-unrea]istic. This is as a
result of taking the wall width zero and having the diver-
gence of magnetization at the surface change abruptly. The
actual field will be finite due to the domain wall having

a finite width and the surface divergence of magnetization
changing smooth]y: On the other hand the fields within a
few wall widths of the surfaces do not affect any results

appreciably. The finite fields resulting from this smooth
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variation can be simulated by the transformation (8)

: Z
oy - 2A s1nh(2A> (2.20)

cosh(%x>

This transformation eliminates the singularities at the

surfaces and does not change the profile through the thick-
ness except within a few wall widths from the surfaces,

The stray in-plane field profiles for different confi-
gurations of domains are shown in Fig. (2.4). The magnitude
of the stray field in the y direction in units of the mag-
netization is shown as a function of distance through the
thickness in units of thickness. The transformation
(2.20) is used along with the formulas. Curve (a) is
for an isolated wall (Eq. 2.17), Curve (5) ig for a
stripe array (Eq. 2.18) and Curve (c) is for a bubble
domain (Eq. 2.19). The period of thé stripe array is taken
to be d = 2.2h and the radius of the bubble ro = h/e,
typical in the materials considered here. As seen the
results are non-uniform through the thickness and are anti-
symmetric with respect to the middle of the thickness.

As the width of the stripe array or the size of the bubble
gets larger the results approach the isolated wall profile.

It is important that the magnitude of the stray fields are
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Figure 2.4. The stray in-plane field on the wall in units
of 4TrMS as a function of distance normal to the sample in
units of h for (a) isolated wall (b) stripe array with
period d = 2.2h and {(c) isolated bubble domain with
ro=h/2.
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small cbmpared to the anisotropy of the samples studied
here and hence the wall shape 68(y) will not be affected
much through the thickness.

In bubble thin films the wall shape ¢(y) changes through
the thickness as a result of the stray fields and a twisted
wall structure is present. Here 6{y) will be assumed to be
the same through the thickness. The magnitude of the twist
angle is a function of the stray fields and can be calculated
from Eq. (2.15). For [HSI < 8M_ it is given by

H (z)
o(z) = arcsin(—%ﬁ——) (2.21)
s
where Hs(z) is the stray field for a bubble domain given by
Eq. (2.19). For IHS| > BMS, ¢{z) is equal to w/2 or -=w/2
depending on the direction of the stray field.

The twisted wall structure through the thickness in
bubble films is shown in Fig. (2.5). Here the azimuthal
angle is shown as a function of position normal to the
sample plane in units of thickness. As seen, near the
surfaces where the stray fields are above 8Ms, the magneti-
zation is normal to the wall plane, in opposite directions
for the upper and lower surfaces. The sharp transition
points from ¢(z) = n/2 and ¢(z) = - n/2 to Eq. (2.21) are

called critical points. In the middle of the thickness,
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Figure 2.5.

through thickness z/h.

Azimuthal angle ¢{(z) as a function of position

The bubble domain stray field,

Eq. (2.19) is used in this calculation.



42

z = h/2, there is no stray field and Bloch wall is present.
In these calculations the exchange energy due to the twist
is neglected. It does not have appreciable effect other
than near the critical points where it smooths the varia-

tion of the twist.

2.2 Dynamic Domain Wall Structure

Domain wall dynamics is based on the fundamental equation

describing the gyroscopic precession of magnetization pro-

(10)

posed by Landau and Lifshitz Here the magnetization

per unit volume in the material, Ms’ is assumed to be con-

stant in magnitude and continuous as a function of posi-

tion (]]). Only its directiaon is allowed to change. The

ratio of the anqular momentum due to the electron spin to the
nagnetic moment is giVen by a constant of proportionality,-vy,
called the gyromagnetic ratio and the torque is given by

T = -ﬁ/y where the derivative is with respect to time.

7 1 -1

The gyromagnetic ratio is approximately 1.7x10° Oe ' sec

in the materials used here. The torque on the magnetization

can be written in terms of a total effective field and

where ﬁet = H + Hd ' ﬁe can be derived from

T=MxH e

et?

the differentiation of the total static energy. It includes

anisotropy, exchange, external fields, etc. The second term
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is phenomenological and represents dissipative effects
which cannot be derived from a stored energy. It is given
in the Gilbert form by Hd = —aﬁ/ylMi(]z), where o is the
Gilbert damping parameter typically small compared to one
in bubble materials. Combining the equations above, the
Landau-Lifshitz equation with Gilbert damping is obtained

as

. %;M‘x‘m‘ (2.22)
where the first term on the righthand side is the conserva-
tive torque (the stored energy does not change) and the
second term is the dissipative torque (the stored energy
decreases). A precessing moment loses energy due to the
dissipative torque and approaches its equilibrium in the
direction of the field. When the damping is zero the
moment precesses around a uniform field. In a symmetrical
situation, this is called Lafmor precession and the

angular frequency is found from the L.L. equation as

w = YHe (2.23)

The wall structure and position with respect to time
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under a drive field is studied in two regions. An exact

solution (13-15)

using the L.L. equation can be found in
one dimension for an infinite sample if the drive field is
less than a certain critical field. This region is called
the Tinear region where the velocity of the wall is linearly
proportional to the drive field. The linear region is
well understood and it gives good results in bubble thin
films. For drive fields above the critical field the
velocity characteristics are not well understood in bubble
films. The equations of motion are difficult to solve and
approximations have to be made. This region is called the
non-linear region where the velocity with respect to the

drive field is non-linear. This region will be investigated

experimentally in detail in this chapter.

Linear Region

The wall structure and position as a function of time
will be calculated when a uniform magnetic field is applied
along the anisotropy axis. The wall is in the xz plane
with the drive field along the +z direction. The effective
field on the magnetization can be found from the differential

of the total energy, Eq. (2.6). This way the L.L. equation
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gives two coupled partial differential equations for the
polar and azimuthal angles of the wall as a function of

distance normal to the wall and time~(]5).

For high Q
samples these equations can be reduced to a simple form (2).
The wall shape 6(y,t) and the azimuthal angle ¢(y.t) across
the wall are assumed to be constant during steady motion.

Hence the wall is assumed to be moving as a single entity.

This way the equations reduce to

sing - . cos¢]

ya[2M_sin2e + ZH. 2y

1X

o .
"

+ abd (2.24)

and

I>|Q
O .

YH. - (2.25)

z

© .
1t

where g is the position of the middle of the wall, HZ is the
drive field and Hix’Hiy the in-plane fields. Note that

Eq. (2.25) gives Larmor precession in the case of zero damp-
ing. The problem is now reduced to two variables as a func-

tion of time. A solution can be obtained by setting q=v,

a constant velocity, and ¢=0. The result is
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= _ Y /A
v = qu = IV[K HZ (2.26)

where u is the mobility given by Eq. (1.3). As seen the
velocity is linearjly proportional to the drive field.

The constant @ can be calculated from Eq. (2.24). These
solutions are valid below a critical field called the
Walker breakdown field. In the case of zero in-plane field

it is given by

<
(9]

H = 2maM_ = (2.27)

(o]
[%2]
=

where Ve is the critical velocity. This field is calculated

to be typically a few Oe in bubble materials, Above the Walker

breakdown field no wall structure that is constant with

respect to time is possible, The effect of an in-plane

field is to increase HC, extending the linear region. On

the other hand it does not affect the mobility. The results

above agree well with the exact solution in the high Q

1imit. There is good experimental evidence that at low

drive fields, domain walls in bubble thin films move in a
(1,16)

one-dimensional manner .

In one-dimensional wall motion the wall moves forward
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as a result of an effective field generated normal to the
wall. When a drive field is applied normal to the film,
the magnetization in the Bloch wall precesses around it.
This way the magnetization rotates out of the wall plane
causing divergence of magnetization through the wall
width. The resulting effective field, called Becker field,
is normal to the wall and it precesses the magnetiza-

tion around it,aligning it with the drive field and hence
moving the wall, Therefore, it is the Becker field that
moves the wall rather than the drive field. Since the
maximum effective field from the divergence of magnetiza-
tion is limited to 4wM, there is an upper limit to the
velocity of the wall and Eq. (2.27) follows, On the other
hand the Becker field can be increased by adding an in-
plane field on the wall thereby increasing the critical

velocity and drive field.

Non-linear Region

In the one-dimensional model for drive fields higher
than the Walker breakdown field the velocity decreases non-
linearly with drive and then increases again with a small
mobility at still higher drives, Calculations using Eqg.
(2.24) and Eq. (2.25) without in-plane fields show that

for Hz > Hc the azimuthal angle precesses around the drive
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field and the wall motion is oscillatory. This is due to
the periodic nature of torque terms with respect to ¢.

The equiiibrium that exists between the damping field and
the drive field in the linear region keeping ¢ stationary
does not exist above the breakdown. In the case

of no damping,the wall moves back and forth about its
initial position. It moves forward for 0 < ¢ < 7/2 and

m < ¢ < 3n/2 and backwards for w/2 < ¢ < w and 31/2 < ¢ < 27
with the total average displacement being zero. Calculations
show that in the presence of damping the average forward
displacement is higher than the backward one and the wall
moves forward in one period. The average velocity in one
period drops sharply from the critical velocity as the drive
field is increased. For larger drive fields, HZ >> HC,

¢ precesses essentially with Larmor frequency, $ = yHZa

and the periodic torque terms average out., The velocity

is only determined by the damping torque and

v = ——-‘U—S— H (2.28)
(1+a")

As seen the velocity is again linearly proportional to the

drive field but with a mobility a2 times smaller than the

mobility below breakdown.
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The region of decreasing velocity is expected to be
unstable, If any part of the wall lags behind, the ef-
fective drive field increases on that part due to the
surface tension of the wall trying to keep it rigid. The
surface tension field is a local field due to the wall
energy density and is inversely proportional to the
radius of curvature of the wall, It is in a direction
to smooth the wall and is along the drive field in this
case, The increased drive further decreases the velocity
of the lagging part and the wall is unstable,

The effect of an in-plane field in the non-linear
region is to increase all the velocities (]7), Calcula-
tions using Eq. (2.,24) and Eq., (2.25) with in-plane field
show that the decreasing velocity region extends to
higher drives and the velocity is enhanced, The increase
in the velocity is due to the higher effective Becker
field available during precession, The magnitude of the
linear mobility, ayA, is not affected but the drive field
where this region starts increases with in-plane field.
Calculations show that this region is at higher drive
fields than the drive fields considered here in the presence
of in-plane fields,

In bubble thin films the stray fields from the surfaces

generate dynamic wall structures different from the one-
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dimensional model. Here variations not only normal to
the wall plane but also through the thickness have to be
considered, When the drive field is above a critical field
a dynamic structure called Horizontal Bloch Line (HBL)
is generated (]8). An HBL is a region of rapid rotation of
the azimuthal angle in the z direction., It is a transition
region between two opposite chiralities. Its width-is 0.4 microns,
typically few wall widths in bubble materials. A detailed
analysis of the HBL theory is beyond the scope of this
work and only its effect on the velocity characteristics
will be stated here, HBL generation is due to different
precession rates of magnetization through the thickness as
a result of stray in-plane fields. The critical field for
its nucleation is given by

Hey = 223 /R (2.29)
This is typically a few oersteds in bubble materials.
Below the HBL nucleation field the domain wall moves in a
one dimensional manner as in the linear region (]9). In
typical bubble materials the HBL nucleation field is less
than the Walker breakdown field, Once the HBL is generated
near one sample surface, it is held together by exchange

and moves through the thickness towards the other surface.
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Here it annihilates and the chirality of the wall is changed
by m compared to the initial chirality. Another HBL is
generated near this surface and it moves towards the other
surface, annihilating there and changing the chirality once
more. The resulting velocity from the continuous generation,
transport and annihilation of HBL's is constant as a func-
tion of the drive field and is called the saturation

(18)

velocity. It is given by

v, = 7.1 yA (2.30)
hvK™
Ve is on the order of 10 m/sec in bubble materials. There
is good experimental support for HBL's when the drive
field is typically <10 Oe above the HOL nucleation
field, It is not clear if the HBL theory extends to higher
drive fields in the presence of in-plane fields.

The non-linear region is investigated experimentally in
detail in this chapter. Drive fields with magnitudes well
above the Walker breakdown and HBL nucleation fields are
used. The effect of a static in-plane field along and

normal to the wall is studied independently (20),
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2.3 Ekperimental

(21) was used in the

An optical sampling microscope
experiments., A detailed description of the setup is
given in Appendix B, A 10 nsec exposure pulsed laser light
is used to image the domains oOn a silicon intensified
target (SIT) TV camera and the images are recorded on video
tape. Each frame on the tape represents a single exposure
of a transient phenomenon and the Tlaser trigger is delayed
with respect to the start of the event each time. When the
frames are displayed consecutively a single event is re-
constrﬁcted although each frame represents a separate
event. Reproducibility of a single event can be shown to
be very good by taking multiple frames at the same delay.

The data is measured electronically from the TV screen.

The bubble radial expansion method (22) is used to measure
the wall velocity. In this method, the bubble is initially
in equilibrium with a static bias field. A pulse field in
a direction opposing this bias field is applied and the
bubble expands towards a new equilibrium size,

The pulse field is terminated before this new size is reached
and the initial conditions are restored. The bubble radius
is measured at different times with respect to the start

of the pulse field and is plotted as a function of time,



53

The slope of the radius as a function of time curves give
the wall velocity.

During bubble radial expansion the effective drive
field on the wall decreases., Initially with no pulse
applied the effective field on the wall is zero, The bias
field is in equilibrium with the demagnetizing and wall
fields (Appendix A). After the pulse field is applied
this equilibrium no longer exists and as the bubble ex-
pands the demagnetizing field in the direction of the pulse
field decreases. The magnitude of this decrease is cal-
culated by taking the difference between the bias field
corresponding to the expanded radius and the applied bias

field.

When an in-plane field is applied during radial expan-
sion the bubble may expand elliptically. In this case the
minor and major axes are measured independently with
respect to time and their velocities obtained separately.
The effective drive field i§ found by approximating the

elliptical bubbles as round ones with the effective radius

equa] to the geometric mean of the major ancd minor axes.
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An as-grown rare-earth garnet sample, 2-16-44, was
used in the experiments. Its material characteristics are

shown in Appendix C.

2.4 Domain Wall Velocity in Bubble Garnet Materials

Wall with No In-plane Field

The bubble radius as a function of time with no in-
plane field abp]ied is shown in Fig. (2.6) for three differ-
ent pulse fields. The pulse fields used are (a) 60 Qe
(b} 85 0e and (c) 153 Oe and the pulses are 1 microsec
long. The delay time between two consecutive data points
is 20 nsec up to 600 nsec and 100 nsec thereafter. The
data for the pulse fields are shifted with respect to each
other to compare them clearly. There are two important
observations. The first is that the average slopes of the
curves are approximately the same for the three pulse fields.
Hence the velocity is independent of the drive field,
The saturation velocity is 5.4 m/sec. The

second observation is that for an individual pulse field
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Figure 2.6, The bubble radius measured as a function of
time with no in-plane field applied. Three different pulse
fields are used: (a) 60 Qe (b) 85 Oe and (c) 153 Oe. The
data for the pulses are shifted with respect to each other

to compare them clearly.
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the curve is fairly straight although the effective drive
field on the wall changes as the bubble expands, This

field difference at the beginning and end of the pulse field
is approximately 31 Oe., This is another indication that the
velocity is saturated. Linear curves such as these are

characteristic of the data at other high pulse amplitudes.

Wall Along the In-plane Field

The bubble radiat distance as a function of time is shown in
Fig, (2.7) for three different pulse fields with an in-plane
field of H,, = 50 Oe applied along the wall, The pulse fields
are 500 nsec long with magnitudes of (a) 60 Oe (b) 99
Oe and (c) 142 Oe. As seen the in-plane field increases
the velocity. On the other hand the same observations

are made as in the case with no in-plane field, The average

velocities are 7.9 m/sec for H 60 Oe, 8.1 m/sec for

P

Hp = 99 Qe and 8.6 m/sec for Hp

change appreciably with the drive field, There still

142 Q0e and hence do not

exists a saturation velocity as in the case without an
in-plane field but with a higher magnitude.

The bubble radial distance as a function of time is shown in
Fig. (2.8) for three different pulse fields with an in-plane
field of H, = 300 Oe applied along the wall. The
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Figure 2.7, The bubble radius measured as a function of
time with an in-plane field applied along the wall, Hix=50

Oe. The pulse fields used are (a) 60 Oe (b) 99 Oe (c) 142
Oe.
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Figure 2.8. The bubble radius measured as a function of
time with an in-plane field applied along the wall, Hix=300
Oe. The pulse fields used are (a) 75 0e (b) 135 0e (c) 200
Oe,
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pulse fields are long with magnitudes of (a) 75 OQe,

(b) 135 0e and (c) 200 Oe. As seen the velocities are
further enhanced due to the increase in the in-plane field.
For example the velocity is increased from 7.9 m/sec to

35 m/sec when the in-plane field is increased from 50 Qe

to 300 Oe. Also the drive field increases the velocity of
the wall for the same in-plane field. The velocity in-
creases from 35 m/sec at He = 60 Oe to 47 m/sec at He = 115 Qe
and 55 m/sec at He = 175 Q0e. The individual curves are not
linear as before for the cases of Hp = 75 0e and Hp =

135 Oe due to the drive field decrease. For the higher
drive of Hp = 200 Oe the curve is approximately linear and
saturation velocity (vS = 57 m/sec) is observed,

The average velocity of the wall is shown as a function
of the effective drive field with an in-plane field applied
along the wall as a parameter in Fig. (2.9). €Each point
represents the average of data taken from two to five
different bubbles. Velocity data is taken in 20 Qe ef-
fective field change steps., The in-plane field is varied
up to 400 Oe, and the solid lines are drawn by hand to
separate the different in-plane field data. A saturation
velocity is clearly seen for no in-plane field applied.

The general effect of the in-plane field is to increase

the saturation velocity. It can be seen that Ve increases
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Figure 2,9, Average bubhble radial yelocity as a function of
the effective drive field with the in-plane field along the

wall as a parameter. Each point is an average of two to five

bubbles.
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in magnitude from 5.4 m/sec at Hix = 0 to 8.6 m/sec at

Hix = 50 O0e and to 13 m/sec at 100 O0e. For Hix > 150 Oe

Vg is still increased by the in-plane field but now a drive
dependent velocity region is more clearly seen before a satura-
tion is established. The in-plane field increases the non-
linear mobility in‘the drive dependent velocity region. It also
increases the drive threshold necessary for the velocity

to saturate. For very high in-plane fields (Hix = 400 Oe)

the region of saturation velocity if it exists is higher

than the drive range investigated here.

The average velocity of the wall is shown as a function
of the fn—p]ane field along the wall with the effective
field as a parameter in Fig., (2.10). This method of pre-
senting the data more clearly shows the role of the in-
plane field. As can be seen the in-plane field does not
affect the velocity at Tow magnitudes, H1.X < 50 QOe, and
the drive field does not have much effect in this range
either. As the in-plane field is increased the velocity
increases and becomes approximately linearly proportional
to the H, for H, > 150 Oe. The effect of the drive
field in this range is to enhance the slope of the curves
in addition to increasing the velocity. For example the

slope increases from 0,12 m/sec-0e to 0.27 m/sec-0e when
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He is increased from 40 Qe to 200 Qe,

Wall Normal to the In-plane Field

The bubble radial distance as a function of time is shown in
Fig. {2.11) for three different pulse fields with an in-
plane field of Hiy = 100 Oe applied normal to the wall,.
The magnitudes of the pulse fields are (a) 90 Oe (b) 140
Oe and (c) 220 Oe. The observations are qualitatively
the same as for the wall along the in-plane field. The
velocity is saturated for this magnitude of in-plane field.
The magnitude of the saturation velocity (8,5 m/sec) on
the other hand is Tower with respect to the wall along the
in-plane field (13 m/sec). This anisotropy in the velocity
is evident from the elliptical shape of the bubbles.

The bubble radial distance as a function of time is shown in
Fig. (2.12) for three different pulse fields with an in-
plane field of Hiy = 300 Oe, The pulse fields are (a) 75
Oe (b) 135 0Oe and (c) 200 Oe, Here the domain wall moves
with a wide structure, for all three pulse fields.
In the crossed polarizer mode the dynamic wall looks
wider than the obseryed static wall width, The
position of the wall at any instant is defined as the

midpoint of this wide boundary. Here the velocity

is of interest and the structure of the wall will
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be studied in detail in Chapter 3. Theresults are
qualitatively similar to the wall along the in-plane field

case as in Fig, (2,7). The drive field increases the

n

velocity and at Hp 200 Oe there is saturation velocity,
vS v b7 m/sec, the same value as for the wall along the
in-plane field. At this value of drive field the velocity
anisotropy between the walls along and normal to the in~-
plane field is not present and the bubble is circular,

The average velocity of the wall is shown as a function
of the effective field with an in-plane field applied normal
to the wall as a parameter as shown in Fig, (2.13). The
1ine crossing the data shows the threshold of the wide wall
structure. It indicates the drive needed to visually detect
a widening in the wall compared to its static width, The
important features of the figure are qualitatively similar
to the case of the wall along the in-plane field (Fig. 2.9)
although the velocities are lower and above the threshold
the wall structure is distinctly different. At low in-plane
fields (Hiy < 100 Oe) the velocity is saturated and the
in-plane field increases the saturation velocity, It is
increased from 5.4 m/sec at Hi = 0 to 6 m/sec at Hi = 50

y y
100 Oe, As the in-plane field

Oe and to 8.5 m/sec at Hiy
is increased a drive dependent velocity region is observed

before saturation and at higher in-plane fields, hiy = 400
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Figure 2.13. Average bubble radial velocity as a function
of the effective drive field with the in-plane field normal
to the wall as a parameter, The line crossing the data

signifies a wall structure change threshold for higher fields.
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Oe, saturation is not seen, The in-plane field enhances
the non-linear mobility in the drive dependent region,

The average velocity of the wall normal to the in-plane
field is shown as a function of the in-plane field, with the
effective drive field as a parameter in Fig., (2.14). The
Tine across the data is the same threshold shown in Fig.
(2.13). The relative effects of the in-plane field and
effective field on this threshold are better seen when the
velocity is plotted this way. For in-plane fields below
the threshold, the velocity is relatively insensitive to
changes in the in-plane field however, above the threshold
the velocity increases sharply and is essentially linearly
proportional to the in-plane field. Above the threshold
the slope is drive field dependent and is increased as the
drive field increases. This increase becomes smaller for
high fields, and the slope is constant for H, > 160 Oe.

The radial wall motion along and normal to the in-plane
field shows different velocity characteristics. The velocity
of the wall along the in-plane field is generally higher
than the one normal to it and the bubble expands ellipti-
cally. This is apparent at Hi < 100 Oe where both walls
move with a saturation velocity, with Vs of the wall parallel

to Hi’ being 20-50% greater than the Ve of the wall perpen-
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Fig. 2.14, Average bubble radial velocity as a function
of the in-plane field normal to the wall with the effective
field as a parameter, The line crossing the data signifies

a wall structure change threshold for higher fields.
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dicular to Hiﬁ At high in-plane fields and high driyes
this velocity anisotropy disappears, making the dynamic

bubble shape circular,

Conc]usjon

High drive field dynamics with an in-plane field show
a saturation velocity at low in-plane fields, The in-plane
field increases Vg For higher in-plane fields a drive
dependent velocity region is observed and saturation occurs
at higher drive fields, At low Hi‘s the velocity is not
affected by H. and at high Hi's the velocity is linearly
proportional to Hi‘ There is velocity anisotropy and the
wall along the in-plane field generally has a higher

velocity than the one normal to it,



11.

12.
13.

71

REFERENCES

A. P. Malozemoff and J, C. Slonczewski, Magnetic
Domain Walls in Bubble Materials (Academic Press, 1979),
J. C. Slonczewski, Int, J, Magn, 2, 85 (1972),

C. Kittel and J. K. Galt, Solid State Physics, ed, by
F. Seitz and 0. Turnbull (Academic Press, New York,
1956) .

S. Chikazumi,Physics of Magnetism (John Wiley and Sons,
Inc., New York, 1964),

T. H. 0'Dell, Phys, Stat. Sol. (a) 48, 59 (1978).

Jd. D. Jackson, C]aséica1 Electrodynamics (John Wiley
and Sons, Inc., New York, 1975),

E.Schidmann, J. Appl. Phys., 45, 369 (1974).

A. Hubert, J. Appl. Phys. 46, 2276 (1975),

A. H. Bobeck, Bei] Sys. Tech. J. 46, 1901 (1967).

L. Landau and E. Lifschitz, Physic A. Sowjetunion 8,
153 (1935).

W. F. Brown, Micromagnetics (Interscience, New York,
1963),

T. L. Gilbert, Phys, Rev. 100, 1243 (1955).

L. R. Walker, unpublished. An account of this work is
given in J. F. Dillon, Magnetism, ed. Rado and Suh]l

(Academic Press, Hew York, 1963),



14.

15.

16.

17.

18.
19.

20.

21.
22.

72

H. C. Bourne and D. S. Bartran, IEEE Trans. MAG-8,
741 (1972).

N. L. Schryer and L. R. Walker, J. Appl. Phys. 45,
5406 (1974).

T. J. Gallagher and F. B. Humphrey, J. Appl. Phys,.
50, 7856 (1979).

E. Emure, T. Fujii, S. Shiorni, and S. Uchiyama,

IEEE Trans. Magn. MAG-3, 1169 (1977).
J. C. Slonczewski, J. Appl. Phys. 44, 1759 (1973).

B. E. McNeal and F. B. Humphrey, IEEE Trans. MAG-15,

1272 (1979).
K. Vural and F. B. Humphrey, J. Appl. Phys. 50,
3583 (1979).
F. B. Humphrey, IEEE Trans. MAG-11, 1679 (1975).

G. J. Zimmer, L. Gal, K, Vural and F. B. Humphrey, J.

Appl. Phys. 46, 4976 (1975).



73

CHAPTER 3

Wall Deformation in Bubble Garnet Materials

The domain wall has been assumed to be straight through
the thickness of a bubble thin film, statically and dynami-
cally. The effect of the non-uniform fields, from the diver-
gence of magnetization on the surfaces, was considered only
on the internal structure of the wall, This assumption is
reasonable to the first order; however, when large drive
fields are present for long times, the situation is quite
different and one should suspect that the rigid plane wall
assumption would not apply. Certainly, the effects of the
non-uniform fields on the configuration of the wall through
the thickness must be taken into account and the rigid wall

assumptions examined.

3.1 Stationary Wall Bulging

The demagnetizing field at the wall, in the z direction,
is non-uniform (1)through the thickness in a bubble domain
as shown in Fig. (3.1), Here the normalized z component
of the demagnetizing field is shown as a function of
normalized position, within the film at the bubble wall for
a bubble where ry = h/2. The field is calculated by inte-

grating over the surface divergence of magnetization, similar
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Figure 3.1. The demagnetizing field in the z directian in
units of 47rMS as a function of position through the thick-

ness in units of h for a bubble with ro = h/2.
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to the procedure in finding the stray fields normal to the
wall plane. As seen the field is higher by 0.2 (4nMS)
in the middle of the thickness compared to near the sur-
faces for a bubble with a diameter equal to the thickness,
This is a typical size for a static bubble in garnet materials.
This non-uniformity of the field decreases as the bubble
radius increases and it is uniform for r /h > 5. It can be
seen that the non-uniformity, as would be expected, is
symmetric about the middle of the thickness.

The stationary bubble domain wall in the presence of
this non-uniform demagnetizing field is slightly bulged (1-3)
through the thickness. This bulge is shown qualitatively
in Fig. (3.2). Here the magnitude of the bulge is exag-
gerated to emphasize the shape of the wall. One qualita-
tive way to appreciate the effect of the non-uniform field
is to think of the bubble radius as a function of the ef-
fective field in sections through the thickness of the film.
The effective field is the difference between the uniform
bias field and the local demagnetizing field at the thick-
ness. It is low in the middle of film thickness making the
radius large compared to near the surfaces where the ef-
fective field is high and the radius is small. The bulge

is symmetric. The exact shape and magnitude of the bulge
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Figure 3.2, Stationary wall bulging for a bubble domain,
The magnitude of the bulge is exaggerated to emphasize the
shape of the wall, The wall is normal to the surfaces due

to boundary conditions.
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is determined by other effective fields generated as a
result of the bulge and the boundary conditions near the
surfaces. Numerical calculations (3) show that, for typical
bubble films, the actual magnitude of the bulge is small,
about 3% of tﬁe bubble radius.

A deformed wall has a higher total energy, assuming
that the energy per unit area remains the same, because of
the larger surface area compared to a plane wall, This
added energy can be considered as a local effective sur-
face tension field (4-5) generated in a direction opposing
the deformation of the wall. This effective field depends
on the local energy difference, at a point on the wall, due
to the deformation there. For a smooth deformation, the

effective surface tension field is

2/FK 1
Her = . — (3.1a)
ST MS e
where
TC - d2 (3']b)
dz°

is the radius of curvature of the deformation and q(z) is

the distance between the bulged wall and the xz plane at
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y = 0. Due to the surface tension field the magnitude of
the bulge is reduced and the shape of the wall is smoother
between the surfaces,

Deformations of the wall at the film surface are
restricted bytbOUndary conditions that require the bubble
wall be normal to the film surface thus putting an inflection
point in the wall shape between the surface and middle of
the thickness. It is assumed that there is no surface
anisotropy and that the crystal is strain free. The direction
of the magnetic moments right at the surface and the ones
directly below them have to be the same. Otherwise there would
be an exchange torque present on the moments at the surface.
Unless there is any surface anisotropy, this torque cannot be
balanced out. Hence, equilibrium between the moments near the
surface is possible gnly when they are parallel. This boundary

condition at the surface can be expressed as

=]
]
o

(3.3)

oo
3 E

This condition assumes that both exchange and anisotropy

energies can be expressed as volume integrals without any
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surface terms which is very reasonable for the system
considered here., The same result can be obtained by using

the transversality condition in calculus of variations (7).

As a result of this boundary condition the wall is normal to
the surfaces and there is an inflection point in the wall shape

between the surface and middle of the thickness as in Fig.(3.2).

3.2 Dynamically Deformed Wall Structure

For a moving wall to retain its static shape, all parts
of the wall must have the same velocity. It was shown in Chap-
ter 2 that the wall velocity is very sensitive to the effective
in-plane field. Therefore the effective in-plane field
profile through the thickness must be important in deter-
mining the dynamical shape of the wall. Fig. (2,4) showed
the normalized effecfive in-plane field as a function of
normalized position through the thickness. With an in-plane
field of Hi = ].2(4WMS) applied, Fig. (3.3a) is for the
H. normal to wall and Fig. (3.3b) is for the Hi along wall.

As seen from Fig. (3.3a) for the field normal to wall,

the stray fields add to H, in 0 <z < h/2 and subtract

in h/2 <z < h, Therefore a large effective in-plane field
difference (2.24 (4ﬂMS)) is present within the film that is
increased by an applied field normal to the wall. On the

other hand when the field is along the wall, the applied
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Figure 3.3. The effectiye in-plane field in units of 4nMS
as a function of position through the thickness in units of
h for an in-plane field of magnitude H,=1.2(47M_), (a) nor-

mal to the wall (b) along the wall,
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field is normal to the stray fields and the resultant
magnitude of the effective in-plane field is more uniform
as seen from Fig. (3.,3b). The difference in the effective
in-plane fields near the surfaces is small (0.44(4ﬂMS)).

The domain wall is deformed dynamically as a result of
the non-uniform effective in-plane profile through the thick-
ness. The mechanism for the deformation can be under-
stood by using the results of Chapter 2 where it was shown
that an in-plane field increases the velocity of a wall (8).
If we assume that different parts of the wall respond in
relation to the magnitude of the effective in-plane field
on them, there will be significantly different velocities
through the thickness. The deformation, in turn, generates
effective surface tension fields, The shape of the wall
is finally determined by the functional dependence of velocity
on the drive and in-plane field, the stray field profile,
the surface tension fields and the fields applied externally.

The dynamic wall deformation can be simulated numeri-
cally. The wall through the thickness is divided into 20
segments. The effective drive and in-plane field on each
segment is calculated every 0,5 nsec, The functional depen-
dence of the velocity on the drive and in-plane field is

taken phenomenologically as the results of Chapter 2, The
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effective inoplane field profile through the thickness is
calculated as in Fig. (3.3) for the segment and the
decrease in the effective drive field is alsoc taken into
account. The surface tension fields generated due to
deformations are calculated at each segment center by find-
ing the radius of curvature there, The wall is normal to
the surface at all times.

The growth of deformation of wall with time is shown in
Fig.(3.4)., Here the 200 Oe in-plane field is normal to
the wall and the wall motion. The wall starts as a plane
wall at the lefthand side of the figure at t=0, The curves
thereafter represent the position of the wall at 40 nsec
intervals for the first 400 nsec of wall motion., A 135 Qe
pulse field is applied. The parameters of sample 2-16-44
are used along with its functional dependence of velocity on
the in-plane and drive field characteristics obtained
experimentally in Chapter 2. The direction of the applied
in-plane field is such that it adds to the stray fields
near the top surface. Hence the velocity of the wall is
higher there compared to the lower surface where the stray
fields subtract from the applied in-plane field. This
velocity difference results in the deformation of the wall

with the shape as in Fig. (3,4).
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The rate of change of the wall deformation width goes
to zero with time as shown in Fig. (3.5). Here the dif-
ference in position between the leading and trailing edges
of the deformed wall in microns is shown as a function of
time in nsec using the computer simulation for sample 2-16-
44, The same fields are used as in Fig. (3.4). As seen the
rate of change of width decreases with time and is nearly
constant after 220 nsec. As the wall deforms surface tension
fields are generated due to the curvatures. The direction
of these fields for the parts of the wall near the upper
surface is opposite to the drive field. Hence, the drive
field decreases with time on the leading edge as a result
of the combination of bubble effective field decrease and
the generation of surface tension fields. The leading edge
is in the drive field dependent region, having a high ef-
fective in-plane field on it, and its velocity drops with
time. On the other hand the changes in the effective
drive field do not affect the trailing edge much since it
has a Tow effective in-plane field on it and is in the
saturation velocity region, The decrease in the velocity
difference between the leading and trailing edges cause the

width to saturate as in Fig. (3.5).
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Figure 3.5, The width of the deformation in microns as a
function of time in nsec drawn by computer simulation for
sample 2-16-44, A 400 nsec, 135 Qe pulse field is used
in the presence of a 200 Oe in-plane field normal to the

wall.
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3.3 Dynamically Deformed Wall in Bubble Garnet Materials

The direction of the fields used in experiments with
respect to the bubble domain in garnet material is shown in
Fig. (3.6). The applied in-plane field is from left to
right. The stray field directions at the surfaces are
shown for the static wall. The resultant effective in-plane
field {s shown on the dynamic wall at the lefihand side.

The characteristics of the samples used in the experiments are shown
in Appendix c.

Transient pictures with 10 nsec exposure time of an
expanding bubble in the presence of an in-plane field are
shown in Fig. (3.7). Fig. (3.7a) is taken in the transmis-
sion (Faraday) mode at the film-substrate interface. Both
pictures are taken in the crossed polarizer mode. The small
circle in the centerlis the bubble photographed before the
pulse field is applied and is in equilibrium with the bias
field of 68 Oe. It has a diameter of 5.8 ym which provides
a scale for the pictures taken at the same magnification.

An in-plane field of 200 Oe is applied. The directions of
the fields are as in Fig, (3.6) with the Kerr mode used

to observe the upper surface., The pictures are taken 200
nsec after the application of a 190-0e expanding pulse field.
The bismuth containing sample H280 was used. Both pictures
are of the samplie under identical conditions, The observed

"width" of the wall caused by diffraction of the light by the



"800 4497UL B83BALSGNS-W[ LS BY] S| |deguns doj ¥yl

‘letddjew jauded uL urewop

a1qgnhq ayiz 03 309dsad yjLm sjuswiaadxs ul pasn SPLaLy Y3 JO u0LIVBALP dYL "97¢E 2anbi4

wwmI

87

j.<>>\ ._._ss\ e

JINVNAQ



88

Figure 3.7 Bubble domain 200 nsec after a 190-0e 300-nsec
expanding pulse as seen (a) in the transmission mode and

(b) in the reflection mode at the film-substrate interface.
The small circle in the middle is the Bubb1e in equilibrium
with the bias field and has a diameter of 5.8 um. An in-
plane field of 200 Oe is applied from left to right and a
bias field of 68 Oe is applied into the page. Bi-containing

sample H-280 is used.
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wall can be seen from the static bubble pictures in both
modes. The calculated width from the sample parameters is
0.1 ym, while the observed width is 0,8 um, In transmission
[Fig. (3.7a)] the wall normal to the in-plane field shows
a distinctly wide structure since it is deformed due to the
velocity differences through the thickness, The observed
width of the wall, that is the difference between the leading
and trailing edges, is largest at the point where Hi is normal
to the bubble wall since the effective in-plane field dif-
ferences through the thickness are largest there. The con-
trast across the wide wall is fairly uniform as a result
of the structure shown by computer simulation in Fig. (3.4).
The wall edges are rather sharp transition regions confirming
that the wall is normal to the surfaces as required by the
boundary conditions. The dynamic width of that portion of
the wall that is parallel to the in-plane field has hardly
changed with respect to the static wall width, however, since
there are not large enough effective in-plane field differ-
ences, as shown in Fig. 3.3, to cause deformations through
the thickness for this wall,

The velocity anisotropy near the surfaces in the bubble
domain wall can be seen from Fig. (3.7b). Here the dynamic
wall width is the same as the static wall since the part of

the wall only near the surface is observed, The wall moving
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in the direction of the in-plane field (right wall in picture)
has a higher velocity than the one moving opposite to it
(left wall). This is as a result of the stray fields adding
to the Hi for the right wall and subtracting for the left
wall. The difference in the positions of the two walls

with respect to the static bubble at the point where the
walls are normal to the in-plane field is equal to the wall
width seen in transmission mode Fig. (3.7a). No difference
in the velocities between the two portions of the wall that
are moving normal to the in-plane field are seen in the
reflection mode since the effective in-plane field is the
same for both.

The film-substrate interface shows results similar to the
film-air interface. The contrast, however, is poor. Also
the sample is necessarily farther away from the pulse coil
(the substrate is in between the film and coil) so that
only a limited range of drive pulses could be used. Even
with these difficulties, it is clear that the observations
made at the film-substrate interface are representative
of both film surfaces. Reversing the direction of the in-
plane field or the bias field interchanges the character-
istics of the slow and fast walls that are seen in Fig.
(3.7b), i.e., the static bubble is closer to the right

side of the dynamic bubble, This kind of reversal is
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consistent with the mode1 and, in many ways, is just as
appropriate as looking at the other interface.

A quantitative comparison of the position of the wall
as seen in transmission and reflection modes has been made,
The position of the leading and trailing edge of the wall
seen in transmission (O ) and the wall position seen in
reflection (X) as a function of time after the application
of a 190 Oe expanding pulse is shown in Fig. (3.8). The
position is measured along a line through the bubble center
parallel to the 200 Qe in-plane field, Sample H280 was used
biased at 68 Oe with the Kerr reflection from the film-
substrate interface. Fig. (3.8a) is for the walls moving in
the direction of the in-plane field corresponding to the
right wall in Fig. (3.7) and Fig. (3.8b) is for the walls
moving in the direction opposite to the in-plane field cor-
responding to the left wall. It can be seen in Fig. (3.8a)
(for the right side) that the leading edge in transmission
has the same position as the wall in reflection. The agree-
ment is very good, well within experimental error,
Similarly it can be seen from Fig. (3.8b) (for the left
side) that the trailing edge in transmission has the same
position as the wall in reflection., The characteristics
of both the walls moving along and opposite to the in-plane

field in transmission are similar. The leading edge is
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Figure 3.8 The position of the leading and trailing edge of
the wall seen in the transmission mode (O) and in the reflec-
tion mode (+) as a function of time after the application of
a 190 Oe 300 nsec expanding pulse for (a) the wall moving in
the direction of H, and (b) the wall moving opposite to H..
The in-plane field is 200 Oe with a bias field of 68 0Oe in

the bismuth containing sample HZ280,
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faster than the trailing edge initially, having a high ef-
fective in-plane field on it. The velocity difference
between the two edges decreases with time since surface
tension fields due to deformations develop and
the bubble effective field decreases,

The growth of the dynamic deformation can be seen by
measuring the difference in the positions of the leading
and trailing edges at various times. Fig. (3.9) shows the
apparent wall width in transmission mode plotted as a func-
tion of time for sample 2-16-44. The wall width for the
wall moving in the direction of the 200 Oe in-plane field is
shown (+) as well as in the opposite direction (Q). A 135
Oe 400 nsec pulse field was used with a bias field of 80 QOe.
Measurements were done every 2 nsec. As can be seen, both
walls behave in the same way. The width increases at a
rate of 20 m/sec up to 150 nsec and then the rate of change
drops to an essentially constant saturation width similar to
as shown in Fig. (3.5) using computer simulation. The oc-
currence of a saturation width is typical of all the samples
studied at high drive and in-plane fields,

The magnitude of the deformation is influenced by
both the drive and in-plane fields, The saturation wall

width as a function of the in-plane field with the pulse
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Figure 3.9 The apparent wall width as a function of time for
the wall moving in the direction of Hi (+) and opposite to
the H, (O). A 135 0e 400 nsec pulse field is used along
with an in-plane field of 200 Oe and a bias field of 80 OQOe

in sample 2-16-44.
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field as a parameter is shown in Fig. (3.,10) for the as-
grown sampTe 2-16-44., There is a region of low in-plane
fields when the wall is narrower than the observed static
wall width of 0.8 pm but presumably, wider than the cal-
culated equilibrium value 0.1 um, Once the deformation is
experimentally detected, the in-plane field as well as the
pulse field increases its width, When the drive field is
increased, the leading edge velocity is enhanced since its
drive dependence is high, having a high effective in—p]ane
field on it. The trailing edge velocity, on the other hand,
does not change appreciably since its drive dependence is
low, having a low effective in-plane field on it. An
increase in the drive field, therefore, enhances the velocity
difference between the two edges causing the width to in-
crease. Similarly an increase in the applied in-plane field
at a constant drive increases the effective in-plane field
on the leading edge and enhances its velocity. The trailing
edge still haé a low effective in-plane field on it and its
velocity is not changed much. Hence increasing the in-plane
field enhances the velocity difference between the two
edges, increasing the width, At higher in-plane fields the
width becomes less in-plane field dependent as in Fig.

(3.10). The trailing edge in this case has a high effective
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in-plane field on it and its velocity increases similarly
as the leading edge with in-plane field,

The ease of forming the deformation depends on the
anisotropy., Three samples with different anisotropy and
otherwise similar parameters have been investigated, The
threshold for detection of the deformation as a function
of in-plane field and pulse field is shown in Fig. (3.11).
For this experiment, the pulse field is held at a constant
value while the in-plane field is increased until wall
widening is just detected. As can be seen, Tower pulse and
in-plane fields are required to establish the deformed
structure in samples with a smaller anisotropy field. The
surface tension field opposes the drive field on the leading
edge and decreases its velocity, causing the wall width to
saturate. Since the magnitude of this field is lower in
samples with a lTow anisotropy, smaller drive fields are
required to form observable widths, If the anisotropy is
low enough, the velocity difference between either surface
and the middle of the sample just due to the stray field
profile can be high enough to see the deformation without
an applied in-plane field as in samples LPED-252 and Un-335.
In this case the wall deforms symmetrically about the mid-
plane of the sample with the parts of the wall near the

surfaces having a higher velocity.
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Conclusion

The domain wall is dynamically deformed at high drive
and in-plane fields. The mechanism for the deformation
is based on the spatial variations of in-plane fields at the
wall through the film thickness, due to the addition of
the stray fields at the film surfaces and the applied in-
plane field. This causes different parts of the wall to
move with different velocities. The deformed wall can be
studied in the bulk of the film by transmission (Faraday)
mode and at the surfaces by reflection (Kerr) mode. Both
the drive field and the in-plane field enhance the wall
width due to the functional dependence of the wall velocity
near the surfaces on these fields. It is easier to form
the structure in samples with a lower anisotropy since
the surface tension fie]d opposing the deformations is lower

in these samplies.
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APPENDIX A

Static Properties of Bubble Domains

The size and stability of cylindrical magnetic domains

will be considered here (]'3).

Fig. A-1 shows the domain
configuration and the coordinate system used. The circular
domain is an isolated unperturbed bubble while the per-
turbed one (in dashed lines) is shown as having a three-
fold symmetry. The bubble is magnetized down while in the
rest of the material, extending to infinite dimensions, it
is magnetized up. The material is uniaxial and the z axis
is taken along the easy axis which is normal to the sample.
The origin of the cylindrical coordinate system (r,0,z)
used, is in the center of the bubble. The domain wall is
assumed to have zero width and to be straight through the
thickness. The wa11‘interacts with the component of the
applied field only in the z direction. The saturation
magnetization Ms is constant everywhere and is always in the
z direction. The model is most accurate for materials with
Ku >> 2wMSZ.
The bubble size and stability are determined by taking
the first and second variations with respect to the radius in

the total energy of the system. The radius of the bubble is

described by the expansion
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Figure A-1, Domain canfiguration and coordinate system used

in stability and size calculations.
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rb(e) = ro+Ar0+n§1Arn cos[n(e—en - Aen)] (A-1)
and the variations in the energy are taken with respect to

r_and o, The circular bubble is defined by rb(e) = r

n 0

and it is assumed that the variations in the radius are
small compared to ro- The total energy of the system con-
sists of three terms. The wall energy (Ew), the externally
applied field energy (EH) and the magnetostatic energy

(EM). The total energy is

Er = Byt By + Ey
The wall energy per unit area, Oy is taken to be con-
stant and independent of the wall orientation or curvature.

The total wall energy is given by

27
2 arb(e) 2 1/2
e, = [ oy da = hoy [ 0lie) ¢ [ B— T (A-2)
a 0]

where a is the wall area and the total wall energy is found
by integrating the arc length around the circumference of
the bubble and multiplying it by the height. The wall
energy is less when size of the domain is reduced. For a

circular domain, i.e., rb(e) =T, and‘arb(e) - 0

96
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the variations are

)
=] = 27h o (A-3)
Bro o w

2

9 E

W m 2
=T _ho n no> 1 (A-4)

<ar§ )o "o W -

where the subscript zero means the derivatives are taken
when the domain is circular. The derivatives not written
explicitly are equal to zero.

The externally applied field energy (EH) is given by

2m
Ey = - J MeH dv = hMSH J rﬁ(e) de - const (A-5)
v 0

where the volume of the bubble determines the total energy
and the constant is not important since the variations in
the energy are considered here. The applied field energy
is less when the size of the domain is reduced. For a

circular domain

<35“> (A-6)
——} = 4mr_ hM_H A-6
Bro o (o] S
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(3
= 4vh M H (A-7)
Bro 0 NI
82EH
- ) = 2mh M_H n > 1 (A-8)
arn 0

The magnetostatic energy (EM) is due to ihe divergence

of magnetization on the surfaces of the sample. It is the
most difficult term to deal with because of the form of

the equations. It is given by

————— dv' dv (A-9)

N —
< —
< ———

1!'2
<l

This energy is reduced when the size of the domain is

increased., For a circular domain

oF

(“a‘r—M - - (2nh?) (awH?) F(d/n) (-10)
BZEM 3F(d/h)

<8r2‘> (4ﬂh)(4”M ) “5td/m) (A-11)

0 O
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2
o E
M. 2y 3F(d/h)
(8 - >- - (2rh) (arm?) 280U (A-12)
r
n
2r
2 h 2
+ h 4mMg 2 [Ln[(??;) 1 -1.(0)] for n>l
where
F(x) = 2 x% (el 2 epelyn Tty - (A-13)
X X
m
L (x) = J (1-cosna) do 77 %20 n>0 (A-14)
5 [x+§(1—cosa)]
where x = % and E[(1+17)'1] is the complete elliptic integral
X
of the second kind. F(x) is called the force function,
' (5] (3]
First order derivatives (57—)_  and (55—). are all zero
ar ‘0 aen 0

due to the rotational symmetry of the problem and only
{=—) _ 1is not zero. The equilibrium condition is
ok
<—3—T = 0 (A-15)
Y‘O 0

This is called the "force equation" from which the

radius of the bubble for an applied field can be found. The
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equation does not necessarily imply the stability of the

domain.
PE,
0f the second order derivatives only ( 5 )0 are non-
an

zero and these are calied the stability coefficients of
the system., The force equation can be used to eliminate
the applied field terms from the second order derivatives
to simplify the stability coefficients. The total energy

variation can be written as

H

Ar Ar
d b d 0,1 hyl 2 d
"h T " F(F)] T +z)~(2q) [F"So(ﬁ')]

AE
(+2)°

= -8-/-
2(41M%) (nh3) [h

w M-

oo Ar 2
'z (n2-1) (5 [—’;;—- sn(%)] () ¢ + 0(3)  (A-16)

n
5 :
where %= ¥ > is the intrinsic length
4mM
s
and
dy - redy _ g p(d ]
SO(K) = F(F) = dad F(h) (A ]7)

v . 2
sa(d) = 3 {5, + Jrp) [L"(’g?)" : Ln(o)] (A-18)
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The force equation is obtained by setting the coeffi-
- Ar :
cients of —F9~to zero and we get

e

b dy _

==

+
oo
NN

The terms are the generalized forces with respect to the
bubble radius and force per unit area is obtained by dividing
the equation by wdh, The first term is proportional to the
wall energy dgenerating a force in a direction to decrease the
bubble radius and the force per unit area is inversely pro-
portional to the bubble diameter. The second term is pro-
portional to the applied field and generates a force per
unit area independent of the bubble diameter in a direction
to reduce the bubble diameter when the field is along the
directions of the magnetization outside the bubble, The
third term generates an internal demagnetizing force per unit
area and is proportional to the demagnetizing field on the
wall averaged over the film thickness., It is in a direction
to increase the radius. A stable bubble has the wall energy
and applied field forces collapsing the bubble in equilibrium
with the demagnetizing force expanding the bubble.

The domain diameter can be found as a function of the

applied field graphically using the force equation once the
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material parameters 2, 4WMS and h are known. Fig, A-2
shows the graphs of F(%), So(gh) and 52(%). A straight
1ine is drawn with a slope of Hb/4'nMs intersecting the
vertical axis at £/h. It intersects F({(d/h) at two points
and these two points are the solutions to the force equation.
The Targer diameter is the radially stable solution (r,)
while the smaller diameter is radially unstable (r_).
This does not imply stability with respect to other modes
of deformation in the radius (as in Fig. A-1)., In terms
of energy considerations the two solutions are extremums
but for the larger diameter the bubble is in a potential
maximum. When the applied field is increased the diameter
of the unstable solution increases while the stable one
decreases and they meet at the point where the straight
line becomes tangent to the F(d/h). This is called the
collapse field and no stable bubble solution exists for
higher fields. Here the inward force proportional to the
wall energy dominates all the other forces.

Stability is completely characterized by examining the
signs of the coefficients of (ﬁg-n—)2 (corresponding to the
total energy second derivative). As seen from Equation

A-16 for the sign of the coefficients to be positive
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Figure A-2., The bubble force function F and stability func-

0

tion S0 and 52 as a functian of diameter in units of thick-
ness. The intersection of the horizontal line (2/h) with

S0 and S2 give the collapse and stripeout radii, respectively.
The intersection of the straight line, with a slope

Hb/4nMS, with F gives the stable (r+) and unstable (r_) bubble

radii.
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d 2 d
SO(F) > Iy > S (-h—) n > 2 (A-ZO)

and since
d rd
S+1(f) < S, () (A-21)
Equation A-20 reduces to

d,- L
Solg) > 7> S

o o

, () (A-22)
This condition is shown as the straight line with zero
slope intersecting the vertical axis at 2/h. The bubble
is stable in the region between points where this line
intersects SO(%) and-Sz(%). The point where it intersects
So(%) is called the collapse diameter (at collapse field -
Hco) below which no stable bubble diameter is present. The
point where the straight line intersects 52(%) is called
the stripeout diameter (at the stripeout field - Hso) above
which the bubble domain transforms into a stripe domain.
The bubble radius as a function of the applied field can
be seen in Fig. (A-3). The parameters of sample 2-16-44
)

are used, Both the stripeout (HS ) and collapse fields (H

0 co
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Figure A-3, The bubble radius as a function of the bias
field for sample 2-16-44, The stripeout field (Hso) and

the collapse field (Hco) are shown,
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are shown. This curve is particularly useful to calculate
the effective drive field change during bubble radial ex-

pansion.
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APPENDIX B
EXPERIMENTAL APPARATUS

The high speed photographic equipment used for investi-
gating bubble dynamics will be described here, A schematic
of the setup 1is shown in Figure B-1. The main components
of the system are the laser, microscope, TV receiver and
video recorder, pulse generators and control box. Basically
the laser 1ight passes through the sample and the image of
the domains from the TV receiver are recorded on tape by
the video recorder. The control box adjusts the relative
timing of the 1light pulses and the field pulses moving the
domains. The equipment can be used in two modes, 1-trans-
mission (Faraday) mode where light passes through the sample,
2- reflection (Kerr) mode where light is reflected from the
surfaces of the sample. Unless otherwise stated, it is
understood below that the setup is in the transmission mode.

The Tight source of the system is a pulsed Taser pumping
a dye laser. The pulsed laser is a triggerable flowing
nitrogen laser (Avco Everett Model C950A). 1Its output
Tight flash is in the ultraviolet (337]2) and its bandwidth
is less than 12. It has an output peak power of 100 KW
for 10 nsec duration., It can be externally triggered up to

200 Hz. The output of the pulsed laser is focused by a lens
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onto a Rhodamine 6G dye laser with a non-circulating

dye cell. Rhodamine 6G is a stable and high output dye with
an output wavelength of 5800 X. At this frequency the
figure of merit (Faraday rotation/absorption) for garnets

is high. The output peak power is reduced to 1.5 KW. Due
to the short coherence length of the dye laser the problem
of speckle is reduced.

A polarizing microscope (Leitz Ortholux-Pol) with most
of its Tenses removed is used for observing the domains.
The pulsed laser light goes through the condenser lens, sheet
polarizer, magnetic film, objective lens (x32/0.3-14 mm
working distance), sheet analyzer and eyepiece (x 10),
respectively. The domains are distinguished from one
another by rotating the analyzer with respect to the
polarizer. This way the domains can be made Tlight or
dark via the Faraday effect, depending on which direction
they are oriented.

The domains are imaged onto a silicon intensified-
target (SIT) of a Cohu 4400 Series TV camera and recorded
on tape by a stop-motion video recorder. The SIT-TV camera
increases sensitivity by about a factor of 100 over visual
observation. It allows good image quality even when the
1ight intensity levels are low (e.g., when the polarizer

and analyzer are crossed or the magnification is high). The
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10 nsec long laser flash generates an image on the SIT
and the TV camera scans through it in 1/60th of a second.
The contrast of the image is less in the following scans
if the laser is not flashed again. The repetition rate
of the laser is synchronized with the end of the TV scan.
The images as well as digital information about the
experiment (e.g., time, magnitude of applied fields, etc.)
is recorded on video tape by a video recorder. The recorder
is stop motion type allowing each recorded frame to be
analyzed individually. Measurements on bubbles as well
as digital information about each frame are obtained from
the TV screen electronically and stored in cassettes by
an HP-9821 computer.

The control box allows 32 step programming capability
in the triggering orders of the laser flash and field pulses
as well as letting the time delay between them. The repeti-
tion role of the laser can be adjusted to 7 1/2, 15, 30
or 60 Hz such that it flashes at the end of the TV scan.
The delay between the laser flash and field pulses can be
up to 10 usecs, The delay can be changed manually or auto-
matically. A fast silicon planar PIN photodiode (HPA5082-420)
is used to detect the time when the laser flashes and its
output goes to the delay circuit of the control box. The

sampling interval (i.e,, the time delay between successive
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laser flashes) can be set from 0.25 nsecs up to 20 nsecs,
A1l the informatian from the control box, such as the time,
applied field magnitudes, frame numbers, codes, etc. are
recorded digitally at the bottom of each video frame.

The applied fields are generated by various coils. The
field pulses for bubhle dynamics are supplied by a small
(1 mm inner diameter) 10-turn pancake coil positioned close
to the magnetic film. It has a negligible inductance and
a calibration constant of 50 Oe/amp. HP-214A pulse genera-
tors (2 amps each into 509) with a 7 nsec risetime each are
used to drive the pancake coil and field pulses up to 300
Oe with a risetime of 20 nsec can be obtained this way.
The field is uniform within 1.5% over the viewing area of
100 ums. Static bias fields normal to the sample up to
200 Oe are supplied by a 200-turn, 4 cm inner diameter,
8 cm outer diameter and 2.5 cm deep coil with the sample
in the middle of the coil., The calibration constants of
both the pancake coil and the bias field coil are obtained
using the known collapse field of a sample. The static
in-plane field is supplied by two large coils 16 cm
apart, 10 cm inner diameter, 35 cm outer diameter, 6 cm
deep and the sample is situated in the middle of the line

joining their centers. The field up to 450 Qe magnitude
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is calibrated by a Hall effect magnetometer and it is
uniform to within 2% over the sample. The small unwanted
bias field (4 Oe at 400 Oe in-plane field) generated

by the in-plane field coils can be found and compensated
by doing bubble collapse with the in-plane field in one
direction and then in the opposite direction., The differ-
ence between the average of the two and the collapse field
in either direction will give the magnitude of the extra
bias field.

The setup can be used in the reflection (Kerr) mode
also. Here light is reflected from the surfaces of the
sample enabling domain wall dynamics at the surfaces to be
investigated using the Kerr effect. 1In this mode the laser
light is guided through the top of the microscope as shown
in Figure B-1 and reflected perpendicular from the sample.
There is no condenser lens and the Taser 1light goes through
the sheet polarizer, half silver mirror, x32 objective lens,
is reflected from the sample and goes back through the x32
objective, half silver mirror again and the analyzer striking
the SIT. The dye used in the dye laser for this mode is
Coumarin 460 (7D4MC) and the output wavelengths is 4570 A
(blue), shorter than the wavelength used for the trans-

mission mode. This frequency gives the highest Kerr
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rotation and least amount of light transmission through the
sample so that domains are readily observable. The general
quality of contrast is inferior to the transmission mode
and only special (Bi-containing) samples can be used in
this mode for surface studies. The other details of the

setup are the same as in the transmission mode.
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APPENDIX C
MATERIAL CHARACTERISTICS

The characteristics of the garnet materials used in
the experiments are shown in Table C-1. The thickness of
the films is measured by optical interferometry, The
charactéristic 1ength 2 and saturation magnetization 4nMS
are measured from the static bubble collapse field and bubble
size measurements, The anisotropy field Hk’ gyromagnetic
ratio y and the Gilbert damping constant are measured by
ferromagnetic resonance (FMR). Only the bismuth containing
sample, H280 had a high enough specific rotation and optical
transmission that changed rapidly enough with wavelength to
allow observation in the Kerr mode. The FMR spectra for
this sample had multiple resonances so that only static
bubble measurements Were made. The samples are as-grown
and their compositions are as follows: 2-16-44

, Un—335(Y2 45Eu Ga

(Y1.57E40.78TM0. 65587 . 05Fe3_950712) 0.55627 2Fes g0p5)s
3-10-49(Yy Eug gTmg Gy q5Fes ge0q5)s LPED-252(Y, pBuy o6ay nofes 61045

The composition of the bismuth containing sample is not known.
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