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Abstract

Besides the sun, the most luminous feature of the solar system is a cloud of “zodiacal”
dust released by asteroids and comets that pervades the region interior to the asteroid
belt. Similar clouds of dust around other stars—exozodiacal clouds—may be the best
tracers of the habitable zones of extra-solar planetary systems. This thesis discusses
three searches for exozodiacal dust:

1) We observed six nearby main-sequence stars with the Keck telescope at 11.6
microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the
point spread function via classical speckle analysis. We compare our data to a simple
model of the zodiacal dust in our own system based on COBE DIRBE observations
and place upper limits on the density of exozodiacal dust in these systems.

2) We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the
Hubble Space Telescope to look for scattered light from exozodiacal dust and faint
companions within 10 AU from these stars. We did not achieve enough dynamic range
to surpass the upper limits set by IRAS on the amount of exozodiacal dust in these
systems, but we did set strong upper limits on the presence of nearby late-type and
sub-stellar companions. We explain the technique of coronagraphy with a discussion
of the Fourier optics of a one-dimensional coronagraph.

3) The planned nulling capability of the Keck Interferometer should allow it to probe
the region < 200 milliarcsecond from a bright star and to suppress on-axis starlight
by factors of 1073 to reveal faint circumstellar material. We model the response of
the Keck Interferometer to hypothetical exozodiacal clouds to derive detection limits
that account for the effects of stellar leakage, photon noise, noise from null depth
fluctuations, and the fact that the cloud’s shape is not known a priori. Our models

show that the Keck Interferometer can detect an exozodiacal cloud with as little as 10
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times the optical depth of the solar zodiacal cloud, even when the transmitted stellar
signal is stronger than the signal from the dust cloud.

We also discuss the interaction of dust with planets. We used the COBE DIRBE
Sky and Zodi Atlas and the IRAS Sky Survey Atlas to search for dynamical signatures
of three different planets in the solar system dust complex:

1) We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing
Mars. We compare the DIRBE images to a model Mars wake based on the empirical
model of the Earth’s wake as seen by the DIRBE and place a 3-0 upper limit on the
fractional overdensity of particles in the Mars wake of 18% of the fractional overdensity
trailing the Earth.

2) We searched the COBE DIRBE Sky and Zodi Atlas for Trojan dust near Jupiter’s
L5 Lagrange point. We place a 3-0 upper limit on the effective emitting area of large
(10-100 micron diameter) particles trapped at Jupiter’s L5 Lagrange point of 6 x 107
cm?, assuming that these large dust grains are distributed in space like the Trojan
asteroids. We would have detected the Mars wake if the surface area of dust in the
wake scaled simply as the mass of the planet times the Poynting-Robertson time scale.

3) We compared the COBE DIRBE Sky and Zodi Atlas and the IRAS Sky Survey
Atlas to search for dust created in the Kuiper Belt and trapped in mean-motion reso-
nances with Neptune. We place a model-dependent upper limit of 0.6 MJy steradian™!

on the brightness of dust trapped in Neptune’s 2:3 resonance.
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Chapter 1

Introduction
1.1 The Solar System, as it Would Appear to an Observer

10 Parsecs Away

Besides the sun, the most luminous component of the solar system is not Venus, not
Jupiter, not any planet—but a cloud of “zodiacal dust” generated by asteroids and
comets mostly within a radius of 4 AU from the sun. Figures 1.1 and 1.2 illustrate this
point; they show the solar system as it would appear to an observer 10 parsecs distant
at a wavelength of 20 microns, a crucial wavelength for searching for circumstellar
material at terrestrial temperatures. The story is not much different at other optical
or infrared wavelengths; our zodiacal cloud outshines all of the planets in total emitted
or scattered light at any wavelength that is not much larger than the typical grain size
(1-100 microns across).

Figure 1.1 serves as a reference point. It shows the solar system as it would appear
to a telescope with a Gaussian beam with a full-width at half-maximum of 5 milliarc-
seconds (mas). At 20 microns, this corresponds to the diffraction limit of a telescope
1 kilometer in diameter. Earth appears as an unresolved point source 0.1 arcseconds
to the right of center. In the face-on view, Mercury and Venus can also just barely be
distinguished. The central blob of light is thermal emission from the zodiacal cloud,
calculated from a model by Kelsall et al. (1998) based on observations by the Diffuse
Infrared Background Experiment (DIRBE) aboard the Cosmic Background Explorer
(COBE) satellite.

One kilometer is certainly larger than the diameter any single dish telescope, and

it is also ten times longer than the baseline of any optical or infrared interferometer,
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existing or under construction, though this may be an appropriate baseline for the
proposed Terrestrial Planet Finder interferometer (Beichman et al. 1999). Figure 1.2
shows the same scene, but convolved with a Gaussian with full width at half-maximum
of 50 mas to illustrate how the solar system would appear to a telescope with a 100
meter baseline. Several interferometers now operating in the infrared have comparable
baselines. At this practically attainable resolution, and at any coarser resolution, the

zodiacal emission overwhelms the light from any single planet in any beam.

the Solar System at 10 pc, 20 microns
minug the Sun, 5 mas FWHM beam

face—on edge—on

0.1F 4k L
/23
.
5
(4] .
o OF 4k o -
wm
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0 32564
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Figure 1.1: The Solar System viewed from 10 pc through a huge futuristic telescope
with an aperture of 1000 meters. The Earth appears as a point source 0.1 arcseconds
to the right of center.
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Figure 1.2: At the resolution of the biggest mid-infrared interferometers now under
construction, the zodiacal cloud overwhelms the planets.

1.2 The Solar System Zodiacal Dust Cloud

The solar system dust cloud can be seen from inside the solar system too. On a clear
night just after dark or before dawn, the zodiacal cloud often appears as a diffuse
triangle of “zodiacal light” covering an impressively large fraction of the sky. The
name “zodiacal” applies because the light is concentrated in the ecliptic plane within
the constellations of the zodiac.

A simple example shows how dust in a planetary system can easily be much brighter
than the planets themselves. Grinding a medium-sized asteroid (50 km diameter) into
dust particles 10 microns in diameter would increase the surface area of the material by
a factor of 5 billion. If you spread this much dust into an optically thin cloud, the total

effective surface area would match the surface area of a solid ball with radius 2 x 108
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km, 25 times the radius of Jupiter (7 x 10% km).

Planetary systems older than a few tens of millions of years tend to be nearly in
equilibrium with the radiation field from the stars they orbit. Consequently, at a given
circumstellar distance, the brightest component of a planetary system will be the one
with the most effective surface area for emitting and scattering light. So it should not
be surprising that our zodiacal cloud outshines all of the planets.

Unfortunately, the population of asteroids 50 km in diameter (and smaller) in the
Solar System, which could potentially produce such large quantities of dust, is not well
known, and larger asteroids collide rarely. However, simulations based on extrapolation
of deep asteroid searches (Durda and Dermott 1997) suggest that asteroids 50 km in
diameter suffer catastrophic collisions with other asteroids every ~ 100 million years
in the asteroid belt, and smaller asteroids collide much more often. These simulations
show a size distribution punctuated by collisional cascades, where large asteroids are
shattered into smaller chunks that grind each other into dust over the following 65
million years. It is clear from these calculations and from the appearance of extra-
dense bands of dust mid-infrared images of the solar system that appear to correspond
to Hirayama families of asteroids (Sykes and Greenberg 1986; Sykes and Greenberg
1986¢; Reach et al. 1997) that asteroidal collisions are a major source of the zodiacal
dust.

Comets clearly release quantities of dust which would suffice to maintain the current
zodiacal cloud, if the dust survived long enough. It has even been suggested that most
of the cloud comes from a single comet, Comet Encke (Whipple 1967). However, a large
but uncertain fraction of cometary dust is released on hyperbolic orbits, and quickly
escapes the solar system. Consequently, estimates of the cometary contribution to the
zodiacal cloud are as uncertain as estimates of the asteroidal contribution. Probably
the best indication that comets contribute significantly to the zodiacal cloud is the
cloud’s scale height, which is about (r/4.14 AU), where r is the distance from the

sun. This corresponds to a “fan” shape with an opening scale angle of 14°, higher
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than what might be expected if all the dust were asteroidal (Dermott et al. 1992).
Comets typically have higher orbital inclinations than asteroids; they could produce
the high-lattitude dust particles (Liou et al. 1995).

Beyond the asteroid belt, zodiacal cloud peters out, according to particle counters
aboard the Ulysses spacecraft (Mann and Griin 1995a). But farther from the sun—and
beyond the reach of Ulysses—a third source of solar-system dust particles may become
important. The high relative velocities of Kuiper Belt objects indicate that collisions
among these bodies may create a second cloud of dust, a ring that orbits beyond the
orbit of Neptune. This source of dust is the subject of Chapter 7.

Once the dust is created, it does not orbit the sun forever. Instead, the semimajor
axis and eccentricity of the orbit slowly decay under the influence of a relativistic
interaction with photons from the sun called Poynting-Robertson drag (P-R drag).
Chapter 2 describes this effect in more detail, and shows how it influences the large-
scale structure of the zodiacal cloud. P-R drag causes zodiacal dust particles released

in the asteroid belt to spiral into the sun in timescales of 103-10° years.

1.3 Exozodiacal Dust: Zodiacal Dust Around Other Stars

Until we can resolve earth-like planets around nearby stars, zodiacal dust, by virtue
of its luminosity, may be the best tracer of the central regions of evolved extrasolar
planetary systems. Zodiacal dust around another main sequence star, the extrasolar
analog of zodiacal dust, is called “exozodiacal” dust. This analogy implicitly assumes
that other planetary systems are generally similar to the solar system—a dangerous
assumtion. But perhaps there is a common class of planetary systems that are similar
enough to the solar system to make the analogy useful.

Systems like our own have three regions sorted by circumstellar distance:

I. A region where giant planets orbit, clearing a zone that is relatively free of dust and

small bodies.
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II. A region exterior to the giant planet zone where presumably a primordial cloud of

small bodies, like the solar system’s Kuiper Belt, could remain.

III. A region interior to the giant planet zone where small bodies and possibly rocky

planets might have orbits that are stable for the lifetime of the system.

I will call dust in zone II of a planetary system Kuiper Belt Dust, and dust in zone III
zodiacal or exozodiacal dust.

This picture represents our solar system, but it clearly does not do justice to all
planetary systems. For instance, systems with hot Jupiters orbiting at circumstellar
distances of 0.1 AU may not have a zone IIl. Other planetary systems may not even
have giant planets. However, there are a few good examples besides the solar system
of nearby systems which seem to be well described by this model.

The A star HR 4796 appears to have a complex dust environment, including a nar-
row ring at ~ 70 AU that was imaged in scattered light with the NICMOS coronagraph
on HST (Schneider et al. 1999). Subtracting a model of the emission from this ring
from 12 micron images of HR 4796 made with the Keck telescope (Koerner et al. 1998)
leaves a large amount of emission in excess of the stellar photosphere, some of which
appears as marginally resolved light near the star. For an idea of the scale of the
marginally resolved component, note that the diffraction limit of the Keck Telescope at
12 microns is 250 milliarcseconds, which corresponds to a transverse size scale for the
cloud of ~ 17 AU given the distance of HR 4796 (67 + 3.5 parsecs, determined by Hip-
parcos). No faint companions appear in the images interior to the ring, and no planets
around this star have been detected by radial-velocity measurements because A stars
generally have lines that are too sparse and too broad for precision doppler techniques.
However, the ring of cold dust, the marginally resolved emission near the star, and the
gap between the ring and the marginally resolved emission could be analogous to zones
1L, IIT and I respectively.

Maps of € Eridani, a nearby K star, made with the Submillimeter Common-User

Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT) at 850
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microns revealed a large circumstellar disk (Greaves et al. 1998). Figure 2 of that paper
shows an azimuthally averaged radial profile of the map, which indicates that the ring
peaks at 18” from the star, then there is a flux minimum at a radius of 8”, and a central
rise in the flux density interior to 4.5”. Observations with the Infrared Astronomical
Satellite (IRAS) confirm the central flux peak at 60 microns interior to 8-11”7. The
cavity extends too far from the star for P-R drag or ice sublimation to have excavated
the large grains that must be producing this long-wavelength radiation. However, the
three-zone model remains a plausible explanation for the observed structure; giant
planets clear the observed gap, and the ring is zone II or Kuiper Belt dust and the
central peak is exozodiacal dust.

Besides these two systems, which were resolved with ground-based 10-meter dishes,
there are many other examples of main sequence stars with excess emission in the far
infrared, the Vega-excess stars. Most of these stars do not have much excess emission
in the mid-infrared. The common interpretation of this phenomenon is that the excess
far infrared is emission from cold (< 150 K) dust analogous to Kuiper Belt dust in the
solar system—or zone II dust. The decline of the excess in the mid-infrared is taken to
indicate the presence of a gap that might be cleared by giant planets—zone 1.

In general, zone I11, the region nearest the star, is the most difficult zone to observe.
Yet this the zone is intrinsically the most interesting to an earthling. In the solar system,
HR 4796, and Epsilon Eridani, zone IIT contains the habitable zone, the region where
liquid water might exist, where—should all the other conditions be right—a human

could live, or perhaps, life resembling life on Earth might begin on its own.

1.4 Detecting Exozodiacal Dust

Even though exozodiacal dust clouds can be much easier than planets to detect directly,
these faint diffuse clouds less than 1-2 arcseconds from bright nearby stars are still
difficult to find. The clouds around HR 4796 and Epsilon Eridani and all known

Vega-excess stars have 2—4 orders of magnitude more optical depth in dust than the
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solar system. It will be many years before we are capable of detecting a solar-level
exozodiacal cloud.

Chapters 3, 4, and 5 represent three approaches to the problem of exozodiacal
dust detection. The contrast between the light from the zodiacal cloud and the light
from the solar photosphere is highest in the mid-infrared; it peaks around 25 microns.
Chapter 3 describes a search for exozodiacal dust using the Keck Telescope in the mid-
infrared. For this search, we used the technique of speckle interferometry to maximize
the resolution of our observations.

Chapter 4 describes a search for exozodiacal dust in the near infrared using the
Hubble Space Telescope (HST). At these wavelengths, zodiacal dust shines mostly in
scattered light from the sun, and the contrast between dust and starlight should be
less than at thermal wavelengths. To increase the dynamic range of our images, we
observed through the coronagraph in the HST’s Near Infrared Camera and Multi-
Object Spectrometer (NICMOS).

Ultimately, the best technique for detecting exozodiacal dust may be nulling inter-
ferometry, a new technique which combines high resolution and high dynamic range.
The Keck Interferometer, a facility which will combine the light from the two 10-meter
Keck Telescopes, is designed with nulling capability for the purpose of investigating
circumstellar matter. Chapter 5 is a discussion of how to use the Keck Interferometer

to detect exozodiacal dust.

1.5 The Effect of Planets on Dust Clouds

Although dust easily dominates the surface area of a planetary system, the star and
the planets dominate the dynamics. In a three-zone system where giant planets clear
a swath that is nearly free of small bodies and dust around their orbits, interactions
between giant planets and small particles are clearly crucial to the planetary system’s
design and appearance. Besides clearing gaps, giant planets can sweep dust clouds

into complex shapes. The dust clouds around e Eridani, 8 Pictoris and Vega all have
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dramatic asymmetries that are interpreted as the signatures of planetary perturbations
(Dent et al. 2000; Ozernoy et al. 2000).

But even smaller, terrestrial-sized planets, though they do not clear holes in the
disk, can also have a significant impact on the orbits of dust grains. For example,
planets can temporarily trap particles in resonant orbits as they spiral past. Figure 1.3
shows the DIRBE model of the zodiacal cloud with the “smooth” component of the
cloud subtracted. The asteroidal dust bands dominate the edge-on view. However, in
the face-on view, we see a ring of dust trapped in resonant orbits by the Earth. An
extra-overdense region trails the Earth, called the Earth’s Wake. Chapter 2 provides
some general background on the dynamics of dust in a planetary system and describes
how planets can form rings and wakes.

Most interactions between planets and dust can be modeled with a combination
of analytical theory and numerical orbit integrations. However, even for our solar
system, which ought to be the easiest planetary system to study, observations of the
planets’ effect on the interplanetary dust are few. Consequently, we are far from a good
dynamical description of the dust, and we are far from a good understanding of how
our solar system would appear to an outside observer. I undertook to improve this
situation by searching for some dynamical signatures of Mars, Jupiter and Neptune in
the solar system dust clouds, using data from IRAS and DIRBE. Chapters 6 and 7

describe these searches in detail.
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the Solar System at 10 pc, 20 microns
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Figure 1.3: The DIRBE model of the Solar System zodiacal cloud shown with the
“smooth” component of the cloud subtracted. What remains are the asteroidal dust
bands, seen best in the edge-on view, and the Earth’s ring and wake, seen best in the
face-on view. The Earth’s ring and wake are overdense regions of the cloud caused by
the temporary trapping of dust in the Earth’s mean motion resonances.



11

Chapter 2

Dust Dynamics

2.1 Solar Gravity and Radiation Pressure

A variety of different forces can affect charged, irregularly shaped, rotating dust parti-
cles in interplanetary space (Gustafson 1994). I will focus on the forces that are most
important to particles that have long lifetimes in the solar zodiacal cloud: gravity,
radiation pressure, and Poynting-Robertson drag. These forces apply even to neutral,
spherical particles.

Most of the optical depth in the solar system dust cloud is due to particles which
are gravitationally bound to the sun. However, for small particles, which have a small
ratio of mass to cross section, radiation pressure from solar photons can balance or
even exceed the gravitational force. Radiation pressure on a compact spherical grain is
directly outward and inversely proportional to the distance from the star squared, so
it counters the effect of the star’s gravity. The ratio of the radiation pressure a particle

feels to the gravitational force the particle feels is called 3.

oL,

=T (2.1)
drcGM,m

5]

where L, is the luminosity of the star, G is the gravitational constant, M, is the mass
of the star, m is the mass of the particle, and ¢ is the effective cross section of the
particle for receiving stellar radiation. With this notation, the central force felt by a
dust grain is

GM,(1—B)m

Fcentra.l = - 2
r
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For spherical particles with density 2 g cm™3 that are large compared to the dom-
inant wavelength of light, 8 = 0.285/r4,s¢, where 74,4 is the radius of the particle in
microns. This spherical approximation systematically underestimates 3 for real zodia-
cal dust particles, which can have complicated shapes. Gustafson (1994) reviews some
measurements of J for more realistic dust particles. In general, however, small particles
have large values of 8. Radiation pressure forces particles about 1 micron in size onto
highly eliptical or even parabolic orbits. These particles are called f-meteoroids. In the
solar system, particles smaller than about 0.5 microns also feel strong electromagnetic
forces from the solar wind.

When a particle with high (3 is released from a larger body, it may become unbound
from the star. We can easily compute the criterion for this to occur. A particle has

orbital energy

1
EO = —2-7'7'L’U2 - GM*m, (23)
r

where v is the velocity of the particle. When we instantly turn on the radiation pressure
and the particle continues to move with the same velocity, the energy is raised by

GM,Pm/r. The particle becomes unbound if £ > 0, or

GM,
CMLm . (2.4)
r
Now
GM,m
Ey = — 2.5
0 2(10 ) ( )

where ag is the particle’s initial semi-major axis, and

ag(l — eg)

= 2.
" 1+ egcos fo (2.6)

for a particle on an eliptical orbit with eccentricity ey and true anomaly fy. So the
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condition for unbinding a particle is

1 1-¢3

-0 2.7
21+ egcos foy (2.7)

B>

For a particle released from a circular orbit, this reduces to § > 1/2, or for a spherical

particle with density 2 g cm™3, raust < 0.57 microns.

2.2 Poynting-Robertson Drag

Imagine an isolated particle cooling and radiating energy isotropically into space. Since
the radiation is emitted isotropically, the total reaction force on the particle due to the
momentum lost to the radiation is zero. But now visualize the particle in a new Lorentz
frame where it moves with some constant velocity. In this frame, the radiation is
beamed in the direction of motion of the particle. The particle ought to be accelerated in
the direction opposite its motion by the radiation pressure from the beamed radiation.
Special relativity tells us, however, that if the particle’s motion is unaccelerated in the
frame where the particle is stationary, then the particle must be unaccelerated in a
frame where it is moving. What is the resolution of this paradox?

The answer is that when the particle cools, it loses mass. In the frame where
the particle is stationary, this makes no difference to our perception of the problem,
because the total force is obviously zero anyway. But in the frame where the particle
moves, we might think that since the particle’s mass is decreasing, the particle ought
to accelerate. Instead, the reaction force from the beamed radiation keeps the particle
exactly on its unaccelerated path.

When a dust particle orbits a star, however, it soon attains equilibrium with the
stellar radiation field. In other words, it can’t cool. Since the particle can’t cool, it can’t
lose mass. And since it can’t lose mass, there is nothing to compensate for the reaction
force from any beamed radiation it emits. So particles orbiting a source of photons feel

a force in the opposite direction of their motion, a force called “Poynting-Robertson
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Drag” (P-R drag).
The magnitude of this force in the case of complete absorption and isotropic re-

2 «

emission is just the hv/c” “mass” of the light that the particle receives per time times

the velocity of the particle, v. In other words,
Fpr = v x received power/c?. (2.8)

Robertson (1937) first correctly derived this result from the relativistic formalism. It is
also correct in the case of scattering from a perfectly reflective sphere. Interplanetary
dust particles do not scatter much more than 20% of the visible light they receive,
so a linear combination of a perfect absorber and a perfectly reflective sphere nearly
describes a real particle. If the particle’s absorptivity is constant over the band where

most of the stellar radiation is emitted, then we can write

L,ov

bl 2.9
Ar2c?’ (2.9)

|Fpr| =

where L, is the luminosity of the star, r is the distance from the particle to the star and
o is the cross section of the particle for receiving stellar radiation. Interplanetary dust
particles are generally much larger than visible wavelengths, and made of amorphous
materials, so this equation is a good approximation in the solar system.

Robertson (1937) also derived equations for the orbit of a particle experiencing P-
R drag and calculated the secular variation of the orbital elements based on the orbit
equations. In the case of a circular orbit, radius a, we can write down the perturbation

in the semimajor axis directly. Using

d
zl—i-m’() = —FpR (210)
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and
— 1/2
v= (M) / (2.11)
a
we find
do _ Lyo _ 2GM.J (2.12)
dt 2mamc? ac
This equation can be integrated using separation of variables to give
Lo
t) = 2 Xy 2.13
alt) = /af - =5 (213)

where ag is the initial semimajor axis of the orbit. The time for the semimajor axis to

decay to zero is the “Poynting-Robertson time”:

2 2 2
Tagme (ap/1AU)
= 400 years ~————.
oL, T B(LL Lo)

Tpr = (2.14)

To within a factor of a few, the P-R time is the time for a particle at distance ap from
a star to intercept its own rest mass energy in photons. Low-3 particles fall slowly
into a star under the influence of P-R drag, while high-3 particles are ejected from the
vicinity of a star on a dynamical time scale. This is why our zodiacal cloud is much
denser interior to the asteroid belt than exterior to the asteroid belt.

For reference, in the general case with non-zero eccentricity, the secular perturba-

tions are (Wyatt and Whipple 1950):

da _ GM.B 2+ 3e?

[?E}P—R T ac (1232 (2.15)
de _ 5GM,B e
{%] P-R  2a2c (1 —e2)1/2° (2.16)
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Using Kepler’s 3rd law, we can rewrite equation 2.16 as

[dn _ 3GM,pn 2+ 3e2

—d?] P-rR  2a2c (1 —e2)3/2 (2.17)

2.3 The Large-Scale Structure of the Zodiacal Cloud

Imagine that all the solar system dust particles were released in a narrow ring at exactly
3 AU. If particles are neither created or destroyed, the number density of particles, IV,
satisfies the continuity equation. In a system with cylindrical symmetry, this equation

—(Nv,) =0, (2.18)

where r is the distance from the sun and v, is the rate that a particle’s distance from the
sun changes due to P-R drag. In steady state, we set the term with the time-derivative

equal to zero, and integrate to get
rNv, = constant (2.19)

for a constant source of dust. For particles on circular orbits, v, = da/dt < 1/r, so
we have N = constant. In other words, a steady-state zodiacal cloud with dust on
circular orbits has a constant face-on optical depth interior to the region where the
dust is released.

When the P-R force comes from thermal emission or scattering from a uniform
sphere, the force vector lies in the plane of the orbit, so it does not affect the orbit’s
inclination. So particles released with a variety of orbital inclinations and phases spi-
raling into the sun form a fan-shaped structure, with a thickness proportional to r.
Since the face-on optical depth of the fan is roughly constant, the number density of
the fan falls roughly off as 1.

The most detailed empirical model of the solar system zodiacal cloud is the 88-



17

parameter model that Kelsall et al. (1998) fit to the data from the Diffuse Infrared
Background Experiment (DIRBE) aboard the Cosmic Background Explorer (COBE)
satellite. We will use this model over and over again throughout this thesis. In the
Kelsall et al. (1998) model, the dust density falls off as r=1-34,

The DIRBE observations do not probe the solar system interior to a heliocentric
radius of 0.87 AU. However, observations by the Heilos satellites of the scattered zodi-

—13 31l the way into

acal light suggest that the dust number density is proportional to r
heliocentric distances of 0.3 AU (Lienert et al. 1981). The radial power laws from the
DIRBE and Helios models are remarkably close to r~!; the differences may be due to
the cometary dust component, which is supplied throughout the inner solar-system, the

gradual collisional evolution as the dust, and in the case of Helios data, the scattering

properties of the dust.

2.4 Interactions With Planets

A planet in a dust cloud can dramatically alter the cloud’s structure, or subtly perturb
the dust orbits. A dust particle interacting with a planet can be considered a special
case of the restricted three-body problem, which is discussed in detail in many textbooks
on dynamics (e.g. Brouwer and Clemence 1961, Murray and Dermott 1999). Here is a
rough sketch of the big picture.

A dust grain orbiting a star together with a planet feels the potential
V; + V;nlaneta (220)
where

GM.
and V;)lcmet = ke

r Tplanet

(2.21)

It is traditional to expand Vpjane: in a Fourier series. This makes sense because when the
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perturbations from the planet are small, the coordinates of objects on eliptical orbits
about the star are periodic in time. The important quantities are not the absolute
positions of the objects, but their relative positions—and not the cartesian coordinates,

but their orbital elements:

a semimajor axis A mean longitude
e eccentricity w longitude of pericenter
¢ inclination 1 ascending node

The expansion is made in cosines of angles which are linear combinations of the

orbital elements of the particle and the orbital elements of the planet.

V;Jlanet = GM*mplanet Z S(a, CL,, €, ela Iv I,) COs ¢ (222)

p=jy N +iA+iyw@ +i_w+igQ +5,Q (2.23)

The unprimed quantities refer to the orbit of the planet; the primed quantities refer to
the orbit of the dust particle. The j’s in this linear combination are strictly integers.
When Viianet is expanded this way, it is called the “disturbing function.” We can learn
about the interaction of a planet and a small object, like a dust grain, by classifying

the terms in this Fourier Series.

Secular Terms
Iy = Jy =0 (2.24)

Secular terms are those terms which do not depend on A or A’ the mean longitudes of
the planet and the particle, the angles that indicate where in their orbits the particle

and planet are right now. These terms can alter the eccentricity, inclination, longitude
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of pericenter, and the longitude of ascending node of zodiacal dust orbits, but do not
affect the semimajor axis or epoch. In the limit where particles spend a long time very
close to a single perturber, the perturber will add a “forced eccentricity” and “forced
inclination” to the orbits of the particles which match the eccentricity and inclination
of the perturber. In the solar system, secular perturbations offset the center of the
zodiacal cloud from the sun by ~ 0.012 AU (Kelsall et al. 1998). The offset is roughly
equal to the product of the semimajor axis and the eccentricity of the orbit of Jupiter,
which presumably causes the perturbation.

Secular perturbations may also create the warp in the 8 Pictoris disk (Mouillet et
al. 1997) and shape the ring around HR 4796 (Wyatt et al. 1999). Jupiter-mass planets
appear to be common around G stars, and their orbits are often eccentric (see, e.g.,
Marcy and Butler 1998). It is easy to imagine an exozodiacal dust disk dramatically
reshaped by secular perturbations from these massive planets, even if the planet is too

far from the star to make a detectable radial-velocity signature.

Resonant Terms
jyn +j 0 (2.25)

where n is planet’s orbital frequency, or mean motion, and n' is the particle’s mean
motion. These are the terms whose effects accumulate over time when a particle’s
periodic close encounters with the planet, or conjunctions, occur repeatedly at the
same places in the particle’s orbit. This requires that particle’s mean motion divided
the planet’s mean motion is a ratio of whole numbers.

If a particle is spiralling inwards, it is easier to trap the particle into a resonance

where the particle is exterior to the planet. In this case it is common to write

n’ p
— = = 2.26
s (2:26)

where p and g are whole numbers, instead of using the j’s. Using Kepler’s law, the
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above condition can be rewritten as

1

- [;%]2/3. (2.27)

Resonances are associated with special values of a particle’s semimajor axis.

A particle in a p:p + ¢ resonance has a close encounter with the planet once ev-
ery p orbits of the particle, or p + ¢ orbits of the planet. In general, the smaller p
and ¢, the more frequent the close encounters, and the stronger the time-averaged
resonant perturbations. When ¢ = 1, the dust particle completes a whole number of
orbits between successive conjunctions with the planet, and every conjunction occurs
at the same longitude in inertial space. These sorts of resonances are called first order

resonances.

Short-Period Terms

All the other terms are collectively called “short period terms.” They are difficult
and often impossible to include in analytic calculations because they are infinite in
number. In many situations, their perturbative effects are uncorrelated, and they
average away. However, sometimes their effects are crucial. Short period terms can
dominate the dynamics whenever there is a close encounter between a particle and a
planet. Their cumulative effects over many orbital periods contribute to the chaotic
nature of the three body problem. Short period terms provide the ultimate mechanism

for removing particles trapped in resonances.

2.5 Resonant Rings and Wakes

As a particle’s semimajor axis passes through a resonance, the resonant perturbations
can temporarily balance P-R drag, halting the particle’s inward spiral. The particle is
then said to be “trapped” in the resonance, though since the situation is temporary,
“detained” might be a better word. Whatever the terminology, the result is that a

particle spends more time in the vicinity of a resonance than elsewhere on its inward
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spiral; resonances create overdense regions in dust clouds.

The strength of a resonance depends on frequency and strength of the closest en-
counters between the particle and the planet. Resonances that are close to the planet
have a’ /a ~ 1. According to equation 2.27, this means q is small compared to p. In-
deed, the most important resonances for trapping dust are the first order resonances,
where ¢ = 1, i.e., resonances of the form p:p+1.

As a dust particle spirals past a planet, first it encounters the 1:2 resonance, then
the 2:3, then the 3:4 and so on. At first, the resonances get stronger as the particle
moves closer to the planet. But then as p continues to increase, the particles become
more susceptible to close encounters with the planet, and the trapping times decrease.
Eventually at high values of p, the resonances start to overlap, and chaos sets in
(Wisdom 1980). Generally, when many particles spiral past a planet, several resonances
near a special value of p become well populated.

Figure 2.1 shows how a 3:4 resonant orbit appears in a reference frame that is
rotating with the planet (indicated by the €D) around a star (indicated by the ().
In Figure 2.1, the dust particle is exactly on resonance. As the particle librates about
this equilibrium orbit, it traces out a path something like the one in Figure 2.2. Figure
2.3 illustrates how dust trapped in mean-motion resonances of the form p:p-+1 can
create a ring-like density enhancement in a zodiacal cloud. Overlaying plots of librating
resonant orbits for a few different resonances (p=3,4, and 5) produces the characteristic
ring shape, with a gap at the location of the planet.

The effect of P-R drag on resonant orbits is to displace their equilibrium pericenters
by a small angle. Smaller particles with larger (s require a bigger kick to counter the
effect of P-R drag, so they prefer to have their resonant encounters closer to the planet
on its trailing side, shown in Figure 2.4. The result is that for smaller particles, the ring
shifts so that the hole leads the planet, and a “wake” forms, trailing the planet. This
wake is just the region where the pericenters of the orbits of the small particles align

so these particles can receive their resonant perturbations directly behind the planet.
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p:pt1 resonant
orbit

p=3

Figure 2.1: A resonant orbit shown in a reference frame corotating with the planet.

When a particle is trapped in a resonance, the resonant perturbations maintain the
particle’s semimajor axis, and thereby the energy of its orbit (equation 2.5). But P-R
drag continues to decrease the particle’s angular momentum (h = na?v/1 — e2) and
increase the particle’s eccentricity. In the absence of other perturbations the particle’s
eccentricity would approach a preferred value, where the orbit has just become planet
crossing (Weidenschilling and Jackson 1993) in a time period proportional to the P-R
time. What actually happens is that as the particle’s orbit becomes more nearly planet
crossing, it becomes more susceptible to the effects of other terms in the disturbing
function. One day it has a close encounter with the planet that knocks it out of
resonance, sometimes into a safe orbit that lets it spiral past the planet, sometimes
into an unbound orbit, and sometimes into another resonance.

The more massive the planet, the more the low p resonances dominate the trapping.
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libration

Figure 2.2: A resonant orbit with libration.

For massive planets the more distant resonances become stronger and the interior
resonances overlap sooner. In numerical models of Earth’s ring (Dermott et al. 1994),
the most populated resonance is p = 5. Numerical models of dust trapped in resonances
by Neptune (Liou and Zook 1999) suggest the most populated resonance is p = 2 or 3.

The situation becomes more complicated when the planet is on an eccentric orbit.
The small eccentricity of the Earth’s orbit causes the Earth to move with respect to
its ring and wake, causing seasonal variations in the DIRBE and IRAS maps. When
planets have very eccentric orbits, they can create structures that are better described
as “arcs” than rings. For some examples of the interesting ways particles can behave

when perturbed by a planet on an eccentric orbit, see Roques et al. (1994).
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Figure 2.3: If several resonant orbits are occupied, the result is a ring with a gap at
the location of the planet.

2.6 The Pericenter Shift

Here is a brief discussion of the pericenter shift that assumes that the planet is on a
circular orbit.

In general, a resonant term has the following form:

Gm ' roL
R= TFjA'jxj ’jwjn’jn(a’a ,€,€ 10,1 )Ccos ¢, (2.28)

where ¢ is called the resonant argument. The function F’ can be read from tables in
Murray and Dermott (1999) for instance. We can compute the time variation of any

orbital element, and hence of ¢ using Lagrange’s Planetary Equations (Brouwer and
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Figure 2.4: P-R drag shifts the pericenters of the equilibrium resonant orbits for par-
ticles with small 3.

Clemence 1961). For instance, Lagrange’s equations tell us

!

dn 3 OR

Dk 2.29
dt a'? Oz ( )
In other words,
dn’ 3Gm
il = —Fsino. 2.30
1: dt ]resonant a'3 SlIl(ZS ( )

When the planet’s orbit is circular

b=y XN +i A+, @ (2.31)
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This angle can be interpreted as the angle between the longitude of pericenter of the
particle’s orbit and the longitude of the particle’s conjunction with the planet. Differ-

entiating twice, and assuming that the planet’s orbit is unchanging, we find
p=Jgy(n +€é)+iw, (2.32)

where € is the particle’s mean longitude at epoch. If we neglect ¢ and @' (they are are

generally small), we find

b=jyn = ?’S%Fsin . (2.33)
This differential equation is analogous to the equation of motion for a simple pendu-
lum. There are two families of solutions. Some solutions correspond to the pendulum
oscillating about an equilibrium position; ¢ oscillates about a stable point, ¢g = ,
and the particle is trapped in a resonant orbit with the planet. The other solutions
correspond to the pendulum swinging around in a circle; in this case, ¢ circulates, and
the particle is not trapped. When the particle is trapped, the oscillations of ¢ around
its equilibrium value are called “librations.”
P-R drag adds another term to this equation of motion; it tries to slowly increase

¢. Using equation 2.17,

. ([dn'] [dn’] ) 3Gm 3GM,(n 2+ 3e?
resonant PR

ENN R R — —F i . .
=1 dt dt a'3 sing + 2a'2¢c (1 —€'2)3/2 (2.34)

In the vicinity of the equilibrium point, this system is analogous to a mass hanging
on a spring in a gravitational field; the gravitational field doesn’t change the character
of the allowed oscillations, but it shifts the position of the equilibrium point so that
at rest, the mass hangs lower, where the force from the stretched spring balances the
gravitational force. Likewise, when the P-R term is added to the equations, it doesn’t

destroy the oscillations, but instead, it shifts the location of the equilibrium position,
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¢p. Setting (b =0 at ¢g, we find

M Bn'd 2+3€?
2Fme €' (1—¢€2)3/2

sin g = — (2.35)

In the reference frame rotating with the planet, this translates into a shift in the

pericenters of the equilibrium orbit by ¢g/(p + 1).
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Chapter 3

A Single-Dish Search for Thermal Emission from
Exozodiacal Dust

3.1 Speckle Interferometry

Passive ground-based telescopes are designed to form compact images from plane elec-
tromagnetic waves. However, a plane wave accumulates phase errors as it passes
through the atmosphere, and these errors blur the image of a point source into a seeing
disk. The size of the seeing disk indicates the effective aperture limit that the atmo-
sphere imposes. That aperture limit is roughly what those who study the atmosphere
call Ry.

A typical seeing disk at optical wavelengths has a full width at half-maximum of
0.5-3 arcseconds, much larger than the ~ 12 milliarcsecond diffraction limit of a 10-
meter telescope at V band. For Kolmogorov turbulence, the size of the seeing disk
scales as A\/Ry A~1/5 (e.g., Hardy 1998), so at 12 microns, the seeing disk is about
half the size it would be in V band, and the diffraction limit of the telescope is about
240 milliarcseconds. In other words, at 12 microns, on a night of good seeing, Ry can
be about 10 meters and a 10-meter telescope can be nearly diffraction limited.

However, for our mid-infrared search for exozodiacal dust, we wanted the ability
to investigate the size of sources not much larger than the diffraction limit of the tele-
scope. So even the small atmosphere-induced phase errors that a 10-meter telescope is
sensitive to at 12 microns in good seeing could be a significant obstacle—and we did
not have good seeing. A conceivable solution to the problem would be to intersperse
observations of our target stars with observations of calibrator stars which we expect

to be unresolved. Then one might imagine using the calibrator images to deconvolve
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the seeing disk from the images of the target stars. However, that approach has lim-
ited potential, because the time-averaged seeing disk has very little power at spatial
frequencies beyond A\/Ry. So dividing one Fourier transform of a seeing-blurred image
by another only serves to amplify the background noise at high spatial frequencies.

More sophisticated approaches to the deconvolution problem do exist. For our
search for exozodiacal dust in the mid-infrared we decided to try a technique called
speckle interferometry, which Labeyrie (1970) invented specifically to overcome the
effects of phase errors introduced by the atmosphere. Here is a description of the
technique which expands upon a paper by Roddier (1986).

Consider a monochromatic plane wave with wavenumber k incident on a telescope
primary. We can write the electric field in the image plane, E as a sum of electric
fields arriving from many infinitesimal sub-apertures of the primary. The field from
each sub-aperture ¢ changes phase as it propagates the distance z; to the image plane.

If we ignore the time variations, we have
E =) Ei* (3.1)
i

The optics conspire to make the paths x; proportional to some constant plus the dot-
product of the position coordinates in the pupil plane, p, and the position coordinates
in the image plane, 5—: at least for small deviations from on-axis propagation (e.g.,

Schreoder 1987);
E x Z Eieikﬁ'{. (3.2)

The result is that the E for a point source o« the Fourier transform of the aperture func-

tion. This means that the intensity in the image plane, I = |E|?, is the autocorrelation
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of the aperture function;
[=Y" Y Bt = 37 BB AP, (3.3)
i AP

where AP is the separation vector between sub-aperture ¢ and sub-aperture j. The
auto-correlation of the aperture function is the number of pairs, N, of infinitesimal
subapertures that have the same vector spacing on the primary, also called the Pupil
Redundancy.

Here is a summary of these relationships for a monochromatic plane wave using the

hat accent to indicate Fourier conjugates.

E = aperture function (3.4)

I = N(Ap) (3.5)

The effect of the atmosphere is well modeled by grouping the terms in equations
3.3 and 3.5 into macroscopic sub-apertures, each the size of Ry, and multiplying each
group by a random phasor, ¢'®. The result is that at any instant, the image of a point
source appears like a cluster of diffraction-limited images, called speckles. This pattern
changes on a time scale called the “coherence time” as winds blow the atmospheric

turbulence across the sky.
jspeckle = N(Ap_’)eidmﬁ (3.6)

Speckle interferometry offers a way to use the telescope-atmosphere transfer func-
tion, I speckle, tO estimate the N(Ap), the telescope transfer function in the absence
of the atmosphere. The trick is that when you sum a series of N identical phasors,

the sum grows as IV, but when you sum an uncorrelated series of V random phasors,
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the magnitude of the result grows as VvV N. At any instant, fspeckle itself is a sum of
random phasors, at least at AP > Ry, so it approaches a constant times {/ N (A]s)
But if we capture I speckle at several different times, and let %27 become un-correlated
between them, we can form a sum that grows as N (Aﬁ) by squaring each I speckle- This
function has power at spatial frequencies up to the diffraction limit of the telescope,
which means that deconvolving it from an image will not simply serve to amplify noise
at high spatial frequencies.

The practical recipe for speckle interferometry is not much more complicated than
this. If a source has brightness 7', then in the image plane, we have the convolution of

T and Ipeckie, and in the pupil plane, we have I speckle’f. We followed this procedure:

1) Take many short integrations, shorter than the atmospheric coherence time.

2) Fourier transform all the images, and square the Fourier transforms to get power

spectra, which are |f speckleIQ times the power spectrum of the target source, |T 2.
3) Sum all the power spectra to get a function which is proportional to N(AP)IT]Q.

4) Do the same for a point-like calibrator star to get a function proportional to
N (AP)[(AJ’l2 where C is the power spectrum of the calibrator. If the calibrator is
much smaller than the diffraction limit, then C is a constant at AP < the diffraction
limit.

5) Divide the sum of the target power spectra by the sum of the calibrator power
spectra. If the seeing has not changed substantially over the course of the observations,
this step yields the spatial power spectrum of the target, |T |2, at AP < the diffraction

limit.

In the infrared, the high level of thermal background necessitates subtracting images
of the background light from images of astronomical objects to make useful final images.
To correct for the contributions of the non-uniform background images to the power

spectra of the astronomical objects in our mid-infrared search for exozodiacal dust, we
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also tallied power spectra for our off-source exposures, and subtracted these from the

on-source power spectra before we compared targets and calibrators.
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3.2 An 11.6 Micron Keck Search For Exozodiacal Dust

Marc J. Kuchner, Michael E. Brown and Chris D. Koresko
California Institute of Technology, Pasadena, CA 91125

We have begun an observational program to search nearby stars for dust disks that
are analogous to the disk of zodiacal dust that fills the interior of our solar system:.
We imaged six nearby main-sequence stars with the Keck telescope at 11.6 microns,
correcting for atmosphere-induced wavefront aberrations and deconvolving the point
spread function via classical speckle analysis. We compare our data to a simple model
of the zodiacal dust in our own system based on COBE DIRBE observations (Kelsall

et al. 1998) and place upper limits on the density of exozodiacal dust in these systems.!

3.2.1 Introduction

Our sun is surrounded by a disk of warm (>150 K) “zodiacal” dust that radiates
most of its thermal energy at 10-30 microns. This zodiacal dust is produced largely
in the inner part of the solar system by collisions in the asteroid belt (Dermott et
al. 1992) and cometary outgassing (Liou and Zook 1996). Zodiacal dust is interesting
as a general feature of planetary systems, and as an indicator of the presence of larger
bodies which supply it; dust orbiting a few AU from a star is quickly removed as it loses
angular momentum to Poynting-Robertson drag (Robertson 1937). Understanding the
extra-solar analogs of zodiacal dust may also be crucial in the search for extra-solar
planets (Beichman et al. 1996) since exozodiacal dust in a planetary system could easily
outshine the planets and make them much harder to detect.

The best current upper limits for the existence of exozodiacal dust disks come from
IRAS measurements of 12 and 25 micron excesses above photospheric emission. Seen
from a nearby star, solar system zodiacal dust would create only a 1074 excess over the

sun’s photospheric emission at 20 microns. IRAS measurements, however, have typical

! Adapted from Kuchner et al. (1998)
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measurement errors of 5 percent (Moshir et al. 1992) and display systematic offsets of
a similar magnitude when they are compared to other photometry (Cohen et al. 1996).
If there were a solar-type zodiacal disk with 1000 times the density of the disk around
the sun around Tau Ceti, the nearest G star, the excess infrared emission would barely
exceed the formal 68% confidence intervals of the IRAS photometry. Moreover, all
photometric detection schemes of this sort are limited by how accurately the star’s
mid-infrared photospheric emission is known. For farther, fainter stars than Tau Ceti,
inferring the presence of dust from the IRAS data becomes still harder.

The detection of faint exozodiacal-dust emission is more feasible if one can resolve
the dust emitting region. The high resolution and dynamic range needed for these
observations will generally require large interferometers like the Keck Interferometer,
the Large Binocular Telescope, and the Very Large Telescope Interferometer. But it
is already possible to resolve the zodiacal dust mid-infrared emitting regions of the
nearest stars. A 10-meter telescope operating at 12 microns has a diffraction-limited
resolution of 0.25 arc seconds, corresponding, for example, to a transverse distance of
2 AU at 8 parsecs.

We have begun a search for zodiacal dust around the nearest stars using the mid-
infrared imaging capabilities of the Long Wavelength Spectrometer (LWS) (Jones &
Peutter 1993) on the W. M. Keck telescope. The large aperture of the telescope allows
us to make spatially resolved images of the zodiacal dust 11.6 micron emitting region
around the stars so that we can look for dust emission above the wings of the point-
spread function (PSF) rather than as a tiny photometric excess against the photosphere.
We present here the results of two nights of observations, and compare them with a
simple model of exozodiacal thermal emission to place upper limits on the amount of

dust present in the systems we observed.
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3.2.2 Observations

We observed six nearby stars with LWS on the W. M. Keck telescope on August 3 and
4, 1996, using standard mid-infrared imaging techniques. The target stars were the
nearest A—K main-sequence stars observable from Mauna Kea on those dates. With the
object on-axis, we took a series of frames lasting 0.8 ms each, chopping the secondary
mirror between the object and blank sky 8 arcseconds to the north at a frequency of
10 Hz. Then we nodded the primary mirror for the next series of frames so that the
sky was on-axis and the object off-axis. We repeated this process for 3 nods over a
period of 5 minutes, for an on-source integration time of 1.1 minutes, and a typical
noise of 2 mJy in one 0.11 by 0.11 arcsecond pixel due to the thermal background.
The seeing was poor both nights, up to 2 arc seconds in the visible. To measure the
atmosphere-telescope transfer function, we made similar observations of seven distant,
luminous calibrator stars near our targets on the sky, alternating between target and
calibrator every 5-10 minutes.

We increased our frame-rate for the second night of observations so that we could
compensate for the seeing using speckle analysis. Figure 3.3 shows a cut through a single
84 ms exposure of Altair on August 4, compared to an Airy function representing the
diffraction-limited PSF of a filled 10-meter aperture at 11.6 microns. The cores of the
images are diffraction-limited, but the wings are sensitive to the instantaneous seeing,
making speckle analysis necessary. Table 3.1 provides a summary of our observations.

We flat-fielded the images by comparing the response of each pixel to the response
of a reference pixel near the center of the detector. First we plotted the data number
(DN) recorded by a given pixel against the DN in the reference pixel for all the frames
in each run. Since the response of each pixel is approximately linear over the dynamic
range of our observations and most of the signal is sky background, which varies with
time but is uniform across the chip, the plotted points for each pixel describe a straight
line; if all the pixels had the same response, the slope of each line would equal 1. We

divided each pixel’s DN by the actual slope of its response curve relative to the reference
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Altair, 84 ms frame
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Figure 3.1: A cut through a single 4 ms image of Altair, compared to a similar cut
through an image of a calibrator star, Gamma Aquila, and an Airy function representing
the PSF of an ideal, filled, 10-meter aperture at 11.6 microns. The cores of the images
are diffraction-limited, but the wings are sensitive to the instantaneous seeing, making
speckle analysis necessary.

pixel, effectively matching all pixels to the reference pixel. We then interpolated over
bad pixels, frame by frame.

To compensate for the differences in the thermal background between the two nod
positions, we averaged together all the on-axis sky frames to measure the on-axis ther-
mal background and subtracted this average from all of the on-axis frames-—both object
and sky. We used the same procedure to correct the off-axis frames.

Next, we chose subframes of 32 by 32 pixels on each image, centered on the star
(or for sky frames, the location of the star in an adjacent object frame), and processed

these according to classical speckle analysis (Labeyrie 1970). We Fourier transformed



37

Table 3.1: Observations with LWS

Time Per  Object Log Disk Density
Date Target  Calibrator Frame (ms) Frames Pairs  Solar Disk =0

Aug. 3 Vega R Lyr 800 90 2 <4.0
x Lyr 800 90 1
61 Cyg A ¢ Cyg 800 90 4
61 Cyg B ¢ Cyg 800 90 5
7 Cet v Cet 800 90 2
210 348 1
Aug. 4 70 Oph B G Oph 84 864 5
74 Oph 84 864 4

Altair v Aql 84 864 6 <3.2
g8 Aqgl 84 864 5

them, and summed the power spectra, yielding a sky power spectrum and an object
power spectrum for each series. Then we azimuthally averaged the power spectra in the
u-v plane—that is, we averaged over all the frequency vectors of a given magnitude,
Vu2 +v2. This azimuthal averaging corrects for the rotation of the focal plane of
the alt-az-mounted Keck telescope with respect to the sky. We then subtracted from
every object power spectrum the corresponding sky power spectrum and divided each
corrected target power spectrum by the corrected power spectrum of a calibrator star
observed in the same manner as the target star immediately before or after the target
star. Figure 3.4 shows an azimuthally-averaged power spectrum of Altair and the
corresponding sky power spectrum, compared with a power spectrum of calibrator
Gamma Aquila and its corresponding sky power.

We then averaged all the calibrated power spectra for a given target. If the object
and calibrator are both unresolved, the average calibrated power spectrum should be
the power spectrum of the delta function: a constant. We found that the pixels along
the u and v axes of the power spectra were often contaminated by noise artifacts from
the detector amplifiers, so we masked them out.

Figures 3.3-3.8 show the calibrated azimuthally-averaged power spectra for our
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uncalibrated power spectra
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Figure 3.2: An azimuthally-averaged power spectrum of Altair and the corresponding
sky power spectrum, compared with a power spectrum of calibrator Gamma Aquila
and its corresponding sky power. The power in the star images approaches the sky
power near the diffraction limit at 4 cycles per arcsecond.

target stars. To compare different power spectra from the same target, we normalized
each azimuthally-averaged power spectrum so that the geometric mean of the first 10
data points in each spectrum equals 1. For Altair and 61 Cygni A and B we had more
than three pairs of target and calibrator observations, i.e., calibrated power spectra, so
we show the average of all the spectra and error bars representing the 68% confidence
interval for each datum, estimated from the variation among the individual power
spectra. The error is primarily due to differences in the atmosphere-telescope transfer
function between object and calibrator. None of the calibrated power spectra deviate
from a straight line by more than a typical error; all the targets are unresolved to the

accuracy of our measurements.



39

3.2.3 Discussion

To interpret our observations we compared them to models of the IR emission from
the solar zodiacal cloud. We constructed a model for exozodiacal emission based on
the smooth component of the Kelsall et al. (1998) model of the solar system zodiacal
cloud as seen by COBE DIRBE, with emissivity € oc 77934 and a temperature T =
286 K r—04671,0-234 where r is the distance from the star in AU, and L is the luminosity
of the star in terms of Lg. For a dust cloud consisting entirely of a single kind of dust
particle of a given size and albedo, the L exponent in the expression for the temperature
is simply —1/2 times the r exponent (Backman & Paresce 1993).

The physics of the innermost part of the solar zodiacal dust is complicated (see
Mann & MacQueen 1993), but our results are not sensitive to the details, because
the hottest dust is too close to the star for us to resolve. We assume that the dust
sublimates at a temperature of 1500 K, and allow this assumption to define the inner
radius of the disk. We set the outer radius of the model to 3 AU, the heliocentric
distance of the inner edge of our own main asteroid belt. Our conclusions are not
sensitive to this assumption; decreasing the outer radius to 2 AU or increasing it to
infinity makes a negligible difference in the visibility of the model, even for A stars.

The assumed surface density profile, however, does make a difference. A collisionless
cloud of dust in approximately circular orbits spiraling into a star due to Poynting-
Robertson drag that is steadily replenished at its outer edge attains an equilibrium
surface density that is independent of radius (Wyatt and Whipple 1950, Briggs 1962).
Models that fit data from the Helios space probes (Lienert et al. 1981), the fit by
Kelsall et al. (1998) to the COBE DIRBE measurements and Good’s (1997) revised fit
to the IRAS data all have surface densities that go roughly as r~9%. This distribution
appears to continue all the way in to the solar corona (MacQueen & Greely 1995). We
find that, in general, if we assume an r~ surface density profile, our upper limit for
the 1 AU density of a given disk scales roughly as 10%/2; disks with more dust towards

the outer edge of the 11.6 micron emitting region are easier to resolve.
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Likewise, the assumed temperature profile strongly affects our upper limits. Un-
fortunately, we know little about the temperature profile of the solar zodiacal cloud.
COBE DIRBE and IRAS only probed the dust thermal emission near 1 AU, and Helios
measured the solar system cloud in scattered light, which does not indicate the dust
temperature. We found that a dust cloud model with the IRAS temperature profile
(T = 266 K r—0-359L0-180) was much easier to resolve than the model based on DIRBE
measurements that we present here, especially for G and K stars.

To compare the models with the observations, we synthesized high resolution images
of the model disks at an inclination of 30 degrees. We calculated the IR flux of the
stars from the blackbody function, and obtained the parallaxes of the stars from the
Hipparcos Catalog (ESA 1997). We inferred stellar radii and effective temperatures for
each star from the literature and checked them by comparing the blackbody fluxes to
spectral energy distributions based on photometry from the SIMBAD database (Egret
et al. 1991). For Altair and Vega, we use the interferometrically measured angular
diameters (1974) (they are 2.98 +/-0.14 mas and 3.24 mas). Stellar fluxes typically
disagree with fitted blackbody curves by ~ 10% in the mid-infrared (Engelke 1990), but
our method does not require precise photometry, and the blackbody numbers suffice
for determining conservative upper limits. We computed the power spectra of the
images, and normalized them just like the observed power spectra. In Figures 3.3-
3.8, the azimuthally-averaged power spectra for our target stars are compared to the
extrapolated COBE DIRBE model at a range of model surface densities. Disks with
masses as high as 10% times the mass of the solar disk will suffer collisional depletion
in their inner regions, so they are unlikely to have the same structure as the solar disk.
By neglecting this effect we are being conservative in our mass limits. The density of

the densest model disk consistent with the data in each case is listed in Table 3.1.

Altair
Our best upper limit is for Altair (spectral type A7, distance 5.1 pc); with 11 pairs

of object and calibrator observations we were able to rule out a solar-type disk a few
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Figure 3.3: Azimuthally-integrated power spectrum of Altair compared to simulated
power spectra of model disks with various densities (1 = the solar disk). An unresolved
point-source would appear as a straight line at a normalized power of 1.0. The densest
model disk consistent with the observations has a density of roughly 103 times that of
the solar disk.

times 103 as dense as our zodiacal cloud. Such a disk would have been marginally

detectable by IRAS as a photometric excess.

Vega

IRAS detected no infrared excess in Vega’s spectral energy distribution at 12 mi-
crons, with an uncertainty of 0.8 Jy. This may be due to a central void in the disk
interior to about 26 AU (Backman & Paresce 1993). Aumann et al. (1984) suggested
that Vega (A0, 7.8 pc) could have a hot grain component (500 K) with up to 1072 of the
grain area of the observed component and not violate this limit. The apparent upward

trend in the visibility data may be a symptom of resolved flux in the calibrator stars.
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Figure 3.4: Azimuthally averaged power spectrum of Vega compared to simulated
power spectra of model disks with various densities.

We have only 3 object/calibrator pairs for Vega, not enough to test this hypothesis.
Our upper limit is a solar-type disk with approximately 3 x 103 times the density of
the solar disk. This disk would have a >500 K emitting area of 10%* cm?, about 1073

of the grain area of the observed component.

61 Cygni A and B

Though 61 Cygni is close to the galactic plane and surrounded by cool cirrus emis-
sion, Backman, Gillett and Low (1986) identified an IRAS point source with this binary
system and deduced a far-infrared excess not unlike Vega’s. The color temperature of
the excess suggests the presence of dust at distances > 15 AU from either star. How-
ever, these stars are dim (spectral types K5 and K7) and the region of the disk hot

enough to emit strongly at 11.6 microns is close to the star and difficult to resolve; we
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Figure 3.5: Azimuthally averaged power spectrum of 61 Cygnus A compared to simu-
lated power spectra of model disks with various densities.

could not detect a solar-type dust disk around either of these objects at any density,
assuming the COBE DIRBE model, or unless it had 10 times the density of the solar
disk, assuming the IRAS model.

70 Oph B

70 Oph is a binary (types KO and K4) with a separation of 24 pixels (2.6 arcsec).
We were able to assemble a power spectrum for B from 9 object/calibrator pairs, but
the image of A fell on a part of the LWS chip that suffered from many bad pixels and
was unusable. The image of A may also have been distorted by off-axis effects. 70 Oph
B, like 61 Cygni A and B, is dim, making any dust around it cool and hard to detect

at 11.6 microns.

7 Ceti
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Figure 3.6: Azimuthally averaged power spectrum of 61 Cygnus B compared to simu-
lated power spectra of model disks with various densities.

IRAS could have barely detected a disk with ~ 1000 times the emitting area of
the solar disk around Tau Ceti (G8, 3.6 pc), the nearest G star. We have only three

object/calibrator pairs for this object, not enough data to improve on this limit.

We are grateful to Dana Backman, Alycia Weinberger, Keith Matthews and FEric
Gaidos for helpful discussions, and to Keith Matthews and Shri Kulkarni for assistance
with the observations. This research has made use of the Simbad database, operated
at CDS, Strasbourg, France. The observations reported here were obtained at the W.
M. Keck Observatory, which is operated by the California Association for Research
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Chapter 4

A Search For Scattered Light from Exozodiacal
Dust

4.1 The One-dimensional Coronagraph Without an At-

mosphere

1 To set the stage for discussion of a more realistic instrument, we illustrate the Fourier
optics of a one-dimensional coronagraph. Other more formal expositions of corona-
graphic imaging can be found in the literature. Our analysis assumes that the Fraun-
hofer approximation applies, that is the transverse electric field in the image plane is
the Fourier transform of the phasor of the wavefront phase in the pupil plane (if ¢(z,y)
is the phase, then e*®(®¥) is the corresponding phasor). We make use of the standard
Fourier analysis results which can be found in Bracewell (1986).

For this analysis we consider only monochromatic imaging, but note that in typ-
ical broadband imaging, the final image can be described by the sum or integral of
several monochromatic images, weighted by the instrumental transmission function.
Wavelength variation across the band will act in such a way as to smear image features
radially by the same factor as the fractional bandwidth, since the wavelength enters into
diffraction-limited image formation only in the combination (A\/D). As a result, bright
Airy rings will get wider, but coronagraphic suppression of such rings will persist. By
treating the monochromatic case we can distinguish clearly between halo suppression
and Airy ring suppression. Secondary support spiders and scintillation (field strength
variation across the wavefront) are not modeled here.

In the absence of atmospheric degradation, a monochromatic on-axis source at

'Section 4.1 is adapted from Sivaramakrishnan et al. (2000)
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infinity produces a transverse electric field at the telescope pupil
E = Ej Re(e'F=wb), (4.1)

We follow the passage of the incident wave’s field through a one-dimensional corona-
graph. Figure 4.1 shows a diagram of the optical path.

We label eight key locations along this path with letters a-h. Eight plots in the
figure show the electric field due to an on-axis source at these key locations, and the
transmission functions of the optical stops that affect the incident wave as it passes
through the coronagraph.

First, the incoming wave passes through the telescope aperture (Figure 4.1a). We
represent this interaction by multiplying the field by the aperture stop function, so that
in the pupil plane

(z) =1 for|z| <1/2,
E, = El(z/D,), where (4.2)
II(z) = 0 elsewhere.
Here Dy = D/ is the number of wavelengths across the telescope aperture. We denote
a pupil plane coordinate by z, and an image plane coordinate by 6. The telescope optics
then form the wave into an image (Figure 4.1b). The electric field in the image plane

is the Fourier transform of the aperture field E,:
Ey o sinc(Dy0/2), (4.3)

where § is the field angle in radians in the first image plane. We omit the constants of
proportionality for simplicity.

In a conventional imaging camera this image field would fall on a detector. However,
in a coronagraph, the star is occulted by a field stop in this image plane. We describe
the stop in terms of a shape function w(Dx0/s), which is unity where the stop is opaque

and zero where the stop is absent. If w(f) has a width of order unity, the stop size
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will be of the order of s resolution elements. The transmission function in the image
plane is therefore 1 — w(D)0/s) (Figure 4.1c). To illustrate the present discussion, we
take w(f) = exp(—#?/2). The field in the first imaging plane after the occulting stop

(Figure 4.1d) can be written as

E; o sinc(Dy0/2)(1 —w(Dx8/s)). (4.4)

This image is relayed to a detector through a second pupil plane. The electric field
at this second pupil is the Fourier transform of the occulted image field (see Figure

4.1e):

B, o H(z/Dy) * (8(z) — D% W(sz/Dy)) (4.5)

Here W is the Fourier transform of the image stop function w, é(z) is the Dirac
delta function, and * denotes convolution. W has width of order unity, although it
will not have bounded support for occulting stop shape functions of finite extent, such
as the hard-edged stop w(#) = II(6) (the support of a function is the set of points at
which the function is non-zero). The geometrical significance of equation 4.5 becomes

clear if we rewrite it as

E. o I(z/Dy) — DiA (z/Dy) + W (s z). (4.6)

If the image stop is completely opaque at its center, w(0) = 1. This means that
its transform, (s/D,) W(sz/D)), has unit area, regardless of any scaling we have
performed on the argument of w. This makes for cancellation of the field across most

of the pupil when s >> 1. In Figure 4.2 we show how the equation 4.6 is constructed
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graphically, using a Gaussian image stop whose width is 5A/D (i.e., s = 5). This is why
the Lyot stop must mask out a border of order D/s wide around the pupil boundary
to produce significant reduction in the throughput of unocculted light from the on-axis
source. It is only at this stage that the coronagraph increases the dynamic range of
the final image.

The unocculted light (Figure 4.1d) has a highly periodic distribution, with period-
icity ~ A/D. In the following pupil plane (which is the transform space of the image
plane), this energy is concentrated near =D /2. The larger the occulting stop diameter,
the more F, looks like a pure sinusoid, and the more the unocculted energy is localized
in the neighborhood of the boundary of the following pupil.

In seeing-limited coronagraphs, the occulting stop is typically many diffraction
widths in size (s > 10). Consequently, the Lyot stop need only be undersized by a
small fraction of the pupil diameter (e.g., 10% or less), resulting in minimal loss of
throughput for unocculted, off-axis sources. In contrast, off-axis throughput in an op-
timized, diffraction-limited coronagraph with significant rejection of on-axis light must
fall dramatically as the image plane stop shrinks to a few diffraction widths. This is
because the spillover of unocculted on-axis light occurs in a wide border around the
pupil boundary in the plane of the Lyot stop. Thus the Lyot stop must obscure a
significant fraction of the re-imaged primary mirror to remove the on-axis spillover,
and as a consequence reduce the off-axis throughput.

Since the scale of the Lyot stop oversizing is D/s, we fine-tune the Lyot stop
diameter so that it obscures a border FD/s around the perimeter of the primary.

Therefore, the Lyot stop diameter is

Dpyot = D = 2FD/s. (4.7)

If a secondary obstruction is present, then the Lyot stop must block out a similar border
around the inside edge of the annular pupil. This is why small secondary mirrors benefit

diffraction-limited coronagraphy.
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For the case of an unobstructed primary aperture with an image plane stop of
5\/D (i.e., s = 5), then, using the theory outlined above, approximately 16/25 of the
aperture should be obscured by a matched Lyot stop: when projected back onto the
primary pupil, the Lyot stop is opaque outside a circle of diameter ~ 3D /5. Rejection
of unwanted on-axis light must be balanced by signal-to-noise considerations pertaining
to the off-axis source brightness. This places a practical lower limit on the angular size
of the occulting spot in the first image plane.

The above arguments hold for two-dimensional apertures as well. The derivation is
analogous to the one-dimensional case, although the functions and transforms become
two-dimensional (e.g., for a circular telescope aperture, the sinc function is replaced by
the Airy function). Wang & Vaughan (1988) describe the two-dimensional case, and
Malbet (1996) treats the PSF’s of off-axis sources in such coronagraphs.
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Figure 4.1: One-dimensional coronagraph summary, with locations and field or stop
profiles of: (a) primary pupil for on-axis source; (b) image before field stop; (c) field
stop; (d) image after field stop; (e) pupil before Lyot stop; (f) Lyot stop; (g) pupil
after Lyot stop; and (h) final on-axis image. We note that, in this example, 98% of the
incident power is blocked by the coronagraph.
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Figure 4.2: Graphical representation of the Lyot plane field calculation. (a) Pupil
function of width D; (b) Gaussian profile field stop with 4\/D standard deviation
produces a Gaussian with standard deviation D/4 in the Lyot plane; (c) the convolution
of the pupil function with the transform of the stop profile; (d) the final Lyot stop field
showing bright edges and no energy in the center.
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4.2 A Search for Exozodiacal Dust and Faint Companions
Near Sirius, Procyon, and Altair with the NICMOS

Coronagraph

Marc J. Kuchner
Palomar Observatory, California Institute of Technology, Pasadena, CA 91125
Michael E. Brown
Division of Geological and Planetary Sciences, California Institute of Technology,

Pasadena, CA 91125

We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the
Hubble Space Telescope to look for scattered light from exozodiacal dust and faint
companions within 10 AU from these stars. We did not achieve enough dynamic range
to surpass the upper limits set by IRAS on the amount of exozodiacal dust in these
systems, but we did set strong upper limits on the presence of nearby late-type and

sub-stellar companions. 2

4.2.1 Introduction

Several main sequence stars are close enough that a large telescope operating at the
diffraction limit can resolve the terrestrial temperature zone within 10 AU from the
star (Kuchner, Brown & Koresko 1998). We used the NICMOS coronagraph to image
three of the nearest main-sequence stars, Sirius (¢« CMa; HR 2491), Procyon (o CMj;
HR 2943), and Altair (o Aql; HR 7557) in the near-infrared to look for circumstellar
material in this relatively uncharted circumstellar region.

Besides the Sun, the most luminous component of the central region of our solar
system is a cloud of dust which forms when asteroids collide and when comets outgass.
Similar dust around other stars is called “exozodiacal” dust. Any dust orbiting close

to one of our targets must have been generated recently by some population of larger

?Adapted from Kuchner and Brown (2000)
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bodies, since small grains near a star quickly spiral into the star due to Poynting-
Robertson drag (Robertson 1937). Ten micron diameter dust 3 AU from a G star spirals
into the star on time scales of ~ 10% years; this time scale is inversely proportional to
the stellar luminosity. A search for exozodiacal dust is therefore implicitly a search for
extra-solar asteroid or comet-like bodies that make dust.

Several disks around nearby main-sequence stars appear to have exozodiacal com-
ponents. For some systems, like 8 Pictoris, the presence of warm dust is inferred from
analysis of a silicate emission feature at 10 microns (Telesco & Knacke 1991; Knacke
et al. 1993). Others, like the disk around HR 4796, show marginally resolved emission
at 10 microns that is interpreted as exozodiacal (Koerner et al. 1998). Dust clouds
like these, which have ~ 1000 times as much warm dust as our sun, emit thermal ra-
diation substantially in excess of the stellar photospheric emission, and can often be
detected photometrically by studying the spectral energy distribution of the star in the
mid-infrared. However, many less massive exozodiacal clouds may never be detectable
photometrically because no stellar spectrum is known to better than ~ 3% in the mid-
infrared (Cohen et al. 1996). We have begun to search for disks that are too faint to
be detected photometrically by spatially resolving the critical regions less than 10 AU
from nearby stars.

Coronagraphic images can also reveal faint companions to nearby stars. Such com-
panions can go undetected by radial velocity surveys because of their small masses or
long orbital periods. Siruis and Procyon both have white dwarf companions whose
orbits are well studied, but analyses of the orbital motion in these systems leave room
for additional low mass companions.

The Sirius system in particular, so prominent in the night sky, has spurred much
debate in the last century over its properties. Three analyses of the proper motion of
Sirius have suggested that there may be a perturbation in the orbit of Sirius B with
a ~ 6 year period (Volet 1932; Walbaum & Duvent 1983; Benest & Duvent 1995).

These analyses do not indicate whether the perturbing body orbits Sirius A or B,
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and dynamical simulations indicate that stable orbits exist around both Sirius A and
B at circumstellar distances up to more than half the binary’s periastron separation
(Benest 1989). If such a companion were in a simple face-on circular orbit, it would
appear at a separation of 4.2 AU (1.6 arcsec) from Sirius A or a separation of 3.3 AU
(1.3 arcsec) from Sirius B assuming that the masses for Sirius A and B are 2.1 and
1.04 M, respectively (Gatewood & Gatewood 1978). Benest & Duvent (1995) do not
derive a mass for the hypothetical companion from observations of the system, but they
estimate that a perturber much more massive than 0.05 Mg would rapidly destroy the
binary.

Perhaps the most interesting debate about Sirius is whether or not the system
appeared red to ancient observers ~ 2000 years ago. Babylonian, Graeco-Roman and
Chinese texts from this time period have separately been interpreted to say that Sirius
was a red star (Brecher 1979; Schlosser & Bergman 1985, Bonnet-Bidaud & Gry 1991).
Tang (1986), van Gent (1984) and McCluskey (1987) have attacked some of these
reports, claiming that they represent mistranslations or misidentifications of the star,
and Whittet (1999) suggests that the coloration was reddening due to the Earth’s
atmosphere. However, Bonnet-Bidaud & Gry (1991) claim that if the Sirius system did
indeed appear red, the existence of a third star in the group interacting periodically
with Sirius A could explain the effect.

The low mass companions (< 0.1 Mg) that we could hope to detect with NICMOS
are late-type stars or warm brown dwarfs, shining with their own thermal power in the
near-infrared. Schroeder et al. (2000) recently imaged Sirius, Procyon and Altair at 1.02
microns with the Planetary Camera on HST in a search for faint companions to nearby
stars. Our observations are ~ 3 times more sensitive to faint companions because of the
coronagraph, but their images extend to angular separations of 17 arcseconds, while

we only have nearly complete coverage of the central 3.5 arcseconds.
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4.2.2 Observations

We observed our target stars with the NICMOS Camera 2 coronagraph on five dates
during 1999 October. We used the F110 filter, the bluest available near-infrared filter,
with an effective wavelength of 1.104 microns, to take advantage of the higher dynamic
range the coronagraph has at shorter wavelengths. We took images of Sirius and
Procyon at two different position angles, effectively rolling the telescope about the axis
to the star by 15° between them. When we searched for faint companions in the images,
we subtracted the images taken at one roll angle from the images taken at the other
angle to cancel the light in the wings from the image of the occulted star. We planned
to image Altair at a second roll angle, but on our second visit to the star the telescope’s
Fine Guidance Sensors failed to achieve fine lock on the guide star due to “walkdown”
failure.

At each roll angle we took 50 short exposures in ACCUM mode, lasting 0.6 seconds
each, and we co-added them, for total integration times of 30 seconds. Even though we
used the shortest available exposure times, our images saturated interior to about 1.9
arcseconds for Sirius, 1.4 arcseconds for Procyon, and 0.7 arcseconds for Altair. The
actual coronagraphic hole is only 0.3 arcseconds in radius. Table 4.1 summarizes the
timing of our observations and the position angles (East of North) of the Y-axes of the
images. This table also lists the distances to the targets, taken from the Hipparcos
Catalogue (Perryman et al. 1997), and their J magnitudes, from the SIMBAD online

database.

Table 4.1: Observations with NICMOS

Target  Spectral Type Distance (pc) J UT Date  Position Angle

Sirius A1V 2.64 -1.34  October 20 64.51°
October 22 81.51°

Procyon F5IV 3.50 -0.40  October 9 40.51°
October 21 55.51°

Altair A7V 5.14 0.39 October 14 -126.24°
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Figure 4.1 shows an image of Sirius taken at one roll angle. The white dwarf Sirius
B appears to the left of Sirius A, at a separation of 3.79 arcseconds. We derived
photometry of Sirius B at 1.1 microns from the roll subtracted image of Sirius using a
prescription from Rieke (1999). We measured the flux in circular apertures with radii
7.5 pixels around the positive and negative images and multiplied the flux in those
regions by an aperture correction of 1.110 to extrapolate to the total flux. Then we
used a factor of 1.996 x 107% Jy/ADU/Sec to convert from ADU to Janskys. In this
manner, we measured the flux in Sirius B to be 0.503+0.15 Jy. Procyon also has a white
dwarf companion, Procyon B, that has been previously detected by HST (Provencal et
al. 1997). It is not visible in our images, because it is currently at a separation of ~ 5

arcseconds from Procyon A.

4.2.3 Exozodiacal Dust

We compared our observations of Sirius, Procyon and Altair to a simple model for
what our zodiacal cloud would look like if it were placed around these stars. Kelsall et
al. (1998) fit an 88-parameter model of the zodiacal cloud to the maps of the infrared
sky made by the Diffuse Infrared Background Experiment (DIRBE) aboard the Cosmic
Background Explorer (COBE) satellite. We used the smooth component of this model,
which has a face-on optical depth of 7.11 x 1078(r/1AU) %34, and extrapolated it to
an outer radius of 10 AU.

Kelsall et al. (1998) fit a scattering phase function and an albedo to the DIRBE
zodiacal cloud observations at 1.25 microns, but because DIRBE surveyed a narrow
range of solar elongation, these functions are wrong at scattering angles less than 60
degrees. Instead, we used a scattering phase function consisting of a linear combination
of three Henyey-Greenstein functions that Hong (1985) fit to visible light observations
of the zodiacal cloud with the Helios Satellite, and we assumed an albedo of 0.2, from
the Kelsall et al. (1998) fit to the 1.25 micron DIRBE maps. This phase function

describes observations at scattering angles as low as 15°. We trust this extrapolation
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Figure 4.3: A coronagraphic image of the Sirius system. The white dwarf Sirius B
appears to the left of the residual light from Sirius A. Even though we used the shortest
available exposure time, the region < 1.9 arcsec from Sirius A is saturated.

because zodiacal dust is nearly grey between 0.5 and 1.25 microns.

For this part of our search, we could not use roll-subtraction to cancel the light in
the images of our target stars, because this approach would also cancel most of the
light from an exozodiacal disk, even if the disk were edge-on. Instead we subtracted
images of Altair from the images of Procyon and Sirius, with the assumption that all
three of our stars would not have identical circumstellar structures. We used the IDP3
data analysis software (Lytle et al. 1999) to perform sub-pixel shifts on the images of

Altair before we subtracted them from our images of Sirius and Procyon to compensate
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for the slightly different relative alignments of the three stars and the coronagraphic
hole.
Figures 4.2a and 4.3a show our images of Sirius and Procyon minus our image of
Altair. Software masks hide the regions where the images are saturated and the four
main diffraction spikes. The bright horn just above the masked area in the Procyon

image is a well known NICMOS artifact.
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Figure 4.4: a) An image of Sirius made using our coronagraphic image of Altair to
cancel the wings of the occulted PSF. The saturated regions of the image are hidden
with a software mask. b) The same image plus a model of the scattered light from an
exozodiacal cloud similar to the solar zodiacal cloud but 2.5 x 10° times as bright.

Figures 4.2b and 4.3b show the same images plus synthesized images of exozodiacal

clouds seen in scattered light. The models are brightest immediately to the left and
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Figure 4.5: a) An image of Procyon using Altair as a PSF calibrator. b) The same
image plus a model of the scattered light for an exozodiacal cloud 7 x 10° times as
bright as our own zodiacal cloud.

the right of the circular masked regions. The symmetry planes of the model disks
are inclined 30° from edge-on. The dust densities in these have been enhanced to
> 10%x solar levels so they are marginally discernible from the residuals from the PSF
subtraction. We used these models for the sake of comparison with the solar zodiacal
cloud; real disks with this much dust would be severely collisionally depleted, unlike
the solar cloud, and would be unlikely to have the same radial structure as the solar
cloud. Despite the high dynamic range of the NICMOS coronagraph and our efforts
at PSF calibration, we were not able to improve upon photometric detection limits for

exozodiacal dust around these stars; if the stars actually had this much circumstellar
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dust, the thermal emission from the dust would have been seen as a photometric excess
by IRAS.

Our study demonstrates the difficulty of detecting exozodiacal dust in the presence
of scattered light from a bright star in a single-dish telescope. Faint companions can be
differentiated from the wings of the telescope PSF by techniques like roll subtraction,
but if exozodiacal clouds resemble the solar zodiacal cloud, light from these clouds will
resemble the PSF wings. Even though coronagraphs can suppress the PSF wings from
an on-axis source by as much as an order of magnitude, the dynamic range obtainable
with a coronagraph on a large, diffraction-limited telescope in the near-infrared is far

from that required to probe dust levels comparable to the solar cloud.

4.2.4 Faint Companions

For our faint companion search we created roll-subtracted images of Sirius and Procyon
using the IDP3 software. To find the detection limits for faint companions among the
non-Gaussian PSF residuals, we tested our abilities to see artificial stars added to
our images. We examined roughly 350 copies of the PSF-subtracted images of each of
Sirius, Procyon and Altair with help from a few of our patient colleagues. To five-sixths
of the images, we added images of artificial stars, copied from our image of Sirius B,
-at random positions and magnitudes that were unknown to the examiner. The other
images were left unaltered and mixed with the images that contained artificial stars.
The examiners were shown each image one at at time, and asked whether they could
say confidently that the image they were shown had an artificial star. Only 2% of the
time did an examiner claim to see an artificial star when none had been added to the
image. We quote as our detection limit the threshold for finding 90% of the artificial
companions; that is, the examiners reported 90% of the artificial companions brighter
than our detection limit at a given separation. Figure 4.4 shows these detection limits.
For comparison, we plot the expected magnitudes of two kinds of possible companions

to these objects: an L0 dwarf like 2MASP J0345432+254023 (Kirkpatrick et al. 1999)
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and a cool brown dwarf, G1229B (Matthews et al. 1996).

Our apparent detection limits for Procyon are somewhat better than our detection
limits for Sirius because Procyon is almost a magnitude fainter in the near infrared;
the two sets of observations yielded about the same dynamic range. Although Altair is
fainter than Procyon, our absolute detection limits for faint companions to Altair are
not much better than our detection limits for companions around Procyon because we
have only exposures at only one roll angle for Altair. If we compare our upper limits to
the J magnitude of T Dwarf G1229B (Matthews et al. 1996), we find that we can rule
out dwarfs hotter than this object—including all L dwarfs—farther than 2.3 arcseconds
from Procyon and ~ 3.0 arcseconds from Sirius and Altair. For comparison, note that
Gl 229B was discovered 7.7 arcseconds from a M1V star with an intrinsic luminosity
5 magnitudes fainter than Sirius in the J band (Nakajima et al. 1995). Our limits are
weaker closer to the stars. We can rule out the existence of M dwarf companions farther
than 1.4 arcseconds from Altair, 1.6 arcseconds from Procyon and 1.8 arcseconds from
Sirius at greater than the 90% confidence level. In general, it should be noted that the
coronagraph hole is only 3.5 arcseconds from the edge of the chip, and that artificial
faint companions that were behind one of the four main diffraction spikes at one roll
angle were harder to detect than artificial companions at other position angles; Figure
4.4 is averaged over position angle.

We do not see any evidence for previously undetected faint companions in our
images. If there were a low-mass companion orbiting Sirius at 4.2 AU we could not
detect it because it would lie in the saturated parts of our images. However, we did
survey a large fraction of the space where a companion orbiting Sirius B might be
found, and we could have detected a brown dwarf like Gl 229B throughout most of this
zone. If there is a third object in the Sirius system, and it orbits Sirius B with a 6 year

orbit, it is probably fainter than a brown dwarf.
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objects, GL 229B and an L0 dwarf, are shown for comparison.
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Chapter 5

Modeling Exozodiacal Dust Detection with the Keck
Interferometer
Marc J. Kuchner
Palomar Observatory, California Institute of Technology, Pasadena, CA 91125
Eugene Serabyn
Jet Propulsion Laboratory, Pasadena, CA 91109

The planned nulling capability of the Keck Interferometer should allow it to probe
the region within 200 milliarcseconds of a bright star while suppressing on-axis starlight
by a factor of ~ 1073 for a G star at 10 parsecs. This high-resolution, high-dynamic
range mid-infrared experiment will search nearby stars for faint emission from exozo-
diacal dust, a tracer of extrasolar comets and asteroids, taking a step toward direct
observations of extrasolar terrestrial planets. We derive general relations between the
visibility of an astronomical source and quantities the Keck Nuller is designed to mea-
sure. Then we use these relations to simulate Keck Nuller data sets and compute
detection limits for exozodiacal clouds analogous to the solar system cloud. We explore
how the distance, spectral type, and declination of the target star affect the sensitivity
of the experiment, and consider a variety of cloud morphologies. We show that stel-
lar leak can easily be distinguished from the signal from a dust cloud by its spectral
signature, so that a 10x solar cloud around a G star at 10 parsecs is detectable even
when the stellar leak is three times the signal from the cloud. We also find that the
interferometer can constrain the cloud morphology given a long track at ~ 10 times

the detection limit.
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5.1 Introduction

Many important astrophysical phenomena may remain undetected not because they
are too faint for large modern telescopes but because they are close to a bright source,
like a nearby star. In a single-aperture telescope—even one with adaptive optics—
diffracted light and a halo of scattered light from small imperfections in the primary
mirror surround the image of a bright star and easily overpower circumstellar sources.
An interferometer offers much higher resolution than a single telescope, but the stellar
fringes in a conventional interferometer likewise dwarf the fringes from faint off-axis
sources.

The technique of nulling interferometry can potentially avoid these problems by
offering a way to selectively reject the on-axis stellar signal. A nulling interferometer
cancels on-axis starlight by introducing a relative phase shift of 7 radians between the
light signals from two separated telescopes, so when the signals are combined at zero
optical path difference, the electric fields subtract. Off-axis light acquires a different
phase shift, so it “leaks” through. In a conventional interferometer, the finite bandpass
results in a finite transmitted signal at the fringe minimum, even for an unresolved
source. However, a nulling interferometer can be designed to be achromatic over a
broad band, so that the off-axis sensitivity is high, while the total on-axis transmission
is identically zero over the entire band.

Baudoz et al. (1998) and Hinz et al. (1998) have both achieved stellar rejection
ratios of ~ 20:1 using small-aperture interferometers. However, the vast potential of
nulling interferometry remains unrealized. In the near term, nulling beam combiners
are planned for a number of facilities, including the Keck Interferometer (Colavita
1998; Colavita & Wizinowich 2000) and the Large Binocular Telescope (Angel & Woolf
1997). These interferometers are designed to produce rejection rations of 1000:1 or
better, and to harness the collecting area of pairs of 8-10-meter class telescopes. In the
long term, nulling interferometry may be practiced in space; nullers may serve the Space

Interferometry Mission (Danner & Unwin 1999) and the Terrestrial Planet Finder, a
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proposed space mission designed to investigate inhabitable planets around other stars
(Beichman et al. 1999). The Keck Interferometer, currently under development at the
Jet Propulsion Laboratory, is scheduled to be the first nulling interferometer to link
10-meter class telescopes. It will combine the beams from the two Keck telescopes, and
offer nulling capability in the 10-micron atmospheric window in late 2001.

An important motivation for nulling interferometry is to search nearby stars for
circumstellar exozodiacal dust—the extrasolar analog of the asteroidal and cometary
dust that orbits the sun. The solar zodiacal cloud, a sparse disk of 10-100 micron
diameter silicate grains, is the most luminous component of the solar system after the
sun. Its optical depth is only ~ 1077, but a patch of the solar zodiacal cloud only 0.3
AU across has roughly the same emitting area as an Earth-sized planet. Our zodiacal
cloud is comparable in surface area to a single 50 km diameter asteroid ground to dust,
so it is easy to imagine that similar and even brighter clouds may be common in other
planetary systems and that exozodiacal dust may often be the most luminous feature
of the habitable zones of nearby stars. In this case, exozodiacal dust could present
a severe obstacle for the direct detection of extra-solar terrestrial planets (Beichman
1996; Beichman et al. 1999). On the other hand, exozodiacal dust traces small bodies—
extrasolar asteroids and comets—which may provide vital clues to the configuration,
formation and even the migration history of a planetary system.

Exozodiacal clouds may be easier to detect than extra-solar terrestrial planets, but
finding an exozodiacal cloud is still not easy. The total emission from our zodiacal
cloud is no more than ~ 10~% of the Sun’s at any wavelength (see Section 5.2), so
photometric surveys like the IRAS (Infrared Astronomical Satellite) survey can only
detect exozodiacal clouds that are > 500 times as bright as the solar cloud (see Backman
& Paresce 1993). The planned Space Infrared Telescope Facility (SIRTF) should have
much more sensitivity than TRAS and it will perform photometry of nearby G stars
in the mid-infrared with accuracies of a few percent. However, this experiment will

also be limited to detecting exozodiacal clouds that are hundreds or thousands of times
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as bright as the solar cloud, because of the uncertainty in the flux from the stellar
photosphere. Attempts to spatially resolve faint exozodiacal clouds with single-dish
telescopes in the mid-infrared (Kuchner, Koresko & Brown 1998) and near-infrared
(Kuchner & Brown 2000) have not yielded significantly better detection limits. A few
Vega-like stars appear to host distinct populations of dust orbiting at circumstellar
distances of < 10 AU, but these massive clouds have > 1000 times the optical depth of
the solar zodiacal cloud (e.g., Koerner et al. 1998; Greaves et al. 1998, Fajardo-Acosta,
Beichman & Cutri 2000).

Serabyn et al. (2000) estimate that with a stellar rejection ratio of ~ 1000 : 1, and a
broadband sensitivity of ~ 0.2 mJy at A = 10-13 microns in an hour of integration, the
Keck Nuller (KN) should be capable of detecting exozodiacal clouds as faint as the solar
zodiacal cloud. However, Serabyn et al. (2000) did not include all the relevant noise
sources and did not address the interpretation of the interferometric data—separating
the circumstellar signal from the residual starlight, and inferring the morphology of
the circumstellar cloud. We approach this aspect of the problem of exozodiacal dust
detection with a nulling interferometer by simulating KN data sets—both signal and
noise—as realistically as presently possible, and fitting models of the interferometer
response to the simulated data.

We begin this paper with a description of our exozodiacal cloud modelling pack-
age, “ZODIPIC,” in Section 5.2. We review standard and nulling interferometry in
Section 5.3 and examine some relevant brightness distributions in the (u,v) plane in
Section 5.4. The Keck Nuller differs from an ordinary nulling interferometer because it
uses an interferometric chopping scheme. We describe this feature of the Keck Nuller
and derive relations between the visibility of an astronomical source and quantities the
Keck Nuller is designed to meaure in Section 5.5. In Sections 5.6 and 5.7 we discuss two
important noise sources for the Keck Nuller, photon noise and null depth fluctuations.
Then, in Section 5.8, we calculate the response of the Keck Nuller to hypothetical ex-

ozodiacal clouds and simulate the recovery of information from Keck Nuller data to
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compute detection limits for exozodiacal clouds. With this simulation, we explore how
the distance, spectral type, and declination of the target star affect the sensitivity of

the experiment. We also consider a range of cloud morphologies. Section 5.9 concludes.

5.2 Exozodiacal Dust: ZODIPIC

We synthesized a variety of images of model exozodiacal clouds using “ZODIPIC,” an
IDL package written by one of the authors (Kuchner), available online at http://cfa-
www.harvard.edu/~mkuchner/. ZODIPIC evaluates the empirical model of the solar
zodiacal cloud that Kelsall et al. (1998) fit to detailed maps of the infrared sky at
10 wavelengths from 1 micron to 200 microns from the Diffuse Infrared Background
Experiment (DIRBE) aboard the Cosmic Background Explorer (COBE) satellite. This
model has a face-on optical depth of 7 = 7.11 x 1078(r/1AU) %34, Although DIRBE
never mapped solar elongations < 60°, observations made by the Helios Satellite as far
in as 0.3 AU (Lienert et al. 1981) and maps assembled from data from the Clementine
mission (Hahn et al. 2001) extending to solar elongations as small as 3° yield consistent
power-laws. ZODIPIC is designed to be a general purpose dust cloud modelling tool; it
can compute images at scattering as well as thermal wavelengths, and offers a variety
of tweakable parameters accessible from the IDL comand line.

A challenge for those wishing to compute accurate images of dust disks is the large
range in radius often involved; most of the flux from a cloud tends to come from the
innermost regions, which may have a size scale orders of magnitude smaller than the
cloud outer radius. For example, we truncate our model at an outer radius of 3.28
AU and at an inner radius set by a temperature of 1500 K, where we assume the
dust sublimates. Since the dust temperature, T, in the DIRBE model follows the
radial power law T = 286K (r/1AU)~%467  this inner radius corresponds to 0.03 AU.
ZODIPIC handles this factor of ~ 100 in radius by iterating to distribute computing
power evenly in logarithmic radial intervals. In one iteration, ZODIPIC calculates the

volumetric emissivity everywhere in a region defined by a cube, with a central cubic
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region excluded, and integrates the emissivity along lines of sight to produce an image.
In the next iteration, ZODIPIC confines itself to the cubic region that was excluded
from the first iteration, and repeats the process using the same number of grid points.
After two or three iterations, the spatial resolution of the grid in the innermost cube
generally suffices to accurately calculate the flux from the inner part of the cloud, and
the program re-bins and totals the images from all the iterations to yield a final output
image.

Figure 5.1 shows three cuts through model images computed by ZODIPIC. The
models represent the solar zodiacal cloud seen at 10 microns, face-on and edge-on,
not including the stellar flux. The units (mega-Janskys per steradian) are distance-
independent, but the angular scale on the top axis is appropriate for a disk 10 parsecs
distant. Vertical grey stripes in the background indicate the size scale of the nulling
fringes of the Keck Interferometer at 10 microns, assuming this distance. The Earth
temporarily traps inspiralling particles in a series of first order mean motion resonances,
forming an extra concentration of particles in a circumsolar ring (Jackson and Zook
1989; Dermott et al. 1994; Reach et al. 1995), which appears as a small bump at 1 AU
in the figure. Dynamical perturbations from a Neptune mass planet can dramatically
reshape a circumstellar cloud (e.g., Roques et al. 1994, Liou and Zook 1999). However,
as this figure shows, the dynamical perturbations from an Earth mass planet are not
likely to be consequential to the Keck Nuller experiment. What is more important
is the gross structure of the exozodiacal cloud near or even interior to the first fringe
maximum, where most of the detectable signal arises—in this case the critical zone is
at roughly 0.1 AU.

Figure 5.2 compares the DIRBE model with an earlier and less sophisticated model
of the zodiacal cloud fit to the all-sky maps in the IRAS Sky Survey Atlas (ISSA). It is
described in appendix G of the ISSA Explanatory Supplement (Wheelock et al. 1994)
by J. Good. The figure shows the encircled flux as a function of radius for face-on

images of the two models viewed at a distance of 10 parsecs at 5, 10 and 20 microns.
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Figure 5.1: The solar zodiacal cloud seen at 10 microns at a distance of 10 parsecs,
based on the DIRBE model as realized by ZODIPIC. The vertical stripes in the back-
ground represent nuling fringes for the 85 meter Keck Interferometer baseline at 10
microns. What is most important to the Keck Nuller experiment is the structure of
the exozodiacal cloud at 0.1 AU, near the first fringe maximum.

At 10 microns, the total flux of the DIRBE model is 0.11 Jy, while the total flux in the
IRAS model is 0.20 Jy. In our simulation of exozodiacal cloud detection, the fainter
DIRBE model yields the more conservative signal-to-noise estimates.

Of course, a real exozodiacal cloud may not resemble the solar zodiacal cloud. For
instance, an exozodiacal cloud may flow from a cloud of small bodies with a very
different distribution than the small bodies in our solar system. Another possible
complication is that exozodiacal clouds that are > 100 times denser than our zodiacal

cloud should be collisionally depleted in their centers.
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Figure 5.2: The encircled flux as function of radius for two popular models for the Solar
System Zodiacal Cloud viewed face-on from a distance of 10 parsecs. The DIRBE model
is more accurate, but some discussions refer to the older IRAS model, which is brighter
by a factor of ~ 2 in the 10-micron window.

A saving grace is that any cloud that is not collisional approaches a face-on optical
depth 7 = constant law far interior to the source of the particles. This law is derived
by combining the continuity equation for the dust number density with the equations
of motion for a particle under P-R drag (e.g., Wyatt and Whipple 1950). The Keck
Nuller will be most sensitive to the interior 0.3 AU of a dust cloud at 10 pc. So the
DIRBE model of the solar cloud, which is not very different from a 7 = constant disk,
makes a good reference point for our simulations.

Another potentially important difference between exozodiacal clouds and the solar
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system cloud is the spectrum. Silicate dust has an Si-O feature at 8-12 microns which
is strong in comet tails, which are dominated by small rystalline particles. This feature
is no more than a 10% effect in the zodiacal cloud (Briotta 1976; Reach et al. 1996)
however, in the spectrum of the § Pictoris dust cloud, fully half of the 10 micron
emission is in the silicate feature (Telesco and Knacke 1991; Knacke et al. 1993). We

neglect this feature entirely.

5.3 Single Baseline Nulling Interferometry

We begin our discussion of interferometry with a brief description of “standard” inter-
ferometry at radio wavelengths. Using the notation of Thompson, Moran and Swenson

(1998), the fringe pattern of a standard radio interferometer for small o is
Fradio(UaSO) = Cos (27TD/\ : (SO =+ 0'))5 (51)

where Dy = (u,v) is the projected baseline vector measured in wavelengths of light,
with components u and v defined in the standard way, and o is the vector angular
distance from the phase center on the celestial sphere. The vector sg represents an
instrumental phase delay that allows the fringe to be scanned across the sky. The

monochromatic interferometer response to a source brightness distribution B(o) is

Tradio(U, V) = /dQ B(o)A(0)Fradio(0;80) = /dﬂ B(o)A(o) cos (2nDy - (so + 7)),
(5.2)
where A(o) is the telescope beam pattern, [ dQ represents integration over the celes-

tial sphere. If we define the complex visibility in the traditional way as the Fourier

transform of the product of the source brightness distribution and the telescope beam
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pattern,
V(D)) = /dQ B(o)A(c)e2mDr 0 (5.3)

then for a standard radio interferometer, we can write the response in terms of two

spatial frequency components:
1 : 1 .
deio(%v) — §V(D>\)62mD*'S° + §V(——D)‘)6_2MD>"SO- (5_4)

In general, the visibility, V(Dy) = V(u,v), of a real source is complex and Hermi-
tian. If the source is symmetrical about the origin, or “even,” the visibility is real and

symmetrical about the origin. In this case, equation 5.4 reduces to
Tradioeven (U, V) = V(Dy) cos(2nDy - sg). (5.5)

If source brightness distribution is anti-symmetric about the origin, or “odd”, the

visibility is imaginary and odd, and equation 5.4 reduces to
'rradio,odd(ua U) = ZV(]:)/\) Sil’l(Zﬂ'D)‘ : SO)- (56)

Naturally, a purely odd source brightness distribution is unphysical, but source bright-
ness distributions generally have even and odd components. These observations allow

us to combine equation 5.6 and equation 5.6 into
Tradio(ua U) = §R{V(DA)eZ‘,rDXSO}' (57)

Ordinarily, an interferometer operating in the optical/infrared regime uses square-

law detectors, so it produces a positive-definite fringe pattern

(1 + cos (27D} - (s + a))). (5.8)

(NN

Foptical/IR(au SO) = Cosz(ﬂ-Dl)\ : (SO + U)) =
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A single-baseline optical/infrared nulling interferometer operating in the same regime
blocks most of the light from an on-axis source by centering it in a fixed central destruc-
tive fringe. The chief advantages of nulling interferometry are realized by constructing
a nulling interferometer so that it operates achromatically over a broad band. However,
viewed monochromatically, the optical/infrared nulling interferometer is equivalent to
a conventional optical/infrared interferometer with a fixed phase. The positive-definite
fringe pattern from a monochromatic single-baseline optical/infrared nulling interfer-

ometer is
Ly 1
Frulting(0) = sin*(7Dy - o) = 5 (1 —cos (27D, - 0')). (5.9)

If the combined beams are detected in a way that integrates over the fringe, as in a
conventional radio interferometer, the monochromatic nulling interferometer response

is
Trnulling (U, V) = /dQ B(o)A(0) Fruiting(a)- (5.10)

If we write the fringe pattern in terms of complex exponentials,

Fnullin o) = _ 627TiD>\-O'+6—271'iD)\-0' ’ 511
g

(NN
e

we see that the response of the nulling interferometer can be expressed in terms of three
spatial frequency components:

Prating (1) = ~3V(D3) + 2V(0) = V(~Dy). (512

The term at Dy = 0 is a common feature of optical interferometers, which use quadratic
detectors. It guarantees that the noise-free fringe power is never negative. The sg phase
terms are missing here because it is assumed that the phase is fixed; the null fringe is

always centered on the central source.
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If we divide the source brightness distribution into odd and even parts, we find:

Tnulling,even (u7 U) -

(V(0) = V(D»)), (5.13)

NN

Tnulling,odd(ua U) = 0. (514)

Nulling interferometers can not detect the odd component of a brightness distribution.

With this observation, we can rewrite equation 5.12 as

Frvatting (1 0) = %(V(O) ~R{VDL}). (5.15)

Another important quantity is the fraction of the source’s total flux that is trans-

mitted through the nulled fringe. The fringe transmission is

_ fdQ B(U)A(U)Fnulling(o') _ T’nuumg(u,v)
B J dQ B(o) source flux

T(u,v) (5.16)

The visibility can be used to calculate the transmission, using equation 5.12. Since
the overall sensitivity of a real nulling interferometer will probably not be constant
and need to be calibrated by regularly measuring the total source flux in the absence
of the nulling fringe, the transmission is the astrophysically relevant parameter that a

single-baseline monochromatic nulling interferometer can observe.

5.4 Starlight and Exozodiacal Clouds in the (u,v) Plane

We can visualize the operation of a single baseline nulling interferometer by examining
some representative sources in the (u,v) plane. We could plot the complex visibility
of the sources and leave it to the reader to sum some appropriate spatial frequency
components according to the prescriptions in Section 5.3. Instead we prefer to plot

the corresponding transmissions, since a monochromatic nulling interferometer can
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measure that quantity directly. To first approximation, the Keck Nuller behaves like
a single-baseline nulling interferometer, so this approach can also provide an intuitive
feeling for what the Keck Nuller can measure.

Consider a star that is a small uniform disk with angular diameter 6,, and brightness
B,(o) = By for oy < 6,/2 and Bi(o) = 0 elswhere. This star has a total flux
F, = B,n(0+/2)%. Performing in the integral in equation 5.3 and using the fact that
the single-aperture power pattern, A(e), is nearly unity at the phase center, we find

the standard expression for the visibility of a uniform disk,

0,1 (16, | D) 2J1 (70, Dy 1)

= B o
V+(Da) = B, 2D, | Fx 70, Dy

(5.17)

where Ji is the Bessel function of first order. Expanding the visibility to third order

in the small angle, we get
1
V.(Dy) ~ F, (1 - 2 (n0.D5)°"). (5.18)

Using equation 5.13, we find that in this limit, the response of a single-baseline opti-

cal/infrared nulling interferometer to the star is

1 2
Tnulling« (U, V) & EF* (TFG*D)\) (5.19)

and from equation 5.16, we see that the transmission—the fraction of the starlight
transmitted by the fringe—is

1 2
T, (u,) ~ o (WG*DA> (5.20)

Equation 5.20 shows that when a star is much smaller than the fringe spacing, a single-
baseline monochromatic nulling interferometer can only measure one stellar parameter,
62, and that for a star of a given type, the amount of starlight a nulling interferometer

detects varies inversely as the distance to the star to the fourth power. If the flux from
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the star follows the Rayleigh-Jeans law at the observed wavelengths, then 7y puiing
A~% in the mid-infrared (see also Serabyn et al. 2000). This steep function of A can be
very different from the wavelength dependence of the signal from a circumstellar disk.
This contrast makes it easier to distinguish stellar leakage from other signal components
given even a small amount of spectral coverage. For example, 7, nuiting varies by almost
a factor of 3 over the 10-13 micron band.

Figure 5.3 shows some sample (u,v) tracks for the long baseline of the Keck Inter-
ferometer, plotted for declinations —10°, 20° and 50°, assuming a zenith angle limit of
45°. Figure 5.4 shows a contour plot of the transmission T, (u,v) for a star with 6, =
0.930 milliarcseconds, representing the Sun seen at 10 parsecs. Here we have assumed
a single-aperture power pattern corresponding to a 4-meter diameter aperture, our ap-
proximation for the Keck Nuller power pattern, (see Section 5.5). We have overlaid on
this contour plot the (u,v) tracks for the Keck Interferometer’s long baseline shown in
Figure 5.3. The fraction of the stellar light that leaks through the nulling fringes of
the Keck Nuller can be read directly from the contour map at the location of the (u,v)
tracks. |

Figures 5.5, 5.6, and 5.7 show contour plots of the transmission, T'(u,v), as defined
in Section 5.2 for the solar zodiacal cloud orbiting a star just like the sun, viewed at a
distance of 10 parsecs, the same model shown in Figure 5.1. These figures show how the
limited (u,v) coverage of a single baseline interferometer like the Keck Interferometer
affects its ability to measure the geometry of a zodiacal cloud. Figure 5.5 shows a face-
on cloud and Figures 5.6 and 5.7 show an edge-on cloud at two different position angles.
At some orientations like the one shown in Figure 5.6, an edge-on cloud will be difficult
to distinguish from a face-on cloud, because in each case, the (u,v) tracks do not cross
any contour lines so the transmission depends little on hour angle. However, when the
position angle of the cloud is roughly northwest, perpendicular to the baseline, as in
Figure 5.7, the transmission will be a stronger function of hour angle, and the Keck

Nuller can constrain the dust cloud inclination. At most, the variation in transmission
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Figure 5.3: Some sample (u, v) tracks for the Keck Interferometer long baseline at 11.5
microns for targets at declinations —10°, 20° and 50°.

as a function of hour angle is ~ 10%.

5.5 The Keck Interferometer in Nulling Mode

The experimental arrangement for the Keck Nuller (KN) will be described thoroughly
elsewhere; here we give a brief overview. The Keck Interferometer site, the summit
of Mauna Kea, HI, is at 19.83° North latitude, and the baseline between the two 10-
meter telescopes is 85 meters in length, positioned 37.7° East of North. Because of
the incompatibility of a spatial chopper with the Keck adaptive optics system, the KN

must use an interferometric chopping scheme to remove the thermal background. To
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Figure 5.4: A contour map of the transmission for a solar-type star at 10 parsecs in
the (u,v) plane. Overlaid are sample (u,v) tracks for the long baseline of the Keck
interferometer, shown in Figure 5.3. At u = v = 0, the transmitted signal is zero,
because there the null covers the entire sky.

accomplish this, the KN will divide each of the Keck telescopes into two subapertures to
produce four beams on the sky. The post-telescope beam train will propagate the four
subaperture beams independently to the beam combiners in the observatory basement.
The result is a set of baselines of two different types: long (~ 85 meter) baselines
between the corresponding subapertures on the two dishes, and short (~ 5 meter)
baselines between the two halves of each dish. The circle at the center of Figure 5.3
has a radius of 5 meters/J; it indicates the locus of possible short baselines.

The stellar light from the two parallel long baselines will be nulled by a pair of
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Figure 5.5: A contour map of the transmitted signal from a face-on zodiacal cloud in
the (u,v) plane and the sample tracks for the Keck Interferometer from Figure 5.3.
The inset shows the logarithm of an image of the cloud. Notice that the contours are
elongated in the direction perpendicular to the plane of the disk.

nulling beam combiners, generating the fringe pattern given by equation 5.9 for both
telescope pairs. Then the outputs of the two nullers will be fed into a pair of conven-
tional scanning interferometric beam combiners, which will combine the nulled beams,
creating a second fringe pattern. This second fringe pattern is standard fringe pattern

for a single-baseline optical/infrared interferometer:

(1 + cos (2D}, - (sg + a))). (5.21)

N =

Feross(o,sg) = cosQ(TrDlA (sp+ o)) =

Here D'A represents the short baseline across the aperture, measured in wavelengths
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Figure 5.6: The transmitted signal for the same cloud as in Figure 5.5, but edge-on.
An edge-on cloud at this position angle will be difficult for the KN to distinguish from
a face-on cloud.

of light, and again, the addition of the vector sg to o indicates that this secondary
fringe will not necessarily stay locked on the star, but can scan across the sky. The
scanning secondary fringe system will detect the off-axis signal which has not been
nulled by integrating over the narrow fringes. Figure 5.8 illustrates the experimental
arrangement schematically.

After the beams are combined, they are spatially filtered at a pinhole, the output

of which is dispersed in a mid-infrared camera. The result is that the monochromatic
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Figure 5.7: The transmitted signal for the same cloud as in Figure 5.6, but at a different
position angle. At this position angle the KN will transmit less signal from the cloud.
However, at this position angle, the transmitted signal will have a strong dependence
on hour angle, so only for clouds with roughly this orientation can the KN constrain
the inclination of the disk.

interferometer response to a source brightness distribution B(e) is

P (1, v) = / 4 B(0)A(0) Fotting () Foross (50, ), (5.22)

where A(o) is now the subaperture single-mode beam pattern. Explicitly, the response
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18

(1 —cos (2rDy, - 0’)) % (1 + cos (27D - (so + a))).

N

rn(u,v) = /dQ B(o)A(o)

(5.23)

The single-mode subaperture diffraction pattern is somewhat complicated, but not
important for our simulations, since the angular scale is large compared to the size of
our targets. For simplicity we will assume that A(o) corresponds to a circular aperture

4 meters in diameter.

m e 1@
subaperture combiner subaperture
| |
N\ cross cross N\
v combiner combiner u
| |
0 e @
subaperture combiner subaperture

Figure 3.8: A diagram of the Keck Interferometer showing how the beams from cor-
responding subapertures are first combined with nulling beam combiners, then the
residual outputs of the nullers are detected with conventional scanning beam combin-
ers. The relative separation of the two Keck primaries (K1 and K2) is much larger
than suggested by this figure.

Figure 5.9 illustrates the integral in equation 5.23. It shows a logarithmic contour
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plot of the brightness of a representative exozodiacal cloud and the product of the fringe
patterns Fouiiing(0) and Feross(so, o) and the single-aperture power pattern, A(o) at
four different values of sg, at 11.5 microns. The thin stripes are due to Fuing(0) and

the broad bands are due to Fi..s5(0,80).

0 transmission: 43% n/2 trangmisgion: 22%
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Figure 5.9: An illustration of the fringe patterns for the KN. The contours show the
brightness of a hypothetical exozodiacal cloud at 10 pc and 11.5 microns and the
shading shows the product of the single-dish beam, the long-baseline fringe, and the
scanning short-baseline fringe. The phase of the long-baseline fringe is fixed in nulling
mode, but the short baseline fringe scans; the four panels show phases 0,7/2, 7, and
3m/2 of the short baseline fringe.

The Keck Nuller is more complicated than the single-baseline nulling interferometer
due to the interferometric chopping, but that does not prevent us from describing this

experiment using the notion of complex visibility. This approach allows us to model
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the response of the interferometer to a given source using a single Fourier transform.

Since
1 ! 1 1 D
FC’I'OSS(0-7SO) — COS2(7TD)\ . (SO + 0’)) — Z621rD>\.(so—{—U') + =+ _e—2mDA-(So+O'), (5.24)

2 4

we have

Fnulling(a)Fcross(Ua SO) =

. ! — N . ! e
_T:lé_ezﬁl((D)\—f—D)\)-U)eQﬂ"LD)\-So __%62#1D>‘-0' __1%627rz((D>\—DA)AO')e—27r1DA-so
o 0 1 ot
+%62771D>‘-Ue27rzD>\~so _'_% +%6—27T1D>\-U'e—27TZD>\'So
. ! . ! . . 1 . !
_11_66—27rz((D,\—D)\)-O')eQﬂ'szso _1_6—27rzD)\-0' _%e—Qﬂz((DA+D>\)~O')e—27rzD/\-so_

(5.25)

Using the definition of visibility given above, we find the net response of the Keck

Nuller:

rgn(Dy, DYy, s0) =

— V(D + D’A)esz;'S" —3VD,y) —V(Ds - D) )e~2mDx 50
+§V(D))e?m D0 V() +FY(=Dyetme (5:26)
—%V(—DA I D'A)eQ’”D;'SO —%V(—D,\) —%V(—D,\ _ D')‘)G«ZWiD;\~so'

To make sense of these equations, we define the Keck Nuller response phasor

1

! 1 ’ 1 ! !
Z(D)\,D/\) = —ZV(D)‘ + D,\) + §V(D)‘) - ZV(D)‘ — D)\), (5.27)
and the corresponding single-baseline nuller response
1
Pautting(D2) = 5 (V(0) = R{¥(D1)}). (5.28)

If the source is symmetrical about the origin, like the simple models we use for stars

and exozodiacal clouds, the visibility is real and symmetrical about the origin. In this
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case, Z (DA,D'A) is real, and equation 5.26 reduces to

(rnu”mg(DA) + cos (27D - s0)Z(Dy, D;)). (5.29)

’ 1
TKN,even(D)\a D)\a SO) = 5

If source brightness distribution is anti-symmetric about the origin, then Z (D,\,DI 2)

is imaginary and equation 5.26 reduces to
! ’1, R ! ’
T'KN,odd(D/\, D)\, S()) = 5 Sin (27‘(’D/\ . So)Z(D)\, D A)- (5.30)
With these observations, we can rewrite equation 5.26 as

TKN(D)\,DI)‘,SO) = (T‘nu”mg+§R{Z(D)\,D’)\)6_2ﬂ’iD>\.so})7 (5.31)

N | =

or equivalently

! 1 1 ! !
riN (D3, D3, 50) = 5Tnuting + A(Dx, Dy) cos (2(D) - s0) + ¢(Dx, DY) (5:32)

At a given source declination and hour angle, the Keck Nuller response to a given
source is a constant plus a cosine function of the phase of the cross fringe, with an

amplitude equal to half the modulus of Z(Dy, D:\)
! ]_ !
AD,,D,) = §|Z(D,\,D,\)| (5.33)

and a phase equal to the phase of Z(D), DIA),

(5.34)

#(Dy, D)) = arctan (w) .

R{Z(D,, D))}

In reality, the response will also contain a large term due to the thermal background.
The known scanning rate of the cross fringe should allow the detection of the cosine

response term despite the presence of this background. However, the magnitude and
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variability of the background will make measuring the absolute value of the response
impractical. The amplitude and phase of the cosine term, given by equations 5.33 and
5.34, are the primary observable quantities.

Moreover, it will probably be necessary to calibrate the overall sensitivity of the
interferometer by regularly measuring the source flux detected by the interferometer
in the absence of the nulling fringe. The result is that the astrophysically relevant
measurable quantity will be the fraction of the flux from the source that translates into
measurable signal, which we will call the normalized Keck Nuller response phasor

_ Z(DA’ DI)\)

Znorm(DA’ D)‘) "~ source flux’

(5.35)

This quantity is analogous to the transmission of a single-baseline nulling interferome-
ter, equation 5.16. The magnitude of Z, 41, is the maximum fraction of the source flux
transmitted by the KN fringe minus the minimum fraction of the source flux transmit-
ted by the fringe. The phase of Z, 5 is the same as the phase of Z. In Figure 5.9,
since the source has even symmetry, the phase of Z,,.m is zero, and |Znorm| is the
transmission at cross fringe phase 0 minus the transmission at cross fringe phase 7, or
43% - 1% = 42%.

Note that since the brightness distribution is real, the amplitude and phase of the
response are determined completely by Z(D » D A), so only three spatial frequency
components are actually relevant to modelling Keck Nuller data. Also, notice that if
we set D:\ =0, Z(Dy, D:\) becomes the response that the Keck Nuller would have, if
it were a simple single-baseline nulling interferometer. In a sense, the Keck Nuller can
be understood as a single baseline nulling interferometer that is offset by the vector
D')\ in the (u,v) plane. For sources smaller than the cross fringe, | Z,orm| approaches
the transmission of the corresponding single-baseline nuller.

A single-baseline nulling interferometer can not detect the odd component of a
brightness distribution. For example, a single-baseline nulling interferometer maybe be

adept at detecting faint companions to bright stars, but it can not tell which side of a
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star a faint companion is on. However, the asymmetry of a source—the odd component
of the brightness distribution—appears in the phase of the Keck Nuller response.
Applying the preceeding equations to the case of the small uniform disk described

in Section 5.4, we find:

1 2y :
o kN(U,v) = 1—6F*(7T0*D)\) 5(1+cos(27rD>‘Aso)) (5.36)
' 1
Z,(Dy,D}) = EF;(WQ*DA)2 (5.37)
#«(Dx,Dy) ~ 0 (5.38)
/ 1
Z*,norm(D)\aD)\) ~ E(WQ*D)\)2- (539)

In other words the Keck Nuller response to a small star at the phase center is just the
corresponding single-baseline nulling interferometer response times the cross fringe at

the phase center.

5.6 Photon Noise

Because it operates in the mid-infrared, photon noise in the thermal background will be
the limiting noise source for the KN. Our discussion of the KN photon noise budget is
based on Serabyn et al. (2000), and follows an outline which is standard for cryogenic
cameras. We will call emissivities by the letter € and transmissivities by the letter 7.
Consider a beam of light propagating through the interferometer from a primary
mirror subaperture to a detector. First the beam encounters some warm optics: the
Keck telescopes themselves and the mirrors that relay the beams into the mid-infrared
camera. These optics add to the beam a thermal background €, B, (T). Given the large
number of warm mirrors in the Keck beamtrain, most of the thermal background is
generated here in the warm optics, rather than in the atmosphere. Next the beam enters
the cryogenic camera dewar, which houses some cold optics and the detector. The cold

optics transmit a fraction of the photons 7. and the detector operates with efficiency
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N4, so the background that the detector finally detects is n.n4enB,(T). Serabyn et
al. (2000) estimate that 7.nge, (the Net Detected Emissivity) will be in the range
0.09-0.17 for various assumed efliciencies.
The KN couples to only a single mode of the radiation field because of a spatial
filter in the camera. So the number of detected background photons per second per Hz

contributed by each subaperture is

2
Ny = netaen o mr— (5.40)

The corresponding incident flux density is

hv

F,=—
A5 ANWNNd

(5.41)

where Ag, is the collecting area of the subaperture. After an integration of time At

in a small bandwidth Av, the photon noise is

. [ N,
AN = Y 5.42
AvAt ( )

photons, so the Noise Equivalent Flux Density (NEFD) for a single subaperture would

be
hv N,
NEFDg, = \/ LA 5.43
54T Asa mumena V| AvAt (5.43)

However, there are four subapertures to consider, each with signal and background

photons. The background is not coherent, so half of it is rejected. We must also
account for the fraction of the coherent source flux that translates into detectable

signal, |Znorm|. Including these factors, we find that the signal to noise ratio for the
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KN is %|Znorm] times the signal-to-noise ratio for a single subaperture, or

hv | N
NEFD = Y. 5.44
KN 2ASA'Znorm|nw77c77d 2AVAL ( )

For the KN, a few different possible subaperture geometries would make the effective

collecting area of each subaperture about 35% of the area of the primary mirror, or
Aga = 2.7 x 10° cm?. Using the estimate 7,7.n¢ ~ 0.1 from Serabyn et al. (2000)
and taking 7n.nge, = 0.13, we find that the NEFD over a 1 micron bandwidth is
3.2/{Znorm)|, 6-1/|{Znorm}|, and 11.1/|{Znorm)| mJy in one second, at 8, 10, and 13
microns, respectively, or 0.084/|{Zorm)| mJy in one hour in the 10-13 micron band,

where the brackets indicate bandwidth averaging.

5.7 Null Depth Fluctuations

So far, our discussion has assumed that the interferometer is stable and symmetrical
enough to match the electric fields from the two telecopes so that they exactly cancel at
the phase center. In reality, fluctuations in the optical path difference (OPD) between
the beams, and asymmetries in the beam paths will mar this cancellation. Serabyn
(2000) describes in detail the way these errors translate into fluctuations in the null
depth. The net result will be that more on-axis light—starlight-—will make its way onto
the detector at any instant than in the ideal case. Active control loops can stabilize
these fluctuations so that they have a zero mean. However, because the null depth goes
as the square of the phase error, some time-averaged leak will remain even with these
corrections.

To good approximation, the extra leak does not depend on the size of the star, only
on its flux, Fi. The dominant effect will probably be the OPD fluctuations, since they

have the short, atmospheric timscales. In this case, the time-averaged extra signal is
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NF, and

|
N = Za’i (5.45)

where o'i is the variance of the phase. The Keck Interferometer design goal is to
constrain OPD fluctuations to eaopp < 0.032 microns, which translates into a typical
time-averaged leak of N = (0.10 wm/\)?, or about 107* of the stellar flux in the
10-micron band.

Figure 5.10 shows our estimates for the photon noise and the typical time averaged
leak, assuming 30 minute integrations. Also plotted in Figure 5.10 are the ranges
of signal levels, |Z|, that could be expected during a 6-hour track on a single target
system at 10 pc, a solar type star and a surrounding exozodiacal cloud with 30 times
the density of the solar-system cloud. With the assumptions just described, null depth
fluctuations become an important noise source only at wavelengths shorter than 10
microns. It may also be possible to measure and correct for these effects by monitoring
a calibrator star. For these reasons, we do not try to simulate null depth fluctuations

in any detail.

5.8 Simulation of Exozodiacal Dust Detection

Before we began our simulation of exozodiacal dust detection with the Keck Nuller,
we synthesized a library of images of exozodiacal clouds using ZODIPIC on 512 x 512
grids of pixels, where each pixel is one milliarcsecond across. We then multiplied these
images by the single-aperture power pattern, padded the grids with zeros to 2048 x 2048
pixels and Fourier transformed the images. Only the lowest frequencies of the resulting
visibility matrices are of interest, so we discard all but the lowest frequency 256 x 256
pixels of the transforms, and perform cubic spline interpolation on these matrices to
produce our final 1024 x 1024 model visibility files. Our library covers three wavelengths

in the 10-13 micron region (10.5, 11.5, and 12.5 microns), and 11 disk inclinations that
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Figure 5.10: A plot of the noise and signal levels relevant to the problem of exozodiacal
dust detection with the Keck Interferometer. The shaded region shows the range of
possible signals that the KN will transmit from a 30 x solar exozodiacal cloud.

are evenly distributed according to the probability of finding a disk at that inclination,
assuming a random three-dimensional distribution of disk axes (most disks are close to
edge-on).

The simulation itself has four steps.

1) Choose the parameters of an “observed” model disk: optical depth, inclination,
position angle, declination, and so on. The optical depth of the disk is assumed to be

some multiple of the optical depth of the solar system cloud.

2) Compute the magnitude of the KN response phasor, |Z|, for this disk at 10.5, 11.5,

and 12.5 microns as a function of hour angle using equation 5.27 and our library of
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visibilities. We divide the night into thirty-minute integrations and assume a zenith
angle limit of 45°. We also assume that the short baselines are fixed on the primary
mirrors so that they are vertical at altitude 0°. Since the Keck telescopes are alt-az,
the primary mirrors rotate as they track, and consequently so do our assumed short
baselines. We include the short baseline fringes for completeness, but they are generally

unimportant to our detection limits.

3) Add random numbers chosen from a Gaussian distribution to represent photon noise

as described in Section 5.6.

4) Try to infer the parameters of the dust disk from the noisy simulated data set. To do
this, we try, one after another, all the disks in our library at each of 20 position angles
(0°,9°,18°,...) to see how well they match the simulated data set. For each trial disk,
we compute a response data set without any noise. We then perform a least-squares
fit to the simulated data to solve for the optical depth of the dust cloud and note the
disk parameters of the best fitting model out of the 220 trial disks.

To model the detectability of a given cloud, we run the simulation over and over
and plot the distribution of the optical depths of the best fitting models divided by the
optical depth of the input cloud. Figure 5.11 compares three such distributions, each
representing 220 runs of the simulation. The distributions are normalized so the area
under the curve is unity. The input clouds for each of these distributions are the clouds
shown in Figures 5.5, 5.6, and 5.7.

Each of the three input clouds in this figure have optical depth 10 times that of
the solar cloud; the only difference among them is the disk orientation. However, the
simulation uses trial disks at all possible disk orientations and the mean transmitted
flux levels are different for different disk orientations. At this dust level, there is not
enough signal to constrain the orientation, so the differences in mean transmitted flux
levels at different orientations translate into biases in the distributions of measured
optical depths.

Figure 5.12 shows the distributions of simulated measurements of cloud optical
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Figure 5.11: The distributions of simulated measurements of dust cloud optical depths
for a 10 x solar cloud at 10 parsecs tallied over 220 runs of the simulation. The three
curves represent the three different cloud viewing angles shown in Figures 5.5, 5.6, and
5.7. The simulation assumes the disk orientation to be unknown, and at this dust level,
there is not enough signal to constrain the orientation. So these three input models
yield biased distributions.

depths for the same three disk orientations as in Figure 5.11, but for a 30 X solar
cloud. Now, there is enough signal to constrain the orientation. The distributions for
the face-on cloud (Figure 5.5) and the edge-on cloud with position angle 35° (Figure 5.6)
show only small biases. The distribution for the edge-on cloud with position angle 125°
(Figure 5.7) is broad and slightly bimodal because this cloud yields relatively little
transmitted signal and resembles the face-on cloud to the interferometer. This signal
level is 10 times the detection limit assuming perfect subtraction of the starlight. This

level is the minimum level where a night of data can constrain the disk orientation,
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since as we showed in Section 5.4, the maximum variation in transmitted signal for an

exozodiacal cloud during one track is about 10% of the mean transmitted signal.
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Figure 5.12: The same as Figure 5.6, but for a 30 x solar cloud (10 x the detection
limit assuming perfect star subtraction). Now, there is enough signal to constrain
the orientation. The distributions for the face-on cloud (Figure 5.5) and the edge-on
cloud with position angle 35° (Figure 5.6) show only small biases. The distribution for
the edge-on cloud with position angle 125° (Figure 5.7) is broad and slightly bimodal
because this cloud yields relatively little transmitted signal and resembles the face-on

cloud to the interferometer.

Since we don’t know the inclination or position angle of the disk a priori, it makes
sense to use a wide variety of input inclinations and position angles and plot the dis-
tribution of all the fitted optical depths together. The biases shown in Figure 5.11
then become subsumed by overall width of the distribution. Now the standard devia-

tion of the distribution indicates the accuracy of the simulated measurement. For the
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remainder of the figures and tables in this paper, we followed this procedure:

1) Choose an input model (optical depth, distance, etc., but not inclination or position

angle)

2) Run the simulation described above 220 times for each model. Those 220 simulations
cover the 11 inclinations in our library, and 20 different position angles (0°,9°,18°,...).

This entails fitting 48400 models!

3) Plot the distribution of all the inferred optical depths combined, normalized to the
input depth. If the standard deviation of the distribution (o) is less than 1/3, then we

consider the disk to be detectable.

Figure 5.13 shows the distributions of inferred optical depths for 220 runs of the
simulation for 3, 10, 30, and 100 x solar clouds covering the full range of input inclina-
tions and position angles, as described above. The distribution for the 3x solar cloud
has a standard deviation of 30%; this cloud is marginally detectable by our criterion.

The detection limits described by Figure 5.13 are not much more severe than expec-
tations based on photon noise considerations alone. We find that a 10x solar cloud is
clearly detectable, while a 3x solar cloud is clearly not detectable given a single night
of data. However, notice that the standard deviations of the distributions do not scale
simply as the inverse optical depth of the dust, as you would expect if the cause of the

spread in the simulated measurements were purely Gaussian error.

5.8.1 A Priori Knowledge of the Stellar Leak

In reality, as Figure 5.10 shows, the data will contain stellar leak proportional to
F.02/)2. For some stars, the angular diameter squared (62) is known quite precisely.
However, for many stars, the best available estimate of §2 is found by combining an
effective temperature known to a few hundred degrees (~ 4%) with an infrared flux
measurement with similar or better accuracy. To be safe, we assume that existing

measurements constrain the leak from most stars to no better than 6%.
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Figure 5.13: The distributions of simulated measurements of dust cloud optical depths
for a tallied over 220 runs of the simulation, divided by the optical depth of the input
cloud, which was 3, 10, 30, or 100 x solar. For these runs, the input models explored
all possible input inclinations and position angles.

Moreover, as we discussed in Section 5.7, null depth fluctuations permit extra
starlight to leak through the null. This extra leak should be 10-15% of the stellar
signal at 10 microns for a G star at 10 pc and it will have a A™2F, wavelength depen-
dence, making it spectroscopically identical to the star. It is uncertain how much of
this extra leak can be removed by calibration.

For these reasons, we tested the possibility of deducing the stellar leak from the
data itself assuming limited a priori knowledge of the A™?F, component of the signal.
We ran a set of simulations where we added a term representing the Keck Nuller

response phasor due to the star calculated from equation 5.39 to the response phasor
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calculated for the dust cloud in step two of the simulation, and then performed a two-
parameter fit in step four to solve simultaneously for the cloud optical depth and for
the stellar leakage. For these simulations we assume that the stellar leak is known a
priori to o, = 10%. Deriving both the dust signal and the star signal from the data
works mostly because of the strong wavelength dependence of Z, compared to the
exozodiacal dust signal as shown in Figure 5.10. We also tried some simulations where
we assumed no a priori knowledge of the stellar leak at all, that is, o, = oo, and found
no significant difference between that and the o, = 10% case.

Figure 5.14 shows how the requirement of deriving information about the stellar
leak from the data affects the measurement of the zodiacal cloud. Again, the input
cloud optical depths are 3,10,30 and 100 x solar. The distributions of best fit optical
depths are broader, but the simulations suggest that it is possible to derive the stellar
leak from the data, and detect a 10x solar exozodiacal cloud around a solar-type star

at 10 pc.

5.8.2 Source Declination

Figure 5.15 illustrates the duration and length of the (u,v) tracks as a function of
declination. The source declination affects the (u,v) coverage of the interferometer; at
different declinations, the star leak and the signal from the cloud are different functions
of hour angle. Since detecting an exozodiacal cloud requires deciding how much of the
signal is due to the cloud and how much is due to the star, it is conceivable that
changing the functional form of the star leak and the cloud signal could affect the
detection limits.

We explored how the declination of a star influences the Keck Nuller’s ability to
detect exozodiacal dust around that star. We simulated the detection of 10, 30, and 100
x solar clouds at declinations of —10°, 20°, and 50° and found little or no difference
in the sensitivity of the experiment among the choices. Figure 5.16 compares the

distributions of fitted model optical depths for these three choices of source declination
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Figure 5.14: A recalculation of the distributions in Figure 5.13 with the stellar leak
added to the signal. We assumed an a priori knowledge of the stellar leak of ten percent
(0« =10%), and performed a two parameter fit to the simulated data sets to recover
the dust signal and the stellar signal simultaneously from the data. These simulations
suggest that it is still possible to confidently detect a 10x solar exozodiacal cloud in a
night of observation given an uncertain star leak.

for a 30x solar input cloud around a solar-type star at 10 pc, assuming a 10% a
priori knowledge of the stellar leak. There is no significant difference among these
distributions. Of course, sources significantly north of 50° or south of —10° will only

be observable for short periods of time, as Figure 5.15 shows.

5.8.3 Stellar Distance and Spectral Type

Finally, we explored the effects of the distance and spectral type of the central star.

Naturally, more luminous stars have more luminous disks. To scale the dust models
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Figure 5.15: The (u,v) coverage of the Keck Interferometer as a function of declination
assuming that the interferometer operates at zenith angles < 45°. The solid line shows
the maximum duration of the track in hours. The dashed line shows the extent of
the tracks in polar angle, € in the (u,v) plane. The dotted line shows the ratio of
the maximum projected baseline length to the minimum projected baseline length,

Dmaw/Dmin-

appropriately, we assumed that the temperature of the dust is proportional to the lu-
minosity of the star to the power /2, where § is the negative exponent of the radial
power law for the temperature. For the DIRBE model, T = 286.0K (r/1AU)~0467 5o
ZODIPIC uses T = 286.0K (r/1AU)~%467(L/L)%234. Rather than show more distri-
butions of fitted models, we summarize our results in a table of minimum detectable
optical depths (Table 5.1) as defined by the above criterion; a disk is considered de-
tectable when the standard deviation of the distribution of simulated measurements is
less than 1/3 of the input dust level.

For each disk, we give three detection limits: the limit for when a single star is
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Figure 5.16: Over a wide range, the declination of the star has little effect on dust
cloud detection limits. For example, this figure shows that the distributions of best fit
models for 30x solar input clouds at —10°, 20°, and 50° have no significant differences.

observed for an entire track and there is no uncertainty in the stellar leak, the limit
when a single star is observed for an entire track and the stellar leak is known a priori
to 10%, and the limit when the star is observed for only one hour, and the stellar leak
is known a priori to 10

Note that the detection limits for stars at 5 parsecs are all better than the detection
limits for more distant stars, even though moving from 10 parsecs to 5 parsecs increases
the stellar transmission by a factor of 4 and the stellar leak (in photons) by a factor of
16. For the nearest stars, the stellar signal dominates the dust signal even more than

for stars at 10 parsecs, but the stellar signal can easily be modeled and subtracted from



104

Table 5.1: Detection limits, § = 20°

Spectral Distance Detection Limits (solar zodiacal cloud=1)
Type (pc) one night, no star one night, 0,=10% one hr., ¢,=10%
F2v 5 0.5 1.8 6
10 1.5 5 17
15 3 10 33
G2V 5 0.8 4 12
(The Sun) 10 3 9 35
15 8 22 75
K7V 5 5 16 55
10 30 80 430
15 140 230 800

a data set.

5.9 Conclusion

Our simulations show that the Keck Interferometer can measure faint zodiacal dust
signals even when they are mixed with a more powerful transmitted signal from a
central star. We succeeded in deriving the strength of the stellar leakage from the
simulated interferometric data itself, assuming only imperfect knowledge of the stellar
parameters. However, since we derived much lower detection limits when we considered
the stellar leak to be perfectly subtractable from the data, we suggest that careful
calibration of the leak due to null depth fluctuations and independent measurements
of the stellar parameters might improve the experiment.

We found that the KN can begin to constrain the inclination and position angle of
a dust cloud when the signal is roughly 10 times the detection limit. As Figure 5.10
shows, varying the disk orientation results in a ~ 50% range in the transmitted signal.
At low dust levels, all of this range propagates into the measurement error, but not at
high dust levels.

The detection limits for the Keck Nuller are 2-3 orders of magnitude better than

our current ability to resolve clouds or detect them photometrically. This large newly
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accessible region of parameter space may hold many surprises. Our simulation assumed
that the exozodiacal cloud is identical to the solar zodiacal cloud. This may be a
common appearance for zodiacal clouds, as we have suggested in Section 5.2, but it
is far from being general. For clouds near the detection limit, we will be forced to
assume many of the cloud properties, and declaring the cloud to be analogous to the
solar cloud is as good an assumption as any. However, when there is enough signal
and (u,v) coverage for the Keck Nuller to constrain the cloud morphology given a long
track, a dust cloud that is a simple solar-system analog is inadequate. The dynamics of
sublimating dust grains, the interaction of dust with planets, the collisional processing
of dust grains, and the emission of a 10-12 micron silicate feature are all phenomena

we have not explored that may influence the appearance of these higher mass clouds.
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Chapter 6

A Search for Resonant Structures in the Zodiacal
Cloud with COBE DIRBE: The Mars Wake and
Jupiter’s Trojan Clouds

Marc J. Kuchner

Palomar Observatory

California Institute of Technology, Pasadena, CA 91125
William T. Reach
Infrared Processing and Analysis Center
Caltech, Pasadena, CA 91125
Michael E. Brown
Division of Geological and Planetary Sciences

California Institute of Technology, Pasadena, CA 91125

We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing Mars
and for Trojan dust near Jupiter’s L5 Lagrange point. We compare the DIRBE images
to a model Mars wake based on the empirical model of the Earth’s wake as seen by
the DIRBE and place a 3-¢ upper limit on the fractional overdensity of particles in
the Mars wake of 18% of the fractional overdensity trailing the Earth. We place a 3-¢
upper limit on the effective emitting area of large (10-100 micron diameter) particles
trapped at Jupiter’s L5 Lagrange point of 6 x 10!7 ¢cm?, assuming that these large dust
grains are distributed in space like the Trojan asteroids. We would have detected the
Mars wake if the surface area of dust in the wake scaled simply as the mass of the

planet times the Poynting-Robertson time scale.!

! Adapted from Kuchner et al. (2000)
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6.1 Introduction

A planet interacting with a circumstellar dust cloud can produce a variety of dynamical
structures in the dust. Planets can clear central holes and create large-scale asymme-
tries, such as arcs and warps (Roques et al. 1994). Planets can also detain dust in
mean motion resonances, forming structures such as the circumsolar ring and wake of
dust trailing the Earth in its orbit (Jackson and Zook 1989; Dermott et al. 1994) and
clouds of dust at the planet’s Lagrange points (Liou and Zook 1995).

Understanding the structures of circumstellar debris disks is vital to the search for
extra-solar analogs of our solar system. Concentrations in circumstellar dust clouds
may confuse planet-finding interferometers like the Keck Interferometer or the pro-
posed Terrestrial Planet Finder (Beichman et al. 1999). Smooth exozodiacal clouds
can be identified by their symmetry and subtracted from the signal of a Bracewell in-
terferometer (MacPhie and Bracewell 1979), but cloud asymmetries can be difficult to
distinguish from planets (Beichman 1998). On the other hand, planet-induced asym-
metries can serve to reveal the presence of a planet that is otherwise undetectable
(Wyatt et al. 1999).

If we understand the inhomogeneities in our own zodiacal dust cloud, we will be
better prepared to interpret observations of other planetary systems. The Diffuse
Infrared Background Experiment (DIRBE) aboard the Cosmic Background Explorer
(COBE) satellite has provided detailed, revealing images of the zodiacal cloud (e.g.,
Spiesman et al. 1995, Reach et al. 1997). It surveyed the entire sky from near-Earth
orbit in 10 broad infrared bands simultaneously with a 0.7° by 0.7° field of view over a
period of 41 weeks (Boggess et al. 1992), and imaged the Earth’s ring and wake (Reach
et al. 1995). We investigated the COBE DIRBE data set as a source of information

about structure in the solar zodiacal cloud associated with planets other than Earth.
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6.2 The Data Set

We worked with a version of the DIRBE data set which contains the sky brightness
with a model for the background zodiacal emission subtracted: the zodi-subtracted
weekly data set from the DIRBE Sky and Zodi Atlas (DSZA). The DIRBE team cre-
ated the DZSA by fitting an 88-parameter model of the zodiacal dust emission to the
observed sky brightness (Kelsall et al. 1998). The model includes a smooth widened-fan
component, three pairs of dust bands near the ecliptic plane, and the Earth’s ring and
trailing wake, but no structures associated with Mars, Jupiter, or any other planets.
The zodi-subtracted weekly data set contains 41 files for each DIRBE band, spanning
a period from 10 December 1989 to 21 September 1990, covering 10 bands, centered at
1.25, 2.2, 3.5, 4.9, 12, 25, 60, 100, 140, and 240 microns.

Galactic emission dominates the zodi-subtracted maps in the mid and far-infrared
near the galactic plane. Near the ecliptic plane, the zodi-subtracted maps are dom-
inated by residuals from the subtraction of the dust bands that are associated with
prominent asteroid families (Reach et al. 1997; Kelsall et al. 1998). The presence of
these bands makes searching for smooth, faint heliocentric rings of dust near the eclip-
tic plane impossible. However, we could hope to distinguish a blob of dust following a
planet across the sky from other cloud components and from the galactic background
by the apparent motion of the blob during the COBE mission.

The COBE satellite orbited the Earth near the day/night terminator and repeatedly
mapped a swath of the sky extending about 30 degrees before and behind the terminator
(see the COBE DIRBE Explanatory Supplement (1997) for details). Each weekly map
contains a robust average of all the week’s data and covers a region a little larger than
the daily viewing swath. This weekly averaging tends to exclude transient events that
would contaminate our final maps, but should not otherwise significantly affect a search
for large features that move only a few degrees per week. Figure 6.1 is a schematic
view of the solar system during week 34 of the mission (9-16 July 1990) showing the
positions of Earth, Mars and Jupiter, and the DIRBE viewing swath for that week.
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COBE week 34

Figure 6.1: The solar system during week 34. The shaded regions following Mars
represents our model for the Mars wake; the shaded region centered on L5 represents
our model for the Trojan cloud. The hatched area represents the DTIRBE viewing swath
for that week.

Because DIRBE never imaged the sky within 60° of the sun, the orbits of Mercury
and Venus, for instance, do not appear in the data. Mars appeared in the DIRBE
viewing swath for 25 weeks of the mission, and moved 111° in ecliptic longitude during
those weeks. Jupiter moved only 40° in ecliptic longitude during the entire mission,
but this is sufficient to allow some crude background subtraction. More distant planets
moved less. Based on these constraints, we decided to search the weekly maps for
dust features following the orbital paths of Mars and Jupiter. Figure 6.2 shows the
intersection of the DIRBE viewing swath with the ecliptic plane throughout the 41



110
weeks of the mission, and the ecliptic longitudes of Mars, Jupiter and the Sun during

those weeks.
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Figure 6.2: The ecliptic longitudes of the Sun, Mars, Jupiter, and Jupiter’s L4 and L5
Lagrange points during 40 weeks of the COBE mission when DIRBE was recording.
The shaded diagonal stripes show the intersection of the DIRBE viewing swath with
the ecliptic plane. The vertical dashed lines show where the galactic plane crosses the
ecliptic. The horizontal bars show the data sets used to construct Figures 6.4, 6.5, and
6.6.

6.3 The Mars Wake

A ring of zodiacal dust particles detained in near-Earth resonances follows the Earth
around the sun (Jackson and Zook 1989; Dermott et al. 1994). This ring consists
mainly of dust in mean-motion resonances where the particles orbit the sun J times

every j + 1 Earth years (j is a whole number). Smaller trapped particles experience
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greater Poynting-Robertson acceleration, so the equilibrium locations of their orbital
pericenters shift closer to the Earth on the trailing side, where the component of Earth’s
gravity that opposes Poynting-Robertson drag is stronger. The result, averaged over
many particles, appears as a density enhancement in the ring behind the Earth—a
trailing dust wake. The Earth’s wake was detected by by IRAS (Dermott et al. 1988;
Reach 1991), and later, by DIRBE as an asymmetry in the near-Earth dust brightness
of ~ 1.1 MJy ster™! at 12 microns and ~ 1.7 MJy ster~! at 25 microns (Reach et
al. 1995). We searched the DIRBE data set for a similar wake of dust trailing Mars.

Blackbody dust at the heliocentric distance of Mars has a typical temperature of
~ 220 K; it emits most strongly in the 12 and 25 micron DIRBE bands. We restricted
our exploration to data from these two bands. We began by assembling a composite
map of the emission from beyond the solar system, mostly due to stars and dust in
the Galactic plane, by averaging together all the zodi-subtracted weekly maps in their
native COBE quadrilateralized spherical cube coordinates, a coordinate system that
is stationary on the celestial sphere. We subtracted this composite map from each of
the zodi-subtracted weekly maps, effectively removing most of the galactic emission
and any other stationary emission except within a few degrees of the galactic plane,
where the emission is so high that detector and pointing instabilities make our linear
subtraction method ineffective.

The remaining maps, with outlying data removed, had surface brightness residuals
in the range of -1.7 to +1.0 MJy ster™ at 12 microns, and -1.6 to 2.1 MJy ster ! at
25 microns. For comparison, the typical total zodiacal background near Mars during
the mission is ~ 35 MJy ster™! at 12 microns and ~ 66 MJy ster~! at 25 microns.
The most prominent remaining features were the stripes parallel to the ecliptic plane
within a few degrees of the ecliptic plane that are associated with the asteroidal dust
bands. The next most prominent remaining features were wide bands extending £30
degrees from the ecliptic that appeared to follow the sun. The 12 — 25 micron color

temperature of the wide bands was ~ 280 K; they are probably residuals resulting
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from imperfect subtraction of the Earth’s ring and wake. We assembled a crude map
of the residual near-Earth flux by averaging together the galaxy-subtracted maps in
geocentric ecliptic coordinates referenced to the position of the Sun. Subtracting this
from the weekly maps cancelled most of the signal in the wide bands. Mars moved
87° with respect to the Sun during the mission, allowing us to subtract this composite
map without subtracting a significant flux from a wake moving with Mars. Figure 6.3

shows our map of the galactic background; Figure 6.4 shows the near-Earth residuals.
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Figure 6.3: The galactic background at 25 microns, constructed by averaging all the
weekly maps in their native quadrilateralized spherical cube coordinates.

Next we chose subframes of each weekly map centered on the ecliptic coordinates
of Mars in the middle of the week, and inspected them visually. No structure in the
data appeared to move with Mars from week to week.

In order to understand the data better, we constructed a simple model of the Mars
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Figure 6.4: Residuals from the Earth’s wake at 25 microns, constructed by averaging
all the weekly galaxy-subtracted maps in a geocentric ecliptic coordinate system with
the sun at the origin.

wake from the empirical model of the Earth’s trailing wake fit to the DIRBE data by
Kelsall et al. (1998). The model has the following form:

N=Ngexp |————F— — — — ——r— (6.1)

where n is the local average of particle number density times particle cross section,
and r,z, and 6 are cylindrical coordinates in the plane of the orbit of Mars centered
on the sun. Mars is located at r = rg, 2 = 0, § = 0. The parameters of the model,
o, or, 02, 0p, and ng, are the same as the corresponding parameters for the Earth’s
wake: 0y = —10°, 0, = 0.10 AU, 0, = 0.091 AU, gy = 12.1°. The shaded area trailing

Mars in Figure 6.1 shows how this model would appear viewed from above the ecliptic
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plane. The Kelsall et al. (1998) Earth wake has ng = 1.9 x 1078 AU™!, but we chose
no = 1.08 x 1078 AU™! so that the density of the model would be proportional to the
local background dust density at the orbit of Mars. The model represents what the
Earth wake would look like if it were trailing Mars instead of Earth.

We evaluated the model’s surface brightness by computing the line-of-sight integral
I)‘ == E,\/n(r, Z, 0)B>\(T)ds (6.2)

where By (T) is the Planck function and E) is an emissivity modification factor pre-
scribed by the COBE model to account for the deviation of the Earth wake’s spectrum
from a blackbody; Ei9um = 1.06, Eos5um = 1.00. The temperature of the dust varies
with heliocentric distance, R, as T = 286 K R™%467 following the DIRBE model. This
expression Is similar to what you would expect for grey-body dust (T' = 278 K R~%3),

In Figure 6.5, we compare a synthesized image of the model wake with a background-
subtracted image of the infrared sky around Mars. The image shows the flux in the
25 micron band averaged over weeks 26-34 (14 May 1990 to 15 July 1990) in ecliptic
coordinates referenced to the position of Mars. The subset of the weekly 25-micron
data used in this image is indicated by the horizontal stripes labeled “M” in Figure
6.2. Mars moved 40 degrees in ecliptic longitude over this period. The DIRBE team
blanked the data within a square about 2.5° on a side centered on Mars, and within a
1.5° radius circle centered on Jupiter. A software mask in Figure 6.5 covers the region
around Mars affected by this processing. This whole region, up to 40° behind Mars,
shows no sign of a brightness enhancement that we would associate with a wake of dust
trailing Mars.

Maps from the later weeks suffer from an oversubtraction due to imperfections
in the Kelsall et al. (1998) zodi model, visible as the dark region to the lower right.
Weeks earlier in the mission suffer from a similar undersubtraction. These artifacts, our
primary source of noise, appear to arise from dust bands at latitudes of ~ £10°, where

bands associated with the Eos asteroids are prominent in the raw DIRBE data (Reach
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Figure 6.5: An image of the sky near Mars at 25 microns, compared to a model based on
the COBE DIRBE empirical model for the wake trailing Earth. The image is averaged
over weeks 26-34 (data set M). The region within 1.5° of Mars has been covered by a
software mask.

et al. 1997). As the dust from the asteroid belt spirals towards the sun, perturbations
from planets deform the bands. The Kelsall et al. model includes a simple model of
this dust band which could not take these perturbations into account. We chose the
span of weeks used to create Figure 6.4 to minimize these artifacts, which are easily
discernible by their extent in latitude and longitude.

To better compare the model with the data, we focused on a narrow strip with a
height of 3° in ecliptic latitude, extending from 8° ahead of Mars to 39° behind Mars
in ecliptic longitude. This strip contains most of the flux in the model wake. We
averaged together maps from weeks 26-34 prepared as described above to produce an

image of this strip. In Figure 6.6, we plot a cut through this strip, and we compare it
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with the model, processed in the same manner as the data. The data are dominated by
residuals from the ecliptic bands and the Earth’s ring, smeared out in the ecliptic plane
by the orbital motion of Mars. The standard deviation of the data is 0.54 MJy ster—1;
although the distribution of the residuals is not Gaussian, based on this comparison
we can place a rough 3-0 upper limit on the central peak of the Mars wake of 18% of

the flux expected from our simple model.
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Figure 6.6: A cut through the image of the 25-micron sky near Mars shown in Figure
6.5, compared to the same model.

The empirical model of the Earth’s wake we have used for comparison to the Mars
dust environment is not an ideal model for the Mars wake. It may not even be a good
representation of the Earth’s wake. Since COBE viewed the Earth wake from near the
Earth only, the observations constrain the product ngoy for the Earth wake, but do

not provide good constraints on either of these parameters alone. Kelsall et al. (1998)
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quote a formal error of 28% on the determination of oy. Calculations for 12 micron
particles suggest that og for the Earth wake might be 40% lower than the Kelsall et
al. (1988) number; this figure is based on Figure 5 in Dermott et al. (1994). Since we
are sensitive to the wake’s surface brightness peak as seen from the Earth, not Mars,
using a more compact wake model affects our upper limits. Holding ngog constant and
decreasing oy by 40% translates into a decrease of our upper limit to 11% of one Earth
wake.

Mars has 11% of the mass of the Earth, so we expect it to trap less dust than
the Earth, but not simply 11% as much dust. In fact, there is no simple scaling
law that describes how the density of a dust ring relates to the size of the planet
that traps it. The density of the Mars ring is proportional to the capture probability
times the trapping time for each resonance summed over all relevant resonances and
the distribution of particle sizes. In the adiabatic theory for resonant capture due to
Poynting-Robertson drag, the capture probabilities depend on the mass of the planet
compared to the mass of the star and on the eccentricity of the particle near resonance
and (Beaugé and Ferraz-Mello 1994). So one complicating factor is that the orbits of
the dust particles are slightly more eccentric when they pass Mars than when they
pass the Earth; a particle released on the orbit of a typical asteroid, at 2.7 AU with
an eccentricity of 0.14, will have an eccentricity of 0.07 as it passes Mars, and an
eccentricity of 0.04 when it passes the Earth (Wyatt and Whipple 1950). The higher
eccentricity makes them harder to trap.

The trapping time scale is proportional to the time it takes for the resonant inter-
action to significantly affect the eccentricity and libration amplitude of the particle.
When the planet has a circular orbit, these time scales are on the order of the local
Poynting-Robertson decay time (Liou and Zook 1997), which scales as r2/3, where £
is the ratio of the Sun’s radiation-pressure force on a particle to the Sun’s gravitational
force on the particle. Compared to the P-R drag at the heliocentric distance of the

Earth, the Poynting-Robertson drag force at the orbit of Mars is less for a given particle



118
by a factor of 1.522 = 2.31. The small mass of Mars and the higher eccentricities of
the orbits of the incoming particles work against the formation of a dense ring, but
the greater heliocentric distance of Mars compared to the Earth works in favor of the
formation of the ring.

So far our discussion has assumed that the trapping is adiabatic— that the orbital
elements of the particles change on time scales much longer than the orbital period.
This approximation may not be as good for trapping by Mars as it is for trapping by the
Earth. Mars has a greater orbital eccentricity (e = 0.093) than the Earth (e = 0.017).
This increases the widths of the zones of resonance overlap, and makes a larger fraction
of dust orbits chaotic (Murray and Holman 1997).

Predicting the density of the Mars wake is another step more complex than pre-
dicting the density of the Mars ring. Compared to the Earth wake, the Mars wake
may form closer to the planet and have a smaller oy. Since Mars is less massive than
the Earth, a given particle would need to have a closer interaction with Mars than
with the Earth to receive an impulse from the planet’s gravity that would balance the
Poynting-Robertson drag on the particle (Weidenschilling and Jackson 1993). For this
reason, we expect the trapped particles which form the Mars wake to prefer resonant
orbits with higher j and lower ¢ than similar particles trapped by the Earth, where
¢ is the angle between the perihelion of the orbit of a particle and the longitude of
conjunction of the particle and the planet. Our upper limit shows that the Mars wake
is less dense than the Earth wake by more than the simple factor of the mass ratio
times the square of the ratio of the semimajor axes = 0.11 x 2.31 = 0.25. However, a
thorough numerical simulation which includes the effects we mentioned and others such
as resonant interactions with Jupiter may be the only good way to relate our upper

limit to the dynamical properties of the dust near Mars.
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6.4 Trojan Dust

While the Earth and Mars can collect abundant low eccentricity particles from all dif-
ferent orbital phases spiraling in from the asteroid belt, Jupiter orbits in a distinctly
different dust environment. Outside the asteroid belt, the dust background probably
consists mainly of small particles with high orbital eccentricities: submicron particles
released by asteroids or comets that are kicked by radiation pressure into more eccen-
tric orbits than their parent bodies (Berg and Griin 1973; Mann and Griin 1995b).
There is also a stream of submicron particles from the interstellar medium (Griin et
al. 1994; Grogan et al. 1996) and there are probably a few particles near Jupiter that
originated in the Kuiper belt (Liou et al. 1996). Jupiter probably traps many of the
small particles in 1:1 mean motion resonances (Liou and Zook 1995). However, these
small trapped particles should occupy both “tadpole” and “horseshoe” orbits, without
a strong preference for either, and the locations of their Lagrange points vary with 3
(Murray 1994). They probably form large, diffuse ring-like clouds which are difficult
for us to detect.

But there is another potential source of dust that could form concentrated clouds
we could hope to detect against the asteroid bands in the DIRBE data: the Trojan
asteroids. This population of asteroids orbits the Sun at ~ 5.2 AU in 1:1 resonances
with Jupiter, librating about Jupiter’s L4 and L5 Lagrange points, roughly 60° before
and behind the planet. They number about as many as the main-belt asteroids.

Marzari et al. (1997) have simulated the collisional evolution of the Trojan aster-
oids, and concluded that collisions in the 14 swarm produce on the order of 2000
fragments in the 1-40 km diameter range every million years. If we simplisticly assume
an equilibrium size distribution for the produced particles, dn o< a~3%da, where a is the

particle radius (Dohnanyi 1969), we find that there are roughly 102

particles in the
10-100 micron diameter size range produced every million years. These large particles
are likely to stay in roughly the same orbits as their parent bodies, trapped by Jupiter

in “tadpole” orbits—orbits that librate around a single Lagrange point. They could
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conceivably form detectable clouds at 1.4 and L5.

Liou and Zook (1995) calculated that 2-micron diameter particles will stay trapped
in 1:1 resonances for ~ 5000 years. A 20-micron diameter particle at Jupiter’s orbit
experiences 1/10 of the Poynting-Robertson acceleration of 2 micron particles, and will
typically stay trapped for 10 times as long (Schuerman 1980). Assuming a trapping
time of 5000 years x the dust grain diameter/2 microns, and emissivity appropriate for
amorphous icy grains (e.g., Backman and Paresce 1993), the 10-100 micron diameter
particles in the Trojan cloud will emit a total flux, as viewed from the Earth, of ~
3 x 10~* MJy at 60 microns, a few orders of magnitude below our detection limit.

However, this is a drastic extrapolation and probably a poor guess at the actual
cloud brightness; the size-frequency distribution of the Trojan asteroids is not well
known and dust cloud is probably not near collisional equilibrium. Moreover, the total
amount of trapped dust is subject to severe transients, such as the events that produced
the dust bands associated with main belt asteroid families (Sykes and Greenberg 1986).
For example, a 20-km diameter Trojan asteroid ground entirely into 10-micron diameter
dust corresponds to a transient cloud which, as viewed from the Earth, would produce
a 60 micron flux of ~ 6 MJy. A similarly enhanced cloud might be visible a few percent
of the time.

Unfortunately, Jupiter’s Lagrange points do not move far with respect to the galac-
tic background during the COBE mission; L4 moves 10 degrees and L5 moves 50 de-
grees, as shown in Figure 6.2. Only L5, the trailing Lagrange point, moves far enough
during the mission to make subtracting the galactic background feasible. There are
about half as many L5 Trojans known as L4 Trojans, but this is probably because the
L5 region has been searched less intensely than the L4 region, not because the L4 and
L5 populations are significantly different (Shoemaker et al. 1989).

To make a background-subtracted image of the L5 region, we chose two subsets
from the zodi-subtracted data set. The first, subset A, is from the beginning of the

mission (weeks 5-10) when L5 was in the viewing swath and approximately stationary
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on the sky. The second, subset B, is the same region of sky, but contains data from
half a year later in the mission (weeks 33-38), when L5 has moved 45 degrees away,
out of the viewing swath. The average distance from Earth to L5 is approximately
the same during each time period. These data sets are depicted in Figure 6.2. We
focused on data in the 60 micron band, the band which contains the emission peak for
dust at the local blackbody temperature at 5.2 AU. To minimize the residuals from
the zodiacal dust model, we used only data from solar elongations between 65 and 115
degrees (or between 245 and 295 degrees). Figure 6.7 shows an image constructed from
data set A and an image constructed from data set B, and the difference, A—B, which
is dominated by residuals from dust bands associated with asteroid bands and shows
no obvious evidence of enhanced emission at L5.

We made a simple model for a Trojan cloud of large dust particles by assuming
that they occupy the same dynamical space as the Trojan asteroids themselves, follow-
ing Sykes (1990). Sykes modeled the asteroidal dust bands by showing how particles
constrained to orbits with a given inclination, eccentricity, and semimajor axis form a
cloud when the remaining three orbital elements are randomized. He then convolved
the shapes of these clouds with the distributions of orbital elements of the asteroids.
In our case, however, the distribution of orbital elements is much broader and more
important in determining the shape of the final distribution of particles. Since there
are only about 70 Trojan asteroids whose orbits are well studied, the distributions of
Trojan asteroid orbital parameters have severe statistical uncertainties. Therefore, we
settle for a simple Gaussian model for the Trojan cloud, using the orbital parameters
as a guide to the parameters of the Gaussian. In the following calculations, we will
neglect the inclination of Jupiter’s orbit relative to the Earth’s orbit (1.305°).

A typical Trojan asteroid librates around its Lagrange point with a period of 148

days. The mean longitude of the asteroid with respect to Jupiter, ¢, oscillates within
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Figure 6.7: Raw DSZA images in the ecliptic plane at 60 microns. L5 is at the center of
image A, but it has moved 45 degrees to the right of center in image B. The difference,
A—B cancels most of the galactic emission, but is dominated by residuals from dust
bands associated with the asteroid belt and does not reveal any Trojan dust. The
model shows what we would expect the difference A—B to look like, given some simple
assumptions about the Trojan clouds.

limits ¢min and ¢mae, which can be calculated, according to Yoder et al. (1983), from

in ¢mm _ sin (Oé/3) sin Qsmam _ sin (a/3 + 1200) (63)

St B 2 B

where B = 1o(3p/2E)Y?, sina = B, u = Mjupiter/Mg = 0.000955 and 7o = mean
motion of Jupiter = 0.01341 rad yr~!. These limits are set by E, which is a constant
of the motion in the absence of Poynting Robertson drag:

_Llrdgn? g
E_—E(E) - 501 +4a%) (6.4)
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where z = |sin (¢/2)|. The libration amplitude, D, is ¢maz — Pmin. We find that the

energy constant is approximately

3
E =~ —iung(l —0.0133D + 0.2266D> — 0.0392D3) (6.5)

for D < 1.3.
The fraction of time a particle spends at a given phase, or equivalently, the distri-

bution in phase of an ensemble of particles, is given by

1

Py x m—t— (6.6)

We can evaluate this as a function of D with the aid of equations (4) and (5). For
the distribution of dust libration amplitudes, Pp, we used a simple analytic function
that approximates the distribution of libration amplitudes for Trojan asteroids shown
in Figure 5 of Shoemaker et al. (1989). When we average Py over Pp, we find that
the L5 dust cloud is distributed in orbital phase roughly as a Gaussian centered at
o = 59.5° behind Jupiter with a dispersion oy = 10°.

The distribution of the dust in heliocentric latitude can be approximated in a similar
way. If particle in an orbit of given inclination, 7, with small eccentricity, spends a
fraction of its time, f, at latitude, 8, an ensemble of particles with small eccentricities
and evenly distributed ascending nodes will have a distribution, at a fixed orbital phase,

of
Pg o f o (cos? B — cos? i)~ /2. (6.7)

We take the inclination distribution of the particles, P, to be a simple analytic function
that approximates the data for “independently discovered Trojans” shown in Figure 3
of Shoemaker et al. (1989). When we average Pj over P;, we find the distribution in

latitude is roughly a Gaussian with dispersion 3 = 10°, and the distribution in height
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above the ecliptic has a dispersion o, = 0.94 AU.

The radial distribution of Trojans is more complicated to model, since both -
brations and epicycles include radial excursions. The average L5 Trojan eccentricity
is 0.063; a particle with this eccentricity orbits at a range of heliocentric distances,
Ar =~ 0.66 AU. In the course of its librations, a particle with a typical Trojan libration
amplitude, D = 29°, oscillates in semi-major axis over a range of Aa ~0.14 AU. We
are not sensitive to the radial structure of the Trojan clouds, so we simply model the
radial distribution as a Gaussian with a full width at half maximum of 0.66 AU, or a
dispersion o, = 0.24 AU.

Our final model has the form:
,
N=Tngexp |————F"— — — — ——5"— (6.8)

where r, z, and 0 are cylindrical coordinates in the plane of the orbit of Jupiter, and
the parameters are: ro = 5.203 AU, o, = 0.24 AU, 0, = 0.94 AU, 6y = —59.5°, and
g = 9.7°. We calculated the surface brightness in the same way as we calculated the
surface brightness of the model Mars wake, using an emissivity E6oum = 1 because we
are not considering small grains. The shaded region at L5 in Figure 6.1 represents this
model as viewed from above the ecliptic plane.

In Figure 6.7, we compare the difference image A—B to a synthesized image of
our model cloud. For this image, ng is 3.4 x 1078AU ™!, corresponding to an effective
emitting surface area at 60 microns of 3.3 x 10'® cm?, or one 3-km diameter asteroid
ground entirely into 10-micron diameter dust. Figure 6.8 compares the difference image
A-B and the model image in a different way; it shows the region within +10° of the
ecliptic plane averaged in ecliptic latitude. The 1-o noise in the data in Figure 6.8 is
0.09 MJy ster—!. Based on this, we can place a rough 3-0 upper limit on the effective

surface area of the large dust grains at L5 of ~ 6 x 10!7cm?2.
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Figure 6.8: The difference A—B compared to the model for the L5 cloud. This plot
shows a region of the 60-micron maps from Figure 6.7 within -10° of the ecliptic plane
that has been averaged in latitude. Based on this comparison, we place a 3-0 upper
limit on the surface area of the L5 cloud of 6 x 10'7cm?.

6.5 Conclusions

The zodiacal cloud near the ecliptic plane is a complex tapestry of dynamical phe-
nomena. We could not detect the Mars wake or Jupiter’s Trojan clouds among the
asteroidal dust bands in the DIRBE maps, despite the efforts of the DIRBE team to
subtract these bands from the maps. We would have detected the Mars wake if it
had 18% of the overdensity of the Earth wake, based on our empirical model for the
Earth wake. This upper limit illustrates the complexity of relating resonant structures
in circumstellar dust disks to the properties of perturbing planets. For instance, we

would have detected the Mars wake if the surface area of the dust in the wake scaled
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simply with the mass of the planet times the Poynting-Robertson time scale.

The Trojan clouds, by our crude estimation, would have been a few orders of magni-
tude too faint to detect if the dust concentration in these clouds were at its mean levels.
However, a transient cloud created by a recent collision of Trojan asteroids might have
been detectable. We measured that the total 60-micron flux from large (10-100 micron

diameter) dust particles trapped at Jupiter’s L5 Lagrange point is less than ~ 30 kJy.

We thank Antonin Bouchez, Eric Gaidos, Peter Goldreich, Renu Malhotra and

Ingrid Mann for helpful discussions, and our referees for their thoughtful comments.
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Chapter 7

A Search for Resonantly Trapped Kuiper Belt Dust

7.1 Introduction

'Dust released in the Kuiper Belt (KB dust) has never been directly observed. The
major obstacle to detecting this potentially vast cloud is that the Kuiper Belt must be
viewed through the local zodiacal cloud, which is much hotter than dust beyond the
orbit of Neptune could be. Kelsall et al. (1998) subtracted a model for the local zodiacal
cloud from the DIRBE maps, and some upper limits have been computed based on the
residuals (Backman et al. 1995; Teplitz et al. 1999). However, those upper limits all
share a common struggle; it is difficult to say how much emission from KB dust was
subsumed by the zodiacal cloud model. Vega-excess dust—analogous dust around other
stars—has proven easier to observe than KB dust in our own solar system!

We explored a new way of detecting dust in the Kuiper Belt that is largely inde-
pendent of models of the local zodiacal cloud. The outer planets probably trap KB
dust in mean motion resonances, just as the Earth traps asteroidal dust. Trapped
dust may create azimuthal asymmetries in the KB dust cloud which could stand out
from the backgrounds in the ecliptic plane because they would appear to orbit the sun
at the same rate as the planet that creates them—just as the Mars wake might have
stood out by virtue of its apparent motion. Detecting the orbital motion of an outer
planet requires observations taken over a long time baseline. To obtain this baseline,
we compared DIRBE 60 micron maps with 60 micron maps of the whole sky made with

data from the IRAS satellite.

'This work was done in collaboration with William Reach and Jer-Chyi Liou.
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7.2 IRAS and DIRBE

IRAS surveyed 98% of the sky from low-earth orbit from January to November, 1983,
in four bands, with effective central wavelengths of 12, 25, 60 and 100 microns. The
mission was designed to create a catalog of point sources, but the detectors were found
to be stable enough to accurately map extended sources. Subsequent to the release of
the IRAS Point Source Catalog, the Infrared Processing and Analysis Center (IPAC)
reanalyzed the data to create evenly calibrated maps of the large scale structure of
the whole surveyed portion of the infrared sky. They fit a 13-parameter model of the
zodiacal cloud to the recalibrated data and subtracted the model from the data, to
create the IRAS Sky Survey atlas (ISSA), described in detail in The Iras Sky Survey
Atlas Explanatory Supplement (Wheelock et al. 1994). The ISSA first revealed the
asteroidal dust bands and the Earth’s ring and wake; no attempt was made to remove
these structures from the maps. The portion of the IRAS Sky Survey Atlas that
contains the ecliptic plane is called the “ISSA Reject Set” because of the presence of
the asteroid bands in the data.

We compared the ISSA Reject Set to the DIRBE Sky and Zodi Atlas (DZSA),
the same data set we used to search for the Mars wake and Jupiter’s Trojan clouds.
DIRBE mapped the entire sky at large angular scales over a period from December 1989
to September 1990. During the interval between the DIRBE and IRAS observations,
Neptune moved from an ecliptic longitude of 268° to an ecliptic longitude of 283°.
Resonant structures are apt to be tens of degrees in size, so this baseline is just enough
to make the search worthwhile; a longer time difference between surveys might improve
the results of this sort of search by a factor of a few. The COBE DIRBE Explanatory

supplement gives a recalibration of the ISSA that matches it to the DIRBE maps.

I(DIRBE)g, = 0.87 % 0.05 x TI(IRAS)4, + 0.13 + 0.65 (7.1)

We applied this correction to the ISSA to allow us to directly compare it with the
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DSZA.

Figure 7.1a shows the DIRBE map of the whole sky within 45° of the ecliptic
plane, and Figure 7.1b shows the ISSA map of the same region. Figure 7.1c shows the
difference of these two maps. The vertical grey strips in the IRAS map at ~ 170° and
~ 350° are regions of the sky not surveyed by IRAS. The grey triangles at the top and
bottom borders of the DIRBE map are the edges of the COBE data cube; these regions
were surveyed by DIRBE, but they were not included in this image for convenience.
Neptune itself is not visible in the two maps, but black trident symbols indicate its

position.

7.3 Models of Trapped KB Dust

The first perturber dust encounters as it spirals in from the Kuiper Belt is Neptune.
Liou and Zook (1999; LZ) numerically integrated the orbits of dust particles started on
orbits at 45 AU with eccentricities of 0.1 and inclinations of 10°. These initial orbits
correspond to the region called the classical Kuiper Belt. LZ find that many particles
become trapped in resonances with Neptune, and the result is a ring with a gap, like the
Earth ring and like Figure 2.2. When particles leave these resonances, they are either
scattered from the solar system, or they typically have much higher eccentricities and
inclinations, and can’t easily be trapped again. Most of the particles that do remain
in the solar system are subsequently scattered out of the solar system by Saturn. The
result is that in the LZ model, the Neptune ring is the most visible azimuthal structure
in the outer solar system.

Holmes et al. (1999) have another concept of resonant structure in the Kuiper
Belt. They find in unpublished simulations that dust produced by Plutinos, Kuiper
Belt Objects locked in Neptune’s 2:3 resonance at 39 AU, often remains in the 2:3
resonance, or escapes the resonance, but is soon retrapped. The result is a population
of dust in orbits similar to the Plutinos themselves, a cloud with a very different

azimuthal structure than the LZ model.
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We compared the satellite observations to both of these dust cloud models. LZ
integrated orbits for four different groups of dust particles. We chose the group with
the largest value of 8, § = 0.05. For spherical particles with density 2 g ecm™> this
corresponds to a radius of 5.7 microns. The simulation contained 100 particles, half
released at @ = 45 AU, half released at ¢ = 50 AU. LZ converted the output of the
orbit integrations into a model of the cloud density by accumulating the locations of
the particles in 1 AU x 1 AU x 1 AU bins at regular intervals to. Figures 4a and 5a
of LZ (1999) show images of these clouds viewed at a distance face-on.

We set the overall density of the model using measurements from Pioneer 10 Me-
teoroid Experiment. Pioneer 10 was sensitive to particles as small as 107° g. Since
smaller particles far outnumber large particles in a collisional size distribution, most
of the particles Pioneer 10 detected are probably not much more massive than that
detection threshold, which corresponds to spherical particles with radii 5 microns with

3 similar to the 8 = 0.05 particles used in the simulation. Pioneer

densities of 2 g cm™
10 recorded about 20 penetrations in the region from 6 to 18 AU from the sun (Humes
1980). The penetrations occurred at a roughly constant rate. If we divide this mea-
sured penetration flux of 3 x 107% penetrations m~2 s™! by the circular velocity at 14
AU, 8000 m s~!, we get an estimate of the density at this radius of 4 x 10710 particles
m~3. We scaled the model density at 14 AU to match this density. Naturally, a proper
analysis would take into account the effects of the angles of incidence of the particles,
the velocity of the spacecraft, and so on. This estimate of the particle density is only
meant to be used as a reference point. The typical brightness of the scaled model in
the ecliptic plane is 0.6 MJy ster~! at 60 microns.

For the plutino dust, we made a simple Gaussian model for the density. We assumed
that the interesting aspects of the cloud are the two blobs that would appear at the
perihelia of the orbits, leading and trailing Neptune by 90°. Any azimuthally symmetric

aspect of the cloud would be cancelled in a difference of images taken at two different
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epochs. We modeled the blob densities as

(r—rg)2 22 (0£n/2)?
n=ngexp|————5— — —5 — ————t " 7.2
TSP T 02 T 202 207 (7:2)
where n is the local average of particle number density times particle cross section
(< no >), and r,z, and 6 are cylindrical coordinates in the plane of the orbit of
Neptune centered on the sun, where Neptune is at § = 0. We started with this concept
of a typical plutino orbit: semimajor axis 39.0 AU, inclination 10°, eccentricity 0.25,

libration amplitude of 23° (Pluto’s). We translated these values into the dust cloud

parameters as follows:

ro = semimajor axis X (1 - eccentricity/2)
o, = semimajor axis x eccentricity/2
0, = semimajor axis X inclination

og = libration amplitude

We set the central < no > of the plutino blobs to ng = 10=7 AU™!, similar to the value
at r = 1 AU in the zodiacal cloud, where < no >= 1.13 x 1077 AU~! in the Kelsall
et al. (1998) model. The total cross section is ~ ngo,o,r90s = 4.5 x 107° AU? = 1022
cm?. This might correspond to a ring of plutino dust with about 5 times that total
cross section. The maximum brightness of this model is 1.54 MJy ster! at 60 microns.

To compare the models with the data, we synthesized images of how the models

would appear as viewed from the sun using this relation:

I, = /n(r,z,@)BA(T)ds (7.3)

where B)(T') is the Planck function, and T' = 278 K (r/1 AU)%3, the local Blackbody
temperature. We created images of how the clouds would appear during the TRAS
mission, then images of how they would appear during the COBE mission, and dif-

ferenced the images, just as we differenced the observed maps. Figure 7.1d shows the
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time-differenced LZ model, and Figure 7.1e shows the time-differenced plutino dust
model. The LZ model image has some graininess due to the finite number of particles
in the simulation.

The primary residuals in the DIRBE - IRAS image are in the Galactic plane, caused
mostly by non-linearity and hysteresis in the IRAS detectors. Unfortunately, because
Neptune was near the galactic plane during both the IRAS and COBE missions, most
of the signal in the differenced LZ model is near the galactic plane, where there is
the most noise. However, because Plutinos are in the 2:3 resonance with Neptune, the
perihelia of their orbits lead or trail Neptune by 90°, far from the Galactic plane during
the IRAS and DRIBE observations. In the LZ simulations, some dust populates this
resonance, but dust populates other Neptune mean-motion resonances too, the 3:4, the
4:5, the 5:6 and so on, so the 2:3 resonance does not nearly dominate the appearance
of the cloud. Instead, in the LZ model, the gap near Neptune dominates the azimuthal
structure. The net result is that our search is more sensitive to plutino dust. The
plutino dust model is also less azimuthally symmetric than the LZ model.

A secondary noise source is the yearly variation of the zodiacal background. IRAS
and DIRBE did not map the entire sky in one day; they mapped only certain longitudes
at a time. During the year, the Earth moves with respect to the warped asteroidal dust
bands and with respect to the Earth’s ring and wake, so the signal from these sources
varies. When the whole sky maps are summed, this time variation translates into
vertical stripes which appear in the IRAS and DIRBE images of Figure 7.1. They are
more prominent in the IRAS map because the DIRBE zodiacal dust model corrects for
much of the flux from the dust bands and from the Earth ring and wake. This effect
was the limiting noise source in our search for the Mars Wake.

The model for the zodiacal cloud that has been subtracted from the DSZA is differ-
ent from the model that has been subtracted from the ISSA. The DIRBE model is the
88-parameter Kelsall et al. (1998) model, which incorporates three pairs of asteroidal

bands and the Earth’s ring and wake. The ISSA model does not account for any of
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those structures. The result is that the ISSA map in Figure 7.1b has severe asteroidal
dust band residuals, the horizontal stripes near the ecliptic plane, and subtracting the
DIRBE map does not remove these residuals.

However, we are interested only in azimuthal structure, so we can reduce the effects
of those residuals. by performing an average in ecliptic latitude. Figure 7.2 shows
another view of the differenced satellite images and the differenced model images, panels
¢, d, and e of Figure 7.1. It shows the region within £23° of the ecliptic, averaged in
latitude. We masked out the region within +12° of the galactic plane before performing
the averages to make Figure 7.2. Still the noise that remains in the latitudinal average
of the DIRBE-IRAS map is primarily residuals from subtraction of the galaxy. In this
figure, the LZ model has been multiplied by 10, and the plutino model has been scaled
by a factor of 0.45, so ng = 4.5 x 1078, We do not see any sign of resonantly trapped
Kuiper belt dust in the IRAS and DIRBE images. But Figure 7.2 shows that these
scalings are upper limits on the amount of dust that could exist in a ring like the LZ
model or the plutino dust model. We can translate these upper limits into limits on
the typical ecliptic plane brightnesses for the two cloud models; they correspond to
brightnesses of 6 MJy ster™! for the LZ model, and 0.7 MJy ster™! for the Plutino

model.

7.4 Discussion

How do our upper limits on the dust in the outer solar system compare to other known
clouds of dust? If the outer solar system hosted a dust cloud like the dust clouds we
have observed around other stars, could we have detected it? Could we detect our
Kuiper Belt if it orbited a nearby G star instead of the sun? Table 7.1 offers some
answers to these questions by comparing our upper limit models to the dust clouds
around Vega and Epsilon Eridani and to the solar zodiacal cloud using two measures
for each cloud: the total dust surface area, and the infrared excess. The infrared

excesses for Vega and Epsilon Eridani, the surface area of Vega’s dust cloud and much
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more information can be found in similar tables comparing various Vega-excess stars
which appear in Backman and Gillett (1987), Backman and Paresce (1993), Backman
et al. (1997), and Dent et al. (2000). We derived the numbers we quote for the solar
zodiacal cloud from the model by Kelsall et al. (1998).

Table 7.1: Comparison of dust clouds

Dust Cloud 60-micron excess dust surface area (cm™2)
Solar Zodiacal Cloud 0.04% 4 x 10%0
Plutino Dust Model < 3.5% < 2 x 1022

LZ Model < 20% <10%

¢ Eridani 400% 5 x 102

Vega 750% 1027

The total effective surface area of the dust is a good measure to use for comparing
two clouds around different stars since it can be inferred from the images of the cloud
taken at a few different wavelengths by making some assumptions about the dust
radiative properties. It might be preferable to compare the total mass of the dust, for
instance, but inferred masses are much more sensitive to the size of the dust grains,
so they are poorly constrained by observations. The surface areas quoted in Table
7.1 assume that all the dust is at blackbody temperature. This approximation is very
good for zodiacal dust and in general for large grains—larger than the wavelength range
where blackbody dust would emit most of its energy. The effective emitting area of
a cloud generally decreases with wavelength, however, so the surface area we quote
for Epsilon Eridani, which Greaves et al. 1998 derived from images at 850 microns, is
probably lower than the effective surface area of the same dust cloud at 60 microns.
For the plutino dust model, we assume that total cross section area of the trapped dust
ring is five times the total cross section of the model blobs.

Table 7.1 shows that the surface area in our upper-limit models is midway between
the surface area of the zodiacal cloud and the Vega-excess disks in a logarithmic sense.
Our upper limits seem so poor compared to the zodiacal cloud because the zodiacal

dust near the earth is roughly seven times as hot as blackbody dust at the heliocentric
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distance of pluto. However, if the sun were surrounded by as much dust as Epsilon
Eridani or Vega, the fraction of that dust that became trapped in resonances with
Neptune would probably be quite easy to detect by our method.

The infrared excess of a dust disk—the ratio of the total flux emitted by the dust
to the photospheric emission of their central star—is a way to compare two different
dust clouds that has direct bearing on their detectability in photometric surveys. This
number reflects the luminosity of the star, the dust orbits, and the distance of the
dust from the star as well as the dust emitting area. The typical measurement error
in the JRAS photometry at 60 microns for bright main sequence stars is about 11%.
So according to our upper limits, IRAS might have been able to detect our LZ-type
upper-limit-model if it orbited a very nearby solar-type star, but not our upper-limit
plutino dust model. New telescopes like the planned Space Infrared Telescope Facility
(SIRTF) can make more accurate and more sensitive measurements than IRAS. In
this case photometric detection of circumstellar dust may be limited by the accuracy of
models of stellar spectra in the mid-infrared, which in the best case is about 2% (Cohen
et al. 1996). So according to our upper limits SIRTF might be capable of detecting the
dust in our outer solar sytem photometrically if it viewed it from a distance of several
parsecs at 60 microns no matter which model for the dust configuration is better.

Of course, our upper limits are on the total amount of dust trapped in resonant
orbits, not the total amount of outer-solar system dust. There might be much more
dust in the Kuiper Belt that would not appear in a difference of DIRBE and IRAS
images because of its azimuthal symmetry. If that were the case, the solar system dust
cloud would be easier to detect as a photometric excess when viewed from a nearby

star than our upper limits suggest.
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Figure 7.1: Searching for the Neptune Ring By Comparing DIRBE and IRAS 60 micron
maps. The trident symbol shows the location of Neptune during the IRAS and COBE
missions. a) DIRBE image minus DIRBE zodiacal cloud model. b) IRAS image minus
IRAS zodiacal cloud model. ¢) image a - image b. d) how ¢ would appear if the dust
distribution matched the Liou and Zook model for the neptune ring. e) another model
where all the dust is in the 2:3 resonance with Neptune.
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Figure 7.2: Cuts through panels c, d, and e in Figure 7.2.
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Chapter 8

Conclusion

8.1 Detecting Exozodiacal Dust

The nature of the Poynting-Robertson force dictates that the equilibrium configura-
tion of a collisionless dust cloud interior to the dust sources approaches a constant
surface-density fan shape; this model describes our zodiacal cloud well. Viewed at
thermal wavelengths, the brightness distribution of a cloud like this falls off roughly
exponentially with separation from the star. Unfortunately, this brightness distribution
is difficult to distinguish from the typical point-spread-function of a real telescope with
a circular aperture. This problem limits the power of direct imaging with a single-dish
telescope or imaging with the aid of a coronagraph to detect exozodiacal clouds. Table

8.1 summarizes the upper limits from our single-dish surveys.

Table 8.1: Summary of upper limits on exozodiacal clouds

Log Disk Density

Star Spectral Type Telescope/Instrument Solar Disk = 0
Vega A0V Keck/LWS <4.0
Altair ATV Keck/LWS <3.2
Sirius A1V HST/NICMOS Coronagraph <5.1
Procyon F5IV HST/NICMOS Coronagraph <55

Nulling interferometers are fundamentally better suited to detecting exozodiacal
dust. The soon-to-be completed Keck Interferometer promises the ability to detect
exozodiacal clouds with only 10 times the optical depth of the solar zodiacal cloud,
even though the nulled beam will transmit starlight comparable to the signal from a
30 x solar cloud. But even a nulling interferometer as powerful as the soon-to-be com-

pleted Keck Interferometer can only be used to constrain models of exozodiacal clouds.
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Ultimately we will want to combine data from a few nulling interferometers, such as
the Keck Interferometer and the Large Binocular Telescope, to provide the (u,v)-plane

coverage needed to decide the orientation and radial-structure of exozodiacal clouds.

8.2 Signatures Of Planets

One might hope that a good understanding of how planets trap dust in resonances
could be used to decode maps of clumpy circumstellar clouds to deduce the orbits and
masses of the perturbing planets. My experiences studying the detailed structure of our
zodiacal cloud suggest that this technique may often be impractical for the following

reasons:

1) The eccentricities of the dust orbits, the eccentricity of the planet’s orbit, and the
B’s of the dust grains all affect the dynamics. These free parameters burden models of

the effect of a planet on a dust cloud.

2) Not all planets massive enough to form rings and wakes do. In models of dust in
the outer solar system by Liou and Zook (1999), Neptune traps many dust particles,
but Uranus doesn’t. Resonances of Neptune overlap with the resonances of Uranus
and destabilize them, and many of the best particles for trapping, those with the right
orbital eccentricity and 3, get trapped by Neptune and kicked into orbits that makes
them harder for Uranus to trap. Similar effects may occur in the inner solar system,
where the Earth’s resonances spoil the effects of Venus’s resonances. These phenomena
have yet to be confirmed observationally, but this effect may allow planets as massive

as Uranus to hide in dust clouds, with no ring of trapped dust to signal their presence.

3) The debris from a single asteroid or comet can remain localized in dynamical space
and produce a vivid structure in a zodiacal cloud. I searched for dust trapped in
resonances with Mars, and I found that any signal from structures associated with
Mars was swamped by signal from the asteroidal dust bands. Each of these bands

probably comes from a family of asteroids which all share a single common progenitor
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asteroid.

On the other hand, there are a few other signatures of planets that have not yet

received much attention that we should watch out for in exozodiacal clouds.

1) The secular perturbations of Jupiter-mass planets may be important sculptors of
exozodiacal clouds. The pericenter shift of the zodiacal dust orbits induced by Jupiter
is about 0.01 AU. At a distance of 10 parsecs, this corresponds to an angle of 1
milliarcsecond—not much less than the resolution of a 100-meter baseline interfer-
ometer in the near and mid-infrared. Moreover, in the limit that the dust orbits near
the circumstellar distance of the planet, the pericenter shift is proportional to the ec-
centricity of the planet times its semimajor axis, and the extra-solar giant planets that
appear in radial velocity surveys often have orbital eccentricities much higher than

Jupiter’s.

2) Massive extra-solar planets may engender clouds of trojan asteroids that could release

exozodiacal clouds with dramatic azimuthal structures.

3) Finally, the asteroid belt itself may have formed where it did because of the presence
of strong mean motion and secular resonances with Jupiter inhibited the formation of
a terrestrial planet near 3 AU. In this sense, the outer cutoff of the zodiacal cloud at
the asteroid belt is a signature of the presence of Jupiter. If we can measure the radial
structure of exozodiacal clouds to look for similar outer edges, perhaps by combining
data from the Keck Interferometer and The Large Binocular Telescope, we might use
this information to infer the presence of massive planets with orbital periods too long

or masses too small for radial-velocity techniques to detect.

8.3 The Future

A zodiacal cloud is a potential sign of fertile planetary system. A massive zodiacal

cloud could indicate a planetary system undergoing a period of heavy bombardment
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akin to the time when comets may have delivered water to the Earth’s oceans (Chyba
1987; 1990). A less massive cloud as smooth as the solar cloud indicates a region of
dynamical stability where a terrestrial planet might survive the dynamical perturba-
tions of massive planets long enough for biogenesis to occur. Even though zodiacal dust
can easily outshine planets, making them harder to detect, stars with evolved zodiacal
clouds may be the most likely stars to harbor extraterrestrial life.

But beyond the quest for extra-solar terrestrial planets and extraterrestrial life,
the science of exozodiacal dust has a place at the center of the comparative study of
planetary systems. When we find zodiacal dust around another star, we reason by
analogy that the dust comes from either extra-solar comets or asteroids. One might
say that, in general, an asteroid is a chunk of rock that releases dust when it is struck
by another asteroid, and a comet is a clod of rocks and dirt soaked in volatiles that
releases dust when the volatiles start to sublimate during a close approach to a star.
The best reason to study exozodiacal dust may be to investigate the roles of comets
and asteroids in planetary systems.

Massive planets can create belts of small bodies by sweeping them into resonances,
as Neptune probably swept the plutinos into its 3:2 and 2:1 resonances (Malhotra 1995)
as it migrated outward. It is not understood yet what process halts the migration of
massive planets, why some giant planets fall into the stars they orbit or become hot
Jupiters and others stop their inward spirals at 5 AU like Jupiter. But the parking
of massive planet ~ 5 AU from a star may be a prerequisite for terrestrial planet
formation. Cataloging belts of small bodies around other stars—particularly belts at
terrestrial temperatures—could help unravel the mysteries of planet migration.

Comets must originate where it is cold, far from a star, and somehow get injected
into the terrestrial-temperature zone to release dust. We might imagine that all plane-
tary systems have reservoirs of cold comets, Oort clouds and Kuiper Belts, the residue
of planet formation. But do all planetary systems inject comets into their habitable

zones? Are comets everywhere important for delivering volatiles to terrestrial planets?
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Observations of exozodiacal clouds could begin to answer these questions.

One possible way to distinguish cometary dust from asteroidal dust is spectroscopy.
The dust around [ Pictoris shows a strong silicate emission feature at 9-11 microns sim-
ilar to the silicate feature seen in spectra of comets (Telesco and Knacke 1991; Knacke
et al. 1993). Exozodiacal clouds may reveal similar features. The radial structure of
zodiacal clouds is another clue to their origin. By combining data from a range of base-
lines, using the Keck Interferometer, the Large Binocular Telescope, the Very Large
Telescope Interferometer, and the Terrestrial Planet Finder, we may be able to decide
whether a cloud terminates abruptly at an asteroid belt, or has a surface-density that
increases with proximity to a star, as the sublimation rate of comets would. We can
also compare observations of exozodiacal clouds with observations of Vega-excess dust
at longer wavelengths made with the Space Infrared Telescope Facility (SIRTF) and
submillimeter interferometers like the Submillimeter Array (SMA) and the Atacama
Large Millimeter Array (ALMA) to investigate the transport of dust from the outer

reaches of planetary systems to the inner regions.
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