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ABSTRACT

The creeping motion of a rigid sphere in the presence of a deformable
fluid/fluid interface has been considered using theoretical, experimental and
numerical techniques. Solutions for small perturbations in shape, for an ini-
tially flat interface, are obtained to calculate the additional forces and torques
on a sphere rotating and translating both normal to and parallel with a slightly
deformed interface. The interfacial shape as well as the forces and torques are
calculated as a function of sphere position and interfacial deformation
parameters; viscosity ratio, capillary number, and ratio of Bond number to
capillary number. The interface deformation was found to yield no correction to
the torque or parallel force on the sphere for any combination of sphere
motion. The interface deformation did yield a force directed way from the inter-

face for all sphere motions which generate a deformation for the interface.

A new direct force measurement experimental apparatus is used to study
the normal motion of a rigid sphere approaching a deformable interface under
conditions of constant interfacial deformation parameters. The sphere was
lowered at a constant Velc;city and the force on the body was measured as a

function of the interface shape and values of the deformation parameters.

Study of the translation of a nonrotating sphere parallel with a fluid/fluid
interface, experiencing finite amplitude deformations, utilizes a numerical collo-
cation technique. The forces and torques on the body are calculated as a func-
tion of body displacement from the interface and the interface deformation
parameter (ratio of Bond number to capillary number). The interface shapes

are determined and the forces and torques on the sphere are calculated.
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INTRODUCTION
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The creeping motion of bubbles, drops and particles through a viscous
medium near a fluid interface has long been of interest in industrial applica-
tions. For example, in metallurgical processes the transfer of contaminant
materials from the molten metal to the molten slag involves the motion of small
particulates near much larger gas bubbles. In this process the fiuid motion and
interfacial properties can affect the rate of contaminant removal and a first
approximation to the problem is obtained by considering the motion of a parti-
cle near an interface which is flat in its undeformed state. Other processes
which involve coalescence phenomena are concerned with the passage of a body
across a fluid/fluid interface. In this case we would normally be concerned with
the relative motion of two drops. However, for the case of one drop much larger
than the other, the problem can again be treated as the motion of a drop near a

'flat’ Aluid/fAuid interface.

These phenomena indicate that the motion of a sphere in the presence of a
deformable interface is of interest as a model problem. The details of the
sphere/interface interaction are of primary concern, particularly the mechan-
ism of penetration of the interfacial boundary for a particle which moves nor-
mal to the undeformed surface. Two alternative mechanisms of penetration
exist, depending upon whether the interface breaks at the leading surface of the
body or breaks behind the body. The first case corresponds to the well-known
film drainage configuration, in which a thin film is formed along the leading sur-
face and rupture occurs somewhere in this film. The second mechanism is asso-
ciated with the formation of a tail of fluid following the sphere for the case of
large deformations. The penetration process is completed in this case when this
tail breaks. The motion of the sphere can be studied in either of two modes,
fixed velocity or moving freely under the action of external forces. It is expected
that the '"free” motion of the body is more realistic for practical applications,

however, the fixed velocity problem provides a more convenient vehicle for study
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over a wide range of values of the dimensionless groups since these are easily

adjustable by simply changing the velocity of the particle.

There has beeﬁ a considerable amount of theoretical and experimental
work related to the general problem of particle motion near an interface.
Brenner (1961) solved the creeping flow problem of both translation and rota-
tion of a rigid sphere near a nondeformable ﬁal interface where the second fluid
is either rigid or inviscid. This work was extended to arbitrary viscosity for the
second fluid in the work by Lee, Chadwick, and Leal (1979). Their solution
involved a series representation for the velocity field for large values of the
dimensionless distance to the interface. An exact solution in terms of bipolar
coordinates for this same problem was presented by Lee and Leal (1980). These
solutions for motion near a flat interface are relevant only in limiting cir-
cumstances when the interface remains approximately flat. In the general case
of a fluid/fluid interface it is necessary to take into account any interfacial
deformation which is present. Some aspects of this more general problem
involving the deformation of the interface have been studied experimentally by
Princen (1963) and Hartland (1969). In both of these investigations, the pri-
mary focus was in the dynamics of film drainage in circumstances when the
sphere is very near the interface. In order to carry out these studies, the sphere
was placed initially very near the interface and the gap between the sphere and
the interface was measured as the sphere moved closer to the interface under
the action of gravity. Bart (1968) studied the 'free fall" of a sphere toward a
deformable interface starting from large distances and continuing up to a dis-
tance of two body lengths from the undeformed interface. Shah, Wasan, and
Kintner (1972) later studied the mechanism of interface penetration, but only
for a relatively limited number of cases. Finally, Lee and Leal (1981) calculated
interface shapes and forces on a sphere for the normal approach to a deform-

able interface in the creeping flow limit using a numerical seolution scheme.
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Their work provides the first study for which the entire normal approach of a

sphere to the interface has been investigated (albeit, numerically).

To this point, there have been no complete analytic solutions for motion of
a sphere near a deformable interface. The primary difficulty is that the inter-
face shape is unknown. However, such an analytic solution would provide valu-
able insight into the dependence of the motion of the sphere on interfacial pro-
perties. The most obvious candidate for analytic solution is the limiting case of
small but nonzero deformations. The obvious limitations of considering only a
small deformations are offset, for the most part, by this potential application of
the solution to arbitrary particle motion. In pérticular, in the limit of a nearly
flat interface, solutions for translation normal and parallel to the interface can
be superposed, together with solutions for rotation normal and parallel to the

interface, to obtain results for an arbitrary particle motion.,

In this investigation we study the general problem of the creeping motion of
a sphere in the presence of a deformable interface, both theoret'}cally and
experimentally. From the governing equations and boundary conditions we can
identify the dimeﬁsionless groups that are important for the general problem.
In the creeping motion limit, the equations of motion for steady Stokes’ flow in

the two fluids on either side of the interface are

0=-Vp;+uV2y

0=V -u for Fluid 1 (1)

and

0 = -V ps + w2V *u,

0=9 u for Fluid 2 (2)

where w is the viscosity, u is the velocity and p;=p —p;gz i=1,2, where p is the

thermodynamic pressure and we have removed the hydrostatic head as
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measured from the undeformed interface. The two fluids are designated by sub-
scripts 1 and 2. The sphere has radius a and velocity U {or Q for rotation, with
resulting characteristic velocity (?a), and is located initially in ﬂuid 2. It is
assumed in the present work that it remains wholly in that fluid. The boundary

conditions are,

u;, up > 0 as [x]| » =, (3)
uz specified on the sphere surface, (4)
and on the interface,

u; = ug, (5)
n-u; =n-ug = Wlf| 2%— (8)
Ty = e n-Ty = glpz —p1) In—y §—+ -1;31—-] n, (7)

1 2

where the interface position is given by the scalar function
F=z-1f(p,p,t)=0 (8)

for the cylindrical cocrdinate system (p, ¢,z). The densities are represented as
p, and pp, while the interfacial tension is v, and g is the acceleration due to grav-
ity. We also have Tj= —p;I+ 7, where T; is the stress tensor in fluid i, 7; is the
viscous stress tensor and i=1,2. It can be seen in equation (7) that the change
in pressure at the interface associated with the hydrostatic head in the pres-
ence of deformation has been separated from the left hand side. This peints out
the role of the density difference across the interface as it relates to the stress

jump. Finally, R, and Rp are the principal radii of curvature at the interface.

We take the particle radius, a, and velocity, U, as the characteristic length

. This

U
and velocity respectively. While the characteristic stress is given as, i

yields the dimensionless equations of motion,



0=-Vp;+wmV *uy

0=V -u for Fluid 1
and
= =V pp + w2V fup
0=V u for Fluid 2
V-uz =0,
with boundary conditions,
uy, uz » 0 as x| » =,

Uy specified on the sphere surface,

and on the interface,

W; = Uy,
=y = —1Bf
W= = T9F et
S R S O S
An'T, nTg—Cg fn Ca R1+R2]n.

The dimensionless groups which appear in equations (9)--(15) are,

A= Lt Viscosity Ratio,

Hz

Capillary Number,

and

Ca U Capillary Number

Ce= 5 = ga®(pz—p;) Bond Number

(9)

(10)

(11)
(12)

(13)

(14)

(15)

(186)

(17)

(18)

along with, % the dimensionless distance of the sphere from the position of the
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undeformed interface. It is obvious that surface tension and/or the density
differences in the two fluids will be most effective at retaining a flat interface
when the dimensionless parameters, Ca and Cg, are small. Specifically, for small
Ca, forces associated with the interfacial tension are large relative to the viscous
forces and for small Cg, the forces associated with the density difference across
the interface are large relative to the viscous forces. It should be noted that

a= Cg~! and = Ca™lin Chapter II.

This general problem of motion of a sphere near a deformable interface is
studied in this thesis using three different methods. In Chapter Il we study the
deformation of the interface under conditions of small Ca or small Cg which
results in a small perturbation of the interface from flat. The solution is based
on the velocity fields calculated for motion near a flat interface by Lee,

Chadwick and Leal (1979), which consist of the leading two terms in a series

solution with respect to 1I"!. It may be noted that %i—is taken as zero in equa-

tion (14) corresponding to the assumption of a flat interface in the solution of
Lee et al. (1979). Also, the normal component of equation (15) was not used
because of the restriction that the interface remain flat. Our goal in Chapter 11
is thus to provide analytic results for arbitrary motion of a sphere near a
slightly deformed interface. The solutions are obtained using the so-called
"domain perturbation” technique in which the exact boundary conditions at the
deformed interface are replaced by asymptotically equivalent conditions applied
at the undeformed interface position. Thus, results for arbitrary motion of the
sphere can be constructed from the solutions for rotation and translation
parallel and normal to the interface by simple superposition as was noted ear-
lier. The calculation reported here proceeds from the results of Lee, Chadwick,
and Leal (1979) to calculation of the interface shape at first order using equa-

tion (15) and from this, to a determination of the corresponding corrections to
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the forces and torques on the sphere associated with this deformation.

Chapter III reports on a new experimental apparatus designed to measure
the force on a sphere as it moves normal to the interface for large interfacial
deformation. In the results from this study, the distance from sphere center to
the initial undisturbed interface position is given as I, with positive values of I
meaning that the center of the sphere has not penetrated the‘plane of the
undesturbed interface, whereas negative values for I indicate the sphere center
has actually passed beyond this plane. The experimental work provides a study
of the effects of Cg, A, and ! on the force on the body as well as the interface
shape. The results for this experimental method indicate promise for future
studies of inertial and non-Newtonian effects, again for motion near a deform-
able interface, and point to the potential importance of the inhibition of inter-

face motion due to surface tension gradients in some cases.

Finally in Chapter IV, numerical selutions are obtained for the creeping
motion problem of the translation of a non-rotating sphere parallel to a deform-
able interface, but with no restriction on the allowable magnitude of deforma-
tion. The interface shape, as well as the forces and torques on the sphere, are
determined as a function of I and Cg for Ca » = by satisfying equations (9)--(15)
al discrete points on all surfaces. This investigation provides a further study of
certain features of the small deformation results of Chapter vaor the same

problem.
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Abstract

We investigate the effect of small deformations of an initially flat fluid
interface on the force and torque experienced by a nearby translating and
rotating solid sphere. The small deformation problem is reformulated in terms
of equivalent boundary conditions on a flat interface; this allows a separation of
the rotation and translation problems, along with their respective components
parallel and normal to the undeformed interface. Results for the force and
torque corrections due to interface deformation are thus calculated for the four
fundamental cases of translation normal and parallel to the undeformed
interface: and rotation with the axis of rotation normal and parallel to the
undeformed interface. These results can be superposed to obtain the force and
torque on a sphere which is undergoing an arbitrary translational and/or

rotational motion near the interface.
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I. Introduction

When a small spherical particle translates at very low Reynolds number

through an unbounded viscous fluid, it is subjected to a force
F = 8mual (1)

as calculated over 100 years ago by Stokes. When the same particle rotates

under similar circumstances it experiences a torque
T=8mua’Q. (2)

Here we have denoted the velocity of the sphere relative to that of the
suspending fluid at large distances from the sphere as U and the relative
angular velocity as 0. The sphere radius is represented by a, and the viscosity

of the fluid by u.

Recently, Lee, Chadwick, and Leal (1979) have considered the translation
and rotation of a rigid sphere in the vicinity of a flat fluid interface between two
immiscible Newtonian fluids with a viscosity ratio, A. In this case, both the
creeping flow equations and boundary conditions are linear, and the force and

torque can be expressed in a dimensionless relationship of the form

F/uaU = KpU+ KO %— (3)
89 = w..17 Y 3 '
/ua’t = Ke'U —=— + Kg'Q (4)

where {_Jand ﬁ_are the translational and angular velocities of the particle, scaled
with respect to the speeds U and (0, respectively. The coefficients Ky, K and Ky
are second-rank tensors, known as ‘resistance’ tensors, where K{ is the
transpose of K;. When expressed in terms of Cartesian axes that lie normal

and parallel to the interface, these take the relatively simple forms



K7 0 0

Kr=6n|0 Kf 0 (5)
0 0 K/
(0 K. 0

Kc=6m|-Kc 0 O (8)
(0 00

and

Kf o 0o

Kg=8m|0 K} © (7)
0 0 K

The components of these resistance matrices were shown by Lee, Chadwick,
and Leal (1979) to be a function of A, and of the distance between the sphere
center and the interface relative to the particle radius, i/a. In the limit, {/a
- o, Kc » 0, while K; and Kg both approach the unit matrix, I. Approximate
results for the coefficients of these matrices were determined by Lee, Chadwick,
and Leal (1979) for large but finite l/a, while exact but more cumbersome
results were obtained by Lee and Leal (1980) for arbitrary l/a>1. Not only
does the presence of the interface modify the force and torque for simple
translation and rotation, but in general, there is a coupling between
translational and rotational motions of the sphere. Thus, for example, a
particle which is acted upon by a torque will both rotate and translate, while
the effect of an external force is likewise to produce both translation and
rotation. It may be noted, however, that the basic linearity and symmetry of
the Stokes’ flow problem for a sphere near a plane interface insures that the
translational motion produced by ah applied force can only be co-linear with the
force, and similarly, the rotation due to a torque can only be co-linear with the

torque.
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All of the results of the preceding paragraph pertain to the case in which
the interface remains precisely flat, in spite of the motions induced in the two
fluids by the motion of the sphere. Of course, a real interface cannet remain
precisely flat since the motions induced in the two fluids by the motion of the
sphere yield a normal streés difference across the interface. The results of Lee,
Chadwick, and Leal (1979) and Lee and Leal (1980) must, therefore, be
recoghized as applying only asymptotically in the limit of arbitrarily small
interface deformations. Indeed, Lee, Ch/adwick, and Leal (1979), have stated

conditions for this limit to apply, namely

- [ @)ya2
Y ! -1 = prga
M(Z)U) <<l or a = l U (1

( | ]
2@

= ( <1  (8)

for arbitrary I/a = 0(1). Here, ¥ and p represent the interfacial tension and
fluid density, respectively, while'g is the acceleration due to gravity. The two
fluids are designated by the superscripts (1) and (2), with fluid (1) lying above
fluid (R). Lee, Chadwick and Leal's (1979) analysis applies to the case in which

the sphere is assumed to be located in fluid (2).

In the present papef, we consider the consequences of small but finite
values of o™! or 87}, so that the first effects of interface deformation need be

taken into account. Defining a composite small parameter, =, as.

£ = L (9)

o+ B

we can deal in a simple way with systems where either, or both surface tension
and the density difference are significant. The solutions of Lee, Chadwick, and
Leal (1979) and Lee and Leal (1980) correspond, then, to the first, 0(1),
term in an asymptotic expansion for small ¢ and satisfy the conditions of
continuity of the tangential velocity and stress fields at the undeformed

interface, as well as zero normal velocity. However, they do produce an
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imbalance in the normal stress components across the flat interface, and thus,
to proceed beyond Lee, Chadwick and Leal (1979) and Lee and Leal ('1980), it is
necessary to first calculate the 0(g) correction to the interface shape, and then
to determine the effect of the predicted interface deformation at 0(g) on the
force and torque which act on the sphere. Although the force and torque
corrections will necessarily be small, also 0(¢), they can be calculated rather
simply in this asymptotic framework, thus aliowing a useful qualitative
examination of the eflects of interface deformation. It may be noted that the
"large” deformation problem, in which the interface deformation is not
restricted to be small, is highly nonlinear,' as a consequence of the normal
stress boundary condition, and the rather simple superposition principle
inherent in equations (3) and (4) for calculating Fand T for an arbitrary Uor
is lost. In the limit of small & however, the problem remains quasi-linear at
each order and the basic expressions (3) and (4) for F and T are still expected
to apply, albeit with additional components in the resistance tensors which

depend explicitly on &.

The analysis for small £ proceeds in a straight forward fashion from the
results of either Lee, Chadwick, and Leal (1979) or Lee and Leal (1980).
" However, in the present paper we shall restrict ourselves to the simpler case
of small a/l, discussed by Lee, Chadwick, and Leal (1979) where an approximate
and relatively simple analytical solution was obtained at O(1). The interface

shape can be expressed in terms of a scalar function, F, where
F=z—-f(p, e, t)=0 (10)

and the function, f, which describes the deformation is written in the

asymptotic case, £ << 1, as
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f=ef, +&%, + . (11)

The shape function, f, is determined from the zero-order solutions of Lee,
Chadwick and Leal (1979) for the velocity and pressure flelds, by first
calculating the normal stress imbalance at the undeformed interface (which
is a consequence of the fact that the interface is approximated as ﬁat:. at

0(1)) and then applying the normal stress condition
n[AnT(!) = nT®], oo = Lf (12)

from which we can obtain an equation that can be sclved for f;. Here, Lis a
differential operator which is defined in the next section and T= —p + 7 wherep
is the hydrodynamic pressure and 7 is the stress tensor. With f; known, the
most obvious procedure is then to determine the velocity and pressure
distributions in the two fluids at O(e), and calculate the corresponding
contributions to the force and torque on the particle, again at 0(g). Although
straight{orward in principle, this latter calculation is tedious and,
fortunately, unnecessary. Instead, we shall see that the effects of
interface deformation on the force and torque at O(¢) can be obtained via the
reciprocal theorem direétly from the interface shape function f, and the
solutions of Lee, Chadwick, and Leal (1979) for the velocity and pressure fields at

o(1).

II. Governing Equations

We begin by considering the computation of the interface shape at
O(g) in somewhat more detail, using the normal stress condition (12). In

equation (12) we have used Lto represent the diflerential operator,

Lt = af + B( é—l—+-1%2— (13)
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where R; and R; are the principal radii of curvature for the interface. The sum
(1/R; + 1/Rg) is simply calculated as the divergence of the unit normal to the

interface (i.e. V 'n); where,

o i - R )
and
o= =l 1+ (5 + (3T (15)

In order to proceed analytically, we assume that the deformation, {, is
small, and that it can be represented asymptotically in the form of equation
(11), where ¢ is the small parameter of the problem, as defined in (9). Similar

expansions of the velocity, pressure, and stress fields are then:

u®) = ufe) + suf®) + - - -, (16)
p® =pf) +epf) + - (17)
T®) = To®) 4 eT,®) 4. .., k=12, (18)

where the O(1) terms, designated by the subscript 0, are simply the
solutions for a flat fluid interface. A differential equation for the shape
function f; at O(g) follows directly by substitution of (11), (13), and (1B) into
(1R), noting that n =1, to O(1) in ¢, which yields

8%, 1 of, 1 Bfl)

— 2
~AT,; = (AT = TE)) ,o0 = aef, — gz ( P R P

(19)

For convenience, we have denoted the normal stress difference, calculated
using the zero order velocity and pressure fields at z=0, as -AT,,. It may be
noted that £ multiplied by either a or § [see equation (9)] yields at least one
0{1) term so that both sides of (19) are O(1). The normal stress difference,
-AT,,, has been calculated by Lee, Chadwick, and Leal (1979) for the four

fundamental problems of translation and rotation both parallel and
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perpendicular to an interface which is flat to O0(1). Thus, the linear
differential equation (19) can be solved directly, together with the appropriate

boundary conditions, to obtain f; for these four cases.

The normal stress differences calculated by Lee, Chadwick, and Leal

(1979) are:

1) Normal Translation

g¢3 3 2+3x 1 -
— —— + Pty —
AT,, = RS ( 1 B 1+ n 1 ) + 01 (20a)

R) Parallel Translation

~AT,, = -——t‘l———-f-c"s (1-2-E230 ) 4 0a) (20b)

3) Normal Rotation

—-AT,, = 0 (20c)
‘4) Parallel Rotation
_am - l2psing 3 1 1 "
AT, Re (1+ 61+}\l)+0(l ) (20d)

where Rg = (p? + 1?)!“?, These equations have been written for the cylindrical
coordinate system (p, ¢, z), and both p and I have been made dimensionless by
scaling with the particle radius, a. It can be seen from (20c¢) that there will be
no deformation of the interface at O(g), and at all higher orders, for rotation
normal to the interface since the rotlet constitutes a complete solution
which generates no normal stress difference at the interface. We will
consider solutions for f, in the other three cases in the next section, subject to
the conditions that f, be bounded everywhere, and approach zero as the

distance along the interface from the sphere center approaches infinity

(Le. p>e).
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Let us now turn to the method of calculating corrections to the
hydrodynamic forces and torques on the sphere due to the interface
deformation at O(g). One way to approach this problem is simply to calculate
the detailed velocity and pressure fields in the two fluids at O(g) and use this
result directly to calculate force and torque corrections due to the
interface deformation. ‘At O(e), the governing differential equations in the two

fluids are

Vplk) = v 2ufk) (21a)

and
v uf®) =0, (21b)

At the deformed interface, calculated now to O(g), we again require continuity
of the tangential stress, along with the continuity of tangential and normal
velocity components. An alternative approach is to use a Taylor series
approximation to express the boundary conditiocns at the deformed boundary
to O(g), in terms of equivalent conditions applied at the undeformed interface,

z=0 [Chan and Leal (1978)]. These "equivalent” boundary conditions are

61.1(51) 6.‘_162)
1) = = {3 =
uft? + £, = uf > (22)
o augv af 1 of
Iz _1(1) + 16 52 L apl 9‘51) — p__a';Zl"‘—J‘S” Tl EF)
aug?) o, 1 of af ot of
. 92 ; Yy L2 e S o
+ 1y fy 32 _papué iy p agpgé L16X+Vay (23)
and
aTéy _aT® of of,

T, — 4 T 2o T+ g )
N T = i T + Nty ———= f1dy — )\apngé +apg,,'1'é



1 of, 1 0fy ofy 1 8
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It may be noted that the velocity at the sphere surface is identically zero at 0(&),
and the governing equations (2la) and (21b) are homogeneous so that the
induced velocity and pressure fields at 0(g) can be viewed as emanating from a
nonzero normal velocity at the plane z = 0 [corresponding to the condition
(23)], as well as from discontinuities in the tangential velocity and stress

components at the same plane.

Instead of actually solving (R21)--(R4), a simpler method can be
developed provided that one is interested only in the corrections to the force
and torque on the sphere at 0(¢) rather than in a detailed resolution of the
W}elocity and pressure fields. This method is based upon the reciprocal theorem

of Lorentz (1907),
fd‘g'ﬂ"y” - fdﬁ'ﬂ'"'Y' (25)
8 S

where (v',7') and (v", 7") represent the velocity and stress fields corresponding
to two creeping flows of the same fluid contained by the same bounding

surface, S.

In the present application, our objective is to determine the O(g)
contribution to the stress at the surface of the sphere which will yield the O(g)
drag and torque. For this development, we identify v’ as the O(g)disturbance
flow, uf¥), defined by equations (21)-(24) and the no-slip boundary condition at

the sphere surface, while v' is the "complementary” Stokes flow velocity field,
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u®), for either translation or rotation of the particle in a prescribed direction in
the presence of a flat fluid interface. It is evident from this definition that ;1(’“)
will be identical with one of the O(1) solutions uf*) for translation or rotation
either parallel or normal to a flat interface. The choice for 11(") depends upon
the force or torque contribution which we require at 0(g), as we shall explain
below in detail. Let us first consider the remaining steps in the derivation of a
formula for calculating the O(g) contributions to the force or torque for a
general disturbance flow, uf¥) and a general "complementary” flow :_1("). For the

lower fluid (k=R), the reciprocal theorem is

{ (T,®u® - T®.u@ynd4 =0 (26)
2

where Ap includes the flat interface and sphere surface. Similarly, in the
upper fluid
{ (T,0uV) = TW.ufyndd =0 (27)
1

where A, includes only the flat interface. Multiplying (27) by A and subtracting

the result from (26), we obtain

[ (AT 4250 + 7,040 — 0. a4
Ap - - - - -

= -{ (T,@4® - T®).14,@).n dA (28)
S

where Ap is the undeformed fluid/fluid interface area (i.e. the plane, z=0), and
Ag is the surface of the sphere. Now, the disturbance velocity on the sphere
surface, i.e. gl(z). is identically equal to zero for any of the problems of
translation or rotation. If we choose the complementary problem to be

translation with unit velocity,
u® =i on Ag (29a)

where i indicates the direction of translation, the integral over Ag in (28)

T
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reduces to
= (1® )i, da (29b)
S

which is simply the force contribution on the sphere in the i, direction at 0(e)

due to the interface deformation at 0(¢). This force can then be calculated by
evaluating the left-hand side of (28) for any of the three problems of
translation perpendicular or parallel or rotation parallel to the undeformed
interface and the complementary velocity field corresponding to (R9a).
Similarly, if the complementary problem is chosen to be rotation with unit

angular velocity in the ig direction,
u® = dgx r onAg (30a)
the integral over the surface of the sphere becomes

= [ [ex (1@ )]z d4 (30b)
S

which is nothing more than the torque on the sphere about the i axis at 0(z).
Again, evaluating the left hand side of (2B) thus yields the torque on the
sphere due to interface deformation for any of the three non-trivial
problems of translation or rotation parallel or perpendicular to the
undeformed interface. This integral over the undeformed interface surface, Ap,
can be simplified considerably by application of the boundary conditions
(22)-(24). Specifically, the first and third terms in the integrand can be written

as
0 (T;® — AT, )0 (31)

where we have used the fact that the complementary velocity field must be
continuous across the plane, z = 0. The second and fourth terms combine to

yield
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D (NTV) = @), @) + n T (o) - uf®) . (32)

It is evident, by examination of (22)-(R4), and the conditions of continuity
of velocity and stress for the complementary solutions at the undeformed
interface, that the force and/or torque corrections on the sphere at O(¢) can
be calculated knowing only the shape function, f;, at O(g), and the
complementary velocity and stress fields for translation or rotation near a fiaf
Aluid interface [the latter corresponding to one of the O(1) solutions for

translation or rotation near the fluid interface, (u®), TE¥)].

In the next section, we calculate the shape functions, f,, at O(¢) for the
problems of parallel and normal translation and rotation. Then, in section IV,
we utilize equations (28)-(32) to determine the corresponding corrections at

O(¢) to the hydrodynamic force and torque on the sphere.

IIl. Interface Shape

We now proceed to solve equation (19) for the shape of the interface at

O(g), i.e. f,. After combining equation (19) with equations (20a,b,c,d), we obtain:

(azf1 1 of, azfl) 9l3 (1 3 2+3x 1

1
- + = + = 33
ge 8p®  p Bp  p? B¢P TN L (33)
for translation normal to the undisturbed interface;
02 f1 10t 1 91%pcos 3 2-3x 1
ﬁs( e rehies 6¢2)+cxaf1 S G S (34)
for translation parallel; and,
8%, 1 of l azfl 12psin 3 1 1
—Bel ——+ — — +a —Lﬂ{ I+ ——— = 3
pe{ p* P Bp o ) RS 16 1+A 1 (35)

for rotation, with the axis of rotation parallel to the interface. The case of

rotation normal to the interface does not yield any deformation at O(e) as we
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have already seen. All three of the equations (33)-(35) can be manipulated into
modified inhomogeneous Bessel's equations of order zero or one. This is done
by rescaling p to p*(8/c)“? and then solving either by use of the Green's
function or by use of variation of parameter techniques, subject to the
boundary conditions discussed in the preceding section. After rescaling back to

the original p, the solutions are:
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1. Normal Translation

o x1o [ ( %—)Vax]dx

0 (22 + 12)5/2

£1(0) = 913(1 + %.@.1_"';3%_%_ Ko [ ( _g__)uzp:]

o[ ()" xax]
(xz + l2)s/2 J (36)

(9] [

2. Parallel Translation

EI 9_1/2 g
f1(p;¢)=9lzcos¢(1—-§-—2—3A _1__) Kl[(g_)l/zp]j_x 1[( ﬁ) X] X

16 1+ 1 g A (z? + 1)

- XZKI[(%-)VZX] dx]
p (xz + la)S/z J (37)

A [(8)7%)

3. Parallel Rotation

i [(8)75 J Tt e

3 (22 + 12)5/2

8 _1
16 1+A

1>

f1(p. ) = 12sinp (L +

o~

- XK [ ( —ci-)l/zx ] dx]
1, [ ( -g—)wp] / (xzfzz)m | (38)

Let us consider these solutions in some detail, starting with the interface
shape for translation normal to the undisturbed interface. One feature of
interest is the relative effectiveness of interfacial tension forces, measured by
the magnitude of §, and density forces, measured by the magnitude of «, in res-

tricting the degree of interface deformation. In order to investigate this
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question, and to make comparisons between results for different conditions
as meaningful as possible, we have carried out all of our calculations for a
fixed value of a+ f equal to 10. We may note from equation (9) that this
represents a constant value for & Figure I shows the results for z=¢f; as a
function of radial distance rescaled with respect to the sphere radius, for a
dimensionless distance [=6 between the sphere center and the plane (z=0) of
the undeformed interface, a viscosity ratio A=1 and various values of &/ rang-
ing from 0.01 to «=. Although o + § is held constant, as indicated above, the
magnitude of interface deformation is remarkably sensitive to the value of
o/ @B, particularly for small values where the density forces are small relative to
the dominant interfacial tension forces. It is obvious, in examining figure I,
that a density difference across the interface is much more effective than sur-
face tension at retaining a "flat" interface. In part, thisis a consequence of
the fact that the density difference acts directly on the degree of displacement
from z=0, while the eflect of interfacial tension is an indirect'consequence of

limiting the curvature of the interface.

The limiting behavior of (36) for « >> 8 and a << 8 can be determined
easily. The ﬁrst’ case is the density dominated limit, and can be considered
either by letting a/8 go to infinity in equation (36), or by simply setting =0
and ¢é=1/ain the differential equation (33). In either case, the shape function

is given by

9% ¢, . 32+3\1
Fre e e 1/ (39)

f1(p) =

The second limiting case, & < < f, corresponds to surface tension dominated
deformation. Aderogba and Blake (1978) have noted earlier that the equa-
tion (33) has a log singularity if « is set identically to zero, and thus has no

solution which is both finite at the origin and still vanishing as p goes to
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infinity. As suggested above, this is a consequence of the fact that large
de formalions are not mathematically restricted by interfacial tension, only
surface curvature is restricted. Thus, in this case, it is advantageous to exam-
ine directly the behavior of the solution to equation (38), which is exact for any
value of o/ @, in the limit as a/g goes to zero. Specifically, we consider (a/g8)?p

<< 1. In this case,

172
f1(p) ~ 3 [ In 7 +<(i:i)lz) e T (0% + iz) 178 :[ (40)

for g>>a, £ T 1/B, and it is evident that &f,(p) is bounded and 0(elne) for any
fixed p and a# 0. In other words, as the interfacial tension becomes asymptoti-
cally large, the interface deformation approaches zero for any small, but
nonzerco density difference. On the other hand, for any large but fixed 8,
gf; » —Ina as a » 0. Thus, for a fixed level of interfacial tension, which may be
arbitrarily large as long as it remains bounded, the interface deformation will
only remain finite in the presence of a nonzero density difference across the
interface. For sufficiently large p, on the other hand, where (a/g)?p becomes
large, &f, vanishes in the manner indicated by the limit of equation (39) for large

p,even if a/f << 1.

Compared with the dependence of interface deformation on the relative
magnitudes of a and B, as outlined above, the effect of particle position is
straight forward. In figure II, we show the variation in degree of deformation
for normal motion with a+ £ = 10, o/f = 1 and A=1 as the particle is moved
from I=9 to I=3. Obviously, as the particle approaches more closely to the inter-
face, the degree of deformation goes up markedly. Finally, we may note that
the viscosity difference acress the interface plays only a secondary role in
the steady-state degree of deformation. An illustrative example of this fact is

shown in figure IIl, where we have plotted z=¢f, as a function of the dimension-
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less radial position, for a + 8 = 10, a/f = 1, =6, and several values of A.

Let us next consider the interface shape for translation of a rigid
sphere parallel to the plane z=0. Results for the interface shape, i.e. for z = &f;,
evaluated in the plane of motion of the sphere, for 1=6, a+ 8 = 10 and A=1
are plotted in figure IV. The two cases a/f = .1 and 1 were evaluated directly
from the equation (37) with ¢ = 0. The limiting cases, a/8 » = and a/g8 > 0,
were obtained from the asymptotic forms of (37) for very large and very small
values of a/f8. For the case of gravity dominated deformation (e=1/a and

a/f -+ =), we obtain

9i%pcosy ¢, 3 2 -3\ 1

(p% + 13)%/R )" 168 L+ A I (41)

1o, 9) =

It is evident that the same result could have been obtained by inspection
from equation (34) with 8=0. In the limit of surface tension dominated defor-

mation (¢ = 1/8 and o/ - 0), the equation (37) yields

_ 3lcos _ l _ 8 R-=3x 1>
filp.p) = —;_(2_(1 (p2+12)1/2)(1 18 1+x 1/ ° (42)

Unlike the problem of particle motion normal to the interface, the solu-
tion for f, in the present development, remains perfectly well behaved in the

limit a/g ~» O.

Although the interface shape illustrated in figure IV is fundamentally
different from that obtained for motion normal to the interface, the results are
in many respects qualitatively similar. First, a density difference across the
interface is much more effective than interfacial tension at restricting interface
deformation. It is evident that surface tension allows a very broad deformation
with small curvature for small values of /8. Second, the degree of deformation
again increases as the sphere moves closer to the interface--though it can be

noted that even at {=3, the deformation remains less than 1/50 of the sphere
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diameter (for o/8 = 1 and a + § =10). At the same time, however, the influence
of the sphere extends for several body lengths in the p direction. Third, and
finally, the ratio of viscosities across the interface has very little effect on
the degree of deformation. Plots which illustrate these latter two conclusions
are contained in Appendix C and show the same effects for the case of motion
normal to the interface (i.e. figures II and III). Figure IV illustrates the section
of largest deformation, but, of course, the interface shape is fully two-
dimensional. Thus, we present, in figure V, a plot showing contours of constant
interface elevation relative to the plane of the undeformed interface for the
casel=6,a/f =1, a0+ 8 =10and A = 1. It can be seen, from this plot, that the
deformation falls off somewhat more slowly in the direction perpendicular to the
direction of the sphere’s motion than in the plane of that motion. Apart from
this, the data represented by the figure V serve mainly to confirm the impres-

sion of interface shape which is indicated by figure IV and the equation (37).

Finally, we consider the interface deformation for rotation, with the
axis of rotation parallel to the interface. Comparison of equations (34) and
(35) shows that the normal stress imbalance is identical in "form'" to the case
of parallel translation, apart from a rotation of n/2 in ¢. Thus, the interface
shapes are completely analogous to those illustrated in figures IV and V. It
will be noted from equation (35), however, that the deformation falls off
somewhat more rapidly with increase in I than for the case of parallel transla-
tion, and the dependence on viscosity ratio, A, is different in detail. These
latter differences are quantified in figure V1 where we have plotted the rela-
tive magnitude of the deformation for parallel rotation compared to that for
parallel translation as a function of the distance between the sphere center
and the plane of the undeformed interface for the various values of A ranging

from 0 to =. This scaling is valid for the directions of maximum deformation
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for the respective cases. It should be remembered that the maximum defor-
mation in the case of parallel rotation is in the yz plane (normal to the axis of
rotation), while that for parallel translation is in the xz plane (parallel to the

axis of translation).

IV. Force and Torque Corrections

With the interface shape known to 0(g), we can now use the reciprocal
theorem to calculate the corrections at 0(g) to the force and torque acting on a
sphere which is either translating or rotating with a prescribed velocity. It is
evident from the detailed derivation in séction 1I that the evaluation of force or
torque corrections for a given type of particle motion requires only the interface
shape, f;, at 0(g), the velocity and stress fields at 0(1), and the velocity and
stress flelds for a "complementary” Stokes problem. The latter is simply the
translation or rotation of a sphere with unit velocity in the presence of a flat
interface -- i.e. precisely the 0(1) solutions already calculated by Lee, Chadwick
and Leal (1979). If the "complementary’ problem is a translational motion, the
reciprocal theorem yields a force correction in the direction of the "complemen-
tary" translation regardless of whether the interface deformation is due to par-
ticle translation or rotation. Thus, for example, if we wish to determine whether
the intefface deformation from parallel translation results in a force normal to
the undisturbed interface, we would use translation normal to a flal interface
as the '"complementary’ problem. Similarly, to estimate any modification in the
torque for the same case, we would use the solution for rotation near a flat

interface to determine the '"complementary’ velocity and stress fields.

It is useful to observe that the integral over the undeformed interface sur-
face, Ap, in (28) involves integration over ¢ from zero to 2m. Thus, integrals in

odd powers of sing and cosy will be zero. Investigation of all possible
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contributions from the flow fields to the integrand [equations (31) and (32)] of
equation (28) shows that the complementary problem will introduce a linear
dependence on either sing or cosy, except for the normal translational motion,
which is independent of ¢; the disturbance flow, on the other hand, contributes
terms involving the products of sing and cosg (for example, sin®p, cos®’¢ or
singcosy) except for the case of motion normal to the interface which is
independent of y. Thus, the only nonzero contributions to the integral over Ap
in (28) will occur when the "complementary” velocity fleld is independent of ¢ --
i.e. when the complemen/tary problem is translation normal to the interface. It
thus follows from these considerations that the only nonzero contributions to
the force at 0(g) must be directed normal to the interface, independent of
whether the particle is translating normal to the interface, or is translating or
rotating parallel to the interface. There can be no nonzero contributions to the
torque at 0(g) in any of these cases, and no contributions to the force com-

ponent parallel to the undisturbed interface at 0(z).

Thus, the problem of determining contributions to the force or torque on a
sphere at 0(¢), due to interface deformation at 0(¢), is reduced to evaluating the
normal component of force for the three cases of translation normal to the
plane of the undeformed interface, translation parallel to the plane of the unde-
formed interface, and rotation with the axis of rotation parallel to the interface:
The results of evaluating (2B) for these three cases all yield nonzero forces nor-

mal to the interface which can be represented in the form

Al =BI [ [CI'DI +EI'FIldp, 1=1,20r3. (43)
0

For normal motion,

Al = pK[ (44)
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= 9 2+3A 1 B1i°
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c1 =Ko[(%) r] ]: (xzﬁ+ 7 +Io[(§") o] [ (za‘ila)s/z (46)

bL= (0 jzz)s PP(=2 + 2) + pPLR(BA? + 6N — 4) + pl*(2A + ) (47)

P XI1{( 'g") sz]dx

Eil= (%—) e —K1[(%‘)1/2 p] { (x% + 1R)5/2

1 w XKI[(E-) sz]dx
+ Il[(%—) /zp:l .{; (XZ i 12)5/2 (48)

1
F1l= YT PN = 1) + 2p%12) (49)

while, for parallel motion,
AR = DefKZYJ; = DefKZY}'T (50)

9 2+3A 1 2713
4 1+X L7401+ NP (51)

o x1[(2)x]ax
o = Kl[(g—)l/gp] ,{ (XE i 12)5/2

Bz=(1+

- %K [( %—) sz] dx

1/2
+ 11[(%') p] .{ (x® + 12)%/? (52)
DR = (P2 ':la)ﬁ ps(—S}\"'l) + 9412(18}\2 — B\ + 1)

+ pHA(1RN + 14) + I5(3N + 3) — (2 + 4A + 2AD)IR(p? + 17)572) (53)
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E2=(%‘)1/2 (o[( )% +—(—5£_—)1;-/—2;—K1[(%)Vzp])2“(£§f—32) idx
B

- K[ ( -g—-) Vex] dx

1/2 1/2
(IO[(—-) p] )1/2; 1[( ﬂ p] » (zz + lz)ﬁ/z (54)
ﬂ
1
F2 = 5(—A = 3) + pPIR(BA +
+ plA(BA + 3) — (2 + 4\ + 2AR)pl?(p? + 1R)3/7) (55)
and for parallel rotation,
A3 = Deszx = Deszy (56)
_ 3 243\ 1 361°
EB—(1+8 142 z)(1+>\)2 (57)
€3 =C2 (58)
D3 = m( PH(BAZ + BA = R) + pRFIB(=OAZ + 5) + I4(-A —1) ) (59)
E3=FER (60)
F3= —1(p3(-2A +2) +pl3(-=A=1) ) . (61)

The results represented by equation (43) can be expressed in a general linear

form similar to equations (3) and (4),

F
o= (K0 + eie): v B{KE + Kpar) -2+ 0(£2) (622)
T =K U(2) +Ke 0 (62b)
adu0 =t al) RO

Clearly, the equation (4) for the torque on the sphere is completely unchanged

at 0(¢). However, the coupling tensor which relates F and ﬁ_is no longer equal to
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the transpose of the tensor which relates T and {_J Furthermore, the components
of the resistance tensors K; and Kc' + ¢Kper no longer conform to the simple
forms (5) - (7) which pertain to a flat fluid interface. It may be noted in regard
to the first of these facts, that Brenner’s (1964) original proof of the reciprocity
of the coupling tensors between F and (3_ and T and {_Japplies to bounded sys-
tems only if the fluid motion can do no work on the boundaries. Generalization

of Brenner's analysis to the present system is discussed in Appendix A.

Let us now consider the results (43) - (61) in more detail starting with the
combined resistance tensor, K;(® + ¢K;{!), for translational motion. This is most
conveniently discussed in terms of its components for a Cartesian coordinate
system with axes x and y parallel to the plane of the undeformed interface, and
the z axis normal, as was adopted earlier in conjunction with equations (5) - (7).
Adopting the same nomenclature as used in (5), the components K{f are
unchanged at 0(g), while the normal component KE is either decreased or
increased depending upon whether the sphere is moving fowards or away from
the interface. We shall discuss the details of the modifications to KE shortly, In
addition, and more surprising, the off-diagonal components (Kl_“))zx and (K,_(l))zy
are nonzero, thus demonstrating the existence of a force away from the inter-
face, induced by translation parallel to the interface. This result represents a
previously "undiscovered" form of 'lateral migration", though it should be noted
that the situation is somewhat analogous to the well-known lateral migration of
a drop in shear flow away from a plane wall due to deformation of the drop
shape [Chaffey, Brenner and Mason (1965,1967)]. It may also be noted that
Chan (1980) has predicted the existence of lateral migration of a sedimenting
drop away from a vertical plane boundary due, again, to shape deformatioﬁ of
the drop -- and this situation is quite closely analogous to the present problem

of parallel translation of a sphere near a deformable boundary. Finally, there is,
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according to equations (58)-(81), a coupling induced between particle rotation
and the force on the particle which leads to migration of a sphere away from the

interface when the sphere rotates about an axis parallel to the interface.

Results corresponding to the equations (43)-(61) have been plotted as a
function of { in Figures VII-XII. In Figure VII, we show the magnitude of the drag
decrease at O(g), scaled with respect to Stokes drag, for normal motion foward
the interface with a fixed value of A equal to 1 and aa + 8 = 10. It is evident that
the decrease in drag (due to the O(g) deformation) is increased as ! decreases
and this is presumably a consequence of the increased degree of deformation.
In addition, the largest decrease in the drag can be seen teo occur for the smal-
lest value of a/f, again as a result of the fact that the largest deformation
occurs, for a fixed I, A and a+f, in the limit as a/8 » 0 where surface tension
dominates over the density difference across the interface. The variation in the
O(e) drag contribution with A for fixed /8 = 1 and « + 8 = 10 is shown in Figure
VIII. It will be noted that the drag decrease is smallest in the limiting case A = 0.
Since the magnitude of the deformation is essentially independent of A, this is
simply a consequence of the fact that a given level of deformation has less effect
on the particle drag when the second fluid has a very low viscosity than it does
when the viscosity is large. It is of some potential interest to note that the qual-
itative role of interface deformation at O(g) could have been deduced from the
form of the dynamically "equivalent” boundary conditions (22)-(24) which are
satisfied at the plane, z=0, of the undeformed interface. Specifically, the condi-
tion (23) shows that the deformation induced at O(z) by a sphere moving toward

the interface is dynamically equivalent to a normally directed velocity at O(g)

- 2714
(1 + A)(p? + L?)®

Uzl, o (1% - 3p%) (63)

at the plane of the undeformed interface. Although this single condition is not
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sufficient to completely determine the form of the velocity field, since the condi-
tions (22) and (24) yield a discontinuity in both the tangential velocity and the
tangential stress components, the latter are asymptotically small for large I

relative to the normal velocity, Uiz, . - Thus, the disturbance velocity field at

O(e) can be viewed as resulting from a flow through the plane z=0 which is in the
same direction as the sphere velocity for p < I / V3 and in the opposite direc-
tion for p > ¢ / V3 . It is evident from the sense of this boundary flow that the
force contribution to the sphere at O(¢) must consist of a decrease in the force
component normal to the interface. It is important to note the effects of revers-
ing the direction of motion for the sphere, for motion normal to the interface.
Reversing the directim:l of motion for the particle changes the sign of the
integral over the interface in equation (2B). Thus, if a particle is moving away
from a deformable interface, the drag, due to the deformation, is increased by
the same amount as the drag, due to the deformation, is decreased for an
approaching sphere. This result can be viewed as a consequence of the linearity
of Stokes equations and the fact that the effective induced velocity field at the
plane z=0 for a sphere moving away from the interface is the negative of the

velocity fleld for an approaching sphere.

Detailed results for the 0(g) contribution to the force on a sphere which is
translating parallel to the plane of the undeformed interface are presented in
Figures IX and X. For all values of o/8 and A, this force is directed normal to the
interface. In Figure IX, we have plotted the normal force scaled with respect to
Stokes drag as a function of { for A = 2/3, a + § = 10 and various values of a/f
in the range 0.01 to 10. For all I > 2, the induced force is directed away from
the interface, and its magnitude increases as o/ f decreases. This is believed to
be a direct consequence of the increased deformation which occurs as o/f is

decreased. In addition, for { <~ 3, the magnitude of the induced force increases
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as ! decreases, again presumably because the deformation increases. When [ is
smaller, the magnitude of the induced force appears to decrzase and even
change sign around { = 1.5 for all of the cases considered in Figure IX. However,
it is not expected that the small parameter expansion in I~! which we have
adopted from Lee, Chadwick and Leal (1979), will provide meaningful results in
this region. We have neglected terms which are O({7®), and it is evident that
these higher-order terms will become significant in the region near the inter-
face. Thus, we believe that the peculiar results for I < ~3 are spurious and no

physical explanation is sought here for their existence.

The problem of parallel translation is considered further in Figure X, where
we show results for fixed o/8 = 1 and various values of A. Here, as in the case of
normal motion, the deformation at O(g) is relatively insensitive to A and the
variations in the induced force are thus a direct consequence of the viscosity
difference rather than an indirect effect of different degrees of deformation for
different A. It will be noted that the unphysical upturn and sign change for
small ! is present for A = 0 and 2/3, but not for A= 10 (from this we might con-
clude that the higher-order terms in 17!, which have been neglected, decrease in

importance with increase in A).

The qualitative nature of the induced forces at O(e) for parallel translation
can again be deduced by examining the "equivalent” induced normal veldcity at

z=0,

- 9® r_ 3 —(n2 1 72\1/2
Uitheao = o8l B ey P T

3 on*cosPy

- __5of?
1+A (PR +1R)F

2 2
(L% + 5p%) + (0% + 13)572

(64)

since the discontinuities in the tangential components of velocity and stress are

asymptotically smaller than u,, __  for large I. This equation indicates an
12—0
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induced velocity at O(g) which is directed toward the sphere (normal to the
plane of the undeformed interface) except for very small values of I or very
large values of p. Thus, the O(¢) flow between the sphere and the interface is

consistent with a normally directed force away from the interface.

Finally, Figures XI and XII present the influence of deformation on a rotat-
ing particle, whose axis of rotation is parallel to the interface. The results are
very similar in form to those described earlier for motion normal to the inter-
face. The difference is given by the observation that the direction of the force is
reversed (i.e. the force is away from the interface) and the magnitude of this
force is found to be much smaller for a given distance from the interface (i.e.
given valu'e of I). By comparing the magnitudes of deformation in the normal
motion problem with the same quantity for the parallel rotation problem for a
given magnitude of the deformation, we see that the drag correction for the
parallel rotational problem is much less than the drag correction for the normal
translational problem. As was noted earlier, we will not discuss the results for
[l = 2 due to the neglect of higher-order terms in 1/¢ in the present theory. As
in the previous case, the force increases as a/f decreases for [ > 2 as a conse-
quence of increased deformation. The dependence of the force on A, as shown in
Figure XII, follows quite closely the dependence of the deformation on A in Fig-
ure V1. For example, the case of A = 0 yields the largest deformation in Figure
VI, which corresponds to the largest force directed away from the interface in
Figure XII. In the present case, the "equivalent” induced normal velocity at 0(s) is

given as,

2417 Bp®sin®y
= -1 +
Ulz[gzo (1 + }\)(pz + l2)4 [ (pz + la) ]

This yields a velocity directed towards the sphere at the plane z=0 and thus a

force on the particle directed away from the interface.



-40-

We have determined the corrections to the force and torque, due to 0(¢)
deformation, on a body which is translating'or rotating either normal or parallel
to a deformable interface. This interface has an arbitrary viscosity ratio across
it, but has a large interfacial returning force due either to the density difference
or interfacial tension. It has been shown by inspection of the symmetry of the
terms to be evaluated in the reciprocal theorem that the 0(g) correction to the
torque on a sphere moving relative to the interface is identically zero. The force
corrections at 0(g) have yielded a reduction of the drag for motion normal to
and towards the interface, while there is an increase in the drag as the sphere
moves oway from fhe interface. The cases of rotation and translation parallel
to the interface both yield a force which is directed normal to and away from
the interface. Finally, we have noted that the case of a sphere with its rotational
axis directed normal to the interface generates no interfacial deformation and

hence no correction to the force or torque on the body.
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Figure Captions

Figure L.

Figure II

Figure III.

Figure IV.

Figure V.

Figure VI.

Figure VIL

Normal translational deformation. The effectsof aa / Bforl =6, A

=landa + g8 =10.

——— /=0l /f=.] ————— o/ =1, and

= o,

Normal translational deformation. The effects of particle distance

fora/f=1,a + §=10and A = 1.

— 1l=3,---land -—1=9,

Normal translational deformation. The effects of viscosity ratio

fora/f=1,aa + f=10and !l =86.

= o, = ==X=1 and ----- A =0,

Parallel translational deformation. The effectsof oo / Bforl =86, A

=landa+ g =10.

and - ——oa/ f=w,

Parallel translational deformation. Contours of displacement in z
direction for translation in y directionfora 7 g8 =1,a + §=10,1

zB6andA=1.

positive displacement, ----- negative displacement.

Parallel rotational deformation vs. parallel translational deforma-

tion as plotted against L.

Drag ratio for normal translational deformation. The dependence

ona/Bfora + f=10and A =1 as a function of .



Figure VIIIL

Figure IX."

Figure X,

Figure XI.

Figure XII.
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a/f=0L,~~-a/f=.1,----a0/f=land--—-a/f =

10.

Drag ratio for normal translational deformation. The dependence

onAfora/f=1lando + 8 =10 as a function of i,
—A=02and2/3,-—-A=1,----A=10and — - - A = 10000.

Drag ratio for parallel translational deformation. The dependence

ocno/Bfora + B =10 and A = 2/3 as a function of i.

o/f = .01, = a/f=.1,----a/f=1land - —--a/f =10

Drag ratio for parallel translational deformation. The dependence

onAfora/f=1anda + g =10 as a function of L.
—A=0andR/3, ~—-A=1,----A=10and — - - A = 10000.

Drag ratic for parallel rotational deformation. The dependence on

o/Blfora+ g =10 and A = 1 as a function of L.

a/f = .01, - a/f=.1----a/f=1and - --a/f = 10.

Drag ratio for parallel rotational deformation. The dependence on

Afora/f=1and a+ f# =10 as a function of L.

—A=0andR/3,---A=1,----A=10and - - - A = 10000.
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APPENDIX A: THE COUPLING TENSOR AND CONDITIONS FOR ITS SIMULTANEQOUS USE FOR

BOTH FORCE AND TORQUE EQUATIONS

Brenner (1964) presented a proof, for the case of a sphere in an infinite
fluid, that the coupling tensor, K¢, could be used in both the force and torque
equations as shown in equations (3) and (4). The proof uses the reciprocal
theorem, discussed in section III, to relate surface stresses, due to translation
and rotation, on the sphere. For an infinite fluid, there are no other surfaces to
generate contributions to the integrals in the reciprocal theorem as used in
/Brenner’s proof. However, in the work of Lee, Chadwick, and Leal (1979) the
problem solved involved a second surface, namely a flat fluid/fluid interface
with viscosity ratio A. Their results showed that the equations for the force and
torque were identical in form with those of Brenner (1964), differing only in the
elements of the tensors, K¢, Ky and K. In this appendix, we will show, in general,
that for equations (3) and (4) to be applicable for a system with surfaces other
than the sphere surface, it is sufficient that the fluid motion do no work on the
boundaries and have no work done on the fluid by the boundaries. Thus it will
be obvious that the results of Lee, Chadwick, and Leal (1979) must fit the form

of Brenner (1964), while the work in this paper does not.

Using the governing differential equations for creeping flow with boundary
conditions as presented in Lee, Chadwick, and Leal (1979) we can come to some
conclusions about the coupling tensor using the reciprocal theorem, as dis-

cussed in section II,

Jv"-nRds= [WR-nT-ds (A-1)
5 S

for flows composed of pure translation and pure rotation, where the super-
scripts T and R respectively distinguish velocities and stresses of the two types

of flows, and S includes both the sphere surface and the fluid/fluid interface.
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Equation (A-1) applies equally to the second fluid where S now includes only the
Auid/ ﬁuid.interfa:ce. Separating S into sphere and interface surfaces, Ag and Ay,
we can write equation (A-1) for the lower fluid, containing the sphere, minus A

times (A-1) written for the upper fluid to obtain

Afs[w.ﬂn — Rt as= Afp{vs[ngn AL ~vE[nR -r7E]] as

R AfF[vg[ngn-m,?n] —vi[rB AR | as (a-2)

with the “ used to designate the upper fluid. Brenner (1964) has shown that
eciuations (3) and (4) follow when the left hand side of equation ’(A-Z) is equal to
zero. The right hand side is precisely zero for any problem formulated with
boundary conditions on a fluid/fluid interface of zero normal velocity and
matched shear stress as in the problem of Lee, Chadwick, and Leal (1979). In
general the right side of equation (A-2) is zero when the boundary conditions on
the fluid/fluid interface require the shear stress to be matched and there is
either no normal velocity or there is no normal stress jump. These require-
ments can be restated iq terms of the ability of the fluid and boundary to
exchange work. .For example, if the shear stress experiences a jump at the
interface this implies the presence of an external force at the interface, with the
consequence that work is performed if the tangential velocity is nonzero. This
would result in a nonzero contribution to equation (A-2) by the first integral on
the right hand side. In the second integral on the right side it is again obvious
that if both the normal velocity and normal stress jump are nonzero on Ay, then
the fluid will do work on the interface to.displace it. This work is manifest in a

nonzero contribution by the second integral on the right hand side of equation

(A-2).
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As an example, we show that the right hand side of equation (A-2) is
nonzero for the problem solved in Chapter I, thus leading to the conclusion that
equations (3) and (4) are not applicable in this case. Using the small parameter

expansion presented in equations (16) and (18), equation (A-2) can be rewritten

in the form

S{8-TE~vB-15)-ds + & [[of-TR —vE-TF +v]-TE ~vR-T] ) ds =
Ag Ag

V8 [T AT 8 [P~ M) + v [T = AT = v [T = AT s +
Ap

o [ (VR (T ~\T8a] + VR (1 AT oA (1B ~NTn] [T AT a5+
i .

€ f {szn [Tgnn "th’)rnn] +v8h [Tir nn _Nfirnn] ~vin {Tg{nn "'Nféznn] ~Vgn [T Rn —}\TAan] ] ds+0(e*XA-3)
Ay

where we have neglected O(£?) and higher terms. The O(1) terms correspond to
the problem of Lee, Chadwick, and Leal (1979) and thus are equal to zero as dis-

cussed in the preceeding paragraph. Hence dropping the O(1) terms and cancel-

ling ¢ from both sides of equation (A-3), we obtain

fvg-T}z-ds =fv§-T1f-ds +
Ag Ag

VB [T ~ATE) + VB [TEin ~ATha) ~ VA [T ~ATRs) ~ v (TR ~ATRa) | as +
Ap

f {Vﬁn [Tl')rnn"ngnn] +vi, [T fon "‘Aﬁnn
Ap

- Vrlrn [T[%znn "Aféznn] - Vgn [T an“)\TAan] ] ds+0(e) '(A“l')

This can immediately be simplified using the boundary conditions ofmatched
shear stress and zero normal velocity for the O(1) terms (cf. Lee, Chadwick, and

Leal (1979)) to yield,
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S TRds= [oFTids+ f]v (T~ ATh) v [TRa ~ AR, as
Ag As Ap

+ F[{V& [Tgnn "ATAg‘nn] "‘V'lrn [Tgnn "Nféznn” ds + 0(z). (A-5)
F

Now, the first two terms of (A-5) can be expressed in the forms

fvg-TF-ds = uo-fT-ds = uo-—Kp, wo (A-8)
and
fv},‘-’["f-ds = cog-frOXTF"ds = wo =K, "ug (A-7)
Ag Ag

where the subscripts 1 denote the O(¢) terms for each variable. We have used

definitions for the O(g) contributions, Kc, and Kp,, which are analogous to the

definitions of Brenner (1964) for K; and Kp. If we could equate the left hand

sides of equations (A-8) and (A-7), we would conclude that KDI=K3§1 and thus

demonstrate the validity of equations (3) and (4) through O(g). But we must
look at the remaining terms in equation (A-5) and show that they all sum to zero
for this to be trge. The results of evaluating the remaining terms in equation
(A-8) can be obtained by simply noting that these terms are the only terms in
(31) and (32) which contribute to the results in equation (43). Thus they are
nonzero and represent the difference between the integrals given in equations

(A-6) and (A-7). We conclude that Kp, # Ka, and thus, in general, Kc# K} when the

interface is allowed to deform. The equations (3) and (4) clearly do not apply

even in the small deformation problem of Chapter L.
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APENDIX B: NEXT HIGHER ORDER SHAPE FOR NORMAL MOTION

We notice in the equations for f; in the point force solution (i.e. the leading
term in each of equations (20a-d)) that the viscosity ratio is conspicuously
missing. We hypothesize that this is due to our O(1) calculations being res-
tricted to a flat interface and a point force. Thus one may expect that shapes
calculated for higher order flow fields (i.e. flows which take account of the
deformation) will include A. Here we proceed to calculate the O(s) flow field and
from the normal stress difference at the interface, we calculate f; for the case
of gravity dominated deformation in the normal motion problem. As the velo-
city boundary condition on the sphere at O(g) is v=0, the only motion in the fluid
at O(e) is that which is necessary to satisfy the O(g) boundary conditions on the
fluid/fluid interface. The flow is axisymmetric and can be solved in terms of a

stream function, ¥, where ¥ satisfies,

2 2
Ety=0, gr= 210 , 0 (B-1)

and is related to the velocity by,

-1y, 106y §
u= o oz 1'°+p o ip. (B-2)

For ease in satisfying the boundary conditions in equations (22)—(24) it is
convenient to solve equation (B-1) using a Hankel transform. We define the
transform, 7,(£, z), (see Sneddon (1951)) of any function, n{p,z), by the equa-

tion,

i€, Z) = { pnip. 2)d (€p)dp. (B-3)

We proceed with the solution of equation (B-1) by introduction of the
vorticity, w, which turns the fourth order equation into a pair of coupled second

order equations,
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EPw=0 (B-4)
and
Ery=w, (B-5)

Applying the Hankel transform (B-3) to the equation (B-4), after first mak-

ing the substitution w=py,;, we obtain,

—£%%, (¢, >+-3‘—*—(—€-—9- 0 (B-6)
with solution
1. 2) = A(€)et? + B(£)e ™, (B-7)

We solve equation (B-5) by again making the substitution ¥=p0%, and transform-

ing to yield,
THED o (6.1 =a)et +B(E)e (5-8)
Solving (B-B), we obtain
B (¢.2) = —ﬂzefz Bzt c(g)et® + D)ot (B-9)

Now we must evaluate the constants A(£) through D(¢) for the upper and lower
fluids. It is first required that the flows be well behaved for z- + =~ in the two

fluids. This leads to,

(e, 7) = [ JﬁL] (B-10)
in the upper fluid, and,
32 (¢ 2) = [ (&) + —%l—]efz (B-11)

in the lower fluid. Then, applying the matched velocity and shear stress condi-

tions of equations (R2)--(R4), we obtain,
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B¢, 2) = [D(e) ~G()z]ets (B-1)
32(¢,2) = [D(£) + H(g)z)et? (B-19)

for the streamfunctions in the transformed domain, with

_ 1R &2
D(§) = o o Ke(£) (B-14)
(e)—g;-l‘—_%—{ S1e(1-0 - S3-110) Ks<ez)—zzex<a(ez>} (B-15)
H(O)= o 1%%—{ LE(1=A) + (3= 11)) a(sl)-mus(ez)] (B-16)

where K,(z) is the modified Bessel's function of order v. From the transform
of the normal stress boundary condition we are led to the equation fer the

transformed shape,

NN S
f2(€) = & oz 5 52 loco (B-17)
Combining equations (B-1R)--(B-17) along with the inverse transform,
ta(p) = [ £To(£)Jo(£p)dé (B-18)
we derive
to(p) = = -1 (1-N) [ [ts* IR o Kael o (gp) e (B-19)

for the O(g) contribution to the interface shape. Equation (B-19) shows that we
do indeed get the viscosity ratio in the shape function at higher order. We also
have shown in section III that by solving the problem with the added singulari-
ties needed for a spherical body, we again obtain the viscosity ratio in the

shape function (see equation (386)).
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APPENDIX C: ADDITIONAL FIGURES

The figures in this appendix are included for completeness as they were dis-
cussed in the paper yet left out because of their similarity to other figures or
results that were included. The only exception is figure C-1II which is a view of
the deformation from 30 degrees below the plane of the interface for parallel
motion. The sphere is moving in the x direction as indicated by the arrow and
the interface deformation is in the z direction. The scale in the z direction has
been greatly expanded to allow viewing of the shape as in all the other figures.
This figure is simply another view of figure V and of the curves in figures IV and

C-1I which have the same values for the dimensionless groups.
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Figure Captions

Figure C-L

Figure C-II.

Figure C-IIL

Figure C-IV.

Figure C-V.

Figure C-VIL.

Figure C-VII

Parallel translational deformation. The effects of particle distance

fora/B=1,a0a + =10and A = 1.
—_—1i=3,-—=-=l=8and ~-1=9,

Parallel translational deformation. The effects of viscosity ratio

fora/f=1a + f=10andi =6
—_———A=w, A=l -==A=2/3and ——A=0.

Parallel translational deformation. Displacement of the interface
as viewed from 30 degrees below the level plane for translation in

ydirectionfora /=1, a + =10, l=6andA =1,

Drag ratio for normal translational deformation. The dependence

ocno/Bfora + B=10and A =2/3 as a function of I.

a/g=01-~--a/8=.1,----p/f=land-—-——a/f=

10.

Drag ratio for normal translational deformation. The dependence

ona/Bfora + 8= 10and A = 10 as a function of L.

o/ B =.01, - a/f=.1,---~a/B=land -—-—-na/ 8=

10.

Drag ratio for parallel rotational deformation. The dependence on

o/Bforc+ 8 =10 and A = 2/3 as a function of .

a/8=.01,~—oa/f=.1,----a/f=1and - - —a/f = 10.

. Drag ratio for parallel rotational deformation. The dependence

ona/Bfora+ 8 =10and A = 10 as a function of L.

a/f=01,——-o/8=.1----a/f=1and - ——a/f = 10.
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Figure C-Illii
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CHAPTER III:

Experimental Investigation of the Normal Motion of a Rigid

Sphere Near a Deformable Interface
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L INTRODUCTION

This experimental work studies the forces on a spherical particle which
moves in the creeping flow regime towards a deformable fluid/fluid interface.
This study is designed to investigate some of the cases for normal motion for
which Chapter I provides theoretical solutions for small amplitude deformations
and the work of Lee and Leal (1981) provides numerical solutions for finite
amplitude deformations. The goal of this work is to verify the theoretical and
numerical results, as well as to investigate regions of the parameter space which
have not previously been studied in the aforementioned works. This work also
utilizes a new experimental apparatus which is to be tested for accuracy, as a
preliminary to its use in studying the same problem for finite Reynolds
numbers, or non-Newtonian suspending fluids, where the existing theoretical

and numerical solutions do not apply.

The most common and successful method of evaluating the force on a
spherical particle in quasi-steady motion uses the falling-sphere or terminal
velocity type experiment, where the velocity of the particle is measured as a
function of time. In the case of a sphere settling under the action of gravity, the
drag on the sphere equals the net gravitational force on the bedy. Both
Maxworthy (1965) and Pruppacher and Steinberger (1968) used this method
with great success for the investigation of deviations from Stokes drag in the low
Reynolds number regime (.001-10). Although their results were very reproduci-
ble, there was a lack of agreement between the two sets of data as both these
researchers made measurements in a bounded system but made no corrections
for wall effects. Using the free-fall configuration, Hartland and co-workers
[(1968), (1969), and (1970)] studied the close approach of a rigid sphere to a
fluid/Auid interface, where the interest is in the drainage of the thin film of

fluid out from in front of the sphere just before the sphere penetrates the
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interface. In these thin film problems, however, the force on the sphere was not
determined. Bart (1968), using the same method, tried to evaluate the forces on
drops and rigid spheres in their unsteady approach to a fluid/fluid interface.
Due to interfacial distortion, the limits of resolution of the experimental pro-
cedure, and the unsteady nature of the flow, Bart (1968) found this method of
position measurement to be unsuitable when the sphere was within two radii of
the interface. Shah, Wasan, and Kintner (1972) studied the mechanism of inter-
face penetration. They were interested in the point at which the interface

rutured relative to the position of the sphere.

Other researchers have used a direct force measuring technique which
allows the simultaneous measurement of position and force. Jones and Knudsen
(1961) used a thin wire and a spring balance to study the force on a sphere in a
single "unbounded" fluid for non-zero Reynolds numbers. In the low Reynolds
number range, however, their device did not have sufficient sensitivity to accu-
rately measure the small forces they encountered. Kunesh (1971) was able to
greatly improve the force measuring system by using a very sensitive two-pan
magnetic balance. However, since the balance was bulky it was decided to
translate the tank instead of the sphere. The screw-jack used to lift the 1 ton
tank could not be machined to close enough tolerance to provide for a smooth
translation of the tank and thus no acceptable translation data were obtained.
Walker (1965) and Yonas (1967) used strain gauges to measure the forces in
their experiments at high Reynolds numbers. A strain gauge is much lighter and
easier to translate, thus making it a perfect candidate for force measurements
on tethered bodies. Application of a semiconductor bridge to the surface of a
thin metal ring, has provided a small deflection ring force transducer which
does have the desirable properties of compactness for ease in translating and a

large gain with a high signal to noise ratio for measuring small force changes.
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Such a device was used in the present study to measure forces on a sphere as it
was lowered toward a deformable fluid/fluid interface. The experiments were
carried out under conditions where the Reynolds number is very small. In this
case, the system is completely characterized by the dimensionless parameters

(cf. Chapter I, or Lee and Leal (1981))

Pt
Mz
Ca = U
7
Cg = Eg_g_i E_I......l -
MU | p2

where the sphere of radius, a, travels at velocity, U, through fluid 2 which lies
above fluid 1. Here, 7, u and p represent the interfacial tension, fluid viscosity
and fluid density, respectively, while g is the acceleration due to gravity. It is
assumed, in the nondimensionalization which leads to this result, that the inter-
face can be completely characterized by the interfacial tension, which is con-

stant independent of time or position on the interface.

In the next section we discuss the fluid systems that were used along with a
description of the components of the apparatus, and the errors involved in the
measurements. Section III then summarizes the previous theoretical work
which is needed to analyze the data to correct for the existence of the wire and
the bounding walls. Finally, the last sections include a discussion of the resulls

and a comparison of the results with available theoretical and numerical work.
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. EXPERIMENTAL SYSTEM

The experimental apparatus consists of a large square plexiglas tank con-
taining two immiscible Newtonian liquids. A sphere is lowered at a constant
velocity towards the fluid/fluid interface. A wire is attached to the sphere to
provide for a constant velocity and to transmit the force on the body to a force
transducer. A sketch of the experimental apparatus is shown in figure 1. The

details of the apparatus will be discussed later in this section.

The decision to use a tethered sphere experiment, instead of the terminal
velocity type experiment, was made for the following reasons:
1. A constant velocity could ‘be achieved (and thus constant values for
the interfacial parameters, Ca and Cg -- see definitions in section I).
2. The values of Ca and Cg can be varied without changing the fluids or
sphere density, by changing the sphere diameter and velocity.
3. The position of the sphere relative to the undeformed interface can
be determined to a high degree of accuracy.
4, Forces can be measured close to the interface and even after the
sphere has gone past the plane of the undeformed interface.
The drawback to this type of experimental technique is the difficulty in account-
ing for the disturbance of the flow field created in the neighborhood of the
sphere by the wire. Our method of dealing with the wire correction is discussed

in section III.

ILA. FLUID CHARACTERIZATION

Since we wish to operate in the creeping flow regime, it is necessary that
the fluid in which the sphere is located (i.e. the upper fluid in our apparatus)
have a large viscosity (greater than 3000 cs in our system). A large viscosity is

also necessary to obtain measurable forces (and force changes) on the sphere
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using the force transducer in our device. Finally, it is desirable that the upper
fluid be hydrophobic so that it can be used with water as a second fluid and
more importantly so that fluid properties are not afiected by changes in humi-
dity. With these conditions, the experiments consisted of six sets of fluid sys-
tems involving three different fluids as shown in table I. Two of the fluids used
came in a variety of grades and all three are Newtonian (ref. polybutene [Hardy
(1962)] and silicone oil [Olbricht (1981)]). The density data in tables II-VI were
obtained with a standard calibrated hydrometer and performed in a tempera-
ture bath stable to +0.06°C. The linear equation used to fit the data was
sufficient to reproduce the experimental values of the densities in the
19°C to R4°C range to within +0.2%. The viscosity data were also measured in
the temperature bath using a Cannon-Fenske viscometer calibrated to ASTM
Std. (D-445) and incorporating the density data. The viscosity data were fit quite
well (+ 0.2%) by the three constant exponential equation indicated in table II and
the results for the fluids are shown in tables II-V1. Finally the interfacial tension
for the two-fluid systems was measured using a du Nouy balance following ASTM

Std. (D-971), with results which are presented in table I.

1I.B. EXPERIMENTAL SET-UP

To study the influences of interfacial deformation on a body moving normal
to the interface at a constant velocity, one must be able to obtain accurate
measurements of the force on the body, its position relative to the undeformed
interface, and the shape of the deformed interface. One way of achieving this
goal is to use a tether system which requires the sphere to move at a known
velocity and is also able to transfer the force on the sphere to a force measuring
device. As noted above, a successful tether system will either have to introduce
an insignificant disturbance to the fluid or (at least) produce a known contribu-

tion to the experimental measurements as in the case of the present
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experiments. In addition to a tether, the other components of our system are a
force transducer with sufficient sensitivity to detect the force changes to be
investigated, a translation device to provide a constant velocity and a measur-
able sphere position, and finally, a video system to monitor the shape of the
interface. In the remainder of this section, these components will be discussed
separately and in detail. This is followed by a discussion of the apparatus as a

whole in section 11.C.

TANK, BODY AND TETHER

The tank containing the fluids is constructed of 1/2" thick plexiglas which
is 15" on a side in cross section and 36" deep (interior dimensions). Tank sizing
involves consideration of the wall eflects and our ability te evaluate them. Any
contribution to the drag by the walls tends to diminish our ability to resolve
interfacial forces by decreasing the percentage of the total force signal which is

due to the interface. We require the ratio of the forces,

Finterface

perteee 2 0(1) (1)

so that the interface will produce a measurable contribution to the force rela-
tive to the wall effects. The spheres were made of bronze, polished smooth and
spherical to +£ 0.0002 inches. The sphere diameters ranged from 3/8 inch to 1
inch. The maximum and minimum sphere sizes were determined empirically,
from equation (1) and the limits of resolution of our ring force transducer. The
tether is made from stainless steel wire, 32 inches long by 0.0041 inch diameter.
Sizing of the tether represents a competition between the desire to minimize the
disturbance to the flow field caused by the wire, and the need for a wire which
will not experience a change in length sufficient to decrease the accuracy of the
position measurement (or break). Combining the maximum forces with the

elastic modulus of the wire, it can be shown that the maximum change in total
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wire length is less than 0.0% inches for our 32 inch wire. It is also important
that the wire does not act as a spring by coiling up rather than hanging straight.
This is an especially important consideration in the present experiments. These
experiments are commonly run close to the terminal velocity of the sphere
(when the sphere is close to the interface), and this results in a very small ten-
sion in the wire, To eliminate this potential problem, each piece of wire was
mechanically straightened so it would hang vertically under its own weight. The
equations and data which quantify this discussion are presented in section III
after the force measuring system and the method for introducing wall and wire

corrections have been discussed.

FORCE MEASUREMENT

The tension in the wire is measured with a ring force transducer that has
been fitted with a semiconductor bridge. This bridge is stimulated by a constant
5+ 0.001 volt power supply and its output is measured with a strip chart
recorder. The transducer gain was found on calibration to be 620+ 2uV per
gram and in operation the transducer output could be read to £2uV for a
period of 60 seconds (or the length of the longest experiment). This was the
most accurate small deflection force transducer available, that could give
sufficient output for small forces and force changes. The ring was affixed rigidly
with a thermally isolating coupling to the guide bar of the translation system
and housed inside a box. This isolation of the force transducer was necessary to
insure there would be no fluctuations in the heat transfer from the ring which
would greatly affect its output. To produce stable thermal surroundings, the
force transducer was allowed to heat up under load conditions for a period of at

least one hour.

The strain in the ring causes a change in the resistances of the individual
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legs of the bridge and thus a change in the voltage drop across the measured leg
of the bridge. This voltage is continuously recorded on an Omni-Scribe (Model
A-5141-5) multi-span (0.001 to 10 volts full scale) strip chart recorder which
came equipped with an event marker feature which allowed correlation of the
force data with the independently delermined sphere position as will be dis-

cussed in more detail later.

TRANSLATION SYSTEM

The translation system consists of a rigid guide bar, cable, take-up spool
and motor as depicted in figure 1. The rigid guide is a 3/4 in. square by 42 in.
long aluminum bar. At one end there is a thermal isolation housing in which the
ring force transducer is inserted. The bar then passes through a 6 in. centering
guide which allows only vertical movement of the bar and centers the bar over
the tank. Finally the bar is attached by ball and socket to a 1/18 in. flexible
stainless steel cable. The cable is wound around a 6 in. take-up spoecl. The large
diameter spool with its small thread pitch is necessary to maintain a constant
velocity within a desired accuracy of 2% as the cable is unwound from the spool.
The spool is attached to the gearbox of a 1/50 h.p. Bodine motor which is rated
at 3B in.lbs. maximum torque. The motor has a continuous setting feedback
controller to insure constant r.p.m. of the motor during operation. The con-
troller allowed the selection of constant velocities in the range of 0.25 cps to 1.4
cps. The lower bound is the limit of smooth and constant rotation of the motor
while the upper bound is restricted by the use of a manual event marker. This
upper bound on the velocity is obtained by assuming a reaction time of 1/20 sec
to actuate the.event marker and requiring the position to be known to 0.03

inches.

VIDEO SYSTEM
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The video system is designed to serve two purposes; first, to monitor the
position and velocity of the sphere and second, to record the interface shape as
a function of sphere position. Figure I shows that one camera can simultane-
ously view a real time clock and a ruler attached to the guide bar. The position
of the sphere can be related to the position of the pointer on the ruler and thus
the video images of the clock and ruler give the change in position with time or
simply the average sphere velocity over an element of distance. By checking the
video image all along the experimental run we are able to verify that the system

ran at a velocity which did not vary by more than 2%.

The second camera is placed to view along the interface and thus record
the interface shap.e as a function of time. The information from the second
camera is related to the position of the sphere by combining the images of the
two cameras using a screen splitter and recording both on one tape as depicted

in figure 1.

1I.C. METHOD OF OPERATION

Once the system parameters for a given experimental run have been set
(i.e. X\, a, p1, P2 etb.) there are five pieces of data that must be recorded during an
individual run. First there is the force from the transducer as a function of
time. These data, as collected on the strip chart recorder, must be converted to
drag on the sphere as a function of its position relative to the interface and the
method by which this is done is discussed in section III. Next there is the meas-
urement of sphere position as a function of time. The first video camera
records this information on video tape by monitoring the tape measure
attached to the guide bar while simultaneously recording a digital clock as is
shown in figure 1. The second video camera records the time history of the

interface shape. The force is related to the sphere position by use of the
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manual event marker which put; a mark next to the force read on the chart
paper when actucted. This event marker is trigge'red manually when the sphere
passes a set peint in the tank as represented by a reading of the ruler on the
guide bar. Finally the average of the temperature in the center of the tank is
recorded and the run is accepted if the readings at beginning and end of run
agree to within 0.08 °C. This criterion was easily met as the room temperature
varied by less than 8 °C during any given day. It may be noted, that a tempera-
ture change of 0.02 °C in the center of the tank over a fifteen minute period
corresponds to an approximate temperature gradient of 0.8 °C between the wall

and the tank center, based upon a conservative value for the heat capacity of

cal cal

and a thermal conductivity of 0.0007 ——, values which were
g°K secem °K

0.6

assumed by Kunesh (1971). 75% of this temperature gradient takes place in the
outer half of the tank (Carslaw and Jaeger (1959)) and thus the viscosity for the
most temperature sensitive fluid (polybutene) would change by less than 2% in

the central region of the tank.
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OI. EXPERIMENT CALIBRATION AND DATA EVALUATION FOR THEORETICAL COMPARISONS

We have pointed out in the first section that the experiments measure the
drag on a tethered sphere translating normal to a deformable fluid/fluid inter-
face in a bounded system. In order to compare our experimental results with
previous theoretical work and alsco to evaluate the accufacy of the experimental
method, it is necessary to relate these experimental results to the analogeus
case of an untethered sphere moving normal to a fluid/fluid interface with no
other bounding surfaces (cf. Chapter 1 and Lee and Leal (1971)). To make these
comparisons it is necessary to account for wire/sphere interactions, wire/wall
interactions, wire/fluid interactions, and sphere/wall interactions in the data.
The known theoretical work concerning these interactions will be summarized
here, as well as the data reduction procedure used to actually make compari-
sons with theory. Also discussed is the work of Brenner (1961) for the drag on a
sphere approaching an infinite solid wall. Measurements taken in a single fluid
as the sphere approaches the bottom of the tank can be (and are) compared to
Brenner’s theoretical predictions. This comparison yields an independent meas-
ure of the accuracy of the assumptions that were made in transforming the

data from a bounded, tethered system to an unbounded, untethered system.

It is also possible to run the experiments sufficiently far from the bottom of
the tank and the upper free surface that the most important corrections will be
due to the container walls and to the wire attached to the sphere. As antici-
pated in the discussion on equipment sizing, both of these contributions to the

drag will be significant.

Ho and Leal (1974) discuss the correction to the drag on a sphere in prox-
imity to two parallel plane infinite walls, while Brenner's (1961) discussion gives
some motivation for extrapolation to four bounding walls by simply summing

two two-wall corrections without accounting for the interactions between the
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two pairs of walls. It is, of course, evident that this "extrapolation” is not
rigorously correct. On the other hand, the error introduced by the assumption
of independent two-wall interactions will be small compared to the deviations
from Stokes' law as the sphere approaches the interface and it is this latter
quantity which we desire to determine experimentally. The problem of a sphere
moving axially through a circular cylinder has also been solved (cf. Happel and
Brenner (1973)) for translation parallel to the walls. The various predicted
corrections due to "wall effects’” may be summarized in terms of the coeflicient,

k, in the equation

1-k +0|&

h

Drag Ratio= ) = L ) (R)
Fo a
h ]

where the sphere radius is denoted as, a, and the distance to (all) bounding

walls as, h. F. is simply Stokes law for an unbounded fluid
F. =8mual (3)

with the velocity of the sphere denoted as U and the viscosity of the fluid as u.

The predicted values of k corresponding to different wall "geometries” are

infinite fluid k=0

1 wall k=0.5625 (ref. Happel and Brenner (1973))

2 walls k=1.0040 (ref. Ho and Leal (1973))

4 walls k=2.0080 (summation of two wall corrections)

cylindrical wall  k=2.1044 (ref. Happel and Brenner (1973))
It is useful, at this point, to return to our discussion of multiple wall corrections
in order to try to obtain some measure of the possible error in estimating wall
corrections to the drag on the sphere using equation (2). By doubling the single

wall correction and choosing h/a=15 (the smallest value used in these
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experiments), we can compare the predicted drag ratio for two walls using the
simple additivity assumption, with the exact theoretical value for the drag ratio
calculated from the two correct wall correction factor. The difference in these
two calculations represents less than a 1% change in the correction to the drag
on a sphere. Thus, we would anticipate the four wall correction obtained by
using twice the two wall correction to be in error by less than 2%. We may also
note that doubling the two wall correction does quite correctly lead to a value
for k which is less than the value for an 'inscribed" cylindrical wall as expected
based on the fact that the average distance of the sphere to the cylindrical wall
is smaller for the same a/h, thus leading to stronger interactions. Since no
rigorous theoretical results are available for the 4-wall, square cross-section
tank, some arbitrariness and uncertainty must necessarily be associated with
any choice of a particular wall-correction factor k for use in estimating the drag
on a sphere in an unbounded fluid from measurements in the tank. For-
tunately, the largest value of a/h in our experiments was only 1/15, and the
differences in F resulting from use of the approximate 4-wall value, or the
'inscribed" circular cylinder (i.e. for the same a/h values) are very small (less
than 2% for the 1 inch sphere where a/h=1/15). Thus, the data in our experi-
ments were reduced using the wall correction factor for an inscribed cylinder.
This choice was made, in part, because of the existence of exact theoretical
results for the axial motion of two concentric circular cylinders (this will be
used to estimate the drag on the wire tether), and the lack of any solution for

axial motion of a circular cylinder inside a square cylinder.

The problem of a circular cylinder moving axially through a second circular
cylinder is discussed in Happel and Brenner (1973). The resulting formula for
the force per unit length on an inner cylinder which is moving at a relative velo-

city U, is
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for b/h< <1, where b is the radius of the inner cylinder and h the radius of the
outer one. With certain additional assumptions, this result can be used to esti-
mate the drag on the wire alone (i.e. without the sphere) as it moves along the
centerline of the tank. First, it is again necessary to 'replace’ the square cross-
section, 4-wall tank with a circular cylinder which, it is hoped, will be equivalent
in some sense. Unfortunately, though it is evident that the drag on a wire in a
circular cylinder will be larger than that in a tank of square cross-section for
the same b/h (since the '"wall" is, on average, further from the wire), there is no
way without a full theory of the square tank problem to quantitatively account
for this fact in "predicting” the wire drag for our experimental set-up.! In addi-
tion, the theory of axial motion of two concentric circular cylinders presumes
that the cylinders are both infinite in length. In the case of the tether wire, how-
ever, the length of wire immersed at any moment is finite and of the same
order as the cross-sectional dimension of the tank. Furthermore, the wire
penetrates the air-liquid interface at the top of the tank. Apart from any
attempt to correct for the finite length of the immersed wire, we know of no
method to account for the effect on the wire drag of the local flow conditions at
the air-liquid interface. In spite of these considerable uncertainties, we have
adopted the formula for F°to estimate the drag on the length L of wire tether

which is in the liquid at any instant, i.e.

1. Alower bound on the drag in a square tank is, however, clearly given by the drag on a wire in
a circular cylinder whose diameter is equal to the diagonal dimension of the square cross-
section. This suggests that the drag on the wire in the square tank will be within 5% of that
estimated from equation (5).
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Here b is now interpreted as the wire radius, and h is the half-width of the tank

(i.e. the radius of the "inscribed" eylinder).

In the earlier discussion of the multi-wall corrections for a sphere, we
alluded to the fact that boundary/boundary interactions are not taken into
account when a simple summation is used to obtain values of k, equation (2),
for many walls (R or 4) from the solutions for one and two walls. For this same
reason, we would not expect a simple summation to apply when any two (or
more) boundaries are located in close physical proximity to one another. In
particular, we expect the presence of the wire to greatly influence the stress on
the sphere at and near the point of attachment so that the drag on the compo-
site wire/sphere body is different from the sum of the drags which would act on
the individual components taken separately. Thus, it is necessary to either
theoretically or experimentally evaluate the wire-sphere interaction if the data
for the tethered sphere is to provide any useful information on the motion of an
untethered sphere. This pfoblem is addressed for an unbounded fluid by b Mes-
tre and Katz (1974), who showed that the drag on a sphere with a long slender
body attached is significantly lower (0(10%)) than the sum of the forces on the
sphere and tail when calculated separately. It is important to note that the
results of pE Mestre and Katz (1974) apply only in the limit of an infinite sur-
rounding fluid and that the exact degree of interaction is a function both of b/a
and L/a. To date, no-one has considered the bE Mestre and Katz (1974) problem
in a bounded domain and it is not at all evident that the error in using their
wire/sphere interaction equations in a bounded domain will be small even with
walls located at a large disfance as in the present experiments. As a conse-

quence of this, and of the additional uncertainties in the use of equation (5) for
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the wire drag, we adopt what is essentially an empirical scheme for estimating
the wire/sphere interaction coeflicient in our bounded system. That is, we

introduce an empirical factor, «, defined by

Actual Drag on Sphere + Wire in Tank (6)
Sum of Drag on Sphere in Tank + Drag on Wire in Tank

oa+p=

which has the effect of modifying the bE Mestre and Katz interaction factor, g, to
account for hydrodynamic effects of the tank walls and the interface. As the
boundary interactions are expected to yield only modest corrections to the DE
Mestre and Katz interaction factor when the sphere is far from the gas/liquid
interface, the liquid/liquid interface and the walls, a single a is determined for
all the runs. This value of o is determined by simply adjusting a starting from
some initial guess, until an optimal match is achieved between theory and
experiment for the drag on a sphere which is far (I> > 10) from either the
fluid/fluid interface in the case of the two fluid experiments or the tank bottom
in the single fluid experiments. This correction factor o« may need further
modification on close approach of the sphere to the interface, but there is no
way to evaluate this change and we will simply assume there is no change at all.
A partial test of this hypothesis is to use the value of @, determined for i> > 10,
to reduce the data for clese approach of the sphere to a plane solid wall where

there is an exact analytic result available (cf. Brenner (1961)) for comparison.

The actual data analysis was performed in a two-step fashion. The data
were first reduced to a form sufficient for the determination of o from the far-
field drag measurements, and then the remaining data was analyzed, incor-
porating the empirically obtained value for «, to obtain "corrected"” experimental
data for comparison with available fluid /fluid interface theories. To determine
o, the total force versus position was first obtained for each experimental run

for 1> > 1 (actually {> 10). The bt Mestre and Katz (1974) correction g8 (which is a
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function of ! and varies between .BB and .94 for our experimental conditions)
was then applied to the raw force data to cobtain a set of values which would
correspond to the sum of the forces on the wire and sphere taken separately
provided the actual value of o is zero as assumed in this first step. The drag on
the wire alone was then calculated from equation (5) and subtracted from the
"corrected” sum to yield an estimate for the drag on the sphere alone in a
bounded domain, far from the interface (since 1> > 1). Finally, this drag esti-
mate was corrected for "wall effects” using equations (2) and (3), and the result-
ing "measurements' for the drag on a sphere far from an interface (I> > 1) were
compared with theoretical values from Brenner (1961). In all cases, the reduced
experimental data obtained with a equal to zero, yielded too large values for the
corrected drag. Thus, a new "guess” for a was made and a 'best value" of «a for
each run was determined by iteration. Finally, a best single overall value of a
was adopted based on the smallest average deviation of the "measured" drag
from the results of Brenner (1981) over all of the experimental runs. This pro- -
cess resulted in a predicted value of a=0.03 which decreases the DE Mestre and
Katz (1974) correction in this region from roughly a 10% change to a 7% change
in the total force. After iﬁcorporating o, we were able to experimentally repro-
duce the theoretically predicted drag ratios for normal motion of an isolated
sphere far from an interface to within + 4% for wll runs. This entire method of
data reduction, once o has been chosen, is presented in the appendix to this
chapter. The appendix shows the force transducer output and the steps which

followed to reduce the data for comparison with theory.

Any uncertainty associated particularly with the use of equation (5) to esti-
mate the wire drag may, of course, be compensated for in the case of a sphere
far from either an interface or bounding walls by the choice of a. The key prob-

lem is that comparisons for this 'far-fleld" data alone cannot distinguish
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between errors in (5) compensated by a change in «, and genuine changes in the
wire/sphere interaction factor due to the presence of the bounding walls.
Furthermore, we have no way to determine whether additional changes in o are
required when the sphere approaches the interface. (If such changes in a were
necessary, it would be impossible to determine what fraction of measured
changes in the total drag are due to these (unknown) changes in the relative
level of the wire/sphere interaction as the sphere approaches the interface, and
which represent a meaningful change in the drag on the sphere alone.) For-
tunately, an answer to both of these uncertainties in the choice of « is available.
In particular, in figure III, we compare experimental data for a sphere approach-
ing a solid wall, "corrected” in the manner outlined above using the value a=0.03,
with theoretical predictions for a sphere approaching an infinite solid wall due
to Brenner (19681). Evidently, the corrected experimental data and the theoreti-
cal predictions agree to within approximately (+ 5%). This provides a strong
indication that the changes in the wire/sphere interaction coefficient associated
with a nonzero value of o are a physically relevant reflection of the presence of
side (wall) boundaries (rapher than inaccuracy in equation (5)), and further that
the value of a cén be considered as constant even when the sphere is in close
proximity to an interface (or solid end wall) without significant loss of accuracy.
Further comparisons of the corrected experimental results with a=0.03 will be
made with the numerical results of Lee and Leal (1981) for approach to a
deformed interface in section IV. However, it is evident that our experimental
apparatus can be expected to yield values for the drag on a sphere in normal
motion towards a fluid/fluid interface which should lie within approximately
+ 5% of the "expected" values for motion of an isolated sphere toward the inter-

face in an unbounded fluid system.

Now that the method for wire correction has been discussed, we can
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present our consideration of the restraint on sphere sizes due to the presence
of the wire. For our experiment to yield accurate information about the sphere,

we must have

Taprers_ 0(1) (7)

Fwire
so as not to mask the forces on the sphere. Upon substituting equation (5) and
equation (3) for Fyppers We see that we require

RQE

111%——1
— 2 0(1). (8)

a

If we constrain the wire length to a maximum of 10 inches and choose the smal-
lest sphere to be 3/8 inch, we have that Ro~ 0(0.3) and thus the limit taken for

the smallest sphere size to be investigated.

We have shown that we must rely on our ability to make wire and wall
corrections to be able to obtain meaningful comparisons between experiment
and theory. The results of Lee and Leal (1981)predict the existence of a column
of fluid which trails behind the sphere for very large interfacial deformations
(I< <-1). They were able to show for the cases which they studied, that a long
tail of the upper fluid travels behind the sphere instead of breaking off and com-
pleting the penetration of thé interface. In our experiment, for i< -1, the wire is
moving through this column of liquid which is trailing behind the sphere. Thus
the wire does not 'see’ the tank surrounding it in this region, but instead it
'sees’ a much closer interface consisting of the fluid which makes up this trail-
ing column. For large values of A (A= 0(1)) the "corrected” data from the exper-
iment may thus be expected to yield too large a value for the drag due to the
proximity of more viscous fluid not accounted for in the wire correction when

I<-1. For the case of small A, on the other hand we would expect the 'corrected”
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experimental values to be too small since the wire correction is based on the
surrounding fluid being more viscous. Due to the lack of relevant corrections
for the wire/wall and wire/sphere interactions in this region, the experiments
do not generally study cases where 1< -1. However, one experimental run (B4) is
compared with numerical results for I< <1 in figure XIV which illustrates the

problems of data evaluation discussed above.
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IV. EXPERIMENTAL RESULTS

The values of the dimensionless groups for the individual experiments that
will be discussed are contained in table VII. The same information is also shown
in figure Il where Cg is plotted as a function of Ca with the approximate value of
A indicated by the marker type. It is quite apparent from this figure that there
were only a limited number of experiments in the small Ca regime. This is a
consequence of the real difficulty of finding fluids which will yield small values of
Ca in our experimental apparatus, while simultaneously yielding measurably
large drag forces. The drag on the sphere must be large enough to be measured
accurately on the fdrce transducer, as explained in the previous section. Since
the drag and Ca are both linearly proportional to uU, any increase in the drag
associated with U, tends to lead to large values of Ca. The alternative to larger

pU is an increase in the particle size, a, which allows for a large force for a

smaller uU and thus a smaller value for Ca. However, beyond a~ -%—-in., this

leads to an undesirable increase in the wall correction which tends to 'wash out’
the interfacial phencmena even though we have included corrections for wall
effects in the data analysis. Thus to obtain small values of Ca in our experimen-
tal apparatus, the fluid system was required to have a large interfacial tension,
0(30 dynes/cm), which we found to be difficult to achieve with the added con-

straints of immiscibility, and large viscosity for the less dense fluid, 0(3000 cs).

It may be noted that interfacial tension and a density difference across the
interface both act to resist interface deformation. Thus, in order for either to
exhibit a dominating influence on the degree of deformation, it is necessary that
either Ca< < Cg in which case the degree of deformation will depend primarily on
the magnitude of Ca, or Cg< < Ca in which case the dominant influence will be
due to Cg. It can be seen from either table VII or figure II, that the only cases

which afford an opportunity to examine the dependence of deformation or drag
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on interfacial tension are C11 compared with A8 (or possibly BB), and C4 com-
pared with E2 or E4. In the latter case there is a large change in A as well as Ca
and this will complicate the comparison. However, in the first case, A is very
small except for case BB and thus the variation in A between case C11 and case
AB should not be very important. The changes in Cg are relatively small in all of
these cases compared to the changes in Ca. Cases which allow investigation of
the eflects of Cg are more numerous since Ca> > Cg in the majority of experi-
ments as can be seen from figure II. Likewise investigation of the effects of A is
also facilitated by the large number of runs where Cg is approximately constant

and Ca is unimpertant.

IV.A. EXPERIMENTAL COMPARISONS

In figures IV--XI, we present comparisons of the experimental runs which
relate to the effects of Ca, Cg and A after the method of data reduction of sec-
tion III has been applied. These comparisons are made to illustrate the experi-
mentally measured effects of Ca, Cg, and A on the interface shape and the forces
on the sphere. Conclusions from the experimental data were qualitatively
checked against results ffom Chapter 1 to determine if there are any obvious
disagreements with the theory for normal motion of a sphere towards a
fluid/ fluid interface.

EFFECT OF Ca

Figures IV and V present comparisons of the runs which were previously
identified as providing the best data sets for determining the effects of variation
in Ca for 'fixed" values of Cg and A. It is evident that the drag for both runs C11
and C4 lies above that for A6 and E4, respectively, presumably as a consequence
of the much smaller values for Ca in the former runs. It is also evident in figure

IX that the small value of Ca in Cl1 results in a much smaller deformation along
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the centerline but a broadening of the region of interface deformation to larger
values of R. Finally it is apparent that the drag curves of C4 and E4 will cross at
I~ -2, a result of the significantly larger value for A in the latter case. These
conclusions are in complete qualitative agreement with the results of the work
in Chapter L

EFFECT OF Cy

The influence of Cg on drag and interface shape can be determined from
the results shown in figures V--VIII and X. In figure VI, the drag for run B4 is
larger than the drag experienced by the sphere in run BB due to the smaller
value of Cg for B4. The same result is shown in figure VII where run D10 has a
larger drag ratio than run DB, due again to the smaller value of Cg for D10.
Smaller values for Cg correspond to decreased deformation of the interface, as
is evident when the results for run B4 are compared with those for BB in figure
X. Figures V and VIII show the same qualitative dependence on Cg by compari-
son between runs E1 and E4 and runs E2 and E3 for {< 3. For >3 in figures V
and VIII, the drag ratio appears slightly larger in the runs with the larger values
for Cg, but this is presumably a manifestation of experimental error. The
dependence of the drag ratio and interface deformation on Cg is again in good
qualitative agreement with the results of Chapter 1.

EFFECT OF A

Figures IV, VI--VIIl, and XI compare runs where the influence on the drag
ratio and the interface shape due to A can be studied. In figures VI and VIII we
observe very weak dependence of the drag ratic on A. The compariseon of runs
D2 and ER in figure VIII shows alrnost no difference in the drag ratiec even though
there is a ten fold change in A. Figure VI compares runs D8, D10, and E3, and it
is again evident that the drag ratio for run E3 is largest for all {, due to the

larger value of A. Even though the differences in the drag ratio, shown in figure
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V1, are relatively small, however, it should be noted that the increased drag due
to increased A is partially compensated by the fact that Cg is slightly smaller for
run D10 than it is for run E3. Likewise, the dependence of A indicated in figure
VII is weaker than might be anticipated, because of the competition between
increased A and increased Cg. In particular, all that we can conclude from
figure VII is that the increased drag due to the tenfold increase in A from case
D2 to ER is almost exactly balanced by the decreased drag associated with the
increase in Cg. In figure IV, a competition between A and Cg is evident where the
effects of A on drag ratio apparently dominate for {<-2 and the effects of Cg
dominate for 1> 2. It is interesting to now observe in figure XI how the interface
shape fits into this picture of a competition betweén A and Cg in runs A6 and B8,
Run A6 experiences smaller deformations and larger drag ratios for {>2 when
compared with run BB, while the opposite is true when i< 2. This is not to say
that the whole story of drag ratio can be told by simply observing the interface
shape. It is quite obvious that the shapes for runs A8 and BB are not equal
between I=-2 and {=2 where the drag ratios are equal. But it does appear that
the proximity of the sphere to the interface plays an important role. Finally
figure VII compares the dfag ratio for runs B4 and DB where it is obvious from
comparisons at large [ that experimental error has accentuated differences in
the drag for small I. Still we can conclude, that for values of Cg and A near 1,
differences in Cg are more important than differences in A in determining the
drag ratio. This result would be expected as it has already been shown that A
only has a small influence on the drag for i> 0. These conclusions are again

verification of those obtained in Chapter 1.

IV.B. QUANTITATIVE COMPARISONS WITH THEORY

Essentially the comparisons of the preceding sub-sections have demon-

strated good qualitative agreement with the theoretical predictions of Chapter L.
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It is also of great interest to verify the quantitative accuracy of the experimen-
tal techniques, not only to better understand the particular results obtained in
this investigation, but as a preliminary to future investigation of problems which
cannot easily be studied theoretically. The theories available for quantitative
comparisons are the small deformation results of Chapter I and the large defor-

mation numerical results of Lee and Leal (1981).

Our objective, then, is to compare the present experimental results (after
applying wire and wall corrections which were presented in section III) with
these analytical and. numerical results. As discussed in Chapter I, the small
deformation theory is expected to apply when 1/Ca + 1/Cg is large and I> > 1.
The condition on the interfacial parameters is required in order that the inter-
face remain near flat, while the requirement I> 1, is a result of the solutions for
the flow field being obtained as a series solution in the small parameter ™}, The
numerical solutions for the force and interface shape by Lee and Leal (1981) are
expected to apply for all values of I (except as noted in the comparison with run
B4), Ca, Cg and A. However, only one numerical run (A=1, Cg=1, and Ca==) in
the paper of Lee and Leal (1981) corresponded closely to the experimental runs
which were performed (run B4 A=0.965, Cg=0.934, and Ca=65.8). Thus, addi-
tional numerical results were obtained here, using the numerical scheme
developed by Lee and Leal (1981), for values of A, Cg, and Ca which were obtained

experimentally.

We will first make quantitative comparisons of the experimental work with
the results of Chapter I to determine the values of ! and 1/Ca + 1/Cg (and the
resultant degree of interface deformation) that are associated with the failure
of the small deformation expansion. This is followed by comparisons of the
experimental data with the numerical results mentioned above, primarily as a

test of the accuracy of the experiment. Finally comparison is made with an
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experimental run where it is anticipated that theoretical results may not agree

due to an interfacial phenomena associated with large interfacial tensions.

Figure XII shows the experimental data for the drag ratio for run E1 (1/Ca
+ 1/Cg = 9.2) and the corresponding theoretical prediction from Chapter I for
motion of a sphere towards a slightly deformed interface. It is evident that the
agreement is good down to {~3 where, presumably, the assumption 17}< <1
starts to break down. Since the interface deformation also starts to become
significant at about the same point (e.g. for =3 the centerline deformation is
found to be ~0.2 for run El1 -- note that the deformation has been nondimen-
sionalized with respect to the sphere radius), we would expect the predicted
results to diverge rather rapidly from the experiments with decrease in I, as is

in fact observed in figure XII.

A similar comparison of drag ratio data for run E2 (1/Ca + 1/Cg = 5.58)
with both the small deformation theory and the numerical results, is shown in
figure XIlI. In this case, the small deformation theory and the experiments
diverge for larger values of {, as a consequence of the larger deformation which
occurs for the smaller value of 1/Ca + 1/Cg. Much better comparison is
apparent between the numerical results and the experiments (as expected),

thus tending to confirm the accuracy of the experimental methods,.

Finally, in figure XIV, we compare numerical, small deformation and experi-
mental results for run B4, where 1/Ca + 1/Cg = 1.08. In this case, the deviation
between the latter two results is particularly severe, as would be expected since
1/Ca + 1/Cg ~ o(i), It may be noted, in this regard, that the interface defor-
mation already yields a centerline displacement of ~ 0.2 for I=5.5. Comparison
between the numerical results and experiment, on the other hand, is much
better. Indeed, from I=1.5 to I=-1.5 the drag ratios agree exceptionally well. The

agreement is poor at =3 but this is due to the fact that in the work of Lee and
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Leal (19B1) this case was started with a flat interface at {=3, and it takes some
distance before the interface shape and velocity fields are not influenced by the
fact that the sphere has not come from some large value of .. The departure of
the two curves for I<-1.5 is a consequence of the presence of the tether in the
experiments. The numerical work of Lee and Leal (1981) is able to accurately
predict the force on a sphere which is located even at 'large' negative values of I,
provided that the sphere is still surrounded by the upper fluid. As discussed in
section III, the experimental results are not expected to accurately handle the
case for large deformations of the interface where a long tail of fluid trails
behind'the sphere. Figure XVII also shows good agreement between‘the meas-

ured and calculated interface shapes in the region I=-1.

Finally, figure XV compares run C4 (1/Ca + 1/Cg = 6.21) with predictions
from= both the small deformation theory of Chapter I and with numerical predic-
tions for the same values of Ca, Cg and A. Evidently, in this case, the theoretical
and experimental results are in only modest agreement, and the "large" defor-
mation, "exact' numerical results appear worse relative to the data rather than
better as expected. In addition, it can be seen by comparing the experimentally
observed interface shapes for run C4 with the numerically calculated results in
figure XVIII that the observed deformation is much larger than predicted numer-
ically. A possible rationalization of tj:;e rather poor agreement in this case, rela-
tive to those cases considered earlier, arises from the observation that run C4
involves a large interfacial tension. Thus, relatively smaller amounts of surfac-
tant contamination can lead to interfacial gradients of sufficient magnitude to
significantly retard the tangential velocity at the interface. This would naturally
lead to the observed larger drag forces, and the smaller mean values of the
interfacial tension relative to those of the uncontaminated interface would tend

to allow more deformation for the same nominal values of Ca, Cg, and A (note
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that the value of Ca based upon 7 for the uncontaminated interface will be lower
than the effective value based on 7 at the contaminated interface). A partial
test of this hypothesized explanation for the relatively poor comparisons cited
earlier, is shown in figure XVI, in which the experimental results are compared
with theoretical results for a solid wall from figure 1II. It is evident that the
experimental results show much better agreement with these drag ratio predic-
tions for a solid wall, thus lending support to the hypothesis of reduced tangen-

tial velocity on the interface due to contamination in this case of 'large"y.

-

We have thus found good agreement (~5%) for I>3 between the experi-
ments and the small deformation results of Chapter I when 1/Ca + 1/Cg =
0(10). For smaller interfacial returning forces .and thus larger interfacial defor-
mations, the comparisons of experimment with the numerical predictions from
Lee and Leal (1981) provide agreement to within 10% for I>-1. One significant
exception which was found not to agree with the numerical results involved run
C4 with its large interfacial tension. It has been hypothesized here, that interfa-
cial contamination was responsible for the discrepancies between experiment
and theory in this case by producing gradients in the interfacial tension under

flow circumstances.
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V. CONCLUSIONS

In the observations of the dependence of drag ratio on Ca, Cg, and A in sec-
tion IV.A., we found good qualitative agreement with the predictions from
Chapter I. Section IV.B. provided the quantitative comparisons with the results
in Chapter I from which some conclusions can be drawn about the range of vali-
dity of the small deformation theory. A correlation was found indicating when
deviation of the small deformation theory from the experimental results would
occur. For 1/Ca + 1/Cg & 10 this deviation occurred at I ® 3 and corresponded
to an interfacial deformation of ~.2. As the value of 1/Ca + 1/Cg decreased, the
value of I for which deviation became significant appeared to increase. Finally
for 1/Ca + 1/Cg ™ 1, the point of deviation of the small deformation theory for
the drag ratio and the drag ratio from experimental measurement had moved
out to I ¥ 5.5, where again this deviation corresponded to an interfacial defor-
mation of ~.2. These results correspond to values of Ca/Cg> 1 and no conclu-

sions can be drawn for the case of Ca/Cg< 1.

Furthermore, in section IV.B., the error between the experimental results
and the numerical prediction was less than ~ 10% of the total drag for I>-1. The
exception to this level of agreement was concerned with a system where the
interfacial tension was large and expected to dominate and thus presumably be
subject to the effects of interface contaminants. The case of large interfacial
tension proved to be quite interesting. The results indicate care is necessary in
applications of theories when interfacial phenomena dominated by surface ten-

sion are studied in the possible presence of surfactant contaminants.
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TABLE I
Experimental Systems
System Lower Phase Upper Phase Interfacial Tension (dynes/cm)
# Solid Wall Polybutene # 24 -
A Water Polybutene #24 | 34.1 + 0.4
B Silicone 0il 30,000 | Polybutene #24 1.9+ 0.2
C Water Silicone 0Oil Blend 37.1 £+ 0.4
D Silicone 0il Blend | Polybutene # 16 1.9+ 0.2
E Silicone 0il 30,000 | Polybutene # 16 1.9+ 0.2

Silicone 0il 30,000 is Dow Corning Silicone 0il 200 Fluid grade 30,000 cs; Silicone
0il Blend is Dow Corning Silicone 0il 200 Fluid 28.9% grade 30,000 cs and 71.1%

grade 1,000 cs; Polybutene is Chevron Polybutene w/ grade code
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TABLE 1I

Fluid Parameters

Viscosity— — — —199C--24°C
Fluid A B C
Silicone 0il 30,000 -75.1993 45798.4 -8485589.
Silicone 0Oil Blend -188.302 110957, -16040-38'?.
Polybutene # 16 90.9942 -59131.8 9861929.
Polybutene #24 52.9987 -36094.8 6531496,
Water 0.229832 -4944.93 1034272.
=
, Tin °K, x4 in poise; pe—
Density— — — —=18°C--24°C
Fluid P Ap TEMP
Silicone 0il 30,000 10.972533 -1,00449x 1078 21.00
Silicone Oil Bleﬁd 0.971046 -B.974B4x 107* 20.95
Polybutene # 16 0.872236 -4,91887x 107* 19.92
Polybutene # 24 0.886373 -5.17835x 107* 20.65
Water 0.998405 -2.1167x 10™* 19.00

p=RHO +(T-TEMP) x Ap, Tin °C, pin g/cc
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TABLE III
Polybutene #16 Viscosity and Density Data

Temp. (°C) Time (sec) Specific Gravity
19.71 £ 0.06 292.1

291.1

292.0

R91.9

X=291.775

19.92 £ 0.06 0.8738
20.56 + 0.06 269.8

269.1

270.0

21.30+ 0.08 gb2.1

252.1
X =R256R.22b
22.03 £ 0.03 236.1
R236.2
236.4
236.6
X =238.325
23.17+ 0.03 0.8728

Viscometer #600 JO64
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TABLE IV
Polybutene #24 Viscosity and Density Data
Temp. (°C) Time (sec) Specific Gravity
19.44 + 0.03 2015.3 0.8891
2014.0
2011.8
2008.2
X=201R.325
20.65+ 0.03 1786.4 0.8881
1784.3
2-—-1787.3
1788.6
X=1786.78
21.86 £ 0.03 1590.5 0.8877
1589.7
1595.7
2--1596.0
1597.2
X=1594.12
22.94 £ 0.04 ’--1446.1 0.8871
1436.1
14442
1446.6
1441.9
1441.3
X=1443.1886

Viscometer #600 J964



Temp. (°C)
19.86 £ 0.04

190.94 + 0.04

20.55 £ 0.04

20.95+ 0.04

21.30+ 0.04

21.96 + 0.04

R2.09+ 0.04

23.17+ 0.04
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TABLE YV
Silicone Oil Blend Viscosity and Density Data
Time (sec) Specific Gravity
0.9738
2--443.3
443.6
443.5
X =443.425
2--438.5
438.9
438.6
X =43B.6R5
0.9730
432.1
431.8
431.9
431.7
X=431.875
0.9723
R--425.4
_2--425.3
X =425.35

0.9714

Viscometer #500 E483



Silicone 0il 30,000 Viscosity and Density Data

Temp. (°C)

19.94 + 0.04

21.00+ 0.03

22.00+ 0.03

RR.96+ 0.03

Viscometer #600 J964
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TABLE VI

Time (sec)
1599.8
15699.5
1599.2

X=15699.5

1566.6
1566.1
1568.0
1568.0

X=1867.175

1534.6
1535.4
1534.4
1534.7

X=1534.775

1506.9
1507.8
1506.5
1507.4

x=1507.15

Specific Gravity

0.9755

0.9745

0.9737

0.9729
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TABLE VII

Run Parameters

Particle

Velocity

Run | podius (cm) (cm/sec) Temgeg)ture Ca Ce A

9 0.9521 0.396 21.18 - - -

AB 0.6286 0.355 20.58 3.5086 | 2.720 | 3.x107°
B4 1.2697 0.380 20.60 65.790 | 0.934 | 0.965
B8 0.6286 0.470 21.55 74.158 | 4.247 | 1.036
C4 1.2697 0.382 21.13 0.347 | 0.301 | 3.x107*
Ci1 0.4747 0.372 20.93 0.339 | 2.107 | 3.x107*
D2 1.2697 0.380 20.31 9.924 | 0.122 | 0.831
D8 0.6286 0.881 20.98 16.742 | 0.831 | 0.662
D10 0.6286 0.550 20.98 13,517 | 0.871 | 0.662
E1 1.2697 0.397 21.84 9.029 | 0.110 | 7.148
ER 1.2697 0.655 21.84 14.894 | 0.1BR | 7.146
E3 0.6286 0.651 21.90 14,738 | 0.724 | 7.175
E4 0.6286 0.387 21.90 B.762 | 0.430 | 7.175
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Figure Captions

Figure I

Figure II:

Figure II:

Figure IV:

Figure V:

Schematic view of experimental apparatus. a: variable speed
motor; b: low pitch 6 in. aluminum take-up wheel; ¢: 1/18 in. stain-
less steel cable w/ swivel fitting at lower connection; d: ruler; e:
3/4 in. square by 42 in. aluminum guide bar; f: 6 in. guide affixed
rigidly to wall w/ 8 screw adjustments for vertical alignment of
guide bar; g: mark for ruler readings, attached to f; h: digital
clock; i: ring force transducer w/ thermal isolation mounting to
guide bar; j: thermal isolation housing for force transducer; k:
004 in. straightened stainless steel wire; 1: polished bronze sphere;
m: fluid 1, lower phase; n: fluid 2, upper phase; o: 18 in. square by
36 in. plexiglas tank, 1/2 in. thick; p: video camera with 6:1 zoom
and 2 diopter close-up lens; q: video camera with 8:1 zoom and 4
dicpter close-up lens; r: screen splitter and recorder to combine
images from cameras p and q and record results; s: video monitor
with interface from camera p in upper section and clock and ruler

from camera q in lower section.

Log/Log plot of parameter space for experimental runs.

+ A=0., *A=0.6, o A=1., and o A=7,

Approach of selid sphere normal to infinite plane solid wall. Drag
ratio versus distance to the interface.

experimental results __ ___ ___ __theoretical results

Drag ratio versus distance to the interface.
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Figure VI Drag ratio versus distance to the interface,

Figure VII: Drag ratio versus distance to the interface.

B4, __ . .___ BB and------- DB

Figure VIII: Drag ratio versus distance to the interface.

e e __E2,and------- E3

Figure IX: Interface shape comparison for the variation of distance to the
interface, [, with A=1, Cg=1, and Ca=w.

Cll and AB

Figure X: Interface shape comparison for the variation of distance to the
interface, {, with A=1, Cg=1, and Ca=w=,

B4 and __ BB

Figure XI: Interface shape comparison for the variation of distance to the
interface, I, with A=1, Cg=1, and Ca===,

A8 and B8

Figure XII: Drag ratio versus distance to the interface.

Eland__ ___ __ _ small deformation results

Figure XIII: Drag ratio versus distance to the interface.
small deformation results,

and -=------ numerical results

Figure XIV: Drag ratio versus distance to the interface.
small deformation results,

and ------- numerical results

Figure XV: Drag ratio versus distance to the interface.

small deformation results,



-115-

and ~----=--- numerical results

Figure XVI: Drag ratio versus distance to the interface.
solid wall theoretical results,

— Cm—— c— Co—

and ---=~-~-- numerical results

Figure XVII: Interface shape comparison for the variation of distance to the
interface, I, with A=0.965, Cg=0.934, and Ca=65.790 for B4 and
A=1., Cg=1,, and Ca== for the numerical results.

B4 and __ __ __ __numerical results

Figure XVIII:Interface shape comparison for the variation of distance to the
interface, I, with A=0.0003, Cg=0.301, and Ca=0.347.

C4 and __ ___ ___ __numerical results
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APPENDIX

For completeness, the force transducer output voltage as a function of
sphere position is presented for each experimental run in figures I -- XIII. While
photographs of the sphere and interface for selected runs and values for I are
presented in figures XIV-XXIII. These are accompanied by the corresponding
computer outputs which relate to the analysis of the wire and wall corrections,
in tables I -- XJII. We present here a discussion for the data of run B4 to point to
the important aspects in the force plot and also to illustrate the method used to

"correct” these data for the presence of the wire and walls.

Figure Ill and table IIl present the force data and the corrected drag ratio
results, respectively, for run B4. The force data in figure III have four distinct
regions relating to the interaction of the sphere with the interface. The force in
region 1 represents the the weight of a stationary sphere immersed in the fluid.
The sphere is set impulsively into motion by lowering the wire in region 2. Here
the force on the sphere remains relatively constant while the force on the wire
increases "11f1early" (only an approximation as boundary/boundary interactions
complicate the problem) with increasing length immersed in the fluid. In region
3 we see the interaction of the sphere with the interface which accelerates the
decrease in measured force on the wire and sphere. Finally the sphere center
passes the plane of the undeformed interface and enters region 4 where the
force on the sphere is associated with local stretching of the deformable inter-

face,

These same data are analyzed in table III where the wire and wall correc-
tions are calculated to obtain a value for the drag ratio to be used in compari-
sons with theory. The top half of the table is concerned with the physical data
for the experimental run and the headings for each number are intended to be

descriptive of the listed quantity. For example, some of the more useful
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quantities are; sphere diameter (SPH D IN), wire diameter (WIRE D IN), fluid tem-
perature (FL TEMP °C), sphere nominal velocity (VEL CPS) and self explanatory
fluid properties and dimensionless groups. The first two columns of numbers
are the data from the strip chart recorder (figure III). Next is the dimensionless

distance of the sphere center to the undeformed interface. Column four has the

total force data (%sém—z) as measured by the force tranducer. The following

column records the total length of immersed wire. The sixth column has the
corrected value for the ratio of b Mestre and Katz (1974) and the empirical
correlation (a+ ). The next column has the wire drag as calculated in equation
(5). this is followed by the drag on the sphere which is obtained by dividing
"RATIO" into the '"TOTAL FORCE" and then subtracting the wire drag and the drag
due to the wall correction (not shown). Finally the drag ratio (SCALED DRAG) is
obtained by dividing the drag on the sphere by Stokes’ drag (note that the velo-

city does change during the course of the experimental run).
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Figure XIV: Photographs for Run AS. a) =3, b.) =1, ¢)1=0,4d) I=-1, e.) I=-3.
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(d)

(e)

¥V: Photographs for Run B4. a)1=3,b) =1, ¢.) 1=0,4d.) i=-1, e.)l=-3.
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XVI: Photographs for Run B8. a)!=3,b

)1=1,¢)1=0,4d.)1=-1, e.) 1=-3.
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Figure XVIII: Photographs for Run C11. a.)1=3,b

(d)

‘

)i=1,¢)1=0,d)1=-1, e) I=-3,



a)i=1,b)1=0

Figure XIX: Photographs for Run D2.
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(a)

(b)

Figure XX: Photographs for Run DB. a.)l=-1, b.)i==2



Figure XXI: Photographs for Run D10. a)i=0,b.)i=-1



-175-

e

S S

=

=

e

Figure XXII: Photographs for Run E2. a.)i=0,b.) I=-1



-176-

Figure XXI1I: Photographs for Run E4. a.)il=-1,b.) =2
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CHAPTER IV:

Numerical Investigation of the Parallel Motion of a Rigid

Sphere Near a Deformable Interface
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I INTRODUCTION

Throughout the long history of solutions to creeping flow or inertialess
problems, since the time of Stokes, researchers have been formulating problems
which lead to analytical solutions. These problems necessarily fall into the class
of problems with geometries in which, for example, the boundary is a coordinate
surface as in the original work of Stokes (1851) for flow around a rigid sphere or
near enough to a coordinate surface so that domain perturbation techniques
can be used as in the work of Brenner (1964) for flow around a slightly deformed
fluid drop. In Chapter I of this thesis, domain perturbation was again used to
study the drag on a solid sphere as it rotated and translated relative to an
infinite interface which was assumed to undergo only small deformation as a
consequence of the large interfacial forces present. This work was extended by
Lee and Leal (1981) to account for large deformations for translation of a rigid
sphere normal to an infinite fluid/fluid interface. In this case, the boundary
conditions cannot be easily satisfied analytically due both to the basic non-
linearity of the problem and to the deviation of the true interface from coordi-
nate surfaces in a simple coordinate system, and the problem was solved numer-
ically for the force and torque on the sphere as well as the interface shape.
Since the governing equations are still linear, however, it is possible to at least
partially circumvent the difficulty of satisfying the boundary conditions on an
arbitrary interface shape by using a general integral representation of the solu-
tion to Stokes’ equation. An appropriate general solution is that obtained by
Ladyzhenskaya (1963). Ladyzhenskaya (1963) used hydrodynamic potential
functions to generate integral solutions to the creeping flow equations in terms
of distributions of so-called single and double layer potentials over the boun-
dary. Since the velocities and stresses on the boundaries are the weighting

functions in the single and double layer integrals, their strengths can be
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evaluated by inverting the system of linear equations generated by these single

and double layer integrals when they are broken into finite sums.

Youngren and Acrivos (1975) were the first to use Ladyzhenskaya's solution
in this manner to solve the problem of creeping flow of an unbounded fluid past
a particle of arbitrary shape. Youngren and Acrivos (1976) and Rallison and
Acrivos (1978) extended this work to consider the case of drops in extensional

flow.

The present work is a continuation of Lee and Leal (1981) where instead of
motion normai to the interface, we consider the translation of a rigid sphere
parallel to an infinite, initially flat, interface in the absence of particle rotation.
Our objective is an investigation of the drag and torque on a sphere and the
interface shape caused by this parallel motion. In particular, we will investigate
how these quantities are influenced by the interfacial deformation parameter,
Cg (ratio of capillary number to Bond number), and the proximity of the sphere
to the undeformed plane of the interface-. It is our desire to determine the
regions in which the small deformation results of Chapter I and flat interface
work of Lee and Leal (1980) apply and also to extend these regions for the
parameters studied. Specifically, one prediction which needs investigation
comes from the small deformation results of Chapter I which show the existence
of a normal force directed away from the interface for I> 2, but changing sign
and directed towards the interface for I<2 in some of the parallel motion stu-

dies.

It is important to note that for cases of large deformation, as discussed
here, the general problem of transiational motion is nonlinear and the solutions
of normal and parallel motion cannot be superimposed to obtain results for
arbitrary directions of translation as was the case for a flat or nearly flat inter-

face (cf. Lee and Leal (1980) and Chapter I). The major difficulty in going from
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the work of Lee and Leal (1981) to this problem is the fact that the flow field is
no longer axisymmetric and there is thus one dimension meore of complexity in

the numerical equations.
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II: PROBLEM FORMULATION AND METHOD OF SOLUTION

We consider here the parallel translation of a rigid nonrotating sphere near
a deformable interface. The forces and torques on the sphere as well as the
interface shape are to be calculated. The governing equations in each fluid are

Stokes’ equation and the equation of continuity

v P11 = AV R w,
for Fluid 1 (1)
V =111 = O
and
Vpz =V ?u
for Fluid 2 (2)
V-uz =0
where A = %1—- The two fluids are designated by subscripts 1 and 2 where the
2 .

sphere of radius, a, and velocity, U, is located in fluid 2. The pressure in equa-
tions (1) and () is the hydrodynamic pressure, that pressure which exists above
the hydrostatic pressure of a stationary fluid at the same peint. The equations

(1) and () and the boundary conditions have been nondimensionalized with the
characteristic velocity, U, length, a, and stress, ug -g—-, The boundary conditions
are,

w,, u; > 0 as|x| » o (3)

ug =i, on the sphere surface (4)
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and on the interface, z={(p,p.t),

u; = ug (5)
= e = o OF
D, =Dl =6 (8)
1 1 | ot 38% & 8%
. = . -— . - e—— i, | s s o e i ot
[[nT]]=AnT, ~nTs Ce fn ool o to o2 +r2 597 n (7)

Equation (5) is the condition of velocity continuity across the interface while
equation (B) is the kinematic condition relating the normal velocity of the inter-
face and the change in interface shape with time. Finally in equation (7) we
have the condition of matched shear stress across the interface, while the jump
in the normal stress is balanced by the interfacial forces due to interfacial ten-
sion and te the jump in density across the interface. Ca and Cg are dimension-

less interface parameters defined by

_ MgU

and

U
Cg= Ca = M2 (9)

B ga?(pg—p1)

|

which are known, respectively, as the capillary number and the ratio of the
capillary number to the Bond number, B. The interfacial tension of the inter-

face is denoted as, 7, while, g, is the acceleration due to gravity.

As in Chapter I, the interface shape can be written in terms of a scalar

function, F, where
F=z-f(p,p,t)=0 (10)

and the unit normal to the interface then calculated as



= VF_ _ | _9f. 1 of.
n= V] K|i, o ip > 9g 1,,] (11)
where
[ ?l-L
I S of l af
K= V] -[1+ % + 6;0]] . (12)

In the preceding work of Chapter I we required that Ca and/or Cg be very
small so that f remains small and the method of domain perturbations was then
invoked to express the interface boundary conditions at z=f in terms of
equivalent conditions applied at z=0. In the present work, we solve for the inter-
face shape irrespective of the magnitude of the deformation. As indicated ear-
lier, we use the single and double layer integral formulation of Ladyzhenskaya
(1983) for the solution of Stokes’ equations, together with the analysis of boun-
dary conditions due to Lee and Leal (1981) to obtain a set of coupled integral
equations for the stress and velocity components at the sphere surface and at

the interface

—l—uF(x)=—-2——fl; F.ndSp+ ———-f —-+-l%3— “T¥-ndSp
1 1  rr
sl et ‘T5-ndSs, XE€Sy (13)
S __3 rrrr_ 1
u (z)-—-4—f =5 uf-ndSp+ ——f[ﬁ— ] ‘T -ndSy
1 1
B R Ra TsndSs, XESg (14:)
and
1 Flny= S IT | S,
-2—-()\+1)u (z)= 4()\ R T°-ndSs
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1 1 IT .
it | R + = F(f)dSr, xSy (15)
where
1 1 |k of *f | & 9%
F(f) = AsnT; =0T, = —fn— ——| =45 + == .
@) 1 ~oT Cg In- e {r ar " ar? | 1% 0g% n

The superscripts F and S designate quantities measured on the interface and
sphere surface respectively. The quantity, TZ, is the stress tensor evaluated in
the limit as we approach the interface from fluid 2. The variable R is simply |r],
where r is the interaction distance x—7. xis the vector to the point at which the
velocity and stress are to be determined and 7 is the vector to the point which is
contributing to these quantities at x The integral equations govern how
stresses and velocities at one location on either the sphere surface or interface
affect those same quantities in another element. Thus we have interactions

between any position and every other position of the system; we call the terms

IT and ZE the strengths of the interactions. The stresses and velocities

1
R ' RS R
act as weighting functions in the system of linear equations that is generated by

these interactions when both the stresses and velocities are taken as constant

over an entire grid element.

Now from equations (13)--(15), given the shape of the interface at some
instant and the velocity of the particle, we can in principle evaluate the stress
on the sphere surface, the stress at the interface and the velocity of the inter-
face. In practice these equations are discretized and the integrals approxi-
mated as sums. In this process, the velocity or stress on an element of surface
is approximated by its value at the center of the element. We thus obtain a sys-
tem of linear equations in the unknown velocities and stresses, which can be

solved by simple matrix inversion techniques. From the surface stresses, the
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force on the sphere can be calculated and the interface velocities can be used
with the kinematic boundary condition, equation (6), to march each element of
the interface to a new position for a given choice of time step. The whele pro-

cess can then be repeated with the new interface shape.
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II: NUMERICAL DIFFICULTIES

In the first two sections we have described a problem which is formally simi-
lar to the normal motion problem solved by Lee and Leal (1981). As we have
noted the primary difference is that their problem is axisymmetric and the
present problem is not. In the process of solving equations (13)-(15) Lee and
Leal (1981) used the axisymmetry of the normal motion problem to analytically
evaluate the angular contribution to the integrals and then proceeded to parti-
tion the interface with respect only to p. Here, on the other hand, we must util-

ize a two dimensional partitioning of both the sphere and interface surfaces.

The number of grid elements thus becomes a key numerical problem and it
is important to make every effort to minimize the total number. For motion of
the sphere along the coordinate x direction with the undeformed interface being
given as z equal to some constant, it is quite apparent that y=0 is a mirror plane
of symmetry for the +y and -y half planes. We use this result to write all unk-
nown stresses and velocities in the -y half plane in terms of their mirrored quan-
tities in the +y half plane. This greatly increases the bookkeeping for the
interactions of the elements but it does decrease the size of the matrix to be

inverted by 757%. '

The problem of evaluating the integrals near the singular points x=7,
corresponding to the self-interaction of an element, was handled in the same
way as discussed by Lee and Leal (1981). In particular, the integrand was
expanded in a small neighborhood of the singular point and the integral in this
region was then evaluated analytically. The stress and velocity at other boun-
dary elements (i.e. those whose center is located at n# x) were assumed con-
stant over the entire element for the calculation of the contribution to the

stress and velocity at x.
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Each element on the interface has six unknowns (three components of velo-
city and three components of stress), while there are three unknowns per ele-
ment on the surface of the sphere (three components of stress with the sphere
velocity, U, specified). The half sphere was divided into 36 elements, six angular
divisions between 0 and 7 in the ¢ direction and six equally spaced divisions in
the z direction. This results in 36 elements covering the half sphere all with
equal surface area as is readily apparent by noting that the area of any element

is given in spherical coordinates by

] Uy
Element Area = f f sindde d¥=Agp f sinddy
#1 't)‘l e

cosd,
=Agp f deosd=ApAz
costy

where z=cosd for a unit sphere. The interface half plane was covered with
twenty elements, four divisions in the angular direction and five radial divisions.
The positioning of the radial elements was such that the elements were smallest
near the origin where the shape had the greatest slopes or displacements from
flat and the elements were larger for large values of p. It was determined, for
! =8, that it was not necessary to include effects of the interface for values of
p> 15, thus the largest p in the outer most elements was kept at 15. As !
decreased it was also possible to decrease the maximum value for p, so for i< 3
the greatest value for p evaluated was 10 which increased the density of grid
points in the region of largest deformation. These results, for the truncation of
the interface area included in the calculations, were shown in great detail to
lead to accurate results by Lee and Leal (1981). Fewer grid points were posi-
tioned on the interface than on the sphere surface because each interfacial grid

contributes twice as many unknowns as generated at the sphere surface for the
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addition of a grid point. To show that this represents a sufficient number of
interfacial grid points, we have compared solutions for the motion of a sphere at
1=2 for A=1, Ca== and Cg=1 evaluated using twenty interface elements extend-
ing out to p=15 in one case and twenty elements out to p=10 in the other. The
results, as presented in Tabl_e I, show that increasing the density of the inter-
face grid resulted in a 9% change in the normal force and even smaller changes

in the parallel force and torque values,

Once the interactions of the elements (as called for in the integrals of Lady-
zhenskaya (1963), equations (13)--(15)) have been evaluated, the matrix con-
taining these interactions is inverted using a Gaussian elimination scheme done
in double precision to minimize round-off errors. The forces and torques on the
body are evaluated by summing the forcés and torques on each of the individual
sphere surface elements. The final step is then to calculate a new interface
shape from the kinematic conditio'n on the interface, equation (8). As the velo-
city and stress of each element greatly influences the motion of its neighboring
elements it was found that the interface shape was very slow to converge. To
enhance the convergence, an Adams-Moulton predictor-corrector scheme (see
Carnahan, Luther and Wilkes (1969)) was added to try to minimize the number

of steps taken to a steady shape.
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IV: NUMERICAL RESULTS

To check for numerical accuracy of the calculation scheme we set l =10,000
to remove all interactions between the sphere and the interfe;ce, thus reducing
the preoblem to the motion of a sphere in an infinite fluid. For any direction of
translation or rotation the forces and torques on the body in this case were
within 0.6% of their theoretical values. The next point where comparison with
theory is possible is to check forces, torques and interface shape for parallel
translation for large values of I when the flat interface results of Lee and Leal
(1980) and the small deformation results of Chapter I apply. Table I shows the
comparison for the forces and torques for Ca=«, Cg=10 and A=1, while the
steady interface shapes from both theory and numerical work for these same
parameters are presented in figure I. From these, it is apparent that the shapes
are quite close, the forces agree to within 3% and the torque agrees to within
10% at {=6. Figure II shows that the deviation in the shape from the theoretical
shape has increased by =3, still for Cg=10, while table I shows that the normal
forces are in significant disagreement. Thus our results for (=6 show good
agreement with theory but do point to the possibility that a finer mesh would
bring even better agreement. For I=3 the discrepancies are becoming larger

and we expect the theoretical results to no longer apply.

The convergence of the numerical scheme proved slow even for the small
deformation problem! when the interface starts from flat. For this reason the
number of parameters varied was limited but judiciously chosen to make the

most of the computation time available. The first thing to note is that we used

1. [t is obvious that slow convergence is a minor problem for any case where the results are-
close to known small deformation calculations. In this case the small deformation results
are used as the initial guess of the shape. The problem of convergence only becomes
significant as the deformations become large. In fact guessing the shape to initialize large
deformation cases commeonly increased computation time when compared with the time for
the initial guess of a flat interface, as the interface motion was very sensitive tc any error in

the shape.
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Ca== (the interfacial tension was set to zero) for all cases. The interfacial ten-
sion forces depend on the curvature of the interface at a point and with the lim-
ited number of grid points on the interface, any result depending on calculated
values of surface curvature would be of questionable accuracy at best. This
omission of Ca as one of the independent parameters is not thought to be a seri-
ous void in the results, however, as the analytical results for a nearly flat inter-
face and the numerical results for the normal motion problem (cf. Chapter I,
Chapter II and Lee and Leal (1981)) indicate both that Ca is unimportant when-
ever Ca> Cg and Ca> 1, and also that variations in Ca and Cg yield qualitatively
similar results. The calculations have also used a fixed value of A=1, The results
in Chapter I predict a very limited dependence on A for this problem when A= 1.
It is left for later studies to investigate results for A< 1. The cases that were

chosen studied the effects of the variation of ¢ and Cg.

In figure III we compare the shapes for A=1, Ca==, and Cg=1 as [ is varied
from 3 down to 1.5. As the sphere gets closer to the interface the deformation
obviously increases and becomes more localized. This localization of the normal
stress difference for a close approach of the sphere to the interface allowed us
to concentrate more grid boints near the origin for cases with 1< 3. Also, the
fact that the deformation tends to be close to zero at the largest values for p
which were calculated, again indicates that the grid did indeed include large
enough values for p. Probably the most striking result relative to the earlier
small deformation theories, is the absence of fore/aft symmetry in the interface
shape. For example, the point at which the interface crosses the undeformed
plane lies behind the center of the sphere. Thus the interface appears as a trav-
eling wave which 'trails’” behind the sphere. Table II presents the force and
torque data that correspond to figure 1II. The numbers show that the forces and

torques increase monotonically as the sphere moves closer to the interface.
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This is in conflict with the results in Chapter I insofar as the normal force is
concerned. In Chapter I it was shown that the normal force in the parallel
motion problem was directed away from the interface and increased in strength
as [ decreased from =« to 3. For I<3, however, the normal force began to
decrease and finally was directed towards the interface for [< 2. This change in
sign for the force was attributed in Chapter I to the neglected terms in the small
deformation solution for the flow field. With I small, it was anticipated that the
neglected terms would be of the same order as the terms used to calculate the
normal force. Table II confirms the existence of a monotonically increasing nor-

mal force directed away from the interface as I decreases.

The effects of changing Cg are considered in figure IV and table III. It is
clear, as expected, that the interface becomes more deformed as the interfacial
'restoring” force (the density difference in this case) is decreased. This larger
deformation is also coupled with a much broader shape, quite the opposite
result than was found for the variation of I. Table IIIl shows that both the paral-
lel force and parallel torque decrease as the deformation increases. This is sim-~
ply a consequence of the locally greater mean distance between the sphere and
the interface, and is expécted for A= 1. The corresponding results for small
values of A are not as apparent, and it is evident from the nondeformable inter-
face problem that they cannot be deduced directly from the results for A= 1.
The most interesting result of varying Cg comes from the normal force. In this
case the force is caused by the deformation and the proximity to the wall. But
it can be seen that as the interface undergoes a larger deformation (for Cg> 1),
some of the fore/aft symmetry of the interface disappears and the sphere
appears locally further from the interface, yielding a smaller normal force for a

given value of L.
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V: CONCLUSIONS

The results clearly show that since the interface shapes were steady for
parallel translation of a solid sphere the interface acts as a traveling wave. Thus
the parallel motion problem can be solved here as a steady problem, where the
forces and torques on the sphere and the shape of the interface will be constant
as the sphere moves parallel to the interface displaced some fixed distance I, It
was also determined that the wave form trails behind the sphere center and can
deviate greatly from the symmetrical shapes obtained for the small deformation
problem in Chapter I. Because of the skew in the interface shape, a symmetrical
initial shape (i.e. a small deformation result whose magnitude was increased) is
a poor starting guess for the numerical routine. The normal force results
obtained here for small I are of some interest because they show that this force
continues to be d'irected away from the interface even for small I, thus demon-
strating that the peculiar sign change predicted for small I in the small defor-
mation theory of Chapter I was, in fact, simply a consequence of a breakdown in
the asymptotic expansion for too small values of {. Also, the dependence on the
"degree' of deformation is not simple as was evident in the results for the varia-
tion in Cg. It was shown that (for Cg> 1) the normal force on the sphere began
to decrease with increase in Cg, this appears to be a consequence of some com-
bination of the decrease in the fore/aft symmetry and locally greater mean dis-

tance to the interface.

Finally there is a need to improve the numerical rate of convergence of the
interface shape if a study of parallel motion near a deformable interface is to be
performed for the case of deformation dominated by interfacial tension. As
noted earlier, an increase in the number of grid points on the interface would be
necessary if interfacial tension is to be studied. To increase the total number of

grid points requires a faster scheme for the matrix inversion step. One
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possibility for improved convergence might utilize the fact that some of the grid
points for large p experience only very small movements relative to the max-
imum displacement of the interface. Thus computation time could possibly be
reduced by converging the shape for small p, holding the normal velocity for
large p at zero and the shear velocity and stresses at their zero deformation
values. The matrix that is to be inverted will be small during the major part of
the time necessary to deformn the interface and this matrix will only grow as

larger values of p are added to be converged.
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TABLE 1
=6 =3
Theory Numerical Theory Numerical
Normal Force 0.000775 0.000794 0.0012 0.0061
Parallel Force ~ 1.015 1.0248 1.0294 1.03861
Parallel Torque ~-0.003 -0.0033 -0.0103 -0.0113
Cg=10 Ca=w= A=1

Comparison of forces and torques from theory and numerical results as a func-

tion of the distance to the interface.
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TABLE II
l= 1.5 2.0 R.0 3.0
Normal Force 0.0628 0.0440 0.0404 0.0R19
Parallel Force 1.03869 1.0347 1.0290 1.0R583
Parallel Torque -0.0207 -0.0120 -0.0112 -0.0073
Elements out to p= 10 10 15 15
Cg=1 Ca== A=1

Dependence of forces and torques on the distance to the interface for parallel
motion to a deformable fluid/fluid interface and a comparison for the depen-

dence of forces and torques on grid density at I=2.
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TABLE 111
Cg= 0.001 0.1 1 10
Normal Force 0.0000075 0.0061 0.0219 0.0194
Parallel Force 1.0368 1.0361 1.02583 1.0117
Parallel Torque -0.0115 -0.0113 -0.0073 . -0.0025

Ca=c A=1 =3

Dependence of forces and torques on the density difference parameter, Cg, for

parallel motion to a deformable fluid /fluid interface.
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Figure Captions

Figure I Comparison of shapes of the numerical results with theory in the
small deformation region where A=1, i=6, Cg=10, and Ca=w=,

numerical results __ ___ __ _ theoretical results

Figure II: Comparison of shapes of the numerical results with theory in the
small deformation region where A=1, =3, Cg=10, and Ca=w=.

numerical results ___ ___ __ __theoretical results

Figure lIlI: Interface shape comparison for the variation of I, with A=1, Cg=1,
and Ca=w,

=3, _ — ___l=2,and------~ I=1.5

Figure IV: Interface shape comparison for the variation of Cg, with A=1, I=3,
and Ca=co,
Cg=0.001, __ ______Cg=01,----=-- Cg=1,

and Cg=10
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