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Abstract

The desire to increase the sensitivity of solution-based optical absorption spectroscopy
is motivated by the need for label-free biosensing (which provides a more authentic
indication of the state of a biological system) and by the usefulness of characterizing
the kinetics of biologically relevant reactions (which may not be accurately character-
izable at reagent concentrations required by standard methods). Our current device
has a demonstrated detection threshold of 1.7 x 1077 /v Hz (4.36x10"%¢m™1), which
could with further technical work be improved to a shot-noise limited sensitivity of
1.93 x 10710/\/Hz (1.06 x10~3c¢m~!). The latter would correspond to an average of
700 strong absorbers (¢ = 10°M~lem™!) in the optical beam volume. The shot-noise
limited detection threshold of our measurement method could potentially be improved
by up to two orders of magnitude by incorporating state-of-the-art optical mirrors.
With such mirrors, cavity-enhanced absorption experiments performed with gas-phase
samples have previously demonstrated single molecule sensitivity. We have estab-
lished that solution-based cavity-enhanced absorption measurements are more sen-
sitive than standard single-pass measurements by the predicted enhancement factor
for our present device (~ 20,000). These measurements provide the proof-of-principle
for solution-based, cavity-enhanced spectroscopy and serve as the intermediate step
towards the attainment of the theoretical sensitivity of this technique. We believe
that this device will be of broad interest to the scientific because it is presently the
most sensitive solution-based spectroscopic device, it can make real-time absorption
measurements which would allow monitoring of the kinetics of chemical reactions in
which the spectral properties of reactants change by even a small amount, and, near its

theoretical limit of sensitivity (given currently available mirrors), such a device could
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potentially resolve single-molecule absorption events on the sub-millisecond timescale

and below.
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Chapter 1

Introduction

In this experiment, we have performed absorption measurements that provide the
proof-of-principle for solution-based, cavity-enhanced spectroscopy and serve as the
intermediate step towards the attainment of our larger goal of observing structural dy-
namics on a small population of protein complexes. We have established that solution-
based cavity-enhanced absorption measurements are more sensitive than standard
single-pass measurements by the predicted enhancement factor for our present de-
vice (~ 20,000) and we have demonstrated a detection threshold of of 1.7 x 10~7 /v Hz
(4.36x10~%cm 1), which could with further technical work be improved to a shot-noise
limited sensitivity of 1.93 x 10~1°/y/Hz (1.06 x10~8¢cm™!). The latter would correspond

to an average of 700 strong absorbers (¢ = 10°M ~!em™!) in the optical beam volume.

1.1 Experimental Motivation

Our initial motivation in developing a solution-based cavity-enhanced spectroscopic
device was to examine a light-sensitive biological system at a level of sensitivity that
pre-existing devices could not attain. We needed to choose a system that had a light-
induced spectral shift on a slow enough time scale as to be measurable, given what
we understood to be our bandwidth limitations. After some research, we chose the
bacterial photosynthetic reaction center of R. sphaeroides, largely because its x-ray
crystal structure had been solved at high resolution [1] [2] [3] [4] [5] and the kinetics

of electron transfer had been well-characterized [6] [7] [8] [9][10].
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In order to discuss the particular event we were interested in characterizing, it will
first be necessary to discuss photosynthesis and the structure of the reaction center.
Photosynthesis is the mechanism by which certain biological organisms convert light
energy into biological energy in the form of adenosine triphosphate (ATP). The pho-
tosynthetic reaction center is the protein in which this process takes place in certain
types of purple bacteria, such as R. sphaeroides. Most of what is known about the
specific steps in electron transfer has been determined using bulk absorption differ-
ence measurements (using optical pulses) and the x-ray structures of the reaction cen-
ter. The absorption difference measurements identify changes in absorption in each
chromaphore due to the presence of a local electric field (the Stark Effect) caused
by charge separation caused by a mobile electron or due to the fact that one of the
chromaphores is in an excited electronic state. The x-ray structures identify the exact
position and structure of each chromaphore and the local protein environment around
and between each. The structure of each chromaphore and its local environment pro-
vide important information concerning the nature of the ionization of bacteriochloro-
phyll and the subsequent path of the electron in its journey to the final electron-
accepting molecule in the reaction center, ubiquinone. Based upon these, the reac-
tion center is known to contain six chlorophyll-like chromaphores and two ubiquinone
electron acceptors. A structure of this R. sphaeroides reaction center is presented in
Figure 1.1 ([1]. Two of the chromaphores are at the top of the reaction center in the
form of a bacteriochlorophyll dimer (D). Additionally, there are two individual bacteri-
ochlorophyll molecules (BA and BB) about 7 A on either side of the dimer. The last two
chromaphores are individual bacteriopheophytin (HA and HB) (very similar in struc-
ture to bacteriochlorophyll) molecules and are located 13 A down from the individual
bacteriochlorophyll molecules. The ubiquinone molecules (QA and QB) are located 10
A down from the bacteriopheophytin molecules and are themselves 15 A apart. The
electron is initially liberated from the bacteriochlorophyll dimer upon absorption of
excitation energy either directly from a photon or from other nearby chromaphores. It

is then known to travel to BA and then to QA and finally on to QB. There is no solid



Figure 1.1: Chromaphores in a Bacterial Reaction Center (R. sphaeroides)
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evidence that it ever directly travels to HA or that it ever travels along the 'B’ path-
way (BB and HB). In fact, the 'purpose’ of the 'B’ pathway is unknown. The kinetics
of electron transfer between the dimer and the bacteriochlorophyll and bacteriopheo-
phytin are too fast (psec and faster) to monitor with cavity-enhanced spectroscopy. The
transfer of an electron from QA to QB is accompanied by a spectral shift in the near
infrared that is on the order of hundreds of microseconds to a millisecond [8] [7]. This
transfer event is thought to be accompanied by a conformational change in the reac-
tion center protein and to involve a 180 degree flip in the position of QB in its binding
pocket within the reaction center [11]. This change in the position of QB was demon-
strated to be a necessary condition for electron transfer between QA and QB at low
temperatures (~ 90 K) [12]. This suggests that the QB flip is thermal-mediated, which
is consistent with the observed differences in the positions of certain amino acid side
chains in the reaction center in the presence versus the absence of light [11]. What
particularly caught our attention was that, in the 'dark structure’ (i.e. the reaction
center structure in the absence of light), although most of the quinone electron den-
sity suggested a QB in the 'pre-flip’ state (which seems to inhibit the ability of QA to
transfer its electron to QB), some residual electron density suggested some relatively
small population of reaction centers contained the QB in the 'post-flip’ state, in which
QA can readily transfer its electron to QB. This was clear evidence that the picture
provided by bulk measurements was likely averaging out improbable events, events
which, if characterized could enhance our knowledge of this particular step in electron
transfer. Our hope, therefore, was that we might be able to use cavity-enhanced spec-
troscopy to observe this relatively slow and seemingly thermal-mediated transfer of
electrons between the two quinones in a much smaller population of reaction centers,

small enough to observe that were imperceptible in bulk.
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1.2 Improving the Sensitivity of Solution-Based Absorp-

tion Measurements

Absorption measurements traditionally have been done in bulk because of the need to
be able to discriminate between a change in light intensity due to absorption or scatter-
ing (this difference represents the signal we are trying to measure) and a variation in
the signal due to amplitude or frequency noise on the light source or to electronic noise
associated with photo detection and laser frequency control, for example. In the char-
acterization of reaction center kinetics, these bulk measurements consisted largely in
pulse propagation of light in a single pass through a medium that contained the re-
action centers. One way in which the absorption of a smaller population of molecules
can be measured is by causing light to make multiple passes through the molecules of
interest. There are a number of techniques by which such increasingly sensitive mea-
surements have been made, including incoherent cavity-enhanced spectroscopy, cavity
ringdown spectroscopy, microsphere-based whispering-gallery mode sensing, and our
cavity-enhanced measurements. A brief review of each technique and its sensitivity
will be presented. The focus of this discussion is on the sensitivity of each technique
and its potential applications. Discussions of the details of each technique are pre-
sented in a number of recent papers [13] [14] [15]. One of the challenges in reviewing
these different techniques is that each one has its own unique vocabulary and con-
ventions of measuring loss/absorption. In the realm of traditional biochemistry and
biophysics, the conventional units of absorption are those of absorbance or optical den-
sity. It is rare that these units are used in physics, largely because they represent
the base 10 log of the incident power over the transmitted power. Standard units in
Physics are either roundtrip loss factors, which are in units of em™!, to show the nat-
ural log of the incident over the transmitted or reflected power for some path length.
The path length factor is particularly important in techniques in which the effective
path length over which the measurement is made is on the order of tens of meters
and longer. These units can be converted to units of absorbance by dividing by In(10).

Another complicating factor is that sensitivity can be reported in terms of the effective
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detection bandwidth (i.e. losses/v/ BW), since the ultimate sensitivity one reports is
a function of the amount of time over which the detected signal is averaged (i.e. the

effective bandwidth).

1.2.1 Cavity Ringdown Spectroscopy

Cavity Ringdown Spectroscopy (CRDS) is a technique in which a coherent optical beam
pulse (or continuous wave laser shuttered with an acousto-optic modulator) is sent into
a cavity. The beam makes many round trips within the cavity before being transmitted

out. A simple description of this type of system is:

P=Pe " (1.1)

where 7 is the exponential decay constant, which is a function of the round trip dis-
tance within the cavity, the reflectivity of the cavity mirrors, and intra-cavity losses
due to absorption and scattering. The intra-cavity losses due to absorption can be de-
termined by comparing the decay constant in the presence and absence of the absorber.
Zare et al. uses CRDS to make solution-based absorption measurements of copper (II)
acetate, LD700 laser dye, and Indigo Carmine[16] and methylene blue [17] [18]. They
report that their method has a sensitivity of 1.0 x107% ¢m~! and their actual measure-
ments have a sensitivity of ~ 1 x 107%¢m ™!, In [17], they made kinetic measurements
of the reduction of methylene blue by ascorbic acid in nanomolar to hundreds of pico-
molar concentrations. Pippino et al. uses evanescent wave (EW) CRDS to make very
sensitive absorption measurements on solid films (2.2 x 10~%) [19] [20]. This technique
may have the potential to measure absorption of absorber-containing phospholipid bi-

layers.

1.2.2 Microsphere-Based Whispering Gallery Mode Sensing

Microspheres have been used to make solution-based absorption measurements. Light
propagates around the microspheres through total internal reflection within the sphere

in what are called whispering gallery modes (WGMs). The evanescent field of the
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WGM (which is the surface mode) extends hundreds of nanometers from the surface
of the sphere into the surrounding medium, whether it be air, liquid, or a thin film.
Microspheres are characterized by a quality (Q) factor which is analogous to cavity
finesse. These microsphere resonators have the general advantage of having very high
Q factors (on the order of 10°) and very long effective pathlengths (on the order of
hundreds of meters). The Q factors are affected by certain physical features of the
microsphere (e.g. radius of curvature, surface anomalies, etc.) and by absorption and
scattering in the medium on the exterior of the microsphere. Thus, absorptive losses
can be determined by measuring the change in the Q factor in the presence and ab-
sence of the absorber. Nadeau et al. measured the absorption of a fluorescent stain
(T-3605) in methanol (at 670 nm) and reported a microcavity Q! consistent with a
detection threshold of 1x10~2¢m ™! for the measurements they actually performed and
with the potential to reduce that by at least one order of magnitude with that particu-
lar experimental setup [21]. They were also able to coat microspheres with biotin and
streptavidin with cavity Q factors around 1.0 x107% and greater. Based on its sensitiv-
ity and the ability to coat the microspheres with protein, this technique would seem to

show promise for measuring absorption in biclogical systems.

1.2.3 Incoherent Cavity-Enhanced Spectroscopy

In this somewhat rogue technique, incoherent light from a commercially-available
spectrophotometer is sent through a cavity in order to increase the interaction distance
and the sensitivity of the measurement over a standard, single-pass spectrophotome-
ter. In this particular experiment, the fifth C-H stretch of benzene was measured with

a detection threshold of approximately 1 x10~%cm=! [22].



Chapter 2

Modeling the Optical Beam for
Cavity-Enhanced Spectroscopy

2.1 The Scalar Wave Equation

One way in which the interaction distance can be increased is by sending the light
through a Fabry-Perot resonator. How we choose to model optical beams turns out to
be an important feature in describing the principles by which cavity-enhanced spec-
troscopy amplifies the optical signal; therefore, we will spend some time carefully spec-
ifying our model. Since optical beams are electro-magnetic waves, Maxwell's Equations
provides the necessary guidelines for determining some fundamental characteristics of
optical beam propagation. The fundamental property with which we are concerned is
the Scalar Wave Equation, in which it is assumed that the wave is traveling in a neu-
tral, homogeneous, isotropic medium such as air or glass or an uncharged liquid A
derivation of the scalar wave equation is presented in the first appendix. The scalar
wave equation is:

(A% + k*|(eE(q)) = 0 @2.1)

2.2 Plane Wave Approximation

A simple solution to the wave equation would be a spherical wave propagating from

the origin. The amplitude of the beam is assumed to be constant (which would not be



helpful in the physical case):
E= %Eoei(k’r) (2.2)

A solution to {8.12) in the first appendix would be the time-dependent version of our
general solution:

~ 1 .
E = ;Eoe—z(wt-{—kl‘) (2'3)

If we want to work in rectangular coordinates, we can assume the field is propagating
only in the z direction, with the x and y components of k assumed to be zero. We call
this the plane wave approximation and it is directly analogous to our spherical wave
solution.

E= Ebe—i(wt-f-kz) (24)

For the first part of our description of the cavity, we will use a plane wave approxima-
tion. This model will adequately represent the z propagation of the optical beam for
our present purposes. In a later section, we will consider the variation in the phase

and scalar amplitude as a function of z propagation and some initial conditions.

2.2.1 Initial Cavity Description

Our cavity contains two highly reflective mirrors separated by a distance, L, as shown
in Figure 2.1 . We will assume that the only surfaces on which the beam is reflected
or through which it is transmitted are the highly reflective dielectric coatings on the
inside surface of the mirrors. The electric field circulating within the cavity, Eeire, is
given by:

Ecz'rc =it Einc + grtEcirc (25)

A small fraction of the incident field is transmitted through the first mirror with am-
plitude transmittivity, ;. This contributes it1 Ejme. In order to distinguish between
reflectivity and transmittivity, amplitude transmittivity is expressed as ‘it’ and reflec-
tivity as 'r." Within the cavity, the circulating field is affected by the round-trip gain

factor, §,; and contributes g, Eeire. In one round trip within the cavity, the electric field
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Eiing E e E'yans

E refl

Figure 2.1: Fabry-Perot cavity

will propagate a distance, p, equal to twice the length of the cavity, in what we will
arbitrarily call the z direction with propagation constant, k (k = Z&). The round-trip
gain factor, therefore, will include a phase term that takes into consideration the dis-
tance the light propagates within each round-trip, the amplitude reflectivities of each
mirror, r; and rp, and an amplitude loss factor, ap, which will account for intracavity
losses due to imperfections in the mirrors, scattering, or absorption. Our expression

for the round trip gain factor, therefore, is:

Grt = riroe kP 0P (2.6)

For the purposes of this particular discussion, we will limit our representation of the
spatial propagation of the optical beam to the area between the cavity mirrors. Our
expression for the round trip gain factor handles this sufficiently; therefore, we will

represent the incident field merely as:

Eine = ir.r,cekif;wt (2-7)
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The ratio of the circulating field to the incident field provides us with an indication of

the buildup that occurs within the cavity under certain conditions:

circ it ity
e — = , 2.8
Eine 1— Gn 1-— 7»17-26—(116—{-040);) ( )
Assuming a homogeneous medium (such as air) with dielectric constant (¢) and mag-
netic permeability(u) of one, we have:

Ecirc _ Z'tl

Einc S 1- riroe—(iw/ctao)p (2.9)

We can see that whenever =% is a multiple of 27, e~*P/¢ becomes one and the circulating
intensity reaches a maximum value. This condition is satisfied when the round trip

distance within the cavity, p, is a whole-number multiple of the wavelength of light:

2
@;27r_fpz_ﬂ‘£:27rqép:q,\ (2.10)
c c A

When this condition is met, assuming identical mirrors and no internal losses, we

have:

Beire _ —fi—g . (2.11)
Einc 1- 1 t

Since we can only detect intensity or power with a photodiode, we need an expression

for circulating intensity:

Icirc Ecirc Eirc * t2
= |( (=) : (2.12)

Iine Eine " Eine rrie200P — 2rirocos(wp/c)e=0P + 1

As before, when the resonance condition is met, wp/c = ¢2#. Under these condi-

tions, the cosine term is one and we have:

Icz'rc _ t%
Line (1 — 6(_'0‘01))7‘17‘2)2

(2.13)
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Figure 2.2: Circulating Intensity

Assuming identical mirrors and no internal losses, we have:

== (2.14)

With mirrors that have a power reflectivity of 0.9 (and a corresponding transmittivity
of 0.1)(R; + T1 = 1){given the sign conventions we're using), the intra-cavity intensity

would be 10 times higher than the incident intensity:

I circ __

1
= =1 1
Iine 0.1 0 (2.15)

One can also view the resonance condition in terms of frequency, as can be inferred
from (2.10):

— g = f = g— (2.16)

2n fp
c 2L

We can understand this equation as stating that the resonance condition is satisfied
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every ¢/2L in frequency space. (This frequency should not be confused with the fre-
quency of the optical signal, which is often many orders of magnitude higher, since
the cavity perimeter is often much larger than the optical wavelength.) The frequency
spacing between resonances is commonly referred to as axial spacing, (Af,;) or free
spectral range (A frgg). Our discussion of the circulating field and intensity was con-
venient to illustrate the conditions under which cavity-enhanced light buildup occurs;
however, the intensity of the circulating light cannot be directly measured. Only the
intensity of the light that is transmitted through (Jirqns) or reflected from the cavity
(ref1) can be detected. The light that is reflected has two components: one that is di-
rectly reflected by the first mirror and one that is transmitted through the first mirror
from the circulating field. Thus, the total reflected field can be described as:

o~ — . —~ pe w
Erefl = r1Ejpe + 'LtlEcircgzi_(l_)‘ (2.17)

The first component is merely the incident field (F;,.) times the amplitude reflectivity
of the first mirror (r;). The second component is the circulating field (E;,.) multiplied
by the amplitude transmittivity of the first mirror (i¢;) and the round trip gain factor
(Gr¢(w)). This term must be divided by r; since the circulating field is transmitted, not
reflected, through the first mirror on the last round trip (the round trip gain factor

assumes reflection on both mirrors). After a bit of algebra, we have:

refl r - T.2e—ozop—zwp/c
Eine 1= riroecop—iwp/c

(2.18)

This ratio is also often referred to as the reflection coefficient (¥ (w)). On resonance, we

have:

Ere - —@op
refl . T1 7 T2¢ 2.19)

Ei. 1 — riroe—ooP

We can see that, on resonance, the reflected field is at a minimum. If r; = rqe 0P,
the reflected field would be zero. When this condition is met, we say that the cav-

ity is impedance-matched. Since we can detect only intensity or power, we need an
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Figure 2.3: Reflected Intensity
expression for the reflected intensity:

Irefl . Erefl Erefl i . T — T26_‘)‘0P—iwp/c T — T’Qe—aop—i-iwp/c
Iine Ez'nc E’inc 1- Tlr2e—aop—iwp/0 1- r1r2e—aop+iwp/c (220)

T‘%e‘anp — 27‘17‘2(308(wp/c)€—a0p + 7‘%
r2rie—200P — 2ryrycos(wp/c)e=P + 1

This denominator is identical to the denominator in our expression for the circulating
intensity; however, the numerator is notably different.
As before, on resonance, the cosine term becomes one and we have:

L — rgem00P \?
fl_ (7“1 rae ) 2.21)

Line 1 — ryrqe—coP

Being on resonance causes the reflected intensity to be at a minimum, because the field
that is directly reflected from the cavity is 180 degrees out of phase with the cavity field

that is transmitted out of the cavity. Assuming no intra-cavity losses and that ry = rs,
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we have
Ley r%(2 — 2003(9613)
Line (14 r — QT%COS(w—Cp))

2.22)

On resonance, wp/c is a multiple of 27, cos(wp/c) is 1, and the numerator is zero. As
the laser frequency increases or decreases from resonance by a small amount, dw, the
numerator increases to some finite value:
I r2(2 — 2cos( L&ty r2(2 — 2cos(%42))
ref — 1 c 1 c

3 = - (2.23)
Tne (141§ = 2r3cos(&H22)) (147 —2rfcos(%2))

The cosine of sums simplifies to a term only in dwp/c because, on resonance, wp/c is a

whole number multiple of 27:

o () oo (F) o (52) = ()0 (£2)

= cos (¢q27) cos (éi—p> — sin (q2m) sin (pr) (2.24)

Since §% is very small for all frequencies even beyond the full width half maximum,

Swp

cos(=*) can be approximated by second order MacLaurin series:

dwp

wp 1 9
0s(—— ) =1— < .
cos( - ) 2( - )+ (2.25)
We can now express 2—;’2— as:
I r2(8wpy2
ref rl( c )
- . (2.26)
Iinc (7’% — 1)2 + T%(_ﬁp)z

Recognizing that ¢/p is equal the frequency spacing between each T E My, mode, A frsg,

we have:

Les _ r(afess)

T~ (5 =17+ (s

(2.27)
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We can simplify this expression by dividing the numerator and denominator by r?:

& 2
Iref — (Af;‘JSR) (228)

Iinc 1_7‘f 2 Sw 2
( 1 ) +(AfFSR)

.2
% is related to the definition of an important cavity parameter called finesse [23].

Tt _ Afrsr

F ~
1-g Afrwam

il

(2.29)

In this case, since we're assuming that the mirror reflectivities are equal and that

there are no internal losses, we have:

F = =2 (2.30)

The A frwrnm is essentially the width of the resonance peak. More precisely, it is the

I
width of the resonance peak (in frequency space) when of is at half its maximum
inc
Ley 1
value. This can be demonstrated by setting =3 and solving for dw:
ne
dw 32
Lres — (Af;'USR) — 1 2.31)
Iinc (%)2 + (A;;JSR)Q 2
A
b = £ TOIFSR (2.32)
]’.‘
Since w = 2r f, we have:
5f = Afrsr (2.33)
2F
By definition, this ¢ f is éi%vuw__ Solving for F, we have:
AfrwHM Afrsr Afrsr
== SF=—— 2.34
2 2F Afrwam (.34)

We can simplify our expression for the reflected intensity by multiplying the numerator
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and denominator by (%)2:

2
Iref _ (—VLLA £ M> o (AfHWHM) (2.35)
Iinc - 5f 20 1+ ( of )2 ‘
1+ ATFWHM AfEwHM
]

This expression is convenient for characterizing the dependence of the reflected inten-
sity on relatively small variations in optical frequency from resonance. If we do not
assume the mirror reflectivities to be the same and that there are internal losses, our

expression for reflected intensity becomes:

of 2+ ri—rge” 0P 2
Liey _ \AfuwHM 1—rirge™ 0P

Tine 1+< 8/ )2

Afawunm

(2.36)

Iref

In both cases, we observe that increases from its initial value and approaches 1

inc
as 4 f increases from O to well beyond A fgw s . These expressions for the reflected

intensity are only accurate when §f <« A frgpg.

2.3 The Gaussian Model

2.3.1 The Full Scalar Wave Equation

The plane wave approximation is sufficient for a basic understanding of how the trans-
mitted, reflected or intra-cavity electric fields of a Fabry-Perot cavity are affected by
certain cavity parameters. Other important parameters require a more sophisticated
model for the optical beam. Assuming we have a beam propagating in the z direction,
we would like our model to account for the finite transverse (i.e. in 'x" and 'y’) ampli-
tude of the beam. Under all conditions in our experiment, we need only consider x and
y coordinates that are just off axis from z. We can also safely assume that there are no
rapid changes in amplitude in the z direction, since we will not be doing any radical

focusing. This assumption allows us to use the paraxial wave equation, in which the
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second partial derivative in z can be dropped from the Laplacian. A full derivation is
presented in the second appendix. The reader is also referred to a couple of standard
textbooks on the subject [24] [23]. In the text, we will merely state the paraxial wave
equation and a solution to it. The full scalar wave equation is:
&u  u  0%a ou

A% 4+ K?|E = Iz + 2T 21;:%]3—“” =0 (2.37)

With the paraxial approximation, we have:

&a u  oa

Our solution to the paraxial wave equation is:

R H !2
Elw )= — e tkz kR IRG; (2.39)

This makes good physical sense as does the quadratic transverse phase variation. Let’s

take a look at the expression for the intensity of the beam:

1 1

I@.9,2) = |E@y.9)« E@y.2)l = grm= 5

(2.40)

It makes good physical sense that the intensity of a diverging beam decreases; how-
ever, what does not make physical sense is that this solution suggests that the trans-

verse profile of the beam is unbounded.

2.3.2 A Complex Radius of Curvature

We need a real term in the exponent to specify the transverse profile of the beam, If

we were to specify the transverse radius of the beam as w(z), we have:

- . _,m2+2 22 4q2
e_”c:gR(z) 3 e [Zk 2R(z) +2w§(z)]
2.41)
N Ca e e N NP DY (
—ik {2 v )(TR )—zﬂwz(z))

=€
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The real part of the exponent specifies a Gaussian transverse beam profile. We do not
include the propagation constant in this term, since we have assumed that the beam
is propagating only in the z direction. From this approach, we can specify a complex
radius of curvature, §(2):
1 1 A

i@ " R@  mer() (2.42)

We can now rewrite our paraxial solution to the wave equations with the complex

radius of curvature:
m2+y2

E(z,y,z) = ~Le_““ze"“c 24(=) (2.43)
q(2)

Intuitively, one would conclude that the complex radius of curvature propagates lin-

early in z; however, it might be helpful to establish this with a bit more mathematical
rigor. If we assume a trial solution to the scalar amplitude with the same phase term

but with an unspecified amplitude term,

—ik ety

a(z,y,z) = A(z)e 2 (2.44)

we can apply the paraxial wave equation to it. After some algebra, we have:

~2ik] (12) + i((j))] + kz(“:;(; v) [ (z) =1 =0 (2.45)
Therefore, we conclude that:
g(z)-1=0 (2.46)
and
5(}5 4 ‘j ((j)) —0 (2.47)

Thus, we have the following differential equations:

(=) z
[ dg = / dz=q(z)—do=2— 2 (2.48)
g 20
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This confirms our assumption concerning the linear propagation of the complex radius

of curvature in z.

A(Z)dA(z)__ _C_if___ z_____d;z__
/Ao Alz) /éi(z) B /zo z 4+ (Go — 20) (2.49)

ORI
4, = "G

Solving, we get
Alz) _ o
= = = 2.50
) Ay 4(2) (250

In(

which is consistent with our intuitive conclusion that A(z) is proportional to ;1.—(1;). Rewrit-

ing our expression for scalar amplitude, we have:

2 2
ik 1Y

(z,y,2) = Ao%e_ 23(2) (2.51)

2.3.3 Hermite-Gaussian Mode Functions

This solution represents the lowest-order Gaussian mode for an optical beam. More
general solutions that can specify higher order modes can be derived using roughly
the same methodology as before. Once again, this derivation will be relegated to an
appendix. In the text, we will merely state a solution which can specify higher order
modes. The reader is referred to some general textbooks for an outline of this discus-
sion [23] or an even more in-depth treatment [25] [26]. These equations give rise to
what are known as the 'standard’ Hermite-Gaussian (i.e. the solution in rectangular
coordinates) solutions to the paraxial wave equation. These solutions will be valid
for the lowest-order mode and all higher order modes. Our expression for the scalar

amplitude in both transverse coordinates is:

m(—=") (2.52)

2 q 7 Go . (ntm) 2 y . —ik(z2+y?)
im0 %) = () (i (L0 o5y (V27 gy (V2 =
’ w20 aImlweg T @3 P D

where 'n’ and 'm’ are the transverse mode numbers and H, and H,, are normalized

Hermite polynomials, whose form varies with the transverse mode number.
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Figure 2.4: Gaussian T EMy; Mode

The expression for the T E My, mode is:

to0(z,y,2) = (E 2 ge a (2.53)
i

This is essentially (2.51) with A as the product of the Gaussian normalization and our
scaling factor. The intensity is clearly dependent upon the real radius of curvature, the
spot size (w(z)), and is Gaussian in the transverse coordinates, x and y. The shape of
this mode along any plane in the z axis is Gaussian in the transverse coordinates (x,y)
and is, therefore, roughly circular and is depicted in Figure 2.4. It is this mode that we
want to couple to our Fabry-Perot cavity. There is a more commonly used expression

for the higher order modes, using a phase angle, defined as:

_R(1/§)  mw(z)?

(=) = 5(/5) ~ ARG

(2.54)

This phase angle characterizes the quantitative relationship between the real and

imaginary parts of the complex radius of curvature. What it tells us is how the cur-
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vature of the wavefront changes with respect to the beam waist. In the absence of
focusing, (z) will asymptotically approach 7/2 as z— . If a beam is focused, ¥(z)
will decrease through zero if the focusing is sharp enough to go below the minimum
beam waist, wy, which, in our case, is defined by certain cavity parameters. This phase
shift is called the '‘Guoy’ phase shift. We can use the following definition to simplify
our expressions for the Hermite-Gaussian modes:

_ T _

L AL AIPREN i L (2.55)
q |q] q q

For the T E My, mode, we have would like to express 5;‘;—6 in terms of ¢(z). From (2.55),

we know that:

. * w(z) §
expli((2) — vo(2)] = —| T2 = X M; (2.56)
We can now express the T EMyy mode as:

ik(z? + y?)
29

2
m

)2 ——expli((z) — vo) — ] (2.57)

1
w(z)

to,0(z,y,2) = (

From?2.55 and 2.57, we can now express any higher order modes in terms of ¥(z):

1 ; 2 2
tn@9.2) = () e () H (2 eaplitn 41 ()} - HE )
(2.58)

The main contributors to the different shapes of each mode of the scalar amplitude
function are the Hermite polynomials. The amplitude of the lowest-order mode (Hy =
1) is Gaussian in x and y; its shape, therefore is spherical as in Figure 2.4. For the
first order mode in either x or y, Hy; = 2y; H1 o = 2z, the amplitude is antisymmet-
ric around the other axis, making the amplitude bi-lobal around that axis. Hermite

polynomials follow the recursion relation:

Hn+1 == 2.THn — 2an_1 (259)

This model provides us with an ability explain some of the observed phenomena of a
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'real’ optical beam that the plane wave approximation cannot account for. Perhaps the
most important of these are the Gaussian modes that define certain cavity parameters
(they will be discussed in the next chapter). The incoming optical beam must be mode
matched to the T'EMyg mode of the cavity in order to ensure maximum stability of the
lock and a simple spatial distribution of the intra-cavity field. In the process of trying
to mode match the cavity, it is possible to observe many higher-order modes whose

shapes are defined by the Hermite-Gaussian Mode Functions.
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Chapter 3

Experimental Setup

Our discussion of the experimental setup used in our experiment will be prefaced by a
brief discussion of the experimental methods in which the resonance condition can be

met.

3.1 Maintaining Resonance

3.1.1 Scanning

Meeting the resonance condition requires an ability to change the length of the cavity
or the frequency of the laser (or both). Depending upon the type of laser being used, it
may be convenient to scan the laser far enough in frequency space to observe a reso-
nance peak. Generally, the laser must be able to scan at least one free spectral range
to ensure that the resonance condition is met at least once during the scan. Whenever
the laser frequency causes a resonance condition to be satisfied during a continuous
scan, a resonance peak is observed (assuming the optical beam is properly aligned and
coupled). For example, a Ti:Saph laser (Coherent MBR-110) can scan on the order of
40 GHz with the MBR-110E Servo Controller, which corresponds to a cavity length
of 3.75 mm. As long as a cavity is longer than 3.75 mm, the MBR-110 can scan far
enough to observe a resonance. Scanning the laser has the advantage (over a piezo)
of being more or less free of non-linearities during the scan. Being thus free would
lead to a more accurate characterization of the free spectral range and resonance peak

AfrwaMm.
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The simplest way to change the length of the cavity is to place a piezo-electric device
between one mirror of the cavity and the outside mounting of the cavity. Applying a
voltage to the piezo causes it to change length. Since it is attached to one of the cavity
mirrors, when it changes length, the cavity length also changes. Whenever the cavity
length is such that the resonance condition is satisfied, a resonance peak will appear
(assuming the cavity is properly aligned). Since the precise voltage that is required
to meet a resonance condition cannot be precisely predicted or discovered, applying a
time-varying, sawtooth voltage to the piezo with sufficient amplitude to ensure that
the length of the cavity changed by the distance that corresponds to one free spectral
range (\/2). Scanning either the laser frequency or the length of the cavity will make it
possible to determine the resonance A fryw g and the A frgg, which, together, define

the cavity finesse:
/9t _ Afrsr

F ~
1-g+ AfFrweM

(3.1)

With F, one can solve for /g, which provides information about the round trip losses

within the cavity at the moment at which F is measured.

3.1.2 Locking the Cavity

Scanning the piezo or the laser can keep the cavity on resonance for a very short time
(i.e. the time during the scan when the resonance condition is met). To keep the cavity
on resonance, however, requires a more sophisticated technique. Manually adjusting
the voltage to the piezo can get the cavity near resonance; however, slow thermal
and vibrational noise associated with the cavity and faster frequency noise associated
with the laser quickly cause the cavity to drift off of resonance. These types of noise
can be suppressed by creating an error signal that indicates the extent to which the
cavity has drifted off of resonance. The error signal could then be fed back to the piezo
to compensate for the slower thermal and vibrational noise and to an acousto-optic
modulator to compensate for the higher-frequency noise.

When the frequency of the laser causes the resonance condition to be satisfied, the
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reflected signal from the cavity is zero (assuming no intra-cavity losses) because the

promptly- reflected beam destructively interferes with the cavity leak signal.

~ ~ , ~ P w
E’refl = r1Eipc + 'LtlIqjcirc‘g‘ﬁ;%“2 (3.2)

The promptly-reflected signal is reflected from the outside surface of the first cavity
mirror with amplitude reflection coefficient r;. The cavity leak signal arises when the
cavity is close to resonance. Under these circumstances, the intra-cavity field, F;.., is
transmitted through the first mirror with amplitude transmission coefficient ¢;. The
two components of the intra-cavity field are the incident beam that is transmitted
through the first mirror and the intra-cavity beam itself whose magnitude and phase
are determined by the round trip gain factor, g:(w). The ratio of the reflected field
to the incident field is commonly referred to as the reflection coefficent, (F(w)), and is

expressed as: .
P iwp _
(r1 — roe ¢ —90P)

Eye
= L F(w) = iw (3-3)
Eine (1 —ryroe e

”—aop)

The ratio of the reflected to the incident intensity can be expressed as:

I 72 4 r2e200P _ Qp poe 0P g (LR
refl — F(W)F*(UJ) — ( 1 222 —= 172 — (U‘?p)) (3.4)
Line (1 + rirse 0 — 2rir9e OpCOS(T))
Assuming no intra-cavity losses and that r; = ry, we have
I r2(2 — 2c0s(“2
ref 1( ( c ) (35)

Line (14 7%= 2r2cos(¥2))

e
On resonance, wp/c is a multiple of 2 and cos(wp/c) is 1 and the numerator is zero. As
the laser frequency increases or decreases from resonance by a small amount, éw , the
numerator increases to some finite value. From our previous treatment of this (2.35),
we know that:

. Sw 2
ﬁfi - 7’%(2 - 2003(@2)) (WAfFWHM) (3.6)

Line (1474 - QT‘%COS(M)) 1+ (’frAff“:VHM)2
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As before (2.36), if we do not assume r; = r2e*P, we have:

2 2
of r1—roe” 0P
Lrey (AfHWHM> + (1i'r‘17‘226_°‘01")
Tine 1+ ( 3f )2

AfuwHM

3.7

Although very small changes in frequency cause a significant change in the reflected
intensity, the reflected intensity ends up being the same value for equal increases or
decreases in frequency from resonance; therefore, the reflected intensity alone cannot

be used to generate an error signal.

3.1.3 Pound-Drever-Hall

An error signal that does change signs depending upon whether the frequency in-
creases or decreases from resonance can be generated in accordance with the method
of Pound-Drever-Hall [27]. This method allows us to determine the phase relationship
between the promptly reflected field and the intra-cavity field which is transmitted
through the first cavity mirror when the cavity is on or near resonance. It requires
that the optical beam be phase modulated with an electro-optic modulator (EO). At
first order approximation, the field that comes out of the EO contains an unmodu-
lated component, a component at the optical frequency plus the modulation frequency
and and a component at the optical frequency minus the modulation frequency. The
reflected POWER will contain a term that represents the beat of the unmodulated com-
ponent with each of the modulated components. When the 'beat’ component is mixed
down at the modulation frequency and the high frequency components are filtered out,
we are left with a term that is proportional to the amount and direction by which the
cavity is off of resonance: the error signal. The Pound-Drever-Hall method is central to
this experiment; therefore, a detailed treatment of phase modulation and mixing down

is warranted. Phase modulating at a modulation frequency, €2, results in the following:

Einc - Eoei(wt—i—ﬁsin(ﬂt)) —_ Eoeiwteiﬂsin(ﬂt) (38)
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p=—00

Using only the zero and first-order terms, we have:

Eine = Eo(—J1(8)e! @™Vt 1 Jo(B)e™t + J1(B)el@ Dty (3.10)

The reflected field can be expressed as the product of the incident field and the frequency-

dependent reflection coefficient:

Erest = Eo(=J1(8)F(w — Q)@= L Jy(B)F(w)e™! + J1(B)F(w + Q)e!@H V) (3.11)
The reflected intensity is:

Lesi = E§((J1(B) | F(w — Q) 2 +Jo(8)° | F(w) [* +J7(8) | F(w+ Q) |7
+ 2JoJ1(R(F(w)F* (w+ Q) — F*(w)F(w — Q))cos(Qt)) 3.12)
+iS(F(w)F*(w + Q) — F*(w)F(w — Q))sin(Qt)) .

+ le(F*(u_; — Q>F(u} + Q)e—i2Qt + F*(w + Q)F(w . Q)emﬂt))

The terms in 2 result from the beat of a sideband with the cavity signal and the
terms in 20 result from the beat of one sideband with the other. The phase and
sign information is contained in the {2 terms. On or very close to resonance, the side
bands are promptly reflected from the cavity; therefore, we can safely assume that
F®)(w+Q) = —1. This leaves (F*(w)— F(w)) as the argument for the terms in Qt. Since
R(F(w)) = R(F*(w)), the coefficient of the cos(2t) term is zero. Also, since S(F*(w)) =
-3 (F(w)), the coefficient of the term in sin(Qt) becomes —4.J; J1iS(F(w)). A simplified

expression for I..¢;, therefore, becomes:

Lepi = BR((2J2(8) + Jo(B)? | F(w) |* —4J0J1iS(F(w))sin(Qt) + 2JE (cos(20t)))  (3.13)

In order to come up with an expression for the error signal, we can rewrite the reflec-
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tion coefficient in terms similar to (2.23) with analogous results:

(Hwtdw) i)

R
ry — roe SRSk 71 — roe ' BTrsn °0P)

F(w) =

(3.14)

(i(w+6w)
AfFSR

. Sw
— LK — QU
1—riree aop) 1-— T’1’I"26< ATrSR o)

Since we need only the imaginary part of the reflection coefficient, we need the denom-

inator to be real:

i Sw —3 Sw )
(ry — roe=¥Pe &frsr) (1 — rirqe™™Pe "Afrsr

_ —Qop 1 dw _i_.i@_.._
(1 —rirge e AfFSR) (1 — riroe—0Pe 'BirsR)

Flw) =

(3.15)

2. ,—2 2 —aop,—iAT— oy i
_ T1+ryrie” %P —rirge”Pe "AfFsR —roe”Pe’ Arsr

2 9 g fw .
ririe=200P — pirge~%0P(e  AfFSR + e AfFsr)+1

ow

+i
Using a first-order series approximation for e Afrsr, we have:

Flo) = (r1 + r%rle‘mop - r%rge“"‘op — roe T *0P) — ’iA}S;)SRT2€_a0p(1 - r%) (3.16)
- (1 — riroe—coP)2 ’

We are interested in the imaginary part of the reflection coefficient. It is:

- dw —a 2
S(F(w)) = — Bfrsg™2¢ 71— 11)
B (1 — rirge—a0p)2

(3.17)

Assuming the mirrors have equal reflectivities and that the intra-cavity losses are very

low, we can approximate S(F(w)):

— i 2 e c0P dw F dw
S(F ~ Afrsr = e .
\5'( (w)) 1— 7»26—01017 ZAfFSR s 717'('A‘}‘.FWHM (3 18)
o dw
) = R 19

When these assumptions are not warranted, as in our experiment, we express S(F(w))

as:

S(FW)) = i (e‘”OP/Q(l—r%)> (3.20)

—1
TAfrwam \ 1 —rirgecopP

Our expression for I,.¢; is now:
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Lesi = E3(2J2(8) + Jo(8)? | F(w) |> —4Jo1

1 — ryrge—aopP

dw e‘aop/2(1 - r%)
TAfFrwEM

> sin(§t)

+ 2J%(cos(201)))
(3.21)

The phase of the side bands is representative of the phase of the promptly reflected
portion of the reflected field. When a side band beats with the reflected cavity signal,
the resulting term in €2 provides an indication of the extent to which the cavity is off
resonance. In order to generate the error signal, the voltage out of the high frequency
photodetector that detects reflected signal must first be demodulated by electronically
mixing it with the voltage from the voltage-controlled oscillator that drives the EO
(the frequency of the EO VCO voltage is the fgp). This signal is commonly referred to
as the local oscillator (LO). Electronic mixing is akin to multiplying the signals. Our
mixed-down signal is:

LO = Vysin(Qt + 6(, 1)) (3.22)

Where ©(Q,t) is a time- and frequency-dependent phase difference between the EO

LO and the optical signal. Therefore, the demodulated signal is:

LO X Iep = VOEZ(2J2(B)sin(Qt + (2, 1)) + Jo(B)? | F(w) | sin(Qt + 6(Q, 1))

dw e~o0P/2(1 — r?)
- in(€2t) st .
4Jo )1 “ATrwom < Tp——— sin(Qt)sin(Q + 0(Q, 1)) (3.23)

+ 2J25in(Qt 4 0(Q, 1)) (cos(20)))

All of these terms are in Q¢ and can be filtered out except the term in éw, which has a

dc component:

sin (Qt) sin (U + 6 (Q, 1)) = % (1 — cos (Qt)) cos (8 (2, 1))
(3.24)
+ sin (Qt) cos (QUt) sin (0 (22, 1))
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After low-pass filtering the terms in {2, we are only left with %cos (6 (©,t)). Therefore,

our error signal is:

—aop/2(1 _ 2
B = ~2B{Va1(8)0(6) — 1 (el e >> cos(8(82,) (3.25)

We now have an error signal that is proportional to the amount by and direction in
which the laser frequency differs from resonance. The error signal is negative when
the laser frequency is above a resonance frequency and positive when below resonance.
Therefore, it can be fed back to the piezo and to an acousto-optic modulator through a
servo to lock the laser to the cavity linewidth, ensuring that the resonance condition is
maintained continuously. Since the phase factor can cause the sign and magnitude of
the error signal to change, it must be appropriately managed. There are a number of
things that can be done to keep it near 0, including adjusting {2 and the cable length
between the LO source and the EO and mixer. This scenario assumes that the EO
phase modulates perfectly; however, this is not the case. Despite our best attempts
at aligning the EQ, there ends up being some residual amplitude modulation at the
feo () due to polarization modulation. A better model for the effect of the EO on the

incident field would be:
Eine = Epel@tH8sin(@) (1 4 e5in(Qt)) (3.26)

where ¢ indicates the extent of amplitude modulation. Our final expression for the

error signal with amplitude modulation is

E = —2E2VyJ1(B3)Jo(B)

dw e=oP/2(1 — y?
1 — riroe—oP

) cos(8(Q,1))(1 + €2)

(Af sf )2 + (17‘1—7“26‘“01’1))2 3.27)
—rirge ®0
+eE3Vo | | 28(8) + Jo(B)? = =

. 2
of
1+ (AfHWHM>

TAfrwHM

The only important result here is that the error signal has a dc component due to

residual amplitude modulation. We can see that the dc offset is affected by laser power,
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Figure 3.1: Full Experimental Setup

modulation depth, the extent of amplitude modulation, proximity to resonance, and
cavity parameters such as mirror reflectivity, intra-cavity losses, etc.... This dc offset
must be appropriately managed when trying to lock the cavity, as discussed in the

section on servo design.

3.2 Overall Setup

A schematic of the major electronic and optical components in our experiment is shown
in Figure 3.1. The most intuitive way to begin this discussion is with a description of
the path of the optical beam from the Verdi to the photodetectors. An 8.0 W Coherent
Verdi laser (532 nm) pumps the tunable Coherent MBR-110 Titanium Sapphire laser
(Ti:saph). With our optics set, the Ti:saph is tunable between 768 nm and approxi-
mately 860 nm. The Ti:Saph laser locks to a reference cavity via a servo-lock. The

frequency of the Ti:saph can also be scanned and locked using an etalon. Locking with
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the etalon is the only way to prevent the laser from staying single mode (which is a
requirement for cavity-enhanced spectroscopy). After leaving the Ti:saph, the optical
beam goes through a Faraday rotator to prevent back reflections from being fed back
into the laser. The beam passes through a sequence of lenses and polarizing beam
splitters before going to the EO. After passing through the EO, the phase-modulated
beam makes two passes through the AO before going through a sequence of lenses
which are used to mode-match the beam to the T E My, mode defined by the cavity (the
details of optical alignment will be discussed in a later chapter). A portion of the beam
out of the AQ is diverted to a photodetector that is the input to an amplitude servo,
that helps to suppress intensity noise on the laser (either from the Ti:saph or added by
the EO and/or AO). The beam finally passes through the mode-matching lens and into

the cavity.

The beam is then reflected from the cavity and directed through a non-polarizing beam
splitter either to a power meter or to two different photodetectors (PD): one for ob-
serving the DC power and one for detecting the higher-frequency components, which
contain the phase-modulated signal that will generate the error signal. The high fre-
quency components are detected with an AC-coupled APD from Menlo Systems (APD-
210) which can detect signals from 1.0 MHz to 1.0 GHz. The voltage from this pho-
todector is mixed down (with a Minicircuits mixer) with the the output of the voltage-
controlled oscillator that ultimately drives the EO (after going through an RF ampli-
fier). From 3.23, we know that the mixed-down signal will contain a low frequency
(nearly DC) component and components at multiples of the modulation frequency. The
low frequency/DC component is what contains the phase information that constitutes
the error signal. It must be separated from the high frequency signal via a low pass
filter (which rejects signals above a specified frequency). The error signal will be the
output of the low pass filter. On resonance the phases of the promptly reflected field
and the intra-cavity field are exactly 180 degrees out of phase and will perfectly de-

structively interfere. Slightly above resonance, the frequency of the laser will be a bit
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higher than the resonance condition requires which will generate a positive phase dif-
ference between the intra-cavity field and the promptly reflected field. Slightly below
resonance, the frequency of the laser will be a bit lower than the resonance condition
requires, which will generate a negative phase difference between the two fields. Thus,
the sign of the phase of the reflected signal will tell us whether the laser frequency is
above or below the resonance frequency. This error signal will be used to control the
laser frequency via an acousto-optic modulator (AO) and a piezo-electric device (piezo)
after being properly conditioned by a servo (which will be discussed in detail in the

next chapter).

The piezo is used to compensate for slow variations in frequency by changing the
length of the cavity. It must be driven at frequencies below its resonance frequency
(which is 138 kHz for the piezo used in this experiment (Thor Labs AE0505D08)) and
below lower frequency structural resonances of the piezo due to its placement in the
cavity. The piezo is generally only useful for compensating for low frequency noise.
An AO can compensate for higher frequency noise by changing the frequency of the
optical beam. The AO contains a crystal into which an RF-driven transducer sends
acoustic waves. These acoustic waves set up a standing wave in the crystal which
causes a Bragg diffraction of the input beam and a corresponding change in the fre-
quency of the laser light. The frequency shift in the first-order beam, for example, is
the frequency of the acoustic wave, fgo, which is dictated by the frequency of the RF
signal that causes the standing wave in the crystal. The frequency of the RF signal is
controlled by a voltage-controlled oscillator (VCO) and is roughly proportional to the
input voltage to the VCO. The limiting factor in the ability of an AO to compensate
for frequency fluctuations in a laser is the amount of time it takes to change the fre-
quency of the acoustic wave in the AO crystal. The Brimrose TEM-110-25-850 that
we are using can compensate for fluctuations up to 100 kHz. The DC lock signal is
monitored through a DC-coupled Hammamatsu C5460-01 100 kHz bandwidth APD.

The Hammamatsu detector is designed for low-frequency, low-power signals. Its band-
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width corresponds to the maximum bandwidth of our optical setup (limited by the AO
response). Data is acquired with a Compuscope 14200 data acquisition card with 128
Mbytes of on-board memory. This card has 14 bit resolution and can acquire at up to
100 Msamples/sec on single channel. The data acquisition scheme was controlled by a

MATLAB 'm file’, written for this purpose.

3.3 Cavity

3.3.1 Design Considerations

The construction of the present cavity was based on lessons learned from the measure-
ments made in the first-generation cavity, which was 1.0 cm in length, had commercially-
available mirrors with an advertised finesse of approximately 11,000, and was de-
signed to hold organic solvent in the chamber between the mirrors; however, solvent
often slowly leaked out. Furthermore, the cavity required removal, disassembly, and
cleaning after each use, which was particularly menacing, given the difficulty associ-
ated with the optical alignment of the cavity. The five major design considerations for
this cavity are to improve the quality of mirrors, to make the cavity shorter, to ensure
that the cavity is solvent tight, to make it possible to introduce solvent into the cavity
without disturbing the optical alignment, and to make it possible to control the length

of the cavity with a piezo-electric device so that the cavity can be locked on resonance.

3.3.2 Mechanical Features

We wanted to include the highest quality mirrors we could find in order to maximize
the cavity-enhancement. We had mirrors custom made by Research Electro-Optics in
Boulder, Colorado. Our coating run was intended to produce mirrors with £ < 20ppm
at a center wavelength of 770 nm and a radius of curvature of 5 cm (coating run L6-
170/1.3-532). These mirrors are roughly ten times better than the previous mirrors.
We wanted a shorter cavity to provide better temporal resolution (since the average

photon spends less time in the cavity) and to cause fewer solvent-mediated losses. The
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cavity length was designed to be adjustable from hundreds of microns to approximately
5 mm. The mirrors can be adjusted in their mounts by loosening the two screws in each
mount and adjusting the position of the mirror within the mount. This cavity has a
solvent-tight glass window (W’) on the front of the cavity and includes a sheet of Kalrez
(K’) at the back of the cavity to ensure that no solvent gets into the chamber that holds
the piezo. The cavity is constructed of stainless steel rings which were designed to be
used in vacuum systems. The vacuum seals on the rings and within the cavity are
established by ensuring that the 'knife edge’ of the stainless steel rings makes strong
contact with the malleable copper rings on adjacent pieces. Careful assembly of the
cavity and occasional replacement of copper rings or knife-edge containing pieces are
required to keep the cavity solvent tight. The fourth design criterion was to be able to
add and remove solvent with the least amount of disturbance to the cavity. This cavity
has fittings above and below the solvent chamber in the cavity. Stainless steel tubing is
attached at each fitting and, attached to the steel tubing, are isolation valves to which
organic solvent safe tubing is attached. The piece that directly contacts the piezo is
attached to the brass piece (A2’) that holds one of the cavity mirrors via a spring ('S’
so that piezo movement is directly and smoothly coupled to that cavity mirror. Each
time the cavity is assembled, the eight screws that hold together all of the rings that
make up the cavity must be tightened carefully to ensure adequate that the piezo is
properly and evenly compressed between the two surrounding pieces. Turning each
nut 2.5 full turns past hand tight turned out to be adequate to ensure that that the
piezo made sufficient contact with piece A2 to ensure smooth movement of the second

cavity mirror in response to an applied to voltage to the piezo.

3.3.3 Solvent System

The main goals of the cavity solvent system are to ensure that the cavity is filled
uniformly, the solvent has minimal exposure to air, and there is minimal vibrational
disturbance to the cavity. Filling the cavity from the top proved inadequate for pre-

venting bubbles. Suctioning the solvent through the cavity from the bottom valve
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Figure 3.2: Cavity Schematic
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Figure 3.3: Solvent System
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using a syringe-like device and then pushing some solvent back into the cavity with
the syringe proved to be the most reliable means of filling the cavity with bubble-free
solvent. Clamping all elements of the solvent system was the best way to minimize vi-
brational transients to the cavity. The cavity is very sensitive to vibrational and rota-
tional motion initiated by even touching the tubing. In fact, even gently pulling on the
tubing was sufficient to rotate the cavity enough to require optical realignment. Our
solvent of choice (dg-acetone) is optically-transparent at 780 nm; however, the longer
it is exposed to air, the less transparent it becomes. Therefore, it is very important
to minimize the exposure of our solvent to air. Purging the cavity with dry nitrogen
before filling with acetone and keeping the acetone under nitrogen (as shown in Figure

3.3) immediately upon opening, adequately minimizes the exposure of acetone to air.
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Chapter 4

Optical Considerations

Optical alignment and Gaussian mode matching are both crucial to cavity-enhanced
spectroscopy. The optical beam must be aligned and its waist managed as it passes
through each optical element in our experimental setup and as it enters the cavity. In

addition, the incoming beam must be mode-matched to the cavity.

4.1 Gaussian Mode Matching

4.1.1 Practical Features of Gaussian Beams

As was mentioned (2.3.2), the complex radius of curvature of Gaussian beams propa-

gates linearly in z:

Q(z) =do+ 2 @.1)

do is also represented as zg and called the Rayleigh range, which is defined as the
distance it takes for the beam waist, wy, to increase by v/2. This can be demonstrated
by substituting zg into 4.1 and solving for the the beam waist. The propagation rule for
§(z) is commonly written in terms of zg. Using the propagation law and the definitions
of zg and %, the spot size w(z), the real radius of curvature (R(z)), and the phase angle

¥(z) can be rewritten in terms of z and zg:

2

w(z) = wd(1+ z—f;) (4.2)
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tany(z) = i (4.4)

These equations are useful for characterizing the mode that is defined by a Fabry-Perot

cavity.

4.1.2 Mode Matching a Gaussian Beam to a Fabry-Perot Cavity

Since the radius of curvature and beam waist are characterized by §(z) and since the
length and radius of curvature of the mirrors of a Fabry-Perot cavity define a wy within
the cavity and a w at the reflective surface of each mirror, the beam §(z) must be
matched with the w and R at the appropriate cavity mirror for optimal use of the
optical power of the beam and for the stability of the intra-cavity mode. Given the
length of a cavity, L, and the radius of curvature of its mirrors, R, the minimum beam
waist, wy and the beam waist at each mirror, w, can be specified in terms of L and R.

The complex radius of curvature of each mirror is:

2 L
(2) =do+2=i0+ % (4.5)
A 2
1 1 1A
We also know that - is (; — —); therefore, we can express solve for uy:
q R mwg
1 2L)?
o el 4.6
R L2224 4nw} 4.6
AL /2R
2
= —4/— — 4.7
=0V @D
With a similar strategy, we can solve for w and zg:
(4.8)
L |2R
==/ —4+1 .
ZR 2 7 + 4.9
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Figure 4.1: Gaussian Mode Defined by Fabry-Perot Cavity

For our cavity whose length, L, is 1.75 mm and whose mirrors have a radius of curva-
ture of 5.00 cm, using these equations, we can determine wg to be 40.4 ym and w(z) to
be 40.7 um with an optical beam of wavelength 780 nm. When R > L (as in our case),
we say that the cavity is near planar. In this situation, our expressions for the beam

waist and Rayleigh Range can be further simplified:
AL [2R AL |2R
2 _ ol JE sy T e 20
Wy =50 T il 5=\ T (4.10)

(4.11)

4.12)

The usefulness of these equations is that wy and w can be expressed solely in terms of
cavity parameters and the optical wavelength. The optical beam must have a radius
of curvature, R, of 5 cm at the inner surface of the first mirror and must have a waist,
w, of 48.6 um in order to mode match the beam to this particular cavity. This mode
matching can be accomplished reasonably easily by using ABCD matrices and working

backwards from these calculated cavity parameters.

4.1.3 ABCD Matrices for Gaussian Beams

The propagation laws for Gaussian beams in free space, through lenses and through

dielectric media, can be conveniently applied and calculated using ABCD matrices.
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The ABCD matrix has the general form:

A B (4.13)
¢ D

They can be used to transform rays or Gaussian beams. The general formula for ap-
plying ABCD matrices to Gaussian beams is:

. _Aa+B

= 4.14
q2 Cht D ( )

where ¢, is the complex radius of curvature after the transformation. The matrices for

common transformations are:

Free space:
1 L (4.15)
0 1
Thin lens (f > 0 for converging lenses):
1 0 (4.16)
1
—— 1
f

Interface between regions with different indices of refraction:

1 0 4.17)
n

O —
ng

Curved dielectric at normal incidence (R > 0 for concave surfaces):

1 L (4.18)

Ng —Nyp Ny

RTLQ 9
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A focusing lens will reduce the radius of curvature of the beam and will cause the beam

waist to decrease to a minimum at the focal length of the lens:

- a1 1 1 1 1 1 A
— S — =" 4 — =(—Z 4 —) —j— 4.19
© i Go f @ (f Rl) Tw} (419
—— 1
f

A very convenient feature of ABCD matrices is that the transformation of an optical
beam by a series of optical elements can be easily computed by multiplying the trans-
formation matrices and applying the effective matrix to complex radius of curvature
at the first element. Given a set of transformation matrices from 1 to n, the effective

matrix, M.y, is:

Mess = | Acrs Begs | = [ Max Mp_y % ..My (4.20)

Cefr Desy

It is imperative that the effective matrix be calculated as the product in sequence from
the last matrix to the first. This kind of matrix multiplication can be done very easily
in a program such as MATLAB.

Given the length of our cavity, and the radius of curvature of the cavity mirrors and
the structural elements of the cavity between the first mirror and the outside of the
cavity, ABCD matrices can be used to determine the beam waist, w, and the radius of
curvature, R, of the beam at the outside edge of the glass window (W’ in Figure 3.2).
This beam can then be propagated out any convenient distance from there. A graph of
these values from the edge of the outside window (W’) for 30 ¢m out in the 'z’ direction
with and without acetone in the cavity are shown in Figure 4.2. Mode-matching the
cavity requires that the incoming beam have the beam waist and radius of curvature
at whatever distance is chosen. Although the indices of refraction for air and acetone
are different, the spot sizes and radii of curvature do not differ much; nevertheless,

adding acetone to the cavity requires a moderate amount of realignment.
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Figure 4.2: Mode Matching

4.1.4 Measuring the Beam Waist

It is necessary to measure the beam waist of the incoming beam in order to mode-
match that beam to the cavity. The easiest way to measure the beam waist is to attach
a straight razor to a micrometer and position the blade just outside the beam waist
in front of a power meter. The micrometer will then be moved until the optical power
is reduced by the amount that corresponds to one side of the beam waist and the
position of the micrometer will be recorded. It will then be adjusted until the power
is reduced by the amount that corresponds to the other side of the beam waist. The
power transmission at either side of the beam waist can be determined by integrating
the normalized beam intensity in rectangular coordinates, using +w as the limits of
integration in the x direction (assuming that the razor blade is perfectly vertical and

moves only in the x direction). The power transmission at the near beam waist would
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be:
= 2(z% + %)
Tew) = 2/ / e w?  dyds (4.21)

Tw?

The power transmission at the far beam waist would be:

—2(z2 +9?)
9 oo +w

These integrals can be solved numerically using Mathematica. T(_,, is 0.977 and T,

is 0.023.

4.2 Transverse Mode Frequencies

As was implied in our discussion of the Hermite-Gaussian Mode functions, each trans-
verse mode occurs at a different frequency. Each mode has a different frequency be-
cause of the mode-dependent phase shift discussed in the section on Hermite-Gaussian
Mode functions. The Guoy phase shift in one length of the cavity is measured from the
minimum beam waist to each mirror. On the assumption that each mirror has the
same radius of curvature, the minimum beam waist is in the center of the cavity and
and the phase shift from the center to each mirror is equal in magnitude but opposite
in sign. Although there are many ways to express this phase shift, the most intuitive

remains 2.54:

7TU)2

tany(z) = B (4.23)

In one cavity length, the overall phase shift (including the propagation factor (kL)) is:

2
d(zs —21) = kL — (n+m+ 1)2tan_1(zr/\%) (4.24)

The resonance condition that applied to plane waves still applies here, namely, that
the round-trip phase shift must be an integer multiple of 27 or that the one-way phase

shift be an integer multiple of 7. Using our definition of the overall phase shift in one
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length of the cavity is:
7T’U)2
kL — (n+m+ 1){2tan‘1(—)\—ﬁ)] =qr (4.25)
We can express the propagation factor as w/c and solve for w:

2tan~! (%) e
w=lg+(n+m+1) —| | T (4.26)

This equation can be simplified by expressing w? in terms of R, L, and X as in 4.8:

2tan_1( Rl )
w=|g+n+m+1) - — (4.27)

This equation tells us the relative frequency of the higher order Gaussian modes with
respect to the TEMy, mode. In the near planar case (i.e. R > L), the Guoy phase
shift is very small (for our cavity with R = 5.0 cm and L = 3.5 mm, the Guoy phase
shift is only about 21.5 degrees. This causes each sequential higher transverse mode
to be only slightly higher than its associated T E My mode. This fact is observed when
aligning the cavity and knowing that the higher order modes are higher in frequency

than the associated T'E Mgy mode is very helpful.

4.3 Optical Alignment

Each element in our optical setup is sensitive to the size of the beam waist (w) and the
angle (¢ and y) and position (x, y) at which the beam passes through the element. The
angle and position of the beam can be adjusted with any pair of mirrors. The beam
waist can be managed with the appropriate use of lenses, as will be discussed in the
following section. Our EO requires that the beam waist be less than 2.0 mm (the size
of the aperture) and that it pass as close to the center of the aperture as possible. Mis-

alignments or incorrect polarization can result in frequency or amplitude modulation
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on the emergent beam. The good way to maximize the correct polarization through the
EOQ is to include a series of polarizing beam splitters before the EO. Residual frequency
modulation can be minimized by setting up a photodiode at the output of the EO and
sending the photodiode output to a spectrum analyzer and steering the beam until the
peak at the fgo is minimized. The alignment of the AO is particularly challenging.
In order to maximize its response time, the beam should be positioned as close as pos-
sible to the transducer on the bottom of the AO. The angle at which the beam passes
through that AO must be adjusted until the +1 beam (the beam whose frequency has
been increased by 1 x f40) out of the AO is maximized. This process is more or less
trial and error. The +1 beam should be the first one above the non-displaced beam,
which can be identified by properly removing the RF signal from the AO. The only
beam that is transmitted through an unpowered AO is the 'non-displaced’ beam. The
next step is to place an iris just before the mirror at the output of the AO such that
only the +1 beam hits the mirror. The mirror is then adjusted until the +1 beam hits
the AO crystal at exactly the same position that the incoming beam passed through
it. It is crucial to have +1 beam overlap the incoming beam to the maximum possi-
ble extent. To this end, the appropriate selection of focusing lenses on either side of
the AO is very helpful. This second pass beam is directed back through a polarizing
beam splitter to a set of mirrors. A quarter wave plate is placed between the mirror
and the AO to rotate the polarization of the +1 beam such that it gets reflected by the
polarizing beam splitter on the other side of the AO (the transmitted beam heads back
towards the EQ). An iris should be setup before the first mirror to isolate the emerging
+1 beam, which will have a net angular displacement of 0 (+6 in one direction and —§
in the opposite direction), and frequency change of +2fgo (one from each pass through
the AO) if properly aligned. The easiest way to determine which beam is +2 with zero
angular displacement is to add a time-varying voltage of relatively small amplitude to
the DC offset that was applied to the AO VCO during alignment and choose the spot
that is displaced the least). This technique can also be used to fine tune the second

pass alignment.
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The alignment of any cavity in reflection will have its own idiosyncracies; however,
a few general comments will be made about alignment strategies. It was found that
removing the mode-matching lens and both focusing lenses in the path from the last
mirror into the cavity is the best starting point. The beam on the last mirror should
be at roughly the same x and y positions as the center of the cavity, assuming that the
center of the last mirror is placed at the same x and y coordinates as the center of the
cavity and that the cavity mirrors are parallel and perfectly vertical (which may not
be the case). The beam should be adjusted to hit the center of the first cavity mirror
and reflect back onto the last mirror at the same spot. Each of the two of the focusing
lenses will be added sequentially, ensuring that the beam passes in the middle of the
lens and that the beam is not translated by it. There are several reflection spots from
the cavity surfaces. The reflection spot from the reflective surface of the first mirror
will likely be large. It must be overlapped with the spot from the reflective surface of
the second mirror (this spot should be much smaller). After each lens is added these
spots need to be overlapped as well as possible. At this point, a number of transverse
modes should be visible on the photodetector, if the piezo is being scanned at least one
free spectral range. Each transverse mode is at a different frequency and appears as
a separate peak. An illustration of a plenitude of transverse modes is provided in Fig-
ure 4.3. From here, one strategy is to choose one transverse mode and steer the beam
to maximize its amplitude. After maximizing it, the TEMy, should be visible. The
relative ratio of the radius of curvatures of the mirrors and the length of the cavity
will determine the location (in frequency space) of the T E My, mode in relation to the
other transverse modes. In the near-planar case (R > L), the TEMy, mode is at the
low frequency side of the group of transverse modes in one free spectral range. Fig-
ure 4.4 shows a much better alignment than Figure 4.3 and illustrates the sequence
of transverse modes. The lower-order modes are at lower voltages with the T E My
being at the far right or left of the figure. Once one transverse mode is maximized, the

piezo offset is adjusted such the highest-order modes progress off the scope until the
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end of the sequence of modes is reached (i.e. at the bottom of each piezo scan). This is
likely the T EMgy. The amplitude of this peak should be maximized. If another peak
appears at a lower frequency/piezo voltage, then that is the T E My, mode. This process
is repeated until no other peaks appear at lower voltages and all of the power from the

other transverse modes has been put into the T E Myg mode.
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Chapter 5

The Design of the Frequency
Servo

5.1 Fundamentals

In order to lock the laser to the cavity, the piezo and the acousto-optic modulator must
be controlled with different frequency-dependent voltages, dictated by the individual
characteristics of each device. In general, these characteristics are measures of the
extent to which the error signal, as depicted in Figure 5.1, can cause each device to
change the frequency of the laser or the length of the cavity in order to keep the cavity
locked. The slope of the error signal (V/Hz) across the resonance peak (as opposed to
the slope across each side band) is what specifically causes each device to respond. The
first thing we need to know, therefore, is the slope of the error signal. This slope can be
measured directly using an oscilloscope while scanning the piezo. In practice, we can't
directly measure the A f component of the error signal slope. Instead, we measure the
At,,, on the oscilloscope and compare that to our measurement of Ats, (the temporal
spacing between the side bands on the oscilloscope screen). Atg, corresponds to 2fzo,

which we can measure directly.

_ AVrp Aty
Merror = (Atrp> <2fEO> (51)

This slope is a function primarily of laser power, photodetector gain/response, cavity

mirror reflectivity, and intra-cavity losses; therefore, its value must be re-measured
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Figure 5.1: Error Signal Slope

whenever any of these parameters changes.

For the piezo, we are concerned with the distance it moves the second mirror (i.e. the
change in cavity length) for a given applied voltage. Since the cavity is enclosed and
since the distances with which we are concerned are so small, practically speaking, we
cannot directly measure the change in distance. We can get an idea of the piezo re-
sponse directly by scanning the piezo and measuring the difference in voltage between
each side band on the resonance signal. The overall hardware gain for the piezo is the

product of the slope of the error signal and the piezo response:

Gpiezo = (merror) (Tpiezo) (5.2)

This gain (which is unitless) gives us an indication of the extent to which the error
signal will cause the piezo to compensate for slow changes in the laser frequency and
in the length of the cavity.

For the AO, we are concerned with the degree to which it can change the frequency of
the optical beam in response to an applied voltage. An AO consists of a crystal with
an attached transducer, which introduces RF radiation into the crystal, setting up a

standing wave there. The frequency of the optical beam (fpeqm) passing through the



53

AQ crystal is changed by the frequency of a standing wave in the AO crystal, (f40):

Afbea.m - fAO (53)

The RF signal that establishes this standing wave is generated by a voltage-controlled
oscillator (VCO) and its frequency is controlled by the dc voltage that is applied to the
VCO. If we measure the dc voltage required to change the frequency of the EO by some

relevant amount, we get some insight into the response of the AO:

. Afao
TAO R 0 —

~ 5.4
AVyco (5.4)

The overall gain of the AQ is the product of the error signal slope and the AO response:

gAO = (merror)(TAO) (55)

A significant part of understanding the AO response is quantitatively knowing how
fast the AO can respond and how its ability to respond changes with frequency. The
ultimate limit is dictated largely by the amount of time it takes for changes in the
traveling acoustic wavefront to reach the optical beam in the AO crystal. This time
varies primarily with the position of the beam with respect to the transducer on the
bottom of the crystal and the speed of sound in the crystal. For the Brimrose TEM-
110-25-850 (the AO we are using), the response time is approximately 10usecs. This
means that it is very difficult to compensate for noise faster than approximately 100
kHz due to phase lag.

Now that we have an idea of the hardware gain of the AO and the piezo, we can
consider how we need to condition and amplify the error signal in order to ensure
that the piezo and AO are optimally compensating for noise within their bandwidth of
operation. The amplification and conditioning are performed by an electronic circuit,
commonly referred to as a servo whose main purpose is to keep the laser locked to the
cavity. The main parameters we need to know in order to design an appropriate servo

are the frequency at which the error signal to each device has unity gain (the 0 dB
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point), the frequency at which the AO gain is equal to the piezo gain, and the phase
lag associated with each of these frequencies. Phase lag is the difference in phase

between the output and the input signals.

5.1.1 AO Branch

In designing the servo, we will first consider the AO branch, then the piezo branch,
and, finally, the composite of both branches. The AO branch can be characterized by
four important features: the overall DC gain, the 0 dB point, the AC-coupling fre-
quency, and the frequency at which the maximum gain begins to roll off. The 0 dB
point of the AO branch must be below 100 kHz, since the AO cannot respond any
faster than that, as was previously mentioned. Trying to close at a frequency higher
than 100 kHz results in significant oscillations. Since the g4¢ turns out to be rela-
tively small (compared to the gpe.o) over its bandwidth of operation, the gain of the
AO branch must be relatively high. Due to the requirement for high gain and because
the piezo branch is being relied upon to compensate for lower frequency noise, it will
be best to AC-couple the AO branch of the servo. The actual AC-coupling frequency
can be chosen within a reasonably wide range. In practice, the upper limit is set by the
requirement that there be some region of constant gain over which the piezo branch
transfer function can cross. The frequency of the gain roll off will need to be higher
than the AC-coupling frequency (assuming the simple servo circuit scheme we are us-
ing) but low enough to allow the 0 dB point to be reached by 100kHz using a single
pole. From practical experience, we will also want to include a low pass filter to sup-
press spurious increases in gain at higher frequencies due to the performance of some
of the operational amplifiers in the servo. The frequency of the low pass filter needs to
be at least a few times higher than the 0 dB point, to avoid reducing our phase margin
there. As a note, when we speak of the low pass frequency, what we really mean is the
frequency that corresponds to ﬁ}?—( It is also the frequency at which there is a 3 dB
change in gain. For example, the AC-coupling frequency is the frequency at which the

gain is 3 dB lower than (i.e. one half of) its value in the absence of AC-coupling.



Figure 5.2: Pole Zero

We can set the 0 dB point and the roll off frequency with a single component in the
AO servo: the 'pole zero'. In general terms, a 'pole’ is a zero in the denominator of
the transfer function and a 'zero’ is a zero in the numerator. A transfer function is
merely the ratio of the output to the input voltage in Laplace space. Poles can either
initiate a reduction in gain or terminate an increase in gain, depending upon the dom-
inant element in the transfer function that precedes (in frequency/Laplace space) the
pole. In all situations, a stable pole introduces a fixed gain decrease of 20 dB/decade
and a 90 degree reduction in phase. A zero does the opposite: it adds 90 degrees of
phase and introduces a 20 dB/decade increase in gain. It might be helpful to include
a brief discussion of the pole zero component we use in the AO branch of the servo.
It is essentially an operational amplifier with parallel feedback paths as illustrated in
Figure 5.2. Our goal is to solve for the output voltage of this component (V,,;) in terms
of the input voltage (V;,). An adequate way to do this is by making the simplifying
assumption that the voltage at the inverting and non-inverting pins of the operational
amplifier are equal to zero. We can then easily solve for the sum of the currents at the

non-inverting pin in accordance with Kirckhoff’s Law, as illustrated in 5.6,

> =0 (5.6)

J

where j represents each branch adjacent to a node (the node here being the non-
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inverting input of the op amp). We have:

t9+11+1.2=0 (5.7
. —Vin
0 = —Ro (58)
. Vout
S 59
i =2 59)

Solving for 45 is a little more difficult. We know that the current in each component
in branch 2 must be equal. We can specify the voltage between each component as V,,

and solve for it in terms of V,;:

iy = ic = ip, (5.10)
o=Lv, — v (5.11)
wc= drt’e m .

. Vi

iRe = & (5.12)
d Vv,
a[Voﬂvm]cz o (5.13)

LI Vs = VlC] = [Vals) = Vin(8)]Cs = £I72] = 614

Solving for V,, we have:

RQCS
="V, .15
Using 5.12, we can solve for i:
. Cs
iz2(s) = m%(s) (5.16)

Taking the Laplace transforms of the other currents is trivial. We can now solve for

the ratio of V,,; to V;,, the transfer function:

Vout(s) _ —Rl(l + RZCS)
Vin(s) ~ Ro(1+ (R1+ R)Cs)

(5.17)
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Figure 5.3: Bode Plot of Pole Zero

The frequency of the pole is roughly equal to 1/(R; + R2)C and the frequency of the
zero is roughly 1/R»C. A convenient format in which to illustrate poles and zeros is
the bode plot. A bode plot contains a graph of gain (dB) versus the log of frequency and
a corresponding graph of phase lag versus the log of frequency. A bode plot of a pole
zero is illustrated in Figure 5.3.

From the bode plot, we can observe that a pole causes the gain to begin decreasing at
approximately 20 dB/decade and causes a corresponding -90 degree phase lag. At the
frequency of the pole (i.e. the frequency at which the numerator is 0), the gain will have
decreased by 3 dB and the phase will have decreased by -45 degrees. A zero causes
the gain to stop decreasing and the phase to increase by 90 degrees. Although the pole
frequency is determined by the sum of R; and R; times the capacitance (1/(R; + R2)C),
from a practical point-of-view, R; tends to be much greater than R (since the zero must
be at a higher frequency than the pole), so the zero is essentially determined by 1/R; C.
As the relevant RC product decreases, the frequency of the zero or pole increases. The

second significant component in the AO servo is a low pass filter, as illustrated in
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Figure 5.4: Low-Pass Filter

Figure 5.4. The low pass filter we use is similar to the pole zero, except there is no

resistor in series with the capacitor. The transfer function of this low pass filter is:

‘/out _Rl
= 5.18
Vi Ro(1+ R:1Cs) ( )

A low pass filter has a single pole whose frequency corresponds to 1/R;C. The main

purpose of a low pass filter is to attenuate higher frequency signals.

It was mentioned that the AO servo is AC-coupled. AC-coupling can be accomplished
very simply, by placing a series capacitor just before the input resistor to some stage
in the servo. This type of AC-coupling introduces a zero at 0 Hz and a pole at the RC
constant for the AC-coupling capacitor and input resistor. If this capacitor (Cp) were
placed just before the pole zero stage in Figure 5.2 whose transfer function is 5.17, the

overall transfer function would be:

VZ)ut(S) _ (—Rlcos)(l + RQCS) (5 19)
Vin(s)  (1+ (B1 + R2)Cs)(1 + RoCos) '

and whose bode plot is shown in Figure 5.5. We can see that there is an additional pole
at 1/RoCyp; however, the pole and zero from Figure 5.3 remain unchanged, except for
the extra 90 degrees of phase lag. The overall AO transfer function is shown in Figure
5.6. The only difference between it and Figure 5.5 are the overall DC gain and the low

pass filter at 350 kHz (whose purpose is to suppress spurious gain spikes at higher
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Figure 5.5: Bode Plot of Pole Zero with AC-coupling
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Figure 5.6: AO Transfer Function



Figure 5.7: Integrator

frequencies, due to op amp anomalies).

5.1.2 Piezo Branch

The 0 dB point of the piezo branch of the servo, as a minimum, must be below the
resonance frequency of the piezo (the resonance frequency is the frequency at which
the piezo no longer responds predictably), which is 138 kHz for the Thor Labs piezo
stack we are using. For a number of practical reasons, we will want the piezo branch
to have a 0 dB point at least an order of magnitude lower than its resonance frequency.
The key component in the piezo servo is an integrator. An integrator is the component
of choice when amplifying low frequency signals, since it theoretically has infinite gain
at zero frequency. Practically speaking, the gain at very low frequencies is set by
the open loop gain of the particular operational amplifier that is being used as an
integrator. We are using an OP627 as an integrator in our servo. The open loop gain of
the OP627 is only limiting at frequencies below 1 Hz, as illustrated in Figure 5.8. An
integrator looks like the low pass filter in Figure 5.4 without the feedback resistor, as

shown in Figure 5.7. The transfer function of an integrator is:

V;)ut — 1
‘/in CRO s

(5.20)

We can see that the integrator has a pole at a frequency of zero and that the phase
is constant at -90 degrees. In our servo, we chose to add a low-pass filter at 48 Hz in

order to force the overall piezo servo to cross the AO servo where its gain is more or
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Op Amp-limited
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Figure 5.8: Piezo Branch Transfer Function

less constant and to force the piezo branch to close at a lower frequency than would

otherwise be possible. The bode plot of the entire piezo branch is shown in Figure 5.8.

5.1.3 Combined Transfer Function

The combined transfer function for the piezo and AO branches is shown in Figure 5.9.

5.2 Practical Considerations

There are a number of practical considerations that inform the proper design of the
servo. It was largely these practical considerations that proved to be the largest stum-
bling block of this experiment and were only fully realized by the fifth and final ver-
sion of the servo. These considerations will be addressed through the hindsight that
came as a result of either neglecting to consider them or improperly considering them.
The final version of the main lock servo is shown in Figure 5.10. As a result of the
lessons learned in the previous four circuits, the overall circuit has both servos on the
same board, a differential amplifier between the error signal and the first stage of

the servo with non-inverting amplifiers before each branch, separate gain adjusts for
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Figure 5.9: Combined Transfer Function

each branch, an isolating op amp between any gain adjust and the next component,
a AC-coupled AO servo, an integrated DC offset adder in the AO branch, a low pass
filter at 450 kHz on the input stage of the AO servo to suppress high frequency noise
on the error signal, a low pass filter in the piezo branch to force the piezo branch to
cross the AO branch at a more favorable frequency and to force the piezo branch to
close at a lower frequency than would otherwise be possible, an inverter switch in the
piezo branch so that it can be changed from inverting to non-inverting as necessary,
trimming on the integrator op amp to ensure optimal performance of the integrator,
an integrate switch that acts as a low pass filter when the servo is not integrating,
an offset adder/subtractor on the error signal input, and a custom/home made high
voltage amplifier between the output of the piezo branch and the piezo. Each of these

features will be discussed in a bit more detail in the following sections.
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5.2.1 Gain Adjusts

In order for the servo to be functional under various conditions of laser power, pho-
todiode type, and intra-cavity losses and in order to simplify the locking process, it is
necessary to be able to adjust the gain of the servo. In the initial two versions of the
servo, there was only one gain adjust for both branches. A single gain adjust has the
advantage of changing the gain of both branches of the servo by the same amount,
thus not changing the frequency at which the gain of the piezo branch equals the gain
of the AO branch. It is very important to know what is happening with the transfer
function of each branch when the gains are equal in order to prevent instability due
to gain spikes or unfavorable phase relationships. Locking with a single gain adjust
turned out to be difficult to impossible due to practical considerations in the locking
procedure. With a gain adjust in each branch, careful attention had to be paid to poten-
tial instabilities with certain combinations of gain settings. Much effort was expended
trying to predict which settings would cause such instabilities and making sure that
they were not reached during the locking procedure; however, ultimately, acceptable
combinations of gain settings was determined empirically. The AO branch was de-
signed such that there would be adequate gain to close slightly above 100 kHz in order
to ensure the ability to close as close to 100 kHz as possible. The level of the piezo
branch gain was determined by a choice of the frequency range over which the piezo
gain would equal the AO branch gain and the the frequency at which the piezo branch
should have 0 dB of gain.

5.2.2 Trimming the Integrator

The integrator is the key component in the piezo branch. Since integrators have very
high gain at DC (120 dB set by the open loop gain of the OP627), the integrator is
very sensitive even to slight imbalances in the input offset voltage due to temperature
changes, etc... Therefore, it is necessary to trim the integrator operational amplifier
to eliminate any such offset. This amounts to installing a 10 k2 trim pot between the

appropriate pins (1 and 8) of the OP627 and adjusting it until a grounded servo input
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causes 0 output from the integrator. Failure to trim an integrator properly causes the
integrator to rail at £15 Vdc; thus, preventing the piezo from getting an error signal

that properly indicates proximity to a resonance condition.

5.2.3 Invertor Stage in Piezo Branch

Because the polarity of the error signal can be changed by changing the frequency at
which the EO modulates and because extra stages (which could change the polarity of
the branch) might be added to the piezo branch, it is helpful to be able to change the
overall polarity of the piezo branch. To this end, we added an invertor stage, which

allows the polarity of the piezo to be changed by flipping a switch.

5.2.4 Integrate Switch

The purpose of the integrate switch is to start integrating the error signal in the piezo
branch. This can be (and has been) done several ways. We have chosen to place the
integrate switch in series with a resistor which is parallel with the integrating ca-
pacitor. When the switch is off, the resistor remains in parallel with the capacitor,
forming a low pass filter. When the switch is on, the resistor is taken out of the circuit
and the op amp begins integrating. The choice in the value of the resistor determines
what signal the piezo sees when the integrate switch is off. We can either choose to
have the integrator stage low pass when the integrate switch is off, which will result
in some feedback to the piezo or we can choose to have it put out little to no voltage,
eliminating feedback to the piezo with the switch off. Originally, we chose to have the
integrator stage low pass, because the low pass feedback seemed to make it easier to
lock. The thought was that sending too much of an impulse to the piezo (by going from
no feedback to massive feedback) could cause the AO lock to be lost. We later decided,
however, that it would be better if the integrator put out no voltage when the integra-
tor switch is off. This is accomplished by choosing a resistor that is much smaller than
the input resistor. Having feedback going to the piezo with the integrate switch off

turned out to complicate the locking process instead of helping it, as was previously
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thought. If the integrator is trimmed properly, if the DC offset of the error signal is
properly eliminated, and if the gain is adjusted correctly, going from 0 piezo feedback

to integrated feedback works very well.

5.2.53 Managing the DC Offset of the Error Signal

As is evident from Equation 7.2, the error signal has a DC offset. Appropriately man-
aging the DC offset of the error signal turned out to be the largest stumbling block
in this experiment. The DC offset comes from residual amplitude modulation by the
EO and is affected by a large number of factors including EO alignment, laser power,
modulation depth, RF power applied to the EO, and certain cavity parameters. This
offset affects both branches of the servo. Since the piezo branch has very high gain at
DC (~ 120dB), it is extremely sensitive to DC offset. From practical experience, locking
with the piezo branch requires that the DC offset be zeroed to within tens of millivolts.
Inadequate zeroing causes the piezo branch to integrate the DC offset instead of the
error signal, which causes the piezo branch to send maximum voltage to the piezo,
quickly pushing the cavity far off lock. A simple way to zero the error signal offset
is with an adjustable offset adder on the input of the servo. Beyond merely causing
the integrator in the piezo branch to rail, a DC offset on the error signal can cause
problems common to both branches. It seems counter-intuitive that it should affect
the AO branch, since it is AC-coupled and is, on that account, seemingly insensitive to
DC offsets. The problem is that a DC offset of sufficient magnitude can cause the error
signal to have no zeros. For example, if the DC offset were greater than the amplitude
of the main resonance peak, the error signal would never be zero and the servo would
not be able to lock. Even in the AC-coupled AO branch, a significant offset could dis-
tort the form of the error signal due to significant amplification before the AC-coupling

capacitor.
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5.2.6 Adding the DC Offset

Both the AO and the piezo require a unique DC offset in order to function properly.
Any noise on the DC offset to either the AO or the piezo translates into noise on the
lock signal; therefore, it is imperative that each DC offset be as quiet as possible and

not prone to drift.

5.2.6.1 AO Branch

The DC offset sent to the AO VCO determines the frequency of the standing wave in
the AO crystal. The optical alignment of the beam through the AO crystal is very
sensitive even to small changes in the AO frequency; therefore, the beam must be re-
aligned after changing the AO frequency. The DC offset to the AO was originally added
via an offset adder powered by a battery. This had the advantage of being very quiet
and stable; however, was thought to be inconvenient. In the last version of the servo,
the offset was added in the last stage of the AO servo via a stable voltage source (LM
399). This was more convenient and very quiet, but had the disadvantage of changing
the DC offset by tens of millivolts each time the lock switch was turned on, due to
non-ideal performance of some operational amplifiers. Although this phenomenon was
far from ideal, it was manageable. If another version of the servo were built, it would

definitely be better to add this offset via an external offset adder.

5.2.6.2 Piezo Branch

On a coarse scale, the length of the piezo and the position of the second cavity mir-
ror are controlled by the DC offset going to the piezo. This offset must be manually
changed to get the cavity near resonance before attempting to lock. This offset was
originally added via a commercial high voltage amplifier (New Focus 3211) whose out-
put impedance was optimized for driving large capacitative loads, such as a piezo.
This amplifier had the advantage of being well impedance-matched but was extremely
noisy. The next attempt was via a high voltage battery and an adjustable voltage di-

vider circuit. This method was very quiet but the output impedance from the voltage
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Figure 5.11: High-Voltage Amplifier

divider combined with the capacitance of the piezo to form a low pass filter a pro-
hibitively low frequency, forcing the piezo branch to close at a significantly lower fre-
quency than had been intended. This particular phenomenon was another significant
stumbling block, largely because it went undetected for a long time. The final method
of adding the DC offset was via a home made high voltage amplifier circuit whose out-
put impedance was optimized for driving large capacitative loads. A schematic of this

circuit is shown in Figure 5.11.

5.2.7 60 Hz on Error Signal

The presence of 60 Hz noise on the lock signal proved to be another significant stum-
bling block. It was first thought that this noise came from a ground loop in the servo.
Much time was spent checking solder connections in the servo and in examining all
relevant electronic and optical components for 60 Hz noise. After several months, it
was determined that the servo was responsible for this noise, and a new version of
the servo was built. The 60 Hz noise was still present on the lock signal with this
new servo. All electronic components were once again checked for ground loops and 60

Hz noise. The source was still not identified; therefore, the determination was made
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to install a differential amplifier at the input of the servo. The error signal from the
BNC connector is sent to the non-inverting input of the differential amplifier and the
ground/negative of the BNC connector goes to the inverting input. In this arrange-
ment, the servo conditions and amplifies the difference between the error signal and
its ground, eliminating any possible differences between the ground plane of the servo

and that of the error signal. The differential amplifier did eliminate the 60 Hz noise.
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Chapter 6

Cavity-Enhanced Measurements

6.1 Measurement Methodology

The primary advantages of cavity-enhanced spectroscopy over single pass or other
multiple-pass, 'pulse’ techniques are: (a) significantly increased interaction distance

and (b) real time’ observation.

6.1.1 Beer-Lambert Regime

Standard, single-pass absorption spectroscopy uses the so-called Beer-Lambert Law
to determine the power loss due to absorption. Given a sample of absorbers with
concentration, C, (moles/liter), and molar extinction coefficient, ¢, (M 'cm—1), in a
conventional, single-pass spectrophotometer. The sample is in the path of an optical
beam of power, P. The reduction in optical power due to absorption, dP, is equal to the
incident power multiplied by the absorption caused by the population of absorbers in

a cross-sectional slice of the beam of thickness, dz.
dP
dP = —Pe,Cpdz = - = —€qCodz 6.1)

Integrating both sides, we have:

P L
/ a__ / ¢aCadz 6.2)
0

Pinc
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In( P

inc

) =—€,Col = P = })ince_eacaL (6.3)

AP . Pinc - P -1— e(—-eaCaL)

AbSOT'ptionfractional = =
FPine Pine

(6.4)

6.1.2 Fabry-Perot Regime

Analogously, in cavity-enhanced spectroscopy, the circulating power within the cavity
at any time, P(t,:), can be expressed in terms of the circulating power during the

previous round trip is:
Prire(tirg) = Prire(t(re—1))e 0701702 6.5
circ\l(rt)) = Leirc\l(rt-1))€ (6.5)

where 4§g is the round trip loss factor, expressed as ogpp previously. The reflectivity of

the cavity mirrors can also be written in 'delta notation”:

1
6 = In(—) (6.6)
T
The absorption per round trip is:
Absyy = APeipe = Pcirc(t(rt)) - Pcirc(t(rt-l)) = Pcirc(t(rt—l))(l - 6_50) (6.7)
AP,
Abs,(fractional) = ——T¢ =1 — =% (6.8)
t(f ) Pcim(t(rt—l))
8o can be directly related to the terms in (6.4):
50 = QQp = eaCaL (69)

We conclude that o is equal to C,e,, understanding that the intra-cavity path length
per round trip is p.
6.1.2.1 Cavity Enhancement

In order to calculate the enhancement that cavity-enhanced spectroscopy provides over

free space measurements, we can examine the sensitivity of each technique to small



72
changes in the absorption coefficient. From (6.3), the transmitted power in free space
measurements is:

P = P ek (6.10)

where « is the power absorption coefficient and is equal to ¢Cj¢,. The reflected output

power for a cavity on resonance is:

(7‘% - g’rt)2
P=P, 1 T 6.11)
o r%(l — grt)? (
where g, is
grt = riroe” 3 (D) (6.12)

in a cavity of length, L. We can determine the extent to which the measurement is
sensitive to very small changes in «g, by taking the partial derivative of Pj,. with

respect to agp. In the free space case, we have:

aljinc

= LPe®l = LP,. (6.13)
8040

With a cavity, we have:

dgr
OPpne  —2r3(1— g)2(%ty  2r(1 - g)*(52L)

= P+ P
dag (rf —9)? (rf - g)
_2ril—9)’Lg,, 2ri(1-g)’Lg
(T% - 9)2 (T% - 9)3 (6.14)
g g

=2LP,.]— — —5=—

R r

2
= 2L P (——
TG

If we assume extremely low losses, g-: = 1. We now have:

0Pn. _ 2LP _ 2LPF

da  1-g T (6.15)

The enhancement factor would be the ratio of the two partial derivatives:
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(%)Cavity g r2—1 2F
E=—p-t = 2(1 Hg—) ~ = (6.16)
( Do )freespace -9 ™" —4g ™

6.1.3 Measuring Absorption

There are two ways in which absorption can be measured in cavity-enhanced spec-
troscopy: one while scanning the piezo and the other with the laser locked to the cavity
linewidth. It is possible to apply a positive, sawtooth voltage to the piezo which will
cause the piezo to move roughly equal distances in either direction from the center DC
offset voltage. If the amplitude and offset of the applied voltage are chosen appropri-
ately and the laser is appropriately coupled to the T'E My, mode, a resonance condition
will be consistently satisfied at one point in each cycle of the applied voltage, assum-
ing no significant piezo hysteresis or thermal transients. On resonance, there will be
a peak (a negative peak, in reflection) whose full-width half maximum (A fpw ) pro-
vides an indication of the overall losses associated with the cavity. The finesse, F, can

be related directly to the intracavity losses:

~80/4
m/riree”®/*  Afpgp

F= 1—r1re=%/2 = Afrwaum €.17)
Using delta notation, our expression for finesse becomes:
—(1/4)(61+62-+0)
= 171-_66—(1/2)(61+(52+50) (6.18)
Assuming 9; < 1, we have:
2 (6.19)

F=c—
&1+ 09 + &g
Thus, by measuring the finesse, we can determine the sum of the cavity loss factors.
f
do+614+6=— (6.20)
2n

Using this equation, we can solve for the difference in the intra-cavity loss factors,

assuming that the mirror loss factors do not change between measurements.
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. Fo Fi 2
Aby = dgp — 600 = 5 2—; = m(AfFWHMb — AfrwHMa) (6.21)

This could be helpful in determining the round trip losses caused by a particular con-
centration of an absorber. In such a case, Afrwaum. would be measured with just
solvent in the cavity and would, therefore, be indicative of the losses due to solvent,
etc. A frw gae would be measured with some concentration of absorbers in the cavity
and would be indicative of the losses due to the solvent, etc. and the absorbers. The
advantage of absorption measurements using finesse is that they are not dependent
upon the mode-matching factor. The disadvantages are that our ability to measure
the A fpw m s is hampered by piezo non-linearities, resulting in more uncertainty than
locked measurements. The other limitation is that the cavity field is not continuously
staying at its maximum level.

While the laser is locked to the cavity linewidth, finesse measurements cannot be
made. For a cavity in reflection, what can be measured is %—"‘ff. From 2.22, on reso-

nance, it is:

i 2
Presi _ [ 11— rae”™/? (6.22)
Pine T\1- TIT28—6O/2 .

Using delta notation for the mirror reflection coefficients, we have:

2
Pregi e=01/2 _ ¢—02/2-00/2
Pine - (1 — e—01/2-02/2—60/2 6.23)

Assuming §; < 1 as in (6.19), we can use a first-order approximation:

Prefl — 60+52”51 2
Pinc 51+52+50

(6.24)

Solving for §y, we have:

)6, — b2 (6.25)

If we were to try to solve for a difference in intra-cavity loss factors as in (6.40), we
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would need to know §;. We can solve for §; by determining an average value for F and

%ﬁﬂ with identical conditions in the cavity. From (6.20), we have:

inc

dog+ 8+ = 2‘; (6.26)

Now we can substitute 6.25 into 6.26 and solve for 4;:

_ L _ Prefl
5 =5 (1 <Pmc>> 6.27)

(F) and (%—jﬁ) are the average values of F and %ifc—’ with only dg acetone in the cav-
ity. It was thought that the average of many measurements would provide the most
accurate value for d7.

Now that we know ¢;, we can solve for &y + d> from 6.25,

1 + / Pre fl P
T Pine refl
dg+dy = | ——= |1 — /(== 6.28)
° 2 <f> 1— Preft ( Pine > (
Now we can solve for a difference in loss factors, as in (6.40),
Prez Prez
Tr 1+ Pincl b 1+ ( Pincl )a Prefl
Adg = dgp — d0g = —= —_— | - | —— 1—4/¢ ) (6.29)
<F> 1 _ Prefl 1 _ Prefl Pinc
Pinc b ( Pinc )a

6.2 Error Propagation

Since measuring the Jy due to absorption in cavity-enhanced spectroscopy involves
several different measurements (each of which has an error), it would make sense to
conduct a brief discussion of how errors are propagated from one measurement to the
next. The general formula for propagating the standard deviation in an equation of
several variables, whose variance and standard deviation are known and assumed to

be uncorrelated is:

AF(z,y,2) = \/ (G e(da)? + (G0 20y + (52 6.30)
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The first measurement is of §;, the losses due to the first mirror. From 6.27, we know

that:

™ Prefl
bh=—[1- 6.31)
s ( P >>
Before we calculate the error in determining é;, we first need to calculate the error in

measuring F:

_ Afrsr
F = _AfFWHM (6.32)
AF = | (o 2(dA frsr)® + (TSR (A fewm)?  (6.33)
AfFwHM (Afrwanm)?

Hiresl P

= (6.34)
=J(%)(1—\/%iff))2(dﬂ2 () (EL) 2 r2ye(a Ly

1 + / refl
by + 62 = 61 —V Bine (6.35)

1— Prept
Pine

46, = J(f’-‘s—lw drp + (<20 y2(g ety

From

Our error in measuring dy is:

1 + znc ] a 5 + 5 Pre
d(6o+82) = _|( —Pl J2(d81)? + ( (;preff) 2(d5L)?
1 _ "‘.51 ._1.7—; mnc
- D (6.36)
[ 14/ Bett S(Zety-1/2)  p
— ( Pznc )2(d51)2 + ( Prn.c = 2 d P f )2

6.2.1 Estimating the TEM,, Mode-Matching Factor

Since we are only monitoring the reflected signal in our experiment, there is no direct
way to measure the mode-matching factor. The mode-matching factor is a measure of
how well the incoming beam is mode-matched to the cavity. In all of our models, we

have implicitly assumed that the mode-matching factor is 1, since we had no way of
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measuring it. A way of estimating this factor is presented here.

The cavity finesse, F, can be determined by directly measuring the axial spacing of

T E My modes, A frggr, and the cavity linewidth, A frw s,

Afrsr
F=——" 6.37
AfrwHM (6.37)
and can be related directly to the total cavity losses, L:
27
F=— 6.38
. (6.38)

The total losses stem from the transmission of the cavity mirrors, §; + J2, which is a
function of the quality and number of dielectric coatings on each mirror, the scattering
and absorption losses associated with each mirror, &y, + dg,, which stem from imper-

fections in the surface of each mirror, and other intra-cavity losses, &y which could

other’

come from scattering with or absorption by substances within the cavity.

So, our expression for finesse becomes:

_ 27
- (51-{-52-{-501—!-(502-*-50

(6.39)

other

Assuming that the transmission, scattering, and absorption losses for each mirror do
not change over the course of an experiment, the A frw g of the cavity can be mea-
sured in the presence and absence of the absorber, and related directly to the losses

due to the absorber.

27 2 _ 2T
Fwjabs) Fwio)y Afrsr

(AfFWHM ey — ATFWHM(/0)) = 00, (6.40)

This absorption value is independent of any assumptions concerning the T £ My, mode-
matching factor. Measurements of either the reflected or transmitted power do depend
on such assumptions. In reflection, only some fraction of the incident power, €Pj,.

(0 < € < 1), is perfectly mode matched to the TE My, Gaussian mode. The remainder,
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(1 — €)Pyne, which is still detected, is essentially stray light and must be excluded for

the purposes of determining transmission and loss factors. On resonance:

Prefl - (1 - 6)Pinc _ 507‘ + 52 - 51 2 o 5OT )2 — (_5_01)2 (6 41)
€Pinec &1 + 69 + 50T 81 + 62 + 50T 2]_—? ’

This presents a challenge in determining loss factors, since only P..;; and Py, can be

directly detected. We can estimate ¢ by measuring dy_,, as in (6.40) and comparing that

abs

value to the value that should be obtained from measuring the cavity reflection signal.

Simplifying (6.41) and solving for g,

1 Prefl

__ (2UT N2
E(Pmc_lHl—(%%l) (6.42)
5oy = z;f JR-1) 11 (6.43)

where R is I;Ief Land € is L. Ady,,, is determined by calculating the loss factor in the

presernce 6%) and in the absence 5%) of an absorber is:

A(Soabs = 5OT( ) OT( ) \/ - ]- + 11— = - 1 (6.44)

A(Soabs . ’ o ~_\/‘——‘_“‘———
(e o = J—“p’/ €(Rp—1)+1

(r V(€ (Rp = >+1)+<—>( "(Ra—=1)+1) (6.45)
p
- By = D R = 1)+ D)
Yy 2
(B0 )y 2 32232 = (F )2 (By — 1) + 1) + (F)*(€(Ra — 1) +1)

42 (6.46)
- 2fa}"p\/(e’(Rp — 1) 4 1)('(Ra — 1) + 1)

AF 0 - Ry + (72— Rl + (B2l w252 - (72 - (2
4 (6.47)

= 2FFoy/(€(By — 1) + 1)(€/(Ra — 1) + 1)
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To make the algebra more manageable, we can rewrite (6.47) as:

(a€' +b) = ¢/ (¢/(Bp = 1) + 1)(¢/(Ra — 1) + 1) (6.48)
Squaring both sides, we have:

a?e? 4 2abe’ = ?(¢(Rp — 1) + 1)(¢'(Rg — 1) + 1)
(6.49)
= PRy~ 1)(Ra— 1) + ¢(Ra + Ry — 2) + 1]

?[a® — 2(Rp — 1)(Ry — 1)] + €'[2ab — *(Ra + R, — 2)] + [p? = *] =0 (6.50)

Simultaneously monitoring the cavity transmission and reflection would eliminate the
uncertainty of both the mode-matching factor and the cavity finesse. This will be dis-

cussed further in the final chapter.

6.3 First-Generation Cavity

The first generation cavity was intended merely as a first step in understanding some
of the technical issues involved in making measurements in a liquid-filled optical res-
onator. We also wanted to verify that it would be possible to make solution-based
absorption measurements using cavity-enhanced spectroscopy. This cavity was made
of aluminum, had medium-quality, commercially available mirrors, was designed to
be solvent tight, and contained a single hole through which solvent could be injected.
This cavity did not contain a piezo-electric device with which to change the cavity
length; therefore, it was necessary to scan the laser in order to see a resonance peak.
The Ti:Sapph laser was scanned using a Microlase Optical Systems MBR E-110 Laser
Servo Controller. It controls an etalon within the Ti-Sapph that changes the its fre-
quency by up to 40 GHz in each sweep. During some small time during the scan,
the laser frequency fulfills a resonance condition and the cavity transmits resonant
light from the cavity. This resonant light is what is measured by the oscilloscope and

CCD camera. For ease of alignment, we chose to monitor the transmission power of
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the cavity. The cavity transmission signal was monitored through both a CCD cam-
era and a photodiode whose output was sent to a Tektronix 3032 digital oscilloscope.
The arrangement of transverse modes could be monitored on the oscilloscope and the
resonance peak that corresponds to the T E Mgy, which, in the near-planar regime, is
the lowest-frequency mode in each free spectral range could be identified and maxi-
mized. The CCD camera was particularly useful because the shape of the transverse
mode could be observed as the cavity was aligned to the TEMgy. The TEMy is easy
to discriminate from the higher-order modes, because it is spherical in shape and the
higher-order modes are multi-lobal and generally larger in size.
Once the cavity was properly aligned, the oscilloscope was used to measure the A frw g
of the resonance peak. An EO was used in this setup in order to place sidebands on the
optical signal. In this case, the sidebands were used as a frequency reference by which
to measure the A frywgar. The sidebands were modulated at 20 MHz. Therefore, on
the oscilloscope, the temporal 'distance’ the sidebands is 40MHz. When the A frw s
is measured on the oscilloscope, this temporal ‘distance’ is correlated to the temporal
distance between the center of the resonance peak and one sideband and is ‘converted’
to a true frequency. A complete set of measurements of the A frw g of an air-filled
cavity were made in order to determine the actual finesse of the mirrors between 770
nm and 830 nm, the spectral range of the absorption due to the Qy transition in bacte-
riochlorophyll a (Bchla), the transition in which we are most interested because of the
role in plays in electron transfer in Bchla-containing photosynthetic reaction centers.
We found that the (A frw ga) between 770 and 800 nm to be 2.87 £ 0.25 MHz, which
corresponds to a F of 5335 + 485, confirming that the reflective coating on the mirrors
would give uniform results in the spectral range of interest.
Once the cavity was properly aligned and the cavity parameters were characterized,
our first goal was to make a series of finesse measurements with various solvents in
the cavity, including acetone, hexanes, heptane, methanol, ethanol, isopropyl alcohol,
diethyl fumerate, and water in order to determine the best solvent with which to make

absorption measurements of Bacteriochlorophyll a (Bchla). We found that any solvents
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with a hydroxyl group (which includes water and the alcohols (methanol, ethanol, and
isopropyl alcohol)) absorb or scatter so greatly between 770 nm and 830 nm that the
A frwaym of the transmitted peak could not be measured, because the resonance peak
overlapped with the side bands. The results of measurements with hexanes or hep-
tanes were very promising: the A frw gy was 4.00 MHz at 770 nm. While these results
would make either of these solvents good candidates for use with Bchla, Bchla's poor
solubility in either of these solvents would be problematic enough to preclude using
either of them. The results of measurements with acetone or diethyl fumerate were
roughly equivalent, though they appeared a bit less promising. Bchla has suitable sol-
ubility in both acetone and diethyl fumerate; however, the viscosity of diethyl fumerate
and its tendency to stick to the mirrors makes it less suitable than acetone. All things
considered, acetone was chosen as the best solvent for making measurements with
Bchla. The (F) with acetone was 2828 + 253. This represent a 47 percent reduction in
F, which is less than ideal, but the best we could do at the time.

We wanted to make some preliminary measurements of Bchla absorption in this cav-
ity, to be sure that the cavity would provide roughly the anticipated enhancement fac-
tor. Our initial measurements were at concentrations comparable to what the UV/VIS
Spectrophotometer requires (25 to 100 1 M). We found that these samples were far too
concentrated for our apparatus, since we could not even observe a resonance peak at
those concentrations, indicating that the losses due to absorption were higher than the
mirror reflectivities. The transmitted intensity can be expressed in terms of the loss

factors [23]:
Itrans ~ 451(52
Iinc (50 + 51 + 52)2

(6.51)

Assuming equal mirror reflectivities and no internal losses, this ratio would be 1. As
the intra-cavity loss factor (dy) increases to above the mirror reflectivities, the ratio
rapidly approaches 0. After a number of attempts, a 2.0 uM solution of Bchla in acetone
was injected into the cavity. The resonance peak with Bchla and acetone in the cavity is

shown in Figure 6.1. The A frw g was determined to be 8.73 MHz, which corresponds
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Figure 6.1: Transmission Peak from First-Generation Cavity
to a F of 1264. The losses due to absorption of Bchla is merely:
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These losses correspond to a molar extinction coefficient of 30.43 mM~! cm~!. These
preliminary investigations demonstrated that cavity-enhanced spectroscopy could be
used to make very sensitive absorption measurements. The next step would be to
build a cavity with the best possible mirrors and in which the resonance condition can
be maintained continuously by locking the cavity. This cavity should also allow for the
injection of solvent and absorbers with minimal disturbance to the cavity so that 'real

time’ absorption measurements can be made.

6.4 Next Generation

The second generation cavity, servo, and optical setup have been described in some
detail in the previous chapters. To avoid redundancy, in this chapter we will limit
our discussion of these systems to topics that relate directly and practically to making

measurements.
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6.4.1 Locking the Cavity

The most important aspect of cavity-enhanced spectroscopy is locking the cavity: it also
turned out to be the most difficult. The general procedure for locking the cavity with
air or solvent is similar. The key point in the lock procedure is managing the DC offset
of the error signal. A number of methods of dealing with this offset were attempted;
however, the best practical solution was to use a DC voltage offset adder/subtractor.
The starting point for attempting to lock the cavity is to be monitoring the reflected
DC voltage and the error signal on an oscilloscope and to be scanning the piezo. The
DC offset to the piezo should be adjusted so that the resonance peak and error signal
are in the middle of a scan (triggering on the piezo scan voltage). We tended to scan at
a few hertz and with the lowest practicable amplitude (which is set by the amount of
drift in the resonance peak with respect to the scan voltage, caused by some thermal
effects and by piezo hysteresis). Another very important factor is the phase of the error
signal. This is different for each experimental setup; however, the error signal must be
negative on the high frequency side and positive on the low frequency side. The phase
of the error signal (i.e. whether the error signal is positive on the high frequency side
or the low frequency side) can be changed by adjusting the DC voltage to the EO VCO
(which changes the fgo). It should also be noted that changing the fzo can affect the

amount of noise the EO adds.

The next step in the locking procedure is to record the DC offset voltage to the piezo
and then turn off the scan signal (which reduces the voltage to the piezo by the aver-
age amplitude of the scan voltage). The DC offset on the error signal should then be
minimized to as close to zero as practicable. The best test of whether it was sufficiently
zeroed is to flip the integrate switch and observe how quickly the integrator increases
the voltage to the piezo. The more slowly the integrator integrates, the better zeroed
the error signal DC offset. The DC offset should be adjusted until the integrator volt-
age either does not move or moves very slowly. At this point, the DC offset to the piezo

should be returned to the recorded voltage (i.e. its value before removing the scan
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voltage). As the voltage gets closer to that value, the DC reflected voltage will tend
towards the top/bottom of the resonance peak (depending upon whether the photode-
tector gain is positive or negative): the New Focus detector we used had a positive gain
(which means the reflected peak is below baseline) and the Hammamatsu detector has
a negative gain (which means the reflected peak is above baseline). A fine adjust to
the piezo DC offset is helpful at this point. Only having a single potentiometer to ad-
just this voltage will make it unnecessarily difficult to get this offset voltage to the
appropriate value. It should be possible to adjust the piezo voltage such that the re-
flected voltage is staying at resonance most of the time. At this point, the output of
the AO servo should be sent to the AO so that the AO locks. This can be conveniently
done with a "lock switch” that connects the output of the last stage in the AO servo to
the AO VCO. The precise gain values in either branch must ultimately be determined
empirically, based upon optical power, noise, etc. Once the AO servo has grabbed, the
piezo branch of the servo should be connected to the piezo. In our setup, this amounts
to flipping an "integrate switch,” which initiates integration (with the integrate switch
off, there is a resistor parallel to the integrating capacitor, which causes that op amp
to low pass at extremely low DC gain). At this point the cavity should be locked.

A locked cavity is susceptible to low-frequency vibrational and thermal noise, partic-
ularly when the cavity or components connected to the cavity are touched during an
experiment. This requires very high gain at low frequencies. Our piezo branch gain
was adjusted several times to enable the servo to keep a lock during strong vibrational
transients. In fact, our servo would even remain locked while tapping on the cavity.
Figures 6.2 and 6.3 present a comparison between unlocked and locked reflected power
from an air-filled cavity with the Ti:Sapph etalon high voltage supply disconnected.
The high voltage supply to the Ti:Sapph etalon was identified as the source of signifi-
cant frequency noise at 160 kHz, particularly in the face of amplitude noise for several
sources. Our initial solution was merely to disconnect the etalon voltage. The disad-
vantage of doing this is that the Ti:Sapph is susceptible to mode hopping or being in

more than one mode at a time. If this happens while the cavity is locked, the lock
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Figure 6.2: Unlocked and Unfiltered Lock On Tektronix Digital Scope

will almost certainly be lost. These data were taken with the Tektronix TDS3034B
Scope (9 bit resolution, 10,000 sample maximum) and a 125 MHz New Focus photode-
tector (1801-FS) with air in the cavity. In Figure 6.3, the comparison is between the
lock signal and the unlocked signal, both filtered at 20 MHz by the oscilloscope. The
unfiltered lock signal is clearly noisier than the unlocked signal (by a factor of approx-
imately 6). Figure 6.2 compares the locked signal filtered with a 10 kHz low-pass filter
with the unlocked signal filtered at 20 MHz on the scope. The filtered lock signal is
significantly less noisy (by a factor of 6.6) than the unfiltered signal. Filtering at 10
kHz or lower is justified in our experiment, the only transients we will be observing
are less than 1 kHz (i.e. on the diffusion timescale). Motivated by a desire to minimize
photobleaching and intensity-related thermal effects within the cavity by minimizing
the incident optical power, we decided to rethink our photodetection scheme. The New
Focus photodetector has much more bandwidth than we needed (i.e. 125 MHz) and
was not designed for low power applications. We decided on a photodetector that was
designed for low power application (i.e. in the hundreds of nW and below). With this
detector, the resonance peak had an amplitude in the range of 3.5 to 4.5 volts just be-
low maximum input power (as opposed to approximately 100 mV with the New Focus
detector with tens of W of optical power). We also decided that a more sophisticated

photodetection scheme was warranted. Instead of taking data on the Tektronix oscil-
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Figure 6.3: 10 kHz Filtered Lock and Unlocked

loscope, we chose to use a Gage Compuscope 14100 data acquisition card. In addition
to being of superior quality (i.e. the card has 14 bit resolution, 128 Mbytes of memory,
and a sampling rate of up to 100 MS/s), the Gage data acquisition card was procedu-
rally easier to use. We wrote some MATLAB code that specified all of the necessary
data acquisition parameters and could initiate data acquisition by pressing a single
button. This board could take data for several hours (whereas the oscilloscope could
only record 10,000 data points).

Figures 6.4 and 6.5 were taken with the Hammamatsu photodetector and the Gage
data acquisition board, controlled by MATLAB (sampled at 60 Hz). In Figure 6.4,
there is only air in the cavity. In Figure 6.5, the cavity was filled with dg acetone. We
found ds acetone to be nearly optically transparent between 770 and 800 nm, whereas
regular acetone increases losses roughly by a factor of 3.

This might be a convenient time to discuss the special procedures for filling the cavity
with solvent and locking under those conditions. The main concern in filling the cavity
with solvent is that there be no air bubbles in the beam path. This is particularly

difficult to determine the first time a cavity is filled, since some amount of realignment
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is necessary after filling (i.e. the absence of modes within a filled cavity may be due
either to air bubbles, misalignment, or both). The need for realignment is not so much
due to changes in the parameters of the Gaussian mode in the cavity as it is to simple
optical alignment. For example, if ‘'perfect’ alignment with air in the cavity required
that the beam hit the first mirror at a slight angle (due to the cavity mirrors not being
exactly vertical), introducing acetone into the cavity would require a change in such
an angle, because the index of refraction inside the cavity would be higher (i.e. there
would be less refraction at the inside surface of the first mirror). The geometry of the
cavity will dictate how best to fill it to avoid air bubbles. For our cavity, filling from the
bottom up by suctioning through the top was the best way to avoid bubbles. If using
regular dg acetone, another significant issue becomes the hygroscopicity of acetone.
This is particularly a problem in the range of 770 to 800 nm, since water seems to
absorb significantly. Even the smallest amount of water or deuterated water (i.e. a few
volume percent) introduces significant intra-cavity losses. The best solution is to keep
the dg acetone (and the cavity, if possible) under nitrogen.

Locking with solvent in the cavity is more difficult than locking with air in the
cavity. The main reason would seem to be that there are significant solvent-mediated
thermal transients. Another possible reason may be solvent-mediated non-linearities
in piezo action. At any rate, the procedure for locking a solvent-filled cavity varies
primarily in the gain requirements and the sensitivity to low frequency transients. In
the initial attempts to lock with acetone in the cavity, the piezo gain seemed to be too
low (i.e. the lock was lost during transients which would not have much affected the
lock of an air-filled cavity). Increasing the gain in the piezo branch (by a factor of 10)
(and associated adjustments to the AO branch to ensure stable crossing of the transfer
function of each branch) resulted in the ability to lock stably. Having the piezo branch
gain adjustment at maximum when beginning to integrate reliably resulted in a good
lock. The most notable feature of Figure 6.5 in comparison to 6.4 is the presence of

stronger low frequency transients (almost certainly thermal).
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6.5 Injection

The measurements we made on a concentration series of Bchla in dg acetone involved
measuring the finesse of the cavity and measuring the reflected power before and af-
ter injecting Bchla into a locked cavity. Measuring the finesse amounts to measuring
the A frwua and the A frgr. As was discussed in 6.20, the finesse measurements are
representative of the total losses within the unlocked cavity at the time of the mea-
surement. The limitation of finesse measurements is that they represent a snapshot
of the losses. The errors associated with measuring the A fry s are mostly informed
by non-linearities in the piezo scan and, to a lessor extent, by instablities/noise on the
EO VCO (which sets the frequency of the side bands, which are used as a frequency
reference in measuring the A frw gar). Another contributor is the jitter in the relative
frequency of the laser/cavity on the timescale of the piezo ramp through resonance.
Finesse measurements are also prone to errors in measuring the A frgr. The most ac-
curate way to measure the free spectral range is to disconnect the piezo from its voltage

source and manually tune the Ti:Sapph Servo Controller etalon. This requires the use
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of a wavemeter (such as the Burleigh WA 1500) to record the optical frequency at each
free spectral range. The basic procedure is to turn adjust the etalon until a resonance
is observed on the reflected DC voltage (much like what was observed when adjusting
the piezo DC offset when locking) and record the optical frequency and then tune un-
til another resonance is observed and record that optical frequency. The difference in
optical frequencies will be the A frgg.

Injecting solvent into a locked cavity is a very delicate procedure and took many itera-
tions to find a protocol that worked reliably. The first requirement is to know the vol-
ume of the cavity precisely, since this is the volume into which the concentrated sample
of Bchla will be diluted. The goals of the injecting procedure are to ensure that all of
the injected volume enters the cavity and that the volume reaches the beam volume as
quickly as possible with the least amount of vibrational and flow-related disturbance.
The best practical method turned out to be using the smallest glass syringe available
(1 cc) with a 10 inch spinal needle. The larger syringe was removed and the spinal
needle was inserted through the tubing and as deeply through the metal fitting into
the cavity as possible. An important factor here was appropriate stabilization of the
syringe and tubing. Two separate clamps stabilized the syringe and another stabilized
the tubing between the syringe and the cavity. As a first test, the cavity was locked
and 100 pL of straight dg acetone was injected into the syringe and allowed to enter the
cavity by gravity. This caused no perceptible transients. Next, the same amount of dg
acetone was placed in the glass syringe and forced through with the syringe plunger.
This caused significant transients, but the lock was not lost. With this information, we
made our first attempt at injected a concentrated sample of Bchla into a locked cavity.
We tried 'gravity’ injection and forced injection. The advantage of gravity injection is
that it causes the least vibrational and flow-related transients. The disadvantage is
that it took an unpredictable amount of time for the Bchla to reach the beam. An ex-
ample of gravity injection is provided in Figure 6.6.

At the beginning of the experiment, a dg acetone-filled cavity is locked and the APD

voltage from the cavity begins being recorded. A concentrated sample of Bchla is grav-
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Figure 6.6: Bacteriochlorophyll a Absorption

ity injected into the locked cavity. After some amount of time, the Bchla diffuses
through the dg acetone within the cavity. As it enters the beam volume, it causes
the APD voltage to fluctuate as it decreases to its new equilibrium value. The higher
APD voltage(+66.1 mV (£ 48.2 mV)) at beginning of the figure (to the left) reflects the
pre-absorption phase and is, therefore, indicative of the losses due to the two mirrors
and to dg acetone . This voltage can be converted to %‘:ﬁ, from which the losses can be
calculated directly using (6.25). The lower APD voltage at the end of the experiment
(to the right) (-561.7 mV =+ 25.6 mV) represents the absorption phase and corresponds
to the losses due to the two mirrors, dg acetone, and the Bchla. The losses due to Bchla
alone can be determined by calculating the intra-cavity losses due to dgs acetone (given
by the higher APD voltage) and subtracting that value from the losses due to dg acetone
and bacteriochlorophyll (given by the lower APD voltage), the assumption being that

the losses associated with each cavity mirror do not change during the experiment.

d0Bchla = 6O(acet0ne+Bchla) - 50(acetone) (653)
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This turns out to be a particular application of (6.29). Overall, we have:

6OBchla = 5OBchla+acet0ne - 6Oacetone

Pre Pre
_ i 1+ ( ij;l )Bchla+acet0ne _ 1+ (Tnfcl)acetone |:1 _ <Prefl >
F P‘ref Pre P
< > 1- ( pmcl )Bchla+acetone 1- (ﬁ%)acetone me
(6.54)

Figure 6.7 presents an example of series of forced injections of Bchla into a locked
cavity. The injection time is indicated by an arrow. The first injection was the most
strongly forced of the three depicted in the the figure, as evidenced by the increased
noise at the beginning of the trace. This represents a combination of vibrational and
flow-related noise due to the force with which the Bchla was injected. Due to the force
of the injections, the cavity momentarily lost lock several times during the experiment
(as evidenced by the high amplitude excursions of the DC reflected voltage). Despite
the noise, it is clear in this figure that the DC reflected voltage deceases and reaches
a new steady-state value after each injection, indicating a concomitant increase in the

intra-cavity losses.

6.6 Data Summary

The goals of this experiment are (a) to use a cavity-enhanced spectroscopic device to
measure the absorption due to a known concentration of Bacteriochlorophyll a (Bchla)
in real time and (b) establish the overall sensitivity of the device. The overall sensi-
tivity of the present device at measuring Bchla absorption is summarized in Figure
6.8. Numerous concentrations of Bchla (determined as series dilutions) were intro-
duced into a locked cavity and the overall intra-cavity losses due to Bchla absorption
(8oBechia) Were measured as described above. A plot of these losses as a function of
[Bchla) is presented as is a best linear fit of them. The normalized slope of a best fit
from free-space, single pass measurements is also presented to demonstrate that the

cross section for absorption agrees with the value obtained from conventional measure-
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Figure 6.7: Multi-Injection Transients

ments. The sensitivity threshold of this device was determined to be approximately
54.8 pM based upon the normalized residuals in Figure 6.9 and upon an effective sam-
pling bandwidth of 1 kHz. At concentrations below 54.8 pM, the normalized residuals
increased significantly (11.0pM (9.3), 1.1pM (12.5)) from the mean (7.76e-2), indicating

that those measurements are beyond the sensitivity of this device.

From Figure 6.8, the enhancement factor of cavity-enhanced spectroscopy over free

space measurements with the same interaction length is not immediately obvious. In

Py
Figure 6.10 the slope of the log(F) versus concentration of Bchla is presented for both

1
free space and cavity-enhanced measurements. The main feature of this figure is the

ratio of the slopes. It represents the enhancement factor of cavity-enhanced measure-
ments over free space measurements. The actual difference in slopes presented in
Figure 6.10 is 19,242, which is within eleven percent of the predicted enhancement

factor of 2F /m (21,645). The primary purpose of this figure is to demonstrate that the
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actual enhancement factor is of the same order of magnitude as the predicted factor.

Figure 6.11 shows the round trip losses due to various concentrations of Chlorophyll a
at 771 nm. These losses were computed by measuring the A fs, 4., of the cavity reso-
nance in the presence of various concentrations of Chlorophyll a and the A frw s in
the presence of acetone alone, as described in equation 6.52. The structure of Chloro-
phyll a is very similar to the structure of Bacteriochlorophyll a, but its @, absorption
peak is 100 nm lower (670 nm) and is not purported to absorb appreciably at 780 nm.
The purpose of the figure is to demonstrate that the losses we report are due to ab-
sorption by Bchla are, in fact, due to absorption and not scattering. At concentrations
50 times higher than the concentrations of Bchla we measured, Chlorophyll a, on av-
erage, causes no measurable loss. This result supports our conclusion that the losses

we measured due to Bchla are due to ¢, absorption.
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Chapter 7

Noise Considerations

The primary concern in an optical technique such as cavity-enhanced spectroscopy is
the control and minimization of all sources of noise: electronic, vibrational, thermal,
and laser-associated (which includes amplitude, frequency and shot noise). Electronic
noise is associated with power supplies, electronic circuits, and photodetectors. Vibra-
tional noise can be caused by movement on or near the optical table and even by air
currents from a nearby fan or air conditioner. The main causes of thermal noise are
localized heating in the solvent and on the mirrors and fluid flow-related transients.
Our lock servo was designed to control all frequency noise in the bandwidth within
which we are interested. Shot noise is unavoidable and will be discussed in a later
section. Amplitude noise can be associated with the laser itself or can be added by
electro-optical elements such as an EO or an AO. In our previous models of the optical
beam, we did not consider amplitude noise; however, it might be useful to do so here,
since it can become a significant component of the error signal and DC reflected signal

and must be properly addressed.

7.1 Amplitude Noise

7.1.1 Error Signal

Despite our best attempts at aligning the EO, some residual amplitude modulation at

the fpo(Q) remains. A simple model for the effect of the EO on the incident field would
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be:

Eipe = Eget@t+8sinl0) (1 4 esin(Qt)) (7.1)

where ¢ indicates the extent of amplitude modulation. Although this may seem in-
nocuous in so far as it is at a frequency beyond our bandwidth of interest, it adds a
component to the error signal we had not anticipated. Following the same procedure
as we did in Chapter 2, we come up with our final expression for the error signal with

amplitude modulation:

E = —2E3Vo.i(B)Jo(B) cos(0(,£))(1 + %)

5
TAfFwHM
(__éi_)2 n (1__&)2 (7.2)

AfawHM 1—rirge— 0P

2
—of
1+ (AfHWHM)

+eEIVo | | 277(8) + Jo(8)®

The important result here is that the error signal has a DC component due to residual
amplitude modulation. We can see that the DC offset is affected by laser power, mod-
ulation depth, the extent of amplitude modulation, proximity to resonance, and cavity
parameters such as mirror reflectivity, intra-cavity losses, etc. This DC offset must be
appropriately managed when trying to lock the cavity, as discussed in the section on

servo design.

7.1.2 DC Amplitude Noise

In considering noise on the DC reflected signal, we make our model one degree more
sophisticated. This time we consider both the EO and the AO. As before, we con-
sider the optical field after one pass through the EO (with frequency @ and amplitude
modulation fraction €); however, we also consider the 2 passes through the AO (with

frequency Q' and amplitude modulation fraction ¢'). Our model for the reflected field
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is:

Erest = Eo(J1(B)F(w + 29 + Q)expli(w + 20" + Q)t] + Jo(8)F(w + 20 expli(w + 20 )]
— JUB)F(w + 20 — Qexp[i(w + 20 + Q)t])(1 + esin())(1 + € sin(Q't))?

(7.3)

The reflected intensity will have the same form as the ideal case, except for the ampli-

tude modulation terms.

Loyt = E2(2J2(8) + Jo(8)? | F(w+29) |2
+ 4o 1iS(F (w + 2Q ) sin(Qt) (7.4)

+ 2J2c0s(204))(1 + esin())2(1 + € sin(Q't))*

Since we are interested in examining the noise on the detected signal rather than
the mixed-down error signal, it would be helpful to substitute our previously-derived
expressions for the reflection coefficient:

(k) + (55 =)
_ —aQ
Lest = E3(2J3(8) + Jo(B)? mRE

2
__of
1+ (AfHWHM>

dw e‘”OP/Q(l - r%) . (7.5)
— 4.JgJp N — ( —— sin(Qt)

+ 2J2c05(20))(1 + esin(Qt))*(1 + ¢ sin(Q't))?

The first two terms are at DC and contain the resonance signal and side bands. The
third term, when mixed down with the EO LO is what gives us our error signal. It
comes from the beat of a side band with the resonance signal. In its raw’ detected
form, it is modulated at the frequency of the EO LO ( 36 MHz). The last term comes
from the beating of the sidebands with each other and is at two times the frequency of
the EO LO. The latter two terms are high enough in frequency that it is quite easy to

filter them out; therefore, they will not be given further consideration. The amplitude

2 13(€)?
modulation added by both the AO and EO add DC noise terms in —

5 4,amd
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(€)4(e)?
. The first two terms are only in the square of the modulation fraction and

contribute to the noise on the DC reflected signal.

7.2 Noise Sources

Our actual sensitivity was 1.20 x 10~7/v/Hz (Absorbance = 5.21 x 1078 /\/Hz) which
is approximately 618 times higher (i.e. worse) than the expected sensitivity in a shot
noise-limited regime. In addition to the aforementioned amplitude noise, the sources
of noise that kept us from reaching the shot noise limit were frequency noise on the
Ti:Sapph laser (largely from a strong 160 kHz noise from the etalon HV), several
thermal-mediated noise sources associated with the cavity, vibrational noise on the
optical table, and electronic noise introduced by the lock servo. The frequency noise
on the Ti:Sapph could be reduced either by optimizing gain settings the Ti:Sapph or
by building a separate lock servo. Vibrational noise could be reduced by improved vi-
brational damping on the cavity mount and on the optical table. One possible solution
would be to build a box around all of the components in the experiment and devise a
way of injecting solvent through the box. The electronic noise introduced by the servo
could be significantly reduced with a better-designed and more sophisticated servo.
The thermal mediated noise could be reduced in several ways. The first is to make
a cavity that is made of a solvent-safe polymer as opposed to stainless steel. Metal
conducts heat well; consequently, having a metal cavity almost certainly contributes
to thermal noise. Another possible solution is to conduct the experiment at a lower
temperature, perhaps as low as the sublimation temperature of dry ice (-78.5 °C). The
flow-mediated noise that is encountered during the injection of absorbers into the cav-
ity could be reduced by improving the injection apparatus. For example, a thin tube
could be inserted into the cavity and positioned in the vicinity of the beam path. Ab-
sorbers could be delivered through that tube with a micro pump, causing much less
turbulence than the present setup. In summary, all of the sources of noise could be

significantly reduced, in theory, all the way to the shot noise limit. Gas phase cavity-
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enhanced spectroscopic measurements have been made at the shot noise limit. [15]

7.3 Amplitude Servo

In order to eliminate amplitude noise introduced by the AO and EO and present on
the Ti:Sapph, an amplitude servo was built, as illustrated in Figure 7.1. This servo
essentially compares a stable DC voltage to the output from a photodetector that is
downstream of the AO and attempts to eliminate that difference (the assumption be-
ing this difference in voltages is due to amplitude noise). The servo accomplishes
this through a voltage-controlled attenuator, which attenuates the voltage going to the
AO VCO. This attenuation causes a change in the AO frequency and a concomitant
change in the optical power transmitted through it. This servo made it possible to lock
the cavity with the etalon high voltage source connected, largely because it removed

amplitude noise that was adding to the 160 kHz.
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Figure 7.1: Amplitude Servo
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7.4 Shot Noise

Shot noise is an intrinsic property of photon detection and is the one type of noise
that cannot be circumvented by manipulating detection conditions. Therefore, it is
considered the fundamental noise floor in photon detection. In the simplified case in
which an optical beam of frequency, v, and power, P, is incident on a photodetector that

is assumed to have no dark current, the rate at which the photons are detected is:

_npP

=1 (7.6)

where 7 is the quantum efficiency of the detector. The average number of photons

arriving in a time interval, T, is:

_nPT

(N)=rT W

(7.7)

The actual number of photons that arrive within this time interval will fluctuate
around (N). The probability that precisely N photons will arrive within n identical
intervals (having divided T into n subintervals) is given by the binomial distribution.
(N)/n can be viewed as the probability that one photon will arrive within a single
segment, n, assuming n is sufficiently large.

n! (V)

o) = g (R = S 7.9

Using Stirling’s approximation and taking the continuous limit of this distribution as

n — oo yields the Poisson distribution:

. <N>N : (% " <N> n—N __ e_N<N>N - nn—N <N> n—N
pn(N) - NI nlg}c}o nN(n;N)n_N( n ) - N! nILIIgo (n _ N)n—N (1 n )

_eMN (= SN ey

- N! et (1— %)n—N - N1
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(N) turns out to be the expectation value of N:

(N) oc (N)Ne_<N>

(7.10)
B (N >(N 1) e—(N) B
_ (N)/O RTITAN = ()
The variance of N, ((AN)?), is
(AN)?) = ((N = N)?) = (N?) — (N)? (7.11)
We can easily determine (N)? by expressing N2 as N + N(N — 1):
- /Oo Np(N)dN + /OO(N(N — 1))p(N)IN (7.12)
0 0
By definition,
/ " Np(N)IN = (N) (7.13)
0
and
© (V)N = DIV¥)e ) 1o (W)
/0 (N(N - 1))p(N)dN = / N —/O (N —2)! (7.14)
\ N(N (N(V=2)yg-() , :
wy [T = (V)
Therefore,
((AN)?) = (N) (7.15)

The photocurrent coming from a detector at any moment, therefore, is proportional to
the number of photons that hit the detector within some time interval, 7. The average

photocurrent would be:

(i) = (7.16)
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The noise in the photocurrent is the variance of i(t):

(in)? = {(A))%) = {(i — (i))?) (7.17)

Thus,
) e2{{AN)2
((A9)?) = ——————-«72 1) (7.18)
Using the result from (7.15), we have:
. e2(N
((a02) = <57 (719
Finally, from (7.16), we have:
{(AD)?) = 99 (7.20)
Therefore,
IN = ei_z) (7.21)
where (i) is the photocurrent:
<7> - SPrefl (7-22)

and S is the detector sensitivity

7.5 Minimum Detectable Change in ¢,

If we wanted to determine the minimum detectable change in the absorption coeffi-
cient, o, in a shot-noise limited regime, we would consider an infinitesimal change in
the power incident on the photodetector (in this case, due to shot noise) divided by the
partial derivative of that power with respect to alpha:

. dF,
(Oa)min - P, (723)

da

Since we are considering photodetection, we can write:
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i
da
From (7.21), we know that 4: is:
di=iy = @ (7.25)

From(7.22), we know that the average photocurrent is:

(iy = SP, (7.26)

Therefore, % is:

o 0P, g i1
Z = —2LP,S(—2—
oo Saa L S(l—g) r?—g

) (7.27)

Our minimum detectable o becomes:

Ve/(rSP,)

(00)min = 3 5. (7.28)
2L ) ()

Since §y = aL, our minimum detectable change in §; is:

(660 )mim = (30 L = LLTEF0) ~ (7.29)

2% (522

Although (7.29) would give a reasonable estimate of the minimum detectable dy, we
would like to be more rigorous in our approach, since F, is a function of §;. Therefore,

we will express F, in terms of Jy and then solve for §;.

(50(abs) + (50(other) =+ 62) - 61)2

Po - P'mc (27T/F)2

(7.30)

do(othery iS @ measure of the intra-cavity losses due to solvent, light scattering, etc. and

is assumed to be constant for the purposes of this calculation. Jdy(,,) is @ measure of
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the losses due to absorption. Now our expression for §dy is:

e 7T2

7S Pine (=

(000)min(So(abs) + do(other) + 02 — 01) = ) (7.31)

If we assume that 68 = dp(qps) (i-€. that the SNR is 1), we have:

2
- € ™
(Bo(avs))” + Go(abs) (Bo(other) + 02 — 1) — 4 / ‘T—S:Fm—c(ﬁ) =0 (7.32)

With a finesse of 32,000 and an incident power of 60 nW, the minimum detectable §g
would be 6.10 x 1079 (1.93 x10719/y/Hz . This would correspond to approximately 700
absorbers in the beam volume (given that our cavity has a beam volume of approxi-

mately 11.9 nL).

7.6 Optimization Strategies

The fundamental limit for this technique, given the present state of technology, would
be determined by the shot-noise limit and the technology for making highly reflective
mirrors. The absolute best mirrors would have a F of ~ 1.0 x 10°. This would translate
to mirrors whose transmittivity and losses (7 + £) are equal to 3.14e-6. In a shot-noise
limited regime, with 10 uW of optical power, a cavity enhanced device of roughly the
same length (i.e. 1.75 mm) and mirror radius of curvature (5.0 cm), would have a
detection threshold of approximately 1 x107!2y/Hz,which translates to less than one
strong absorber (¢ = 1 x 10°M ~'em™1)in the beam volume. The largest challenge in
being shot-noise limited with so much optical power (i.e. 10 uW), however, would be the
minimization of thermal noise. Keeping the solvent system under nitrogen definitely
reduced thermal noise. If it were under nitrogen from the initial filling with solvent
until the completion of absorption measurements would likely reduce it even further—

possibly below the shot-noise limit.
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Chapter 8

Future Directions

8.1 Next Phase Instrument

The next phase in the development of cavity-enhanced spectroscopy would involve im-

provements and modifications to the cavity design, photo detection scheme and servo.

8.1.1 Cavity Design Improvements

It is believed that some of the thermal-mediated noise was exacerbated by having a
metal cavity, which conducts heat very quickly. The next cavity should be constructed
of a solvent safe polymer. Our present cavity is very difficult to assemble and reassem-
ble, which added unnecessary difficulty to this experiment. Ensuring that the cavity
finesse remains at the highest possible value requires frequent and careful cleaning of
the cavity mirrors. This cleaning necessitates that the cavity be disassembled; there-
fore, having a cavity that is simple to disassemble and reassemble would reduce the
total amount of time it takes to clean the mirrors and have the cavity realigned. Given
the hygroscopicity of acetone (dg or otherwise) and the degradation in the optical trans-
parency of dg acetone in the presence of even a few percent of water, the cavity and its

associated solvent injection system should remain completely under nitrogen.

8.1.2 Photo Detection

In order to lock the cavity with the Pound-Drever-Hall method, it is necessary to detect

the reflected intensity from the cavity. Our present cavity design only permits the de-
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tection of the reflected power; however, there would be an advantage in detecting both
the transmitted and reflected powers [28]. With our present cavity and photo detec-
tion scheme, our measurement of absorption is dependent upon the measurement of
(F) and the uncertainty of the mode-matching factor €. In measuring both the reflected
and transmitted intensities, we no longer need to depend upon the instantaneous F,
the (F), or the mode matching factor in order to determine the losses due to absorption.

We had expressed the cavity transmission (6.51) as :

P, 45169
= 8.1
Pz‘nc (50 + 51 + 52) ( )

8, and &, are the losses due to transmission (7) of each cavity mirror and §y should be
understood as the sum of losses due to each mirror and any intra-cavity losses. For the

sake of this discussion, let’s rewrite dy:

bo=L1+Ly+ Ly (8.2)

Assuming each mirror has equal transmission and loss and taking into consideration

that the power going into the cavity is only the mode-matched power (¢ FP;,.), we have:

P 4772

= 5 (8.3)

€Ppe (2T + Lo +2L)

With respect to the reflected power, we can rewrite 6.41 with our new notation:
Prefl_(l“e)Pinc _ Prefl_-Pinc +1= (2E+£0)2 5 (84)
€Pine €Pne (2T + Lo +2£L)

Subtracting 1 from 8.4 and dividing it by 8.3 , we have:

 Prest— Pine _ (2T + Lo+ 2L)% — (2L + Lo)? _(T+20)+ Lo 8.5)

P, 4772 T
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We could measure the losses due to absorption by measuring the reflected, transmitted

and incident power in the presence and absence of the absorber:

})z'nc - Prefl _ JPinc " I:)refl)1 — AEO

( 7 )2 — ( 2 - (8.6)

Now we have a measurement of losses due to absorption that is not dependent upon
unknown or error-laden parameters such as (F) or €. The precision of this measure-
ment is only dependent upon the noise on the optical signals and the accuracy with

which 7 can be measured (which has been reported to be a few percent [28]).

8.1.3 Improved Bandwidth

If we were interested in increasing the bandwidth of our experiment, a more sophisti-
cated servo would have to be designed (as discussed in Chapter 4) and a higher band-

width AO would have to be used.

8.2 Reaction Center Absorption Measurements

Beyond the aforementioned technical challenges, the main obstacles to being able to
make absorption measurements on photosynthetic reaction centers are where to place
the reaction centers and how to address the absorption of water at the monitoring
wavelengths. One possibility is to deposit a reaction-center-containing phospholipid
bilayer onto the surface of one of the cavity mirrors. It would be necessary to verify
that the presence of the phospholipid bilayer does not significantly degrade the finesse
of the cavity. Once that is accomplished, the phospholipid bilayer on the cavity mirror
could be supplemented with purified photosynthetic reaction centers and their acces-
sory co-factors and preliminary absorption measurements could be made with them.
Once preliminary absorption measurements are completed, an attempt would be made
to reduce the concentration of the reaction centers in sequential steps until the limits
of the cavity are reached. A simple cavity with high finesse (F = 10°) mirrors has been

constructed and aligned into a new optical setup designed to permit the cavity to be
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placed in a vertical position so that the interior faces of the cavity mirrors are horizon-
tal. This setup allows the phospholipid bilayer to be placed onto a horizontal surface
(i.e. the bottom cavity mirror). A phosopholipid bilayer was placed on the surface of one
of the mirrors in this cavity. The finesse of this cavity was measured with and without
a phospholipid bilayer on the bottom mirror. Preliminary measurements suggest that

the presence of the bilayer only reduces the cavity finesse by approximately 10 percent.

As was mentioned in the introduction, there are a number of events in the well-
characterized electron transfer process in the photosynthetic reaction center that are
of a sufficient duration to be candidates for such measurements, such as the thermally
induced transfer of an electron between QA to QB or perhaps the role of the B’ path-
way in the reaction center, and perhaps the role of the bacteriopheophytin molecules
in electron transfer. Additionally, the cavity could be used to determine the extent
to which the reaction center is rotating within the membrane, by observing the fre-
quency of the oscillations in absorption due to the rotation of the reaction center (and
hence the rotation of the excitation dipole of the chromaphore), assuming the rotation
is slower than the temporal resolution of the cavity. This technique of making single
molecule absorption measurements is, of course, not limited to studying the photosyn-
thetic reaction center. Any molecule that participates in a chemical reaction whose
progress or state can be monitored by absorption measurements would be a candidate

for this technique.
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Appendix A: Derivation of the
Scalar Wave Equation from
Maxwell’s Equations

If we assume a neutral, homogeneous, isotropic medium such as air or glass or an

uncharged liquid, Maxwell’'s Equations are [29]:

V-E=0 (8.7)

V-B=0 (8.8)
VXB:‘—‘E%I;E (8.9)
VxE=—%%l; (8.10)

The first equation (known as Gauss’s Law) merely states that the electric field through
any closed surface is proportional to the charge enclosed by that surface or that the di-
vergence of the electric field is proportional to the charge density. If there is no enclosed
charge, there is no charge density and the divergence of the electric field is zero. The
second equation merely states that the net magnetic field through an enclosed surface
is zero or that the divergence of the magnetic field is zero, since there are no magnetic
monopoles or charges. The next two equations state that a time varying magnetic or
electric field induces an electric or magnetic (respectively) field that is perpendicular
to the plane of the time varying field (which is what the curl ensures). Our goal is to
use Maxwell's equations to come up with an expression that describes the propagation

of the electric field of optical beams; therefore, we want to end up with an expression in
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terms of the electric field alone. Equation (8.10) describes how a time varying magnetic
field induces an electric field perpendicular to the magnetic field. If we take the curl
of this equation, the right side will contain the curl of the magnetic field, which can
be related to a time-varying electric field via Equation(8.9). Therefore, our strategy
will be to take the curl of (8.10) and then to use (8.9) for an expression in terms of the

electric field alone.

1 OB 10
Vx(VxE)=——(Vx =) =—"=(VxB) 8.11)

Now replacing the curl of the magnetic field with the right side of (8.9), we have :

o pe O°E
Vx(VxE)= BT (8.12)
We can simplify by using a vector identity:
Ax(BxC)=A(B-C)-(A-B)C (8.13)

and substituting V for A and B, and E for C, we have:

V x (VxE)=V(V-E) - V2E (8.14)

Since we know that V - E = 0 from Equation 8.7, we have:

V x (VxE)=-V2E (8.15)
Therefore, (8.12) becomes:
o HEO'E _
VE- 5 =5 =0 (8.16)

In order to proceed further, we need a time-dependent expression for the electric field.
We can do this without making any assumptions about the spatial distribution of the
field:

E(qt) = E(g)e™™" (8.17)
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where q is an arbitrary spatial coordinate and w is the angular frequency of the wave.

Taking the second partial derivative of the field with respect to time, we have:

O’E i
o2 —w?E(g)e™*"*

Substituting this result into (8.16), we have:

V2E(q)e™ + E-E(q)e™ = 0= V’E(q) +

We will define the square of the propagation constant, k2, as:

2 _ Hew’

c2

Substituting into(8.19), we have the scalar wave equation:

[A% + k?|eE(q) =0

pew?
2

E(qg)

(8.18)

(8.19)

(8.20)

(8.21)
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Appendix B: Full Scalar Wave

Equation

Let's consider a spherical wave propagating from a point source at the origin; we can

represent the electric field as:

E = E(r,t)

(8.22)

where r = /22 4+ y2 + z2. We can take partial derivatives of this expression in rectan-

gular coordinates as follows:

0F _ oroE
dx ~ Oz dr
_8_2_1?_‘ or 282E 8%r OF

722 =~ 32 32 T ez or

Now, we can evaluate the Laplacian of E(r,t):

24P +2 2E 1 2?2 +y*+ 22 OF

A?[E(r,t)] = (

r2 ) orz r2 I

(8.23)

(8.24)

1 8%E OE

We can see that our final expression for the Laplacian of E(r,t) is merely the second

partial derivative of the product (E(r,t)r) with respect to r:

82
A2E(r,t) = W(rE(r, t))

Our scalar wave equation is now:

82
Fa(rE(r) + kK2 (rE(r)) =0

(8.26)

(8.27)
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A general solution to this equation would be:

e-—z’kr

E(r) = (8.28)

We can see that the electric field and intensity of the wave decrease as the wave propa-
gates from the source. We also note that the radius of curvature of the spherical wave
is . As the wave propagates from a point source, the radius of curvature increases lin-
early. This intuition will be helpful when look for a simplified solution in rectangular

coordinates. This solution in rectangular coordinates is:

e—iky/z2+y>+2?

/$2+y2+22

E(z,y,2) = (8.29)
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Appendix C: The Paraxial
Approximation

For the optical beams with which we are concerned, there is no need to consider the
full three-dimensional propagation of a spherical wave. Our goal is to model a beam
propagating in the z direction with a finite transverse profile. To this end, we will

represent the field as the product of a propagation term and a scalar amplitude, @:
E(z,y,2) = lz,y, 2)e”™** (8.30)

We will now apply the scalar wave equation (8.21) to this expression. First we'll take
the Laplacian of our expression for the electric field.
o*a d*u 9% ou

— 2ik— — k*q)e~ = (8.31)

2~ —tkzy _ 1
Allie™ =55+ 5+ 52~ 2kg;

To this, we will add k2ide~*** and set this sum equal to zero, thus satisfying the wave

equation:

&%u 0% 8% ot

[AZ 4+ K?)E = 5z + 52t e 2k e~*z = 0 (8.32)

We will only consider the x and y coordinates that are just off-axis from z. We will
assume that the beam propagates gently in the z direction with no rapid changes in the
amplitude along the z axis (i.e. no radical focusing of the beam). In this case, the second

derivative in z can be dropped. For most applications, this is a good assumption. This
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is called the paraxial approximation and it gives rise to the paraxial wave equation:
oa  9*a  0u

Although there are a number of mathematically rigorous ways to find a solution to
the paraxial wave equation, a common sense approach will suffice. Let’s consider our

solution to the exact wave equation (8.29) in rectangular coordinates. We can rewrite

it as:
etk 22 +y? 422 e—ikZ\/1+(i:gyz)
E(z,y,2) = === — (8.34)
VY42 z\/1+(—%“’j )
We can expand /1 + %?ﬁ as a Macl.aurin series,
T2 +y2 2 +y2 (I2 +y2)2
1 ~ 1 - 8.35
+ 22 t o 424 + (8.35)
Our expression for the field is now:
2
) ik () D
E(z,y,z) = (8.36)

$2+y2 (z2+y2)2
e e 7 %

If we are considering axial distances that are much larger than the transverse dis-
2 2
tances, i.e. 2> > z? + y2, then £~ < 1 and we can ignore higher-order terms. If we

choose the first two terms in the exponent and in the denominator, we have:

2 2
. _ALZ -+
_ e—-zkze zk—y—zz

E(z,y,2) = (8.37)

$2+y2
z+ 2z
This turns out not to be a solution to the paraxial wave equation, due to the second-
order term in the denominator. In physical terms, eliminating the quadratic term in

:E2+y2

the denominator would seem to makes sense, since we are assuming that 5
z

< 1.

Eliminating this term, we have an exact solution to the paraxial wave equation:
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Cikn ik 2l
. e "*%e 22
E(z,y,2) = — (8.38)

Analogous to the exact solution, z represents the radius of curvature of the wavefront.

. . 162+y2
e~ k2o~ SRGY (8.39)

E(:C,y,z) =

R(z)

This makes good physical sense as does the quadratic transverse phase variation. Let’s

take a look at the expression for the intensity of the beam:

1 1

I(I,y,Z) = IE(CL’,y,Z) * E*(l',y,Z)! = W: ;—2—

(8.40)

It makes good physical sense that the intensity of a diverging beam decreases; how-
ever, what does not make physical sense is that this solution suggests that the trans-

verse profile of the beam is unbounded.
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Appendix D: Derivation of the
Hermite Gaussian Mode
Functions

A general expression for the scalar amplitude of the n,m transverse mode is:
an,m(mﬁyv‘z) = ﬂn(xaz)am(yv Z) (841)

We are assuming that the overall scalar amplitude can be expressed as the product
of the amplitude in each transverse coordinate. We will begin by suggesting a trial

solution in one transverse coordinate [23]:
ik 22 142
Un(2,2) = A(G(2)) f(z)e " 5 (8.42)

We are assuming that the scalar amplitude of the higher-order transverse modes will
contain a term in the transverse coordinate, which we are calling f(x). What we also
know is that this term will change form as the mode number changes. Let’s apply the
paraxial wave equation in x and z to this trial solution. We come up with a differential
equation:

o%f 2k Of ik 2GdA

i R |

—5 =0 8.4

ox2 g oz g + A d(j]f (8.43)
This differential equation is similar in form to an expression for a damped harmonic
oscillator. It is a special case of the Sturm-Liouville system, known as the Hermite

Differential equation::

H, —2zH, +2nH, =0 (8.44)
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The problem with this solution is that the amplitude of each transverse mode would
change as the wave propagates in z. It would be preferable to have a solution that
does not change with z propagation. To this end, we can suggest that our Hermite

polynomial solution contain a scaling factor, 5(z):

) (8.45)

Applying the paraxial wave equation to our revised expression for the scalar am-

plitude, we have:

v 2k _ _dp, . ikp? 2§ dA
— - af - —=—[1+ 2 f = 4
f 7 p-a7le Z L+ dq]f 0 (8.46)
Setting coefficients equal, we have:
2tk _  _dp 2 dp dz idz
o gtl=2s 2= 24 2 8.47)
q Pz, pp q kp? (
ikp? 2§ dA dA idgn 1dg
-+ =)= =t 2 4
i T A T T AT R 2 (8.48)

These equations can be solved by relating 5(z) to the complex radius of curvature. A

standard, physically convenient, arbitrary definition of the scaling factor, p is:

1 _ vz (8.49)

plz)  w(z)

This is physically convenient in so far as the scalar amplitudes of the transverse modes
will not change as the wave propagates in z. We can relate p to the complex conjugates
of g, from the definition of q:

1 1 iA

i .50

d R(z) muw?(z) 8.50)
Subtracting the complex conjugates of q and doing a bit of algebra, we have an expres-

sion for p in terms of q:

(8.51)

SES

—
| k=
J
g
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Substituting this solution in 8.48, we have:

dA  idgikn 1 1 1dg n dg* dq 1dg
—_— e — e [ — - — ] — ——— = e —— — — _— 2
T % 2(6 q*) 57 2((1* q) 57 (8.52)
Integrating, we have:
A 7oz do .1 §"Go\» ,do\1
In(-—)=In(—==)2 +In(=)2 2 A= A(=3)2(5)2 (8.53)
() =521t +in() o(H2EE)

We complete our expression for transverse mode amplitudes in x by normalizing the

Hermite polynomial functions:

e H (8.54)

Our expression for the scalar amplitude in both transverse coordinates is merely the

product of the amplitude in each transverse coordinate:

il 7*qg . (ntm) 2
q0 QQO) + Hn(\/—CE

. 2.1 V2y, ziki4y?)
un,m(x’y»z)z(;)2(2n+mn!m!woq q‘éq 2 I; )Hm =~ )6 = (855)
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Appendix E: Locking Protocol

1. Adjust optical power into cavity to less than 60 yW (which corresponds to about 3 W
of circulating power in the cavity. This is the thermal’ limit for this setup). The lower
limit to optical power is set by the necessity of having a sufficient error signal to lock.
The Menlo Systems detector needs around 500 nW for the error signal amplitude to be
sufficient to lock.

2. Make sure that the Thor labs noise eater is operating 'within range’ (green light on)
and that it reduces the optical power by at least 10 percent . There are certain situa-
tions in which the noise eater adds 10 kHz noise. Watch for that and make appropriate

adjustments to the power adjustment knob.

3. Engage the amplitude servo lock and integrator and ensure that the servo reduces

optical power by at least another 10 percent.

4. Adjust the piezo offset voltage until the TEMy, peak is at the center of the scan

voltage and note the value of the piezo offset on the voltmeter.

5. Turn the scan off (which should increase the piezo offset by a couple hundred mil-
livolts) and re-adjust the piezo offset voltage to the value while scanning. This value
will bring the cavity VERY close to resonance. At this point, the error signal and cavity
signal should begin to oscillate with the amplitude of the error signal and resonance
peak of the TE Mgy, mode. BE SURE THAT THIS IS THE AMPLITUDE of the oscilla-
tion you observe. Despite best attempts at alignment and mode matching, 2 or three

other transverse modes do exist in the cavityand the cavity can be locked to them.
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6. Increase the resolution of the error signal and make sure its DC offset is close

to zero. If it’s not, then use the offset adjuster to make sure it is.

7. Flip on the Integrator switch. If the integrator signal races off..then adjust the
integrator offset until the integrator signal barely moves up (with the inverter switch

down (non-inverting).

8. With the integrator switch off, readjust the piezo offset with the fine adjust knob

until the oscillations are observed.

9. With the AO gain knob about three ’ turns’ from 0 and the error and cavity sig-
nals oscillating, turn on the AO lock switch. The AO should catchif it doesn't, re-adjust
the piezo offset with the ‘fine adjust’ knob until it catches (the cavity signal should lock

at the bottom of the resonance peak).

10. With the AO locked, quickly flip the integrate switch (the gain can be all the
way to maxbut start at lower gainmaybe about halfway between 0 and max) and, if

the gain isn’t all the way to maximum, then increase it to max.

11. Increase the AO gain until the unity gain noise ( 151 kHz) increases, then re-
duce it until it reaches a minimum. The best position for the AO gain seems to be

about 4 to 5 half turns from O.
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Appendix F: Data Acquisition
MATLAB Code

o\°

This is an m file which captures and
% retrieves data from one or more CompuScopes.
% Only the data from the first channel is
% retrieved and displayed.
%$Adds the directory where the Gage DLL files are located
addpath ’C:\Gage OLD\CompuScope SDK\SDK for MATLAB’
% Set at least 1 of the system variables
% so it’s defined in the first call.
system.board (1) .opmode = 2;
% The 1 means look for GAGESCOP.INC in the Windows directory
boards found = gagecall (0, 1, 0, system);
$If not all boards are found, exit.
if (boards_found < 1)
disp (' CompuScope boards not found’) ;
return;
end filename=input ('How shall I name this datafile?’,’s’); mr=0;
dp=input ('How many samples do you want to collect (per record, if
applicable)?’); sr=input ('At what sample rate would you like to
collect data? (100,50,25,10,5,2,0r 1 MS/s or kS/s)’);
% Set up the rest of the system structure.

for i = l:boards found



system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.
system.

end

system.capture.capture type = 1; system.capture.trigger_timeout

board (i)
board (i)
board (i)
board (i)
board (i)
board (i)
board (i)
board (i)
board (i)
board (i)

board (i)

.board (i)

board (i)
board (i)
board (i)
board (1)
board (i)
board (i)
board (i)
board (i)
board (i)
board (i)

board (i)

.imped_a
.imped b

.range_e
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.opmode =

.range_a =
.couple a
.range_b =
.couple b
.source =
.source_2

.slope = 1;

.couple e

.slope_2 =

.level 2 =

.diff_in_ a

.diff in b

16.8; system.capture.busy_ timeout

system.capture.ensure pre_trigger

sprovides the option of multiple record, which essentially fills

2

1

’

.sample_rate

1;

= STr;

1

1;

1

.level = 143;

128;

.depth = dp;

.use _multiple_record = mr;
.use_external clock = 0;
.external clock rate

.use_cal_table = 1;

0;

0;

65535;

0;

1000000;
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the DAQ board memory in ‘continuous’
$data streaming. this is the suggested mode in triggeringyon 60Hz
line voltage and trying to take
$data at a fast sampling speed between each trigger. if matlab
needs to interface with the DLL files
$between each 60 Hz triggering pulse, then the data will not be
taken in real time, even though MATLAB
$will not indicate that triggers are being missed

due to processing time, etc!

if (system.board(l) .opmode == 1)

channels found = boards_found;

else
channels found = boards_found x 2;

end if mr==1 multirec=input ('How many multiple record data sets do

you want to take? (1 to 65530)’); else multirec=-1; end for i =

1:channels_found
system.channel (i) .enable = 1;
system.channel (i) .start point = 0;
system.channel (i) .transfer_length = dp;
system.board (i) .mulrec_acquisitions = -1;
system.channel (i) .mr_group_start = 1;
system.channel (i) .mr_groups = multirec;

end

% Set up the board parameters.

ret = gagecall(l, 0, 0, system);

if (ret <= 0)

error {(’Errors in one or more capture parameters, program stopped’) ;



127
end

Q

% Let the DLL handle the trigger timeout and
% the busy timeout.
trigger timeout = 1; busy timeout = 1;
% Capture the data.
change=input ('Are you ready to take data? (yes = 1)');
if change ==
disp(’Here we go!’)
end
dag_run=input ('How many data acquisition runs do you want to
make?’) ;
$turns on power to board: in the absence of this gagecall function, the
$power is automatically turned on just before data capture and off just
safter capture is complete. controlling it with this gagecall improves
¥system performance.
gagecall(8,1,0,system); a=zeros (dp,dag_run); for n=1l:dag_run
$the following commented code was to diagnose triggering issues by using a
$clock to figure out whether triggers were being missed.
$timetrl=clock;
sinitiates trigger detection and data capture. the return value
%indicates whether a trigger is detected and whether data capture is
$complete: 5=trigger detected and capture complete
tc=gagecall (2, trigger_ timeout, busy_ timeout, system);
trigcap(n)=tc;
$timetr2=clock;
SeetimeS (n)=timetr2(1,6)-timetrl(1,6);

$eetimeM (n)=timetr2(1,5)-timetrl(1,5) ;
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%$if eetimeM(n) >0

% eetimeS (n)=60.+eetimeM(n) +eetimeS (n) ;
%$end
if (system.board(l).opmode == 1)

channels = boards_ found;
else
channels = boards found * 2;
end
% Disable all channels but channel 1.
for 1 = 2:channels
system.channel (i) .enable = 0;
end
$ Get the data from channel 1 and convert to voltages.
a(:,n) = gagecall(3, 1, 0, system); end
$turns off power to board
gagecall(8,0,0,system) ;
$the following code was also used for triggering diagnosis
$if mr==1
$a=a(:,l:multirec);
$disp(’/Time to find a trigger and capture the last daqg run is’);

$disp(eetimeS(n)) ;

disp ('Now processing data’);

for k=1:dag run;
m=( (dp/2)-2): ((dp/2)+2);
b(l,k)=sum(a(m,k))/(5);

end
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%a = reshape(a,prod(size(a)),1l);

plot (b) ;

save (strcat (’ z:\Cavity-Enhanced Spectroscopy\Data
Files\’,'daq_runs’,numZStr(daq_run),numZStr(filename)),'a’,’b’); for
y=1l:n;

disp(trigcap(y));
end

$end
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Appendix G: Transients

With an acetone-filled cavity, we observed occasional diffusion timescale transients of
unknown origin. It is possible that these transients are caused by clusters of water
or localized populations of acetone in which one or more of the deuterium atoms is
replaced with a hydrogen atom. The lock level at the depth of the transient roughly
corresponds to the observed losses with regular acetone. Proton NMR experiments
could aid in determining the nature of these transients. An example of one of these

transients is provided in Figure 8.1.
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Figure 8.1: Diffusion Timescale Transient
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Appendix H: Effective Beam
Volume

Inside a locked Fabry-Perot cavity on resonance, the TEMgy mode has the following
spatial distribution.
~—2(12+y2)
W=e »&? sin?(kz) (8.56)
The mode is Gaussian in x, y; however, the beam waist, w(z), change in z. Since there is
a standing wave in the cavity, the intensity profile changes in z as sin?(kz). Analogous
to fluorescence correlation spectroscopy (FCS), the effective volume can be expressed

as:
(J Wav)?

Vv@ff = fngV (857)

It turns out to be much easier to evaluate the exponential in x and y first and then to

evaluate with respect to z.

oo oo poo -2(?4y?) o0 roo 22?4y 12
/WdV=/ / / e @ sin?(kz)dzdydz =/ e w? dwdy/ sin?(kz)dz
—~o00 J—00 JO —o0 J—o0 ~1/2

(8.58)

Shifting to ‘cylindrical’ coordinates and changing integration limits to make it easier

to solve the Gaussian integral:

2 poo —2(r?) /2
/ e w? rdrdf / sinZ(kz)dz (8.59)
1/2
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Solving the Gaussian integral by substitution:
u = 212wk (8.60)

du = 4rdr w3 (8.61)

2 poo —2(r2) 27 poo
/WdV = 2/ e »(? rdrdf = w(z)2/2/ / e %dudf = Tw(z)? (8.62)
0 0 0 0

The beam waist propagates in the z direction as follows:

2
2 2 z

) = 1 —_ .
’LL(Z) wO( + /\2/(71'211}3)) (8 63)
The remaining integral is now:
, 1/2 22 )
WdV = rw / 14 w5 )sin“(kz)dz (8.64)
/ 0 |yt Ny )

We can solve this integral using a trig identity and the intra-cavity boundary condi-
tions on resonance (i.e. sin(kz) = 0 at each end of the cavity and that [ = ¢}), we

have:

) /2 22 1
/WdV = TTWy, ‘/_l/2(1 + mg—))§(l - COS(QkZ))dZ (865)

Due to the boundary conditions, all definite integrals involving either cosine or sine
will be zero. Taking this into consideration, we have:
rwi (Y2 22 Twil 23

WdV = — 14+ ———)dz= — 8.66
/ 2 ) e T 2 g 869

The integration of the Gaussian portion is almost exactly the same as before. The
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value of this integration differs from the previous case by a factor of two:

2m poo —4(r?) T /2
/WQdV = 2/ / e w(z)? rdrdﬂ/ sint(kz)dz = —2—/ w(z)?sint(kz)dz
0 —1/2

12 2
Sy e + ST
2 Joyp A2/ (m2wg)

(8.67)
Vsind (kz)dz

The integration of sin%(kz) requires one extra step:

1/2 1/2 1 /2
/ sin*(kz)dz = / (1/2(1 — cos(2kz)))?dz = —/ (1 + cos?(2kz) + 2cos(2kz))dz
—1/2 —1/2 4./ 1

1/2
= l/ 1+ —1—(1 + cos(4kz)) + 2cos(2kz))dz
4/, "2
(8.68)
The overall integral is now:
1/2 2 1
W2V = w07r 1+ — + =(1 + cos(4kz)) + 2cos(2kz))dz (8.69)
/ o gy (L + 50 cos(dha) + 2cos(2k2)

As with the previous integral, whenever there is a sine or cosine in this integral, its
value becomes zero due to the boundary conditions. Taking this into consideration, our

integral is:

3wim (U2 22 3rw?l A28
W24y = =2 / 1+ ————)dz = 0 .70
/ 16 _1/2( + )\2/(7r2w§)) 2= 6 647rw(2)) 8.70)

Our value for V. ¢y is:

mwgl PXILIRY
( 2 2471'11)0) 4 2

Vigp = o0 o S (8.71)
3rwgl 2273 3
( 16 647rw0§)



134

Bibliography

[1] J. Allen, G. Feher, T. Yeates, H. Komiya, and D. Rees, PNAS 84, 5730 (1987).
[2] J. Allen, G. Feher, T. Yeates, H. Komiya, and D. Rees, PNAS 84, 6162 (1987).
[3] J. Allen, G. Feher, T. Yeates, H. Komiya, and D. Rees, PNAS 85, 8487 (1988).

[4] J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, J. Molec. Biol. 180, 385
(1984).

[5] J. Deisenhofer, J. Epp, R. Huber, and H. Michel, Nature 318, 618 (1985).

[6] L. B. et al, Biochemistry 34, 14712 (1995).

[7] D. Tiede, J. Vazquez, J. Cordova, and P. Marone, Biochemistry 35, 10763 (1996).
[8] A.Vermeglio and R. Clayton, PNAS 85, 8487 (1988).

[9] R. H. et al, Biochemistry 31, 5799 (1992).

[10] N. Woodbury, M. Becker, D. Middendorf, and W. Parson, Biochemistry 24, 7516
(1985).

[11] M. S. et al, Science 276, 812 (1997).

[12] D. Kleinfeld, M. Okamura, and G. Feher, Biochemistry 23, 5780 (1984).
[13] C. Vallance, New J. Chem. 29, 867 (2005).

[14] B. Paldus and A. Kachanov, Can. J. Phys. 83, 975 (2001).

[15] J. Ye, L. Ma, and J. Hall, J. Opt. Soc. Am. B 15, 6 (1998).



135
[16] A.Hallock, E. Berman, and R. Zare, Analytical Chemistry 74, 1741 (2002).

[17] A.Hallock, E. Berman, and R. Zare, JACS 125, 1158 (2003).

[18] A. Hallock, E. Berman, and R. Zare, Applied Spectroscopy 57, 571 (2003).

[19] A. Pipino, Physical Review Letters 83, 3093 (1999).

[20] A. Pipino, Applied Optics 39, 1449 (2000).

[21] J. Nadeau, V. Ilchenko, and D. Kossakovski, Proceedings SPIE 4629, 172 (2002).
[22] S. Fiedler and A. Hese, Review of Scientific Instruments 76, 023107 (2005).

[23] A. Siegman, Lasers, University Science Books, 1986.

[24] M. Born and E. Wolf, Principles of Optics, Cambridge University Press, seventh
edition edition, 1999.

[25] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge
University Press, 1995.

[26] R. Shankar, Principles of Quantum Mechanics, Plenum Press, second edition,

1994.
[27] R.D. et al, Appl. Phys. B: Photophys. Laser Chem. 31, 97 (1983).
[28] C.Hood and H. Kimble, Physical Review A 64, 033804 (2001).

[29] J. Jackson, Classical Electrodynamics, Wiley, 1974.



