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ABSTRACT

Beyond about .1 A.U, from the sun, fluid mechanics is not
a good approximation for the solar wind, because the collision
frequency is low., Analysis of the particle dynamics shows that if
there are no collisions beyond .1 A.U., then at the earth T“/Tl= 35;
this is much greater than is observed. We study the effects of inter=-
actions by means of the Boltzmann equation. Solving it with Krook's
collision term, we find that the temperature anisotropy observed by
the Vela satellite requires each particle to make an average of 2 or
3 collisions between ,1 and 1 A.U., The temperature averaged over
direction roughly follows an adiabatic law, with y = 3/2; y tends to
increase with distance. The theory predicts an excess of high-velocity
particles, as is observed by Vela, even when the collision frequency
is independent of velocity; but to produce an effect as strong as that
observed requires a fairly strong velocity-dependence of the collision
frequency.

We proceed to study the interaction of the wind with the moon,
treated as a solid body, with neither magnetic field nor atmosphere,
absorbing and neutralizing all incident particles. We construct an
exact theory of the boundary layer between such a body and a plasma
with a magnetic field parallel to the surface, valid when the plasma
has no velocity towards the surface. The thickness of the layer is
about two gyroradii, and the magnetic field rises across it according

to the equation of pressure balance.
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We then consider two-dimensional models of the complete
wind-planet interaction, and show that in any steady two-dimensional
flow, the plasma velocity must be tangential to the body. Then, using
the model of the sheath constructed above, we show that there can be
no steady flow at all around a finitely conducting cylinder.

Finally, we consider the magnetic fields induced by the
interplanetary field inside the moon, taking account of its rotation,
If the applied field is uniform, then in the steady state there is a
constant axial field inside the sphere; near the surface there is a
complex toroidal field, dying away to zero in the interior if the
sphere is spinning rapidly. If the external field is non-uniform,
there is a residual toroidal field throughout the sphere. If the
diffusion time is longer than the time between reversals of the inter-
planetary field, then the moon will contain concentric shells of

toroidal and axial fields, independently diffusing inwards.
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I. INTRODUCTION

The sun appears to the naked eye — and, under normal
conditions, to the telescope — as a disc, with a very sharp boundary.
We are led to think of it as a sphere of gas, of definite radius
(> 7.105 km), sitting in a vacuum, and for many purposes (including
a large part of astrophysics) this is perfectly satisfactory. How-
ever, evidence of various kinds suggests that it is not the whole
truth. Eclipse photographs show that the sun is surrounded by an
extensive and tenuous outer atmosphere, the corona; its size and
shape vary with the solar cycle, and it shows no definite termination.
Indeed, observations from spacecraft have shown that interplanetary
space is filled with gas, at least as far out as the orbit of Mars,
and probably much farther. The interplanetary gas is essentially
fully ionized, mostly hydrogen but partly helium; its density fluctuates,
but is of the order of 5 ions/cc at the earth; and it is blowing away
from the sun (which is why it is called the solar wind) with a velocity
around 300-500 km/sec. (except when there is a storm, when it may be
much faster).

One immediately wonders why there is a solar wind at all.

The answer seems to be that it is a continuous thermal expansion of

the corona, caused by energy fed into it from below. The gas expands
so rapidly that it overcomes solar gravity and escapes, coasting out-
wards among the planets until it is stopped by the interstellar plasma.

Reasonable quantitative models of the wind have been constructed



along these lines.

The next question one might ask is what happens when the
wind meets the planets. On Earth it is blamed for many things, ranging
from the weather (more precisely, the temperature of the upper atmos-
phere — see MacDonald, 1963), through magnetic storms, to earthquakes.
It is clearly a complicated matter. The complication is caused
largely by the geomagnetic field; the internal structure of the magneto-
sphere is rather complicated, and a great deal of the detailed mechanism
of the radiation belts, aurora, and so on, is still obscure. But the
broad outlines of the interaction of the wind and the earth are now
fairly4clear. The solar wind flows around the magnetosphere much as in
the familiar aerodynamical problem of supersonic flow around a blunt
body.

We shall here examine some of the problems that arise when
the wind interacts with unmagnetized planets and satellites. At first
sight this looks simpler than the magnetosphere. One knows the shape
of the body around which the wind flows,without having to solve a free-
boundary problem. However, if the body is conducting, then there is
an electromagnetic interaction combined with the fluid dynamics, and
this causes difficulty. In the absence of observational information,
it is hard even to guess at the general flow pattern, and there are
many problems to be solved before we reach a general understanding of

the interaction. This dissertation examines three of these problems.

*
Sytinskiy, 1966. The reader should note that this theory is not
universally accepted.
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First, we must understand the solar wind itself. It is
usually treated by fluid mechanics. However, spacecraft observations
have shown that the pressure tensor in the wind is not at all what
one expects for a gas in local thermodynamic equilibrium, and there-
fore will not obey an equation of state of the usual kind. In
particular, it is anisotropic: the pressure parallel to the field
is considerably greater than that perpendicular. This may be expected
to. affect the pattern of flow around planets; perhaps we can include
it in a fluid-mechanical theory by deriving some sort of equation of
state for an anisotropic gas. This is discussed in Chapter 2; we find
that if the collision frequency is so low that the pressure is anisotropic,
then it is usually impossible to describe the plasma by differential
equations of the fluid-mechanics type. We therefore use the methods
of kinetic theory to calculate the properties of the solar wind at the
earth, and relate the observed anisotropy to the collision frequency
in interplanetary space.

Although in general fluid mechanics is wrong when the mean
free path is long, the theory of Chew, Goldberger, and Lowqo%ustifies
(as is discussed in Chapter 2) the use of MHD to study the flow of the
wind around planets, at least in a semi-quantitative way. In Chapter
3 we use this method on a model of the flow around the moon. We first
construct a kinetic theory of the boundary layer at the surface of the
moon; this provides a boundary condition which we then apply to the

problem of the general flow pattern.
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We find that the flow is strongly influenced by the
electromagnetic field inside the moon. In Chapter 4 we study this
field in more detail, and determine the magnetic field induced in-

side the rotating moon by the interplanetary field.

Conventions
Gaussian units are used throughout.
~ means is of the order of

means is approximately equal to

I

oc means is proportional to
denotes a unit vector

(5) means equation (5) of the current chapter .



II. FREE EXPANSION OF THE SOLAR WIND

2.1 Introduction

In this chapter we study the large-scale flow of the wind,
and try to find a suitable theoretical description for it. The
classic model (Parker 1958a, 1963a) uses the equations of fluid
mechanics; it has no difficulty in reproducing the observed gross
average behavior of the wind. However, fluid mechanics is only an
approximation to the real world, and we must ask whether the approxi-
mation is valid for the solar wind.

In order to find the conditions for the validity of fluid
mechanics, we sketch in §2.2 the derivation of fluid equations from
the basic kinetic theory. We find that beyond about .1 A.U. from the
sun, it is a poor approximatiom., This was realized by Parker from the
beginning; it does not much affect the validity of his results, since
the equations break down only in a region where the solutions are more
or less constant, and insensitive to the details of the equations.
However, we shall see that going beyond the fluid approximation gives
us useful information about the velocity distribution in the gas,
which cannot be deduced from fluid mechanics,

As a first step in this direction, §2.3 studies the flow
beyond .1 A.U., neglecting collisions. This assumption leads to the
conclusion that the temperature parallel to the magnetic field near
the earth is greater than the perpendicular temperature; this agrees

with the observations, but the predicted anisotropy is far more than
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is observed. This suggests that there are relaxation mechanisms at
work in the wind (as is expected on other grounds)., Accordingly, in
§2 .4 we examine the Boltzmann equation including interactions, and
formulate a well-posed problem for it. 1In §2.5 we present the results
of numerical solutions of the Boltzmann equation, with Krook's form
of the collision term., Some general remarks about the validity of our
calculation are made in §2.6.

Before embarking on this program, we must state precisely
what we mean by the parallel and perpendicular temperatures.

The Definition of Temperature

The thermodynamic definition of temperature applies only to
systems in equilibrium. The word temperature has not been used very
much for non~equilibrium systems, and we are therefore at liberty to
define it in any (reasonable) way that we please, as long as it agrees
with the usual definition for systems in equilibrium. Now, for a
dilute gas in equilibrium, with pressure p, temperature T,and number
density n, the temperature is related to the pressure by p = nkT. For
a non-equilibrium gas, it is conventional to define a pressure tensor
pij (x) = P'<cicj>; p is the mass density, and < Cicj > is the average
(over the velocity distribution) of the product of peculiar velocities
G, defined as the difference between the velocity of a particle at the
point x and the mean velocity of the whole gas at that point (see
Chapman and Cowling 1952). By analogy with the equilibrium case, we
shall define the temperature in general to be a tensor proportional

to the pressure tensor:



1 m _
Ti; = Tk Pij K S €57 e

The three diagonal components Tii are directly proportional to the
spread in velocity (squared) along the three axes.) For a plasma in

a strong magnetic field, in the z direction, say, TXX and Tyy involve
the gyratory velocities, and are therefore equal, since those velocities
are symmetrical about the z axiso* In coordinates aligned with the

field, the temperature tensor takes the form

For a gas in equilibrium, T

L= Tl\ = T, where T is the usual definition

of temperature.

We should remark that a different definition of temperature
is sometimes used in the analysis of observational data: one constructs
a theoretical veloéity distribution function by multiplying Gaussian
distributions for each velocity component, with different 'temperatures'
along the three axes; one then adjusts Ti to fit the theoretical distri~-

bution tc the observed data. The three Ti are then called the tempera-

*

This may be false if there is some peculiar correlation between the
phases of the gyrations of all the particles; but even then it is true
if T is averaged over a gyroperiod.
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tures along the three axes., Clearly, if the true distribution is in
fact a product of Maxwellians, then the two definitions agree; and they
are not likely to differ widely unless the distribution is very

peculiar.

2.2 Kinetic Theory and Fluid Mechanics

The only equations for the solar wind in which we may have
unbounded confidence are Newton's laws, written down for each particle
individually. This is, of course, an impossibly complicated set of
equations, and gives far too detailed a description of the state of the
gas, As is usual in problems of this kind, we shall introduce the
one-particle distribution function f : f(x,v,t) is the number of
particles in the element d3xd3v of phase space, at time t. It does
not give a complete description of the state of the gas, since it says
nothing about the correlations between the particles; but it contains
more than enough information for our present purposes.

If there are no interactions between the particles, then we
do not expect correlations to be important. In this case we can indeed
find an equation which determines the one-particle distribution f
completely, and without mention of the many-particle joint distributions.
Newton's laws imply that f is constant along particle trajectories in
phase space (this is Liouville's theorem — see, for example,
Goldstein's 'Classical Mechanics'). Hence, if F is the external force
on the system,

= O © (2‘1)

O/'O/
Hh

=

+
PR
O/IO/
Pl L

+
8=

&
<
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Given f at any time, this equation is easily solved to give f at all
future times. It has the form of a conservation law in (i,x) space,
which is mot quite the same as the (f’ R) phase space, But since the
volume elements are equal (up to a factor of m), phase space may be
replaced by (§,X) space for our purposes.

If the particles interact, then the external force field E
is not the total force on the particles, and (1) is no longer true.

However, one may derive from Newton's laws the equation

O/lO/
Hh

rta
+
=N

O/IO/
cF |Fh
+
<

E ° —a—— = C y (2"2)

where C is determined by a set of (N 1) equations involving the

(N - 1) higher joint distribution functions.* It is, of course,
impracticable to find C by solving those equations — that would be
equivalent to solving Newton's equations for the N-particle system.
The usual procedure is to ignore the higher equations, and find an
approximation to C by independent physical arguments,

If there are no interactions, then f satisfies (1); comparing
(1) and (2), we see that C represents the effects of collisions upon
the evolution of the gas. We shall refer to (2), for any choice of

the collision term G, as the Boltzmann equation (the equation that

Boltzmann himself used was based upon a particular approximation for

*
This is the Bogoliubov-Born-Green-Kirkwood-Yvon system of equations;
a discussion and references will be found in Shkarofsky et al., 1966.
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C; it may be referred to as Boltzmann's Boltzmann equation when there
is danger of confusion).

Let us lay aside for the present the problem of calculating
C, and consider how one can use (2) for solving problems in gas dy-
namics. It is still very hard to solve a boundary-value problem for
this equation, with any reasonably realistic form of the collision
term; and it would still give us much more information than we need.
We are interested mainly in the density, velocity, and temperature of
the gas, rather than the finer details of the distribution. This
gives the clue to the usual method of handling fluid-mechanical
problems: the density, velocity, and temperature are respectively
the zeroth, first, and second velocity moments of f (the nth moment
means the nth rank tensor J d3v f(x,v) vivjo.ovp)° We can try to
work directly with the moments of £ instead of with f itself, and hope
to be able to determine the first few moments without having to dis-
cuss the higher ones.

We may derive a set of equations involving only the moments
of f, by taking moments of the Boltzmann equation — that is, by
multiplying it by various powers of v and then integrating. By itself,
of course, this process does not make the problem any easier. It
gives an infinite set of coupled equations; the nth determines the
(n+l)th moment in terms of the nth and higher moments. However, in
this form the problem suggests an approximation-method: if we can
somehow truncate this sequence of equations, we will be left with a

finite set of differential equations in x space (the velocity variables
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have been eliminated by the device of taking moments).

The first member of the set of moment eéuations relates the
density to the velocity; it is the continuity equation. The second
is the momentum equation: it relates the velocity to the divergence
of the pressure. The pressure is determined in terms of the higher
moments by the third equation, and so on, If there were an independent
way of determining the pressure without using the third and higher
moments, then the continuity and momentum equations would be a closed
system, from which the velocity and density fields could be determined.
This is precisely the method of fluid dynamics, and it is the method
which most successful treatments of the solar wind have used.

We must now discuss when and how the pressure can be de-
termined without use of the higher moments of the distribution function.
The usual arguments (see Chapman and Cowling) apply to gases in which
there are many collisions — the mean free path and collision time are
much smaller than the characteristic length and time of the problem,
This means that each little piece of gas is locally in thermodynamic
equilibrium at all times, since the time it takes for a gas to come
to equilibrium is of the order of a collision time. A gas in equi-
librium satisfies an equation of state: the pressure is determined
in terms of the density and temperature; and the temperature is de-
termined by emnergy conservation. Thus the equation of state, combined
with the continuity, energy, and momentum equations, completely
determines the problem; the Navier~Stokes equations are valid for

collision-dominated gases.
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This situation may be described in slightly different words.
In general, the distribution function may be an arbitrary function of
velocity; if it is to be described by its moments, it takes an infi-
nite number of moments to specify £(v). But if there are so many
collisions that the gas is locally in statistical equilibrium, then
the distribution function must be Maxwellian: it loses most of its
freedom, and may be described completely by only a few parameters.

It is thus very reasonable that the gas can be discussed completely in
terms of the first few moments of f.

Now let us consider what happens when the collision frequency
is not high. Then the velocity distribution is not constrained to be
Maxwellian, but can be an arbitrary function; it therefore seems un-
likely that we can truncate the sequence of moment equatiomns, and
describe the gas by its first few moments only. When the mean free
path is long, the molecules can travel more or less freely through
the gas. At any point there are always some particles which have just
arrived from distant parts; their properties depend upon the velocity
distribution at those distant places. Therefore there can be no local
equation of state, and nothing resembling the Navier-Stokes equations:
the state of the gas at any point depends not only on the state at
neighboring points, but alsc on the state at distant points, and sc a
description in terms of differential equations in x-space is impossible.
For rarefied gases, it seems that one must abandon the moment equations,

and start afresh from the Boltzmann equation.
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There is one well-known exception to this rule, and that is
a plasma in a strong magnetic field. If the gyroradius is smaller
than the scale length of the problem then the motion of the particles
across the field is severely restricted. Therefore the argument given
above for the nonexistence of a local equation of state breaks down,
Chew, Goldberger, and Low (1956)* have in fact shown that under certain
conditions a collisionless plasma in a strong magnetic field satisfies
a set of equations of the fluid type. However, the field restricts
the motion only across the field; particles can move freely along it.
Therefore we cannot expect fluid behavior in cases where the motion
is mainly along the field., The CGL equations apply only when the
motion along the field is in some sense trivial — as, for example,
in two-dimensional problems. To study the interaction of the wind
with the earth, it is reasonable to consider a model in which the field
is perpendicular to the velocity of the wind (in fact, the angle is
about 450). We then expect the wind to behave like a fluid, as long
as the gyroradius is smaller than the scale length; and this is con-
firmed by observations (see Ch. 3). On the other hand, the general
large-scale expansion of the solar wind is essentially a flow along
the field, and so the CGL theory does not apply.

Now that we have surveyed briefly the derivation of fluid
equations from the fundamental kinetic theory, we can ask if and when

such equations are valid for the solar wind. If we take the observed

%
See also Bernstein and Trehan, 1960, and Parker, 1957.
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properties of the wind near the earth, and compute the effective mean
free path for Coulomb collisions (using the formula in Spitzer's book,
for example), we find that it is longer than 1 A.U. (ﬂ1.5.108 km.) .
So collisions are completely negligible near the earth. There is
little direct information on conditions closer to the sun. But there
are fluid models (Parker 1963a) which predict the temperature, velocity,
and density of the wind down to a few solar radii; we can take those
predictions, compute the collision mean free path, and ask if it is
short, as it must be to make the fluid model consistent. The answer
is that below about 20 solar radii, the mean free path is short
compared to the scale length, and fluid mechanics is correct; but
beyond this distance the collision rate drops off very sharply, and
Coulomb collisions are negligible,

Thus we are not entitled to assume the validity of fluid
mechanics beyond about .1 A.U. from the sun. We must return to the

Boltzmann equation,
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2.3 Collisionless Dynamics

In this section we shall study the dynamics of particles
moving through the interplanetary field without any collisions, either
with particles or with waves — we assume the magnetic field is smooth,
Even though interactions may be important in the solar wind, we must
understand the free-particle dynamics before going on to more realistic
calculations. We shall suppose that the wind is collision-dominated
up to .1 A,U., and collisionless beyond. Since the Coulomb collision
frequency in fact drops off quite sharply with distance, this is a
good approximation. To display the phenomena in their simplest form
we shall first briefly consider a model which ignores the rotation of
the sun and the curvature of the interplanetary field, and then take
these effects into account.*

We consider, then, the motion of particles in a radial mag-
netic field. Since the gyroradii are much smaller than the scale length
of the field (whicﬁ is of the order of the distance from the sun), the
adiabatic approximation to the orbits is valid. The particles move out
along field lines, conserving both their energy and their magnetic
moment (defined as WL/B’ where B is the magnetic field, and wi = %mvi
is the gyration energy). As they move outwards through the inverse-

square field, W decreases in proportion to B, and therefore Ti’ which

i

4

<The simplest model of all ignores both collisions and magnetic fields,
Even though neglect of the field seems unjustifiable, this model has
some interesting properties; it is discussed in Appendix A.
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is proportional to wi, decreases also.
Now, the energy is conserved, and so the parallel velocity

2 2
VH must increase when v, decreases, In fact, v“ + v, = const, (solar

gravity is negligible at these distances), so d(vﬁ) + d(vi) = 0, But

vﬁ >->>v2

1 in the solar wind; therefore the fractional change in vﬁ is

small even when v, decreases by a large factor. So v“ is approximately

1

constant as the plasma moves outwards. Thus T“ will be roughly constant,

while T, decreases in proportion to the magnetic field. If the dy-

L

namics weretruly collisionless beyond .1 A.U., and the sun did not

rotate, then near the earth the plasma would be extremely ‘anisotropic,

with T“ /T_L 2 100.

Motion in a Spiral Field

We shall now allow the sun to rotate. 1Its magnetic field
becomes twisted into the familiar spiral pattern, but the general
character of the windflow is not much affected. One might not expect
much change in the particle motions, except for a rotation of the plane
of gyration as the particle follows the curved B lines, and perhaps
some adiabatic drifts. However, it turns out that the anisotropy is
reduced by a factor of three, compared with the radial field case. To
show this, we must devote‘several pages to a detailed study of the
particle dynamics in the spiral field.

The magnetic field pattern is well known (Parker 1963b): on
the sun's equatorial plane, the angle ¥ between the field and the
radial direction is given by

tan ¢ = (2-3)

=Rl
-
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where r is the distance from the sun, and R is a constant, = 1 A.U.;
R = V/Q, where V is the bulk velocity of the solar wind and ( is the
solar rotation frequency. The radial component Br oc 1/r2 (this
follows from div B = 0, assuming spherical symmetry near the equa-

torial plane); and so the field strength is

BO sec V¥
B = —5— (2-4)
T

where BO is a constant.

The theory will be restricted to the solar equatorial plane,
since that is where all the observations are being made (we ignore the
small angle between the ecliptic and equatorial planes). We shall
suppose that the magnetic field points outwards from the sun; the
final results, of course, will not depend upon its sign.

Now, (3) is true if the bulk velocity of the wind is constant
and radial. Since the magnetic energy density in the solar wind is much
less than the kinetic energy density, one does not expect the radial
flow to be much affected by the field; and observations show that the
windflow is indeed close to radial. The particles are therefore not
moving strictly along the spiral field lines, but drifting across them
as well. There must therefore be an electric field, perpendicular to
B and to the drift speed, and hence in the North-South direction. Now,
it is observed that the thermal speeds in the solar wind are much less
than the bulk speed; so practically all the particles are traveling
with radial velocity close to V. We resolve the guiding-center velocity

into components: wu along the field, and v,_ perpendicular to it and in

D
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Figure 1.

Particle Dynamics in the Solar Wind
(a) The fixed frame

{(b) The rotating frame
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the ecliptic plane (there is a third component, out of the ecliptic,
but it is much smaller). For a particle whose guiding center is

traveling radially with speed V,

v, = V sin V¥ (2-5)

(see Fig. la). This is an E x B drift; therefore V sin ¥ = cE/B and

E = %E sin ¥ . (2-6)

This is the Northwards electric field needed to produce the azimuthal

drift. Using (3), it may be rewritten

Q
E = ZE B cos § .

This is a very reasonable result: it means that in a frame traveling
with the local solar rotation speed rfl, there is no electric field;
in other words, the interplanetary magnetic field lines rotate with
*
the sun.
We shall now consider in detail the motion of particles in
the field defined by (3) and (6): we are interested in the small

deviations from perfectly radial flow with speed V. The invariance of

. . . . 2
the magnetic moment implies that the gyration energy %mv

1 is proportional

to B (note that v is defined not as the component of the particle

1

&

w

Notice that this is not an extra assumption, but an immediate conse-
quence of supposing that the flow is essentially collisionless and
radial.
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velocity perpendicular to the field, but as the velocity of gyration,
which is the difference between that component and the electric drift
speed). Because there is an electric field, the kinetic energy is not
conserved, and the calculation of the parallel velocity u is not so
easy.,

The magnetic field is curved, and the electric field is
space-dependent; therefore, the particles will drift slowly Northwards,
and thus gain or lose energy from the electric field, depending on

the sign; the energy equation is

m , 2 2 _
v [2 (u” + vl)] = eEVz .

d_
r dr

The drifts are all small, and make a negligible contribution to the
kinetic energy. E is known; and v, may be calculated by adding: (a)
the gradient % drift, (b) the curvature drift, and (c) the mixed drift.
This last is a drift which occurs when there are space-dependent
magnetic and electric fields both present (Northrop 1961); it may be
thought of as an acceleration drift caused by the change in the E X E
drift speed. All these drifts can be computed, and the resulting equa-
tion of motion solved. It is a lot of hard work.

However, the same result may be reached with very much less
labor by working in a coordinate system rotating with the sun, for
there is no electric field in that frame. Since it is not an inertial
frame, it is not immediately obvious what the equations of electro-

magnetism are. We must start from the known equation of motion in the
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inertial frame:

du
m g% = e(E +u x B/c) .

Now we make a coordinate transformation to the rotating axes, writing
u=v+ U, where U, =) x r 1is the rotation speed. Then we have

m-— + I = e(E+ Uy X B/c + v x B/c) ,

where the inertial force E (centrifugal + Coriolis) comes from trans=
forming the time-derivative in the usual way. But E + QR x B/c is
the familiar Lorentz transformation formula. Thus we have shown that
if the electromagnetic fields are transformed by the prescription
E'=E + Uy x B/c, B' =B, and if Up = r{l << ¢, then the equation of
motion in rotating axes is given correctly by the Lorentz force law,
plus centrifugal and Coriolis forces.

The Coriolis force is ZmX X g, which closely resembles the
magnetic force, In fact, if we define S = Zmc Q/e, then the equation
of motion is

dv
fad
dt

m =§vx(§+g)+m92£ . (2-7)

The Coriolis force behaves exactly like an additional magnetic field

E, pointing North. It is a small perturbation on B, since § << w = eB/mc;
indeed, Q/w ™ 10-5. So in this frame, to a firét approximation, the
guiding centers move along magnetic field lines, with a small Northwards
velocity corresponding to the North component of the "total field"

B 4+ C. There are other drifts produced by the curvature and gradient
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of the field, but these are all smaller than the parallel velocity by
at least a factor (/w) ™ 10-5. They make a negligible contribution
to the kinetic energy; and since there is no electric field in this
frame, they do not contribute anything to the total energy.

The last term of (7) is the centrifugal force FC. Its
component perpendicular to the magnetic field produces a small
perpendicular drift, again negligible; but its component along the
field accelerates the particles. If v is the guiding-center velocity

in the co-rotating frame, then the radial velocity is
v, =V cos Y (2-8)

(see Fig. 1b). So the work per second performed on the particle by

. . 2 . .
the centrifugal force is vr.mQ r, and the energy equation is

d m 2 2 d m 2
w2 VTV =vogr g () = ovg
hence
V2 = erz + A - V2
1
. . . 2 2 2,
where A is a constant of integration. But v. < ( r in the solar

L

wind; erz is the term dominating the r-dependence of v, and we may

write, to a good approximation,

v2 = erz + A. ‘ (2-9)

We must now relate v to u, the parallel velocity in the inertial frame.
Clearly, the radial velocity v, is the same in the two frames; there-

fore we find
v =u+r siny
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(9) now becomes

(u + fr sin W)Z = erz + A, (2-10)

This gives u as a function of r.

To complete the solution of the dynamics, we determine v,

from the invariance of the magnetic moment, which implies
\/"‘“"“‘"‘—“*"‘!
vioc B =< Sj; - = l_iigilﬂi . (2-11)

Now, Tl<< < vi >; therefore
e
2
T o B« E——%—B— . (2-12)
T

Thus the perpendicular temperature falls off rapidly with distance,
though not quite so rapidly as if the field were strictly radial and
inverse-square.

The parallel temperature is no longer comnstant, as it was
when the field was radial. Consider u as a function of r and the
initial value U = u(r = D), where r = D = .1 A.U. is the starting-

point of our calculation. From (10),

u = N/52r2 + A ~ Qr sin v,

where

(U + oD sin )2 -02p2

>
i

.

If two particles differ in velocity by dU at r = D, then at r they

differ in velocity by du = (du/oU)- dU. Now,
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du _ Jdu dA _ U+ uD sin ¥
AU dA du J zrz + A

To a first approximation, U = V, the mean solar windspeed. So

-k
u [1 + e - p? ]
= -, R
ou R+ D[Jéz + R2)2
using (3).
Now, TH°< (Bu)zoc (BU/BU)Z; so
-1
2 2
D r =D
T, = T [1 + } (2-13)
“ H [R - rD/\/R2 + r2] g
where the constant Tﬁ = T“ (r = D). In our case, D= .1 A.U., so

R = r = 10D at the earth, so TH»*:%TT{ Thus the parallel temperature

decreases as well as the perpendicular temperature, but rather more
slowly (in the collisionless theory).

If we suppose that the distribution is isotropic at .1 A.U.,
and the flow is collisionless from there onwards, then near the earth
TH/T' = 35. This is extremely anisotropic; on theoretical grounds it

i .

seems unlikely that it will really occur. There are observations of
the velocity distribution in the solar wind from the Pioneer 6 and
Vela 3 satellites (Scarf et al., 1967, Hundhausen et al., 1967). They
find that the distribution is indeed anisotropic, and the anisotropy
is aligned with the magnetic field, but the temperature ratio is only

1.5 - 4. Therefore the collisionless model is inadequate; there
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must be relaxation processes at work, trying to drive the distri-
bution towards an isotropic Maxwellian. The rest of this chapter
studies these effects.

The Liouville Equation

In preparation for the next section, we shall now derive
an equation for the distribution function in the collisionless theorxy;
it is an expression of Liouville's Theorem. This theorem (which
follows from Newton's laws alone) says that the distribution function
is constant along particle trajectories in phase space, The mathe~-
matical expression of this statement is equation (1); when, as in our

case, the only forces are electromagnetic, (1) reads

(2-14)

O/IO/
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(Even though we are using noncanonical coordinates (E’ X) in phase
space, the conservation equation (l4) is true.) It looks fairly
complicated. Therefore we shall transform to a new set of coordinates
in phase space, such that the Liouville equation simplifies.

If x and v are given, then the acceleration is determined by
Newton's laws, and thus the direction of motion of the particles in
phase space is determined. Through each phase point, then, there
passes a unique orbit curve: phase space is completely filled with a
family of these trajectories (they are the characteristic curves of the

partial differential equation (1l4)). Instead of describing a point by

its coordinates (x,v), we shall describe it by saying (a) which
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trajectory it is on, and (b) how far along that trajectory it is,
measured from some standard reference point. If s is the coordinate

along the trajectory (it may or may not be linear with distance), then

the Liouville equation is simply

This is trivially solved: £ = A, where A is an arbitrary function of
the five variables which label the trajectories. This is all excessive-
ly simple, of course, but we are developing the machinery because it
will be useful when we come to consider the effect of collisions, in
§2 4.

We must now describe our new coordinate system in detail.,
First we shall make a transformation in velocity space which removes

the electric drift. We define

1
vl = v -v
~ ~ ~D 7

where v is the E x B drift speed. This transformation leaves the
volume element in phase space invariant; therefore if f(x,v')d3xd3v'
3

is the number of particles in the box d3 x d”v', then f is constant
along orbits, as before. We shall use cylindrical coordinates in
velocity space, with V; directed along the local magnetic field; then

vé = u, the parallel velocity, and v, is the r-component in the

1

x*
These are the characteristic coordinates commonly used for solving
hyperbolic partial differential equations.
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cylindrical coordinate system.

The orbit curves are described by (9), (10). These equations
involve only three dimensions of the six-dimensional phase space. We
assume that the distribution function is independent of the three
angular variables: 6 and ¢ in x-space, and the phase angle ¥ in
velocity space; then there is no need to explicitly consider those
variables, and we may work in a three-dimensional reduced phase space,

with axes r, u, v We can now uniquely label the orbits by the

1

1 of u, v, at a reference point r = D; and r measures

distance along the orbit. The old coordinates u and v, are given as

values U, V

functions of r and U, Vi by (8), (9):

2 _ B(x) 2
vl = B Vl (2-15)
and
u = \/A + erz - Qr sin vV, (2-16)
where

U+ 9 sin ¥)% - a?p°.

"
I

The Liouville equation is now

or '
u,v (2-17)
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2.4 Collision Effects

We shall now extend the theory of §2.3 to include relaxation
effects., Coulomb collisions are negligible in the region that we are
considering; but there are magnetic interactions between the particles.
Observations show that the magnetic field is irregular on a small
scale; indeed, plasma theory* predicts that if the distribution is
considerably anisotropic (as is suggested by the results of §2.3),
then the plasma is unstable, and waves are generated; the field lines
become crinkly. Particles bounce off these magnetic kinks in much the
same way as they bounce off other particles, and the general effect,
like that of all interaction processes, is to drive the system towards
a Boltzmann distribution.

In order to be able to treat the process mathematically, we
shall at first take a specific model for the collisions: we suppose
that they produce sudden random changes in the velocity of the particles;
the velocity vector thus performs a random walk.’ If the magnetic field
may be considered static over the time of a collision, then energy is
conserved, so the random walk is restricted to a two-~dimensional
constant-energy surface in velocity space. We further suppose that the
particles suffer many small deflections, rather than a few large ones,
so that the random walk may be treated as a quasi-continuous process,

and described by a differential equation of the diffusion type.

e
“parker, 1958b.
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Finally we assume that the scattering is isotropic in velocity* —
within the restrictions of energy conservation. We th