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ABSTRACT 

The creeping motion of a rigid sphere in the presence of a deform.able 

fluid/fluid interface has been considered using theoretical. experimental and 

numerical techniques. Solutions for small perturbations in shape, for an ini

tially fiat interface, are obtained to calculate the additional forces and torques 

on a sphere rotating and translating both normal to and parallel with a slightly 

deformed interface. The interfacial shape as well as the forces and torques are 

calculated as a function of sphere position and interfacial deformation 

parameters: viscosity ratio, capillary number, and ratio of Bond number to 

capillary number. The interface deformation was fou~d to yield no correction to 

the torque or parallel force on the sphere for any combination of sphere 

motion. The interface deformation did yield a force directed way from the inter

face for all sphere motions which generate a deformation for the interface. 

A new direct force measurement experimental apparatus is used to study 

the normal motion of a rigid sphere approaching a deformable interface under 

conditions of constant interfacial deformation parameters. The sphere was 

lowered at a constant velocity and the force on the body was measured as a 

function of the interface shape and values of the deformation parameters. 

Study of the translation of a nonrotating sphere parallel with a ftuid/ftuid 

interface, experiencing finite amplitude deformations, utilizes a numerical collo

cation technique. The forces and torques on the body are calculated as a func

tion of body displacement from the interface and the interface deformation 

parameter (ratio of Bond number to capillary number). The interface shapes 

are determined and the forces and torques on the sphere are calculated. 
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CHAPTER I: 

INTRODUCTION 
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The creeping motion of bubbles, drops and particles through a viscous 

medium near a fluid interface has long been of interest in industrial applica

tions. For example, in metallurgical processes the transfer o~ contaminant 

materials from the molten metal to the molten slag involves the motion of small 

particulates near much larger gas bubbles. In this process the fluid motion and 

interf acial properties can affect the rate of contaminant ·removal and a first 

approximation to the problem is obtained by considering the motion of a parti

cle near an interface which is flat in its undeformed state. Other processes 

which involve coalescence phenomena are concerned with the passage of a body 

across a fluid/fluid interface. In this case we would normally be concerned with 

the relative motion of two drops. However, for the case of one drop much larger 

than the other, the problem can again be treated as the motion of a drop near a 

'flat' fluid/fluid interface. 

These phenomena indicate that the motion of a sphere in the presence of a 

deformable interface is of interest as a model problem. The details of the 

sphere/interface interaction are of primary concern, particularly the mechan

ism of penetration of the interfacial boundary for a particle which moves nor

mal to the undeformed surf ace. Two alternative mechanisms of penetration 

exist, depending upon whether the interface breaks at the leading surface of the 

body or breaks behind the body. The first case corresponds to the well-known 

film drainage configuration, in which a thin film is formed along the leading sur

face and rupture occurs somewhere in this film. The second mechanism is asso

ciated with the formation of a tail of fluid following the sphere for the case of 

large deformations. The penetration process is completed in this case when this 

tail breaks. The motion of the sphere can be studied in either of two modes, 

fixed velocity or moving freely under the action of external forces. It is expected 

that the "free" motion of the body is more realistic for practical applications, 

however, the fixed velocity problem provides a more convenient vehicle for study 
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over a wide range of values of the dimensionless groups since these are easily 

adjustable by simply changing the velocity of the particle. 

There has been a considerable amount of theoretical and experimental 

work related to the general problem of particle motion near an interface. 

Brenner ( 1961) solved the creeping flow problem of both translation and rota

tion of a rigid sphere near a nondeformable flat interface where the second fluid 

is either rigid or inviscid. This work was extended to arbitrary viscosity for the 

second fluid in the work by Lee, Chadwick, and Leal ( 1979). Their solution 

involved a series representation for the velocity field for large values of the 

dimensionless distance to the interface. An exact solution in terms of bipolar 

coordinates for this same problem was presented by Lee and Leal (1980). These 

solutions for motion near a flat interface are relevant only in limiting cir

cumstances when the interface remains approximately flat. In the general case 

of a fluid/fluid interface it is necessary to take into account any interfacial 

deformation which is present. Some aspects of this more general problem 

involving the deformation of the interface have been studied experimentally by 

Princen ( 1963) and Hartland ( 1969). In both of these investigations, the pri

mary focus was in the dynamics of film drainage in circumstances when the 

sphere is very near the interface. In order to carry out these studies, the sphere 

was placed initially very near the interface and the gap between the sphere and 

the interface was measured as the sphere moved closer to the interface under 

the action of gravity. Bart ( 1968) studied the ''free fall" of a sphere toward a 

deformable interface starting from large distances and continuing up to a dis

tance of two body lengths from the undeformed interface. Shah, Wasan, and 

Kintner ( 1972) later studied the mechanism of interface penetration, but only 

for a relatively limited number of cases. Finally, Lee and Leal ( 1981) calculated 

interface shapes and forces on a sphere for the normal approach to a deform

able interface in the creeping fl.ow limit using a numerical solution scheme. 
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Their work provides the first study for which the entire normal approach of a 

sphere to the interface has been investigated (albeit, numerically). 

To this point, there have been no complete analytic solutions for motion of 

a sphere near a deformable interface. The primary difficulty is that the inter-

face shape is unknown. However, such an analytic solution would provide valu-

able insight into the dependence of the motion of the sphere on interfacial pro-

perties. The most obvious candidate for analytic solution is the limiting case of 

small but nonzero deformations. The obvious limitations of considering only a 

small deformations are offset, for the most part, by this potential application of 

the solution to arbitrary particle motion. In particular, in the limit of a nearly 

fiat interface, solutions for translation normal and parallel to the interface can 

be superposed, together with solutions for rotation normal and parallel to the 

interface, to obtain results for an arbitrary particle motion. 

In this investigation we study the general problem of the creeping motion of 

a sphere in the presence of a deformable interface, both theoretically and 

experimentally. From the governing equations and boundary conditions we can 

identify the dimensionless groups that are important for the general problem. 

In the creeping motion limit, the equations of motion for steady Stokes' flow in 

the two fluids on either side of the interface are 

0 = -V P1 + µ,1 'V 2
U1 

( 1) O = 'V ·u1 
for Fluid 1 

and 

0 = -'V P2 + µ,z'V 2
u2 

(2) 0 = 'V ·u2 
for Fluid 2 

where µ, is the viscosity, u is the velocity and Pi= p -pigz, i= 1,2, where p is the 

thermodynamic pressure and we have removed the hydrostatic head as 
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measured from the undeformed interface. The two fluids are designated by sub-

scripts 1 and 2. The sphere has radius a and velocity U (or n for rotation, with 

resulting characteristic velocity n a), and is located initially in fluid 2. It is 

assumed in the present work that it remains wholly in that fluid. The boundary 

conditions are, 

as !xi ~ oo, (3) 

il2 specified on the sphere surface, (4) 

and on the interface, 

(5) 

(6) 

(7) 

where the interface position is given by the scalar function 

F = z - f (p I So I t) = 0 (8) 

for the cylindrical coordinate system (p, So, z). The densities are represented as 

p 1 and p 2 , while the interfacial tension is 7, and g is the acceleration due to grav-

ity. We also have Ti= -Pil +Ti, where Ti is the stress tensor in fluid i, Ti is the 

viscous stress tensor and i= 1,2. It can be seen in equation (7) that the change 

in pressure at the interface associated with the hydrostatic head in the pres-

ence of deformation has been separated from the left hand side. This points out 

the role of the density difference across the interface as it relates to the stress 

jump. Finally, R1 and R2 are the principal radii of curvature at the interface. 

We take the particle radius, a, and velocity, U, as the characteristic length 

and velocity respectively. While the characteristic stress is given as, µ 2U. This 
a 

yields the dimensionless equations of motion, 
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0 = -V Pt + µi V 2u1 
0 = V ·U1 

0 = -V P2 + µ.z\J 2u2 

0 = V ·u2 
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v -~ = 0, 

for Fluid 1 

for Fluid 2 

with boundary conditions, 

and on the interface, 

as Ix! -. 00 , 

u 2 specified on the sphere surf ace, 

1 Of 
n·u1 = n·ll2 = IV Fl at, 

The dimensionless groups which appear in equations (9)--(15) are, 

and 

A.= µ 1 Viscosity Ratio, 
µ2 

~u 
Ca= -- Capillary Number, 

I 

Capillary Number 
Bond Number 

(9) 

(10) 

( 11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(1 7) 

(18) 

along with, l, the dimensionless distance of the sphere from the position of the 
a 
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undeformed interface. It is obvious that surface tension and/or the density 

differences in the two fluids will be most effective at retaining a flat interface 

when the dimensionless parameters, Ca and Cg, are small. Specifically, for small 

Ca, forces associated with the interfacial tension are large relative to the viscous 

forces and for small Cg, the forces associated with the density difference across 

the interface are large relative to the viscous forces. It should be noted that 

ex.= cg-1 and (3 = Ca - 1 in Chapter II. 

This general problem of motion of a sphere near a deformable interface is 

studied in this thesis using three different methods. In Chapter II we study the 

deformation of the interface under conditions of small Ca or small Cg which 

results in a small perturbation of the interface from flat. The solution is based 

on the velocity fields calculated for motion near a flat interface by Lee, 

Chadwick and Leal ( 1979), which consist of the leading two terms in a series 

solution with respect to 1-1. It may be noted that ~~ is taken as zero in equa

tion ( 14) corresponding to the assumption of a flat interface in the solution of 

Lee et al. (1979). Also, the normal component of equation (15) was not used 

because of the restriction that the interface remain flat. Our goal in Chapter II 

is thus to provide analytic results for arbitrary motion of a sphere near a 

slightly deformed interface. The solutions are obtained using the so-called 

"domain perturbation" technique in which the exact boundary conditions at the 

deformed interface are replaced by asymptotically equivalent conditions applied 

at the undeformed interface position. Thus, results for arbitrary motion of the 

sphere can be constructed from the solutions for rotation and translation 

parallel and normal to the interface by simple superposition as was noted ear

lier. The calculation reported here proceeds from the results of Lee, Chadwick, 

and Leal ( 1979) to calculation of the interface shape at first order using equa

tion ( 15) and from this, to a determination of the corresponding corrections to 
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the forces and torques on the sphere associated with this deformation. 

Chapter III reports on a new experimental apparatus designed to measure 

the force on a sphere as it moves normal to the interface for large interfacial 

deformation. In the results from this study, the distance from sphere center to 

the initial undisturbed interface position is given as l, with positive values of l 

meaning that the center of the sphere has not penetrated the plane of the 

undesturbed interface, whereas negative values for l indicate the sphere center 

has actually passed beyond this plane. The experimental work provides a study 

of the effects of Cg, A.i and l on the force on the body as well as the interface 

shape. The results for this experimental method indicate promise for future 

studies of inertial and non-Newtonian effects, again for motion near a deform

able interface, and point to the potential importance of the inhibition of inter

face motion due to surface tension gradients in some cases. 

Finally in Chapter N, numerical solutions are obtained for the creeping 

motion problem of the translation of a non-rotating sphere parallel to a deform

able interface, but with no restriction on the allowable magnitude of deforma

tion. The interface shape .. as w·ell as the forces and torques on the sphere, are 

determined as a function of land Cg for Ca-. oo by satisfying equations (9)--(15) 

at discrete points on all surfaces. This investigation provides a further study of 

certain features of the small deformation results of Chapter II for the same 

problem. 
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Abstract 

We investigate the effect of small deformations of an initially fiat :fluid 

interface on the force and torque experienced by a nearby translating and 

rotating solid sphere. The small deformation problem is reformulated in terms 

of equivalent boundary conditions on a flat interface; this allows a separation of 

the rotation and translation problems, along with their respective components 

parallel and normal to the undeformed interface. Results for the force and 

torque corrections due to interface deformation are thus calculated for the four 

fundamental cases of translation normal and parallel to the undeformed 

interface, and rotation with the axis of rotation normal and parallel to the 

undeformed interface. These results can be superposed to obtain the force and 

torque on a sphere which is undergoing an arbitrary translational and/ or 

rotational motion near the interface. 
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I. Introduction 

When a small spherical particle translates at very low Reynolds number 

through an unbounded viscous fluid, it is subjected to a force 

E = 6rrµa-g ( 1) 

as calculated over 100 years ago by Stokes. When the same particle rotates 

under similar circumstances it experiences a torque 

'.!' = 8rrµa3Q. (2) 

Here we have denoted the velocity of the sphere relative to that of the 

suspending fluid at large distances from the sphere as -g and the relative 

angular velocity as Q. The sphere radius is represented by a, and the viscosity 

of the fluid by µ. 

Recently, Lee, Chadwick, and Leal ( 1979) have considered the translation 

and rotation of a rigid sphere in the vicinity of a flat fluid interface between two 

immiscible Newtonian fluids with a viscosity ratio, A.. In this case, both the 

creeping flow equations and boundary conditions are linear, and the force and 

torque can be expressed ill' a dimensionless relationship of the form 

.... .... aO 
F/µaU = KT'U+ Ict·O -- - - u 

... u .... 
T/µa 30 = Kc·U - + ~·O - - aO -

(3) 

(4) 

where ~and 0_ are the translational and angular velocities of the particle, scaled 

with respect to the speeds U and 0 , respectively. The coefficients Kr. Kc and Kn 

are second-rank tensors, known as 'resistance' tensors, where Kt is the 

transpose of Kc. When expressed in terms of Cartesian axes that lie normal 

and parallel to the interface, these take the relatively simple forms 
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K1r 0 0 

KT = 6rr 0 K1f 0 

0 0 K[ 

0 Kc 0 

Kc = 6rr -Kc 0 0 

0 0 0 

K~ 0 0 

KR= Brr 0 K~ 0 

0 

(5) 

(6) 

(7) 

The components of these resistance matrices were shown by Lee, Chadwick, 

and Leal ( 1979) to be a function of A., and of the distance between the sphere 

center and the interface relative to the particle radius, l/a. In the limit, l/a 

~ 00 , Kc~ 0, while KT and KR both approach the unit matrix, I. Approximate 

results for the coefficients of these matrices were determined by Lee, Chadwick, 

and Leal ( 1979) for large but finite ll a, while exact but more cumbersome 

results were obtained by Lee and Leal (1980) for arbitrary Lia> 1. Not only 

does the presence of the· interface modify the force and torque for simple 

translation and rotation, but in general, there is a coupling between 

translational and rotat~onal motions of the sphere. Thus, for example, a 

particle which is acted upon by a torque will both rotate and translate, while 

the effect of an external force is likewise to produce both translation and 

rotation. It may be noted, however, that the basic linearity and symmetry of 

the Stokes' flow problem for a sphere near a plane interface insures that the 

translational motion produced by an applied force can only be co-linear with the 

force, and similarly, the rotation due to a torque can only be co-linear with the 

torque. 



- 15 -

All of the results of the preceding paragraph pertain to the case in which 

the interface remains precisely flat, in spite of the motions induced in the two 

fluids by the motion of the sphere. Of course, a real interface cannot remain 

precisely flat since the motions induced in the two fluids by the motion of the 

sphere yield a normal stress difference across the interface. The results of Lee, 

Chadwick, and Leal ( 1979) and Lee and Leal (1980) must, therefore, be 

recognized as applying only asymptotically in the limit of arbitrarily small 

interface deformations. Indeed, Lee, Chadwick, and Leal (1979), have stated 

conditions for this limit to apply, namely 

( 
"V ) -1 r p(2)ga2 ( - /)(1) ) i-l 

13-1 = µ&)u << 1 or £C1 = l -µOifu 1 ~ << 1 (8) 

for arbitrary l/a ~ 0(1). Here, 7 and p represent the interfacial tension and 

fluid density, respectively, while· g is the acceleration due to gravity. The two 

fluids are designated by the superscripts (1) and (2), with fluid (1) lying above 

fluid (2). Lee, Chadwick and Leal's ( 1979) analysis applies to the case in which 

the sphere is assumed to be located in fluid (2). 

In the present paper, we consider the consequences of small but finite 

values of a.-1 or 13-1
, so that the first effects of interface deformation need be 

taken into account. Defining a composite small parameter, t, as. 

e= 
a + (3 

1 (9) 

we can deal in a simple way with systems where either, or both surface tension 

and the density difference are significant. The solutions of Lee, Chadwick, and 

Leal (1979) and Lee and Leal (1980) correspond, then, to the first, 0(1), 

term in an asymptotic expansion for small e and satisfy the conditions of 

continuity of the tangential velocity and stress fields at the undeformed 

interface, as well as zero normal velocity. However, they do produce an 
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imbalance in the normal stress components across the flat interface, and thus, 

to proceed beyond Lee, Chadwick and Leal (1979) and Lee a-nd Leal (1980), it is 

necessary to first calculate the O(e) correction to the interface shape, and then 

to determine the effect of the predicted interface deformation at O(e) on the 

force and torque which act on the sphere. Although the force and torque 

corrections will necessarily be small, also O(e), they can be calculated rather 

simply in this asymptotic framework, thus allowing a useful qualitative 

examination of the effects of interface deformation. It may be noted that the 

'1arge" deformation problem, in which the interface deformation is not 

restricted to be small, is highly nonlinear, as a consequence of the normal 

stress boundary condition, and the rather simple superposition principle 

inherent in equations (3) and ( 4) for calculating :f and '.!'for an arbitrary ~or q_ 

is lost. In the limit of small e, however, the problem remains quasi-linear at 

each order and the basic expressions (3) and ( 4) for :f and '.!' are still expected 

to apply, albeit with additional components in the resistance tensors which 

depend explicitly on e. 

The analysis for small e proceeds in a straight forward fas hi on from the 

results of either Lee, Chadwick, and Leal (1979) or Lee and Leal (1980). 

However, in the present paper we shall restrict ourselves to the simpler case 

of small a/ l, discussed by Lee, Chadwick, and Leal ( 1979) where an approximate 

and relatively simple analytical solution was obtained at 0(1). The interface 

shape can be expressed in terms of a scalar function, F, where 

F = z - f(p, y?, t) = 0 ( 10) 

and the function, f, which describes the deformation is written in the 

asymptotic case, e < < 1, as 
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( 11) 

The shape function, f, is determined from the zero-order solutions of Lee, 

Chadwick and Leal ( 1979) for the velocity and pressure fields, by first 

calculating the normal stress imbalance at the undeformed interface (which 

is a consequence of the fact that the interface is approximated as fiat at 

0(1)) and then applying the normal stress condition 

( 12) 

from which we can obtain an equation that can be solved for f 1 . Here, Lis a 

differential operator which is defined in the next section and T = -p + T where p 

is the hydrodynamic pressure and T is the stress tensor. With f 1 known, the 

most obvious procedure is then to determine the velocity and pressure 

distributions in the two fluids at O(e), and calculate the corresponding 

contributions to the force and torque on the particle, again at O(e). Although 

straightforward in principle, this latter calculation is tedious and, 

fortunately, unnecessary. Instead, we shall see that the effects of 

interface deformation on the force and torque at O(e) can be obtained via the 

reciprocal theorem directly from the interface shape function f1 and the 

solutions of Lee, Chadwick, and Leal (1979) for the velocity and pressure fields at 

0(1). 

II. Governing Equations 

We begin by considering the computation of the interface shape at 

O(e) in somewhat more detail, using the normal stress condition ( 12). In 

equation (12) we have used L to represent the differential operator, 

( 13) 
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where R1 and R2 are the principal radii of curvature for the interface. The sum 

(1 /R1 + 1 /R2 ) is simply calculated as the divergence of the unit normal to the 

interface (i.e. '\/ ·Q-); where, 

\IF =JC( i - .£Li - .L 21._i ) 
1 v FI - z ap - P p acp - ff) 

(14) 

and 

IC :: (15) 

In order to proceed analytically, we assume that the deformation, f, is 

small, and that it can be represented asymptotically in the form of equation 

(11), where e is the small parameter of the problem, as defined in (9). Similar 

expansions of the velocity, pressure, and stress fields are then: 

~(k) = ~k) + e~f'c) + ... , ( 16) 

( 1 7) 

k = 1, 2, ( 18) 

where the 0( 1) terms, designated by the subscript 0, are simply the 

solutions for a flat fluid interface. A differential equation for the shape 

function f 1 at O(e) follows directly by substitution of (11), (13), and (18) into 

(12), noting that Q- = iz to 0(1) in e, which yields 

( (1) (2)) ( a2r 1 1 af 1 1 a2
r1) -.llT = A.T -T - 0 =a£f1 -{3e --+--+---zz ZZo ZZo Z- ap2 p ap p2 acp2 (19) 

For convenience, we have denoted the normal stress difference, calculated 

using the zero order velocity and pressure fields at z=O, as -8Tzz· It may be 

noted that e multiplied by either a or (3 [see equation ( 9)] yields at least one 

0(1) term so that both sides of (19) are 0(1). The normal stress difference, 

-8 T zz, has been calculated by Lee, Chadwick, and Leal ( 1979) for the four 

fundamental problems of translation and rotation both parallel and 
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perpendicular to an interface which is fiat to 0( 1). Thus, the linear 

differential equation (19) can be solved directly, together with the appropriate 

boundary conditions, to obtain f 1 for these four cases. 

The normal stress differences calculated by Lee, Chadwick, and Leal 

(1979) are: 

1) Normal Translation 

-fl T = 9l s ( 1 + ~ 2 + 3A.. .L) + O(l -4) 
zz R8 8 1 +A. l 

(20a) 

2) Parallel Translation 

-llT ...... = 9l2p ~os'° ( 1 - ..L 2 - 3A.. .L'\ + O(l-5) 
,,.,. R

0 
16 1 + A. l I (20b) 

3) Normal Rotation 

-~Tzz = 0 (20c) 

-4) Parallel Rotation 

(20d) 

where R0 = (p2 + l 2) 112 . These equations have been written for the cylindrical 

coordinate system (p, cp, z), and both p and l have been made dimensionless by 

scaling with the particle radius, a. It can be seen from (20c) that there will be 

no deformation of the interface at O(E:), and at all higher orders, for rotation 

normal to the interface since the rotlet constitutes a complete solution 

which generates no normal stress difference at the interface. We will 

consider solutions for f 1 in the other three cases in the next section, subject to 

the conditions that f 1 be bounded everywhere, and approach zero as the 

distance along the interface from the sphere center approaches infinity 

(i.e. p-+ oo ). 
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Let us now turn to the method of calculating corrections to the 

hydrodynamic forces and torques on the sphere due to the interface 

deformation at O(e). One way to approach this problem is simply to calculate 

the detailed velocity and pressure fields in the two fluids at O(e) and use this 

result directly to calculate force and torque corrections due to the 

interface deformation. "At O(e), the governing differential equations in the two 

fiuids are 

(21a) 

and 

v ·~fie) = 0. (21b) 

At the deformed interface, calculated now to O(e), we again require continuity 

of the tangential stress, along with the continuity of tangential and normal 

velocity components. An alternative approach is to use a Taylor series 

approximation to express the boundary conditions at the deformed boundary 

to O(e), in terms of equivalent conditions applied at the undeformed interface, 

z=O [Chan and Leal ( 197 8)]. These "equivalent" boundary conditions are 

auJi> auJ2> 
uf1> + f1 ---= uf2> + f1 ---- az - az (22) 

a~ 1 > Bf1 1 ar1 
iz·uf1> + iz·f1 ---- i · -uJ1> - i · - -uJ1

> = iz·uf2> - - - az ::P ap - _rp p arp - - -

+ iz·fi a~2> _ i. af 1 uJ2> _ i . .L Bf1 uJ2> = af1 = _ ( u af1 + v af1) (23) 
- az ~ ap - _'{) p arp - at ax ay 

and 
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1 Bf i r > 1 Bf i < ) [ ( af i 1 Bf i ) J - 7'. - --i ·T0
1 + - --i ·T0

2 = ae -f 1 --i + - --i + f.,i.z p arp _,, p arp _,, ap _,, p arp 3 -

[ ( B
2
f 1 1 af 1 1 a2f i ) ( Bf 1 • 1 Bf i . ) + e --+ ---+ --- --'L + ---1. f3 ap2 p ap p2 arp 2 ap .::P p arp _,,, 

(24) 

It may be noted that the velocity at the sphere surface is identically zero at O(e), 

and the governing equations (21a) and (21b) are homogeneous so that the 

induced velocity and pressure fields at O(e) can be viewed as emanating from a 

nonzero normal velocity at the plane z = 0 [corresponding to the condition 

(23)], as well as from discontinuities in the tangential velocity and stress 

components at the same plane. 

Instead of actually solving (21)--(24), a simpler method can be 

developed provided that one is interested only in the corrections to the force 

and torque on the sphere at O(e) rather than in a detailed resolution of the 

velocity and pressure fields. This method is based upon the reciprocal theorem 

of Lorentz ( 1907), 

J ~·rr'·y" = J ~·rr"·y' (25) 
s s 

where (y', rr') and (y", rr") represent the velocity and stress fields corresponding 

to two creeping flows of the same fluid contained by the same bounding 

surface, S. 

In the present application, our objective is to determine the O(e) 

contribution to the stress at the surf ace of the sphere which will yield the O(e) 

drag and torque. For this development, we identify y" as the O(e)disturbance 

flow, 1.:!-fk), defined by equations (21)-(24) and the no-slip boundary condition at 

the sphere surface, while v' is the "complementary" Stokes flow velocity field, 
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~(le), for either translation or rotation of the particle in a prescribed direction in 

the presence of a fiat fluid interface. It is evident from this definition that ~Ck) 

will be identical with one of the 0( 1) solutions ~Jc) for translation or rotation 

either parallel or normal to a fiat interface. The choice for ~(k) depends upon 

the force or torque contribution which we require at O(t), as we shall explain 

below in detail. Let us first consider the remaining steps in the derivation of a 

formula for calculating the O(t) contributions to the force or torque for a 

general disturbance fiow, ~fk) and a general "complementary" fl.ow ~{Jc). For the 

lower fluid (k=2), the reciprocal theorem is 

J:_ (T1c2L;c2) - rC2).~f2))·~ dA = o 
2 

(26) 

where A2 includes the fiat interface and sphere surf ace. Similarly, in the 

upper fluid 

;:. (T1 (l).~(t) - TC1L~fl))·~ dA = 0 
1 

(27) 

where A1 includes only the fiat interface. Multiplying (27) by A. and subtracting 

the result from (26), we obtain 

J: (-A.T1(1).~0) + A.T{l).1::!f1> + T1(2).~(2) -T(2).':!f2>)·~ dA 
F 

(28) 

where AF is the undeformed fluid/fluid interface area (i.e. the plane, z=O), and 

As is the surface of the sphere. Now, the disturbance velocity on the sphere 

surface, i.e. u1 C
2>, is identically equal to zero for any of the problems of 

translation or rotation. If we choose the complementary problem to be 

translation with unit velocity, 

~(2 ) = i on As 
- -T 

(29a) 

where iT indicates the direction of translation, the integral over As in (28) 
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reduces to 

- f (T1 C2>·n)·i dA 
As - -T 

(29b) 

which is simply the force contribution on the sphere in the :!:T direction at O(e) 

due to the interface deformation at O(t). This forc.e can then be calculated by 

evaluating the left-hand side of (28) for any of the three problems of 

translation perpendicular or parallel or rotation parallel to the undeformed 

interface and the complementary velocity field corresponding to (29a). 

Similarly, if the complementary problem is chosen to be rotation with unit 

angular velocity in the iR direction, 

... 
'_:!(2) = :f:R x ! on As (30a) 

the integral over the surface of the sphere becomes 

(30b) 

which is nothing more than the torque on the sphere about the :fR axis at O(e). 

Again, evaluating the left hand side of (28) thu~ yields the torque on the 

sphere due to interface deformation for any of the three non-trivial 

problems of translation or rotation parallel or perpendicular to the 

undeformed interface. This integral over the undeformed interface surface, AF, 

can be simplified considerably by application of the boundary conditions 

(22)-(24). Specifically, the first and third terms in the integrand can be written 

as 

... 
~·(T1C2> - AT1C1>)·'.:! (31) 

where we have used the fact that the complementary velocity field must be 

continuous across the plane, z = 0. The second and fourth terms combine to 

yield 
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(32) 

It is evident, by examination of (22)-(24), and the conditions of continuity 

of velocity and stress for the complementary solutions at the undeformed 

interface, that the force and/or torque corrections on the sphere at O(e) can 

be calculated knowing only the shape function, f i. at O(e), and the 

complementary velocity and stress fields for translation or rotation near a flat 

ft.uid interface [the latter corresponding to one of the 0( 1) solutions for 

translation_ or rotation near the fluid interface, ('!:!o(.t), TJk>)]. 

In the next section, we calculate the shape functions, f 1, at O(e) for the 

problems of parallel and normal translation and rotation. Then, in section IV, 

we utilize equations (28)-(32) to determine the corresponding corrections at 

O(e) to the hydrodynamic force and torque on the sphere. 

Ill. Interface Shape 

We now proceed to solve equation ( 19) for the shape of the interface at 

O(e), i.e. f1. After combining equation (19) with equations (20a,b,c,d), we obtain: 

( a2
f1 1 ar1 1 a2 r1 ) 9l3 ( 3 2 + 3A ..L~ 

-(3e --+ ---+ --- + cx.ef 1 = -- 1 + - l 
ap2 p ap p 2 acp2 R8 a 1 + A 

(33) 

for translation normal to the undisturbed interface; 

a2f 1 1 ar1 1 a2 r1 9z 2 3 2 3A 1 -(3e(-+--+---)+cx.ef1 = pcosc,q(l-- - -) (34) 
ap2 p ap p2 acp 2 R8 16 1 + A i 

for translation parallel; and, 

( a
2

f1 1 Bf1 1 a2r1) 12psincp ( l + _3 1 _1, 
-{fr -- + - --+ - -- + cx.ef i = --'----'---4· / 

ap2 p ap p2 ac,o 2 R8 16 1 + A l 
(35) 

for rotation, with the axis of rotation parallel to the interface. The case of 

rotation normal to the interface does not yield any deformation at O(e) as we 
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have already seen. All three of the equations (33)-(35) can be manipulated into 

modified inhomogeneous Bessel's equations of order zero or one. This is done 

by rescaling p to p*((31a) 112 and then solving either by use of the Green's 

function or by use of variation of parameter techniques, subject to the 

boundary conditions discussed in the preceding section. After rescaling back to 

the original p, the solutions are: 
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1.. Normal Tramdation 

oo x Ko [ ( a ) 1/
2 

x] dx 

~ (x2 + l 2)012 
(36) 

2 .. Parallel Translation 

( 
3 2 - 3/\ 1 a 112 P x 11 (j x dx I 2 [ ( a) 112 J 

f 1(p, ~) = 9l
2 cos~ 1 - 16 1 + >.. T) Ki [ ( 73) P] £ (x 2 + z2)5;2 

(37) 

3. Parallel Rotation 

( 
3 1 _1 ) IK1 [ ( _a ) 112p J JP x2I t [ ( ~ ) t/2 x J dx 

f 1 (p, c;o) = 12sinc;o l + -16 · 
1 

+ /\ -
l (j 0 ( x 2 + l 2) 5/ 2 

oo x 2K1 [ ( ~) 112 
x ] dx 

J; (x2 + z2)5/2 
(38) 

Let us consider these solutions in some detail, starting with the interface 

shape for translation normal to the undisturbed interface. One feature of 

interest is the relative effectiveness of interf acial tension forces, measured by 

the magnitude of (j, and density forces, measured by the magnitude of a, in res-

tricting the degree of interface deformation. In order to investigate this 



- 27 -

question, and to make comparisons between results for different conditions 

as meaningful as possible, we have carried out all of our calculations for a 

fixed value of ex+ (3 equal to 10. We may note from equation (9) that this 

represents a constant value for e. Figure I shows the results for z=ef1 as a 

function of radial distance rescaled with respect to the sphere radius, for a 

dimensionless distance l=6 between the sphere center and the plane (z=O) of 

the undeformed interface, a viscosity ratio A.= 1 and various values of al (3 rang-

ing from 0.01 to 00 • Although ex+ (3 is held constant, as indicated above, the 

magnitude of interface deformation is remarkably sensitive to the value of 

al (3, particularly for small values where. the density forces are small relative to 

the dominant interfacial tension forces. It is obvious, in examining figure I. 

that a density difference across the interface is much more effective than sur-

face tension at retaining a "fiat" interface. In part, this is a consequence of 

the fact that the density difference acts directly on the degree of displacement 

from z=O, while the effect of interfacial tension is an indirect consequence of 

limiting the curvature of the interface. 

The limiting behavior of (36) for ex > > (3 and ex < < (3 can be determined 

easily. The first case is the density dominated limit, and can be considered 

either by letting al (3 go to infinity in equation (36), or by simply setting (3=0 

and e=l I ex in the differential equation (33). In either case, the shape function 

is given by 

9l 3 
( 3 2 + 3A. 1 ) 

f 1 (p) = (p2 + l 2) 5/ 2 
1 + 8 1 + A. l (39) 

The second limiting case, ex < < (3, corresponds to surface tension dominated 

deformation. Aderogba and Blake (1978) have noted earlier that the equa-

tion (33) hn.s a log singularity if ex is set identically to zero, and thus has no 

solution which is both finite at the origin and still vanishing as p goes to 
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infinity. As suggested above, this is a consequence of the fact that large 

deformations are not mathematically restricted by interf acial tension, only 

surface curvature is restricted. Thus, in this case, it is advantageous to exam-

ine directly the behavior of the solution to equation (36). which is exact for any 

value of a/ {3, in the limit as a/ {3 goes to zero. Specifically, we consider (a/ {3) 112p 

< < 1. In this case, 

({!!a) 112 l 
f i (p) "" 3 [ ln l + (p2 + l 2) 112 + (p2 + l 2) 112 J (40) 

for {3>>a, e "'1/{3, and it is evident that ef 1(p) is bounded and O(elne) for any 

fixed p and a"# 0. In other words, as the interfacial tension becomes asymptoti-

cally large, the interface deformation approaches zero for any small, but 

nonzero density difference. On the other hand, for any large but fixed {3, 

ef1 ~ -lna as a~ 0. Thus, for a fixed level of interfacial tension, which may be 

arbitrarily large as long as it remains bounded, the interface deformation will 

only remain finite in the presence of a nonzero density difference across the 

interface. For sufficiently large p, on the other hand, where (a/ {3) 112p becomes 

large, ef 1 vanishes in the manner indicated by the limit of equation (39) for large 

p, even if a/ {3 << 1. 

Compared with the dependence of interface deformation on the relative 

magnitudes of a and {3, as outlined above, the effect of particle position is 

straight forward. In figure II, we show the variation in degree of deformation 

for normal motion with a + {3 = 10, al {3 = 1 and A.= 1 as the particle is moved 

from l=9 to l=3. Obviously, as the particle approaches more closely to the inter-

face, the degree of deformation goes up markedly. Finally, we may note that 

the viscosity difference across the interface plays only a secondary role in 

the steady-state degree of deformation. An illustrative example of this fact is 

shown in figure III, where we have plotted z=ef 1 as a function of the dimension-
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less radial position, for a+ (3 = 10, al (3 = 1. l=6, and several values of A.. 

Let us next consider the interface shape for translation of a rigid 

sphere parallel to the plane z=O. Results for the interface shape, i.e. for z = ef 1, 

evaluated in the plane of motion of the sphere, for 1=6, a+ (3 = 10 and A.= 1 

are plotted in figure N. The two cases al (3 = .1 and 1 were evaluated directly 

from the equation (37} with cp = 0. The limiting cases, a/ (3 ~ oo and a/ (3 ~ 0, 

were obtained from the asymptotic forms of (37) for very large and very small 

values of a/(3. For the case of gravity dominated deformation (e=l/a and 

al (3 ~ oo ), we obtain 

(41) 

It is evident that the same result could have been obtained by inspection 

from equation (34) with (3=0. In the limit of surface tension dominated defor-

mation (e = 1/ (3 and a/ (3 ~ 0), the equation (37) yields 

_ 3l COS)O ( l '\ ( 3 2 - 3A. 1 '\ 
f1(P. cp) - P 1 - (p2 + z2)112 / 1 - 16 1 +A. TJ · (42) 

Unlike the problem of p~rticle motion normal to the interface, the solu-

tion for f 1 in the present development, remains perfectly well behaved in the 

limit a/ (3 ~ 0. 

Although the interface shape illustrated in figure N is fundamentally 

different from that obtained for motion normal to the interface, the results are 

in many respects qualitatively similar. First, a density difference across the 

interface is much more effective than interfacial tension at restricting interface 

deformation. It is evident that surface tension allows a very broad deformation 

with small curvature for small values of a/ (3. Second, the degree of deformation 

again increases as the sphere moves closer to the interface--though it can be 

noted that even at l=3, the deformation remains less than 1 /50 of the sphere 
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diameter (for a/{3 = 1 and a+ {3 =10). At the same time, however, the influence 

of the sphere extends for several body lengths in the p direction. Third, and 

finally, the ratio of viscosities across the interface has very little effect on 

the degree of deformation. Plots which illustrate these latter two conclusions 

are contained in Appendix C and show the same effects for the case of motion 

normal to the interface (i.e. figures II and III). Figure N illustrates the section 

of largest deformation, but, of course, the interface shape is fully two

dimensional. Thus, we present, in figure V, a plot showing contours of constant 

interface elevation relative to the plane of the undeformed interface for the 

case l = 6, a/{3 = 1, a+ {3 = 10 and A.= 1. It can be seen, from this plot, that the 

deformation falls off somewhat more slowly in the direction perpendicular to the 

direction of the sphere's motion than in the plane of that motion. Apart from 

this, the data represented by the figure V serve mainly to confirm the impres

sion of interface shape which is indicated by figure N and the equation (37). 

Finally, we consider the interface deformation for rotation, with the 

axis of rotation parallel to the interface. Comparison of equations (34) and 

(35) shows that the normal stress imbalance is identical in "form" to the case 

of parallel translation, apart from a rotation of 1T' /2 in cp. Thus, the interface 

shapes are completely analogous to those illustrated in figures IV and V. It 

will be noted from equation (35), however, that the deformation falls off 

somewhat more rapidly with increase in l than for the case of parallel transla

tion, and the dependence on viscosity ratio, A., is different in detail. These 

latter differences are quantified in figure VI where we have plotted the rela

tive magnitude of the deformation for parallel rotation compared to that for 

parallel translation as a function of the distance between the sphere center 

and the plane of the undeformed interface for the various values of A. ranging 

from 0 to oo. This scaling is valid for the directions of maximum deformation 
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for the respective cases. It should be remembered that the maximum defor

mation in the case of parallel rotation is in the yz plane (normal to the axis of 

rotation), while that for parallel translation is in the xz plane (parallel to the 

axis of translation). 

IV. Force and Torque Corrections 

With the interface shape known to O(e), we can now use the reciprocal 

theorem to calculate the corrections at O(e) to the force and torque acting on a 

sphere which is either translating or rotating with a prescribed velocity. It is 

evident from the detailed derivation in section II that the evaluation of force or 

torque corrections for a given type of particle motion requires only the interface 

shape, f1 , at O(e), the velocity and stress fields at 0(1), and the velocity and 

stress fields for a "complementary" Stokes problem. The latter is simply the 

translation or rotation of a sphere with unit velocity in the presence of a fiat 

interface -- i.e. precisely the 0( 1) solutions already calculated by Lee, Chadwick 

and Leal ( 1979). If the "complementary" problem is a translational motion, the 

reciprocal theorem yields a farce correction in the direction of the "complemen

tary" translation regardless of whether the interface deformation is due to par

ticle translation or rotation. Thus, for example, if we wish to determine whether 

the interface deformation from parallel translation results in a force normal to 

the undisturbed interface, we would use translation normal to a flat interface 

as the "complementary" problem. Similarly, to estimate any modification in the 

torque for the same case, we would use the solution for rotation near a fiat 

interface to determine the "complementary" velocity and stress fields. 

It is useful to observe that the integral over the undeformed interface sur

face, Ap, in (28) involves integration over cp from zero to 2n. Thus, integrals in 

odd powers of sin(j? and coscp will be zero. Investigation of all possible 
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contributions from the flow fields to the integrand [equations (31) and (32)] of 

equation (28) shows that the complementary problem will introduce a linear 

dependence on either sinip or cosip, except for the normal translational motion, 

which is independent of q;: the disturbance flow, on the other hand, contributes 

terms involving the products of sinip and co sip (for example, sin2ip, cos2 ip or 

sinipcosq;) except for the case of motion normal to the interface which is 

independent of ip. Thus, the only nonzero contributions to the integral over Ap 

in (28) will occur when the "complementary" velocity field is independent of ip --

i.e. when the complementary problem is translation normal to the interface. It 

thus follows from these considerations that the only nonzero contributions to 

the force at O(e) must be directed normal to the interface, independent of 

whether the particle is translating normal to the interface, or is translating or 

rotating parallel to the interface. There can be no nonzero contributions to the 

torque at O(s) in any of these cases, and no contributions to the force com-

ponent parallel to the undisturbed interface at O(e). 

Thus, the problem of determining contributions to the force or torque on a 

sphere at O(e), due to interface deformation at O(e), is reduced to evaluating the 

normal component of force for the three cases of translation normal to the 

plane of the undeformed interface, translation parallel to the plane of the unde-

formed interface, and rotation with the axis of rotation parallel to the interface; 

The results of evaluating (28) for these three cases all yield nonzero forces nor-

mal to the interface which can be represented in the form 

co 

AI= BI { [CI·DI + EI·FI]dp, I= 1, 2 or 3. (43) 

For normal motion, 

Al= DerK[ (44) 
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B 1 = ( 1 + jL 2 + 3t.. .L) 8 ll 5 
8 1 + t.. l 2(1 + t..)2 (45) 

a 112 / xio[( ; ) 
1
/

2 
x ] dx a 1/ 2 w xK0 [ ( ~) l/2 x ]dx 

Cl=Ko[(73) p] o (x2+t2)o/2 +Io[Cp-) p] ~ (x2+t2)012 (46) 

Dl = ( 2 l 2)5 ( p5 (-2A + 2) + p3l 2(6A2 + 6A - 4) + pL4(2A + 2)) (47) 
p + l 

[ 

[ ( a'\ 112 J 
= ( ~.) 1/2 - [ ( .f!_) l/2 J JP Xl1 -(3 ") X dx 

E 1 (3 I Ki {3 P 
0 

_(_x_2 -+-l-2)-01_2_ 

Fl = ( 2 1 2)4 ( p4(A - 1) + 2p2l2) 
p + l 

while, for parallel motion, 

B 2 = ( 1 + _g_ 2 + 3t.. 1-) 27l s 
. 4 1 + t.. l 4( 1 + t..)2 

DZ= ( 2 l 2)5 (p6 (-3A-1) + p4l 2(1BA2 
- 6A + 1) 

p + l 

(48) 

(49) 

(50) 

(51) 

(52) 
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+(Io[( ~)112p]- ( ~112P Ii[( ;)112p] 
(3 

and for parallel rotation, 

(54) 

(55) 

BS = ( 1 + ~ 2 + 3A. _L) 36l5 (57) 
8 1 +A. l (1 + t..)2 

CS = C2 (58) 

ES= E2 (60) 

F3 = 1 ( p3(-2f.. + 2) + pl 2 (-f.. -1)) . (61) 
(p2 + l2)4 

The results represented by equation ( 43) can be expressed in a general linear 

form similar to equations (S) and (4), 

T 
asµo 

,... u .... 
Kc·U(-' + Kii ·Q · - aO / -

(62b) 

Clearly, the equation (4) for the torque on the sphere is completely unchanged 
... 

at O(e). However, the coupling tensor which relates E and Qis no longer equal to 
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the transpose of the tensor which relates I and 12 Furthermore, the components 

of the resistance tensors KT and KcT + tKnef no longer conform to the simple 

forms (5) - (7) which pertain to a flat fluid interface. It may be noted in regard 

to the first of these facts, that Brenner's ( 1964) original proof of the reciprocity 

of the coupling tensors between E and q_, and I and ~ applies to bounded sys

tems only if the fluid motion can do no work on the boundaries. Generalization 

of Brenner's analysis to the present system is discussed in Appendix A. 

Let us now consider the results (43) - (61) in more detail starting with the 

combined resistance tensor, Kt(o) + eKT(l), for translational motion. This is most 

conveniently discussed in terms of its components for a Cartesian coordinate 

system with axes x and y parallel to the plane of the undeformed interface, and 

the z axis normal, as was adopted earlier in conjunction with equations (5) - (7). 

Adopting the same nomenclature as used in (5), the components K
1
T are 

unchanged at 0( e), while the normal component Ki is either decreased or 

increased depending upon whether the sphere is moving towards or away from 

the interface. We shall discuss the details of the modifications to Kl shortly. In 

addition, and more surprising, the off-diagonal components (K1_<
1>)zx and (K1_( 1))zy 

are nonzero, thus demonstrating the existence of a force away from the inter

face, induced by translation parallel to the interface. This result represents a 

previously "undiscovered" form of 'lateral migration", though it should be noted 

that the situation is somewhat analogous to the well-known lateral migration of 

a drop in shear flow away from a plane wall due to deformation of the drop 

shape [Chaffey, Brenner and Mason ( 1965, 1967)]. It may also be noted that 

Chan ( 1980) has predicted the existence of lateral migration of a sedimenting 

drop away from a vertical plane boundary due, again, to shape deformation of 

the drop -- and this situation is quite closely analogous to the present problem 

of parallel translation of a sphere near a deformable boundary. Finally, there is, 
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according ·to equations (56)-(61), a coupling induced between particle rotation 

and the force on the particle which leads to migration of a sphere away from the 

interface when the sphere rotates about an axis parallel to the interface. 

Results corresponding to the equations (43)-(61) have been plotted as a 

function of l in Figures VlI-XII. In Figure Vll. we show the magnitude of the drag 

decrease at O(e), scaled with respect to Stokes drag, for normal motion toward 

the interface with a fixed value of A. equal to 1 and a + {3 = 10. It is evident that 

the decrease in drag (due to the O(e) deformation) is increased as l decreases 

and this is presumably a consequence of the increased degree of deformation. 

In addition, the largest decrease in the drag can be seen to occur for the smal- · 

lest value of al /3, again as a result of the fact that the largest deformation 

occurs, for a fixed l, A. and a+{3, in the limit as al {3 _. 0 where surface tension 

dominates over the density difference across the interface. The variation in the 

O(e) drag contribution with A. for fixed al {3 = 1 and a + {3 = 10 is shown in Figure 

Vlll. It will be noted that the drag decrease is smallest in the limiting case A. = 0. 

Since the magnitude of the deformation is essentially independent of A., this is 

simply a consequence of the fact that a given level of deformation has less effect 

on the particle drag when the second fluid has a very low viscosity than it does 

when the viscosity is large. It is of some potential interest to note that the qual-

itative role of interface deformation at O(e) could have been deduced from the 

form of the dynamically "equivalent" boundary conditions (22)-(24) which are 

satisfied at the plane, z=O, of the undeformed interface. Specifically, the condi-

tion (23) shows that the deformation induced at O(e) by a sphere moving toward 

the interface is dynamically equivalent to a normally directed velocity at O(e) 

27l4 (l2 3 2) 
U1zlz=O = (l + A.)(p2 + l2)5 - p (63) 

at the plane of the undeformed interface. Although this single condition is not 



- 37 -

sufficient to completely determine the form of the velocity field, since the condi

tions (22) and (24) yield a discontinuity in both the tangential velocity and the 

tangential stress components, the latter are asymptotically small for large l 

relative to the normal velocity, Uizlz=o . Thus, the disturbance velocity field at 

O(e) can be viewed as resulting from a flow through the plane z=O which is in the 

same direction as the sphere velocity for p < l I -JS and in the opposite direc

tion for p > l I v'3 . It is evident from the sense of this boundary ft.ow that the 

force contribution to the sphere at O(e) must consist of a decrease in the force 

component normal to the interface. It is important to note the effects of revers

ing the direction of motion for the sphere, for motion normal to the interface. 

Reversing the direction of motion for the particle changes the sign of the 

integral over the interface in equation (28). Thus, if a particle is moving away 

from a deformable interface, the drag, due to the deformation, is increased by 

the same amount as the drag, due to the deformation, is decreased for an 

approaching sphere. This result can be viewed as a consequence of the linearity 

of Stokes equations and the fact that the effective induced velocity field at the 

plane z=O for a sphere m9ving away from the interface is the negative of the 

velocity field for an approaching sphere. 

Detailed results for the O(e) contribution to the force on a sphere which is 

translating parallel to the plane of the undeformed interface are presented in 

Figures IX and X. For all values of al (3 and A.., this force is directed normal to the 

interface. In Figure IX, we have plotted the normal force scaled with respect to 

Stokes drag as a function of l for A..= 2/3, a+ (3 = 10 and various values of o..1(3 

in the range 0.01 to 10. For all l > 2, the induced force is directed away from 

the interface, and its magnitude increases as a/ (3 decreases. This is believed to 

be a direct consequence of the increased deformation which occurs as al (3 is 

decreased. In addition, for l < "" 3, the magnitude of the induced force increases 
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as l decreases, again presumably because the deformation increases. When l is 

smaller. the magnitude of the induced force appears to decrease and even 

change sign around l = 1.5 for all of the cases considered in Figure IX. However, 

it is not expected that the small parameter expansion in l - 1 which we have 

adopted from Lee. Chadwick and Leal (1979), will provide meaningful results in 

this region. We have neglected terms which are O(l-2), and it is evident that 

these higher-order terms will become significant in the region near the inter-

face. Thus, we believe that the peculiar results for l < ~ 3 are spurious and no 

physical explanation is sought here for their existence. 

The problem of parallel translation is considered further in Figure X, where 

we show results for fixed al {3 = 1 and various values of A.. Here, as in the case of 

normal motion. the deformation at O(e) is relatively insensitive to A and the 

variations in the induced force are thus a direct consequence of the viscosity 

difference rather than an indirect effect of different degrees of deformation for 

different A.. It will be noted that the unphysical upturn and sign change for 

small l is present for A.= 0 and 2/3, but not for A.~ 10 (from this we might con-

elude that the higher-order terms in z - 1 , which have been neglected, decrease in 

importance with increase in A.). 

The qualitative nature of the induced forces at O(e) for parallel translation 

can again be deduced by examining the "equivalent" induced normal velocity at 

z=O, 

u _ 9Z 2 [ 3 ( 2 + z 2) 112 
lzlz•O - (p2 + z2)3 2(1 +ft.) - p 

3 p2cos2 >0 5p2l 2 J 
2 2 2 (l 2 + 5P

2
) + ( 2 2)512 (p+l) p+l 

(64) 
1+A. 

since the discontinuities in the tangential components of velocity and stress are 

asymptotically smaller than Uizl z = 
0 

for large l. This equation indicates an 
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induced velocity at O(e) which is directed toward the sphere (normal to the 

plane of the undeformed interface) except for very small values of l or very 

large values of p. Thus, the O(e) fl.ow between the sphere and the interface is 

consistent with a normally directed force away from the interface. 

Finally, Figures XI and XII present the influence of deformation on a rotat-

ing particle, whose axis of rotation is parallel to the interface. The results are 

very similar in form to those described earlier for motion normal to the inter-

face. The differ~nce is given by the observation that the direction of the force is 

reversed (i.e. the force is away from the interface) and the magnitude of this 

force is found to be much smaller for a given distance from the interface (i.e. 

given value of l). By comparing the magnitudes of deformation in the normal 

motion problem with the same quantity for the parallel rotation problem for a 

given magnitude of the deformation, we see that the drag correction for the 

parallel rotational problem is much less than the drag correction for the normal 

translational problem. As was noted earlier, we will not discuss the results for 

l ~ 2 due to the neglect of higher-order terms in 1 /l in the present theory. As 

in the previous case, the force increases as a.I (3 decreases for l > 2 as a conse-

quence of increased deformation. The dependence of the force on A., as shown in 

Figure XII, follows quite closely the dependence of the deformation on A. in Fig-

ure VI. For example, the case of A. = 0 yields the largest deformation in Figure 

VJ, which corresponds to the largest force directed away from the interface in 

Figure XII. In the present case, the "equivalent" induced normal velocity at O(e) is 

given as. 

This yields a velocity directed towards the sphere at the plane z=O and thus a 

force on the particle directed away from the interface. 
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We have determined the corrections to the force and torque, due to O(e) 

deformation, on a body which is translating or rotating either normal or parallel 

to a deformable interface. This interface has an arbitrary viscosity ratio across 

it, but has a large interf acial returning force due either to the density difference 

or interfacial tension. It has been shown by inspection of the symmetry of the 

terms to be evaluated in the reciprocal theorem that the D(E) correction to the 

torque on a sphere moving relative to the interface is identically zero. The force 

corrections at O(e-) have yielded a reduction of the drag for motion normal to 

and towards the interface, while there is an increase in the drag as the sphere 

moves away from the interface. The cases of rotation and translation parallel 

to the interface both yield a force which is directed normal to and away from 

the interface. Finally, we have noted that the case of a sphere with its rotational 

axis directed normal to the interface generates no interfacial deformation and 

hence no correction to the force or torque on the body. 
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Figure Captions 

Figure I. Normal translational deformation. The effects of a I (3 for l = 6, A. 

= 1 and a + (3 = 10. 

- - - a I (3 = .01, ----a I (3 = .1, -----a I (3 = 1, and __ a I (3 

= 00 

Figure II. Normal translational deformation. The effects of particle distance 

for a /(3 = 1, a + (3 = 10 and A. = 1. 

__ l = 3, - - - land---- l = 9. 

Figure III. Normal translational deformation. The effects of viscosity ratio 

for a I (3 = 1, a + (3 = 10 and l = 6. 

__ A.= oo, - - - A.= 1 and----- A.= 0. 

Figure N. Parallel translational deformation. The effects of a I (3 for l = 6, A. 

= 1 and a + (3 = 10. 

__ a I (3 = 0, - - - - - a I (3 = . 0 1, ----- a I (3 = .1, - - - - - a I (3 = 1 

and - - - a I (3 = oo . 

Figure V. Parallel translational deformation. Contours of displacement in z 

direction for translation in y direction for a I (3 = 1, a + (3 = 10, l 

= 6 and A.= 1. 

__ positive displacement,----- negative displacement. 

Figure VI. Parallel rotational deformation vs. parallel translational deforma

tion as plotted against l. 

__ A. = 0, ----- A. = .1, - - - - A. = 1, - - - A. = 1 O and - - - - - A. = 00 • 

Figure VII. Drag ratio for normal translational deformation. The dependence 

on a/{3 for a + (3 = 10 and A. = 1 as a function of l. 
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__ a. I (3 = 0 .1, ---- a I (3 = .1 , - - - - a. I (3 = 1 and - - - a. I (3 = 

10. 

Figure VIII. Drag ratio for normal translational deformation. The dependence 

on A for a. I (3 = 1 and a. + (3 = 10 as a function of l. 

--" = 0 and 2/3, ----A= 1, - - - - A.= 10 and - - - "A= 10000. 

Figure IX. · Drag ratio for parallel translational deformation. The dependence 

on a.1(3 for a + (3 = 10 and A= 2/3 as a function of l. 

__ cx.1(3 = .01, ----- cx.1(3 = .1. - - - - a.1(3 = 1 and - - - a.1(3 = 10. 

Figure X. Drag ratio for parallel translational deformation. The dependence 

on A. for a/(3 = 1 and a + (3 = 10 as a function of l. 

__ )\ = 0 and 2 I 3, ----- A. = 1 , - - - - A = 10 and - - - A = 10000. 

Figure XI. Drag ratio for parallel rotational deformation. The dependence on 

a/{3 for a + (3 = 10 and "A = 1 as a function of l. 

__ a.1{3 = .01, ----- a.1(3 = .1. - - - - a/{3 = 1 and - - - a.1(3 = 10. 

Figure XII. Drag ratio for parallel rotational deformation. The dependence on 

A for a/ (3 = 1 and a + (3 = 10 as a function of l. 

__ A.= 0 and 2/3, -----A.= 1, - - - - A.= 10 and - - - A.= 10000. 
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APPENDIX A: THE COUPLING TENSOR AND CONDITIONS FOR rrs SIMULTANEOUS USE FOR 

BOTH FORCE AND TORQUE EQUATIONS 

Brenner (1964) presented a proof, for the case of a sphere in an infinite 

fluid, that the coupling tensor, Kc, could be used in both the force and torque 

equations as shown in equations (3) and (4). The proof uses the reciprocal 

theorem, discussed in section III, to relate surf ace stresses, due to translation 

and rotation, on the sphere. For an infinite fluid, there are no other surf aces to 

generate contributions to the integrals in the reciprocal theorem as used in 

Brenner's proof. However, in the work of Lee, Chadwick, and Leal ( 1979) the 

problem solved involved a second surface, namely a flat fluid/fluid interface 

with viscosity ratio A. Their results showed that the equations for the force and 

torque were identical in form with those of Brenner (1964), differing only in the 

elements of the tensors, Kc. KT and KR· In this appendix, we will show, in general. 

that for equations (3) and (4) to be applicable for a system with surfaces other 

than the sphere surface, it is sufficient that the fluid motion do no work on the 

boundaries and have no work done on the fluid by the boundaries. Thus it will 

be obvious that the results of Lee, Chadwick, and Leal ( 1979) must fit the form 

of Brenner (1964), while the work in this paper does not. 

Using the governing differential equations for creeping flow with boundary 

conditions as presented in Lee, Chadwick, and Leal ( 1979) we can come to some 

conclusions about the coupling tensor using the reciprocal theorem, as dis-

cussed in section II, 

J vT·nR.ds= J VR·nT·ds 
s s 

(A-1) 

for flows composed of pure translation and pure rotation, where the super-

scripts T and R respectively distinguish velocities and stresses of the two types 

of flows, and S includes both the sphere surf ace and the fluid/fluid interface. 
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Equation (A-1) applies equally to the second fluid where Snow includes only the 

fluid/fluid interf'!ce. Separating S into sphere and interface surfaces, As and AF, 

we can write equation (A-1) for the lower fluid, containing the sphere, minus "A 

times (A-1) written for the upper fluid to obtain 

(A-2) 

with the ..... used to designate the upper fluid. Brenner (1964) has shown that 

equations (3) and (4) follow when the left hand side of equation (A-2) is equal to 

zero. The right hand side is precisely zero for any problem formulated with 

boundary conditions on a fluid/fluid interface of zero normal velocity and 

matched shear stress as in the problem of Lee, Chadwick, and Leal (1979). In 

general the right side of equation (A-2) is zero when the boundary conditions on 

the fluid/fluid interface require the shear stress to be matched and there is 

either no normal velocity or there is no normal stress jump. These require-

ments can be restated in terms of the ability of the fluid and boundary to 

exchange work. For example, if the shear stress experiences a jump at the 

interface this implies the presence of an external force at the interface, with the 

consequence that work is performed if the tangential velocity is nonzero. This 

would result in a nonzero contribution to equation (A-2) by the first integral on 

the right hand side. In the second integral on the right side it is again obvious 

that if both the normal velocity and normal stress jump are nonzero on Ap, then 

the fluid will do work on the interface to. displace it. This work is manifest in a 

nonzero contribution by the second integral on the right hand side of equation 

(A-2). 
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As an example, we show that the right hand side of equation (A-2) is 

nonzero for the problem solved in Chapter I, thus leading to the conclusion that 

equations (3) and ( 4) are not applicable in this case. Using the small parameter 

expansion presented in equations (16) and ( 18), equation (A-2) can be rewritten 

in the form 

J(vJ·TC-v~·TJ)·ds + ef(vJ·Tr-vJt·Tl +vl-T~-vr·TJ)·ds = 
As As 

where we have neglected O(e2) and higher terms. The 0( 1) terms correspond to 

the problem of Lee, Chadwick, and Leal ( 1979) and thus are equal to zero as dis-

cussed in the preceeding paragraph. Hence dropping the 0( 1) terms and cancel-

ling e from both sides of equation (A-3), we obtain 

J vJ ·Tr·ds = J v~·T{ ·ds + 
As As 

J r R ( T ..... T ) R ( T ..... T ) T ( R ..... R ) T ( R ..... R ) l lvlt Totn -A.Totn + Vot Titn -A.Titn -vlt Totn -A.Totn -Vot Titn -A.Tun ds + 
AF 

This can immediately be simplified using the boundary conditions ofmatched 

shear stress and zero normal velocity for the 0( 1) terms (cf. Lee, Chadwick, and 

Leal (1979)) to yield, 
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Jr R [ T ""'T ) T [ R ""'R ) ] + lV1n Tonn -A.Tonn -Vin Tonn -A.Tonn ds + O(e). 
AF 

(A-5) 

Now, the first two terms of (A-5) can be expressed in the forms 

(A-6) 

and 

(A-7) 

where the subscripts 1 denote the O(e) terms for each variable. We have used 

definitions for the O(e) contributions, Kc
1 

and Kn
1

, which are analogous to the 

definitions of Brenner ( 1964) for Kc and Kn. If we could equate the left hand 

sides of equations (A-6) and (A-7), we would conclude that Kn
1 
= :Kl

1 
and thus 

demonstrate the validity of equations (3) and (4) through O(e). But we must 

look at the remaining terms in equation (A-5) and show that they all sum to zero 

for this to be true. The results of evaluating the remaining terms in equation 

(A-5) can be obtained by simply noting that these terms are the only terms in 

(31) and (32) which contribute to the results in equation (43). Thus they are 

nonzero and represent the difference between the integrals given in equations 

(A-6) and (A-7). We conclude that Kn 1 ~ KJ
1

• and thus, in general, Kc~ KJ when the 

interface is allowed to deform. The equations (3) and ( 4) clearly do not apply 

even in the small deformation problem of Chapter I. 
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APENDIX B: NEXT WGHER ORDER SHAPE FOR NORMAL MOTION 

We notice in the equations for f 1 in the point force solution (i.e. the leading 

term in each of equations (20a-d)) that the viscosity ratio is conspicuously 

missing. We hypothesize that this is due to our 0(1) calculations being res-

tricted to a flat interface and a point force. Thus one may expect that shapes 

calculated for higher order flow fields (i.e. flows which take account of the 

deformation) will include "A. Here we proceed to calculate the O(e) flow field and 

from the normal stress difference at the interface, we calculate f2 for the case 

of gravity dominated deformation in the normal motion problem. As the velo-

city boundary condition on the sphere at O(e) is v=O, the only motion in the fluid 

at O(t) is that which is necessary to satisfy the O(t) boundary conditions on the 

fluid/fluid interface. The flow is axisymmetric and can be solved in terms of a 

stream function, 1/J, where 1/1 satisfies, 

a2 1 a a2 
E4 '¢'=0, E2 = -----+-

ap2 p ap az2 (B-1) 

and is related to the velocity by, 

1 a1111 • 1 a"" . u=--..:::..r....1 + -..:::..r....1p. 
p az p p ap (B-2) 

For ease in satisfying the boundary conditions in equations (22)-(24) it is 

convenient to solve equation (B-1) using a Hankel transform. We define the 

transform, 77v({, z), (see Sneddon (1951)) of any function, 17(p,z), by the equa-

tion, 

17v(~. z) = f p17(p, z)Jv(~p)dp. (B-3) 
0 

We proceed with the solution of equation (B-1) by introduction of the 

vorticity, w, which turns the fourth order equation into a pair of coupled second 

order equations, 
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E2CJ = 0 (B-4) 

and 

(B-5) 

Applying the Hankel transform (B-3) to the equation (B-4), after first mak-

ing the substitution CJ=px 1 , we obtain, 

(B-6) 

with solution 

(B-7) 

We solve equation (B-5) by again making the substitution '1.jl=p'l!Ji and transform-

ing to yield, 

(B-8) 

Solving (B-8), we obtain 

(B-9) 

Now we must evaluate the constants Aa) through D(~) for the upper and lower 

fluids. It is first required that the flows be well behaved for z_, ± oo in the two 

fluids. This leads to, 

(B-10) 

in the upper fluid, and, 

(B-11) 

in the lower fluid. Then, applying the matched velocity and shear stress condi-

tions of equations (22)--(24), we obtain, 
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~1>({. z) = (n({) -G(~)z)e-ez 

;;f2)(~, z) = (n({) + H(Oz)eez 

for the stream.functions in the transformed domain, with 

9 t2t2 
D({) = - ..!-5.-K2(~l) 

32 1 +A. 

(B-12) 

(B-13) 

(B-14) 

(B-15) 

(B-16) 

where K 11(x) is the modified Bessel's function of order v. From the transform 

of the normal stress boundary condition we are led to the equation for the 

transformed shape, 

- Zi\ a19f 1) 2 a~2' I f2(0 = --- - --- . 
~ az ~ 8z z=O 

(B-1 7) 

Combining equations (B-12)--(B-17) along with the inverse transform, 

(B-18} 

we derive 

(B-19) 

for the O(e) contribution to the interface shape. Equation (B-19) shows that we 

do indeed get the viscosity ratio in the shape function at higher order. We also 

have shown in section III that by solving the problem with the added singulari-

ties needed for a spherical body, we again obtain the viscosity ratio in the 

shape function (see equation (36)). 
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APPENDIX C: .ADDffiONAL FIGURES 

The figures in this appendix are included for completeness as they were dis

cussed in the paper yet left out because of their similarity to other figures or 

results that were included. The only exception is figure C-III which is a view of 

the deformation from 30 degrees below the plane of the interface for parallel 

motion. The sphere is moving in the x direction as indicated by the arrow and 

the interface deformation is in the z direction. The scale in the z direction has 

been greatly expanded to allow viewing of the shape as in all the other figures. 

This figure is simply another view of figure V and of the curves in figures N and 

C-II which have the same values for the dimensionless groups. 
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Figure Captions 

Figure C-1. Parallel translational deformation. The effects of particle distance 

for a/(3 = 1, a + (3 = 10 and A. = 1. 

__ l = 3, - - - l = 6 and ----- l = 9. 

Figure C-II. Parallel translational deformation. The effects of viscosity ratio 

for a I (3 = 1, a + (3 = 10 and l = 6. 

___ A.= 00 , __ A.= 1, - - - A.= 2/3 and --- 'A= 0. 

Figure C-III. Parallel translational deformation. Displacement of the interface 

as viewed from 30 degrees below the level plane for translation in 

y direction for a I (3 = 1, a + (3 = 10, l = 6 and A.= 1. 

Figure C-N. Drag ratio for normal translational deformation. The dependence 

on a./(3 for a. + {3 = 10 and "A= 2/3 as a function of l. 

__ a I (3 = 0 .1, ----- a I (3 = .1 , - - - - a I (3 = 1 and - - - a I (3 = 
10. 

Figure C-V. Drag ratio for normal translational deformation. The dependence 

on a/(3 for a + (3 = 10 and 'A = 10 as a function of l. 

__ a I (3 = .01, ----- a I (3 = .1 , - - - - a I {3 = 1 and - - - a I {3 = 

10. 

Figure C-VI. Drag ratio for parallel rotational deformation. The dependence on 

a/{3 for a + {3 = 10 and A. = 2 I 3 as a function of l. 

__ a/{3 = .01, ---- a/(3 = .1, - - - - a/(3 = 1 and - - - a/{3 = 10. 

Figure C-VII. Drag ratio for parallel rotational deformation. The dependence 

on a/(3 for a + {3 = 10 and A = 10 as a function of l. 

__ a/{3 = .01, ----- a/(3 = .1, - - - - a/{3 = 1 and - - - a/{3 = 10. 
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CHAPTER III: 

Experimental Investigation of the Normal Motion of a Rigid 

Sphere Near a Deformable Interface 
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L INTRODUCTION 

This experimental work studies the forces on a spherical particle which 

moves in the creeping flow regime towards a deformable :fluid/fluid interface. 

This study is designed to investigate some of the cases for normal motion for 

which Chapter I provides theoretical solutions for small amplitude deformations 

and the work of Lee and Leal ( 1981) provides numerical solutions for finite 

amplitude deformations. The goal of this work is to verify the theoretical and 

numerical results, as well as to investigate regions of the parameter space which 

have not previously been studied in the aforementioned works. This work also 

utilizes a new experimental apparatus which is to be tested for accuracy, as a 

preliminary to its use in studying the same problem for finite Reynolds 

numbers, or non-Newtonian suspending fluids, where the existing theoretical 

and numerical solutions do not apply. 

The most common and successful method of evaluating the force on a 

spherical particle in quasi-steady motion uses the falling-sphere or terminal 

velocity type experiment, where the velocity of the particle is measured as a 

function of time. In the case of a sphere settling under the action of gravity, the 

drag on the sphere equals the net gravitational force on the body. Both 

Maxworthy ( 1965) and Pruppacher and Steinberger ( 1968) used this method 

with great success for the investigation of deviations from Stokes drag in the low 

Reynolds number regime (.001-10). Although their results were very reproduci

ble, there was a lack of agreement between the two sets of data as both these 

researchers made measurements in a bounded system but made no corrections 

for wall effects. Using the free-fall configuration, Hartland and co-workers 

[(196£3), (1969), and (1970)] studied the close approach of a rigid sphere to a 

fiuid/fiuid interface, where the interest is in the drainage of the thin film of 

fluid out from in front of the sphere just before the sphere penetrates the 
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interface. In these thin film problems, however, the force on the sphere was not 

determined. Bart (1968), using the same method, tried to evaluate the forces on 

drops and rigid spheres in their unsteady approach to a fluid/fluid interface. 

Due to interf acial distortion, the limits of resolution of the experimental pro

cedure, and the unsteady nature of the flow, Bart ( 1968) found this method of 

position measurement to be unsuitable when the sphere was within two radii of 

the interface. Shah, Wasan, and Kintner (1972) studied the mechanism of inter

face penetration. They were interested in the point at which the interface 

rutured relative to the position of the sphere. 

Other researchers have used a direct force measuring technique which 

allows the simultaneous measurement of position and force. Jones and Knudsen 

(1961) used a thin wire and a spring balance to study the force on a sphere in a 

single "unbounded" fluid for non-zero Reynolds numbers. In the low Reynolds 

number range, however, their device did not have sufficient sensitivity to accu

rately measure the small forces they encountered. Kunesh ( 1971) was able to 

greatly improve the force measuring system by using a very sensitive two-pan 

magnetic balance. Howev.er, since the balance was bulky it was decided to 

translate the tank instead of the sphere. The screw-jack used to lift the 1 ton 

tank could not be machined to close enough tolerance to provide for a smooth 

translation of the tank and thus no acceptable translation data were obtained. 

Walker ( 1965) and Yonas ( 1967) used strain gauges to measure the forces in 

their experiments at high Reynolds numbers. A strain gauge is much lighter and 

easier to translate, thus making it a perfect candidate for force measurements 

on tethered bodies. Application of a semiconductor bridge to the surface of a 

thin metal ring, has provided a small deflection ring force transducer which 

does have the desirable properties of compactness for ease in translating and a 

large gain with a high signal to noise ratio for measuring small force changes. 
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Such a device was used in the present study to measure forces on a sphere as it 

was lowered toward a deformable fluid/fluid interface. The experiments were 

carried out under conditions where the Reynolds number is very small. In this 

case, the system is completely characterized by the dimensionless parameters 

(cf. Chapter I, or Lee and Leal (1981)) 

where the sphere of radius, a, travels at velocity, U, through fluid 2 which lies 

above fluid 1. Here, 7, µ and p represent the interfacial tension, fluid viscosity 

and fluid density, respectively, while g is the acceleration due to gravity. It is 

assumed, in the nondimensionalization which leads to this result, that the inter-

face can be completely cQ.aracterized by the interf acial tension, which is con-

stant independent of time or position on the interface. 

In the next section we discuss the fluid systems that were used along with a 

description of the components of the apparatus, and the errors involved in the 

measurements. Section III then summarizes the previous theoretical work 

which is needed to analyze the data to correct for the existence of the wire and 

the bounding walls. Finally, the last sections include a discussion of the results 

and a comparison of the results with available theoretical and numerical work. 
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II. EXPERIMENTAL SYSTEM 

The experimental apparatus consists of a large square plexiglas tank con

taining two immiscible Newtonian liquids. A sphere is lowered at a constant 

velocity towards the fluid/fluid interface. A wire is attached to the sphere to 

provide for a constant velocity and to transmit the force on the body to a force 

transducer. A sketch of the experimental apparatus is shown in figure I. The 

details of the apparatus will be discussed later in this section. 

The decision to use a tethered sphere experiment, instead of the terminal 

velocity type experiment, was made for the following reasons: 

1. A constant velocity could be achieved (and thus constant values for 

the interfacial parameters, Ca and Cg -- see definitions in section I). 

2. The values of Ca and Cg can be varied without changing the fluids or 

sphere density, by changing the sphere diameter and velocity. 

3. The position of the sphere relative to the undeformed interface can 

be determined to a high degree of accuracy. 

4. Forces can be measured close to the interface and even after the 

sphere has gone past the plane of the undeformed interface. 

The drawback to this type of experimental technique is the difficulty in account

ing for the disturbance of the flow field created in the neighborhood of the 

sphere by the wire. Our method of dealing with the wire correction is discussed 

in section III. 

II.A. FLUID CHARACTERIZATION 

Since we wish to operate in the creeping flow regime, it is necessary that 

the fluid in which the sphere is located (i.e. the upper fluid in our apparatus) 

have a large viscosity (greater than 3000 cs in our system). A large viscosity is 

also necessary to obtain measurable forces (and force changes) on the sphere 
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using the force transducer in our device. Finally, it is desirable that the upper 

fluid be hydrophobic so that it can be used with water as a second fluid and 

more importantly so that fluid properties are not affected by changes in humi

dity. With these conditions, the experiments consisted of six sets of fluid sys

tems involving three different fluids as shown in table I. Two of the fluids used 

came in a variety of grades and all three are Newtonian (ref. polybutene [Hardy 

(1962)] and silicone oil [Olbricht (1981)]). The density data in tables II-VI were 

obtained with a standard calibrated hydrometer and performed in a tempera

ture bath stable to ± 0.06 °C. The linear equation used to fit the data was 

sufficient to reproduce the experimental values of the densities in the 

19 °C to 24 °C range to within ± 0.2%. The viscosity data were also measured in 

the temperature bath using a Cannon-Fenske viscometer calibrated to ASTM 

Std. (D-445) and incorporating the density data. The viscosity data were fit quite 

well (± 0.2%) by the three constant exponential equation indicated in table II and 

the results for the fluids are shown in tables II-VI. Finally the interfacial tension 

for the two-fluid systems was measured using a du Nouy balance following ASTM 

Std. (D-971), with results which are presented in table I. 

II.B. EXPERIMENTAL SET-UP 

To study the influences of interf acial deformation on a body moving normal 

to the interface at a constant velocity, one must be able to obtain accurate 

measurements of the force on the body, its position relative to the undeformed 

interface, and the shape of the deformed interface. One way of achieving this 

goal is to use a tether system which requires the sphere to move at a known 

velocity and is also able to transfer the force on the sphere to a force measuring 

device. As noted above, a successful tether system will either have to introduce 

an insignificant disturbance to the fluid or (at least) produce a known contribu

tion to the experimental measurements as in the case of the present 
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experiments. In addition to a tether, the other components of our system are a 

force transducer with sufficient sensitivity to detect the force changes to be 

investigated, a translation device to provide a constant velocity and a measur-

able sphere position, and finally, a video system to monitor the shape of the 

interface. In the remainder of this section, these components will be discussed 

separately and in detail. This is followed by a discussion of the apparatus as a 

whole in section II. C. 

TANK. BODY AND TETHER 

The tank containing the fluids is constructed of 1 /2" thick plexiglas which 

is 15" on a side in cross section and 36" deep (interior dimensions). Tank sizing 

involves consideration of the wall effects and our ability to evaluate them. Any 

contribution to the drag by the walls tends to diminish our ability to resolve 

interf acial forces by decreasing the percentage of the total force signal which is 

due to the interface. We require the ratio of the forces, 

Finterface :<; O( l) 
F wall 

( 1) 

so that the interface will produce a measurable contribution to the force rela-

tive to the wall effects. The spheres were made of bronze, polished smooth and 

spherical to ± 0.0002 inches. The sphere diameters ranged from 3/8 inch to 1 

inch. The maximum and minimum sphere sizes were determined empirically, 

from equation (1) and the limits of resolution of our ring force transducer. The 

tether is made from stainless steel wire, 32 inches long by 0.0041 inch diameter. 

Sizing of the tether· represents a competition between the desire to minimize the 

disturbance to the flow field caused by the wire, and the need for a wire which 

will not experience a change in length sufficient to decrease the accuracy of the 

position measurement (or break). Combining the maximum forces with the 

elastic modulus of the wire, it can be shown that the maximum change in total 
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wire length is less than 0.02 inches for our 32 inch wire. It is also important 

that the wire does not act as a spring by coiling up rather than hanging straight. 

This is an especially important consideration in the present experiments. These 

experiments are commonly run close to the terminal velocity of the sphere 

(when the sphere is close to the interface), and this results in a very small ten

sion in the wire. To eliminate this potential problem, each piece of wire was 

mechanically straightened so it would hang vertically under its own weight. The 

equations and data which quantify this discussion are presented in section III 

after the force measuring system and the method for introducing wall and wire 

corrections have been discussed. 

FORCE MEASUREMENT 

!he tension in the wire is measured with a ring force transducer that has 

been fitted with a semiconductor bridge. This bridge is stimulated by a constant 

5 ± 0.001 volt power supply and its output is measured with a strip chart 

recorder. The transducer gain was found on calibration to be 620 ± 2 µV per 

gram and in operation the transducer output could be read to ± 2µV for a 

period of 60 seeonds (or the length of the longest experiment). This was the 

most accurate small deflection force transducer available, that could give 

sufficient output for small forces and force changes. The ring was affixed rigidly 

with a thermally isolating coupling to the guide bar of the translation system 

and housed inside a box. This isolation of the force transducer was necessary to 

insure there would be no fluctuations in the heat transfer from the ring which 

would greatly affect its output. To produce stable thermal surroundings, the 

force transducer was allowed to heat up under load conditions for a period of at 

least one hour. 

The strain in the ring causes a change in the resistances of the individual 
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legs of the bridge and thus a change in the voltage drop across the measured leg 

of the bridge. This voltage is continuously recorded on an Omni-Scribe (Model 

A-5141-5) multi-span (0.001 to 10 volts full scale) strip chart recorder which 

came equipped with an event marker feature which allowed correlation of the 

force data with the independently determined sphere position as will be dis

cussed in more detail later. 

TRANSLATION SYSTEM 

The translation system consists of a rigid guide bar, cable, take-up spool 

and motor as depicted in figure I. The rigid guide is a 3 I 4 in. square by 42 in. 

long aluminum bar. At one end there is a thermal isolation housing in which the 

ring force transducer is inserted. The bar then passes through a 6 in. centering 

guide which allows only vertical movement of the bar and centers the bar over 

the tank. Finally the bar is attached by ball and socket to a 1I16 in. flexible 

stainless steel cable. The cable is wound around a 6 in. take-up spool. The large 

diameter spool with its small thread pitch is necessary to maintain a constant 

velocity within a desired accuracy of 2% as the cable is unwound from the spool. 

The spool is attached to the gearbox of a 1 /50 h.p. Bodine motor which is rated 

at 38 in.lbs. maximum torque. The motor has a continuous setting feedback 

controller to insure constant r.p.m. of the motor during operation. The con

troller allowed the selection of constant velocities in the range of 0.25 cps to 1.4 

cps. The lower bound is the limit of smooth and constant rotation of the motor 

while the upper bound is restricted by the use of a manual event marker. This 

upper bound on the velocity is obtained by assuming a reaction time of 1 /20 sec 

to actuate the event marker and requiring the position to be known to 0.03 

inches. 

VIDEO SYSTEM 
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The video system is designed to serve two purposes; first, to monitor the 

position and velocity of the sphere and second, to record the interface shape as 

a function of sphere position. Figure I shows that one camera can simultane

ously view a real time clock and a ruler attached to the guide bar. The position 

of the sphere can be related to the position of the pointer on the ruler and thus 

the video images of the clock and ruler give the change in position with time or 

simply the average sphere velocity over an element of distance. By checking the 

video image all along the experimental run we are able to verify that the system 

ran at a velocity which did not vary by more than 2%. 

The second camera is placed to view along the interface and thus record 

the interface shap.e as a function of time. The information from the second 

camera is related to the position of the sphere by combining the images of the 

two cameras. using a screen splitter and recording both on one tape as depicted 

in figure I. 

II.C. METHOD OF OPERATION 

Once the system parameters for a given experimental run have been set 

(i.e. A.. a, P1t p2 etc.) there are five pieces of data that must be recorded during an 

individual run. First there is the force from the transducer as a function of 

time. These data, as collected on the strip chart recorder, must be converted to 

drag on the sphere as a function of its position relative to the interface and the 

method by which this is done is discussed in section III. Next there is the meas

urement of sphere position as a function of time. The first video camera 

records this information on video tape by monitoring the tape measure 

attached to the guide bar while simultaneously recording a digital clock as is 

shown in figure I. The second video camera records the time history of the 

interface shape. The force is related to the sphere position by use of the 
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manual event marker which puts a mark next to the force read on the chart 

paper when actuated. This event marker is triggered manually when the sphere 

passes a set point in the tank as represented by a reading of the ruler on the 

guide bar. Finally the average of the temperature in the center of the tank is 

recorded and the run is accepted if the readings at beginning and end of run 

agree to within 0.02 °C. This criterion was easily met as the room temperature 

varied by less than 2 °C during any given day. It may be noted, that a tempera-

ture change of 0.02 °C in the center of the tank over a fifteen minute period 

corresponds to an approximate temperature gradient of O.B °C between the wall 

and the tank center, based upon a conservative value for the heat capacity of 

0.6 gc~I~ and a thermal conductivity of 0.0007 cal 
0
K , values which were 

.\. sec cm 

assumed by Kunesh (1971). 75% of this temperature gradient takes place in the 

outer half of the tank (Carslaw and Jaeger (1959)) and thus the viscosity for the 

most temperature sensitive fluid (polybutene) would change by less than 2% in 

the central region of the tank. 
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mo EXPERDIIENT CALIBRATION AND DATA EVALUATION FOR THEORETICAL COMPARISONS 

We have pointed out in the first section that the experiments measure the 

drag on a tethered sphere translating normal to a deformable fluid/fluid inter

face in a bounded system. In order to compare our experimental results with 

previous theoretical work and also to evaluate the accuracy of the experimental 

method, it is necessary to relate these experimental results to the analogous 

case of an untethered sphere moving normal to a fluid/fluid interface with no 

other bounding surfaces (cf. Chapter I and Lee and Leal (1971)). To make these 

comparisons it is necessary to account for wire/sphere interactions, wire/wall 

interactions, wire/fluid interactions, and sphere/wall interactions in the data. 

The known theoretical work concerning these interactions will be .summarized 

here, as well as the data reduction procedure used to actually make compari

sons with theory. Also discussed is the work of Brenner (1961) for the drag on a 

sphere approaching an infinite solid wall. Measurements taken in a single fluid 

as the sphere approaches the bottom of the tank can be (and are) compared to 

Brenner's theoretical predictions. This comparison yields an independent meas

ure of the accuracy of the assumptions that were made in transforming the 

data from a bounded, tethered system to an unbounded, untethered system. 

It is also possible to run the experiments sufficiently far from the bottom of 

the tank and the upper free surf ace that the most important corrections will be 

due to the container walls and to the wire attached to the sphere. As antici

pated in the discussion on equipment sizing, both of these contributions to the 

drag will be significant. 

Ho and Leal ( 1974) discuss the correction to the drag on a sphere in prox

imity to two parallel plane infinite walls, while Brenner's (1961) discussion gives 

some motivation for extrapolation to four bounding walls by simply summing 

two two-wall corrections without accounting for the interactions between the 
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two pairs of walls. It is, of course, evident that this "extrapolation" is not 

rigorously correct. On the other hand, the error introduced by the assumption 

of independent two-wall interactions will be small compared to the deviations 

from Stokes' law as the sphere approaches the interface and it is this latter 

quantity which we desire to determine experimentally. The problem of a sphere 

moving axially through a circular cylinder has also been solved (cf. Happel and 

Brenner (1973)) for translation parallel to the walls. The various predicted 

corrections due to 'wall effects" may be summarized in terms of the coefficient, 

k, in the equation 

Drag Ratio= ..E_ = 1 

F_ 1-k[: l +o[: r (2) 

where the sphere radius is denoted as, a, and the distance to (all) bounding 

walls as, h. F °" is simply Stokes law for an unbounded fluid 

F °" = 6rrµaU (3) 

with the velocity of the sphere denoted as U and the viscosity of the fluid as µ. 

The predicted values of k ~orresponding to different wall "geometries" are 

infinite fluid k=O 

1 wall k=0.5625 (ref. Happel and Brenner (1973)) 

2 walls k=l.0040 (ref. Ho and Leal (1973)) 

4 walls k=2.0080 (summation of two wall corrections) 

cylindrical wall k=2.1044 (ref. Happel and Brenner (1973)) 

It is useful, at this point, to return to our discussion of multiple wall corrections 

in order to try to obtain some measure of the possible error in estimating wall 

corrections to the drag on the sphere using equation (2). By doubling the single 

wall correction and choosing h/ a= 15 (the smallest value used in these 
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experiments), we can compare the predicted drag ratio for two walls using the 

simple additivity assumption, with the exact theoretical value for the drag ratio 

calculated from the two correct wall correction factor. The difference in these 

two calculations represents less than a 1% change in the correction to the drag 

on a sphere. Thus, we would anticipate the four wall correction obtained by 

using twice the two wall correction to be in error by less than 2.%. We may also 

note that doubling the two wall correction does quite correctly lead to a value 

for k which is less than the value for an ''inscribed" cylindrical wall as expected 

based on the fact that the average distance of the sphere to the cylindrical wall 

is smaller for the same a/h, thus leading to stronger interactions. Since no 

rigorous theoretical results are available for the 4-wall, square cross-section 

tank, some arbitrariness and uncertainty must necessarily be associated with 

any choice of a particular wall-correction factor k for use in estimating the drag 

on a sphere in an unbounded fluid from measurements in the tank. For

tunately, the largest value of a/h in our experiments was only 1/15, and the 

differences in F resulting from use of the approximate 4-wall value, or the 

"inscribed" circular cylinder (i.e. for the same a/h values) are very small (less 

than 2% for the 1 inch sphere where a/h=l I 15). Thus, the data in our experi

ments were reduced using the wall correction factor for an inscribed cylinder. 

This choice was made, in part, because of the existence of exact theoretical 

results for the axial motion of two concentric circular cylinders (this will be 

used to estimate the drag on the wire tether), and the lack of any solution for 

axial motion of a circular cylinder inside a square cylinder. 

The problem of a circular cylinder moving axially through a second circular 

cylinder is discussed in Happel and Brenner ( 1973). The resulting formula for 

the force per unit length on an inner cylinder which is moving at a relative velo

city U, is 
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for blh< < l, where bis the radius of the inner cylinder and h the radius of the 

outer one. With certain additional assumptions, this result can be used to esti-

mate the drag on the wire alone (i.e. without the sphere) as it moves along the 

centerline of the tank. First, it is again necessary to "replace" the square cross-

section, 4-wall tank with a circular cylinder which, it is hoped, will be equivalent 

in some sense. Unfortunately, though it is evident that the drag on a wire in a 

circular cylinder will be larger than that in a tank of square cross-section for 

the same b/h (since the 'wall" is, on average, further from the wire), there is no 

way without a full theory of the square tank problem to quantitatively account 

for this fact in "predicting" the wire drag for our experimental set-up. 1 In addi-

tion, the. theory of axial motion of two concentric circular cylinders presumes 

that the cylinders are both infinite in length. In the case of the tether wire, how-

ever, the length of wire immersed at any moment is finite and of the same 

order as the cross-sectional dimension of the tank. Furthermore, the wire 

penetrates the air-liquid interface at the top of the tank. Apart from any 

attempt to correct for the finite length of the immersed wire, we know of no 

method to account for the effect on the wire drag of the local ft.ow conditions at 

the air-liquid interface. In spite of these considerable uncertainties, we have 

adopted the formula for F• to estimate the drag on the length L of wire tether 

which is in the liquid at any instant, i.e. 

1. A lower bound on the drag in a square tank is, however, clearly given by the drag on a wire in 
a circular cylinder whose diameter is equal to the diagonal dimension of the square cross
section. This suggests that the drag on the wire in the square tank will be within 5% of that 
estimated from equation (5). 
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F wire = 2rr µLU 

m[ e ]-1 
(5) 

Here bis now interpreted as the wire radius, and his the half-width of the tank 

(Le. the radius of the "inscribed" cylinder). 

In the earlier discussion of the multi-wall corrections for a sphere, we 

alluded to the fact that boundary/boundary interactions are not taken into 

account when a simple summation is used to obtain values of k, equation (2), 

for many walls (2 or 4) from the solutions for one and two walls. For this same 

reason, we would not expect a simple summation to apply when any two (or 

more) boundaries are located in close physical proximity to one another. In 

particular, we expect the presence of the wire to greatly influence the stress on 

the sphere at and near the point of attachment so that the drag on the compo-

site wire/sphere body is different from the sum of the drags which would act on 

the individual components taken separately. Thus, it is necessary to either 

theoretically or experimentally evaluate the wire-sphere interaction if the data 

for the tethered sphere is to provide any useful information on the motion of an 

untethered sphere. This problem is addressed for an unbounded fluid by DE Mes-

tre and Katz (1974), who showed that the drag on a sphere with a long slender 

body attached is significantly lower (0(10%)) than the sum of the forces on the 

sphere and tail when calculated separately. It is important to note that the 

results of DE Mestre and Katz ( 1974) apply only in the limit of an infinite sur-

rounding fluid and that the exact degree of interaction is a function both of b I a 

and L/a. To date, no-one has considered the DE Mestre and Katz (1974) problem 

in a bounded domain and it is not at all evident that the error in using their 

wire/sphere interaction equations in a bounded domain will be small even with 

walls located at a large distance as in the present experiments. As a conse-

quence of this, and of the additional uncertainties in the use of equation (5) for 
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the wire drag, we adopt what is essentially an empirical scheme for estimating 

the wire/sphere interaction coefficient in our bounded system. That is, we 

introduce an empirical factor, ex, defined by 

+ = Actual Drag on Sphere +Wire in Tank 
a {3 - Sum of Drag on Sphere in Tank + Drag on Wire in Tank 

(6) 

which has the effect of modifying the DE Mestre and Katz interaction factor, (3, to 

account for hydrodynamic effects of the tank walls and the interface. As the 

boundary interactions are expected to yield only modest corrections to the DE 

Mestre and Katz interaction factor when the sphere is far from the gas/liquid 

interface, the liquid/liquid interface and the walls, a single a. is determined for 

all the runs. This value of a. is determined by simply adjusting a. starting from 

some initial guess, until an optimal match is achieved between theory and 

experiment for the drag on a sphere which is far (l> > 10) from either the 

fluid/fluid interface in the case of the two fluid experiments or the tank bottom 

in the single fluid experiments. This correction factor a. may need further 

modification on close approach of the sphere to the interface, but there is no 

way to evaluate this change and we will simply assume there is no change at all. 

A partial test of this hypothesis is to use the value of a., determined for l> > 10, 

to reduce the data for close approach of the sphere to a plane solid wall where 

there is an exact analytic result available (cf. Brenner (1961)) for comparison. 

The actual data analysis was performed in a two-step fashion. The data 

were first reduced to a form sufficient for the determination of a. from the far-

field drag measurements, and then the remaining data was analyzed, incor-

porating the empirically obtained value for a., to obtain "corrected" experimental 

data for comparison with available fluid/fluid interface theories. To determine 

a., the total force versus position was first obtained for each experimental run 

for l> > 1 (actually l> 10). The DE Mestre and Katz (1974) correction (3 (which is a 
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function of l and varies between .88 and . 94 for our experimental conditions) 

was then applied to the raw force data to obtain a set cf values which would 

correspond to the sum of the forces on the wire and sphere taken separately 

provided the actual value of a is zero as assumed in this first step. The drag on 

the wire alone was then calcutated from equation ( 5) and subtracted from the 

"corrected" sum to yield an estimate for the drag on the sphere alone in a 

bounded domain. far from the interface (since l> > 1). Finally, this drag esti

mate was corrected for "wall effects" using equations (2) and (3), and the result

ing "measurements" for the drag on a sphere far from an .interface (l> > 1) were 

compared with theoretical values from Brenner (1961). In all cases. the reduced 

experimental data obtained with a equal to zero, yielded too large values for the 

corrected drag. Thus, a new "guess" for a was made and a ''best value" of a for 

each run was determined by iteration. Finally, a best single overall value of a 

was adopted based on the smallest average deviation of the "measured" drag 

from the results of Brenner (1961) over all of the experimental runs. This pro

cess resulted in a predicted value of a=0.03 which decreases the DE Mestre and 

Katz ( 1974) correction in this region from roughly a 10% change to a 7% change 

in the total force. After incorporating a, we were able to experimentally repro

duce the theoretically predicted drag ratios for normal motion of an isolated 

sphere far from an interface to within ± 4% for all runs. This entire method of 

data reduction, once a has been chosen, is presented in the appendix to this 

chapter. The appendix shows the force transducer output and the steps which 

followed to reduce the data for comparison with theory. 

Any uncertainty associated particularly with the use of equation ( 5) to esti

mate the wire drag may, of course, be compensated for in the case of a sphere 

far from either an interface or bounding walls by the choice of a. The key prob

lem is that comparisons for this "far-field" data alone cannot distinguish 
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between errors in ( 5) compensated by a change in a:, and genuine changes in the 

wire/sphere interaction factor due to the presence of the bounding walls. 

Furthermore, we have no way to determine whether additional changes in a are 

required when the sphere approaches the interface. (If such changes in a were 

necessary, it would be impossible to determine what fraction of measured 

changes in the total drag are due to these (unknown) changes in the relative 

level of the wire/sphere interaction as the sphere approaches the interface, and 

which represent a meaningful change in the drag on the sphere alone.) For

tunately, an answer to both of these uncertainties in the choice of a is available. 

In particular, in figure III, we compare experimental data for a sphere approach

ing a solid wall, "corrected" in the manner outlined above using the value a:=0.03, 

with theoretical predictions for a sphere approaching an infinite solid wall due 

to Brenner (1961). Evidently, the corrected experimental data and the theoreti

cal predictions agree to within approximately ( ± 5%). This provides a strong 

indication that the changes in the wire/sphere interaction coefficient associated 

with a nonzero value of a are a physically relevant reflection of the presence of 

side (wall) boundaries (rather than inaccuracy in equation (5)), and further that 

the value of a can be considered as constant even when the sphere is in close 

proximity to an interface (or solid end wall) without significant loss of accuracy. 

Further comparisons of the corrected experimental results with a=0.03 will be 

made with the numerical results of Lee and Leal (1981) for approach to a 

deformed interface in section N. However, it is evident that our experimental 

apparatus can be expected to yield values for the drag on a sphere in normal 

motion towards a fluid/fluid interface which should lie within approximately 

± 5% of the "expected" values for motion of an isolated sphere toward the inter

face in an unbounded fluid system. 

Now that the method for wire correction has been discussed, we can 
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present our consideration of the restraint on sphere sizes due to the presence 

of the wire. For our experiment to yield accurate information about the sphere, 

we must have 

Fsphara ;<; O ( l) 
Fwira 

(7) 

so as not to mask the forces on the sphere. Upon substituting equation (5) and 

equation (3) for F sphere we see that we require 

ln~ -1 
Ra= --

1
-;<; 0(1). (8) 

a 

If we constrain the wire length to a maximum of 10 inches and choose the smal-

lest sphere to be 3/8 inch, we have that Ro"' 0(0.3) and thus the limit taken for 

the smallest sphere size to be investigated. 

We have shown that we must rely on our ability to make wire and wall 

corrections to be able to obtain meaningful comparisons between experiment 

and theory. The results of Lee and Leal ( 1981 )predict the existence of a column 

of fluid which trails behiJ.?.d the sphere for very large interfacial deformations 

(l< < -1). They were able to show for the cases which they studied, that a long 

tail of the upper fluid travels behind the sphere instead of breaking off and com-

pleting the penetration of the interface. In our experiment, for l< -1, the wire is 

moving through this column of liquid which is trailing behind the sphere. Thus 

the wire does not 'see' the tank surrounding it in this region, but instead it 

'sees' a much closer interface consisting of the fluid which makes up this trail-

ing column. For large values of "A ("A~ 0(1)) the "corrected" data from the exper-

iment may thus be expected to yield too large a value for the drag due to the 

proximity of more viscous fluid not accounted for in the wire correction when 

l< -1. For the case of small "A, on the other hand we would expect the "corrected" 
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experimental values to be too small since the wire correction is based on the 

surrounding fluid being more viscous. Due to the lack of relevant corrections 

for the wire/wall and wire/ sphere interactions in this region, the experiments 

do not generally study cases where l< -1. However, one experimental run (B4) is 

compared with numerical results for l< < 1 in figure XN which illustrates the 

problems of data evaluation discussed above. 
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IV. EXPERIMENTAL RESULTS 

The values of the dimensionless groups for the individual experiments that 

will be discussed are contained in table VII. The same information is also shown 

in figure II where Cg is plotted as a function of Ca with the approximate value of 

A. indicated by the marker type. It is quite apparent from this figure that there 

were only a limited number of experiments in the small Ca regime. This is a 

consequence of the real difficulty of finding fluids which will yield small values of 

Ca in our experimental apparatus, while simultaneously yielding measurably 

large drag forces. The drag on the sphere must be large enough to be measured 

accurately on the force transducer, as explained in the previous section. Since 

the drag and Ca are both linearly proportional to µU, any increase in the drag 

associated with µU, tends to lead to large values of Ca. The alternative to larger 

µV is an increase in the particle size, a, which allows for a large force for a 

smaller µU and thus a smaller value for Ca. However, beyond a .-w ~ in., this 

leads to an undesirable increase in the wall correction which tends to 'wash out' 

the interfacial phenomena even though we have included corrections for wall 

efiects in the data analysis. Thus to obtain small values of Ca in our experimen

tal apparatus, the fluid system was required to have a large interf acial tension, 

0(30 dynes/ cm), which we found to be difficult to achieve with the added con

straints of immiscibility, and large viscosity for the less dense fluid, 0(3000 cs). 

It may be noted that interf acial tension and a density difference across the 

interface both act to resist interface deformation. Thus, in order for either to 

exhibit a dominating influence on the degree of deformation, it is necessary that 

either Ca< < Cg in which case the degree of deformation will depend primarily on 

the magnitude of Ca, or Cg< < Ca in which case the dominant influence will be 

due to Cg. It can be seen from either table VII or figure II. that the only cases 

which afford an opportunity to examine the dependence of deformation or drag 
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on interfaciai tension are Cll compared with A6 (or possibly BB), and C4 com

pared with E2 or E4. In the latter case there is a large change in f... as well as Ca 

and this will complicate the comparison. However, in the first case, f... is very 

small except for case BB and thus the variation in f... between case C 11 and case 

A6 should not be very important. The changes in Cg are relatively small in all of 

these cases compared to the changes in Ca. Cases which allow investigation of 

the effects of Cg are more numerous since Ca> > Cg in the majority of experi

ments as can be seen from figure II. Likewise investigation of the effects of f... is 

also facilitated by the large number of runs where Cg is approximately constant 

and Ca is unimportant. 

N.A. EXPERIMENTAL COMPARISONS 

Jn figures N--Xt we present comparisons of the experimental runs which 

relate to the effects of Ca, Cg and f... after the method of data reduction of sec

tion III has been applied. These comparisons are made to illustrate the experi

mentally measured effects of Ca, Cg, and A. on the interface shape and the forces 

on the sphere. Conclusions from the experimental data were qualitatively 

checked against results from Chapter I to determine if there are any obvious 

disagreements with the theory for normal motion of a sphere towards a 

fluid/ fluid interface. 

EFFECT OF Co: 

Figures IV and V present comparisons of the runs which were previously 

identified as providing the best data sets for determining the effects of variation 

in Ca for 'fixed" values of Cg and A.. It is evident that the drag for both runs Cl 1 

and C4 lies above that for A6 and E4, respectively, presumably as a consequence 

of the much smaller values for Ca in the former runs. It is also evident in figure 

IX that the small value of Ca in Cll results in a much smaller deformation along 
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the centerline but a broadening of the region of interface deformation to larger 

values of R. Finally it is apparent that the drag curves of C4 and E4 will cross at 

l ~ -2, a result of the significantly larger value for A. in the latter case. These 

conclusions are in complete qualitative agreement with the results of the work 

in Chapter I. 

EFFECT OF Cg 

The influence of Cg on drag and interface shape can be determined from 

the results shown in figures V--V1II and X. In figure VI, the drag for run B4 is 

larger than the drag experienced by the sphere in run BB due to the smaller 

value of Cg for B4. The same result is shown in figure V11 where run DlO has a 

larger drag ratio than run DB, due again to the smaller value of Cg for Dl 0. 

Smaller values for Cg correspond to decreased deformation of the interface, as 

is evident when the results for run B4 are compared with those for BB in figure 

X. Figures V and V111 show the same qualitative dependence on Cg by compari

son between runs El and E4 and runs E2 and E3 for l< 3. For l> 3 in figures V 

and V1Il, the drag ratio appears slightly larger in the runs with the larger values 

for Cg, but this is presu.mably a manifestation of experimental error. The 

dependence of the drag ratio and interface deformation on Cg is again in good 

qualitative agreement with the results of Chapter I. 

EFFECT OF A. 

Figures N, Vl--VIII, and XI compare runs where the influence on the drag 

ratio and the interface shape due to A. can be studied. In figures VI and VIII we 

observe very weak dependence of the drag ratio on A.. The comparison of runs 

D2 and E2 in figure VIII shows almost no difference in the drag ratio even though 

there is a ten fold change in A.. Figure VI compares runs DB, D10, and E3, and it 

is again evident that the drag ratio for run E3 is largest for all l, due to the 

larger value of A.. Even though the differences in the drag ratio, shown in figure 
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VI, are relatively small, however, it should be noted that the increased drag due 

to increased A is partially compensated by the fact that Cg is slightly smaller for 

run DlO than it is for run E3. Likewise, the dependence of A indicated in figure 

VII is weaker than might be anticipated, because of the competition between 

increased A and increased Cg. In particular, all that we can conclude from 

figure VII is that the increased drag due to the tenfold increase in A from case 

D2 to E2 is almost exactly balanced by the decreased drag associated with the 

increase in Cg. In figure IV, a competition between A and Cg is evident where the 

eiiects of A on drag ratio apparently dominate for l< -2 and the effects of Cg 

dominate for l> 2. It is interesting to now observe in figure XI how the interface 

shape fits into this picture of a competition between A. and Cg in runs A6 and BB. 

Run A6 experiences smaller deformations and larger drag ratios for l> 2 when 

compared with run BB, while the opposite is true when l< 2. This is not to say 

that the whole story of drag ratio can be told by simply observing the interface 

shape. It is quite obvious that the shapes for runs A6 and BB are not equal 

between l=-2 and l=2 where the drag ratios are equal. But it does appear that 

the proximity of the sphere to the interface plays an important role. Finally 

figure VII compares the drag ratio for runs B4 and DB where it is obvious from 

comparisons at large l that experimental error has accentuated differences in 

the drag for small l. Still we can conclude, that for values of Cg and A near 1, 

differences in Cg are more important than differences in A in determining the 

drag ratio. This result would be expected as it has already been shown that A 

only has a small influence on the drag for l> 0. These conclusions are again 

verification of those obtained in Chapter I. 

N.B. QUANTITATIVE COMPARISONS WITH THEORY 

Essentially the comparisons of the preceding sub-sections have demon

strated good qualitative agreement with the theoretical predictions of Chapter I. 
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It is also of great interest to verify the quantitative accuracy of the experimen

tal techniques, not only to better understand the particular results obtained in 

this investigation, but as a preliminary to future investigation of problems which 

cannot easily be studied theoretically. The theories available for quantitative 

comparisons are the small deformation results of Chapter I and the large defor

mation numerical results of Lee and Leal (1981). 

Our objective, then, is to compare the present experimental results (after 

applying wire and wall corrections which were presented in section III) with 

these analytical and numerical results. As discussed in Chapter I. the small 

deformation theory is expected to apply when l/Ca + 1/Cg is large and l> > 1. 

The condition on the interfacial parameters is required in order that the inter

face remain near fiat, while the requirement l> l, is a result of the solutions for 

the flow field being obtained as a series solution in the small parameter l-1. The 

numerical solutions for the force and interface shape by Lee and Leal (1981) are 

expected to apply for all values of l (except as noted in the comparison with run 

B4), Ca, Cg and "A. However, only one numerical run (A.=1, Cg=l, and Ca=00 ) in 

the paper of Lee and Leal (1981) corresponded closely to the experimental runs 

which were performed (run B4 /\.=0.965, Cg=0.934, and Ca=65.8). Thus, addi

tional numerical results were obtained here, using the numerical scheme 

developed by Lee and Leal (1981), for values of "A, Cg, and Ca which were obtained 

experimentally. 

We will first make quantitative comparisons of the experimental work with 

the results of Chapter I to determine the values of l and 1 /Ca + 1 /Cg (and the 

resultant degree of interface deformation) that are associated with the failure 

of the small deformation expansion. This is followed by comparisons of the 

experimental data with the numerical results mentioned above, primarily as a 

test of the accuracy of the experiment. Finally comparison is made with an 
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experimental run where it is anticipated that theoretical results may not agree 

due to an interfacial phenomena associated with large interfacial tensions. 

Figure XII shows the experimental data for the drag ratio for run El ( l /Ca 

+ l/Cg = 9.2) and the corresponding theoretical prediction from Chapter I for 

motion of a sphere towards a slightly deformed interface. It is evident that the 

agreement is good down to l "-' 3 where, presumably, the assumption l-1< < 1 

starts to break down. Since the interface deformation also starts to become 

significant at about the same point (e.g. for l=3 the centerline deformation is 

found to be "' 0.2 for run El -- note that the deformation has been nondimen

sionalized with respect to the sphere radius), we would expect the predicted 

results to diverge rather rapidly from the experiments with decrease in l, as is 

in fact observed in figure XII. 

A similar comparison of drag ratio data for run E2 ( 1 /Ca + 1 /Cg = 5.56) 

with both the small deformation theory and the numerical results, is shown in 

figure XIII. In this case, the small deformation theory and the experiments 

diverge for larger values of l, as a consequence of the larger deformation which 

occurs for the smaller value of 1 /Ca + 1 /Cg. Much better comparison is 

apparent between the numerical results and the experiments (as expected), 

thus tending to confirm the accuracy of the experimental methods. 

Finally, in figure XIV, we compare numerical, small deformation and experi

mental results for run B4, where 1 /Ca + 1 /Cg = 1.08. In this case, the deviation 

between the latter two results is particularly severe, as would be expected since 

1/Ca + l/Cg "' 0(1). It may be noted, in this regard, that the interface defor

mation already yields a centerline displacement of "' 0.2 for l=5.5. Comparison 

between the numerical results and experiment, on the other hand, is much 

better. Indeed, from l= 1.5 to l=-1.5 the drag ratios agree exceptionally well. The 

agreement is poor at l=3 but this is due to the fact that in the work of Lee and 
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Leal (1981) this. case was started with a fiat interface at l=S, and it takes some 

distance before the interface shape and velocity fields are not influenced by the 

fact that the sphere has not come from some large value of l. The departure of 

the two curves for l< -1.5 is a consequence of the presence of the tether in the 

experiments. The numerical work of Lee and Leal ( 1981) is able to accurately 

predict the force on a sphere which is located even at '1arge" negative values of l, 

provided that the sphere is still surrounded by the upper fluid. As discussed in 

section III, the experimental results are not expected to accurately handle the 

case for large deformations of the interface where a long tail of fluid trails 

behind the sphere. Figure XVlI also shows good agreement between the meas-

ured and calculated interface shapes in the region l=-1. 

Finally, figure XV compares run C4 (1/Ca + 1/Cg = 6.21) with predictions 
\ 

from both the small deformation theory of Chapter I and with numerical predic-

tions for the same values of Ca, Cg and f... Evidently, in this case, the theoretical 

and experimental results are in only modest agreement, and the "large" defor-

mation, "exact" numerical results appear worse relative to the data rather than 

better as expected. In addition, it can be seen by comparing the experimentally 

observed interface shapes for run C4 with the numerically calculated results in 

figure XVlII that the observed deformation is much larger than predicted numer-

ically. A possible rationalization of the rather poor agreement in this case, rela-

tive to those cases considered earlier, arises from the observation that run C4 

involves a large interfacial tension. Thus, relatively smaller amounts of surfac-

tant contamination can lead to interf acial gradients of sufficient magnitude to 

significantly retard the tangential velocity at the interface. This would naturally 

lead to the observed larger drag forces, and the smaller mean values of the 

interfacial tension relative to those of the uncontaminated interface would tend 

to allow more deformation for the same nominal values of Ca, Cg, and A. (note 
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that the value of Ca based upon?' for the uncontaminated interface will be lower 

than the effective value based on ?' at the contaminated interface). A partial 

test of this hypothesized explanation for the relatively poor comparisons cited 

earlier, is shown in figure XVI. in which the experimental results are compared 

with theoretical results for a solid wall from figure III. It is evident that the 

experimental results show much better agreement with these drag ratio predic

tions for a solid wall, thus lending support to the hypothesis of reduced tangen

tial velocity on the interface due to contamination in this case of 'large"?'· 

We have thus found good agreement ("" 5%) for l> 3 between the experi

ments and the small deformation results of Chapter I when 1/Ca + 1 /Cg = 

0(10). For smaller interfacial returning forces and thus larger interfacial defor

mations, the comparisons of experiment with the numerical predictions from 

Lee and Leal (1981) provide agreement to within 10% for l> -1. One significant 

exception which was found not to agree with the numerical results involved run 

C4 with its large interfacial tension. It has been hypothesized here, that interfa

cial contamination was responsible for the discrepancies between experiment 

and theory in this case by producing gradients in the interfacial tension under 

flow circumstances. 
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V. CONCLUSIONS 

In the observations of the dependence of drag ratio on Ca, Cg, and "A in sec

tion N.A" we found good qualitative agreement with the predictions from 

Chapter I. Section IV.B. provided the quantitative comparisons with the results 

in Chapter I from which some conclusions can be drawn about the range of vali

dity of the small deformation theory. A correlation was found indicating when 

deviation of the small deformation theory from the experimental results would 

occur. For 1 /Ca + 1 /Cg Rl 10 this deviation occurred at l Rl 3 and corresponded 

to an interfacial deformation of ....... 2. As the value of 1 /Cµ + 1 /Cg decreased, the 

value of l for which deviation became significant appeared to increase. Finally 

for 1 /Ca + 1 /Cg Rl 1, the point of deviation of the small deformation theory for 

the drag ratio and the drag ratio from experimental measurement had moved 

out to l r::::l 5.5, where again this deviation corresponded to an interfacial defor

mation of ....... 2. These results correspond to values of Ca/Cg> 1 and no conclu

sions can be drawn for the case of Ca/ Cg< 1. 

Furthermore, in section IV.B., the error between the experimental results 

and the numerical prediction was less than ....., 10% of the total drag for l> -1. The 

exception to this level of agreement was concerned with a system where the 

interf acial tension was large and expected to dominate and thus presumably be 

subject to the effects of interface contaminants. The case of large interf acial 

tension proved to be quite interesting. The results indicate care is necessary in 

applications of theories when interf acial phenomena dominated by surface ten

sion are studied in the possible presence of surfactant contaminants. 
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TABLE I 

Experimental Systems 

System Lower Phase Upper Phase Interfacial Tension (dynes/cm) 

# Solid Wall Polybutene # 24 --

A Water Polybutene# 24 34.1 ± 0.4 

B Silicone Oil 30,000 Polybutene # 24 1.9 ± 0.2 

c Water Silicone Oil Blend 37.1 ± 0.4 

D Silicone Oil Blend Polybutene# 16 1.9 ± 0.2 

E Silicone Oil 30,000 Polybutene# 16 1.9 ± 0.2 

Silicone Oil 30,000 is Dow Corning Silicone Oil 200 Fluid grade 30,000 cs; Silicone 

Oil Blend is Dow Corning Silicone Oil 200 Fluid 28.9% grade 30,000 cs and 71.1% 

grade 1,000 cs; Polybutene is Chevron Polybutene w I grade code 
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TABLE II 

Fluid Parameters 

Viscosity- - - -19°C--24°C 

Fluid A B c 

Silicone Oil 30,000 -75.1993 45798.4 -6465589. 

Silicone Oil Blend -188.302 110957. -16040387. 

Polybutene # 16 90.9942 -59131.8 9861929. 

Polybutene # 24 52.9987 -36094.8 6531496. 

Water 0.229832 -4944.93 1034272. 

[A+lL+~ T T2 . . . gm µ = e , T m 0 K. µ m poise; 
cm sec 

--

Density- - - -19°C--24°C 

Fluid p b.p TEMP 

Silicone Oil 30,000 0.972533 -1.00449 x 10-3 21.00 

Silicone Oil Blend 0.971046 -8.97484 x 10-4 20.95 

Polybutene # 16 0.872236 -4.91887 x 10-4 19.92 

Polybutene# 24 0.886373 -5.17835 x 10-4 20.65 

Water 0.998405 -2.1167 x 10-4 19.00 

p =RHO+ (T-TEMP) x D.p, Tin °C, pin glee 
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TABLE III 

Polybutene # 16 Viscosity and Density Data 

Temp. (°C) 

19.71 ± 0.06 

19.92 ± 0.06 

20.5G ± 0.06 

21.30 ± 0.02 

22.03 ± 0.03 

23.17 ± 0.03 

Viscometer # 600 J964 

Time (sec) Specific Gravity 

292.1 

291.1 

292.0 

291.9 

x = 291.775 

269.8 

269.1 

270.0 

269.7 

x = 269.65 

252.1 

252.5 

252.2 

252.1 

x=252.225 

236.1 

236.2 

236.4 

236.6 

x =236.325 

0.8738 

0.8728 
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TABLE IV 

Polybutene /f 24 Viscosity and Density Data 

Temp. (°C) 

19.44 ± 0.03 

20.65 ± 0.03 

21.86 ± 0.03 

22.94± 0.04 

Viscometer# 600 J964 

Time (sec) 

2015.3 

2014.0 

2011.8 

2008.2 

x = 2012.325 

1786.4 

1784.3 

2--1 787 .3 

1788.6 

:x = 1 786.78 

1590.5 

1589.7 

1595.7 

2--1596.0 

1597.2 

:x = 1594.12 

2--1446.1 

1436.1 

1444.2 

1446.6 

1441.9 

1441.3 

x = 1443.186 

Specific Gravity 

0.8891 

0.8881 

0.8877 

0.8871 
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TABLEV 

Temp. (°C) 

19.86 ± 0.04 

19.94 ± 0.04 

Silicone Oil Blend Viscosity and Density Data 

Time (sec) 

20.55 ± 0.04 

20.95 ± 0.04 

21.30 ± 0.04 

21.96 ± 0.04 

22.09 ± 0.04 

23.17 ± 0.04 

Viscometer # 500 E483 

2--443.3 

443.6 

443.5 

x=443.425 

2--438.5 

438.9 

438.6 

x =438.625 

432.1 

431.8 

431.9 

431.7 

x =431.875 

2--425.4 

2--425.3 

x =425.35 

Specific Gravity 

0.9738 

0.9730 

0.9723 

0.9714 
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TABLE V1 

Silicone Oil 30,000 Viscosity and Density Data 

Temp. (°C) 

19.94 ± 0.04 

21.00 ± 0.03 

22.00 ± 0.03 

22.95 ± 0.03 

Viscometer # 600 J964 

Time (sec) Specific Gravity 

1599.8 0.9755 

1599.5 

1599.2 

x = 1599.5 

1566.6 

1566.1 

1568.0 

1568.0 

x= 1567.175 

1534.6 

1535.4 

1534.4 

1534.7 

x = 1534.775 

1506.9 

1507.8 

1506.5 

1507 .4 

x= 1507.15 

0.9745 

0.9737 

0.9729 
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TABLE VII 

Run Parameters 

Run Particle Velocity Tem{certure Ca Cg /\ Radius (cm) (cm/sec) oc) 

9 0.9521 0.396 21.18 -- -- --

A6 0.6286 0.355 20.56 3.506 2.720 3. x 10-5 

B4 1.2697 0.380 20.60 65.790 0.934 0.965 

BB 0.6286 0.470 21.55 74.158 4.247 1.036 

C4 1.2697 0.382 21.13 0.347 0.301 3. x 10-4 

Cll 0.4747 0.372 20.93 0.339 2.107 3. x 10-4 

D2 1.2697 0.380 20.31 9.924 0.122 0.631 

DB 0.6286 0.681 20.98 16.742 0.831 0.662 

DlO 0.6286 0.550 20.98 13.517 0.671 0.662 

El 1.2697 0.397 21.84 9.029 0.110 7.146 

E2 1.2697 0.655 21.84 14.894 0.182 7.146 

E3 0.6286 0.651 21.90 14.738 0.724 7.175 

E4 0.6286 0.387 21.90 8.762 0.430 7.175 
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Figure Captions 

Figure I: Schematic view of experimental apparatus. a: variable speed 

motor; b: low pitch 6 in. aluminum take-up wheel; c: 1I16 in. stain

less steel cable w I swivel fitting at lower connection; d: ruler; e: 

3 I 4 in. square by 42 in. aluminum guide bar; f: 6 in. guide affixed 

rigidly to wall w I 8 screw adjustments for vertical alignment of 

guide bar; g: mark for ruler readings, attached to f; h: digital 

clock; i: ring force transducer w I thermal isolation mounting to 

guide bar; j: thermal isolation housing for force transducer; k: 

.004 in. straightened stainless steel wire; 1: polished bronze sphere; 

m: fluid 1, lower phase: n: fluid 2, upper phase; o: 16 in. square by 

36 in. plexiglas tank, 1/2 in. thick; p: video camera with 6:1 zoom 

and 2 diopter close-up lens; q: video camera with 6: 1 zoom and 4 

diopter close-up lens; r: screen splitter and recorder to combine 

images from cameras p and q and record results; s: video monitor 

with interface from camera p in upper section and clock and ruler 

from camera. q in lower section. 

Figure II: Log/Log plot of parameter space for experimental runs. 

+ A.=O., * A.=0.6, o A.=1.. and o A.=7. 

Figure III: Approach of solid sphere normal to infinite plane solid wall. Drag 

ratio versus distance to the interface. 

____ experimental results ____ theoretical results 

Figure N: Drag ratio versus distance to the interface. 

____ C11, ____ A6, and- - - - - - -BB 

Figure V: Drag ratio versus distance to the interface. 

____ C4, ____ E4, and- - -- - - - El 
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Figure VI: Drag ratio versus distance to the interface. 

___ DB, ____ DlO, and- - - - - - -E3 

Figure VII: Drag ratio versus distance to the interface. 

___ B4, ____ BB, and- -- - - - -DB 

Figure VIII: Drag ratio versus distance to the interface. 

____ D2, ____ E2, and- - - - - - -E3 

Figure IX: Interface shape comparison for the variation of distance to the 

interface, l, with t..=1, Cg=l, and Ca=oo. 

____ Cll and ____ A6 

Figure X: Interface shape comparison for the variation of distance to the 

interface, l, with f..=l, Cg=l, and Ca=oo. 

____ B4 and ____ BB 

Figure XI: Interface shape comparison for the variation of distance to the 

interface, l, with f..=l, Cg=l, and Ca=oo. 

____ A6 and _____ BB 

Figure XII: Drag ratio versus distance to the interface. 

____ El and ____ small deformation results 

Figure XIII: Drag ratio versus distance to the interface. 

____ E2, ____ small deformation results, 

and - - - - - - - numerical results 

Figure XN: Drag ratio versus distance to the interface. 

____ B4, ____ small deformation results, 

and - - - - - - - numerical results 

Figure XV: Drag ratio versus distance to the interface. 

____ C4, ____ small deformation results, 
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and - - - - - - - numerical results 

Figure XVI: Drag ratio versus distance to the interface. 

____ C4, ____ solid wall theoretical results, 

and - - - - - - - numerical results 

Figure XVII: Interface shape comparison for the variation of distance to the 

interface, l, with /\.=0.965, Cg=0.934, and Ca=65.790 for B4 and 

/\.=1., Cg=l., and Ca= 00 for the numerical results. 

____ B4 and ____ numerical results 

Figure XVIII:Interface shape comparison for the variation of distance to the 

interface, l, with /\.=0.0003, Cg=0.301, and Ca=0.347. 

____ C4 and ____ numerical results 
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APPENDIX 

For completeness, the force transducer output voltage as a function of 

sphere position is presented for each experimental run in figures 1 -- XIII. While 

photographs of the sphere and interface for selected runs and values for l are 

presented in figures XIV-XXIII. These are accompanied by the corresponding 

computer outputs which relate to the analysis of the wire and wall corrections, 

in tables I - XIII. We present here a discussion for the data of run B4 to point to 

the important aspects in the force plot and also to illustrate the method used to 

"correct" these data for the presence of the wire and walls. 

Figure Ill and table III present the force data and the corrected drag ratio 

results, respectively, for run B4. The force data in figure 111 have four distinct 

regions relating to the interaction of the sphere with the interface. The force in 

region 1 represents the the weight of a stationary sphere immersed in the fluid. 

The sphere is set impulsively into motion by lowering the wire in region 2. Here 

the force on the sphere remains relatively constant while the force on the wire 

increases 'linearly" (only an approximation as boundary/boundary interactions 

complicate the problem) With increasing length immersed in the fluid. In region 

3 we see the interaction of the sphere with the interface which accelerates the 

decrease in measured force on the wire and sphere. Finally the sphere center 

passes the plane of the undeformed interface and enters region 4 where the 

force on the sphere is associated with local stretching of the deformable inter

face. 

These same data are analyzed in table III where the wire and wall correc

tions are calculated to obtain a value for the drag ratio to be used in compari

sons with theory. The top half of the table is concerned with the physical data 

for the experimental run and the headings for each number are intended to be 

descriptive of the listed quantity. For example, some of the more useful 
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quantities are; sphere diameter (SPH DIN), wire diameter (WIRED IN), fluid tem

perature (FL TEMP °C), sphere nominal velocity (VEL CPS) and self explanatory 

fluid properties and dimensionless groups. The first two columns of numbers 

are the data from the strip chart recorder (figure III), Next is the dimensionless 

distance of the sphere center to the undeformed interface. Column four has the 

total force data ( g c~ 1 as measured by the force tranducer. The following 
sec 

column records the total length of immersed wire. The sixth column has the 

corrected value for the ratio of DE Mestre and Katz ( 197 4) and the empirical 

correlation (ex.+ (3). The next column has the wire drag as calculated in equation 

(5). this is followed by the drag on the sphere which is obtained by dividing 

"RATIO" into the 'TOTAL FORCE" and then subtracting the wire drag and the drag 

due to the wall correction (not shown). Finally the drag ratio (SCALED DRAG) is 

obtained by dividing the drag on the sphere by Stokes' drag (note that the velo-

city does change during the course of the experimental run). 
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(d) 

( e) 

Figure XN: Photographs for Run A6. a.) l=3, b.) l= 1, c.) l=O, d.) l=-1. e.) l=-3. 
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(d) 
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Figure XV: Photographs for Run B4. a.) L=3, b.) L=l. c.) L=O, d.) L=-1. e.) L=-3. 
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(d) 

(e) 

Figure XV1: Photographs for Run BB. a.) l::3, b.) l=l. c.) l=O, d.) l=-1, e.) t::-3. 
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(a) 

(b) 

(c) 
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(d) 

(e) 

Figure XV11: Photographs for Run C4. a.) l=3. b.) l=l. c.) l=O. d.) l=-1. e.) l=-3. 
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(a) 

(b) 

(c) 
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(d) 

(e) 

Figure XVIII: Photographs for Run C11. a.) l=3, b.) l=l, c.) l=O, d.) l=-1. e.) l=-3. 
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(b) 

Figure XIX: Photographs for Run D2. a.) l= 1, b.) l=O 
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(a) 

(b) 

Figure XX: Photographs for Run DB. a.) L=-1, b.) l=-2 
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(a) 

(b) 

Figure XXI: Photographs for Run D10. a.) l=O, b.) l=-1 
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(a) 

(b) 

Figure XXI1: Photographs for Run E2. a.) l=O, b.) l=-1 
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(a) 

(b) 

Figure XXIII: Photographs for Run E4. a.) l=-1, b.) l=-2 
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CHAPTER N: 

Numerical Investigation of the Parallel Motion of a Rigid 

Sphere Near a Deformable·Interface 
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I: INTRODUCTION 

Throughout the long history of solutions to creeping flow or inertialess 

problems, since the time of Stokes, researchers have been formulating problems 

which lead to analytical solutions. These problems necessarily fall into the class 

of problems with geometries in which, for example, the boundary is a coordinate 

surface as in the original work of Stokes (1851) for fl.ow around a rigid sphere or 

near enough to a coordinate surf ace so that domain perturbation techniques 

can be used as in the work of Brenner (1964) for flow around a slightly deformed 

fluid drop. In Chapter I of this thesis, domain perturbation was again used to 

study the drag on a solid sphere as it rotated and translated relative to an 

infinite interface which was assumed to undergo only small deformation as a 

consequence of the large interfacial forces present. This work was extended by 

Lee and Leal ( 1981) to account for large deformations for translation of a rigid 

sphere normal to an infinite fluid/fluid interface. In this case, the boundary 

conditions cannot be easily satisfied analytically due both to the basic non

linearity of the problem and to the deviation of the true interface from coordi

nate surfaces in a simple c9ordinate system, and the problem was solved numer

ically for the force and torque on the sphere as well as the interface shape. 

Since the governing equations are still linear, however, it is possible to at least 

partially circumvent the difficulty of satisfying the boundary conditions on an 

arbitrary interface shape by using a general integral representation of the solu

tion to Stokes' equation. An appropriate general solution is that obtained by 

Ladyzhenskaya (1963). Ladyzhenskaya (1963) used hydrodynamic potential 

functions to generate integral solutions to the creeping fl.ow equations in terms 

of distributions of so-called single and double layer potentials over the boun

dary. Since the velocities and stresses on the boundaries are the weighting 

functions in the single and double layer integrals, their strengths can be 
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evaluated by inverting the system of linear equations generated by these single 

and double layer integrals when they are broken into finite sums. 

Youngren and Acrivos ( 1975) were the first to use Ladyzhenskaya's solution 

in this manner to solve the problem of creeping flow of an unbounded fluid past 

a particle of arbitrary shape. Youngren and Acrivos (1976) and Rallison and 

Acrivos ( 1978} extended this work to consider the case of drops in extensional 

flow. 

The present work is a continuation of Lee and Leal (1981) where instead of 

motion normal to the interface, we consider the translation of a rigid sphere 

parallel to an infinite, initially fiat, interface in the absence of particle rotation. 

Our objective is an investigation of the drag and torque on a sphere and the 

interface shape caused by this parallel motion. In particular, we will investigate 

how these quantities are influenced by the interfacial deformation parameter, 

Cg (ratio of ca,pillary number to Bond number), and the proximity of the sphere 

to the undeformed plane of the interface. It is our desire to determine the 

regions in which the small deformation results of Chapter I and fiat interface 

work of Lee and Leal ( 1980) apply and also to extend these regions for the 

parameters studied. Specifically, one prediction which needs investigation 

comes from the sm.all deformation results of Chapter I which show the existence 

of a normal force directed away from the interface for l> 2, but changing sign 

and directed towards the interface for l< 2 in some of the parallel motion stu

dies. 

It is important to note that for cases of large deformation, as discussed 

here, the general problem of translational motion is nonlinear and the solutions 

of normal and parallel motion cannot be superimposed to obtain results for 

arbitrary directions of translation as was the case for a fiat or nearly fiat inter

face (cf. Lee and Leal (1980) and Chapter I). The major difficulty in going from 
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the work of Lee and Leal (1981) to this problem is the fact that the flow field is 

no longer axisymmetric and there is thus one dimension more of complexity in 

the numerical equations. 
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Il: PROBLEM FORMULATION AND METHOD OF SOLUTION 

We consider here the parallel translation of a rigid nonrotating sphere near 

a deformable interface. The forces and torques on the sphere as well as the 

interface shape are to be calculated. The governing equations in each fluid are 

Stokes' equation and the equation of continuity 

for Fluid 1 (1) 

V ·U1 = 0 

and 

for Fluid 2 (2) 

V·il2=0 

where A. = µ 1 
. The two fluids are designated by subscripts 1 and 2 where the 

µz . 

sphere of radius, a, and velocity, U, is located in fluid 2. The pressure in equa-

tions (1) and (2) is the hydrodynamic pressure, that pressure which exists above 

the hydrostatic pressure of a stationary fluid at the same point. The equations 

(1) and (2) and the boundary conditions have been nondimensionalized with the 

characteristic velocity, U, length, a, and stress, µ 2 !I..... The boundary conditions 
a 

are, 

as I xi ~ oo (3) 

u 2 = iz on the sphere surface ( 4) 
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and on the interface, z=f(p,cp,t), 

_ _ Bf 
n·u1 - n·u2 - !Cat 

[[ n·T ]] = J\n.-T1 -n·T2 = -fn- - - -+1C3-+ - -- n. 1 1 [ " af a2
f te9 a2r J 

Cg Ca r 8r ar2 r 2 Bcp 2 

(5) 

(6) 

(7) 

Equation (5) is the condition of velocity continuity across the interface while 

equation (6) is the kinematic condition relating the normal velocity of the inter-

face and the change in interface shape with time. Finally in equation (7) we 

have the condition of matched shear stress across the interface, while the jump 

in the normal stress is balanced by the interfacial forces due to interfacial ten-

sion and to the jump in density across the interface. Ca and Cg are dimension-

less interface parameters defined by 

(8) 

and 

(9) 

which are known, respectively, as the capillary number and the ratio of the 

capillary number to the Bond number, B. The interfacial tension of the inter-

face is denoted as, 7, while, g, is the acceleration due to gravity. 

As in Chapter I. the interface shape can be written in terms of a scalar 

function, F, where 

F = z - f (p I cp' t) = 0 (10) 

and the unit normal to the interface then calculated as 
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n= ( 11) 

where 

(12) 

In the preceding work of Chapter I we required that Ca and/or Cg be very 

small so that f remains small and the method of domain perturbations was then 

invoked to express the interface boundary conditions at z=f in terms of 

equivalent conditions applied at z=O. In the present work, we solve for the inter-

face shape irrespective of the magnitude of the deformation. As indicated ear-

lier, we use the single and double layer integral formulation of Ladyzhenskaya 

(1963) for the solution of Stokes' equations, together with the analysis of boun

dary conditions due to Lee and Leal ( 1981) to obtain a set of coupled integral 

equations for the stress and velocity components at the sphere surface and at 

the interface 

+ -1-J[L+ rr ]·T8·ndSs xESF 
Brr R R3 ' 

( 13) 

+ -1-J[L+ rr ]·T8·ndSs xESs 
Brr R R3 ' 

(14) 

and 
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- - 1-f[l_ + rr ] ·F(f) dSF X.E SF 
Brr R R3 ' 

(15) 

where 

1 1 [ IC af 3 fJ
2
f tc3 fJ

2
f l F(f) = All·T1 -n·T2 = -fn- - --+JC -+ --- n. 

Cg Ca r Br 8r2 r 2 8rp2 

The superscripts F and S designate quantities measured on the interface and 

sphere surf ace respectively. The quantity, Tf. is the stress tensor evaluated in 

the limit as we approach the interface from fluid 2. The variable R is simply Ir/, 

where r is the interaction distance X-'YJ. xis the vector to the point at which the 

velocity and stress are to be determined and 7J is the vector to the point which is 

contributing to these quantities at x. The integral equations govern how 

stresses and velocities at one location on either the sphere surf ace or interface 

affect those same quantities in another element. Thus we have interactions 

between any position and every other position of the system; we call the terms 

~ , ~~ and r;; the strengths of the interactions. The stresses and velocities 

act as weighting functions in the system of linear equations that is generated by 

these interactions when both the stresses and velocities are taken as constant 

over an entire grid element. 

Now from equations (13)--(15), given the shape of the interface at some 

instant and the velocity of the particle, we can in principle evaluate the stress 

on the sphere surf ace, the stress at the interface and the velocity of the inter-

face. In practice these equations are discretized and the integrals approxi-

mated us sums. In this process, the velocity or stress on an element of surface 

is approximated by its value at the center of the element. We thus obtain a sys-

tern of linear equations in the unknown velocities and stresses, which can be 

solved by simple matrix inversion techniques. From the surf ace stresses, the 
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force on the sphere can be calculated and the interface velocities can be used 

with the kinematic boundary condition, equation ( 6), to march each element of 

the interface to a new position for a given choice of time step. The whole pro

cess can then be repeated with the new interface shape. 
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m: NUMEmCAL DIFFICULTIES 

In the first two sections we have described a problem which is formally simi

lar to the normal motion problem solved by Lee and Leal (1981). As we have 

noted the primary difference is that their problem is axisym.metric and the 

present problem is not. In the process of solving equations (13)-(15) Lee and 

Leal (1981) used the axisymmetry of the normal motion problem to analytically 

evaluate the angular contribution to the integrals and then proceeded to parti

tion the interface with respect only to p. Here, on the other hand, we must util

ize a two dimensional partitioning of both the sphere and interface surfaces. 

The number of grid elements thus becomes a key numerical problem and it 

is important to make every effort to minimize the total number. For motion of 

the sphere along the coordinate x direction with the undeformed interface being 

given as z equal to some constant, it is quite apparent that y=O is a mirror plane 

of symmetry for the +y and -y half planes. We use this result to write all unk

nown stresses and velocities in the -y half plane in terms of their mirrored quan

tities in the +y half plane. This greatly increases the bookkeeping for the 

interactions of the elements but it does decrease the size of the matrix to be 

inverted by 75%. 

The problem of evaluating the integrals near the singular points x = 71, 

corresponding to the self-interaction of an element, was handled in the same 

way as discussed by Lee and Leal ( 1981). In particular, the integrand was 

expanded in a small neighborhood of the singular point and the integral in this 

region was then evaluated analytically. The stress and velocity at other boun

dary elements (i.e. those whose center is located at 7J '# x) were assumed con

stant over the entire element for the calculation of the contribution to the 

stress and velocity at x. 
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Each element on the interface has six unknowns (three components of velo-

city aJ?.d three components of stress). while there are three unknowns per ele

ment on the -surf ace of the sphere (three components of stress with the sphere 

velocity, U, specified). The half sphere was divided into 36 elements, six angular 

divisions between 0 and rr in the rp direction and six equally spaced divisions in 

the z direction. This results in 36 elements covering the half sphere all with 

equal surface area as is readily apparent by noting that the area of any element 

is given in spherical coordinates by 

'Pe~ ~ 

Element Area= J J sin19-drp d19-= Arp J sin19-d19-
r;o 1 1'i 1'1 

co~ 

= 6cp J dcos19-= 6rp6z 
co~1 

where z=cos't9- for a unit sphere. The interface half plane was covered with 

twenty elements, four divisions in the angular direction and five radial divisions. 

The positioning of the radial elements was such that the elements were smallest 

near the origin where the shape had the greatest slopes or displacements from 

fiat and the elements were larger for large values of p. It was determined, for 

l = 6, that it was not necessary to include effects of the interface for values of 

p> 15, thus the largest p _in the outer most elements was kept at 15. As l 

decreased it was also possible to decrease the maximum value for p, so for l< 3 

the greatest value for p evaluated was 10 which increased the density of grid 

points in the region of largest deformation. These results. for the truncation of 

the interface area included in the calculations, were shown in great detail to 

lead to accurate results by Lee and Leal ( 1981 ). Fewer grid points were posi-

tioned on the interface than on the sphere surface because each interf acial grid 

contributes twice as many unknowns as generated at the sphere surf ace for the 
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addition of a grid point. To show that this represents a sufficient number of 

interf acial grid points. we have compared solutions for the motion of a sphere at 

l=2 for .A.=1. Ca= 00 and Cg=l evaluated using twenty interface elements extend

ing out to p=15 in one case and twenty elements out to p=lO in the other. The 

results, as presented in Table II, show that increasing the density of the inter

face grid resulted in a 93 change in the normal force and even smaller changes 

in the parallel force and torque values. 

Once the interactions of the elements (as called for in the integrals of Lady

zhenskaya ( 1963), equations ( 13)--(15)) have been evaluated, the matrix con

taining these interactions is inverted using a Gaussian elimination scheme done 

in double precision to minimize round,-off errors. The forces and torques on the 

body are evaluated by summing the forces and torques on each of the individual 

sphere surf ace elements. The final step is then to calculate a new interface 

shape from the kinematic condition on the interface, equation (6). As the velo

city and stress of each element greatly influences the motion of its neighboring 

elements it was found that the interface shape was very slow to converge. To 

enhance the convergence, an Adams-Moulton predictor-corrector scheme (see 

Carnahan, Luther and Wilkes ( 1969)) was added to try to minimize the number 

of steps taken to a steady shape. 
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IV: NUMERICAL RESULTS 

To check for numerical accuracy of the calculation· scheme we set l =10,000 

to remove all interactions between the sphere and the interface, thus reducing 

the problem to the motion of a sphere in an infinite fluid. For any direction of 

translation or rotation the forces and torques on the body in this case were 

within 0.6% of their theoretical values. The next point where comparison with 

theory is possible is to check forces, torques and interface shape for parallel 

translation for large values of l when the fiat interface results of Lee and Leal 

( 1980) and the small deformation results of Chapter I apply. Table I shows the 

comparison for the forces and torques for C,a= 00 , Cg=10 and A.=1, while the 

steady interface shapes from both theory and numerical work for these same 

parameters are presented in figure I. From these, it is apparent that the shapes 

are quite close, the forces agree to within 3% and the torque agrees to within 

10% at l=6. Figure II shows that the deviation in the shape from the theoretical 

shape has increased by l=3, still for Cg= 10, while table I shows that the normal 

forces are in significant disagreement. Thus our results for l=6 show good 

agreement with theory but do point to the possibility that a finer mesh would 

bring even better agreement. For l =3 the discrepancies are becoming larger 

and we expect the theoretical results to no longer apply. 

The convergence of the numerical scheme proved slow even for the small 

deformation problem 1 when the interface starts from fl.at. For this reason the 

number of parameters varied was limited but judiciously chosen to make the 

most of the computation time available. The first thing to note is that we used 

1. It is obvious that slow convergence is a minor problem for any case where the results are· 
close to known small deformation calculations. In this case the small deformation results 
are used as the initial guess of the shape. The problem of convergence only becomes 
significant as the deformations become large. In fact guessing the shape to initialize large 
deformation cases commonly increased computation time when compared with the time for 
the initial guess of a flat interface, as the interface motion was very sensitive to any error in 
the shape. 
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Ca=oo (the interfacial tension was set to zero) for all cases. The interfacial ten

sion forces depend on the curvature of the interface at a point and with the lim

ited number of grid points on the interface, any result depending on calculated 

values of surf ace curvature would be of questionable accuracy at best. This 

omission of Ca as one of the independent parameters is not thought to be a seri

ous void in the results, however, as the analytical results for a nearly fiat inter

face and the numerical results for the normal motion problem (cf. Chapter I, 

Chapter II and Lee and Leal (1981)) indicate both that Ca is unimportant when

ever Ca> Cg and Ca> 1. and also that variations in Ca and Cg yield qualitatively 

similar results. The calculations have also used a fixed value of ft.= 1. The results 

in Chapter I predict a very limited dependence on ft. for this problem when ft.-:?! 1. 

It is left for later studies to investigate results for A.< 1. The cases that were 

chosen studied the effects of the variation of land Cg. 

In figure III we compare the shapes for A.= 1, Ca=oo , and Cg= 1 as l is varied 

from 3 down to 1.5. As the sphere gets closer to the interface the deformation 

obviously increases and becomes more localized. This localization of the normal 

stress difference for a close approach of the sphere to the interface allowed us 

to concentrate more grid points near the origin for cases with l< 3. Also, the 

fact that the deformation tends to be close to zero at the largest values for p 

which were calculated, again indicates that the grid did indeed include large 

enough values for p. Probably the most striking result relative to the earlier 

small deformation theories, is the absence of fore/aft symmetry in the interface 

shape. For example, the point at which the interface crosses the undeformed 

plane lies behind the center of the sphere. Thus the interface appears as a trav

eling wave which "trails" behind the sphere. Table II presents the force and 

torque data that correspond to figure III. The numbers show that the forces and 

torques increase monotonically as the sphere moves closer to the interface. 
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This is in conflict with the results in Chapter I insofar as the normal force is 

concerned. In Chapter I it was shown that the normal force in the parallel 

motion problem was directed away from the interface and increased in strength 

as l decreased from co to 3. For l< 3, however, the normal force began to 

decrease and finally was directed towards the interface for l< 2. This change in 

sign for the force was attributed in Chapter I to the neglected terms in the small 

deformation solution for the flow field. With l small, it was anticipated that the 

neglected terms would be of the same order as the terms used to calculate the 

normal force. Table II confirms the existence of a monotonically increasing nor

mal force directed away from the interface as l decreases. 

The effects of changing Cg are considered in figure N and table III. It is 

clear, as expected, that the interface becomes more deformed as the interfacial 

"restoring" force (the density difference in this case) is decreased. This larger 

deformation is also coupled with a much broader shape, quite the opposite 

result than was found for the variation of l. Table III shows that both the paral

lel force and parallel torque decrease as the deformation increases. This is sim

ply a consequence of the locally greater mean distance between the sphere and 

the interface, and is expected for A.~ 1. The corresponding results for small 

values of A. are not as apparent, and it is evident from the nondeformable inter

face problem that they cannot be deduced directly from the results for A.~ 1. 

The most interesting result of varying Cg comes from the normal force. In this 

case the force is caused by the deformation and the proximity to the wall. But 

it can be seen that as the interface undergoes a larger deformation (for Cg> 1), 

some of the fore/ aft symmetry of the interface disappears and the sphere 

appears locally further from the interface, yielding a smaller normal force for a 

given value of l. 
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V: CONCLUSIONS 

The results clearly show that since the interface shapes were steady for 

parallel translation of a solid sphere the interface acts as a traveling wave. Thus 

the parallel motion problem can be solved here as a steady problem, where the 

forces and torques on the sphere and the shape of the interface will be constant 

as the sphere moves parallel to the interface displaced some fixed distance l. It 

was also determined that the wave form trails behind the sphere center and can 

deviate greatly from the symmetrical shapes obtained for the small deformation 

problem in Chapter I. Because of the skew in the interface shape, a symmetrical 

initial shape (i.e. a small deformation result whose magnitude was increased) is 

a poor starting guess for the numerical routine. The normal force results 

obtained here for small l are of some interest because they show that this force 

continues to be directed away from the interface even for small l, thus demon

strating that the peculiar sign change predicted for small l in the small defor

mation theory of Chapter I was, in fact, simply a consequence of a breakdown in 

the asymptotic expansion for too small values of l. Also, the dependence on the 

"degree" of deformation is not simple as was evident in the results for the varia

tion in Cg. It was shown that (for Cg> 1) the normal force on the sphere began 

to decrease with increase in Cg, this appears to be a consequence of some com

bination of the decrease in the fore I aft symmetry and locally greater mean dis

tance to the interface. 

Finally there is a need to improve the numerical rate of convergence of the 

interface shape if a study of parallel motion near a deformable interface is to be 

performed for the case of deformation dominated by interfacial tension. As 

noted earlier, an increase in the number of grid points on the interface would be 

necessary if interfacial tension is to be studied. To increase the total number of 

grid points requires a faster scheme for the matrix inversion step. One 
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possibility for improved convergence might utilize the fact that some of the grid 

points for large p experience only very small movements relative to the max

imum displacement of the interface. Thus computation time could possibly be 

reduced by converging the shape for small p, holding the normal velocity for 

large p at zero and the shear velocity and stresses at their zero deformation 

values. The matrix that is to be inverted will be small during the major part of 

the time necessary to deform the interface and this matrix will only grow as 

larger values of p are added to be converged. 
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TABLE I 

l=6 l=3 

Theory Numerical Theory Numerical 

Normal Force 0.000775 0.000794 0.0012 0.0061 

Parallel Force "'1.015 1.0246 1.0294 1.0361 

Parallel Torque "'-0.003 -0.0033 -0.0103 -0.0113 

Cg=lO Ca=oo i\=1 

Comparison of forces and torques from theory and numerical results as a func

tion of the distance to the interface. 
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TABLE II 

l= 1.5 2.0 2.0 3.0 

Normal Force 0.0628 0.0440 0.0404 0.0219 

Parallel Force 1.0369 1.0347 1.0290 1.0253 

Parallel Torque -0.0207 -0.0120 -0.0112 -0.0073 

Elements out to p= 10 10 15 15 

Cg=l Ca=oo A.=1 

Dependence of forces and torques on· the distance to the interface for parallel 

motion to a deformable fluid/fluid interface and a comparison for the depen

dence of forces and torques on grid density at l=2. 
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TABLE III 

Cg= 0.001 0.1 1 10 

Normal Force 0.0000075 0.0061 0.0219 0.0194 

Parallel Force 1.0366 1.0361 1.0253 1.0117 

Parallel Torque -0.0115 -0.0113 -0.0073 -0.0025 

Ca= 00 i\=l l=3 

Dependence of forces and torques on the density difference parameter, Cg, for 

parallel motion to a deformable tluid/tluid interface. 
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Figure Captions 

Figure I: 

Figure II: 

Comparison of shapes of the numerical results with theory in the 

small deformation region where/\= 1, l=6, Cg= 10, and Ca=oo. 

____ numerical results ____ theoretical results 

Comparison of shapes of the numerical results with theory in the 

small deformation region where A.=1, l=3, Cg=10, and Ca= 00 • 

____ numerical results ____ theoretical results 

Figure Ill: Interface shape comparison for the variation of l, with A.= 1, Cg= 1, 

and Ca=oo. 

____ L=3, ____ l=2, and - - - - - - - l=1.5 

Figure N: Interface shape comparison for the variation of Cg, with A.= 1, l=3. 

and Ca=oo. 

___ Cg=0.001, ____ Cg=0.1, - - - - - - - Cg=l, 

and ____ Cg=lO 
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