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ABSTRACT

Beyond about .1 A.U, from the sun, fluid mechanics is not
a good approximation for the solar wind, because the collision
frequency is low., Analysis of the particle dynamics shows that if
there are no collisions beyond .1 A.U., then at the earth T“/Tl= 35;
this is much greater than is observed. We study the effects of inter=-
actions by means of the Boltzmann equation. Solving it with Krook's
collision term, we find that the temperature anisotropy observed by
the Vela satellite requires each particle to make an average of 2 or
3 collisions between ,1 and 1 A.U., The temperature averaged over
direction roughly follows an adiabatic law, with y = 3/2; y tends to
increase with distance. The theory predicts an excess of high-velocity
particles, as is observed by Vela, even when the collision frequency
is independent of velocity; but to produce an effect as strong as that
observed requires a fairly strong velocity-dependence of the collision
frequency.

We proceed to study the interaction of the wind with the moon,
treated as a solid body, with neither magnetic field nor atmosphere,
absorbing and neutralizing all incident particles. We construct an
exact theory of the boundary layer between such a body and a plasma
with a magnetic field parallel to the surface, valid when the plasma
has no velocity towards the surface. The thickness of the layer is
about two gyroradii, and the magnetic field rises across it according

to the equation of pressure balance.
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We then consider two-dimensional models of the complete
wind-planet interaction, and show that in any steady two-dimensional
flow, the plasma velocity must be tangential to the body. Then, using
the model of the sheath constructed above, we show that there can be
no steady flow at all around a finitely conducting cylinder.

Finally, we consider the magnetic fields induced by the
interplanetary field inside the moon, taking account of its rotation,
If the applied field is uniform, then in the steady state there is a
constant axial field inside the sphere; near the surface there is a
complex toroidal field, dying away to zero in the interior if the
sphere is spinning rapidly. If the external field is non-uniform,
there is a residual toroidal field throughout the sphere. If the
diffusion time is longer than the time between reversals of the inter-
planetary field, then the moon will contain concentric shells of

toroidal and axial fields, independently diffusing inwards.
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I. INTRODUCTION

The sun appears to the naked eye — and, under normal
conditions, to the telescope — as a disc, with a very sharp boundary.
We are led to think of it as a sphere of gas, of definite radius
(> 7.105 km), sitting in a vacuum, and for many purposes (including
a large part of astrophysics) this is perfectly satisfactory. How-
ever, evidence of various kinds suggests that it is not the whole
truth. Eclipse photographs show that the sun is surrounded by an
extensive and tenuous outer atmosphere, the corona; its size and
shape vary with the solar cycle, and it shows no definite termination.
Indeed, observations from spacecraft have shown that interplanetary
space is filled with gas, at least as far out as the orbit of Mars,
and probably much farther. The interplanetary gas is essentially
fully ionized, mostly hydrogen but partly helium; its density fluctuates,
but is of the order of 5 ions/cc at the earth; and it is blowing away
from the sun (which is why it is called the solar wind) with a velocity
around 300-500 km/sec. (except when there is a storm, when it may be
much faster).

One immediately wonders why there is a solar wind at all.

The answer seems to be that it is a continuous thermal expansion of

the corona, caused by energy fed into it from below. The gas expands
so rapidly that it overcomes solar gravity and escapes, coasting out-
wards among the planets until it is stopped by the interstellar plasma.

Reasonable quantitative models of the wind have been constructed



along these lines.

The next question one might ask is what happens when the
wind meets the planets. On Earth it is blamed for many things, ranging
from the weather (more precisely, the temperature of the upper atmos-
phere — see MacDonald, 1963), through magnetic storms, to earthquakes.
It is clearly a complicated matter. The complication is caused
largely by the geomagnetic field; the internal structure of the magneto-
sphere is rather complicated, and a great deal of the detailed mechanism
of the radiation belts, aurora, and so on, is still obscure. But the
broad outlines of the interaction of the wind and the earth are now
fairly4clear. The solar wind flows around the magnetosphere much as in
the familiar aerodynamical problem of supersonic flow around a blunt
body.

We shall here examine some of the problems that arise when
the wind interacts with unmagnetized planets and satellites. At first
sight this looks simpler than the magnetosphere. One knows the shape
of the body around which the wind flows,without having to solve a free-
boundary problem. However, if the body is conducting, then there is
an electromagnetic interaction combined with the fluid dynamics, and
this causes difficulty. In the absence of observational information,
it is hard even to guess at the general flow pattern, and there are
many problems to be solved before we reach a general understanding of

the interaction. This dissertation examines three of these problems.

*
Sytinskiy, 1966. The reader should note that this theory is not
universally accepted.
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First, we must understand the solar wind itself. It is
usually treated by fluid mechanics. However, spacecraft observations
have shown that the pressure tensor in the wind is not at all what
one expects for a gas in local thermodynamic equilibrium, and there-
fore will not obey an equation of state of the usual kind. In
particular, it is anisotropic: the pressure parallel to the field
is considerably greater than that perpendicular. This may be expected
to. affect the pattern of flow around planets; perhaps we can include
it in a fluid-mechanical theory by deriving some sort of equation of
state for an anisotropic gas. This is discussed in Chapter 2; we find
that if the collision frequency is so low that the pressure is anisotropic,
then it is usually impossible to describe the plasma by differential
equations of the fluid-mechanics type. We therefore use the methods
of kinetic theory to calculate the properties of the solar wind at the
earth, and relate the observed anisotropy to the collision frequency
in interplanetary space.

Although in general fluid mechanics is wrong when the mean
free path is long, the theory of Chew, Goldberger, and Lowqo%ustifies
(as is discussed in Chapter 2) the use of MHD to study the flow of the
wind around planets, at least in a semi-quantitative way. In Chapter
3 we use this method on a model of the flow around the moon. We first
construct a kinetic theory of the boundary layer at the surface of the
moon; this provides a boundary condition which we then apply to the

problem of the general flow pattern.
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We find that the flow is strongly influenced by the
electromagnetic field inside the moon. In Chapter 4 we study this
field in more detail, and determine the magnetic field induced in-

side the rotating moon by the interplanetary field.

Conventions
Gaussian units are used throughout.
~ means is of the order of

means is approximately equal to

I

oc means is proportional to
denotes a unit vector

(5) means equation (5) of the current chapter .



II. FREE EXPANSION OF THE SOLAR WIND

2.1 Introduction

In this chapter we study the large-scale flow of the wind,
and try to find a suitable theoretical description for it. The
classic model (Parker 1958a, 1963a) uses the equations of fluid
mechanics; it has no difficulty in reproducing the observed gross
average behavior of the wind. However, fluid mechanics is only an
approximation to the real world, and we must ask whether the approxi-
mation is valid for the solar wind.

In order to find the conditions for the validity of fluid
mechanics, we sketch in §2.2 the derivation of fluid equations from
the basic kinetic theory. We find that beyond about .1 A.U. from the
sun, it is a poor approximatiom., This was realized by Parker from the
beginning; it does not much affect the validity of his results, since
the equations break down only in a region where the solutions are more
or less constant, and insensitive to the details of the equations.
However, we shall see that going beyond the fluid approximation gives
us useful information about the velocity distribution in the gas,
which cannot be deduced from fluid mechanics,

As a first step in this direction, §2.3 studies the flow
beyond .1 A.U., neglecting collisions. This assumption leads to the
conclusion that the temperature parallel to the magnetic field near
the earth is greater than the perpendicular temperature; this agrees

with the observations, but the predicted anisotropy is far more than
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is observed. This suggests that there are relaxation mechanisms at
work in the wind (as is expected on other grounds)., Accordingly, in
§2 .4 we examine the Boltzmann equation including interactions, and
formulate a well-posed problem for it. 1In §2.5 we present the results
of numerical solutions of the Boltzmann equation, with Krook's form
of the collision term., Some general remarks about the validity of our
calculation are made in §2.6.

Before embarking on this program, we must state precisely
what we mean by the parallel and perpendicular temperatures.

The Definition of Temperature

The thermodynamic definition of temperature applies only to
systems in equilibrium. The word temperature has not been used very
much for non~equilibrium systems, and we are therefore at liberty to
define it in any (reasonable) way that we please, as long as it agrees
with the usual definition for systems in equilibrium. Now, for a
dilute gas in equilibrium, with pressure p, temperature T,and number
density n, the temperature is related to the pressure by p = nkT. For
a non-equilibrium gas, it is conventional to define a pressure tensor
pij (x) = P'<cicj>; p is the mass density, and < Cicj > is the average
(over the velocity distribution) of the product of peculiar velocities
G, defined as the difference between the velocity of a particle at the
point x and the mean velocity of the whole gas at that point (see
Chapman and Cowling 1952). By analogy with the equilibrium case, we
shall define the temperature in general to be a tensor proportional

to the pressure tensor:



1 m _
Ti; = Tk Pij K S €57 e

The three diagonal components Tii are directly proportional to the
spread in velocity (squared) along the three axes.) For a plasma in

a strong magnetic field, in the z direction, say, TXX and Tyy involve
the gyratory velocities, and are therefore equal, since those velocities
are symmetrical about the z axiso* In coordinates aligned with the

field, the temperature tensor takes the form

For a gas in equilibrium, T

L= Tl\ = T, where T is the usual definition

of temperature.

We should remark that a different definition of temperature
is sometimes used in the analysis of observational data: one constructs
a theoretical veloéity distribution function by multiplying Gaussian
distributions for each velocity component, with different 'temperatures'
along the three axes; one then adjusts Ti to fit the theoretical distri~-

bution tc the observed data. The three Ti are then called the tempera-

*

This may be false if there is some peculiar correlation between the
phases of the gyrations of all the particles; but even then it is true
if T is averaged over a gyroperiod.
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tures along the three axes., Clearly, if the true distribution is in
fact a product of Maxwellians, then the two definitions agree; and they
are not likely to differ widely unless the distribution is very

peculiar.

2.2 Kinetic Theory and Fluid Mechanics

The only equations for the solar wind in which we may have
unbounded confidence are Newton's laws, written down for each particle
individually. This is, of course, an impossibly complicated set of
equations, and gives far too detailed a description of the state of the
gas, As is usual in problems of this kind, we shall introduce the
one-particle distribution function f : f(x,v,t) is the number of
particles in the element d3xd3v of phase space, at time t. It does
not give a complete description of the state of the gas, since it says
nothing about the correlations between the particles; but it contains
more than enough information for our present purposes.

If there are no interactions between the particles, then we
do not expect correlations to be important. In this case we can indeed
find an equation which determines the one-particle distribution f
completely, and without mention of the many-particle joint distributions.
Newton's laws imply that f is constant along particle trajectories in
phase space (this is Liouville's theorem — see, for example,
Goldstein's 'Classical Mechanics'). Hence, if F is the external force
on the system,

= O © (2‘1)

O/'O/
Hh

=

+
PR
O/IO/
Pl L

+
8=

&
<
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Given f at any time, this equation is easily solved to give f at all
future times. It has the form of a conservation law in (i,x) space,
which is mot quite the same as the (f’ R) phase space, But since the
volume elements are equal (up to a factor of m), phase space may be
replaced by (§,X) space for our purposes.

If the particles interact, then the external force field E
is not the total force on the particles, and (1) is no longer true.

However, one may derive from Newton's laws the equation

O/lO/
Hh

rta
+
=N

O/IO/
cF |Fh
+
<

E ° —a—— = C y (2"2)

where C is determined by a set of (N 1) equations involving the

(N - 1) higher joint distribution functions.* It is, of course,
impracticable to find C by solving those equations — that would be
equivalent to solving Newton's equations for the N-particle system.
The usual procedure is to ignore the higher equations, and find an
approximation to C by independent physical arguments,

If there are no interactions, then f satisfies (1); comparing
(1) and (2), we see that C represents the effects of collisions upon
the evolution of the gas. We shall refer to (2), for any choice of

the collision term G, as the Boltzmann equation (the equation that

Boltzmann himself used was based upon a particular approximation for

*
This is the Bogoliubov-Born-Green-Kirkwood-Yvon system of equations;
a discussion and references will be found in Shkarofsky et al., 1966.
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C; it may be referred to as Boltzmann's Boltzmann equation when there
is danger of confusion).

Let us lay aside for the present the problem of calculating
C, and consider how one can use (2) for solving problems in gas dy-
namics. It is still very hard to solve a boundary-value problem for
this equation, with any reasonably realistic form of the collision
term; and it would still give us much more information than we need.
We are interested mainly in the density, velocity, and temperature of
the gas, rather than the finer details of the distribution. This
gives the clue to the usual method of handling fluid-mechanical
problems: the density, velocity, and temperature are respectively
the zeroth, first, and second velocity moments of f (the nth moment
means the nth rank tensor J d3v f(x,v) vivjo.ovp)° We can try to
work directly with the moments of £ instead of with f itself, and hope
to be able to determine the first few moments without having to dis-
cuss the higher ones.

We may derive a set of equations involving only the moments
of f, by taking moments of the Boltzmann equation — that is, by
multiplying it by various powers of v and then integrating. By itself,
of course, this process does not make the problem any easier. It
gives an infinite set of coupled equations; the nth determines the
(n+l)th moment in terms of the nth and higher moments. However, in
this form the problem suggests an approximation-method: if we can
somehow truncate this sequence of equations, we will be left with a

finite set of differential equations in x space (the velocity variables
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have been eliminated by the device of taking moments).

The first member of the set of moment eéuations relates the
density to the velocity; it is the continuity equation. The second
is the momentum equation: it relates the velocity to the divergence
of the pressure. The pressure is determined in terms of the higher
moments by the third equation, and so on, If there were an independent
way of determining the pressure without using the third and higher
moments, then the continuity and momentum equations would be a closed
system, from which the velocity and density fields could be determined.
This is precisely the method of fluid dynamics, and it is the method
which most successful treatments of the solar wind have used.

We must now discuss when and how the pressure can be de-
termined without use of the higher moments of the distribution function.
The usual arguments (see Chapman and Cowling) apply to gases in which
there are many collisions — the mean free path and collision time are
much smaller than the characteristic length and time of the problem,
This means that each little piece of gas is locally in thermodynamic
equilibrium at all times, since the time it takes for a gas to come
to equilibrium is of the order of a collision time. A gas in equi-
librium satisfies an equation of state: the pressure is determined
in terms of the density and temperature; and the temperature is de-
termined by emnergy conservation. Thus the equation of state, combined
with the continuity, energy, and momentum equations, completely
determines the problem; the Navier~Stokes equations are valid for

collision-dominated gases.
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This situation may be described in slightly different words.
In general, the distribution function may be an arbitrary function of
velocity; if it is to be described by its moments, it takes an infi-
nite number of moments to specify £(v). But if there are so many
collisions that the gas is locally in statistical equilibrium, then
the distribution function must be Maxwellian: it loses most of its
freedom, and may be described completely by only a few parameters.

It is thus very reasonable that the gas can be discussed completely in
terms of the first few moments of f.

Now let us consider what happens when the collision frequency
is not high. Then the velocity distribution is not constrained to be
Maxwellian, but can be an arbitrary function; it therefore seems un-
likely that we can truncate the sequence of moment equatiomns, and
describe the gas by its first few moments only. When the mean free
path is long, the molecules can travel more or less freely through
the gas. At any point there are always some particles which have just
arrived from distant parts; their properties depend upon the velocity
distribution at those distant places. Therefore there can be no local
equation of state, and nothing resembling the Navier-Stokes equations:
the state of the gas at any point depends not only on the state at
neighboring points, but alsc on the state at distant points, and sc a
description in terms of differential equations in x-space is impossible.
For rarefied gases, it seems that one must abandon the moment equations,

and start afresh from the Boltzmann equation.
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There is one well-known exception to this rule, and that is
a plasma in a strong magnetic field. If the gyroradius is smaller
than the scale length of the problem then the motion of the particles
across the field is severely restricted. Therefore the argument given
above for the nonexistence of a local equation of state breaks down,
Chew, Goldberger, and Low (1956)* have in fact shown that under certain
conditions a collisionless plasma in a strong magnetic field satisfies
a set of equations of the fluid type. However, the field restricts
the motion only across the field; particles can move freely along it.
Therefore we cannot expect fluid behavior in cases where the motion
is mainly along the field., The CGL equations apply only when the
motion along the field is in some sense trivial — as, for example,
in two-dimensional problems. To study the interaction of the wind
with the earth, it is reasonable to consider a model in which the field
is perpendicular to the velocity of the wind (in fact, the angle is
about 450). We then expect the wind to behave like a fluid, as long
as the gyroradius is smaller than the scale length; and this is con-
firmed by observations (see Ch. 3). On the other hand, the general
large-scale expansion of the solar wind is essentially a flow along
the field, and so the CGL theory does not apply.

Now that we have surveyed briefly the derivation of fluid
equations from the fundamental kinetic theory, we can ask if and when

such equations are valid for the solar wind. If we take the observed

%
See also Bernstein and Trehan, 1960, and Parker, 1957.



-1~

properties of the wind near the earth, and compute the effective mean
free path for Coulomb collisions (using the formula in Spitzer's book,
for example), we find that it is longer than 1 A.U. (ﬂ1.5.108 km.) .
So collisions are completely negligible near the earth. There is
little direct information on conditions closer to the sun. But there
are fluid models (Parker 1963a) which predict the temperature, velocity,
and density of the wind down to a few solar radii; we can take those
predictions, compute the collision mean free path, and ask if it is
short, as it must be to make the fluid model consistent. The answer
is that below about 20 solar radii, the mean free path is short
compared to the scale length, and fluid mechanics is correct; but
beyond this distance the collision rate drops off very sharply, and
Coulomb collisions are negligible,

Thus we are not entitled to assume the validity of fluid
mechanics beyond about .1 A.U. from the sun. We must return to the

Boltzmann equation,
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2.3 Collisionless Dynamics

In this section we shall study the dynamics of particles
moving through the interplanetary field without any collisions, either
with particles or with waves — we assume the magnetic field is smooth,
Even though interactions may be important in the solar wind, we must
understand the free-particle dynamics before going on to more realistic
calculations. We shall suppose that the wind is collision-dominated
up to .1 A,U., and collisionless beyond. Since the Coulomb collision
frequency in fact drops off quite sharply with distance, this is a
good approximation. To display the phenomena in their simplest form
we shall first briefly consider a model which ignores the rotation of
the sun and the curvature of the interplanetary field, and then take
these effects into account.*

We consider, then, the motion of particles in a radial mag-
netic field. Since the gyroradii are much smaller than the scale length
of the field (whicﬁ is of the order of the distance from the sun), the
adiabatic approximation to the orbits is valid. The particles move out
along field lines, conserving both their energy and their magnetic
moment (defined as WL/B’ where B is the magnetic field, and wi = %mvi
is the gyration energy). As they move outwards through the inverse-

square field, W decreases in proportion to B, and therefore Ti’ which

i

4

<The simplest model of all ignores both collisions and magnetic fields,
Even though neglect of the field seems unjustifiable, this model has
some interesting properties; it is discussed in Appendix A.
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is proportional to wi, decreases also.
Now, the energy is conserved, and so the parallel velocity

2 2
VH must increase when v, decreases, In fact, v“ + v, = const, (solar

gravity is negligible at these distances), so d(vﬁ) + d(vi) = 0, But

vﬁ >->>v2

1 in the solar wind; therefore the fractional change in vﬁ is

small even when v, decreases by a large factor. So v“ is approximately

1

constant as the plasma moves outwards. Thus T“ will be roughly constant,

while T, decreases in proportion to the magnetic field. If the dy-

L

namics weretruly collisionless beyond .1 A.U., and the sun did not

rotate, then near the earth the plasma would be extremely ‘anisotropic,

with T“ /T_L 2 100.

Motion in a Spiral Field

We shall now allow the sun to rotate. 1Its magnetic field
becomes twisted into the familiar spiral pattern, but the general
character of the windflow is not much affected. One might not expect
much change in the particle motions, except for a rotation of the plane
of gyration as the particle follows the curved B lines, and perhaps
some adiabatic drifts. However, it turns out that the anisotropy is
reduced by a factor of three, compared with the radial field case. To
show this, we must devote‘several pages to a detailed study of the
particle dynamics in the spiral field.

The magnetic field pattern is well known (Parker 1963b): on
the sun's equatorial plane, the angle ¥ between the field and the
radial direction is given by

tan ¢ = (2-3)

=Rl
-



-17-

where r is the distance from the sun, and R is a constant, = 1 A.U.;
R = V/Q, where V is the bulk velocity of the solar wind and ( is the
solar rotation frequency. The radial component Br oc 1/r2 (this
follows from div B = 0, assuming spherical symmetry near the equa-

torial plane); and so the field strength is

BO sec V¥
B = —5— (2-4)
T

where BO is a constant.

The theory will be restricted to the solar equatorial plane,
since that is where all the observations are being made (we ignore the
small angle between the ecliptic and equatorial planes). We shall
suppose that the magnetic field points outwards from the sun; the
final results, of course, will not depend upon its sign.

Now, (3) is true if the bulk velocity of the wind is constant
and radial. Since the magnetic energy density in the solar wind is much
less than the kinetic energy density, one does not expect the radial
flow to be much affected by the field; and observations show that the
windflow is indeed close to radial. The particles are therefore not
moving strictly along the spiral field lines, but drifting across them
as well. There must therefore be an electric field, perpendicular to
B and to the drift speed, and hence in the North-South direction. Now,
it is observed that the thermal speeds in the solar wind are much less
than the bulk speed; so practically all the particles are traveling
with radial velocity close to V. We resolve the guiding-center velocity

into components: wu along the field, and v,_ perpendicular to it and in

D
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Figure 1.

Particle Dynamics in the Solar Wind
(a) The fixed frame

{(b) The rotating frame
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the ecliptic plane (there is a third component, out of the ecliptic,
but it is much smaller). For a particle whose guiding center is

traveling radially with speed V,

v, = V sin V¥ (2-5)

(see Fig. la). This is an E x B drift; therefore V sin ¥ = cE/B and

E = %E sin ¥ . (2-6)

This is the Northwards electric field needed to produce the azimuthal

drift. Using (3), it may be rewritten

Q
E = ZE B cos § .

This is a very reasonable result: it means that in a frame traveling
with the local solar rotation speed rfl, there is no electric field;
in other words, the interplanetary magnetic field lines rotate with
*
the sun.
We shall now consider in detail the motion of particles in
the field defined by (3) and (6): we are interested in the small

deviations from perfectly radial flow with speed V. The invariance of

. . . . 2
the magnetic moment implies that the gyration energy %mv

1 is proportional

to B (note that v is defined not as the component of the particle

1

&

w

Notice that this is not an extra assumption, but an immediate conse-
quence of supposing that the flow is essentially collisionless and
radial.
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velocity perpendicular to the field, but as the velocity of gyration,
which is the difference between that component and the electric drift
speed). Because there is an electric field, the kinetic energy is not
conserved, and the calculation of the parallel velocity u is not so
easy.,

The magnetic field is curved, and the electric field is
space-dependent; therefore, the particles will drift slowly Northwards,
and thus gain or lose energy from the electric field, depending on

the sign; the energy equation is

m , 2 2 _
v [2 (u” + vl)] = eEVz .

d_
r dr

The drifts are all small, and make a negligible contribution to the
kinetic energy. E is known; and v, may be calculated by adding: (a)
the gradient % drift, (b) the curvature drift, and (c) the mixed drift.
This last is a drift which occurs when there are space-dependent
magnetic and electric fields both present (Northrop 1961); it may be
thought of as an acceleration drift caused by the change in the E X E
drift speed. All these drifts can be computed, and the resulting equa-
tion of motion solved. It is a lot of hard work.

However, the same result may be reached with very much less
labor by working in a coordinate system rotating with the sun, for
there is no electric field in that frame. Since it is not an inertial
frame, it is not immediately obvious what the equations of electro-

magnetism are. We must start from the known equation of motion in the
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inertial frame:

du
m g% = e(E +u x B/c) .

Now we make a coordinate transformation to the rotating axes, writing
u=v+ U, where U, =) x r 1is the rotation speed. Then we have

m-— + I = e(E+ Uy X B/c + v x B/c) ,

where the inertial force E (centrifugal + Coriolis) comes from trans=
forming the time-derivative in the usual way. But E + QR x B/c is
the familiar Lorentz transformation formula. Thus we have shown that
if the electromagnetic fields are transformed by the prescription
E'=E + Uy x B/c, B' =B, and if Up = r{l << ¢, then the equation of
motion in rotating axes is given correctly by the Lorentz force law,
plus centrifugal and Coriolis forces.

The Coriolis force is ZmX X g, which closely resembles the
magnetic force, In fact, if we define S = Zmc Q/e, then the equation
of motion is

dv
fad
dt

m =§vx(§+g)+m92£ . (2-7)

The Coriolis force behaves exactly like an additional magnetic field

E, pointing North. It is a small perturbation on B, since § << w = eB/mc;
indeed, Q/w ™ 10-5. So in this frame, to a firét approximation, the
guiding centers move along magnetic field lines, with a small Northwards
velocity corresponding to the North component of the "total field"

B 4+ C. There are other drifts produced by the curvature and gradient
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of the field, but these are all smaller than the parallel velocity by
at least a factor (/w) ™ 10-5. They make a negligible contribution
to the kinetic energy; and since there is no electric field in this
frame, they do not contribute anything to the total energy.

The last term of (7) is the centrifugal force FC. Its
component perpendicular to the magnetic field produces a small
perpendicular drift, again negligible; but its component along the
field accelerates the particles. If v is the guiding-center velocity

in the co-rotating frame, then the radial velocity is
v, =V cos Y (2-8)

(see Fig. 1b). So the work per second performed on the particle by

. . 2 . .
the centrifugal force is vr.mQ r, and the energy equation is

d m 2 2 d m 2
w2 VTV =vogr g () = ovg
hence
V2 = erz + A - V2
1
. . . 2 2 2,
where A is a constant of integration. But v. < ( r in the solar

L

wind; erz is the term dominating the r-dependence of v, and we may

write, to a good approximation,

v2 = erz + A. ‘ (2-9)

We must now relate v to u, the parallel velocity in the inertial frame.
Clearly, the radial velocity v, is the same in the two frames; there-

fore we find
v =u+r siny
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(9) now becomes

(u + fr sin W)Z = erz + A, (2-10)

This gives u as a function of r.

To complete the solution of the dynamics, we determine v,

from the invariance of the magnetic moment, which implies
\/"‘“"“‘"‘—“*"‘!
vioc B =< Sj; - = l_iigilﬂi . (2-11)

Now, Tl<< < vi >; therefore
e
2
T o B« E——%—B— . (2-12)
T

Thus the perpendicular temperature falls off rapidly with distance,
though not quite so rapidly as if the field were strictly radial and
inverse-square.

The parallel temperature is no longer comnstant, as it was
when the field was radial. Consider u as a function of r and the
initial value U = u(r = D), where r = D = .1 A.U. is the starting-

point of our calculation. From (10),

u = N/52r2 + A ~ Qr sin v,

where

(U + oD sin )2 -02p2

>
i

.

If two particles differ in velocity by dU at r = D, then at r they

differ in velocity by du = (du/oU)- dU. Now,
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du _ Jdu dA _ U+ uD sin ¥
AU dA du J zrz + A

To a first approximation, U = V, the mean solar windspeed. So

-k
u [1 + e - p? ]
= -, R
ou R+ D[Jéz + R2)2
using (3).
Now, TH°< (Bu)zoc (BU/BU)Z; so
-1
2 2
D r =D
T, = T [1 + } (2-13)
“ H [R - rD/\/R2 + r2] g
where the constant Tﬁ = T“ (r = D). In our case, D= .1 A.U., so

R = r = 10D at the earth, so TH»*:%TT{ Thus the parallel temperature

decreases as well as the perpendicular temperature, but rather more
slowly (in the collisionless theory).

If we suppose that the distribution is isotropic at .1 A.U.,
and the flow is collisionless from there onwards, then near the earth
TH/T' = 35. This is extremely anisotropic; on theoretical grounds it

i .

seems unlikely that it will really occur. There are observations of
the velocity distribution in the solar wind from the Pioneer 6 and
Vela 3 satellites (Scarf et al., 1967, Hundhausen et al., 1967). They
find that the distribution is indeed anisotropic, and the anisotropy
is aligned with the magnetic field, but the temperature ratio is only

1.5 - 4. Therefore the collisionless model is inadequate; there
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must be relaxation processes at work, trying to drive the distri-
bution towards an isotropic Maxwellian. The rest of this chapter
studies these effects.

The Liouville Equation

In preparation for the next section, we shall now derive
an equation for the distribution function in the collisionless theorxy;
it is an expression of Liouville's Theorem. This theorem (which
follows from Newton's laws alone) says that the distribution function
is constant along particle trajectories in phase space, The mathe~-
matical expression of this statement is equation (1); when, as in our

case, the only forces are electromagnetic, (1) reads

(2-14)

O/IO/
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(Even though we are using noncanonical coordinates (E’ X) in phase
space, the conservation equation (l4) is true.) It looks fairly
complicated. Therefore we shall transform to a new set of coordinates
in phase space, such that the Liouville equation simplifies.

If x and v are given, then the acceleration is determined by
Newton's laws, and thus the direction of motion of the particles in
phase space is determined. Through each phase point, then, there
passes a unique orbit curve: phase space is completely filled with a
family of these trajectories (they are the characteristic curves of the

partial differential equation (1l4)). Instead of describing a point by

its coordinates (x,v), we shall describe it by saying (a) which
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trajectory it is on, and (b) how far along that trajectory it is,
measured from some standard reference point. If s is the coordinate

along the trajectory (it may or may not be linear with distance), then

the Liouville equation is simply

This is trivially solved: £ = A, where A is an arbitrary function of
the five variables which label the trajectories. This is all excessive-
ly simple, of course, but we are developing the machinery because it
will be useful when we come to consider the effect of collisions, in
§2 4.

We must now describe our new coordinate system in detail.,
First we shall make a transformation in velocity space which removes

the electric drift. We define

1
vl = v -v
~ ~ ~D 7

where v is the E x B drift speed. This transformation leaves the
volume element in phase space invariant; therefore if f(x,v')d3xd3v'
3

is the number of particles in the box d3 x d”v', then f is constant
along orbits, as before. We shall use cylindrical coordinates in
velocity space, with V; directed along the local magnetic field; then

vé = u, the parallel velocity, and v, is the r-component in the

1

x*
These are the characteristic coordinates commonly used for solving
hyperbolic partial differential equations.
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cylindrical coordinate system.

The orbit curves are described by (9), (10). These equations
involve only three dimensions of the six-dimensional phase space. We
assume that the distribution function is independent of the three
angular variables: 6 and ¢ in x-space, and the phase angle ¥ in
velocity space; then there is no need to explicitly consider those
variables, and we may work in a three-dimensional reduced phase space,

with axes r, u, v We can now uniquely label the orbits by the

1

1 of u, v, at a reference point r = D; and r measures

distance along the orbit. The old coordinates u and v, are given as

values U, V

functions of r and U, Vi by (8), (9):

2 _ B(x) 2
vl = B Vl (2-15)
and
u = \/A + erz - Qr sin vV, (2-16)
where

U+ 9 sin ¥)% - a?p°.

"
I

The Liouville equation is now

or '
u,v (2-17)
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2.4 Collision Effects

We shall now extend the theory of §2.3 to include relaxation
effects., Coulomb collisions are negligible in the region that we are
considering; but there are magnetic interactions between the particles.
Observations show that the magnetic field is irregular on a small
scale; indeed, plasma theory* predicts that if the distribution is
considerably anisotropic (as is suggested by the results of §2.3),
then the plasma is unstable, and waves are generated; the field lines
become crinkly. Particles bounce off these magnetic kinks in much the
same way as they bounce off other particles, and the general effect,
like that of all interaction processes, is to drive the system towards
a Boltzmann distribution.

In order to be able to treat the process mathematically, we
shall at first take a specific model for the collisions: we suppose
that they produce sudden random changes in the velocity of the particles;
the velocity vector thus performs a random walk.’ If the magnetic field
may be considered static over the time of a collision, then energy is
conserved, so the random walk is restricted to a two-~dimensional
constant-energy surface in velocity space. We further suppose that the
particles suffer many small deflections, rather than a few large ones,
so that the random walk may be treated as a quasi-continuous process,

and described by a differential equation of the diffusion type.

e
“parker, 1958b.
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Finally we assume that the scattering is isotropic in velocity* —
within the restrictions of energy conservation. We thus have an
isotropic random walk on the surface of a sphere in velocity space.
These assumptions are made here only for the sake of having a definite
model to discuss; there will be no such restriction on the validity

of the equation which we shall eventually use in §2.5 to describe

the solar wind.

We have now completely specified the scattering process, and
should therefore be able to compute the collision term of Boltzmann's
equation. This is discussed by Chandrasekhar (1943); Boltzmann's
equation for a random walk with small step sizes is called the
Fokker-Planck equation, and in our case is

2
Df 9
>t = 4 on [(1"“2> gﬁ] ’ (2-18)

where f is the distribution functiom, M is the cosime of the angle
between the velocity vector and the magnetic field, and 7o~ is the
mean square step size if steps are taken once every T seconds; D/Dt
is the operator on the left side of (14).

Properties of the Fokker-Planck Equation

As o ™ 0, (18) becomes the Liouville equation (14). The

solution of this is a step-by-step procedure: starting with some

"We shall see later that this is not a good assumption. We make it
because it leads to a simple equation, whose properties are easy to
understand; the conclusions we shall reach are valid also for the more
accurate equation solved in §2.5.
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assumed distribution near the sun, one can deduce the distribution
farther out. It secems reasonable that if we know the state of the
plasma near the sun, then we should be able to integrate outwards to
find its distribution function at the earth. However, we shall see
that this is not necessarily true.

We shall consider the Fokker-Planck equation in a constant

magnetic field, and in a steady state:

2
of o~ 9o 2, of
nSE-5 & lawh §E], (2-19)

where V is the speed of the particle, which is invariant. This looks

very much like the diffusion equation in spherical coordinates:

g—i = k%—;[(l-u) %5] (2-20)

x is the "timelike'" variable. The initial-value problem is certainly
well-posed for the diffusion equation (20), just as it is for the
Liouville equation. However, (20) differs from the Liouville equation
in being irreversible. If one prescribes f arbitrarily at t = 0, say,
and k is positive, then for all t < 0 the equation has a unique and
finite solution. But if one tries to use the equation to find f for
t < 0 ("solving it backwards in time'"), one finds that the solution
fluctuates more and more wildly, and there is a finite time ~-T beyond
which it cannot be continued. The diffusion equation can only be
solved forwards in time.

Now, changing the sign of k in (20) is equivalent to changing

the sign of t. Hence, if k < 0, (20) can only be solved backwards in t.
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But in the Fokker-Planck equation (19), the coefficient p changes
sign; hence (19) is a parabolic (i.e., diffusionlike) equation for
n> 0 and for pu < 0, but "time' runs in opposite directions in these
two regions. For u > 0 it can indeed be solved forwards in x, but
for 1 < 0 it can only be solved backwards in x. These two require-
ments are incompatible, for the equation (19) links the two regionms.
Therefore, in order to solve (19) for p > 0 forwards in x, one must
first have found f£(u < 0) by integrating backwards in x; and vice
versa.

To clarify this confusing situation, consider Figure 2,
which depicts the relevant dimensions of phase space. All particles
with p > 0 (pitch angle < w/2) are moving in the +x direction, with
speed Vp; those with p < 0 are moving in the =-x direction. Super-
imposed upon this directed flow is a random walk in the n-direction.
It is now easy to see that the iritial-value problem is ill-posed.
Suppose, for example, that one prescribes f(x = 0, p > 0), and demands
£(0, n<0) = 0. Now, £ (0, p> 0) > 0 means that particles are
entering the diagram at the upper left side, traveling to the right.
Some of them will be knocked into the lower half of the diagram by
collisions; of course, some of those will later be kicked back up
again, and there will be a continuous circulation of particles in
phase space. Inevitably, however, some particles will arrive back at
x = 0 in the lower half plane, thus killing off all hope of satisfying
£(0, n< 0) = 0.

Suppose that we wish to solve (18) over the ramge 0 < x < X.
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Figure 2 may be thought of as a box, into which particles may be
injected. The solution is determined by specifying what particles
are injected; the internal machinery of the box (the differential
equation) determines what comes out. Taking account of the arrows,
we see that the particles entering the box are described by

f(x =0, n>0) and £(x = X, 1 < 0). These, then, are the data
needed to specify a solution of (18): it is not an initial-value
problem in x, but a two-point boundary-value problem., 1In the case of
the solar wind, we must apply the condition that essentially no parti-
cles enter the system from interstellar space in order to determine
the solution.

We must also apply boundary conditions at p = x1, just as
for the diffusion equation. Because of the spherical geometry, the
equation is singular at p = #1, and the condition that f be finite
there is enough to determine it., In short, to determine the solution
of our equation we must give boundary conditions on the part of the
boundary that is heavily outlined in Figure 2.

Now, there is no known analytic solution of our problem, and
we shall eventually solve it by numerical analysis. Numerical methods
are extremely inefficient for two-point boundary-value problems; but
fortunately, we can avoid this difficulty. The proton thermal speed
in the solar wind near the earth is much less than the outward con-
vection speed of ~ 300 km/sec. Therefore almost all the particles
have very small pitch angles, and are concentrated near the top edge of

Figure 2; hence, the number knocked down into the lower half-plane is
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negligible, and the region p < 0 may be entirely disregarded. The
problem now behaves like a simple parabolic equation, and may be
solved as an initial value problem (in x). Now, even if the rate at
which particles trickle down to the lower half of Figure 2 is small,
yet if one waits long enough (i.e., goes to large enough x), a sizable
fraction of the particles will have reached p < 0, and our method will
fail. Our approximation is thus nonuniformly valid for large distances,
Still, the region of validity certainly extends considerably beyond
the earth, and so the method is good enough for us. If one is
interested in the solution much farther out, one will have to take
account of the boundary condition at infinity (or at the termination
of the solar wind), and solve the full two-point boundary value problem.

Having laid out a strategy for the solution of (19), we must
return to a point that was glossed over in its derivation. We assumed
that the scattering is isotropic. If this is taken seriously, one
finds that as the wind travels out from the sun, it is back-scattered;
and if the wind extends very far out into interplanetary space, (18)
predicts that it is practically all backscattered, and none gets out
to the far reaches of the solar system. This is nonsense. The point
is that isotropic scattering is likely only if the scattering centers
are at rest. But in our case they are moving with the plasma -~ they
are the plasma; hence (19) is valid in a frame in which the plasma is
at rest. In general there may be no frame in which it is everywhere
at rest; but the solar wind has practically constant speed in the
region of interest, as is shown in §2.3, and therefore (18) is true

in a frame traveling with that speed.
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Analytic methods have produced no solution of (18); we
might therefore consider solving it numerically. Second-order
partial differential equations are tedious and expensive to integrate;
and this equation has been derived under a number of very special
assumptions. We prefer, therefore, to abandom it, and use a description
of the plasma which may be more generally valid and useful.

The Equation of Bhatmnagar, Gross, and Krook

The main properties of the Fokker-Planck equation are the
following: (a) it conserves the mass, energy, and momentum of the
plasma, (b) it describes relaxation to a Boltzmann distribution (in
other words, it satisfies Boltzmann's H-theorem), (c¢) it is a second-
order partial differential equation. The properties (a) and (b) must
be satisfied by any reasonable model of collision processes; and they
are the only wvital properties. We have no great reason to believe that
the deflections of particles in the solar wind are always small-angle
and isotropic in the local rest frame; the Fokker-Planck equation is
only one of many possible approximations to the true Boltzmann equation.
We would like to find an equation which preserves the properties (a),
(b), but is more easily solved.

A suitable equation has been proposed by Bhatnagar, Gross,
and Krook (1954) (it is often called the BGK equation,and sometimes
the Krooked equation). It has been used frequently in recent years to
study various problems in gas dynamics in which the Navier-Stokes

equations (or higher approximations of the same type) are inadequate.

*
See the various volumes of the Proceedings of the Symposia on

Rarefied Gas Dynamics.
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It may be described as the simplest form of Boltzmann's equation that
satisfies the H-theorem and the conservation laws. The H-theorem says
that if the distribution function is not Maxwellian, then it will
change in such a way that it becomes Maxwellian; the conservation laws
say that the density, momentum, and energy of the Maxwellian towards
which it is tending at any time are the same as the density, momentum,

and energy of the gas at that time. These conditions are satisfied by
D _y - -
e = ¥ (- D (2-21)

where fB is a Maxwell~-Boltzmann distribution whose density, mean

velocity, and temperature are the appropriate moments of f:

f, = m € T)-3/2 exp [- (X‘Q)Z/T} 5 (2-22)
where

n = ff(x,v) a3y

u = i‘fz f d3v (2-23)

r o= 2 f(z-g)z £dv

k is Boltzmann's constant, of course, and m is the particle mass; V
represents the collision frequency, and may be a function of v.

If the gas is nearly in equilibrium, then n, u, T in (23)
may be replaced by their equilibrium values, and (21) becomes a linear
equation; in this form it has been extensively used for studies of

sound propagation and other problems. In our case, however, the gas
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is far from equilibrium, and the paramcters are not varying slowly in
any sense, so we must treat the full non-linear integrodifferential
equation, From a mathematical point of view, its properties are not
as clear as those of the Fokker-Planck equatiomn; but its general
behavior is the same: when it is solved forwards in x, the solution
gets smoother and smoother, and therefore when it is solved backwards,
even the smallest bump becomes more and more exaggerated, and the
solution eventually diverges. The discussion of pp. 30-34 applies
here, and accordingly, we shall solve (21) as an initial-value problem,
understanding that it will give correct results in the region that we
are interested in, even though it breaks down at large distances from
the sun. The breakdown occurs when particles start to appear in the
lower half of Figure 2, and this will be easily recognized in the

solution if it should occur.
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2.5 The Solution

We must first write down the BGK equation, in a form suit-
able for numerical solution. We saw in §{2.3 that the motion of
particles in the spiral interplanetary field is best described in
terms of phase-space coordinates r,U,Vl, related to the ordinary
velocities u, vy by (15), (16). 1Including the BGK collision term, the

Boltzmann equation now becomes

O/‘O/
H jh

=V (f, - £) . (2-24)

fB is defined by (22), (23), and VvV is now the effective number of
collision per unit radial distanced traveled. V may be a function of
velocity, but since it depends upon the detailed physics of the
scattering, we do not know what the function is. We shall therefore
solve the equation with a constant VvV, representing some kind of aver-
age value. We shall call v the collision frequency, although it is
actually the number of collisions per unit distance, not time.

(24) is a first-order ordinary differential equation in r,
solved by the usual step-by-step methods. We begin with a Maxwell
distribution, at some distance D from the sun. This is the point at
which the transition from collision-dominated flow to the kinetic-
theory regime takes place; all current models of the wind agree that

D~ .1 AU., as discussed in §2.2. We use dimensionless variables,

1 at the starting point; then r = 10 at the

H

normalized so that r

.1 A.U. The bulk velocity is measured in units

earth if one takes D

of the bulk velocity at r = D. The equation can be written in
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dimensionless form, using these variables. If the bulk velocity is
constant, then by shifting the origin in velocity space to the bulk
velocity, we can get an equation in which the only dimensionless
number is the collision frequency (in suitable units). The ratio of
the bulk speed to the thermal speed does not appear in the equation,
and therefore the solution does not depend upon it. This transfor-
mation is possible as long as the bulk velocity is constant, which is
true if the thermal and gravitational energies are much less than the
directed kinetic energy. This is in fact true in the solar wind be-
yond .1 A.U.; so it does not matter what value we choose for Vth/Vbulk’
as long as it is small. For technical reasons (discussed in Appendix
E), 1/100 is the largest value we can conveniently use. This corres-

ponds to a temperature of ™ 5.103 °K at the earth, with a bulk speed

of 350 km/sec. This is somewhat less than 3.104 OK, the average
temperature of the Vela observations which we shall discuss below;
but as long as we are interested in temperature ratios; not in pre-
dicting absolute temperatures, this does not matter (this may be seen
in the formulae (12), (13) for the collisionless case, and remains
true in the presence of collisions).

Finally, we must choose a value for the parameter R describ-
ing the spiral field (see (2)). We take R = 1 A.U., so that the
spiral angle is 45° at the earth. Our model is now fully determined,
except for the value of the collision frequency v, and we solve it
for several different values of v

The differential equation (24) was solved by a second-order

predictor-corrector method; ten steps between r = 1 and r = 10 gave
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sufficient accuracy. At each step, the integrals (22) must be
evaluated; this was done by Simpson's Rule, using a mesh of « 600
points in the two-dimensional velocity space. More details of the
numerical methods used will be found in Appendix E. It should be
noticed that although the solution of partial differential equations
is often imperiled by instabilities, we are safe from this danger.

The main property of the BGK equation is that it damps out any local
bumps in the distribution, and tries to make it as smooth as possible.

Therefore any numerical errors will be damped out in the same way, and

cannot lead to instability.

Results
Figure 3 shows the anisotropy factor TH/TL as a function of
dimensionless distance, for various values of v . If D = .1 A.U.,

then r = 10 at the earth; we determine v by selecting the curve which
gives the observed value of the anisotropy. The observed anisotropies
of 1.5 - 4 require v = .15 = .4; in other words, a typical particle
makes, say, .25 collisions per unit radial distance traveled. Since
we are using a distance unit of .1 A.U., this means that it makes

2.5 collisions between .1 A.U. and 1 A.U.

If one prefers a different value for the distance D at which
the wind stops being collision-dominated, then instead of looking
along the liner = 10 in Fig. 3, one looks along the line r = 1/D (where
D is expressed in A.U.), and picks the value of v that gives the ob-
served anisotropy. The total number of collisions that a typical

particle makes between D and 1 A.U. is then v/D. (This is not quite
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Figure 3.

The anisotropy factor in the solar wind.
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Figure 4, The mean temperature in the solar wind
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correct: if D is changed, then the dimensionless value of R must be
changed in order to keep the spiral angle 450 at the earth. But as
long as the change in D is small, the corresponding change in R has
only a small effect on the solution, and may be neglected in first

approximation).

Figure 4 is a logarithmic plot of the temperature T averaged
over direction: T = (TH + ZTL)/B. On the whole it follows a poly-
tropic law T°= ny-l, with y = 1.5. In other wordé, T is inversely
proportional to distance from the sun. The deviation from this law
is strongest when the collision frequency is zero. This is reasonable,
for it is then that we expect the model to least resemble a polytropic
gas. In general, the curves tend to become steeper at large distances,
which means an increase in the adiabatic index y. Parker (1963c) points
out that at large distances, y should rise to 5/3, the normal value for
a gas with three degrees of freedom.

Figure 5 is a picture of the velocity distribution. We use
coordinates with A along the magnetic field, and Vo perpendicular to
it and in the ecliptic plane. The thermal velocities are symmetrical
about the magnetic field; therefore the distribution has rotational
symmetry about an axis in the v, direction through the mean velocity
(which is not in the z direction, because of the E x E drift). The
figure shows f on the vV, plane (which contains the axis of symmetry),
displayed by lines of equal f, drawn half an order of magnitude apart.
It is drawn for the solar wind near the earth, with a collision rate

of 2 collisions/A,U.
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A contour map of the velocity distribution.
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Figure 6a is a contour map of the observed distribution
function in the solar wind, as measured by the Vela 3 satellite
(Hundhausen et al., 1967). The contours are drawn at intervals of
1/10 the maximum of £, so the area covered by all the contours in
Figure 6a corresponds to the innermost two contours of Figure 5; they
are redrawn in Figure 6b (the solid lines). The vy axis points away
from the sun; the v, axis is less than 35° away from the ecliptic,
but its precise direction is not clear. When comparing Figures 6a
and 6b, note that the crosses in Figure 6a represent points at which
the distribution was measured; the contours are interpolated from

those measurements.,

The Vela data were taken during a fairly quiet period, when
the mean temperature did not exceed S.lO4 °k. At such times it is
reasonable to treat the magnetic field as a spiral, plus some ir-
regularities. On the other hand, at other times the temperature is
often in the region of 5.105 °k. During these periods the plasma is
presumably being heated by shocks and turbulence,caused by interacting
high-velocity streams. The magnetic field, and indeed the whole situ=-
ation, is much more complicated, and we need not expect our theory to
apply to such periods of high temperature.

The outer parts of the computed distribution function of
Figure 5 show definite horns lying along the direction of the magnetic
field. The reason for this slightly peculiar shape is the following.

The adiabatic cooling of the transverse temperature is much faster

close to the sun, where the field is changing most rapidly; on the
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other hand, we have assumed that the strength of the collision
mechanism is independent of position. So when the plasma has traveled,
say, .l A.,U. from its starting point, the field strength, and there-

fore T has gone down by a factor of 4, while the collisions have mnot

.L’
had enough time to seriously modify the distribution. Thus the plasma
becomes very anisotropic early in its journey, and then later the
collisions gradually drive it back towards isotropy (this can be seen
in Figure 3). Now, when a non-equilibrium gas relaxes to a Maxwell
distribution, the central part of the distribution relaxes faster than
the outer parts; it takes much longer for collisions to affect the
particles in the tail, and bring them to a Maxwell distribution. This
seems plausible on general grounds; it has been observed by MacDonald,
Rosenbluth and Chuck (1957) in numerical solutions of the Fokker-Planck
equation. The evolution of the distribution may thus be described as
follows. It begins as a spherical Maxwell distribution at .1 A.U.; it
rapidly shrinks down to a cigar shape, as the magnetic field cools the
transverse temperature; then gradually the collisions inflate the center
of the cigar, and try to make it spherical, giving the state shown in
Figure 5; and gradually the central sphere swells as it pulls in its
horns.

This account depends on the assumption that the strength of
the relaxation mechanism is more or less independent of distance from
the sun. It is well~-known that anisotropic plasmas tend to be unstable.
One wonders whether the tendency of the plasma to develop extreme

anisotropy near the beginning of its journey might trigger an instability,
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producing a local concentration of waves at that point, which scatter
the particles, and prevent the formation of the cigar-shaped distri-
cution discussed above. For a plasma with TH > Ti’ the dominant
instability mechanism is the firehose instability. The criterion

for its onset is

7P T

(Parker, 1958byLongmire, 1963, . p. 124). Near the earth, the magnetic
and kinetic pressures are roughly equal,? so a pressure ratio of
about 2 will be unstable. However, as we move towards the sun, the
magnetic pressure increases faster than the mechanical pressure. Ac-
cording to our equatiomn, if v = .3, the parameter B2/4ﬂpl at .2 A.U.
is four times what it is at 1 A.U. So if the wind can support an
anisotropy (i.e., pressure ratio) of 2 near the earth, it can support
an anisotropy of 5 at .2 A.U. without triggering the firehose insta-
bility. The increased strength of the field stiffens the lines, and
makes it harder to generate kinks in them.

There is another interesting feature of Figure 5: it is
slightly asymmetrical. The distribution is spread out more in the
direction away from the sun (large vz) than towards it. This prediction
is confirmed by the satellite observations, as is clear from Figure 6;

the asymmetry is indeed rather stronger than our model suggests. One

mechanism for producing it may be the following. The particles with

x
“As observed from Mariner 2 by Neugebauer and Snyder (1967).
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greater v, have traveled faster from .1 A.U., and have therefore spent
less time on the journey, than those with smaller v, . Now, the equa-
tion that we have solved assumed that the mean free path is independent
of velocity, so that the number of collisions that a particle makes
depends only on how far it travels, and not on how long it takes.
However, this may not be so; it seems not unlikely that particles that
take longer to reach the earth may therefore suffer more collisions.

In this case they would be thermalized more rapidly: the low-velocity
horn of the distribution (Fig. 5) will be drawn in and thermalized
faster than the other, and the observed asymmetry will result.

To estimate the strength of this mechanism, a calculation
was made with v decreasing linearly with velocity; it was .2 at the
peak of the distribution, and changed by .07 over one thermal speed.
This is nearly twice as strong a variation as that expected if there
is a constant number of collisions per unit time, even if the temper-
ature is as high as 5.105 OK, with a bulk velocity of 350 km/sec. The
broken curves of Figure 6b represent the results of this calculation.
The degree of asymmetry is certainly no greater than that of Figure 6a,

so it seems that such a strong v-dependence of v is in fact needed to

explain the data.
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2.6 Discussion

In $2.2 we saw that the Boltzmann equation is always a
correct equation, provided that the collision term is properly chosen.
One wonders under what conditions the BGK equation is a good approxi-
mation. If ome allows the collision frequency V tg be a function of
position and velocity, there is a great deal of freedom in the BGK
collision term. 1Indeed, it can be argued that there is always a
v(x,v,t) such that the BGK equation is satisfied. For any problem
in kinetic theory, there is always a solution f£(x,v,t) — even though

we may not be able to find it. If Vv is defined by

DE/Dt (2-25)

then the BGK equation is satisfied. The equation therefore is always
correct if v is properly chosen. If one desires infinite precision,

it may be impossible to find the correct v without using the formula
(25), which is useless unless one already knows the solution f£. But

if one is interested mainly in the first few moments of £, then it is
probably not too important to choose the correct velocity-dependence

of v .

If the dependence of v on position is correct, then the BGK
equation should give a complete description of the solar wind, in the
inner as well as the outer regions. If v is very large (as it is
below .l A.U.), then the BGK equation will reproduce the hydrodyﬁamic
results, and there is no point in using it. Its virtue is that it

provides an accurate description of a gas, bridging completely the



51~

range from collision-dominated to collisionless gases.

There is one important respect in which we have simplified
the problem: we have been considering the motion of particles in a
fixed magnetic field, and have not properly taken into account the
effect of the particles upon the field. The magnetic field has been
chosen to be consistent with a solar wind flowing radially outwards
at constant speed V; since our solution very nearly does this, the
magnetic field is comsistent with the particle motions, to a very
close approximation, and our results are in general accurate. How-
ever, certain details may be incorrect. In particular, the conserva-
tion of angular momentum has not been taken into account. This is the
equation that relates the magnetic field to the azimuthal velocity,
and allows us to determine a field consistent with the particle motions.
If this conservation law is included in the system of equations, and the
B field determined from it, then the BGK equation will give a complete
description of the wind, including its angular momentum.

Now, our magnetic field differs only slightly from the true
self-consistent field. From the angular momentum equation (see Weber
and Davis, 1967) it follows that the (absolute) error in the azimuthal
velocity is small. But the azimuthal velocity is itself small (compared
with the total velocity); therefore even a small absolute error makes
the results quite unreliable, and our calculation tells us nothing about
the azimuthal velocity of the wind near the earth. It would be possible
to solve the BGK equation including exact angular momentum conservation;

this would predict the non-radial velocity. In the collision-dominated
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region, it will presumably reproduce the results of Weber and Davis
(1967), with much more labor, of course. In the outer region, one
might expect some modification of their results; the predictions
could be compared with the observations by Wolfe et al., (1966) of
non-radial streaming in the solar wind. However, this is not a
trivial modification of my calculation.

Another apparent deficiency of our model is that we have
completely ignored the electrons, and treated the protons as if the
only forces on them were the magnetic field, and collisions. The
condition that this be valid is that there be no charge-separation,
and therefore no electric field (apart from that required to make the
magnetic field rotate with the sun). If we assume that this is true,
then our equations are applicable to both the electron gas and the
proton gas individually. In our model the particle density falls off
as the inverse square distance from the sun, and is independent of the
particle mass and charge. Therefore we will have equal densities for
electrons and protons, which agreeswith our assumption of no charge-
separation fields. This assumption is thus consistent and correct.

Finally, we should discuss the theoretical status of the
parameter v. We have treated it as a phenomenological parameter, and
determined an average value of = 2.5 collisions/A.U. When more data
become available on the anisotropy of the wind at different distances
from the sun, we will be able to use the same method to determine the
space-variation of v — to solve the BGK equation with variable Vv is

as easy as with constant v.
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In principle, however, it is not necessary to treat y as a
phenomenological parameter. We believe that the 'collisions' are
interactions of the particles with magnetic irregularities. If[ we knew
the irregularities of the magnetic field in detail, we could work out
the dynamics of the particle motion, and thus calculate the effective
collision rate. In this way Jokipii (1966 ) has computed the diffusion
coefficient for the scattering of cosmic rays in the solar wind, using
measurements of the power spectrum of interplanetary magnetic fluctu-
ations. We should be able to make a similar calculation of the
diffusion coefficient of the solar wind particles themselves.

In order to produce scattering, a wave must be able to
violate the adiabatic invariants of the particle motion — otherwise
the magnetic moment is conserved, and the calculations of {2.3 apply.
Therefore the wavelength must be at least as small as the gyroradius,
~ 50 km. Since the wind is traveling at 300 km/sec. or more, such
a wave will be swept past a spacecraft in 1/10th of a second at most,
and therefore rather high resolution magnetometers-and telemetry must
be used. At present, there are no data on fluctuations at > 10 c¢/s
in the interplanetary field; but when they become available, we will
be able to compute the parameter v from first principles, and see how

it compares with values deduced from measurements of the anisotropy.
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III. INTERACTION WITH SOLID BODIES

3.1 Introduction

In Chapter 2 we considered the flow of the wind as it expands
freely outwards from the sun. We shall now turnm to the far more compli-
cated question of what happens when it meets an obstacle in its path,
such as a planet or satellite.

The most familiar example of such a problem is presented by
the earth. The interaction here is dominated by the geomagnetic field.
Magnetized plasmas from different sources tend not to mix: a sharp
boundary is formed, at the point where the pressures balance, and the
incident plasma is reflected from the boundary. Now, calculation of
the shape and position of this interface is difficult, but the physics
of its internal structure is reasonably well understood, at least in the
limiting case appropriate to the interaction of the solar wind with the
front of the magnetosphere (Rosenbluth, 1957). An individual-particle
treatment suggests that particles are reflected specularly from the
boundary, and cannot cross it. An exact treatment of the flow
should include the structure of the boundary layer. But as long as it
is thin, its detailed structure is unimportant, and the flow past the
magnetosphere may be determined from some kind of fluid equation, with
the boundary condition that the normal component of velocity vanish
there. This situation is familiar in ordinary fluid mechanics;

aerodynamicists have devoted much effort to the solution of flow around
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blunt bodes with this boundary condition. One can use the intuition
and experience gained in aerodynamics to reach a semi-quantitative
understanding of the flow of the solar wind around the magnetosphere;
and this has led, as is well known, to the successful prediction of
the standing shock wave in front of the earth. The problem, then, is
in outline reasonably well understood.

We shall be concerned here with the slightly more exotic
problems posed by bodies which are not shielded by a magnetic field
from contact with the solar wind. The comets have been the most
studied of these — in fact, it was studies of comets which first
showed the existence of a continuous solar wind. However, they present
a very complicated problem. One of their unorthodox features is the
continuous outflow of gas from the head of the comet; this has been
treated by Biermann, Brosowski, and Schmidt (1967), using the hydro-
dynamical equations with source terms. Other processes which must be
important are ionization of the cometary matter by the wind, and
magnetic effects (see, for example, Beard, 1966). In view of the
complexity of these problems, it seems a good idea to begin with the
simplest problem in the class of non-magnetic bodies, and try to under-
stand it on the same sort of level as we understand the interaction of the
wind and the earth.

Accordingly, this chapter will be devoted to the study of
solid bodies, with neither magnetic field nor atmosphere, moving through
a plasma; we suppose the bodies much larger than the Debye length and

the proton gyroradius (~10 mand 100 km, respectively, in the solar
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wind). The moon very probably belongs to this class. It is very
unlikely that a significant atmosphere has accumulated, since the
solar wind is efficient in ionizing and sweeping away such gases as
may seep to the surface. According to Explorer 35 (Somett, Colburn,
and Currie, 1967), the magnetic field between 700 and 7000 km, above
the moon's surface is less than 2y, which suggests that the moon does
not have much magnetic moment. This view is supported by theoretical
speculations, which generally agree that the earth's magnetic field
is caused by motions in its fluid core (although no one has produced
even an estimate of the geomagnetic field from this tﬁeory); the moon
is so much smaller than the earth that its interior will be cooler,
and may well be solid (though this is not at all certain). Furthermore,
it rotates very slowly — once a month — and this makes signifiéant
dynamo effects in the interior very unlikely. It is therefore very
plausible that the moon belongs to the class of problems we are
considering.

The motion of Jupiter's satellites through its magnetosphere
is another problem of the same type; it has raised a great deal of
interest since Bigg's (1964) discovery that the radio emission from
Jupiter is correlated with the orbital motion of the satellite Io.
This correlation will presumably be understood once we fully under-
stand the interaction of Io with the magnetospheric plasma through
which it moves.

Mars is another possible candidate. The Mariner IV
observations revealed no definite signs of a magnetosphere, or shock

wave in the solar wind. If Mars has an intrinsic dipole field, it
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should be surrounded by a magnetospheric configuration similar to
that of the earth; the observations set an upper limit on the size
of the magnetosphere, and applying the appropriate scaling laws, one
finds that the surface field is less than 100y, which is rather small.
So perhaps Mars has no dipole field. On the other hand, it certainly
has an atmosphere, and the interaction of the wind with the atmosphere
is a fairly complex matter, for which no satisfactory theory exists.
Similar remarks apply to Venus.

We shall consider the simplest possible model of what
happens when the solar plasma hits the surface of a planet (or satellite):
we assume that any particle striking the surface is absorbed, and

Kk

neutralized. In §3.2 we shall study in detail the boundary layer
at the edge of the plasma, and extract from this study the boundary
conditions which must be imposed at the surface, in a fluid-mechanical
treatment of the flow (the analog of the condition of reflection of
particles from the magnetosheath). 1In §3.3 we shall apply this boundary
condition to a two-dimensional model, of flow around a cylinder, and
show that there is no steady solution of the fluid equations. This is

very different from the magnetosphere problem, and shows that the

boundary conditions in our case are somehow more stringent.

*
Smith, Davis, Coleman, and Jones, 1965.

%
We assume this as a basis for discussion, while recognizing that there

are other possibilities.
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3.2 The Transition Sheath

In this section we shall consider the boundary layer at the
edge of a plasma in contact with a solid body; we are interested in
the behavior of the density and magnetic field very close to the sur-
face. We assume that whenever a particle hits the surface, it is
absorbed, and neutralized (as long as the body is large compared to
the Larmor radius, roughly equal numbers of electrons and protons hit
it, so neutrality is not unreasonable).

We do not expect electrostatic forces to play a dominant
rgle in the structure of the sheath, In the theofy of the transition
layer between a plasma and a magnetic field (Rosenbluth, 1957), it is
found that if one works with an imaginary plasma composed of equal-
mass particles, one reaches results very similar to the exact solution
of the unequal-mass problem, as long as the mass of the particles in
the model is chosen to be some appropriate combination of the electromn
and proton masses — in this case, the geometric mean. We expect that
our problem behaves in the same way, and we shall accordingly work
with an equal-mass plasma.

Since we are considering planets much larger than a gyro-
radius, and planets do not have sharp edges, we can ignore the curva-
ture of the boundary, and set up a one-dimensional problem., As a final
simplification, we shall at first suppose that the plasma is at rest
relative to the body.

Qur aim is to find the magnetic field as a function of
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distance from the wall. The method is to first consider an arbitrary
E field; compute the motions of the particles in that field; compute
the current produced by those motions; and finally, determine B by re-
quiring those currents to be consistent with the magnetic field that
we started with — that is, by applying Amp@res law. Owing to the high
symmetry of our problem, and to the absence of electric fields, we
shall be able to find an exact self — consistent scolution, without any
dubious approximations. It would clearly be wrong, for example, to use
the adiabatic approximation for the particle orbits, since we expect
that in the transition layer, the field may change rapidly over a
gyroradius.
The Orbits

We consider a one-dimensional problem, with a magnetic field
B(x)‘g ("Ndenotes a unit vector) filling x € 0, and an absorbing sur-
face at x = 0. 1In a given field, the orbit of a particle is determined
by its initial position and velocity. Through every point of the half-
space x < 0, there pass an infinite number of possible trajectories,
pointing in'all directions. In an undisturbed equilibrium plasma, the
particles will be uniformly distributed over these possible orbits, the
flux will be isotropic, and there will therefore be no net current.

Close to an absorbing wall, however, things are different.
Some of the orbits will intersect the wall; there can be no particles
traversing these orbits. At points close to the wall, therefore, not
all directions of motion are available to the particles: there are

forbidden regions in velocity space. By doing some geoﬁetry on the
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orbits, we can find these forbidden regions.

The equations of motion of a particle with charge = e (e > 0)

are

<t
il

.H
g
X

where

e
— B(x) .

€
]

The z equation says that the particles travel with constant speed

along the lines of force; this motion is irrelevant to our calculations.

We define
X

y(x) = Jr w(x') dx' ; (3-1)

o

it is the y-component of the vector potential. We may now rewrite

the equations of motion, using d/dt = vxd/dx:
. 1 -
vl o= syl v, (3-2)
vv' = +y' v, (3-3)

where ' stands for d/dx. (3) is immediately solved:

v = &k +y&), (3-4)

and so,

v =\/,2 -k P, (3-5)

by energy conservation. « and v are constants of integration: each
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orbit is labeled by definite values of k and v, and (4) and (5)
then describe the orbit. v, of course, is the absolute velocity of
the particle, which is constant in a magnetic field.

Let £(k,v) be the greatest value of x achieved by the
orbit labeled (k,v). Then £(x,v) > 0 is obviously the condition for
the orbit (k,v) to intersect the wall, that is, for it to be a for-
bidden orbit.

Now, since £ is the maximum x,

From (5), therefore,

we) Fot=vt o, (3-6)

£ is, by definition, the larger of the two roots of this equation.
We shall restrict ourselves now to magnetic fields which
always have the same sign — it is wildly unlikely that the self-
consistent solution will have a reversal of the field. w is there-
fore positive, and by (1), V¥ is a monotonic increasing function.
Therefore the larger root, £, of (6) corresponds to thevlarger value

of ¥(£), which is

YE) =+v k. (3-7)

This equation determines £(k,v), 1if ¥ is a known function.
Now, for allowed orbits, £ < 0, as we have seen; and
¥v(0) = 0 (see (1)); so

Vv(E) <0,



-62-

or

vk <0, (3-8)

for allowed orbits.

This result is not in a very useful form; kK is a parameter
characterizing the orbit, but its physical interpretation is not

clear.

If 6 is the angle between the x axis and the velocity
vector of a particle, at the point x, on the orbit labeled (k,v),
v -
A wﬁl (3-9)
v v

sin 6 =

by (4). TFor each x and v, some direction will be allowed, some for-
bidden. The allowed directions satisfy (8), which, in terms of 6,

becomes

sino g §|TELE)

(upper signs for + particles, lower for - ).

Define @ by
sin@ =1+588) _ZogX (3-10)
v 2 2
Then
sin 6 § sin + @
or
@ -1<E< -8 for + particles, (3-11)
& <6< -8 for - particles . (3-12)

(11) and (12), with (10) define the allowed regions in velocity space.
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In order to completely specify our problem, we must give
the distribution function in the allowed regions. We shall set up
the problem by supposing that in the distant past there was a com-
pletely uniform plasma, with no boundaries. An absorbing wall was
then introduced, at x = 0, and the system allowed to readjust itself,
and come to a new equilibrium, the object of our present study. Now,
according to Liouville's Theorem, the distribution function is constant
along particle trajectories. Therefore, at each point in the allowed
region of phase space for the final state, the distribution function
is equal to the value at the corresponding point of phase space for the
initial state; and we have assumed this to be independent of x and 6
(where 6 is the direction of the velocity — cf. (9)). Thus £(x,v,0) is

independent of x and 6 in the allowed regions, and vanishes elsewhere:

[x g(v) if @ 1< 6 < -8

2n
£ =
0 otherwise,
and N o) ife<o< -8
- 2TE
f o=
0 otherwise,

are the distribution functions for + particles respectively; N is the

density in the initial state, ® is defined by (10), and g(v), the

L
w

distribution of speeds, may be chosen any way we wish.

a

"It should be noticed that it was not absolutely necessary to go
through the above verbiage in order to justify this distribution
function. We are looking for a self-consistent solution, and can
make any kind of assumption that we please about the solution, pro-
vided that it is justified in the end by the demonstration that it
does indeed satisfy the equations.
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We can now compute the current density at each point in

the plasma:

r -
i (x) =e | dzv v sin 6 {f+ - f-J
y J
or -
. 2":%
jy (x) = - % Ne v2 dv g(v) [1 - (l + Yéﬁl ) J s (3-13)
o

using (10).
To make further progress, we must specify g(v). We shall
assume, for the present, that all particles have the same speed U,

so that

8(v) = T8 (v-0)

and therefore

2’
By ) = - Zy eU/J - (1 ¥ l'l—%)-) : (3-14)

This is an expression for the current, if the radical is real. If x

is such that [1 - (1 + w/U)Z] is negative, then there is no real &
satisfying (10), so no forbidden regions; at such points the particle
flux is isotropic and there is no current. So (l4) should be

supplemented by

2
iy, () =0if (1 ¢ R ) L (3-15)

The Solution

Ampere's law reads

B _ 4

dx S Jy
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or
ay 8Ne U 2
LY —Lg—j/\/l - ( m'+ 1) . (3-16)
2 2 U
dx me

This differential equation determines the self-consistent solution

for the vector potential. In dimensionless variables

2
as‘%, xzx‘gN—g— (3-17)
mc
it becomes
2 1
Q—-gl - AJ- (1 + a)? (3-18)
dx

This type of equatiom may be thoughtof as the equation of
motion of a fictitious particle in a potential field. Indeed, (18)

has a first integral:

L (£ + wa) = const., (3-19)

where

V(a) = - fda/\/l -1+ a)? . (3-20)

This is the energy equation for a particle in a potential field V(a),
or, alternatively, for a particle in a uniform gravitational field
sliding along a curve whose equation is z = V(a). a(X) in our problem
corresponds to x(t) for the fictitious particle, and a'(X), which is
proportional to the magnetic field, corresponds to v(t) for the

fictitious particle.
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(a)

(b)
-7 /2

Figure 7.

(a) The force on the fictitious particle

(b) The potential
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Figure 7a shows V' as a function af a, and in Figure 7b
is sketched V itself. A particle sliding to the right along this
curve has constant speed until it reaches a =-2, and then it speeds
up as it approaches the wall. So, in our problem, B is constant
beyond a certain distance from the wall, and increases close to the

wall. In fact, from (19),

2 2
BO BOO 9
8 " B = NmU (3-21)

This is the pressure balance equation: B increases just enough to
balance the loss in kinetic pressure as the density falls to zero at
the surface. This is the boundary condition that we mneed: given
the pressure and field at the outer edge of the sheath, we can use it
to calculate the field at the inner edge, that is, at the surface of
the solid body. For the purpose of studying the windflow around
planets, we do not need to know anything else about the structure of
the layer, as long as we know the change in B across it, and as long
as it is thin (compared to the radius of the plamet).

The Thickness

Since we have derived a dimensionless equation for the

structure of the sheath by writing

2
_ 8Ne

X == [T
me

one might be tempted to suppose that its thickness is of the order
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of *\}mcz/SNe2 . However, this would be rash: there is a dimension-

less number concealed in our problem, namely, the ratio of dynamical

*
to magnetic transverse pressure in the undisturbed plasma, usually

called beta;

2 2
_ 87NmU _ gyrospeed
B = 2 B Alfven speed :
Boo o

Now,
.d_a. — E.g—). ZE b d _]E -
3 = 3 ¢ /v/ 5 ,/V/B for large (-X) .

So the terms in (18) are not necessarily of order 1, and we must be
careful in evaluating the scale length of the sheath.

From (19), we have

S0

7T
ax = E - 2V{(a)

Now, a runs from -2 at one edge of the sheath to 0 at the other

(see Fig. 7). Therefore the total thickness of the sheath is given

0 da
ﬂ ®
TAY G 0/" / 5" v(a)
-2

by

%
It is only the pressure perpendicular to the field that is of interest

here; the particles may have arbitrary velocities along the field with-
out affecting our calculations.



-69~-

We shall make a crude cstimate of this integral, by approximating
the curve V(a) (Fig. 7b) by a straight line; this should be accurate
to within factors of %x/2 and the like. The result is

J‘i:"Wl)
LX ~ 2<—~§———
VB

~ NG; for small B

~o2 for large B .

In dimensional variables, then, the thickness of the layer is

ggi_ [ JHE@ -1 >
2 \ \/—B‘

2Ne
or
A = RJE(@)
NB
where R is the free-stream gyroradius.

For small B, A ™ 2R, which is the result one expects. But
in a high-§ plasma (magnetic pressure weak compared to kinetic
pressure) the thickness is reduced by a factor JE_,

In the solar wind, B is small, and the sheath is therefore
a couple of gyroradii thick, so < 200 km, say. As was discussed
earlier, R is to be interpreted as some combination of the electron
and proton gyroradii. Precisely what combination it is cannot be
decided without solving the problem with unequal masses, and this

presents some mathematical complications.
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Generalizations

Our calculations were made for a plasma in which all the
particles have the same energy. If this is not so, then the right
hand side of (18) and (16), which is essentially the current (13),
is a superposition of functions of the same form, but with different
values of U. This means that the curves of Figure 7 are somewhat
smeared out, but their general shape remains the same — except that
the potential goes asymptotically to zero at large distances, instead
of vanishing at some finite point. So the general character of the
solution is unchanged. The change in B across the shéath will be
given by the pressure balance equation, as before.

It is trivial to extend the theory to cases where the
plasma is moving parallel to the wall: working in the rest frame of
the plasma reduces this to the case we have considered above. It is
far from trivial, however, to study the problem when the plasma is
moving towards the wall.

We have mentioned that the jump condition across the sheath
is what is expected from considerations of pressure balance. This
statement may be made more precise by computing the pressure tensor

for our distribution function. One then finds that

i
4

P x const., (3-22)

where Pij is the pressure tensor, and x is normal to the surface.

This result might have been expected on general grounds; having
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reached it from first principles in the case where the magnetic
field is parallel to the surface, we may reasonably expect it to be
true when the field is inclined to the surface. However, we must
then restrict ourselves to the case where the particles have no
velocity along the field.

The normal component of E will be constant in the sheath,
since div E = 0; the parallel component will increase by ~N8=x Pxx o

The field will therefore look like Figure 8 . Now,

Pxx = p <VxV£> 5

where p is the mass density and < > denotes the average. We suppose
that the particles in the undisturbed region are gyrating with speed U
around field lines at angle 6 to the surface. In a coordinate system

aligned with the field lines, the tensor <vivj> is

[}
No
o

Rotating through 6 back to the xyz axes, we find

2 2
=1
PXx 5 p U cos 0
in the undisturbed region; and PXX = 0 at the surface of the wall; so
B, B 2 2
il £ p U” cose . (3-23)

Il
[

This agrees with (21) when 6 (note that p = 2mN, counting both
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Figure 8. Magnetic field at the surface, with

inclined geometry.,
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+ and - particles). When 6 = /2 (field normal to the wall), it gives
BO =B, which is also correct. For in this case the particles are
gyrating in planes parallel to the wall, and therefore never intersect
it; the wall has no effect on the plasma at all., (23) is thus a
reasonable jump condition for the sheath.

When 6 = 0 or n/2, the field lines are straight; the motion
along the field is trivial, and does not affect our theory. But when
the field is inclined to the surface, as in Figure 8, motion along the
field carries a particle into regions of varying B, and complicates
the dynamics considerably. For 0 < 6 < n/2, then, (23) is true only
when the particles have no motion along Eo To treat a more realistic

case will take further detailed study. For the rest of this chapter,

however, we shall need only the case @ = 0,

3.3 Application to Two-dimensional Flow

In §3.2 we have derived the boundary condition which must
be applied to the plasma equations at the surface of a solid body. We
shall now apply it to the flow around planets. This is a mathematically
complicated problem; it seems reasonable to approach it by considering
a two-dimensional model — this strategy produces useful results for the
flow around the earth's magnetosphere. We propose to consider the
flow of plasma around an infinite circular cylinder, with the magnetic
field in the plasma parallel to the axis of the cylinder. The cylinder
is supposed to have finite and uniform conductivity ¢ . One attraction
of this model is that the magnetic and kinetic pressures are both

isotropic (in the xy plane perpendicular to the axis).
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There are three regions in space to be considered: the
interior of the cylinder, the tramsition sheath, and the plasma out-
side. We shall treat the plasma as a perfectly conducting fluid.
This is a satisfactory approximation everywhere except close to the

body, and there we have an exact kinetic — theory treatment of the

boundary 1ayer,* All that we need to know about the sheath is: it
is thin; the change in B2/8ﬂ across it equals the dynamical pressure;
and the tangential electric field is continuous across the sheath,
since curl E is finite (zero in a steady state).

Theorem 1

In a steady state, the flow is always tangential to the

cylinder.

For, since curl E = 0 in a steady state,

cﬁ’E e« ds =0

integrated around any closed contour., We shall choose a contour
surrounding the cylinder, and lying entirely in the hydrodynamical

region, outside the boundary layer. Then cE = v x B, and we have

~

ﬁ‘ vxB eeds =0,

~ ~ Lo

or

?fvl Bds =0, (3-24)

¥
Just as, if the Reynolds number is large, inviscid fluid dynamics

is a good approximation to the Navier-Stokes equations everywhere
except in the boundary layer, where the full equations must be solved.
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where Vi is the component of z perpendicular to the contour.
If we apply this to a circle, surrounding the cylinder,

just on the outside edge of the sheath, then v, is the velocity

perpendicular to the cylinder at its surface. Since plasma is never

ejected from the cylinder, v, is never mnegative. 1In such a two-

L
dimensional problem with straight B lines, the field can never be
reversed; so B is always positive. The integrand in (24) is thus
never negative, and therefore (24) demands that it vanish; since B is
always positive, this proves the theorem.

We shall now use it to prove the following:

Theorem IT

There is no steady solution to the problem of two-dimensional

compressible ideal (g = ») MHD flow around a (finitely) conducting

cylinder, with magnetic field uniform at infinity, and parallel to

the axis of the cylinder, and using the boundary condition of §3.2.

To deal with a flow problem such as this, we must consider
the fields both inside the body and in the hydrodynamic region, and
couple them by the appropriate boundary conditions., We shall first
consider the interior fields. We assume, for simplicity, that the
cylinder is of uniform conductivity; similar but more complicated
results may be expected for other cases. The solution of the external
flow problem will provide us with values of the electromagnetic field
at the surface of the cylinder. We must then solve the time — independent
Maxwell equations in its interior, with those values as boundary values.

This raises the question:; given the fields on a closed surface, does
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there always exist a solution in the interior? The answer is no, in
both the two-dimensional and the three~dimensional cases. Roughly
speaking, Maxwell's equations, without Ohm's law, suffice to determine
the interior fields from the boundary values. Ohm's law is then an
extra constraint, which can be satisfield only if the boundary values
fulfill certain conditions. These are worked out in Appendix B, for

both two-dimensional and three-dimensional cases; the result that we

need here is

B®) = b+ 5 § v Ey(e) log | 2 sin (5] (3-25)
47t
where B(68), EG(Q) are the magnetic and tangential electric fields at
the surface, and b is an arbitrary constant. This condition on the
surface is the only constraint that the interior Maxwell equations
impose upon the external fields.

Now, according to Theorem I, v, = 0 at the outer edge of the

1
transition sheath. Therefore E“ = (0 there. Since E“ is continuous
across the sheath,En = 0 on the surface of the cylinder. Now (25)

says that B is constant on the surface, = b. Therefore at the inner
edge, r = 1 of the hydrodynamical region, the jump condition (21)

gives
—_

B(1,0) = _/b>-87p(1,0) , (3-26)

where p(r,9) is the pressure. This, together with v, = 0, is the

1

boundary condition to be applied at r = 1 to the fluid equations,

which we shall now discuss.
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The standard hydromagnetic equations are too well-known to

need much discussion. For our steady two-dimensional problem, they

are
B2
Py Yy +Y (P +gz) = 0, (3-27)
Velo v) =0, (3-28)
cE+4+vxB=0, VxE= 0, (3-29)
vxB= g, VB =0, (3-30)

where p is the mass density.

The electromagnetic equations (29) combine to give
vV x (vx E) = 0,
and this, in conjunction with the continuity equation (28), yields

(on) log (B/p) = 0.

Hence B/p is constant along streamlines, and since conditions are
uniform far upstream, the constant has the same value on all stream-
lines. Therefore

- B -
B = 3 (3-31)

is a constant everywhere., We can use this relation to eliminate B
from Euler's equation (27).

Now we must choose an equation of state for the plasma. For
two-dimensional problems, with no gradients along field lines, it may

be proved (see, e.g., Longmire, 1963), within the limitations of the
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adiabatic approximation to the particle orbits (which is applicable

to our problem outside the boundary layer), that

Y
P = Kp

with y = 2 (this is the Chew-Goldberger-Low result).

We can now eliminate both p and B from Euler's equation (27),

which becomes

2
2 K -1

3YV myx(@Ey +y Tl +g—,;pJ =0.

Dotting withy, we have
2 2
) v, ky vyl _ B =

N Y 2 + vy-1 P + gn P 0,
or

v2 Ky y-1 EE

7 Ty1f TP T A (3-33)

where A is constant along streamlines, and therefore constant every-
where, since conditionms are uniform far upstream. Taking y = 2, the

Bernoulli equation (33) simplifies to

2
v +np = 2A, (3-34)
where
B
M= 2k + 5 (3-35)

Using (34), the continuity equation (28) becomes

2-[(2A~v2)z} = 0. (3-36)
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Now, 1 has dropped out of this equation, which shows no trace of a
magnetic field; it is precisely the equation governing aerodynamic
flow (with y = 2) past a cylinder. It alone is not sufficient to
determine the flow, however, since we have not yet extracted all the
information from Euler's equation. If we curl equation (27), we
deduce that the vorticity, curl v, is comnstant along streamlines.
This too is uninfluenced by the magnetic field. Thus the velocity
is governed by the aerodynamic equatiomns, together with the conditiom
v, = 0 at r = 1; and hence the solution for v is the same as in pure
aerodynamics (with y = 2).

We now ask whether the boundary condition (26) is compatible

with the fluid equations. Inserting (31) and (23) into (26), we have

"2 2
B p (1,0) =Jb - 81 kp©

or

@ + 87) p°(1,8) = b>

and b is a constant. So the equation implies thaf p, and therefore
(by (34)) v, is independent of 6 at r = 1. But this is absurd. We
know that aerodynamic flow past a blunt body does not have constant
speed at the surface; in fact, there is a stagnation point at which
the speed vanishes, but it is clearly not everywhere zero., Thus the
boundary condition (26) is incompatible with the flow equations, and
there is no solution.

Discussion

The relevance of this result to the solar wind is simply
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that two-dimensional models, with perpendicular magnetic field,

are inadequate to describe its interaction with conducting bodies.
This is in contrast with its interaction with the magnetosphere,
where there is no additional constraint corresponding to that imposed
by Maxwell's equations inside the solid body. Our problem will have
to be attacked in three dimensions, which is much harder. It will
have been noticed that Theorem I relies on the peculiar topology of
the two-dimensional space; we need not expect any corresponding
result in three dimensions, and plasma may well flow into the surface
of the moon.

It might perhaps seem strange that the problem we have
considered has no solution — it looks at first sight like a perfectly
reasonable well-posed boundary-value problem, of a kind that is
familiar to the physicist. Notice, however, that existence and
uniqueness theorems have only been proved for simple equations, such
as those of electrodynamics. In fluid mechanics, and, a fortiori, in
magnetofluid mechanics, well-posed problems are much rarer than might
be supposed by comparison with other branches of physics. An example,
obvious to the naked eye, of an ill-posed problem is provided by the
flow of an ideal fluid past a perfectly conducting body, with a
magnetic field at some non-zero angle to its flow direction. If the
body is a sphere, say, then there is a steady solution, in which the
field lines slide around the sphere, and thus move past it without
entering it. But consider the corresponding two-dimensional problem,

flow past a cylinder which is perpendicular to both the velocity and
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the magnetic field. Since the perfectly conducting cylinder excludes
field, there is no way in which the magnetic field lines can get past
it; and therefore, as time goes on, more and more field accumulates on
the upstream side, and a steady state is never reached. So the time-
independent equations for this problem have no solution, and it is
clearly ill-posed. In our problem, the physical reason for the non-
existence of a steady state is not so clear, and needs further study
teo bring it to light.

How can we recognize a well-posed problem? If it is possible
in principle to build a piece of apparatus that fulfills the conditions
of a problem, then the problem has a solution (though it may not be
unique). Now, one can easily construct a machine (such as a wind
tunnel) that satisfies the boundary conditiomns; but I know of no way
of building it that ensures that it runs in a steady state. There-
fore one cannot be sure that all time-independent problems have solu-
tions. But one can always build a model apparatus satisfying the
boundary conditions, start it off in some state, and watch what
happens; an initial-value problem is well-posed. If, therefore, one
wished to investigate further the problem considered in this section,
one might examine an initial-value problem, and see why the system
fails to reach an equilibrium state. But that is irrelevant to this

dissertation.
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IV. INDUCED FIELDS IN THE MOON

4,1 Introduction

In §3.3 we saw that the fields inside a conducting body
immersed in a streaming plasma play an important part in determining
the flow. We shall now study these interior fields in more detail.
We shall develop a theory applicable to a body in direct contact with
the interplanetary field — that is to say, a body with no appreciable
atmosphere, and no intrinsic field generated in its interior. Our
results, like those of Chapter 3, will be mainly applicable to the
moon , and Io.

We consider, then, a conducting body immersed in a magnet-
ized plasma. Inside a perfect conductor the field lines are frozen.
But in an imperfect conductor, the field diffuses through the medium,
with a time constant depending on its size and its conductivity. The
diffusion speed in the moon is probably rather slower than the speed
at which flux is convected past it by the solar wind, and if this is
so, a strong field will build up on the front of the moon (Jokipii,
1965). These matters have been discussed qualifatively by Gold (1966),
taking account of the rotation of the moon. This chapter presents a
mathematical analysis of the fields induced inside a rotating moon

by extermal sources.

4.2 Theory Without Rotation

In order to test our theoretical machinery on a simple pro-

blem, whose behavior is qualitatively understood beforehand, we shall
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first consider the diffusion of a uniform field into a stationary
sphere. It is not quite as straightforward as one might think.

We suppose the sphere has uniform conductivity o. Since
everything moves much slower than light, we may neglect displacement

currents. Then Maxwell's equations, with Ohm's law, give

< .
vx (7xB) = vx (FCEp)=-2L g,
or
5
Vx (WxB)+A" B = 0, (4-1)
and
v+B = 0, (4-2)
where
A= (4-3)
C

Curl B and div B are both finite; therefore B is continuous
at the surface of the sphere,

Equation (1) is a diffusion equatiom; its solution needs
initial and boundary conditions. We wish to simulate the effect of
a sudden change in the interplanetary field. At t = 0, then, the
field vanishes inside our sphere, but is positive outside. The simplest
way to formulate this 1s to impose the boundary condition that B have a
given constant value at the surface; combined with the initial condition
that B = 0 in the interior, this gives a well-posed problem for the

diffusion equation. We expect the constant field to gradually soak

into the sphere.
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This strategy is entirely successful for the scalar diffusion
equation, for heat flow, for example. But it comes to grief in
electromagnetism. The initial-and-boundary-value problem that we
have outlined does indeed give a unique solution of (l). Hence there
is no freedom left to adjust the solution to satisfy the additional
constraint div g = 0, There is no hope of satisfying both equations
simultaneously, and the problem has no solutiom.

There is, in fact, no way that we can set up an experimental
model in which the surface magnetic field is under our control. The
best we can do is to cover the surface of the sphere with little
solenoids, and this determines only the perpendicular component of
B. It is thus quite reasonable that it is impossible to prescribe
the full surface field, and that our problem is overdetermined. We
must find another model.

In the real world, the sphere is surrounded by plasma
carrying the magnetic field. This is too difficult for us to handle
mathematically. We shall surround our sphere with a vacuum, in which
Maxwell's equations are easily solved, and produce the magnetic field
by surrounding the system with a very large solenoid. At t = 0, we
switch on the current in the solenoid. If the current is established
in a time ¢ much shorter than the diffusion time of the sphere, then

no field penetrates the sphere in that short time;'c at £t = 0 + g,

therefore, the field is zero inside the sphere, uniform at infinity,

*
Over very short times, the sphere behaves like a superconductor.
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and determined ecverywhere else by Maxwell's equations. If we add the
boundary condition B ~ const. at infinity, for all time (which can

be physically achieved by keeping constant current flowing through

the solenoid), then we should be able to solve the coupled equations
(1) and (2), with those boundary conditions, and the initial conditions
given at t = 0 + €,

Since div B = 0, (1) may be rewritten

VZ B - xz B = 0., (4~4)
We shall solve this by separating variables. For scalar
equations, with spherical geometry, one does this by expanding the
independent variable in a series of spherical harmonics. For vector
equations, there is a corresponding set of vector spherical harmonics
EJﬂm (6,9); their definition and properties are outlined in Appendix

C. They satisfy

2 (D)
Vim T Tz lum (4-3)

We may therefore usefully write
E (r)eJ(P)t) = Z U‘sz (r)t) XJ,@IH (G}CP) bl (4‘6)

where the u o (r,t) are unknown functions. The Y form a complete

orthogonal set, so the expansion (6) is always possible.
It should be noticed that although vector harmonics are

discussed in many books, most of those discussions concern radiation

problems. If B has harmonic time dependence elwt, then it is possible
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to construct a set of divergenceless combinations of Zng and

radial functions. The solution of the wave equation can then be
built up from these combinations, and no further attention need be
paid to the condition div B = 0. But for the diffusion equation this
method does not work; we must first solve (3), and then apply the
constraint (2) to the solution.

Inserting the representation (6) into the equation (4), we

get a set of differential equations for the radial functions:

2,2 _ ALY 2 _
[ar 23 R at}lm (r,t) = 0,

where N is constant inside the sphere and zero outside, We solve
this by introducing the Laplace transform

[ee)

-st
Viom (r,s) = f U (r,t) e dt .
Then
2 2 L(L+L) |2 _ .
ar *t T ar r2 N é] VIom (r;s) =0, r < 1 (4-7)
2 .2 £(2+1) _
3+ 23 % ] Vi (58) =0, r>1. (4-8)

1]

v is continuous at ¥ = 1, the surface of the sphere. For large r,

B~z = N4x KlOO' So for large r, u ~Juw if (Jfm) = (100), and

J4m

100 (,8) ~nN47n/s, and the other Vim ™ 0.

Hence (100) is the only multipole with non-vanishing boundary conditions;

~ O otherwise. Therefore v

and the equation is homogenous, so all the rest might be expected to
vanish. However, the condition div B = 0 couples /£ to £ + 2, as we

shall see, and therefore the solution will contain (120) as well as
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(100) multipoles.

The solutions of (7) and (8) that we need are

sinh (Ows
a(s) 31nhr rNJS) L r<1,

v (s) =
v o NArn - b(s) , T > 1;
o] S iy
2 = a(s) j2 (irNJé) , ¥ <1,
v, = Eﬁ%l , > 1;
r

where a, b, &, B, are unknown, and j, is the spherical Bessel function.
Continuity at r = 1 gives us two relations between a, b, &, 8. The
other two that we need come from the divergence condition.

Now, B = uo(r,t) leO + u, (r,t) 1120 .

lad

Therefore,

/U

. 3
=u
T

2
10 /3 Mt Y9 = 95

2) 10

using the formulae given in Appendix C. This equation connects £ = 2
with £ = 0, as advertised. Applied to r < 0 and r > 0, it provides
the two further relations between a,b,d,B, needed to fully determine

the solution. A routine calculation gives

v = , T > 1,

Vi sinh (rNJ;)

o ~  rs sinh OW's) sr <1,
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— i (ws)
W2 2
v, = i - for r > 1,
by Vs sinh (W s)
s i Giens)
v = AN 2T 2 for r <1 .

Js sinh(NJs)

These transforms are easily inverted, using the method of Appendix D,

giving finally

pEest
It

N>
+

o]
N 2.2 2
3 :zJ lz e e/x (2 - 37 cos ) , r>1,

Pa =]
It
QN>

=z 2 2 2]
) 2 O -n 1t/
Ll + 5 - sin(nnr)e |
1

A A - n -nzﬂzt/)\z
- (z -3 r cos 9) ZE:(—) j2 (nnr)e , r <1,
1

We see that as t —~ o the magnetic field relaxes to a uniform
kz 2.2, 2
distribution, with a characteristic time 5 s Or AR /7" in units such
T
that the radius of the sphere is R (instead of 1). This is clearly the
correct solution. We can now confidently attack the problem of the

rotating sphere.

4,3 Rotating Sphere in Uniform Field

In a moving medium, Ohm's law reads G[E + (1/C)X X %} = j .

<

7 g [
Hence, YxVYxB-= %— VYx j= é—% L- B+ Y x (yx B)] ,
c
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or

v3-2 G -vx (vxB) = 0, (4-9)

where v = ) x r is the velocity of the rotating sphere at the point r,
(s ~ A ~~

To simplify this equation, we shall transform to coordinates

rotating with the sphere. Then

OB OB
M, —iX - ° .
St 7 5¢ T (B AaxEB;

the last term takes account of the reshuffling of the components of B

under the rotation. In the new variables, then, (9) becomes

B -2 Ei- (V) B+ xB -{(B" ) v - (VY Bﬂ
~ ~ N o~ ~ ~ ~ ~ ~" o~
and
B v= BVQ@E) =2xB;
SO
Py -ali-
B - g = 0 (4~10)

in the rotating coordinates.

Notice that we have simply made a change of independent
variable in (9) to reduce it to (10); it is not a Lorentz transfor-
mation. I do not claim that the B of equation (10) is the true
magnetic field observed in the rotating frame (though this can be
shown to be true, if v << ¢), nor that the Maxwell equations used to
derive (1) are valid in the rotating frame (which is false); I claim
only that the solution of (10) is a function which, when transformed

back into fixed axes, gives correctly the magnetic field in those axes.
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We have reduced our problem to the solution of the same

equations as in §4.2, and we will solve them by the same method. The

boundary conditions, however, are more complicated. We choose the

z axis to be the rotation axis, and apply at infinity a uniform field

at an angle @ to it. Thus in the space-fixed axes,

8L @)

A N
z2 cos U+ x sin &
~ ~

-

= 1 1
VAfI‘cos ay 00 +-J" sin (Ylol 10_1)] .

~

In the rotating frame the boundary conditions are time-dependent,
At time t, the rotating axes are at an angle wt to the fixed axes.
Since a rotation about the z axis, through angle ¢, multiplies YJﬂm

im . .
by e ¢, we have, in the rotating frame,

~ e 1 . iwt _miet
4 “[COS *Xi00 T, T X0 T e Xlo-l)] ’

for large r. The calculation is now exactly parallel to that of

§4.2; we shall give only the results:

= : . +iot
Uigg = 41 cos Q, ulOil= N2 sin O e 1w , T > 1,
r n 2 2
N 41t a - fat 8}
Uigg = é——fgi—— Lr + % Z: i;l sin nfr e Te/N ], r<l1

d 27 sin & [81nh (W Hiw ®) +iwt

7 Y1041 T T sinh (OWZxin )

2.2 2
" zﬁz()n n81nnﬂ§ e-nﬁt/xj} , ¥ <1,
n 0 Eigh
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_N2rncos & 0O z 1 e-nzﬂ'zt/%.z r> 1
Y120 ° 3 2 2 ’
T B n
N e 22,2
u _ ;\/ N osin & AN AA® J2<l>\' i) e;‘:ia)t _626 n” e /n > 1
- >
121 r3 sinh (W *iw) nznziiakz
22 2
N \n -n e/
Ujsg © N8 cos @ % (-) i, (nxr) e , r<l
Jo (ivdw £iw) i _\n_2_ 2 - zﬁz 2
Ujpyg = FANT sin oW Ho 2 e‘lwt+z %)'{I}'szz(nﬂr)e e/
- sinh (. N tiw) n 1T Himh

. r<1.,

These are complicated formulae. However, they contain a

dimensionless parameter, RNJ@, where R is the radius of the sphere
(=1 in the units used for the calculation). For very small or very
large values of this parameter, the equations simplify. If it is very
small, then the diffusion time is much shorter than the rotation
period, and the rotation has only a small effect on the magnetic field,
To a first approximation, the externally applied field simply diffuses
into the sphere, and the problem reduces to that of $4.2. But if the
rotation is much faster than the diffusion, then more interesting
phenomena appear.

Rww ~ 40Jg, where ¢ is the conductivity in mho/cm. We have,
of course, no direct information about the conductivity of the moon.
However, studies of geomagnetic variations have told us something
about the conductivity of the earth's mantle, and it seems reasonable

to suppose that the moon is made of similar materials. At a depth of
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600 km. in the earth, o> 10“12 mho/cm.; at 1000 km, it is probably
well over lO-l mho/ecm. (Runcorn 1956). Thus R\ Jh)>>-l is a reason=~
aﬁle approximation, and we shall use it from now on (see also the
remarks at the end of the chapter.)

The Steady State

Let us first consider the axial component of the field:
the terms in cos @ (X is the angle between the applied field and the
rotation axis)., These terms are independent of w, and are indeed
identical to the solution of §4.2 for any value of the parameter
Rhﬁ; o The rotation has no effect on the axial component of a uni-
form applied field. This is a reasomnable result, considering the
complete axial symmetry of such a field.

We now consider the effect of an applied field in the
equatorial plane: the sin & terms. Transforming to the space-fixed
axes (¢ = ¢ - wt) we find that the steady-state interior field (after
the transients have died away) is

e (1-)/x® . AL 2 AN
o7 -Z cos 6 sin @ cos ¥ - 3& sin" 0 cosy + ¢ sin ?],

(4-11)

where

and p is the radial unit vector in cylindrical coordinates,
(e d



Figure 9, Magnetic field on the equatorial plane of a

rapidly spinning sphere, Radial scale exaggerated.,
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We have assumed & << 1, and 8/r << 1. (11) is therefore
not valid for very small r - which is just as well, since it diverges
at r = 0.

We see from (11) that the field decreases rapidly with
depth, and is negligible everywhere except in a layer of thickness %
at the surface. This was predicted by Gold (1966); however, we shall
see that the interior is free of toroidal fields only if the applied
field is uniform. In order to understand this result, imagine a little
arrow, representing the magnetic field vector, embedded in the sphere,
As the sphere rotates, the field vector rotates with it (almost frozen —
in fields), and also diffuses inwards slowly, thus traveling along a
spiral (see Figure 9), By the time the sphere has rotated through 1800,
this field vector is pointing in the opposite direction to the external
field, which now begins to soak in above it. In this way a spiral
structure of fields in alternating directions is built up near the
surface, As it diffuses downwards, the reversed layeré diffuse into
each other, and finally cancel out almost completely. The spiral
structure is clear in the formula (11): the field is constant in
direction (in cylindrical coordinates) along curves of constant 7,
which are Archimedes spirals, very tightly wound.
Transients

For an axial applied field, the solution is, as we saw,
unaffected by the rotation. For a field applied in the equatorial
plane (¥ = n/2), the solution for the external field on the equatorial

plane, for & < 1, is
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22,2
B (cos P - 12 62 sin (gp=wt) za e e/n J
L
2.2 ,2
+ P [}sin o+ 682 cos (p~wt) 23 e e/x } .

This is valid unless t is so small that the high transients with
n > 1/8 are important. We see that the transients are smaller than
the main field by a factor 820

This result is true when the applied field is uniform., We
have seen that in this case it is excluded from the interior of a
rapidly rotating sphere, which thus behaves somewhat like a super-
conductor. Since our initial condition was precisely the static field
configuration around a superconductor, it is not surprising that only

a small adjustment is needed for the exterior field to settle down to

a steady state.

4.4 Non~uniform Applied Fields

The solar wind is continuously convecting magnetic flux
towards the moon., If the moon is highly conducting, a strong field
will be built up on the upstream side, compared with the fields at
other parts of the lunar surface. This ought to be incorporated into
our model, and we shall therefore modify the boundary conditions.

If the applied field is axial, then, as we have seen, the
problem is unaffected by the peculiarities of vectors, and the solution
resembles heat conduction: the interior field will be uniform and equal
to the average surface field, except in a thin layer at the surface, in

which it adjusts to the non-uniform boundary condition.
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We shall consider in detail the more interesting case of
applied fields in the equatorial plane. Instead of demanding that
the field be constant at large distances, we shall say that the
distant field is (roughly) in the x~-direction, but is greater for
large positive y than for large megative y. This is easily done by
adding to the constant field a new field, whose lines of force are
circles, centered on the origin, reinforcing the original field at one
side, and partly canceling it out at the other, zllo=bf257§%> siné 9
is a suitable multipole to represent this field: it gives maximum
distortion at the equator, and none at the poles, which is roughly
what we expect for the fields around the moon. The corresponding

solution of the vacuum Maxwell equations is r XllO' Our boundary

condition, in the space-fixed axes, is thus

+ iy

B o~ Wax (101 "Y10-1’ 2 2110

for large r, where d is a (real) parameter, measuring the amount of
distortion — the difference between the upstream and downstream
surface fields,

The solution of the new problem is the same as that of
§4.3, except for the addition of terms involving YllO These are
easily calculated, since div [£(x) 31101 = 0 for any f£(r), and there

is therefore no need to explicitly impose the divergence condition.

The resulting addition to the magnetic field is, for r < 1,

oo

2 2.
- N
d ("J; . z{: (rz ) eznt/%. ‘F sind 9,
1

%n J(Z)
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where z, is the nth zero of jl(z)° The external field is constant
in time.

Now, for t = 0 and r < 1, the internal field must vanish.
But as time goes on, an azimuthal field soaks into the sphere, and
when the transients have died away the sphere is filled with an
azimuthal field, of strength proportional to radius, and matching at
the surface the imposed external field. Upon this is.superimposed

the spiral structure in the thin surface layer discussed in §4.3.

4.5 Discussion

When the applied field is non-uniform, and in the equatorial
plane, we may understand the steady-state field structure on the
basis of the discussion of Figure 9., The intertwining layers of
alternating fields now have unequal strengths: since there is greater
applied field on the upstream side, the layer starting from that side
is stronger than the other. Hence when the layers diffuse into each
other, they do not cancel out completely; a toroidal field is left
throughout the sphere, proportional (and equal at the surface) to the
difference between the applied fields at the front and back of the
sphere,

The general picture to which we have been led may be summed
up as follows — glways under the assumption that Rwo >> 1. If the
interplanetary field has been constant for a long time (longer than
the diffusion time), then its mean North-South component completely
penetrates the moon. A toroidal field, proportional to the degree of

magnetic compression at the upstream side, also fills the interior of
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the moon; and in a thin skin near the surface is a spiral structure
like that of Figure 9.

When the interplanetary field changes, the new values of
the axial and azimuthal fields will gradually sink into the moon,

If the diffusion time is longer than the time between changes in the
interplanetary field, then (as Gold (1966) remarks) there will be
remnants of older North-South fields in the interior; indeed, there
will be a sequence of layers of alternating North and South fields,
displaying the history of the fluctuating North component of the
interplanetary field. Superimposed upon this will be a similar shell
structure of toroidal fields. The conductivity, and therefore, the
diffusion time, almost certainly increases considerably with depth;
these fossil magnetic fields will therefore be frozen into the central
part of the moon, even if they have diffused away in the equatorial
regions,

It seems rather likely that the conductivity in the outer
layers of the moon is low (see the values quoted in §4.3; also Tozer
and Wilson, 1967), and the diffusion time there is short, compared
to the rotation period, This suggests (as Tozer and Wilson remark)
that one might usefully consider a two-layer model of the moon, in
which the outer layer is approximated by an insulator. The theory of
this chapter applies to such a model, if the radius of the sphere is
taken to mean the radius of the inmer, conducting part; the induced
fields will appear in the core, just as if it were not surrounded by

an insulating shell.
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APPENDIX A

THE EVAPORATION MODEL

The simplest possible approach to thg solar wind is to
treat it as particles that have boiled off the surface of the sun, and
travel outwards uninfluenced by collisions, magnetic fields, or any
other collective effects. Early work on this model predicted very low
velocities for the wind. But recently the idea has been revived, and
it has been shown that the energy dependence of the Coulomb collision
cross-section makes it easier for fast”particles to escape; Brandt
and Cassinelli (1966) have been able to construct models in reasonable
agreement with the observed gross average properties of the wind.

Now, in §2.3 we show that the spiral magnetic field plays an
important role in the particle dynamics; conservation of the magnetic
moment of the particles leads to considerable cooling of the trans-
verse temperature. We shall show here that completely ignoring the
magnetic field leads to results more accurate than might at first be
expected.

As in §2.3 we shall suppose that the wind is collision-
dominated within a distance D from the sun, and collisionless beyond,
and that the particles travel in straight lines outwards from r = D
(solar gravity is negligible for D » .1 A.U.). We assume isotropy of
the velocity distribution at r = D, and complete spherical symmetry
of the problen.

Consider the velocity distribution at a point P, at a

distance r from the center of the sun. All the velocities are clearly
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Figure 10

Geometry of the Evaporation Model

confined within a cone, of half-angle sinnl(r/D) (see Fig. 10).
Hence the distribution is anisotropic; the sprgad in transverse
velocity is much reduced at large distances, while the radial velocity
distribution is not much affected. This reminds us of the results,
in §2.3, for particles in a radial magnetic field. 1In this case, too,
the velocity vectors all lie within a cone pointing away from the sun,
but for a different reason: conservation of the magnetic moment
implies that the pitch angle of a particle decreases as it travels
outwards; the pitch angles of all particles arriving at r have been
reduced by this mechanism, and are all less than some limiting value.
And this angle is precisely sin-l(r/D).

This is curious. Let us examine the velocity distribution
more closely. Consider the motion of a particle emitted from D at an
angle © to the normal, with no magnetic field. If its velocity is at

an angle & to the radial direction at heliocentric distance r, then
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(see Fig. 10)

D sin @ . (A-1)

r

sin @ =

Now, both the definition of ¢ and its r-depcendence according to (1)

are the same as for the pitch angle of a particle moving in an in-
verse-square magnetic field. So if the orbits are described by

giving v(r) and «a(r), and ignoring the third component, then they are
the same in the two cases. It follows that if the models are
spherically symmetric (so that the third component is irrelevant), then
their distribution functions are identical. Nature conspires to cancel
out the error committed by ignoring the magnetic field.

One might perhaps try to understand this result along the
following lines. The dynamics of particles in a radial magnetic field
is independent of the absolute strength of the field: if B is every-
where halved, the distribution function is unchanged. Therefore it
stays the same in the limit B - 0, Q.E.D. However, it is not that
simple. Our calculation of the orbits was based on the invariance
of the magnetic moment. This is valid only if the gyroradius is much
less than the scale length of the field. As B — 0, the gyroradius — o,
while the scale length stays constant: therefore the adiabatic invari-
ance, and with it the above argument, breaks down. The equivalence of

the two models seems to be just a delightful coincidence.
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APPENDIX B

SURFACE CONDITIONS ON CONDUCTING BODIES

Two Dimensions

Consider a uniformly conducting body in a steady electro-
magnetic field. Maxwell's equations in the interior of the body
impose certain constraints on the boundary values of the fields, which
it is the purpose of this appendix to discover.

We consider first a two-dimensional problem, with B = B(x,y)é,
and a cylindrical conductor. 1In a steady state, curl curl B = (4na/c) X

curl E = 0. So

PB=0 . (B-1)
And div E = div J/o = - 5/o = 0 in a steady state; and curl E = 0 of

course; so E may be derived from a scalar potential ¥ satisfying
Laplace's equation

y=0 . (B-2)

The general solution of (8-1) that is regular at the origin is
o
B(r,8) = :5: Bnrtnl S0 (B-3)
-

where Bn are arbitrary constants.
Let bn be the Fourier coefficients of the boundary value
B(1,8) of B. A knowledge of all bn is equivalent to knowledge of

B(1,8). Putting ¥ = 1 in (3) gives ﬁn = bn’ and so
1 16
B(r,6) = jg: bnr.nl i . (B-4)

- oo
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Similarly, the general solution of (B-2) is

v, = )y el ot

where y, are arbitrary constants, related to the boundary values of
the electric field. Now, at the surface of a conductor, Ei will not
in general be continuous, since there may be charges on the surface.
Therefore the boundary value of Ei is unrelated to the interior fields.

But EH must be continuous, and so Er calculated from (B-4) must agree

l

with the boundary value e(8) = Ee(l,e). Thus

:ijnin eni@ = e(6),

or

in = g
vo= e

where e are the Fourier components of e(6). So

<, e .
¥(x,0) = - i :24 - In| ni6 , (B-5)

n
1

where:§: means a sum omitting the n = 0 term; it is a constant, and

may therefore be dropped from the potential. We have now expressed

the fields in terms of their boundary values. We now demand that they

satisfy

VxB =205,

— “~s C -~
or

138 dno By

r o8 ¢ or (B-6)
and

dr ¢ (r) 30 (B-7)

Inserting the representations (B-4) and (B-5) into these conditions
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gives us
T'inb rlnl—l cnio =§—l“—7 Z' - ii_‘l\_e r\nl"l CniQ .
- n c n n >

this is necessary and sufficient for both (B-6) and (B-7). So

Lo
nb =~ ¢e¢hn)y —e
n (n) “C n’

where e¢(n) is the step function {n]/n; or

4
1nl bn = - 20 e, . (B-8)

This is the condition imposed on the boundary values by Maxwell's

equations in the interior. An alternative form of (B-8) is
'y .
(o) = b, - 210 :E: 1 nid
0 c ‘nl n

where bO is an arbitrary constant, the n = 0 term which is not

constrained by the condition (B-8). Now,

_ 1 -nic
e = ox .ﬁ‘da e(q) e 5
so
. , .
b(6) = b. - iél‘étda e (@) :E: L ni(6-9)
0 C lnl
But
[e0] oo}
vy . ) . e . [
:g: 1 nio _ :ZJ 1 (en1® + e n1®) _ i:[dw ZE: (enl@ e n1®).
|n n
1
These are geometric series and easily summed, giving us, after some
juggling
= -2 log | 2 sin (@/Z)i .
Hence

b(8) = bo + &gi j6 da e () log]Z sin (gég)l H (B~-9)
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a i1s the radius of the cylinder, which we took to be 1, but which

should bec restored to keep the dimensions right.

Three Dimensions

We shall now do a similar calculation with spherical

geometry. As before,we have

y
VB

il
o

(B~-10)

It
O

(B-11)

The general solution of (B-10) which is regular at the origin is

o = > vy Y 0,0, (B-12)
where ng are constants, and Yﬁm are the spherical harmonics.
Wzm are the coefficients of the spherical harmonic gxpansion of the
potential at the surface, knowledge of which is equivalent to know-
ledge of the tangential electric field at the surface.

The analog of (B-12) for the vector field B is

B(r,0,) = D b !

2o %m T Yy @

(B3-13)

?

where the vector spherical harmonics are the vector analogs

¥Jﬁm

of Y o their definition and properties are outlined in Appendix C.

T

Again, are the coefficients in the multipole expansion of the

bJﬂm
surface magnetic field; knowing all szm is equivalent to knowing
B(1,6,9) (note that for each ¢, m, there are three values of J, cor-
responding to the three components of the vector).

We now impose Maxwell's equations upon the representations

(B-12), (B-13), beginning with div B = 0. Using the formulae of

Appendix C we have



v (" =0
ol
ety 4o

Therefore B must not contain any ({£,f + 1,m) multipoles:

=0 . B-14
bz,z+l,m ( )

This is the first constraint imposed by Maxwell's equations. We

also have

YV x B = (4n/c)j = (4na/c)E
or

Vx B = (4no/c) Vv (B-15)
Now

y; _ 2-1
V(r YZm) Ne(2g + 1) v 7Y ’

~f,L~-1,m

Vx (r'Y ) = iJ(,z + 1)(22 + 1) ol

Y
o~ ~ Exﬂm Mﬂ, ,Z"l)m,
2-1 _
vV x (r Xﬁ}z—l,m) = O y

(see Edmonds (1957) p.84). Applying these formulae to (B-15), we

have

. . 4-1 4ng [ £-1
+ 27 + = == +1
lemW D@+ D Y, tm ™ ¢ Z‘Um AL TR
Since the YJﬂm are orthogonal, we deduce
; . hmo
ini+1b, = ﬁwzm (B-16)

(this is dimensionally correct). (B-14) and (B-16) are the constraints
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imposed by Maxwell's equations upon the steady-state ficlds at the

surface of a uniform sphere. If the magnetic field is given, them it
must satisfy the constraint (B-14); and it completely determines the
electric potential. If the potential is given, it provides half the

information needed to construct B.
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APPENDIX C
THE VECTOR SPHERICAL HARMONICS

This mathematical apparatus was introduced into physics
for the sake of atomic and nuclear theory, and thercfore most accounts
of it are written in the language of quantum mechanics (an exception
is Part I of Fano and Racah, 1959) . However, the theory itself (the
theory of spherical tensors) is pure mathematics, and is as useful
for classical fields as for quantum wave functions (e.g., Mathews,
1962). Since there are full accounts of the subject in books such
as Edmonds (1957), I will give here only the definitions of the vector
harmonics, and those properties that are needed fqr our calculations.
The conventional spherical harmonics are defined by

1/2 .
_ 24 + 1 (g - m). m imeo
ng@:@) = [( . ) TSR P/Z(cos 0) e ,

m . . . .
where Pz(x) is the familiar associated Legendre function as

defined in Magnus and Oberhettinger, and Condon and Shortley. This
PE differs by a factor (-)m from that of Edmonds, but in all other
respects (including the definition of Yzm)’ our conventions agree
with both Edmonds and Condon and Shortley.

The spherical harmonics satisfy

7 m

Yﬂ,-m=Y£m ) ,

ngm(Q) Yg.m,(a) ¢ =%, 8 . where d0 = sin 0 dodep .

. A N oA , .
In place of the orthonormal triad X, y, z, we introduce the spherical

basis vectors
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o) A ) /.f - A A
%% 1= d X1,

™ denoting a unit vector, as usual. They satisfy

~N AN A s N

X X = 9 X = (- X

~s ~t st’ ~s ) Y-S
A ~ A e

X X = 1 ¢

~s T Lt “stu lu

We define the vector spherical harmonics by
1
~N

XJﬂm B jg: Clem - 85 1, 85 Jym) Y,@,m-s %
s==~1

where the C(El,ml;ﬁz,mz;J,m) are a set of numerical coefficients (the
Clebsch-Gordan coefficients), the values of which can be found in
Edmonds, and most books on non-elementary quantum mechanics.

The vector harmonics satisfy

V; AL+ 1 v

ngm h 2 ~J /m '
r
This is true for Xsz simply because Yﬂm satisfies the same equation;

it does not depend upon any properties of the Clebsch-Gordan coefficients.

The virtue of these coefficients lies in the fact that the XJﬁm

constructed using them have simple transformation properties under ro-

tation. Indeed, a coordinate rotation about the z axis, through o,

simply multiplies Y by o1

T m ; and there are corresponding (though not

quite so simple) results for rotation about other axes. The unitarity
properties of the Clebsch-Gordan coefficients lead to orthonormality of

the vector harmonics:

fdn Lrm@® " Yy (@) =

g
~J fm LﬁE'SJJ'Smm'
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We shall nced to know the divergence of the harmonics:

- P '_] 1/2 P
. - ] - —-——————-—"'/' + 1 i_ --——-——--""/’ + 2
Velu(x) Xg,,@—kl,m’ Lzﬂ + 1 J [dr T d° Yim

1<

fu(o) Y l=0 ’

| _Jl/zrﬁg__z-l_ "y
2, 0-1,m 270 + 1, dr r m

More information will be found in Edmonds.

—
!

v-lu(r) ¥

The first few harmonics are:

ad
|
3l
tri>
-

T SN
— (x tiy) ,

I ERI
110 T TEx M OE s

_ /3 . i A N
Y1217 167 E’m e z - cosb (x+ IZ)J
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APPENDIX D
LAPLACE INVERSTON

To illustrate the methods used to invert the Laplace transforms

of sections 4.2 and 4.3, we shall derive the inverse of

N S j2(irx J;)

§ - sinh (M J;)
It is c+ico
1 St g hafs o (i Ns)
2xi s - iw 51nh(k Ns) 7

where ¢ > Real part of any singularity of the integrand.

Now, the integrand appears to have a branch point. But j2 is
an even function of its argument, and so is A J;/sinh(k J;). Therefore,
when s — -s, the integrand is unchanged. In spite of appearances,
therefore, it is a single-valued analytic function of s, with poles at
s = iw, and s = - nzﬂz/xz (the zeros of sinh As). As s -0,

A Ns/sinh(n Ns) — 1, so the integrand is analytic there.
The eSt factor ensures that we can complete the contour of

integration with a large semicircle on the left, without changing the

integral; it then becomes the sum of the residues:

2

2
n n + 1N

A J1>j2<irk JZQ i Z;: - )n 2n nzjz(nﬂr) _n2ﬂ2t/x2
+ e
sinh(\ JZ» N
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APPENDIX E

NUMERICAL METHODS

We give here some details of the numerical procedure used to

solve the equation of Bhatnagar, Gross, and Krook. Abbreviating it thus:

[=
.

|2

= Glr,f(r)], (E-1)

[a9

r
we may write the second-order predictor-corrector method (see, e.g.,

Hamming, 1962) as

i

£ + B) = £(x) + h clr,f(x)],

G (r+h) =¢lr+h, £(+h],

1]

f(r + h) = £(r) +-§—1 (G(r) + G (r + )},

asterisks denoting predictor values. This method gave sufficient
accuracy (a few ¢) with only ten steps between .l and 1 A.U., so more
elaborate methods were not needed.

f is a function of velocity as well as distance, and it is here
that some care is needed. We use the characteristic coordinates U’Vl
introduced in sectionm 2.3. The range of U extends to w. We must
decide what finite range is to be included in the computation, and how
many points to use to represent the function within that range. The
form of f is Gaussian, with a peak near the bulk velocity. So the box,
by which I mean the finite piece of velocity space that is included in
the calculation, must be centered on the peak, and have dimensions of a
few times the thermal speed. Now, in order to compute G = V(fB -0, f
must be integrated over velocity; thus the criterion for choosing the

step size, and the size of the box, is that the numerical integration
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give accurate results. Experiment showed that a good size for the box
was 6 (in the U dircction) x 8 thermal spceds, with 16 x 32 mesh points.
Now, if there are no collisions, then £ as a function of the
characteristic coordinates U’VL is independent of r. Therefore, if the
size of the box is properly adjusted (as described above) at r = D, then
obviously it remains so for all r. TLTooked at in ordinary velocity

variables u,v the shape of the distribution function changes from

_J_’
spherical at r = D to cigar-shaped at the earth; and the shape of the
box, by virtue of our peculiar coordinates, changes to match it.
However, collisions cause a radical change in the distribution - it
becomes much less elongated in one direction and much more so in the
other, and no longer fits properly inside its box. Therefore, in the
course of the calculation we keep a check on the parallel and per-
pendicular temperatures, and when the function starts to crowd towards
one end of the box, or slop over the sides, we change the size of the
box to fit it.

At each r, we compute the density n and mean velocity u of
the gas, by integrating the distribution function. According to the
continuity equation, nflr2 is independent of r. At each step in r, this
product was calculated, as a check on the accuracy (it usually varied
by less than 3%); then the density was adjusted to satisfy the con-
tinuity equation exactly (experience showed that the density was in
greater need of correction than the velocity).

A complete solution (for one value of V) took about a

minute on the IBM 7094.
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A program was devised to compute and plot the level curves

of the distribution function. TFigure 5 is an example of the results.

I should also explain why we cannot conveniently compute
with a thermal velocity much greater than 1 percent of the bulk

velocity. We are using characteristic coordinates, U, V defined

.L’

as the values of u, v, with which a particle would reach r = D if it

L

were to travel there from its present position along a collisionless

trajectory. But if v, is large enough, there may be no collisionless

trajectory linking the particle to r = D (because orbits with large

v, will mirror). So for sufficiently large T, the coordinate=-system

1

breaks down. Of course, if it were really necessary, one could use

1

different coordinates,and work with higher temperatures.
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