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ABSTRACT

Mbssbauer effect experiments have been performed on a
single crystal of paramagnetic thulium ethylsulphate with a magnetic
field applied. The effect of the electric field of the surrounding
ligands in the crystal, as determined from published optical
spectroscopic data, combined with the effect of an externally
applied magnetic fiéld, has been used to compute the electron
wave function of the thulium ion, yielding, within numerical factors,
the electric field gradient and magnetic field at the nucleus. The
nuclear hyperfine splittings and transition intensities were computed
as a function of the ratio of quadrupole interaction energy to the
magnetic interaction energy for magnetic fields parallel and perpen-
dicular to the (zz) axis of the electric field gradient tensor. The
results of these calculations have been compared with experiment.

It has been found that the ratio of internal magnetic field to external
magnetic field varies by a factor of at least 35 as the orientation of
the crystal is changed. When the field was applied perpendicular to
the z-direction, which gave the maximum internal field, the ratio
of internal to external field was found to be 73 + 7Tat 6.5 °K. Our
most significant result is the measurement by a new technique, of
the radial integral appearing in the nuclear magnetic hyperfine
interaction (r ° >M . The numerical value was found to be (r~3 >M
= 11,1+ 1.0 atomic units. Other possible applications of the use
of magnetic fields with rare earth single crystals in Mdssbauer
effect investigations are discussed.
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I. INTRODUCTION

The phenomenon of recoilless nuclear resonance (MBssbauer
effect) provides a convenient tool for the study of the interactions
between a nucleus and its surroundings. In appropriately designed
experiments, one may obtain quite detailed information about the
charge distribution and magnetic fields within the ion in which the
nucleus resides, and from this infer various properties of the ion
and its surroundings in the crystal.

In this thesis, we report the first observations using the
Mdssbauer effect of the nuclear hyperfine splittings which result
from the application of a magnetic field to a paramagnetic single
crystal. Specifically, we have studied the hyperfine interaction of
tripositive thulium in the ionic salt thulium ethylsulphate (TmES).
The radial integral factor appearing in this interaction, which is
(r"3) taken over the 4-f electrons, has been determined.

In contrast to other experiments, our measurement is
relatively free from sources of systematic uncertainty. Most
determinations of this radial integral involve measurements either
on a neutral atom in an atomic beam or on the (presumably) ionized
atom in a ferromagnetic metal. The atomic beam measurements
are, of course, quite precise, but they give (r~%) only for neutral
atoms, and values for trivalent can only be obtained very indirectly.
On the other hand, the inference of (r™3) from data taken with the
ferromagnetic metals is quite uncertain because such materials
contain conduction electrons of unknown polarization, The polarized
conduction electrons may contribute appreciably to the nuclear

magnetic interaction and lead to considerable systematic error. The



difficulties inherent in both of these methods are circumvented by
our special method of studying the behavior of an ionic salt.

A measurement using the Mdssbauer effect can give the electric
field gradient (EFG) and the magnetic field at the nucleus. We can
understand the origin of these fields in the following way: The rare
earth ion has a partially filled 4-f electron shell. As a result of
spin-orbit coupling, the ion is split inio states characterized by the
total angular momentum, When the ion is put into a crystal, the
lowest multiplet state (which was degenerate with respect to the
projection of the angular momentum) undergoes a Stark effect
splitting by the electric field in the crystal. This gives a series
of levels, the crystalline electric field, or CEF, levels, which have
an overall splitting of a few hundred cm™ 1. The overall splitting is
small compared with the spin-orbit coupling energy, so that higher
multiplet levels are not mixed, and the total angular momentum
remains a good quantum number,

The magnetic behavior of the rare earth salts can be described
with phenomenological theories. The angular part of the matrix
elements that are associated with the interactions of a particular ion
with crystal electric fields and external magnetic fields is handled
by angular momentum algebra, but there are no reliable methods for
calculating the necessary radial integrals; the uncertainty in such
calculations is typically around 30%. It is therefore customary to
treat these radial integrals as parameters, which are to be de-
termined by experiment. There is, accordingly, a considerable need
for reliable determination of such quantities,both because numerical
values are required in any magnetic calculation, and because
theoretical estimates can be best improved by the "feedback' of

experimental results.



In the case of thulium, which has an even number of electrons
in the tripositive ion (no Kramers degeneracy),the CEF levels
usually have no intrinsic magnetic moment. The occurrence of
magnetic susceptibility then depends on the fact that a magnetic
field can admix to a particular CEF level appreciable amplitudes
from other CEF levels, which results in a nonzero magnetization.
This phenomenon often shows up most clearly at low temperatures:
when the temperature is low enough that only the lowest CEF level
is appreciably populated, the susceptibility depends only on the
amplitude admixtures, and not on the temperatures. This phenome-
non of susceptibility which approaches a constant value at low
temperature is called '""Van Vleck temperature independent
susceptibility''.

The nuclear quadrupole moment interacts with the electric
field gradient from the CEF levels and from the surrounding lattice,
and the nuclear magnetic moment interacts with magnetic fields
which may be present. We observe both types of hyperfine inter-
action,

The strength of the magnetic field at the nuclear position has
been determined from experiment as a function of orientation. The
exact form of the CEF states for TmES was derived from optical
spectroscopic data by Barnes, et al. (1) The effect of a magnetic
field on these states has been calculated in this thesis, giving the
magnetic moment per atom as a function of field strength and
orientation with respect fo the crystal axes. Comparison of these
quantities with our experimental results yields the strength of the

nuclear magnetic hyperfine interaction,



Since the salt being studied does not have any spontaneous
magnetic ordering, it is necessary to apply an external magnetic
field to produce polarization of the atoms.

The electrons responsible for magnetic polarization interact
with the anisotropic CEF, as well as the magnetic field; the
polarization will, in all likelihood, be anisotropic. Because of
this anisotropy, it is necessary to use a single crystal.

The MUssbauer level used was the 8, 4 keV state in Tm169.
The choice of this particular level was based on the following

considerations:

(1) The spins of the ground state (I = 1/2) and of the excited
state (I = 3/2) are relatively low, which results in a small number
of hyperfine lines in the observed spectra, which considerably
simplifies the interpretation of the experimental data.

(2) The recoil-free fraction (Debye-Waller factor) is quite
high, due to the low energy of the transition; thus, one may perform
experiments over a wide range of temperatures without encountering
serious difficulties due to small resonance effects.

169

(3) The isotopic abundance of Tm is 100%.

(4) I is relatively easy to prepare radioactive sources of high
specific activity which emit a single line, thus facilitating the study

(1)

of various absorbers*’/.



II. THE ORIGIN OF THE INTERNAL FIELDS

The hamiltonian deScribing the interactions of the nuclear
electric quadrupole moment and magnetic dipole moment with the

surroundings may be written as

H = Hy+ Hy , (1)

where the quadrupole part, HQ is

2
2 .2
Hy = 4I<e21Q; 1) [<qzz>(3£z - I )+% (qXX— qyy>(1+2+ 1_2)], 2)

and the magnetic part HM is

ENMN
= ..-T._._. (I

H - H.
NNm

M P (3)

(In these equations, Q in the nuclear quadrupole moment, <qii>
are the non-vanishing components of the electric field gradient
tensor, I is the nuclear spin operator, ENMN is the nuclear

magnetic moment, and gint
position). We have chosen a co-ordinate system lying along the

is the magnetic field at the nuclear

principal axes of the electric field gradient (EFG) tensor. We
discuss the terms appearing in Equations (2) and (3) below.

(1) Quadrupole interaction

This interaction has been discussed thoroughly in a

(1),

recent publication'™; we summarize a few of the pertinent results

here.



The electric field gradient at the nucleus arises from
two distinct sources, namely the gradients of the electrostatic field
of the surrounding ligands in the crystal, and the field gradient at
the nuclear position due to the electrons in the atom in question.

More specifically, we write the EFG tensor qij as
_ Lat 4f
ql] - (1 - Yoo)qi]- + (1" RQ)qi] * (4)

The meaning of the terms is as follows: the field gradient of the
surrounding ligands, qi].Lat polarizes the closed shells of the
thulium atom, producing a quadrupole distortion which alters the
EFG which appears at the nucleus, The term Y, represents

the effect of this polarization. The partially filled 4-f electron
shell produces an EFG, qij4f at the nucleus also; a quadrupole
polarization of the closed shells can be produced by this contri-
bution as well. The factor RQ represents the shielding due fo this
polarization.

The EFG is temperature dependent. The overall splitting of
the ground state multiplet of thulium due to the electric fields of
the surrounding ligands (called the crystalling electric field, or
CEF) is typically 200 to 300 cm—l. Thus, the populations of the
sublevels change considerably as one goes from liquid helium
temperature up to room temperature, giving a strong temperature
dependence for qij4f‘ On the other hand, the lattice part of the
EFG depends only on positions, polarizibilities, and charges of the

surrounding ligands, so we expect only a slight temperature
variation.



_ The calculation of qij4f depends on a knowledge of the
electronic states in the ground state multiplet, Assuming that the
total angular momentum, J, is a good quantum number, we have

the following equation for the matrix elements of the CEF hamiltonian:

- N ~Im : m .
(HCEF)mJ, m —nL/J C, (J[IenHJ>(J,mJ|On J) IJ,mJ> , (5)

, m
where the Chm are products of coefficients for the spherical

harmonic expansion of the CEF multiplied by appropriate integrals
over the radial distribution of the 4-f electrons, and {J| enHJ ) are

reduced matrix elements appropriate to the equivalent operators
o (@

n »
obtain a series of eigenstates which we label as

If the CEF hamiltonian is put into diagonal form, we

H

cerl™ = B

)\Im . (6)

Representing these states in the coordinate system of the principal

axes of the EFG tensor, we obtain explicit expressions for the qi;ﬁ:
_ -3 2 .2
(a,,? = -Sx"2QN8,l3<n3g - 370, (7a)
(@ -q.>=-3/2<" e a3 245 20 (7h)
Uex qyy 2 + - ’

In the absence of shielding effects, (r'3>, would be simply the
integral of r_3 over the 4-f radial distribution. However, we

choose instead to treat the quantity {r 3) defined by the equation

Q’



(r_3>Q== (1_RQ)<1~'3> , )

as a parametér to be determined by experiment.

The temperature variation of A5 af can be obtained by
ta,kmg thermal averages over the expectatmn values defined in
Equations (7a) and (7b). The nuclear quadrupole interaction
(Equation 2) retains the same form provided we use the appropriate

thermal averages <q > in the equation,

(2) Magnetic interactions

The magnetic fields at the nuclear position in the rare
earths are quite large (typically several million gauss), so that it is
possible to neglect the direct interaction of the nucleus with external
magnetic fields or with fields produced by neighboring paramagnetic
ions in comparison with the fields produced by the electrons in the
atom itself. We may accordingly treat the internal field as arising
from a two step process: the atom becomes magnetically polarized
by external means and the polarization leads to a certain internal
field., Since the magnetic moment of Tm atom is given in terms of

the total angular momentum vector by

M = gyig (I, (9)
where gy is the Landé factor, and Hp is the Bohr magneton, it
suffices to examine (J ) under various conditions of interest. In
our case of Tm in TmES, where the CEF levels all have (J) = 0

in the absence of an applied field, we may simply treat the

magnetization as arising from the interaction of the atom with the



external magnetic field. The details of the calculation of this
magnetization are discussed in the next chapter.
The magnetic field at the nucleus in terms of the spin

and orbital angular momenta of the electrons in the atom is given
(3)
by

Hint = ZMB

(£.-8) 3r.(s..r.)
N L e b Sl LY 8(r.) (9)
Lo 3 5 3 ~ o~
i r. r,

i i
where %i is the orbital angular momentum, 8 the spin, and Ty the
position of the i'th electron. Since all the quantities in the above
equation transform like a vector under rotation of the coordinates,
we may replace this equation, within the manifold of states spanned

by the vector J, as

- | -3
Ho = 24 ST INID ™0 KT, (10)

where (J|IN||J) is a reduced matrix element, whose numerical value

4t

for Tm is 7/9. Due to the fact that the magnetically polarized

4-f electrons can interact with the filled shells, the quantity (r_3>M
is not simply the expectation value of this quantity taken over the

4-1 electrons only. Additional orbital contributions to the internal
field arise from the mixing of electronic states with different ¢,
Exchange interactions involving the spins can give a nonzero net

spin at the nucleus, thus giving a magnetic interaction via the Fermi
contact term —8; 8 6(54). The orbital mixing is proportional to L,

the total orbital angular momentum, and the spin mixing is proportion-
al to §, the total spin, and since both of these quantities are pro-

portional to J when Russell-Saunders coupling applies (as it does in
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the case of Tm), we can represent the combined effect of the closed
_ M This
factor is independent (in the Russell-Saunders coupling limit) of the

shell polarizations by defining a magnetic shielding factor R

exact value of (J?, and is another constant of proportionality in the
definition of Eint' In analogy with the quadrupole coupling case, we
are led to define an effective (r_3>M which includes the magnetic
shielding factor:

<r'3>M = (- RM)<r_3>4f : (11)

In the experiments reported on here, the quantity (r_3>M is

determined from a measurement of the internal field and a calculation
of {(J 7, using Equations (3) and (10).
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III, CALCULATION OF THE INTERNAL FIELDS IN TmES

The ethylsulphate Tm(C 2H5SO 4)3 . 9H20) was selected for
these experiments because it is the only thulium salt with a simple
electronic structure which has been thoroughly studied by optical
spectroscopy. Accordingly, the effect of a magnetic field can be
calculated with confidence.

The magnetic field at a particular atom is given by the vector
sum of the niagnetic field applied externally and the magnetic field
due to the induced dipole moments of the surrounding atoms. In our
case, the crystal is in the form of a thin plate with the external field
lying in the plane of the plate, so that the correction for depolarizing
fields is negligible. An explicit calculation(4) has shown that the

field at a particular atomic site due to the surrounding dipoles is

small. Accordingly, we write the field at a particular ion Hloc as:
41
Hoe = I_Iapplieol(1 N X) (12)

where ¥ is the susceptibility. The experimentally determined
susceptibility(5) at 0 °K is about 2 x 10'3, so the field at the Tm
atom is only a per cent larger than the applied field. We now
investigate the effects of the field,

The qualitative features of the paramagnetic behavior are
best illustrated with the aid of the CEF level diagram (Table I),
When the field is parallel to the symmetry axis of the crystal,
admixtures to the lowest state can only be produced by matrix
elements of J - States which can be so admixed lie at fairly high
energy, so that the admixture is small., We accordingly expect
the effect of an external field to be relatively small. On the other
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TABLE 1

Energies, wave functions and electric field gradients of the
CEF levels of the 3H6 term of the ground multiplet of thulium
ethyl sulphate (C sh symmetry), using the CEF parameters and
the reduced matrix elements given in reference (1). (Energies

. -1
are in cm .)

Energy Degeneracy Wave Function®
300. 1 1 -0.707|-3) + 0.707|+3)
273.6 2 -0.446|-2) + 0,895(+4)
0.895|-4) - 0.446 |+2)
221, 0 1 0.697[-6) - 0.168[0) + 0.697[+6)
214.8 1 -0.707|-6> + 0,707|+6?
148.1 2 -0.305}|-1) + 0.953}+5>

-0.953]-5) + 0.305]+1)
157.1 1 0.707|-3) + 0,707]+3)
110 2 0.895[-2) + 0,446 [+4)
0.446|-4) + 0.895+2)
31.3 2 0.305}-5) + 0.953 }+1)
0.953|-1> + 0,305|+5>

0 1 0.119]-6> + 0.986|0) + 0.119/+6)

a The general form of the wave function is as defined in
Equations (8) and (7).
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hand, the application of a magnetic field perpendicular to the
symmetry axis involves matrix elements of J+ and J . These
operators can admix the first excited level (which happens by
accident to be doubly degenerate) into the ground state. We
accordingly expect the magnetic effects to be relatively large.
This is indeed found to be the case. Ilustration 1 shows three
spectra, taken at 6.5 °K with no field, field parallel to the c-axis,
and field perpendicular to the c-axis. A comparison of the spectra
demonstrates the anisotropy of the magnetic effect. The anisotropy
is discussed in greater detail in Chapter VL

We now describe the method for explicit calculation of the
magnetic effect: the matrix elements for the 4-f electrons in (J, m J)

representations are given by

H , = (H ) ’
my, my CEFm.,,m

g Mgy lmy |3 - Himyp (13)

where HC gy 1S given by Equation (4). The symmetry of the CEF
determines the number of independent parameters which can be
used to characterize the CEF Hamiltonian. In the case of the TmES,
where the point symmetry for the Tm ions is C3h’ there are four
such parameters if appropriate co-ordinate axes are chosen. The
coordinate system has a simple relation to the external symmetry
of the crystal, which is hexagonal., The Z-axis lies along the hex-
agonal axis, the X-axis passes nearly through an edge of the hex-
agonal prism, and the Y-axis is nearly perpendicular to a face,
For problems such as ours, in which the sign of the magnetic
field does not matter, there are six equivalent directions in which

the X- and Y-axes may be put. If we choose one of these for our
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ILLUSTRATION 1

Mbssbauer spectra taken with no external magnetic field,
a field of 200_0 gauss parallel to the hexagonal axis of the crystal,
and a field of 2000 gauss perpendicular to the hexagonal axis.
All three spectra were taken at the same temperature.
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co-ordinate system, we may write the magnetic part of Equation (13)

in the form

, = gJU»BH(mJ\;}:- gH\m:],> , (14)

(H
mag)mJ, m)

where H is a unit vector in the direction of the external magnetic
field. It is useful to examine the magnitude of certain quantities in
order to estimate the overall effect of the magnetic field on the CEF
levels. Taking a typical magnetic field matrix element to have
numerical value 6, and a magnetic field strength of 104 gauss we
obtain

'y -1
gJuBH(mJIJtyp]mJ) ~3.3cm . (15)

This quantity must be compared with the overall CEF splitting of
300 cm_l, and a typical energy denominator (in a perturbation

lio50em™ L. we may expect

theoretic calculation) of 30 cm
typical amplitude admixtures to be of the order of a few per cent,
and it seems clear that any magnetic effect may be treated as a
perturbation on the CEF levels as long as the field is smaller than,
or comparable to, 10 kilogauss. The magnetic moment per atom
per unit field strength has been calculated by treating the magnetic
field as a perturbation on the CEF levels shown in Table 1. The
calculated variation of the moment with temperature is in substantial
agreement with the experimental results of Gerstein et al. (10), when
the field is in the x-direction, although for the z-axis case, we
calculate a somewhat smaller moment than is measured. The latter
disagreement is probably due to experimental difficulty in measuring

the small z-axis susceptibility. The explicit form of the lowest
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CEF level, (from which {J > may be calculated) when the field is in
the x-direction, is

8> = 0.12]-6) + 5.5 x 107%H[-5) + 5.1 x 10"%H|-1) + 0. 99]0)

(16)
+5.1x 107 H|1) + 1.6 x 10" TH|[5) + 0. 12]6)

where H is the applied field in Oersteds. It can be seen that a
field of a few kOer gives an amplitude admixture of a few per cent,

so that the use of perturbation theory is certainly justified.
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IV. THE NUCLEAR ENERGIES AND TRANSITIONS INTENSITIES

When the ethylsulphate is put in a magnetic field, the nucleus
is subject to the combined effect of the electric field gradient and the
ihte_rnal magnetic field. The ground state of Tm, with I= 1/ 2, is
split by the magnetic field into two states, whose separation is

AEg = zgguNHint . (17)

However, the excited state is split into four levels, which are equally
spaced only in the limit of zero quadrupole interaction. The splittings,
which result from an axially symmetric field gradient combined with

a magnetic field, are dependent on both the strength of the magnetic
field and on the direction in which the field is applied. The complete
expression for the nuclear interaction in the excited state is given by

the matrix elements of the hamiltonian

2
Hoo-oom a2 o, 8Ny
nuc ~ 4I(21-1) ‘=z "~ I  ~int

’ ,]; ’ (18)

where the vector I is the nuclear spin operator, and the terms VZZ
and Hint are defined in Equations (4) and (10).

When the field is in the z-direction the splitting is simple.
As the magnetic field increases, the states separate in a linear
fashion into 4 levels characterized by the eigenvalues of Iz. This
behavior is shown in Ilustration 2a. When the field is in the x-
direction, the result is more complicated, and numerical computation
is necessary. Ilustration 2b shows the results of such a computation

when the ratio of magnetic energy to electric quadrupole energy,
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ILLUSTRATION 2

The energy of the first excited state of Tm169 resulting

from an electric field gradient and a magnetic field in the
direction indicated. The Field Strength Ratio, defined in
Chapter 5, measures the strength of the magnetic interaction
energy with respect to the quadrupole interaction energy. The
energy scale is the same for both sets of curves, but otherwise
is arbitrary. The curves in the lower half of the illustration
have labels to specify the individual hyperfine levels.
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(the 'field strength ratio") is < 2. In either case, the positions of
the observed M8ssbauer absorption peaks are determined by the
splittings of fhe ground and excited levels. The analysis of an
observed spectrum requires a knowledge of the intensities, as well
as the energies, of the transitions. The intensities are not the same
as those which are found with polycrystalline absorber and they vary
with field strength, so a separate calculation is necessary. As an
additional complication the nuclear hyperfine levels are not, in
general, eigenfunctions of Iz,the z component of the nuclear spin
operator. We must, accordingly, represent a typical hyperfine

state in the form (m = eigenvalue of IZ):

job = ) 2 Im) . (19)
m

Assuming that the radiation is of magnetic dipole character, we have
the following expression for the intensity of radiation in a direction
given by spherical angles (6, ¥), and with linear polarization at
angle ¥ 5

52 _ :
2 — ; ] _IP‘IJ
I(e ®, ¥) = I(excHMlllgndH 1215 l\% 2;&1 g €

(20)
2
Dyp(8:®,0) C(3/2, 1, 1/2; m', M, m)|

where {exc|/M1|gnd) is a reduced matrix element giving the transition
rate from the excited state to the ground state, a, , and ag., are
amplitudes for the prOJectlon of I in the excited state and ground
state, respectively, MP(e @, 0) is the rotation operator of order 1,
and C(3/2, 1, 1/2; m', M, m) is a Clebsch-Gordan coefficient, with
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M representing the Am change in the transition. Since the polari-
zation is not measured in the experiment, it is necessary to average
over pbla.rizaﬁon angles tb obtain the final intensity. Note especially
| that the polarization index ""P'" appears in the rotation operator, so
that interference between circular polarizations can occur. This has
the practical effeét that the explicit form of the sum appearing above
is exceedingly complicated, and very little can be said in detail about
the expressions whiéh result. We particularize to the case of
interest here, namely observation in the negative y-direction when
the field is applied in the x-direction, using the co-ordinate system
of Chapter III. I is found that in the limiting cases when either the
quadrupole interaction or the magnetic hyperfine interaction vanishes
that two of the trahsition intensities go to zero. This result can be
easily understood by a co-ordinate transformation into either the
principal axes of the EFG, or along the direction of the magnetic
field with a new projection axis z'. If this is done, IZ is again a good
quantum number, and the selection rules forbid transitions between
the states m' = + 3/2 ~m =+ 1/2, However, when the EFG and the
magnetic field both contribute appreciably, then all possible tran-
sitions are allowed. The relative intensities vary in a fairly compli-
cated way, IHlustration 3 shoWs this variation for the range of the
field strength ratio going between 0 and 2, which is the region of
interest in the present investigations. The computer program which
calculates the energies and the intensities is given in the appendix.

It is unfortunate that the eight peaks that are predicted cannot
be observed experimentally. The reason for this is that the line
widths and interaction energies which occur are of such sizes that
the region of magnetic field strengths in which all eight intensities
differ appreciably from zero is also the region in which all the peaks
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ILLUSTRATION 3

The relative transition intensities from the four hyperfine

levels of the excited nuclear state to the two hyperfine levels

of the ground state: the wave functions shown, which specify
the ground state levels are written in the representation for
which the magnetic field is along the x-axis. The labels on
each of the curves indicate the excited state level involved in
the transition, and are the same as the labels used in
Illustration 2. Note that the physical system has azimuthal

symmetry, so that the choice of the x-axis is arbitrary.
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.are separated by an amount smaller than, or comparable to, the
line width., For field strengths which are large enough to lead to a
well-resolved pattern of Iines, two of the intensities vanish,
producing a six-peak pattern.

The data are taken with the apparatus described in the next
chapter. The ﬁéld strength effects were determined by a least-
squares fit, with the aid of the digital computer. The positions of
the peaks are deterinined by rewriting the hamiltonian for the nuclear
excited state (Equation 18) in the form (with field in the x-direction)

H = Q/60310°%- I+ 1)+ WL]. (21)
With this form the energies of the excited state become
E; = @6)5W) , (22)

so that, for W = 0, Q measures the gquadrupole splitting directly,
in units of cm/sec. A comparison with Equation (18) shows that

g M
aw/e = SN H | (23)

in units of cm/sec. From Ecquations (23) and (10), we obtain

-3
Hint and {r >M'
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V. EXPERIMENTAL APPARATUS

The experiments reported on here were performed with the
absorber at temperatures ranging from 3 ox up to 77 °K. The
source was anhydrous ErF3 heated in a holder of special design
to a temperature of 275 0C; the holder was attached to a transducer
drive so that the relative velocity of source and absorber could be
varied. The details of the preparation of the sources and of the
construction of the holder have been reported elsewhere(l).

The absorbers were mounted in a cryostat of special design,
the essential features of which are shown in Hlustration 4. The
cryostat was mounted so that the absorber was located between the
poles of an electromagnet.

Radiation passes into the absorber holder through a beryllium
window mounted on the outside of the outer vacuum enclosure. I
then passes through another beryllium window soldered into a copper
box which is in good thermal contact (via a copper pipe) with the
liquid nitrogen shield. Thus, thermal radiation is effectively blocked
from the absorber holder area, while the gamma radiation passes in
easily. _

The absorber is mounted between beryllium discs in a copper
block which is held in good thermal contact with the variable tempera-
ture tail, which acts as a connection of widely varying thermal
conductance between the helium reservoir and the absorber holder.
Heat transfer is controlled by gas pressure in the tail (this gas is
called "exchange gas''; it is also helium, but comes from an
independent supply). The highest temperature is, of course, obtained
when the exchange gas is entirely removed; and it varies downward

in a smooth way as the pressure is raised. Provisions were made for
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ILLUSTRATION 4

A cross-section view of the cryostat used in the experi-
ments. The pole of the electromagnet is centered over the

center of the absorber space.
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supplementary electrical heating of the absorber holder, for more
precise control of the temperature. However, it has never been
found necessary to use any heating, since the pressure regulation
alone sufficed for sufficiently accurate and stable control. Pressure
is controlled by a system of valves, of which a schematic diagram
appears in Hlustration 5.

Temperature is measured with carbon resistors and with a
copper-constantan thermocouple. The thermocouple is used only
for relativély high temperatures, (40 ok and higher), since the
thermoelectric power becomes inconveniently small as the junction
becomes colder. The carbon resistors, on the other hand, become
increasingly sensitive as the temperature is lowered, and are quite
satisfactory at temperatures of 40 %K and lower. The overlap of
useful ranges of temperature measurement makes it possible to
compare the sensing devices with each other.

The carbon resistors were calibrated by immersion in cryogenic
liquid (helium, hydrogen, and nitrogen) while the resistance was
measured, The known temperatures and resistances were then used
to determine the constants in a semi-empirical formula(G), which
has been found to fit the behavior of the resistors quite well. The use
of this formula:

A _B
IOgR+m~T+C, (24)

where R is resistance, T is absolute temperature, and A, B and C
are constants, permits one to avoid the formidable experimental
problem of determining the value of resistance at enough tempera-
tures to make an accurate freehand graph (or numerical table) of
the variation.
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ILLUSTRATION 5

The exchange gas pressure regulator, Valve no, 1 is
a micrometer screw controlled needle valve (Whitey type
number 22RVS4). The remaining valves are all conical seat
globe valves of relatively high conductance (Whitey type
number LVS4).
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The stability of the resistors with respect to both thermal
cycling and magnetic fields has proved excellent. No significant
change in resistance has been observed when the resistors were
~ recalibrated. It should be pointed out however, that the resistors
have been used in relatively "mild"" conditions. The temperature
was varied slowly, and the resistors have always been used while
in the insulating vacuum of the cryostat.

The drive system is illustrated in the semi-schematic diagram
shown in Ilustration 6, The multichannel analyzer operates in
"multiscaler' mode: i. e., counts from the detector are stored in a
particular channel of the analyzer for a preset period of time
(either 200 or 400 microseconds for these experiments). The
analyzer is then turned off, the channel number is changed to the
next higher one, and the next channel is then opened to accept counts
for the same preset time. This process of advancing channel number
and gating the analyzer on and off is controlled by an external pulse
generator, operating at fixed frequency. The velocity generating
system is synchronized with the channel number by means of a
bistable circuit which supplies a positive output voltage whenever the
analyzer is operating in (say) channels No, 0 to 199, and negative
output voltage whenever the analyzer is operating in (say) channels
No. 200 to 399. This alternating voltage is made into an accurate
square wave, integrated one or two times, and used as a velocity
reference signal, A feedback control system causes the drive to have
a velocity which varies in the same way with time as the reference
voltage.

It is clear that in this system, a particular velocity of the drive
corresponds exactly in time to a particular channel setting. Pro-

gressive variations in phase cannot occur, since exact synchronism
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ILLUSTRATION 6

A semi-schematic diagram of the drive system used.
All amplifier symbols except for the one in the line feeding
the drive coil refer to low power level, high gain, operational
amplifiers. The amplifier symbol preceding the drive coil
actually represents a combination of an operational amplifier

with the low gain, high power, amplifier shown in Dlustration 7.
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is restored twice in each cycle., One can also use any velocity
variation with time that one wishes, provided that sufficiently
complicated electronic networks are used to generate the appropriate
waveforms from the input rectangular wave.

The electromechanical drive system consists of drive and
pickup coils moving in separate ring-gap permanent magnets. Both
coils are rigidly attached to a central shaft; the heated source holder
is attached to the end of the shaft, and the whole assembly is mounted
on cantilever springs. This constituted a mechanical resonant
system, whose fundamental frequency has been adjusted to approxi-
mately 12 Hz‘ For further details of the design of the drive and
electronics, see references 7 and 8.

For the experiments reported on here, velocities with either
a triangular or parabolic variation with time (obtained by integrating
the reference square wave once or twice) were used. The triangular
velocity variation has the advantage that the observed spectra are
easy to interpret; velocity is a linear function of channel number,
However, the feedback control system does not accurately reproduce
triangular variations of large amplitude, The high frequency cutoff
is necessarily limited in order to prevent spontaneous oscillations,
and the voltage gain must be kept low enough that the feedback
amplifiers will not saturate. Accordingly, it is desirable that the
harmonic content of the velocity reference signal be small, and that
the reference signal be relatively smooth so that "spikes' of large
amplitude are not generated in the feedback network, These
considerations are particularly important at high velocity; accordingly,
a parabolic variation of velocity was used when maximum velocities

were greater than approximately 6 cm/sec. The "error signal"
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(deviation of the pickup signal from the reference signal) was
typically a factor of 5 smaller for the parabolic variation at the
higher velocities.

In order to operate at the highest velocities, the feedback
system must deliver considerable power to the drive coil,
Commercial power amplifiers do not have adequate low frequency
characteristics, so an audio amplifier shown in Hlustration 7 was
designed and built. This amplifier is DC coupled, has a voltage
gain of about 8, a high frequency cutoff of about 10 kHz, and
delivers an ampere into a 50 ohm load. Since there are no networks
to stabilize the amplifier against DC drift, it is necessary to balance
the output voltage level occasionally. The long-term drift has not
been found to exceed about five volts per month, so the drift is not
a serious problem. In order to prevent burning out the drive coil
in case of sudden failure of one of the transistors, the output may
be fused.
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ILLUSTRATION 7

A schematic diagram of the power amplifier used, All
resistors are 1 W, 5% unless otherwise specified. The
""balance' switches are used to short-circuit the inputs to each
state while the output voltage is adjusted to zero.
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VI. RESULTS AND CONCLUSIONS

Several single crystals of thulium ethylsulphate were obtained.
They varied in volume from approximately 1/2 cm3 upto 3 or 4 cm3.
One of these, in the form of a hexagonal prism with dimensions
approximately 2 mm x 4 mm x 25 mm was examined by x-ray
techniques. The Laué transmission pattern confirmed the assignment
of the symmetry classification (class CGh)’ and showed that the
hexagonal axis was parallel to the long axis of the crystal used. The
crystal was then sawed by a string saw lengthwise into three slabs,
each of approximate width 0. 6 mm, and these slabs were then glued
to a 2. 54 cm diameter beryllium disc. The resulting mounted array
was then ground on dry sandpaper followed by wiping with a damp
towel until the final thickness was approximately 0. 1 mm.

The absorber was placed in the cryostat discussed in the
previous section. Since the rare earth ethylsulphates are quite

(9)

prone to lose water of hydration in vacuum at room temperature’ /,

great care was taken to be sure that the absorber was quite cold
(close to liquid nitrogen temperature) before the cryostat was pumped
out, The absorber temperature was never allowed to rise above
liquid nitrogen temperature during the experiments, and precautions
were always taken to be sure that some liquid nitrogen remained in
the cryostat when it was vented to atmospheric pressure., The
absorber was in good condition after the experiments. It retained
the clear pale green appearance characteristic of the single crystal
TmES, indicating that chemical decomposition did not occur.
Spectra were taken for a variety of field strengths parallel and
perpendicular to the hexagonal axis. The results illustrated in

Tlustration 8 indicate the anisotropy of the internal field, which was
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JLLUSTRATION 8

Spectra taken with 1500 gauss perpendicular to the
hexagonal axis, and 13, 000 gauss parallel to the hexagonal

axis, For a zero field spectrum, see Hlustration 1,
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also mentioned in Chapter I, in a striking way. A parallel field
of 13 kilogauss does not give any magnetic field effect that we

can see. If we assume the magnetic field effects to be about 10%
of the line width, which is about the smallest effect that can be
readily seen, we compute an upper limit of about 25 kilogauss for
the internal field, which is a field strength about twice as large as
that which is applied externally. A spectrum taken with a perpen-
dicular field of 1.5 kilogauss (which is the smallest field that can
be produced with the magnet used) is included to illustrate that a
magnetic field effect is readily discernable with even a relatively
small field in the perpendicular direction.

We obtained our quantitative results with a larger perpendicular
field of 5850 gauss, at a temperature of 6.5 °K. The data were fit
to eight Lorentz peaks whose relative amplitudes and positions were
determined by the methods described in Chapter IV. The widths of
the individual peaks were taken to be the same, and the magnitude of
the width was left as a parameter. The width, along with the quad-
rupole splitting and the field intensity ratio, were varied to obtain a
least-squares fit to the data. For smaller external fields, the line
width correlated so strongly with the field intensity ratio that the fit
was very poor, and tended to produce unreasonably small line widths
in the final result. The results of the fit for the case of 5850 gauss
are shown in Table 2; the errors are statistical only.

The fitted function is shown in illustration 9, superimposed on
the experimental data points; a parallel field fit (in which the inter-

nal field was found to be zero) is shown for comparison.
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ILLUSTRATION 9

Spectra taken with about 5000 gauss parallel to the
hexagonal axis, and 5850 gauss perpendicular to the hexa-
gonal axis. The solid curve is the calculated curve obtained

from the parameters in Table 2, p. 43.
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TABLE 2

Fitted to run with 5850 gauss at 6. 5 °k

Parameter Value
Line Width 1.31 + 0.25 cm/sec

Q 7.871 + 0. 20 cm/sec
Field Ratio =W 1. 23 + 0,07 dimensionless

A separate fit was made with the line width constrained to be 2. 0.
The results for Q and W remained within the error limits, From
these data we obtain an internal field of (4.31 + 0.5) x 105 gauss
(taking the g-factor of the excited state of thulium to be 0. 50 + 0.02
nm)(ll). This can be compared with the external field of

5.85 x 103 gauss, which implies an enhancement of the external
field by a factor of 73 + 7. We may now compare this enhancement
factor with our upper limit of 2 for the parallel case. The ratio of
enhancement factors, the internal field anisotropy A, is then seen
to be A 3 35, which is in reasonable agreement with the value of

A = 30 derived from susceptibility measurements(lo)

, and is
consistent with the theoretically calculated value of 50.

From the value of the internal field calculated above, we can
now calculate (r~° )y The theoretical value of (JX> , at zero
temperature, with the external field used is 0.4. The value obtained
from the susceptibility measurements of Gerstein et al. is 0.39 at
6.5 °K. Using the theoretical value of (JX> , we obtain

(r—3> = 11,1 + 1, 0 atomic units.
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This value may be compared with other theoretical and experi-
mental determinations. Various calculations of the electronic
wave functions for the rare earths have led to estimates of (r-3>M
which are in disagreement with each other by as much as 30%.
However, Bleaney(lz) has found that the ratio of (r_3 >M for the
neutral rare earth atom to (r'3>M for the tripositive ion is in good
agreement with the theoretical calculations of Judd and Lindgren(13)
for all the cases in which reliable measurements are possible,
Since (r~° 2y for neutral thulium has been determined with con-

- siderable precision by atomic beam techniques(M)

, it is possible
to estimate (r-3 >M for the ion with some confidence. In Table 3,

we compare experimental and theoretical values of (r_3>M for

thulium.
TABLE 3
Values of the (r_3>M for Tm™
Source Value Method
(atomic units)
Freeman and Watson(15) 12.9 Hartree-Fock (coulomb value)
Judd and Lindgren 10, 95 Modified hydrogenic
Bleaney 11,172 ratio to TmI exptl. value.
Cohen (11) 12.5 + 0.7 Mbssbauer Effect in Fesz

This work 11,1 + 1.0 Mdssbauer Effect in TmES
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The experimental values quoted here are not precise enough to
clearly distinguish among the various theoretical values. If the
difference between the present result and that of Cohen is considered
to be meaningful, it is then possible to remark that the presence of
polarized conduction electrons tends to enhance the internal field.

It is, however, clearly necessary to perform further experiments
before the matter can be settled unambiguously. The statistical
error in the present measurement is rather large. In order to
obtain a more precise result, an experiment using a superconducting
magnet is planned. With the much larger magnetic field which can
be obtained in this way, it should be possible to determine the internal
field with considerable precision, and to infer with some confidence
the variation, if any, of the value of < 8 >M as the chemical binding
changes from ionic to metallic.

The emphasis in the discussion above has centered in the
measurement of the magnetic hyperfine interaction, However, it
should be pointed out that other quantities of physical interest may
be determined by studies on single crystals. A few of these are
enumerated below:

(1) MbBssbauer experiments with a polycrystalline aggregate
salt can give only the magnitude of the product of the EFG with the
quadrupole moment of the nucleus. The application of a magnetic
field does not materially improve one's knowledge of the situation,
since the observed result is an average over all orientations, which
may be quite difficult to interpret. However, the application of a
magnetic field to a single crystal can give the sign of the product
unambiguously, even when precise details of the atomic electron
structure are not known; it suffices to apply the field in one of the

principal directions of the magnetic susceptibility tensor, so that
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the direction of the internal field with respect to the EFG axes is

known. For example, we find that Q < 0, for the excited state of
169
Tm

collective model.

, which is consistent with theoretical predictions from the

- (2) Measurements such as these are useful as a supplement
to bulk susceptibility measurements, especially when the bulk
measurements are likely to be in error due to small inclusions of
impurities, or when the susceptibility of a particular atomic species
in a mixed material is desired. In contrast to bulk susceptibility
measurements, a fraction of a per cent impurity content does not
seriously interfere with MUssbauer measurements, since the spectra
of such a small fraction of all atoms present would be unobservable in
the background. The present experiments indicate one instance of
this, since the anisotropy observed here is slightly larger than the
anisotropy determined from the susceptibility measurements, which
may, according to Gerstein et 31_.(10), be in error due to missing
water of hydration. :

(3) The internal field is considerably higher than the external
field, by a factor of about 75 in our case. While it is not too
surprising that field should be so large, there seems to be little use
made of this fact in areas of investigation such as nuclear alignment
or nuclear demagnetization, where a large nuclear magnetic inter-
action is desired. The field enhancement factor is large enough in
our case that a quite appreciable difference in nuclear substate
populations could be achieved at temperatures which can be reached
fairly readily. The importance of our results and techniques is first
the realization that such large fields are relatively easy to achieve,
and second that an experimental technique for the measurement of

these fields is available.
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APPENDIX 1

This program calculates the hyperfine energies and transition
intensities to the sublevels of the ground state when a magnetic field
in the x-direction is present. The methods of Chapter IV are used.
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SUBROUTINE INT{W,B1l,B2,EN) :
PROGRAM TO CALCULATE THE ENERGIES AND INTENSITIES OF THE
I = 3/2 STATE WHEN THE MAGNETIC FIELD IS PERPENDICULAR
T0 THE C-AXIS
W = FIELD STRENGTH RATIO. 8ls2 = INTENSITIES FROM A
HYPERFINE STATE TO —-,+ IN THE GROUND STATE
EN = ENERGIES OF THE HYPERFINE STATES
DIMENSION Bl(4),B2{4),EN{4)
REAL INTNS
REAL M, MPRIM
INTEGER DIFF
DIMENSION Al4y,4)y V{4s4), EIGV{4), BLANK(35)
ROOT = 1./5QRT{3.)
DO 10 I = 1.4
DO 10 Jd=1l,4 "
Al{l,J) = 0.0
vil,J}) = 0.0
CONTINUE
DO 11 1
bo 11 J
M = FLOAT{I) — 2.5
MPRIM = FLOAT {(J) - 2.5
DIFF = [ - J
If (DIFF - 0) 31+30,31
A{l4J)= 3.#Me22 ~ 15./4.
GG 70 11
IF (DIFF - 1) 32,33,32
AlI,J) = (SQRT{(1.5 — MPRIMI®(1l.5 + MPRIM + 1.)})*W
GO 10 11
IF (DIFF + 1) 11434,11
AlI,J) = (SQRT({1.5 +MPRIM)*(1.5— MPRIM + Ll.)))*Ww
CONTINUE '

oA

CALL EIGVV{A,V,EIGVs4+BLANK )}

D0 24 1 = 1.4

EN(I} = EIGV(I}

00 12 1 = 1.4

£F = ~1

II = 1

XL = 0.5#(V{4,1I) + RCOT=V{3,1)*F - V{l,1)»F

1 ~ROOT#V(291) ) %n2
X2 = {2./73.)%#{V{3,1) + V{2y1)#F)e=2
INTNS ={X1l + X21}/3.
60 TO (201,202),11
B1{(I) = INTNS
F=1
I1 = 2
GO TO 203
B2(I) = INTNS
CONTINUE
RETURN
“ENRD



