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Abstract

The system comprised of an atom strongly coupled to photons, known as cavity

quantum electrodynamics (QED), provides a rich experimental setting for quantum

information processing, both in the implementation of quantum logic gates and in the

development of quantum networks. Moreover, studies of cavity QED will help eluci-

date the dynamics of continuously observed open quantum systems with quantum-

limited feedback.

To achieve these goals in cavity QED, a neutral atom must be tightly confined

inside a high-finesse cavity with small mode volume for long periods of time. Micro-

fabricated wires on a substrate—known as an atom chip—can create a sufficiently

high-curvature magnetic potential to trap atoms in the Lamb-Dicke regime. We have

recently integrated an optical fiber Fabry-Perot cavity with such a device. The mi-

crowires allow the on-chip collection and laser cooling of neutral atoms, and allow the

magnetic waveguiding of these atoms to an Ioffe trap inside the cavity mode. Mag-

netically trapped intracavity atoms have been detected with this cavity QED system.

A similar experiment employing microdisks and photonic bandgap cavities is nearing

completion. With these more exotic cavities, a robust and scalable atom-cavity chip

system will deeply probe the strong coupling regime of cavity QED with magnetically

trapped atoms.

Atom chips have found great success in producing and manipulating Bose-Einstein

condensates and in creating novel atom optical elements. An on-chip BEC has been

attained in a miniaturized system incorporating an atom chip designed for atom

interferometry and for studies of Josephson effects of a BEC in a double-well potential.

Using similar microfabrication techniques, we created and demonstrated a specular
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magnetic atom mirror formed from a standard computer hard drive. This device, in

conjunction with micron-sized charged circular pads, can produce a 1-D ring trap

which may prove useful for studying Tonks gases in a ring geometry and for creating

devices such as a SQUID-like system for neutral atoms.

This thesis describes the fabrication and employment of these atoms chips in

experiments at both Caltech and Munich, the latter in collaboration with Professors

Theodore Hänsch and Jakob Reichel at the Max Plank Institute for Quantum Optics.
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10.6 Magnetic field in the ŷ-ẑ plane of the double-well trap . . . . . . . . . 241

10.7 Glued-cell vacuum chamber for atom chip BEC production . . . . . . . 244

10.8 Atom chip and base chip assembly . . . . . . . . . . . . . . . . . . . . 245

A.1 Difference between y0 and y0 approx . . . . . . . . . . . . . . . . . . . . 254

A.2 Log plot of z0 as a function of η . . . . . . . . . . . . . . . . . . . . . . 255

A.3 The U-trap gradient in x̂ at the trap minimum . . . . . . . . . . . . . 255
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Preface

Rearing the Caltech Atom Chip: a chroni-
cle spanning six years and two countries

I consider myself fortunate to have had the privilege of working with many tal-

ented physicists throughout my graduate school career at Caltech. In addition to my

thesis advisor, Professor Hideo Mabuchi, two scientists in particular have profoundly

influenced my research and approach to science: Professor Jakob Reichel jointly of

the Max Plank Institute for Quantum Optics (MPQ) in Garching, Germany and

the Ludwig-Maximilians-Universität (LMU) in Munich, who is now a professor at

the Laboratoire Kastler Brossel de l’Ècole Normale Supérieure (ENS) in Paris; and

Professor Oskar Painter at Caltech. This preface relates the history of my graduate

research, beginning with the inception of Hideo’s lab and the construction of my atom

trapping experiments in the first half of my graduate career, and continuing through

the collaborations with Jakob and Oskar’s groups in the latter half.

In the beginning, there was Hideo...

My six years in what we fondly call MabuchiLab began in the spring of 1999 as

I was finishing college and visiting prospective grad schools. By a stroke of good

fortune, I happened upon Hideo while visiting the group of Professor Jeff Kimble

at Caltech. Hideo and I soon found ourselves at the Athenaeum chatting over a

pitcher of beer, and he began to tell me about the excitement brewing in the fields of

quantum computation, cavity QED, quantum optics, and quantum feedback control.

These were subjects of which I had largely been unaware and had not considered for

my doctorate, but his enthusiasm left me eagerly wanting to learn more.
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Roughly a year before, Hideo had finished his doctorate in Jeff’s group and had

been hired as an assistant professor at Caltech. He was spending time—during what

happened to be my senior year—at Princeton as a visiting fellow in their chemistry

department before starting his research program at Caltech. We met a couple of

times over the weeks subsequent to my Caltech visit, and through the course of our

discussions his exceptional teaching ability and fresh ideas became evident. I had

wanted to join a condensed matter physics group, but his proposed research program

was unlike any that I had encountered and was incredibly unique and exciting. It

combined the applied with the fundamental, experiment with theory, all motivated

by table-top experiments. Hideo was seeking to hire his first students and I wanted

something more adventurous than the standard graduate student experience. The

excitement of working with a newly-minted professor, the building of a fresh lab, and

his brand-new research direction was just what I wanted. I signed-on.

MabuchiLab: the first year

In mid-summer 1999, I moved to Pasadena and began work in Hideo’s new lab.

Actually, his lab space wasn’t fully ready to be occupied until the end of the summer,

but in the early fall the laser tables were installed and Michael Armen—who had

also joined Hideo’s lab as a graduate student in the spring—and I began to fill the

space with tables, computers, nuts and bolts, etc. Our first experiment would be to

magnetically manipulate cold atoms for the purpose of learning how to controllably

trap them inside a high finesse, low mode volume cavity such as the exotic photonic

band-gap (PBG) cavities [1]. The long-term goal of the research was—and still is—to

develop a cavity QED device to function as the hardware of quantum communication

network. In addition, such a device would allow the experimental exploration of

the dynamics of a quantum system under continuous measurement by incorporating

quantum-limited feedback control.

Hideo recognized that the newly invented atom chip could solve the problem of

how to robustly trap atoms inside a microcavity. It was our task to build such a

device and use it to manipulate atoms, and the first step was learning how to cool

and trap atoms near the room temperature surface of the atom chip. Fortunately,
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in the late-summer of 1999 the group of Jakob and Prof. Theodore Hänsch at the

MPQ/LMU demonstrated how to do just such a thing [2]. By using the atom chip

as a mirror to form two of the six MOT beams via reflection, they could move a

cloud of cold rubidium atoms anywhere from millimeters to microns above a surface.

Hideo, Mike, and I set-out to build, as quickly as possible, a MOT that utilized a

plain mirror in such a fashion.

For the mirror MOT, we used our new Coherent MBR 110 Ti:Sapphire for the

trapping lasers and an old diode laser from Prof. Libbrecht’s group as the repumper.

Mike concentrated on the vacuum chamber and laser electronics, while I worked on

the fabrication of our first atom chip, magnetic coils, and the methods for loading

atoms into magnetic microtraps. By the last week in January 2000 we had our first

mirror MOT, albeit a small one. Our mirror MOT was one of the first and—to the

best of my knowledge—continues to be the only one to use cesium.

The mirror MOT turned-out to be a fickle beast, much unlike its free-space, 6-

beam cousin. The late winter and spring of 2000 was spent trying in vain to improve

the trapping. Meanwhile, beginning in November 1999 I was spending most of my

time in Prof. Michael Roukes’ clean room learning photolithography and trying to

co-opt these techniques for atom trapping. The idea of using microfabricated wires

to produce trapping potentials for neutral atoms was first proposed by Weinstein and

Libbrecht—at Caltech, incidentally—in 1995 [3]. Prentiss and Westervelt’s groups

had succeeded in fabricating the micron-sized wire patterns of Libbrecht’s design,

and by 1999 the first experiments utilizing microfabricated wires began to produce

results [2, 4, 5, 6]. (The term “atom chip” only came into wide use after a publication

by Joerg Schmiedmayer’s group in 2000 [7].)

While we needed to play catch-up to the other groups in terms of atom chip

technology development, most of the groups were striving to create a BEC on a chip,

and were not pursuing cavity QED. Of course, this has changed and there are now

several groups interested in magnetically coupling atoms to a cavity. At the time,

all of the atom chip groups to some extent out-sourced their atom chip fabrication,

either by buying them from a company, or by having a collaboration with a dedicated



4

fabrication group at the same or even a remote university. Hideo felt that, in contrast,

the best way for us to come up to speed would be to have the same student (me) do

both the fabrication and atom trapping simultaneously. This would allow a synergy

to emerge whereby complications and advantages in both experimental disciplines

could be dealt with or harnessed efficiently. To a large extent, I believe the strategy

has worked-out as intended.

By April 2000, I had made our first batch of atom chips. Although the techniques

of photolithography are well known, the constraints imposed by atom trapping require

several modifications to the standard procedures that, when taken together, produce

a formidable task. It was during this five-month period that I worked-out the basics

of atom chip fabrication. Though it was grueling, it provided me with an opportunity

to learn various tricks that I later compiled for an atom chip fabrication tutorial [8]

and have employed over the years for both our chips and those of Jakob’s group at the

MPQ/LMU. Of course, I wasn’t alone in the Roukes’ clean room: Darrell Harrington

and Eyal Buks—grad student and post-doc in Roukes’ group, respectively—were

generous with their advice. These first chips were made with the lift-off technique.

It’s not the easiest to begin with—and I didn’t know any better at the time—but

can produce very thin features. Libbrecht-style trap patterns were made from gold

thermally evaporated on large sapphire substrates, with some devices having wire

cross-sections of one-by-one micron.

Mike and I visited Salman Habib and Tanmoy Bhattacharya at the Los Alamos

National Laboratories for three weeks in June 2000. Hideo and Salman have been

collaborating since Hideo was in grad school, and we spent our time learning about

atom trapping and cooling techniques. In the late summer, we realized that our

mirror MOT could be greatly improved with a different arrangement of the quadrupole

coils, and I began to re-design the trapping apparatus. In the spring, MabuchiLab

had acquired a new grad student, John Au who began work on an adaptive phase

measurement experiment [9], and in late summer Mike joined that project. Since

I already had atom chip fabrication experience, I took-over the atom chip trapping

experiment and ran it alone until the summer of 2005 when I began to hand it over
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to Oskar Painter’s grad student Paul Barclay.

Building and rebuilding

You need to know how everything works to be a good experimentalist, but to really

learn, you must either break it or build it from scratch. From fall 2000 to November

2001, I was figuring-out for myself the do’s and don’ts of atom trapping. In sum,

all aspects of the experimental apparatus needed redesigning and construction. Over

these months, I rebuilt the Cs oven and integrated a Pfeiffer turbo-pump permanently

into the set-up; redesigned and rebuilt the mirror MOT coils and the bias magnetic

field coils; rearranged the layout of the vacuum chamber; integrated a new diode laser

(of the latest plexiglas Kimble group design that Mike had largely assembled) into

the system; began to develop a computer system for control of experimental timing,

CCD camera triggering, and data acquisition; and learned how to computer control

and fast-switch power-supplies for the magnetic coils and microwires.

The new mirror MOT was running by January 2001, using the atom chip with

the Libbrecht-style Ioffe microtraps. The goal was to learn how to load atoms into

these high-curvature traps for eventual loading into photonic bandgap cavities [3].

The central difficulty was in transferring atoms from the mirror MOT millimeters

above the surface to a small-volume, purely magnetic trap just 10 microns above the

micron-sized Ioffe trap. No group had attempted to load a Libbrecht-style Ioffe trap,

and to the best of my knowledge, no one has yet. I first tried loading the atoms from

the mirror MOT to a quadrupole trap formed from one of the rings on the substrate,

but this didn’t work well since the atoms couldn’t follow the changing orientation of

the quadrupole field. Moreover, they were too hot because the cooling lasers need to

be extinguished during the field rotation. I found my laser, imaging, and computer

control system to be inadequate, and realized that I was trying to reinvent the wheel

on too many fronts.

In August 2001, I tore-down the system and began to rebuild once again, incor-

porating the lessons learned in my previous attempt. The key simplification was to

not reinvent magnetic trapping with microwires. Jakob’s group had already found a

great method for doing this by combining the field from a U-shaped wire and a bias
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magnetic field to form a cigar-shaped quadruple trap. The great advantage over my

ring-based quadrupole trap was that it automatically produced the correct field orien-

tation for forming a mirror MOT: an externally generated quadrupole field could be

used to collect a large number of atoms, then without changing any field orientation,

this quadrupole could be smoothy replaced by that of the U-trap while never needing

to extinguish the cooling lasers. Once the atoms are comfortably in the U-MOT, the

lasers could be turned-off leaving the atoms in a magnetic microtrap. I decided to

switch to the U-trap since it was sure to work and would help me narrow-down which

other aspects of the experiment needed fine-tuning.

Putting the U-MOT to use

I made our first U-MOT by late November 2001. The atom chip had a 300 µm

wide, 1 µm tall U-wire that I made using a different fabrication technique. Since the

device feature-sizes weren’t too small, I used a transparency mask and the wet etching

technique which allowed very quick design-to-finish turn-around times. A positive-

process-with-negative-photoresist photolithography technique was employed and was

a great simplification over lift-off. Loading the U-MOT from the mirror MOT worked

as planned, and I spent the next six months improving all aspects of the experiment

by using the U-MOT loading efficiency, stability, lifetime, atom population, and image

quality as a benchmark.

The computer system for controlling the lasers, magnetic field coils, and CCD

cameras was not adequate and was based largely on programming pulse delay gen-

erators. I began using LabView combined with some Matlab code to make a hybrid

system for image acquisition and processing, for controlling DAQ boards to provide

analog outputs to the coil and microwire power supplies, and for controlling digital

outputs for various triggers to the remaining pulse delay generators. It still wasn’t

perfect, but more refinements wouldn’t come until late 2003 with the use of Matlab

as the primary experimental sequence scheduler (see Chapter 3).

The laser system was the most significant thing to be taken-apart and revamped.

By December 2001, the Ti:Sapphire laser was becoming more heavily used by others

in our lab and I wanted to replace it with my own diode laser. Moreover, the plexiglas
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diode laser was practically unusable due to its mechanical instability. Over the past

year I had spent a good amount of time reworking it, but it seemed to have an inherent

affinity to mode-hop nearly every other day which required a re-optimization of the

grating each time. I didn’t realize that I shouldn’t have to put-up with this, but by

the end of 2001 I decided that a new laser was required. Fortunately, a few months

before, Christoph Nägerl in Kimble’s lab finished making a brand-new diode laser

design that was the ultimate in stability. I built one by mid-January and it worked

like a charm as my master trapping laser. The repumper was built with JM Geremia

who wanted to learn how to build diode lasers for an experiment he and John Stockton

were designing.

I noticed that the mirror MOT was extremely sensitive to intensity and pointing

fluctuations and to imperfections in the laser beam profiles. To ameliorate these

problems, I found it best to put the laser through a fiber to filter it into a nice Gaussian

mode. It also became apparent that one needed polarization-maintaining fiber to

avoid polarization noise being mapped onto the intensity. This was all incorporated,

but due to the power reduction from the various AOM’s and the fiber, I didn’t have

enough MOT beam power for the experiment. The old plexiglas laser came in handy,

and I turned it into a slave laser (with advice from Dave Boozer) by injection-locking

it with the master diode laser. The slave diode laser provided enough power to go

through the AOM’s and fiber while leaving ample additional power from the master

laser for an absorption imaging beam and an optical pumping beam. This laser set-up

was largely completed by March 2002. It remains as a nice turn-key element of my

current experimental apparatus, and a similar system has been adopted in John and

JM’s experiment.

In June 2002, I put all the computer, laser, and imaging control systems together to

polarization gradient (PG) cool the atoms above a surface, which is more difficult than

in the free-space case. In free-space MOTs, PG cooling is relatively straightforward

because neither the laser beams nor the imaging access are obstructed. One can zero

the magnetic fields by watching how the atom cloud expands as the magnetic field is

suddenly extinguished. If the cloud expands asymmetrically, and the opposing laser
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beams are well matched in intensity, then one knows that the fields are non-zeroed

in the direction of the errant expansion. However, in a mirror MOT configuration

the situation is a bit more complicated. The mirror is not perfect, which poses five

problems: 1) If the microwires imprint defects on the mirror, then these defects will

create shadows in the 45 degree MOT beams and in effect dice-up the regions in

space that can trap a MOT; 2) The mirror might have defects—either from dust or

from the microwires—that obscure the image of the atoms by scattering unwanted

light into the CCD camera. This makes it difficult to take careful images of the atom

cloud; 3) The horizontal laser beam is partially blocked and scattered by the mirror

creating a similar problem as in (2); 4) In some experiments, the mirror might not

be 100% reflective, causing the reflected 45 degree MOT beams to be mismatched

in intensity from their counterpropagating beams; 5) The cloud quickly crashes into

the mirror surface if the mirror is not positioned upside-down. Problem (1) is most

severe, in that it hampers one’s ability to zero the magnetic fields by causing the

MOT to fragment and not spatially translate in a linear fashion. This prevents one

from easily observing in which direction the magnetic field is not zeroed. By careful

construction of the mirror and the use of multiple viewing angles, one can overcome

these difficulties even with a right-side-up mirror that is not perfectly reflecting. In

these early experiments I was able to cool the atoms to between 3 and 10 µK.

With the addition of PG cooling to the toolbox, I was immediately able to load

a magnetostatic U-trap from the U-MOT. A problem arose, however, in the trap

loading efficiency. My mirror MOT started-out at around 106 Cs atoms, but the

loading efficiency was so poor that only 1% or so made it into the U-trap. At that

time, the detection sensitivity wasn’t that great, and these 104 atoms could barely

be resolved. Hideo and I weren’t sure whether it was a flawed loading procedure or

whether there was a fundamental problem with trapping Cs in such a manner. We

were aware that many groups had had trouble trapping Cs for BEC production, and

we were concerned that similar problems would plague us. Since our group didn’t

have a great understanding of cold collisions, I investigated this experimentally with

my U-MOT system and wrote some review-like notes that are Chapter 5 in this thesis.
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I made measurements of the atom loss for the U-MOT in August of 2002 and spent

the next two months primarily working on the analysis. The upshot is that Cs is ∼100

times more sensitive to collisions than other commonly trapped atoms, like Rb, and

that the loading inefficiency was primarily due to loss from excited-state collisions.

This means that while my loading procedure would have worked fine for Rb, it was

not optimal for Cs, and that I’d need to minimize the excited-state collisions by

reducing the time the atoms spent in a compressed U-MOT. This led to a redesign of

my experiment in favor of using a macro U-MOT to trap atoms from vapor directly.

By the way, the reason we use Cs as opposed to more benign atoms such as Rb is

largely historical. While Cs is heavier (good for trapping in the Lamb-Dicke regime)

and has a smaller scattering rate (good for cavity QED) than the other trappable

alkali’s, I believe I’ve been told that the reason Kimble’s group began using Cs is that

mirror coatings in the late 80’s were much better at Cs’s 852 nm wavelength than at

Rb’s 780 nm, which was crucial for obtaining high finesse cavities for cavity QED. (I

believe it is also the case that the non-linear crystals used for creating squeezed light

operate better at 852 nm than at shorter wavelengths.) Since that group is interested

in single atoms, not BECs, collisional loss isn’t such a big problem and Cs remains

in use to this day, and we continued in this tradition.

Bouncing atoms

While current-carrying wires generate heat and require an electrical input/output

connection, permanent magnets are completely passive, miniaturized, and can gener-

ate similarly large magnetic field curvatures and gradients. When I arrived in Hideo’s

group, a Caltech undergraduate by the name of Clifford Hicks was working on a sum-

mer research project to design permanent magnet geometries for Ioffe traps in the

Lamb-Dicke regime. He came-up with some promising designs, but we didn’t know

how to actually make permanent magnets of the required size and shape. It became

my side-project to investigate fabrication strategies.

In April 2001, Hideo and I decided that the first thing to do would be to start

using currently available miniature permanent magnets to build something useful for

atom manipulation. This would give us an opportunity to learn more about their
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fabrication and operation that could be applied to future experiments. We settled on

making a permanent magnetic atom mirror for our initial atom optics project. The

types of atom mirrors that had recently been developed by the group of Ed Hinds used

magnetic material from floppy disks and video tape [10]. This group wrote sinusoidal

patterns of magnetization by programming the drive head, but were limited to around

10 to 12 µm periodicity. The smaller the periodicity, the sharper the turn-on of the

repulsive magnetic field barrier. We recognized that a hard drive contains much

smaller magnetic granules with higher coercivities, allowing much smaller magnetic

modulation. Moreover, the remanent magnetic field would be much higher, enabling

the reflection of higher energy particles. Following Hinds’ method of writing-in the

magnetic pattern wouldn’t teach us about permanent magnetic fabrication, so we

decided to investigate patterning thin magnetic films.

Around this time, Yves Lassailly—a visiting researcher from France—had come

to work in Axel Scherer’s group, but found himself interested in learning about atom

trapping. We co-opted him to help on this project since his background was in

fabrication. Our first idea was to deposit cobalt alloy in thin, micron-sized strips

defined by photoresist. The stripes would then be magnetized perpendicular to their

axis and parallel to the substrate’s plane. In a discussion with Mladen Barbic, a

postdoc with Axel, we became convinced that the magnetic domains would not line-

up correctly and abandoned this idea. (Subsequently, we found-out that the group

of Peter Hannaford was doing this exact thing and successfully made an atom mirror

with it [11].) Yves and I went back to the hard drive as the source of a magnetic

thin film since it automatically had nice magnetic granules that could be oriented in

in-plane stripes (these are how bits are formed). Through much effort on the part of

Yves, by November 2001 we had made nice micron-sized photolithography patterns

on the hard drive substrate. In July 2002, we got the ion etching of the hard drive to

work and MFM scans confirmed that we had made nice magnetic strips. There were

still a few more bugs to work-out, but Yves had to return to France in the fall. I made

a few of the hard drive devices for optimization myself, but the last few ion etching

runs were made by our new postdoc, Chungsok Lee, whom we wanted to involve in



11

the project. By November, I had a nice device, but was too busy with other projects

to put it into the vacuum chamber until early February 2002. The first attempt

to bounce atoms off the hard drive failed because during the chamber bake-out the

temperature had risen too close to the Curie temperature of the magnetic granules,

erasing the pattern. The atoms would not bounce, and sure enough, an MFM scan

after the experiment revealed the missing pattern. Chungsok and I re-magnetized the

sample, and I returned it to my vacuum chamber, this time without baking during

pumped-down. The etched hard drive surface was a lousy mirror (see Chapter 8 for

details), but I managed to from a mirror MOT above the surface and PG cool the

atoms to ∼10 µK. It was a simple matter to drop the atoms and capture images of

them falling and bouncing a few times: The hard drive atom mirror was born on

March 6, 2003 [12].

A racetrack for atoms

The atom mirror project has grown to be much more than a testbed for permanent

magnet fabrication. We believe that the hard drive atom mirror has many potential

applications beyond the simple reflection of thermal atoms or matter waves. After

the completion of this project, Hideo and I began thinking of what to do next with

this technology. This atom mirror could be useful for creating atom optical devices

such as corner cubes and tightly-confining waveguides for neutral atoms or neutrons.

Another route would be to explore the use of microfabricated wires or charged-pads on

the surface to provide time-dependent fields that would work in conjunction with the

high gradient, high field atom mirror potential to produce new devices. Sometime in

mid-2002, I met Tomasso Calarco, a theorist at Innsbruck and Trento, who told me he

had been thinking of ways to use a magnetic atom mirror’s potential in combination

with electric fields to perform quantum logic gates [13]. In the spring of 2003, Hideo

and I decided that learning how to trap atoms with the combination of electric fields

from charged pads and the magnetic field from our atom mirror would be a useful

first step toward such an end.

Asa Hopkins, a new graduate student in our group, joined me on this project in

the summer of 2002. We first looked at using the motion of the atom mirror to stop
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an impinging cloud of atoms. However, it seemed unlikely that we’d find a way to

move the hard drive substrate fast enough. We then investigated the possibility of

using the atom mirror as a device to create a 2-D gas as Hinds and colleagues had

proposed [14]. Unfortunately, the corrugation of the magnetic field emanating from

the patterned hard drive surface was too large, preventing the trapping of atoms. In

February of 2004, I met a Seagate engineer at a conference who told me he could

provide us with hard drive platters with ten times the remanent magnetic field [15]. I

believe that atom mirrors made of these hard drives would not exhibit the corrugation

problem and the 2-D gas experiment could work with these materials.

Finally, we went back to looking at what kind of trap we could make with charged

pads on the mirror surface. It quickly became clear that the magnetic repulsion of

the etched hard drive could be balanced by the attractive force on the atoms due to

the electric field. Specifically, a charged disk on the atom mirror could create a trap

from the circular ring of potential minima suspended above its edges, and Asa calcu-

lated that the curvature of the trap could be as large as 100 kHz. This got me quite

excited, as I had just been reading about 1-D Tonks gases and recognized that this

magnetoelectrostatic trap could force a BEC of alkali atoms to be in the 1-D Tonks

gas regime in a ring geometry. Definitely a novel device! Moreover, by perturbing the

ring potential with underlying charged-wires, we could create Josephson-like junc-

tions for the confined matter wave. This, I believe, would be akin to a SQUID for

neutral atoms, and I became even more excited. We spent some time working out

various schemes for loading the ring trap with atoms and testing its robustness to

perturbations. We wrote-up the result as a Phys. Rev. A in January and February

2004. Asa will take-over the hard drive atom mirror project when I leave, and is

currently attempting to fabricate the magnetoelectrostatic trap and build a suitable

experimental set-up (see Chapter 9)

To Munich, young man

One of the most fortuitous encounters in my life occurred in late December 2001.

On an overcast Sunday morning, Philip Grangier—a professor at CNRS in France—

and Jakob Reichel stopped-by our lab. They had been to a conference in San Francisco
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(I believe), and I was expected to give a lab tour to only Prof. Grangier. Jakob was a

pleasant surprise. I had read all of his papers on microwire trapping, but had never

met him and was eager to learn more details from him. Likewise, I believe Jakob

was surprised. I don’t believe he knew there was an atom chip project at Caltech,

let alone one that was fabricating chips in-house and using his U-trap method. What

was intended as a quick lab tour stretched-on for hours as we exchanged experimental

tips and thoughts about future directions.

We realized that an extremely useful collaboration could be formed between our

groups. They were experts at producing BECs on a chip with all its difficult techni-

cal details, but were forced to buy their atom chips from fabrication companies—a

situation that hampered design creativity since these companies were not willing to

invest as much effort into pushing the technology as would a graduate student. I had

spent a lot of time in creating an in-house atom chip fabrication capability, and was

greatly interested in learning how to make a BEC on a chip. The deal was hatched:

I’d make their next generation BEC on a chip device, and they’d have me visit his

and Prof. Hänsch’s labs in Munich for an extended stay. At the time I just thought

this would be a one-time exchange. To my amazement and great pleasure this turned

into a full-fledged collaboration involving six trips to Munich and lasting three years

and counting... They have kindly treated me as if I were a full member of their group.

The groups in Innsbruck and Trento invited me to give talks on my research

in April 2002, and Jakob and I decided that this would provide us with a good

chance to discuss prospective projects in Munich. I spent about a week in Munich

meeting with his students, touring his labs and those at the MPQ campus in Garching,

and discussing various ideas for a joint experiment. Over the following summer, we

exchanged a few more ideas, and in the fall, Jakob and his students, Tilo Steinmetz

and Peter Hommelhoff made the final proposal. Peter had been working on separating

a BEC into two clouds with microwires and letting them recombine and interfere. A

device such as this would be useful for atom interferometry. The more closely spaced

and smaller the wire pattern, the smaller the separation between the BEC clouds

and the more pronounced the interference [16]. Unfortunately, their current chip’s
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wire dimensions were too large, and it would be my goal to fabricate a new device

with several parallel wires no larger than 2 to 3 microns with 2 micron spacings and

several microns tall to allow a significant current to flow. Making such a double-well

device was a considerable challenge. They sent me the mask design in October of

2002, and by the end of November I had worked-out the fabrication method. I used

the technique of electroplating with a positive photoresist to make the narrow wires

4 microns tall and patterned on the AlN substrates they provided. A lift-off plus

electroplating technique worked well also, but was more complicated. I made ten

chips of various designs by early December, and in mid-January 2003 flew to Munich

for three and a half weeks.

Upon arrival, Tilo and I immediately began assembling the vacuum chamber. We

attached the atom chip to a base chip, and this assembly glued-on as one face of the

chamber’s glass cell. Within two weeks we had pumped-down the chamber to 2×10−10

Torr and had finished making the electrical feedthrough cables. By the end of the

trip, Tilo, Peter, and I had aligned the MOT optics and made our first mirror MOT

in this compact chamber. It should be noted that the entire set-up (minus the laser

system) is extremely compact and is one of the smallest BEC machines in the world.

The glued-cell technique originated two years or so before in a collaboration between

Jakob and Prof. Dana Anderson of University of Colorado/JILA in Boulder, and

Dana’s group has also put a lot of effort into developing these compact systems [17].

This experiment was built on the same table as their BEC-on-a-chip experiment

and shares the same laser and computer control systems (the lasers are fiber-coupled

and the power supply connections can be exchanged). Philipp Treutlein, another

grad student of Jakob’s, and Peter occupied the laser and computer system while

they completed a measurement of the coherence lifetime of a superposition of atomic

internal states as a function of the atom height above the chip surface [18].

I returned to Munich again for three weeks in late May 2003, a time in which we

were hopeful that the coherence experiment would be finished. In the end, the double-

well experiment was put on hold until October 2003, when the coherence experiment

was fully completed. I decided to spend my time during this spring trip working on
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calculations exploring the possibility of observing Josephson oscillations with a BEC

in the double-well potential formed by our atom chip. I wrote a Matlab code—based

on the equations in a paper by J. E. Williams [19]—that finds the ground-state of

an azimuthally symmetric double-well potential by solving the Gross-Pitaevskii (GP)

equation. With a Gaussian mode approximation, a separate code then backs-out the

Josephson oscillation frequency and the atom number current amplitude.

After a comment from Markus Greiner, we realized that the current in our planar

double-well trap might not flow in the ideal pattern that was originally intended and

described in Reference [16]. I wrote a Laplace solver in Matlab for our exact wire

pattern (with some investigation of the 3-D nature of the wires), and sure enough,

the current flowed through the wires in a non-ideal manner. I then wrote a 3-D Biot-

Savart solver to investigate the extent to which this current flow deviation affected the

formation of a double-well potential suitable for observing Josephson effects. (I’ve

since realized that all of this could much more easily be done in the Femlab soft-

ware package.) The result was that the current deformation skewed the double-well

axis away from the axis of the wire pattern, limiting the minimum achievable well

spacing and junction surface area. Later, in February 2004, Philipp wrote a more

versatile code based on Femlab and C for finding the 3-D field, and these calcula-

tions reproduced the skewed trap geometry. This skewing was unfortunate, and we

found that the ground-state of our double-well would only exhibit a Josephson effect

slightly smaller than what we could experimentally detect. However, by this time

the original device was no longer functional, and we had already begun the process

of designing—using these codes—a new and improved double-well chip based on a

double layer device.

Following the completion of their coherence experiment in the late fall, the laser

and computer systems were moved back to the double-well BEC experiment. I arrived

at the end of October for another three week stay to work with Philipp and Tilo on

the experiments. In spite of the aforementioned non-idealities of the wire layout for

detecting Josephson effects, we still wanted to push forward with the experiment.

There was still plenty to learn with regards to the atom trapping and BEC formation
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with the new vacuum chamber system as well as the possibility of performing atom

interferometry with this chip. During the trip, we refurbished the vacuum chamber,

reinstalled the laser system, and got the absorption imaging working in two viewing

axes. We completed the following trapping steps: transfered the atoms from a macro

U-MOT to a P-trap, rotated the atoms 90◦ with the P-trap, and finally transfered the

atoms to a Z-trap which formed the entrance to a waveguide meant to move the atoms

to the splitting region of the chip. In the last day or so before leaving, we began to

RF evaporatively cool. However, a big problem developed: the lifetime of the atoms

in the Z-trap was around only a second and was too short. For proper evaporative

cooling to a BEC using the chip’s microwires, we would have to have a lifetime more

on the order of 8 to 10 seconds. Over the subsequent six months, Philipp worked hard

to increase the atom number while decreasing the pressure in the chamber. By early

spring 2004 he obtained a BEC on our chip. The main difficulty seems to have been

getting the dispenser to not emit “dirt” along with the rubidium, and to operate it at

a current that allowed the effective use of a UV lamp for pulsed Rb desorption from

the cell walls.

In May and June 2004, Philipp began to attempt to run current through the split-

ting microwires with a BEC in position. Unfortunately, a freak accident led to the

overheating and breaking of the smallest wires and the chip was rendered dysfunc-

tional. In late May I flew-out for another three week visit, this time concentrating

on a cavity QED experiment with Tilo (to be discussed below). While there, Philipp

and I brainstormed variations of our scheme for splitting a BEC. He eventually set-

tled on a double-layer technique involving small splitting wires fabricated on top of

a polyimide layer coating a larger guiding wire. It was, in essence, the same design

as our last chip, but divided the wires into two layers with an insulator in between.

This would solve the skewed double-well problem and perhaps prevent a repeat of

the wire burning incident (for details on this experiment see Chapter 10). A splitting

scheme involving an atom mirror, charged pads, and microwires might be superior,

but we choose not to pursue this since it would involve a complicated fabrication

process. Since the spring of 2004, Philipp has been involved in developing their own
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in-house fabrication capability and in resolving the complications of fabricating such

a double-layer device.

The macro U-MOT and waveguide

Early on—in mid 2001—Hideo and I recognized the need for a waveguide to move

the atoms from the initial laser cooling and trapping zone of the atom chip to a

region of the chip that was more suitable for coupling atoms to a cavity. Before

we could begin to magnetically waveguide atoms, we had to develop a more robust

method for loading atoms into a U-trap. During my first trip to Jakob’s group in

January 2003, I took a side-trip for a two day stay at the University of Heidelberg,

visiting Joerg Schmiedmayer’s group and his postdoc Ron Folman (now at the Ben-

Gurion University in Israel). While there, I learned of a technique Joerg and his

students were developing that would allow the trapping—from vapor—of atoms in a

MOT formed by a macroscopic U-shaped wire (or rather more of a block of metal

than a wire). This macro U-MOT seemed like an elegant solution to the problems

I was having using a MOT made with external coils to load the microwire U-MOT.

The external coils blocked optical access, rendering useless much of the 6” optical

window area of my vacuum chamber. These coils were also very difficult to position

so that the MOT formed optimally above the U-wires—day to day adjustments were

necessary. Overheating of the coils was a problem, causing the MOT atom number

to fluctuate from the heated air currents affecting the MOT lasers (cooling water

would have solved this, but would have required a coil redesign). More importantly,

the low inductance of the U-wire and the precise controllability of the macro U-

MOT’s position would allow the fast, spatially mode-matched loading of subsequent

microwire traps.

With traveling to Munich and working on those projects, it wasn’t until mid-

summer 2003 that I got the chance to build my own version of the macro U-MOT.

I milled-out a copper U-shaped block of roughly half-centimeter proportions and

supporting 30 amps of current (see Chapter 3 for details). I mounted it on another

copper block that supported three pairs of wire coils: two for creating nulling fields

and one for creating the macro U-MOT bias field. The entire assembly is the size of
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a softball and fits snugly in the vacuum chamber. On top of the U-block is attached

a copper cladded teflon circuit board, and glued onto this is the sapphire atom chip.

The circuit board is milled to allow the connection of wires ultrasonically soldered onto

the atom chip’s gold pads to macroscopic brass pins that are attached to wires in the

vacuum chamber (see Chapter 2). Though ugly-looking and originally only intended

as a temporary trial device before precision machining a permanent one, the atom

chip carrier assembly has worked quite well and I still use it for my experiments. In

addition to allowing larger area atom chips (for on-chip cavity experiments) and great

optical access, a main benefit is its reusability: in contrast to the glued-cell technique,

one can exchange atom chips or cavities on the atom chip without rebuilding the whole

system. In fact, it only takes a day or two to open the vacuum chamber, take-out the

chip assembly, attach a new device, replace it inside the chamber, and begin pumping

down again.

I got the macro U-MOT to work in early September 2003. For this trial, the

atom chip was only a mirror, but the teflon circuit board had a set of mesoscopic U-

and Z-traps milled into it. The copper wires forming these mesotraps were ∼70 µm

tall and ∼500 µm wide. These traps are registered to the macro U-MOT, and I was

able to form macro U-MOTs of 1-2 million cesium atoms and transfer them to the

mesoscopic U-MOT with little loss. The mesoscopic U-MOT configuration was also

able to trap atoms from vapor, albeit with a factor of ten fewer population.

From November 2003 to May 2004, I went through several iterations of waveguid-

ing chip experiments, each time improving the chip design and fabrication technique,

chip carrier assembly, vacuum chamber, and computer control and optical detection

system. The waveguiding chip employed a single wireguide with many crossing wires.

These crossing wires act to gate the otherwise free expansion of the trapped atoms

down the guide by forming either H-traps or Z-traps. The waveguide axis was ori-

ented 90◦ from the original U-MOT axis to enable the movement of the atoms out

of the MOT laser beams. The atoms were loaded into this waveguide with a P-trap

transfering to a Z-trap and performed in a similar manner to what we did in the BEC

experiments in Munich. I first got this working in our Caltech lab in March 2004,
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and took some nice images of the transfer procedure. The cross wires for this first

device were a little too far separated (7 mm), and my absorption imaging wasn’t good

enough to detect the atoms diffusing between gates. The next versions of the chip

had gates spaced by 2 mm, and increasingly improved surface mirrors that eventually

allowed good vertical fluorescence imaging. By May 2004 the waveguiding system

was quite reliable and reproducible. I finished writing a versatile Matlab code that

serves as the control interface for the experiment. In a fairly turn-key manner, it con-

trols the National Instruments analog and digital output boards, sets the triggering

of the CCD cameras, makes plots of the wire current control sequences, and has a

nice modular integration of experimental sequences.

Around this time I improved the electroplating technique, made the chip carrier

assembly more modular, took-apart the vacuum chamber for a thorough cleaning,

and continued to improve the trapping technique. In early January 2005, I switched

from a Z-trap to a more controllable, H-trap method for conveying atoms down the

waveguide. It became apparent in March 2005, that the 90◦ rotation technique was

unnecessary for delivering atoms to the PBG and microdisk cavities since they would

not block MOT beams due to their naturally low aspect ratio. I built a new, simpler

atom chip without the P-trap, and this chip should be able to guide the atoms to the

cavities with higher transfer efficiency.

Cavities galore

The original goal of this research has always been to magnetically trap and guide

atoms to the mode of a photonic bandgap cavity. However, it wasn’t until June 2003

when we began collaborating with Oskar Painter’s group that we believed that we

could in the near term obtain a PBG cavity suitable for our experiments. In the

meantime, Hideo and I explored the possibility of using other types of cavities in

our atom chip experiments. Hideo and Kimble’s group had a lot of experience with

making and testing microspheres [20, 21, 22], and we thought it would be worthwhile

to magnetically guide atoms to the evanescent field at the edge of the microsphere.

In September 2001, I designed a waveguide scheme that would shuttle atoms from

the laser trapping and cooling zone to the edge of a cut-out in the chip in which
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the microsphere would reside (or alternatively, the microsphere would be mounted

on ∼100 µm tall pedestals on the atom chip). Several months later, we learned that

Jakob and Prof. Hänsch’s were also building such an experiment [23], and it seemed

like this was a very difficult cavity QED scheme to implement: we decided to pursue

other types of cavities.

We had in our labs several supermirrors from REO, and in February 2002 I worked-

out a scheme for moving the atoms between two, 7.5 mm diameter Fabry-Perot mirrors

counter-sunk into the atom chip (see Chapter 7). Though the cavity mirrors would

be 1 mm apart (a space necessary for inserting the microwire substrate between the

mirrors), the high finesse of the cavity mirrors would enable the achievement of strong

coupling with magnetically trapped atoms. Although we didn’t implement this idea

and instead moved-on to the PBG cavity experiment, we entered into a collaboration

with Jakob’s group which began building a Fabry-Perot cavity on a chip using tiny

mirrors glued to the ends of fiber optics. In late May 2004, I flew-out to Munich to

work on this experiment for three weeks. By the time I arrived, Tilo had already

attached the cavity—of finesse 600—to the chip. The chip is of similar design as my

waveguiding chip and was installed in a glued-cell vacuum chamber of design similar

to the apparatus used for the BEC double-well experiment. I spent part of my time

helping to get the coils, power supply, and laser system system set-up and by the

end of the trip we had loaded atoms into a U-MOT. The main focus, however, was

in thinking of how to optimize and understand the prospective cavity QED signal

and how to lock the cavity in the presence of detunings caused by microwire wire

heating. At the end of my trip, we got the locking system working, and by October

2004 Tilo and Yves Colombe—a new postdoc with Jakob—detected atom transits of

magnetically trapped atoms being guided through the cavity (see Chapter 7). My

main contribution since that visit has been to run master equation calculations for

the purpose of determining which drive powers and cavity and laser detunings are

optimal for maximizing signal-to-noise and minimizing spontaneous emission as an

atom transverses the cavity. So far, the calculations qualitatively concur with the data

from the experiment. To the best of my knowledge, this experiment demonstrates
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the first atom-cavity chip device. In the late winter of 2005, Yves took some data

that hint at the observance of optical bistability in the system. I returned to Munich

in June 2005 to work on this experiment some more. We had wanted to trap a

BEC inside the resonator, but the UV lamp used for rubidium desorption broke and

we decided to table this effort until it could be replaced. We instead concentrated

on improving the signal-to-noise of the atom transit detection, and by the end had

obtained much improved signals (see Chapter 7).

At Caltech over the last two years, I have been trying to integrate a PBG and/or

microdisk cavity with the waveguide atom chip. The original plan was to use the

PBG cavities designed by Axel Scherer’s group [24]. However, the problem of effi-

ciently coupling of light into and out of this devices hadn’t been solved. In June

2003, Hideo and I met with Oskar Painter and his grad students Paul Barclay and

Kartik Srinivasan, and we learned that they had solved exactly this problem. They

demonstrated extremely efficient input/output coupling to their PBG and microdisk

cavities with the use of fiber tapers. We formed a collaboration and they spent the

last year learning to fabricate their PBG and microdisk cavities in AlGaAs—which

was difficult—and in SiN. By late 2004, they demonstrated small mode volume but

so far relatively low Q devices in AlGaAs, but in early 2005 high Q’s were achieved

in SiN.

Ideally, we’d like to use PBG cavities for our experiments—they have much smaller

mode volume than microdisks—but since microdisks are easier to fabricate and di-

agnose, we’re exploring both options. In January 2004, I wrote a paper with Oskar,

Paul, and Kartik detailing our proposed scheme for integrating a PBG cavity with

the magnetic microwire traps to form an atom-cavity chip. The paper’s focus was on

demonstrating the feasibility of detecting single atoms with this system by solving the

master equation in a two-level approximation (see Chapter 6 for details and updated

calculations). A few months later, a similar analysis was performed for microdisks.

It seems that we can achieve a system that is further into the strong-coupling regime

than ever demonstrated before, and achieve this with compact, experimentally ro-

bust devices. For the first experimental demonstration, we plan on magnetically
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guiding atoms into the microcavity’s mode, albeit loading in a non-deterministic

fashion. After we build expertise with this technique, we will add more complicated

microwire traps and eventually deterministically load atoms into the cavity while

they are trapped in the Lamb-Dicke regime. Currently, Paul and I are working-out

the experimental details of mounting fiber tapers to the atom chip while maintaining

fiber-to-resonator coupling. We are in the process of installing this device inside the

vacuum chamber, and we hope to test the first devices in the presence of trapped

atoms in the fall of 2005.
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Chapter 1

Introduction

Central to all modern technology—from airplanes and computers, to everyday kitchen

appliances—is the application of feedback control to extract desired device function-

ality. As we push towards designing ever smaller devices, two questions arise: how

to make devices rooted in the classical domain cope with the emergence of quan-

tum effects; and how to make quintessentially quantum components—atoms, ions,

photons, nuclear and electron spins—work in concert with one another in the face

of environmental perturbations. As in the classical domain, feedback control may

allow the engineering of quantum systems to exhibit useful dynamics which would

otherwise be unattainable. Quantum feedback, an emerging subfield of physics and

information science, pertains to the control of systems in which quantum dynamics

and behavior—measurement backaction, entanglement—are non-negligible.

Cavity quantum electrodynamics (QED) describes the system composed of one or

more atoms, ions, or quantum dots coupled to the mode of a high finesse resonator.

Feedback experiments in the strong coupling regime of cavity QED—in which the

coherent dynamics dominate the dissipative—will provide an excellent setting to ex-

plore the real-time actuation and measurement of an open quantum system (see

Figure 1.1). Moreover, it is a proving ground for the efficacy of current theoretical

tools, such as quantum trajectory theory [25, 26], in analyzing continuously-observed

quantum systems for the study of the quantum-classical transition or for the purpose

of designing feedback controllers in the presence of measurement backaction. Recent

proposals and experiments have highlighted the capability of quantum feedback in
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Figure 1.1: Quantum feedback in a cavity QED setting.

the neutral atom cavity QED setting [27] to perform motional cooling of intracavity

atoms [28, 29] and for joint atom-cavity quantum state manipulation via the com-

bination of detection and actuation of the intensity and phase of the cavity probe

laser [30, 31]. A quantum to (semi)classical transition occurs in a strongly coupled

cavity QED system as the number of intracavity atoms are increased from N = 1 to

N >> 1 while holding constant the total atom-cavity coupling strength, geff = g
√
N .

Quantum feedback may aid in the study of this transition by localizing and observing

the single-atom cavity QED dynamics in regions of phase-space that in the semiclas-

sical regime exhibit nonlinear behavior such as subcritical pitchfork and supercritical

Hopf bifurcations [32]. The Science paper by H. Mabuchi and A. C. Doherty provides

an excellent review of recent experimental and theoretical research and motivation in

cavity QED [33].

In addition to investigating open quantum systems under continuous measure-

ment, cavity QED in the strong coupling regime holds great promise for the field of

quantum information processing (QIP). Whereas atoms are useful for qubit storage

and performing quantum logic gates, photons are optimal for transporting—via fiber

optics—this quantum information over long distances. Cavity QED facilitates the

reversible transfer of quantum information from atoms to photons, enabling the use

of both media for building quantum networks for quantum communication and en-

tanglement distribution [34, 35, 36]. Figure 1.2 sketches a quantum network scheme

based on cavity QED.

Until recently, state-of-the-art cavity QED experiments in the optical domain have

largely been performed by dropping [37], tossing [38], or optically guiding [39] cold
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Figure 1.2: Quantum network scheme based on cavity QED. At each node resides
an atom-cavity system. The state of a qubit is mapped from the atom to the cavity
field. A photon leaking out of the cavity transports the qubit to a remote node where
the state mapping is reversed. In this manner a quantum repeaters and entanglement
distribution could be implemented [34, 35]. Figure courtesy of H. Mabuchi.

atoms from a magneto-optical trap (MOT) between the high finesse mirrors of a

Fabry-Perot cavity. A major challenge in accomplishing the aforementioned goals

is to develop an experimentally robust cavity QED system in which the atom is

tightly confined inside the mode of a high-finessse, low mode volume cavity for long

periods of time. This long lifetime and the elimination of the stochastic variation of

atom-cavity coupling would enable the implementation of quantum feedback or QIP

schemes. A major breakthrough toward these ends was achieved in Prof. Kimble’s

group in 2002 by the successful use of an intracavity far-off resonance trap (FORT)

formed by coupling a second laser into the cavity [40]. Atom trapping lifetimes on the

order of seconds were achieved, and demonstrations of a single atom laser [41], the

deterministic generation of single photons from one atom [42], and the measurement

of the vacuum-Rabi spectrum for one trapped atom [43] soon followed.

In 1999, our group chose an alternative route for single atom trapping inside

an optical resonator. This involves the magnetostatic confinement of atoms, and

has the potential advantage of enabling experimentally robust, scalable, and fully
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integrated cavity QED systems to be built on a chip. This thesis documents our

burgeoning efforts to combine the tools of nanotechnology with atom trapping and

cooling to produce such a chip-based cavity QED system. Moreover, it describes how

we have begun to harness the capabilities of micro- and nanofabrication to enable

the development of better ways to manipulate atoms for the purpose of investigating

quantum phenomena associated with Bose-Einstein condensates (BEC) and to create

new atom optical devices such as atom mirrors and 1-D ring traps.

Microfabricated wires on a substrate—known as an atom chip—can create a suf-

ficiently high-curvature magnetic potential to trap atoms in the Lamb-Dicke regime.

We have developed a state-of-the-art atom chip fabrication capability [8] for mak-

ing these devices “in-house.” Chapters 3, 4, and 5 detail our atom chip fabrication

and trapping techniques as well as the apparatus we have built for chip-based atom

trapping and cooling. Over the past six years we have developed a streamlined experi-

mental system for producing custom-made atom chips and for using them to trap and

convey micro-Kelvin atoms ten to one hundred microns above the room-temperature

chip surface into an optical cavity.

Chapter 6 discusses the experiments being preformed in collaboration with the

Caltech Applied Physics group of Professor Oskar Painter to couple single cesium

atoms into the mode of an on-chip photonic bandgap (PBG) or microdisk cavity via

the aforementioned atom chip system. The natural proximity of the atoms to the

chip surface introduces the possibility of replacing the Fabry-Perot cavity with these

more compact and rigid cavities of much smaller mode volume. This enables stronger

atom-cavity coupling, and the planarity of these cavities allows the straightforward

integration with fiber tapers and photonic waveguides. Scalability and miniaturiza-

tion is inherent in these micro- and nanofabricated systems, and an architecture for

a multi-qubit quantum network device on a single atom-cavity chip may be achiev-

able [1].

A great challenge recently tackled by the Painter group was the fabrication of these

devices in AlGaAs and SiNx—materials suitable for cavities resonant with cesium—

and the development of robust techniques for coupling light into and out of the cavity.
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At the time of this writing, we are in the process of integrating these new PBG

and microdisk cavities with our atom chip trapping apparatus. Numerical master

equation calculations indicate single atom detectability with this system, as discussed

in Chapter 6 and in Reference [44].

In 2002, we began a collaboration with the group of Professors Theodore Hänsch

and Jakob Reichel at the Max Plank Institute for Quantum Optics in Munich. Orig-

inally intended as an exchange of our atom chips for an opportunity to learn on-

chip Bose-Einstein condensate (BEC) production in their labs, this collaboration has

blossomed into a full partnership—including chip design, theoretical modeling, exper-

imental apparatus assembly, and data analysis—on two experiments during several

visits of the author to Munich. In a cavity QED experiment similar to the one detailed

above, we have successfully integrated a miniature optical fiber-gap Fabry-Perot cav-

ity with an atom chip in the Munich labs. Magnetically trapped intracavity atoms

have been detected with this cavity QED system. Chapter 7 details the results of

master equation calculations that suggest this cavity—though in the weak-coupling

limit—should be able to detect single atoms. We are currently improving detection

sensitivity and are attempting to magnetically load an on-chip BEC into the cavity.

The atom chip and associated fabrication techniques have proven valuable in re-

search outside the field of cavity QED. In our labs at Caltech, we fabricated and

demonstrated a specular magnetic atom mirror formed from an ordinary hard drive,

which is discussed in Chapter 8 and Reference [12]. Ion milling of the hard drive

surface patterned large area, high resolution permanent-magnetic structures on these

flat, rigid, and inexpensive substrates. The periodically modulated magnetic domains

produce an exponentially repulsive, high remanent magnetic field for reflecting cold

neutral atoms, making the device ideal for creating waveguides, corner cubes, or other

atom optical devices. Moreover, electric fields from integrated charged pads on the

mirrors surface can perform quantum logic gates, and the device’s large coercivity

allows the placement of microwires on its surface for additional time-dependent mag-

netic fields.

We recently proposed a device incorporating micron-sized charged circular pads
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fabricated on the hard drive atom mirror and is discussed in both Chapter 9 and

Reference [45]. Through the balance of the repulsive magnetic potential and the

attractive electrostatic, this device can produce a 1-D ring trap that may prove useful

for both studying Tonks gases in a ring geometry and for creating a SQUID-like

system for cold neutral atoms.

Our second joint experiment in Munich involves an atom chip with wire features

capable of splitting a BEC in a magnetic double-well potential. The first generation of

this chip was fabricated by ourselves at Caltech, and we hope to be able to perform

atom interferometry and investigate Josephson effects with future versions of the

device. Solutions to the Gross-Pitaevskii equation for a BEC in this double-well trap

indicate that Josephson oscillations are observable with such an atom chip device, and

this study is presented in Chapter 10. We constructed a compact atom chip vacuum

chamber system and obtained an on-chip BEC. This type of chamber system will be

useful for future experiments in our lab at Caltech, and its design is also described in

Chapter 10.
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Chapter 2

Atom Chips

2.1 Introduction

Cold samples of neutral atoms and Bose-Einstein condensates have become readily

available using the techniques of laser cooling and trapping [46], and it has been

widely recognized that cold atoms are a rich resource for experiments in quantum

information science and quantum feedback. For many proposals, however, quantum

control of the atomic motional degrees of freedom is essential. For example, many

proposals for quantum computation in a cavity QED setting or through controlled

cold collisions require the ability to trap and control single atoms in the Lamb-Dicke

regime [34, 47, 48]. In 1995, Weinstein and Libbrecht noted that micron-sized wires,

fabricated on a substrate, are capable of producing the large magnetic field gradients

and curvatures required for trapping atoms in this regime [3]. Westervelt et al., in

1998, succeeded in fabricating the wire patterns used in the trap designs of Weinstein

and Libbrecht [49]. These microwire devices, now commonly known as atom chips [7],

have been used to great success in atom optics and in the production of Bose-Einstein

condensates (BEC), and are promising tools not just for quantum computation, but

for atom interferometry, cavity QED, and the study of cold collisions as well [2, 7, 4, 6].

In this chapter we describe the design of atom chips and the methods we use for cooling

and trapping atoms with these magnetic micropotentials.

Atom optical elements, such as mirrors, waveguides, splitters, traps, and conveyor

belts have been demonstrated using atom chips [50, 51, 52, 10, 53, 11, 12]. Cesium
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cold collisions in the presence of light have been studied using a magnetic microtrap

(see Chapter 5). The use of fiber-gap cavities [54, 23] has recently been realized for on-

chip atom detection (see Chapter 7), and on-chip microsphere [23, 55], microdisk [56,

57], and photonic bandgap cavities [44] are being explored (see Chapter 6). Ion

trap experiments are now using substrates with microfabricated electric pads for the

purpose of controlling ion position [58, 59].

On-chip production of a BEC has been one of the most successful uses of the

atom chip thus far [60, 61, 62, 63]. Ioffe traps formed from microwires can produce

extremely large trap compressions that enhance the efficiency of evaporative cooling.

Consequently, condensate production time can be reduced from one minute to less

than ten seconds [60]. This allows magneto-optical trap (MOT) loading from a ther-

mal vapor in a glass cell with a vacuum of only a few 10−10 Torr (see Chapter 10). All

of the required magnetic fields can be produced on-chip [64, 5], removing the necessity

of large, high power external coils. The atom chip greatly miniaturizes BEC produc-

tion and will enable the integration of matter waves with chip-based atom optics and

photonics.

Another exciting avenue of research involves the use of an atom chip to trap, in

the Lamb-Dicke regime, one or more atoms in the mode of a high finesse cavity. The

combination of magnetic microtraps and photonic bandgap (PBG) cavities would be

an excellent cavity QED system for the implementation of scalable quantum compu-

tation, or for the study of continuous measurement and quantum-limited feedback.

One technical proposal involves the integration of a PBG cavity with an Ioffe trap

formed from microwires patterned on the same surface [1]. The combination of small

mode volume and modest optical quality factor that should be obtainable with PBG

structures would enable strong atom-cavity coupling. This would be an interesting

alternative to present experiments that utilize a Far Off Resonance Trap (FORT) to

confine atoms inside optical Fabry-Perot cavities [40]. Several PBG cavities, each

with an independent microwire trap, could be fabricated on the same substrate and

coupled together with a network of line-defect optical waveguides.
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2.2 Microwire traps

Magnetic traps exploit the interaction potential, V = −~µ · ~B, between an atom’s

magnetic moment, ~µ, and a magnetic field, ~B, to trap or guide weak-field seeking

states of a neutral atom. Typical magnetic traps are formed from coils of wire ar-

ranged outside the vacuum chamber. This results in macroscopic coil radii on the

order of 10 cm which require the use of tens to hundreds of amps of current, I. These

coils produce either homogenous biasing fields or trapping fields in a quadrupole or

Ioffe configuration. The on-axis field from a single coil of radius, R, and positioned a

distance A from the origin x = 0 is,

Bcoil(x) =
µ0nIR

2x̂

2[(x− A)2 +R2]3/2
, (2.1)

where µ0 = 4π × 10−7 N/A2. In this equation, n is the number of turns of wire

carrying current I. A pair of coils positioned on axis with one another, separated by

2A, and having the same orientation of current flow produce a homogenous magnetic

field, 2Bcoil, at the midpoint between the coils (see Figure 2.1 [a]). Maximum field

homogeneity is achieved when A = R/2. This cancels the quadratic field variation at

x = 0, and this coil arrangement is called the Helmholtz configuration:

2Bcoil(0) =

(
4

5

)3/2
µ0nI

R
. (2.2)

This method for producing a homogenous magnetic field proves quite useful for nulling

ambient fields, defining a quantization axis, and for producing bias fields that can be

combined with non-homogenous fields from magnetic traps and waveguides. Expres-

sions for the off-axis field of this coil configuration and those discussed below can be

found in Reference [65].

The most basic magnetic trap is formed by simply reversing the current direction in

one of the Helmholtz coils (see Figure 2.1 [b]). This anti-Helmholtz coil arrangement

forms a quadrupole field which is zero at the trap center and increases linearly from
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Figure 2.1: a) Helmholtz coils for homogeneous magnetic field production. The arrows
denote the current direction. b) Anti-Helmholtz coils for creating a quadrupole trap.
c) Ioffe trap.

the center. Near the trap center—located at x = 0, y = 0, and z = 0—the field is:

Bquad =
3µ0nIAR

2

(R2 + A2)5/2
[xx̂− 1

2
yŷ − 1

2
yẑ]. (2.3)

For A/R ≈ 0.63, the trap depth in x̂ is equal to that in the ŷ−ẑ plane. The quadrupule

trap is easy to create, and forms a MOT when combined with red-detuned laser beams

impinging the trap center from six directions along the quadrupole trap’s axes [66].

The MOT has become the workhorse for modern atomic physics. The quadrupole

trap has a disadvantage in that the field vanishes at the trap center which can cause

atoms to be lost due to Majorana spin-flips (see Chapter 5). To avoid this loss

mechanism, an Ioffe trap1 is used which plugs-up the trap minimum with a finite

field. This transforms the linearly varying quadrupole potential into a harmonic

potential. As pictured in Figure 2.1 (c), the Ioffe trap is formed from a coil pair more

widely separated than the Helmholtz configureation to provide a harmonic trap in x̂

and four straight current-carrying wires arranged symmetrically about the coil axis.

1This is sometimes referred to as an Ioffe-Pritchard trap.
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These wires provide confinement in the ŷ− ẑ plane perpendicular to the coil axis. At

the trap minimum, the field is to quadratic order:

Bz = C1(z
2 − 1

2
ρ2) +Bbias + ...,

Bρ = −C1zρ+ C2ρ cos(2φ) + ...,

Bφ = −C2ρ sin(2φ) + ...,

B ≈ Bbias + C1z
2 + (C2

2/Bbias − C1)ρ
2/2. (2.4)

The constants, C1 and C2 are determined for a specific wire layout [65, 3]. The bias

field, Bbias, is the residual field at the trap center which prevents Majorana spin flips,

and the Ioffe trap is stable for C2
2/C1 > Bbias > 0.

A major goal of atom trapping is the confinement of atoms in the Lamb-Dicke

regime. This is important, for instance, in cavity QED where one wants to localize

the atom to a nearly constant region of an optical field. In ion trapping experiments,

confinement in the Lamb-Dicke regime is crucial for Raman sideband cooling which

requires the spectroscopic resolution of the trap’s vibrational levels. The Lamb-

Dicke regime is defined as η = (Erecoil/Evib)
1/2 < 1, where η is the Lamb-Dicke

parameter [67] (see Figure 2.2). An η less than one implies that the scattering of a

photon of wavelength λ is of insufficient energy to excite the atom to higher vibrational

levels. In other words, excitation out of the ground state—or out of any other state—

of the trap is suppressed by a factor of η. This condition is equivalent to viewing the

trapped atom’s wavepacket extent, x0, as smaller than the wavelength, λ, of resonant

light: λ� x0 =
√

~/2mωvib.

In general, the field’s magnitude, gradient, and curvature scale as I/r, I/r2, and

I/r3, respectively, where I is the wire’s current and r is its characteristic dimension

such as radius. To create traps with field curvature high enough to trap atoms in

the Lamb-Dicke regime, one needs to either increase the coil current I or shrink the

magnetic field coils. Currents in excess of a few hundred amps become difficult to

produce and work with in the lab. Moreover, macroscopic coils are space-inefficent,

and it can be difficult to align their trap minima with microscopic devices—such as
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Figure 2.2: An atom is trapped in the Lamb-Dicke regime when the atomic recoil
energy is much less than the vibrational levels of the trap.

microfabricated cavities—inside the vacuum chamber (see Chapters 6 and 7). Al-

ternatively, microscopic wire patterns maximize field gradients and curvatures while

keeping power dissipation to a minimum. Reducing r to the 1 to 10 µm scale allows ex-

tremely high trap gradients and curvatures to be produced for modest < 1 A currents

and is sufficient to trap atoms in the Lamb-Dicke regime. Of course, microscopic wires

are difficult to arrange inside a vacuum chamber. We overcome this by co-opting the

techniques of computer chip microfabrication—namely, photolithography—to pattern

these wires on ridged, thermally conductive substrates. These devices are commonly

known as atom chips and the next section discusses how to create analogues of the

quadrupole trap, waveguide, and Ioffe trap using planar pattern of wires and easily

generated homogeneous bias fields.

2.3 Zoology of microtraps

Since the proposal of magnetic microtraps by Libbrecht’s group in 1995 [3], there has

been an explosion in the field of atom chips with approximately ten groups employing

them worldwide. In this section, we present the basic microtrap building blocks that

are used to construct the various atom chip devices used today. The groups of J.

Reichel, J. Schmiedmayer, E. Hinds, and C. Zimmermann have written excellent

reviews on this subject [50, 68, 51, 10, 69].
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Figure 2.3: a) A 2-D quadrupole field—for use as a wireguide—may be formed from
a bias field perpendicular to a current carrying wire. b) Simple single-wire waveg-
uide [70]. c) Same as (b) except the externally generated bias field is replaced by
two wires with oppositely flowing current [71, 72]. d) A wireguide formed from two
wires and a bias field oriented perpendicular to the plane of the wires [4, 6]. This
device may be used as an atom interferometer: the trap minimum may be split into
two depending on the current and bias field values [73]. e) The 3-D quadrupole trap
referred to as a U-trap [2]. f) The Ioffe trap referred to as a Z-trap [2].

2.3.1 The wireguide, U-trap, and Z-trap

The most commonly used magnetic microtraps are those based on the wireguide

which is composed of a single straight wire and a bias field, Bbias, perpendicular to

the wire [70]. Operated by itself, this device functions as a 2-D magnetic waveguide for

transporting neutral atoms. Figure 2.3 (a) depicts how a quadrupole field is formed

with this device. Current in a straight wire produces a curling magnetic field that

decreases as r−1 from the wire. A bias field, Bbias, perpendicular to the wire cancels
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the curling magnetic wire along a line suspended above the wire at a distance

y =
µ0I

2πBbias

. (2.5)

The resulting field, shown in the vector plot of Panel (a), is a 2-D quadruple waveguide

that extends the length of the wire. Atoms in weak-field seeking states will be drawn

to this field minimum and can freely propagate along the length of the wire, hence

the name wireguide for the wire and field arrangement pictured in Panel (b). The

gradient of this 2-D quadrupole field is

∇B =
2πB2

bias

µ0I
. (2.6)

The trap height and gradient can be controlled by choosing the proper combination

of I and Bbias. This assumes that the wire is infinitely thin, cylindrical, and can

withstand arbitrarily high currents. The former assumption breaks-down when y

is less than a wire width from the surface. For more information on this and the

maximum power that the wire can support, see Chapter 4. Reference [68] contains

a good discussion regarding the constraint placed on wire size and trap gradient due

the microwire power dissipation.

Figures 2.3 (c) through (f) show the various types of waveguides and traps formed

in a similar manner. Panels (c) and (d) show alternative methods for waveguiding

atoms. In Panel (c) the bias field is replaced by microwires with currents running in

the direction opposite to the central wire. Panel (d) shows a double wire guide em-

ploying a bias field oriented perpendicular to the wire plane. This offers the advantage

of enabling the waveguide to bend around curves and even into a spiral [74].

Perhaps the most useful atom chip devices are the U- and Z-traps pictured in

Panels (e) and (f), respectively [2]. The U-trap forms a 3-D quadrupole trap by

“pinching-off” the waveguide field at the two sharp wire bends. The “side” wires

have currents in opposite directions that produce fields that cancel at the trap center,

thereby completely forming a 3-D quadrupole field. In this manner a cigar-shaped
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Figure 2.4: a) Microwire layout for creating an H-trap, gated waveguide, and dimple
trap. b) Dimple trap: two crossed wires with I1 > I2 and bias field direction as
shown. c) The P-trap: the quadrupole trap can be rotated 90◦ by swapping Bx with
By while maintaining constant current, IP .

trap is formed whose trap minimum, y, and gradient (in the two tightly trapping

dimensions) is approximately given by Equations 2.5 and 2.6. The Z-trap is similar

to the U-trap, but one of the side wires is extended in the opposite direction. The

fields from the parallel currents in the side wires add to form a harmonic potential

minimum at the trap center. This is an easy way to make a microwire Ioffe trap

and is employed extensively in creating on-chip BECs (see Chapter 10). Appendix A

contains the exact field expressions for the U- and Z-traps.

2.3.2 Variations: H-trap, dimple trap, P-trap, et cetera

The basic microtrap elements presented in the previous section can be combined to

form more complicated devices. While there have been many such variations [68, 51,

75], we present here only those that have played a role in the experiments discussed

in this thesis.

While the single-wire waveguide performs as intended, a guided atomic cloud

quickly expands throughout the entire volume, reducing its phase-space density and

making it hard to control or image. A more useful device is one that has cross-

wires that act as gates for the atoms. Manipulating these gates like locks in a river

allows one to transport the atoms over centimeter distances while maintaining rea-

sonably high phase-space densities. Figure 2.4 (a) illustrates a typical wire layout for
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transporting atoms, and actual atom chips that employ this technique are pictured

in Figures 2.7 and 4.2. The wireguide (WG) is defined by endpoints [WG1,WG2].

Gate wires—defined by their upper (GU) and lower (GL) endpoints—intersect the

wireguide at regular intervals, a. These gate wires actually make electrical contact

with the wireguide. It is important to note that since these intersections only define

the potential at one point along the gate wires, we are free to self-consistently adjust

the potentials at the various terminals to allow arbitrary current flow through the

wires. As an example, let us assume that the wires defined by [WG1,WG2] and by

[GU1, GL1] are each connected to a floating, current-controlled power supply. All

other wire terminals (i.e. GUi and GLi for i = 2 to 5 and D1 and D2) are discon-

nected (floating). We essentially have two wires crossed at a single point, P , and we

(or in practice, the current supplies) are free to define the potential at this point. If,

for example, we want to have 2 A flow through wire [+WG1,-WG2] and 1 A through

[-GU1, +GL1], where the ± denotes the terminal with a more positive voltage and

hence defines the direction of current flow. Assuming, for instance, that the wire

resistances in each segment are [WG1,P] = [P,WG2] = 3 Ω and [GU1, P] = [P, GL1]

= 1 Ω, a possible voltage scheme that would achieve this current flow is: WG1 = 10

V, WG2 = −2 V, GU1 = 3 V, and GL1 = 5 V. The voltage at the point P would

have to be 4 V. Since the power supplies are floating, the same currents would flow

even if an arbitrary constant voltage were to be added to each wire terminal and

intersection point, P . To prevent the power supplies from railing, one can ground

either the WG1 or the WG2 terminal. However, at most only one terminal in the

circuit can be grounded—the rest must float for this scheme to work. The strength

of this technique lies in the fact that the current in one wire, say [GU1, GL1], can be

changed without affecting the current in the other wire(s). For the case above, if we

instead want a current of 3 A to flow in wire [+GU1, -GL1], then the voltages can be

changed to GU1 = 7 V, and GL1 = 1 V without changing the voltage at point P = 4

V, which maintains the current in [+WG1,-WG2] constant at 3 A. This technique

can be extended to simultaneously include all the wires shown in Figure 2.4 (a). The

only condition is that each wire have its own floating power supply and only one wire
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can be multiply connected (and only this wire can be grounded at one terminal). In

practice, the multiply connected wire, [+WG1,-WG2], sets the potential at each of

the gate wire intersection points, and the gate wire floating power supplies adjust

their ± terminal potentials to accommodate the potentials at the intersection points

while simultaneously driving the required current.

The wire pattern shown in Figure 2.4 (a) is quite versatile: U-, Z-, and H-traps

can be formed as well as a gated wireguide and dimple trap. U- and Z-traps can be

formed in several ways: for instance, by running current in wires such as [GL1,GL2]

and [GL1,GU2], respectively. The H-trap is a more flexible version of the U- and Z-

traps, and it can be formed from a three-wire pattern such as [WG1,WG2], [GU1,GL1],

and [GU2,GL2]. With a bias field in +ŷ, an Ioffe trap is formed with a +x̂ current

in [WG1,WG2] and parallel currents in the gate wires [GU1,GL1] and [GU2,GL2].

Adding a bias field in ±x̂ either adds or subtracts from the field created by the gate

wires, and the former increases the potential barrier of the gate wire and is useful

for both increasing the Ioffe trap’s oscillation frequency in x̂ and for increasing the

magnitude of the field at the trap center. Making the currents run anti-parallel in

the gate wires produces a quadrupole trap. The H-trap is desirable since the strength

of the fields in the two gate wires can be independently controlled. For instance, the

H-trap mentioned above can form the starting trap for loading the gated waveguide:

as the current in [GU2,GL2] is ramped down, the atom cloud is released into the

wireguide formed from [WG1,WG2]. Moreover, the current in [-GU1,+GL1] can be

ramped-up in the presence of a bias field in +x̂ to give the atoms an extra push.

While a wireguide can be formed solely from a bias field in +ŷ, [WG1,WG2], and

[GU1,GL1], it is sometimes more convenient to use an extended Z-trap formed by

[GL1,GU5], for instance. A short Z-trap, such as [-GU1,+GL1], can be transformed

into a longer one, [-GU5,+GL1], by using two independently-controlled, floating power

supplies connected to the same wire for one terminal but to different wires for the

other terminal. Gradually turning-off the current from the power supply connected

to terminal GU1 while turning-on the current from the other power supply connected

to GU5 produces this transfer without heating the atoms. Switching the currents on
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and off with an “error function,”

erf(t) ≡ 2√
π

∫ t

0

e−z2

dz, (2.7)

provides a smooth transition while maintaining constant current in the shared seg-

ments of the wire.

Regardless of the method for releasing the atoms, the gated waveguide transports

atoms in the following manner. At t = 0, the atoms are released into the waveguide

and the gate [-GU4,+GL4] is turned-on along with a bias field in +x̂. The atoms

expand down the waveguide (in the +x̂ direction) until they are past the gate [GU2,

GL2]. Current is turned-on in this gate, [-GU2, +GL2], which prevents the atoms from

expanding backwards to the starting point. We now have the atoms trapped between

gates [-GU2, +GL2] and [-GU4,+GL4]. This procedure can be repeated with gates

[-GU2, +GL2] and [-GU4,+GL4], and in this manner the atoms can be transported

down a waveguide arbitrarily long. We demonstrated a gated waveguide of length 8

mm both in our Caltech lab and in those in Munich. Atom transfer usually occurs

in ∼100 ms. A similar style waveguide transported atoms over a ∼7 cm distance

in an experiment in Munich [76, 23]. We found that gate spacings of a ≈ 2 mm

maintain a reasonably high level of trap phase-space density while minimizing the

number of gates. At Caltech, we originally tried to use a gated waveguide with a = 7

mm, but found that the atom cloud became too defuse for diagnosing and optimizing

transport.

The thiner wire, [D1, D2], depicted in Figure 2.4 (a) may be used to form a dimple

trap. Figure 2.4 (b) sketches the basic element of a dimple trap: two crossed wires

and a bias field, B. For I1 > I2 and bias field, B = Bxx̂ + Byŷ where By > Bx, the

confinement in the x̂ direction is stronger than in ŷ. We call this a dimple trap since

the I2 current forms a small potential well in the otherwise perfectly 2-D quadrupole

trap formed from I1 and By. This dimple trap is centered above the intersection of

the two wires and is an Ioffe potential. The wire [+D1,-D2] in Figure 2.4 (a) forms

a dimple trap when the bias field is in +x̂. The dimple trap is commonly used in
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conjunction with an H- or Z-trap, augmenting trap compression and collecting the

cold atom cloud directly above the dimple center. The width of the wire used for

making the dimple trap is typically smaller since the atoms in this potential well will

be closer to the substrate and less current is required. It should be noted that the

dimple trap may be viewed as the most fundamental magnetic microtrap building

block since the U- and Z-traps are each formed from the conjunction of two dimple

traps [50, 68]. Appendix B contains a Matlab code that calculates the field, gradient,

and curvature from an arbitrary combination of dimple traps.

The P-shaped microwire pattern shown in Panel (c) of Figure 2.4 is a device for

rotating the axes of a quadrupole microtrap by 90◦ [76]. This is useful for moving mag-

netically trapped-atoms outside the zone of laser beam convergence used in making

a mirror MOT (see Chapters 6 and 7). The P-trap is essentially a two-sided U-trap.

Typically the atoms are loaded into the quadrupole field at the tip of the “P” opposite

to the Bx bias field. Even though the wire is curved in a half-circle there, a U-like

trap can be formed. Once the atoms are loaded in this section, they can be trans-

ported to the top, straight section by turning the x̂ field off while turning on the bias

field in ŷ. This is best accomplished using a sinusoidal ramp: Bx(t) = cos(πt/2τ)Bx,

By(t) = sin(πt/2τ)By, where τ is the ramp time which should be ∼100 ms to ensure

that the movement does not heat the atom cloud. This transfer time can be shortened

if the magnetic trap lifetime is too small due to a high vacuum chamber pressure. We

note that the atoms can be rotated in the opposite direction (to the Z-trap like zone),

by ramping By in the opposite orientation: By(t) = − sin(πt/2τ)By. The U-trap side

is more useful since the P-trap can be embedded in a larger H-trap wire network and

the atoms transfered between the two at this wire segment (see Figure 2.7 and 4.2).

We have found that extending the “P” shape to a “D” by adding a straight section of

wire in the middle of the half-circle increases the trapping volume. Rotation in this

D-trap works just like the P-trap except that one has to first add a bias or gradient

field to shift the atoms from the center of the straight-wire region of the D-trap to

the beginning of the arced region before sinusoidally ramping the bias fields. This

“shift-then-rotate” procedure minimizes atom loss. A good test for measuring the
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Figure 2.5: a) The Libbrecht-style Ioffe trap. A 3-D Ioffe trap is formed a distance
approximately equal to the wire radius above the wire substrate. b) Plot of the
magnetic field along the axis of the trap perpendicular to the wire substrate. The
current in the wires is I = 1 A and the outer ring radius is Ro = 15 µm and the
inner is Ri = 10 µm. The trap curvature in the plane parallel to the wire substrate
is 2× 1010 G/cm2 with η = 0.11.

rotation transfer efficiency is to rotate the atoms back to the trap starting point to

measure the remaining atom number with the same detection viewpoint.

While the gated wireguide is simple and sufficient for transporting a thermal cloud

of atoms, it does not maintain high enough phase-space density to transport a BEC

over long distances. A microwire pattern developed by the Munich group can act as

a conveyor belt to move a BEC, and this device was incorporated into some of the

atom chips we made for this group (see Figure 4.5). See References [77, 60] for more

details regarding this conveyor belt.

2.3.3 The Libbrecht-style Ioffe trap

The Z-trap can only confine atoms two-dimensionally in the Lamb-Dicke regime, and

the conductive wire is always directly between the trapped atoms and the substrate.

Other trapping schemes, such as the double-wire guide or the dimple trap, improve

upon one or the other of these constraints but not both. In contrast, the Ioffe traps

proposed in Reference [3] can confine atoms three-dimensionally in the Lamb-Dicke

regime with equal trap frequencies in all directions. Moreover, the atoms are trapped
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above bare substrate, opening-up the possibility of integrating microcavities directly

below atoms confined in the Lamb-Dicke regime (see Chapter 6 for more details

on this proposal). Figure 2.5 (a) shows the wire layout for this kind of trap. In

contrast to the cylindrically symmetric quadrupole field produced by a U-trap, an

approximately spherically symmetric quadrupole field is formed from a ring-shaped

wire on an atom chip and a homogeneous bias field perpendicularly opposing the field

produced by this conductor. (The external bias field may replaced by the field from a

second, concentric wire of different radius carrying an oppositely flowing current.) The

Libbrecht-style Ioffe trap is formed by using two wires in quarter-circles to perturb

the quadrupole field formed from an external bias Bbias and an approximately ring-

shaped wire on the substrate. The field from the inner ring segments “plug-up” the

zero at the center of the quadrupole field, forming 3-D harmonic potential described

by Equations 2.4. There are several different variations of the planar 3-D Ioffe trap

proposed by Weinstein and Libbrecht in Reference [3], and we chose to display version

“(c)” due to its optimal balance of large trap depth and high trap frequencies. As

noted in that paper, the optimal trap is formed when the currents in each wire segment

are equal and the radius of the outer ring is 1.5 times the radius of the inner arcs.

Panel (b) of Figure 2.5 shows the trapping field as a function of the distance from

the wire substrate taken through the central axis of the wire pattern. This is plotted

for Bbias = 140 G and an outer radius of Ro = 15 µm and an inner of Ri = 10

µm. For cesium to be confined in the Lamb-Dicke regime, the trap curvature must

exceed 2 × 106 G/cm2. For a wire current of 1 A, the trap curvature in ẑ is 2 × 108

G/cm2, resulting in a Lamb-Dicke parameter of η = 0.38. In the plane parallel to

the wire substrate, the trap curvature is 2 × 1010 G/cm2 with η = 0.11. The trap

depth is 2.3 mK—103 times larger than the typical temperature of sub-Doppler cooled

atoms—and the vibrational level splitting is ∼0.7 µK. Although a bias field of 140 G

is difficult to generate, this is not impossible. A more severe difficulty lies in the fact

that the trap minimum is only zmin = 7 µm above the surface. This height scales

with the outer radius wire (zmin = 0.72Ro), and for a cesium atom and a trap current

of 1 A, the Lamb-Dicke regime is attained for a trap radius (and trap height) ≤ 40
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Figure 2.6: a) Modification to the Libbrecht-style Ioffe trap by Arjun Menon. This
design improves the trap frequencies. b) Permanent magnet-based Ioffe trap designed
by Clifford Hicks.

µm. Atoms have been trapped as close as ∼2 microns from a surface before surface

effects quench trap lifetime severely (see Chapter 9 and the references within). The

small radius of the trap wires poses another difficulty in that the wire widths can only

be a few microns wide if the arcs are to be sufficiently approximated. These small

wires must be able to support current pulses of nearly 1 A. The chapter on atom chip

fabrication discusses these issues in more detail.

A simple modification to the original Libbrecht-style trap yields higher trap fre-

quencies. This trap was designed by an undergraduate in our lab, Arjun Menon, in

2000 and is pictured in Figure 2.6 (a). For similar currents and wire radii as the trap

in Figure 2.5 (a), this design produces a trap with curvature 10 times higher in ẑ

and a factor of 2 to 5 times higher in the plane parallel to the wire substrate. This

produces a factor of ∼2 decrease in the z-axis η. Unfortunately, this trap requires a

factor of 3 increase in Bbias, and the trap minimum, zmin, is closer to the substrate.

2.3.4 Permanent magnets and RF and electrostatic fields

DC currents are not the only possible tool used to manipulate atoms in micropoten-

tials. Permanent magnets can provide high gradients and curvatures without the large

heat dissipation associated with electromagnets. Moreover, their naturally compact
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size is an advantage to system miniaturization and integration. Unfortunately, they

are static, but traps formed from permanent magnets generally require additional ho-

mogenous bias fields to operate. These fields, when generated by Helmholtz coils can

be time-dependently controlled to turn on and off the trap. The review paper by E.

Hind’s group discusses some of these types of traps [10], as do the References [78, 79].

Clifford Hicks, an undergraduate in our lab in 1999, designed a permanent magnet-

based quadrupole and Ioffe trap. Pictured in Panel (b) of Figure 2.6 is a sketch of

his Ioffe trap design. A bias field of a few hundred G opposes a magnetization, M ,

of roughly ten kG in a long and thin permanent magnet, forming a quadrupole field.

The width of the magnet is modulated to add stray magnetic fields that convert

the quadrupole trap into a harmonic, Ioffe potential. The achievable gradients and

curvatures—107 G/cm and 1010 G/cm2—are comparable to those achievable in the

tightest microwire traps, but for less power dissipation. Chapter 8 discusses an atom

mirror experiment employing a thin film of permanent magnets.

Atom chips have begun to employ electrostatic and RF fields to create novel trap-

ping potentials for atoms. The group of J. Schmiedmayer has made great progress

using both: charged conductive pads were used to split a cold cloud of atoms into

a string of “sausage-link” like potentials [80]; and more recently they have used RF

fields to create a double-well trap [81]. Electrostatic fields form attractive poten-

tials for alkali atoms that can create novel traps when combined with high gradient

repulsive magnetic potentials. In Chapter 9 of this thesis, we discuss the use of elec-

trostatic fields and a magnetic atom mirror to form a 1-D ring trap. The use of RF

and microwave fields on atom chips presents the possibility of incorporating atomic in-

ternal state-dependent potentials [18]. This could be of use for implementing on-chip

quantum computation.

2.4 Atom chip loading

The previous sections have shown how one can use micron-scale current carrying wires

to create high-gradient and curvature traps for neutral atoms, and Chapter 4 describes
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how to fabricate such devices. But how do we actually load atoms into these cubic

micron volume traps suspended as little as a few microns above a room temperature

surface? Our central challenge is to cool a gas of >300 K atoms and collect them in

a manner amenable for loading into magnetic microtraps. After loading the atoms

into the magnetic traps, the atom manipulation becomes more straight-forward since

the atoms follow the minima of the magnetic potentials. These magnetostatic traps

are easy to calculate, and the Matlab code in Appendix B.3 may be used for their

simulation. The main difficulties we experience once the atoms are magnetically

confined is to ensure that our tasks are performed before atoms are lost due to the

trap’s finite lifetime (see Chapter 5) and to have a good enough imaging set-up to be

able to diagnose the trapping system and make accurate atom density measurements.

We begin this section by presenting a figure and table that summarize a typical atom

trap loading procedure. Each trapping step is discussed in more detail further in the

section.

Figure 2.7 shows the general loading procedure: a) The atoms are loaded into the

macro U-MOT for ∼5 s. From t = 0 to 20 ms they are transferred to a D-MOT using

the D-wire on the atom chip. This is shown in Panel (b). b) From t = 20 to 40 ms

the D-MOT compresses the atoms and brings them closer to the surface. At t = 40

ms, all magnetic trapping fields are shut-off and the atoms are sub-Doppler cooled

and optically pumped for 3.6 ms. All lasers are then extinguished. c) At t = 43.6

ms, the D-trap is turned-on and the atoms are compressed into this quadrupole trap

for 5.4 ms. d) The D-trap rotation procedure begins at t = 49 ms. A weak bias field

applied for 8 ms in ŷ pushes the atoms to the edge of the circular arc of the D-trap.

A sinusoidal swapping of the strong bias field in x̂ for a strong field in ŷ rotates

the atom cloud around the arc and into the straight wire portion that is indicated

by the (d’) label in Panel (g). This transfer requires at least 20 ms. In step (d”),

the atoms are transfered from the D-trap to the Z-trap by ramping down the D-trap

current while simultaneously ramping up the Z-trap current. This is performed under

constant bias field and takes 8 ms. Finally, the atoms are released into the waveguide

from the Z-trap by extending the short Z-trap to one that stretches the length of the
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Figure 2.7: Atom chip loading procedure. Images (a) through (c) are taken with
absorption imaging in the ŷ direction as defined by the axes in panel (f). Images (d)
and (e) are taken with absorption imaging, also in the ŷ direction. Image (g) is a
fluorescence image of the atoms from a top view of the substrate taken at the end
of the macro U-MOT loading period. The red circles and blue arrows overlaid onto
image (g) show the positions and transfer progression of the atom cloud. The yellow
letter labels in (g) refer to the steps shown in panels (a) through (e). Steps (d’) and
(d”) are discussed in the text.

wireguide. The gate wires can be operated at will to govern the progress of the atom

cloud or to create a dimple trap.

Table 2.1 shows the schedule of bias coil currents, microwire currents, and optical

beams required to load the atom chip. Note: bias fields in x̂, ŷ, and ẑ are quoted not

in Gauss, but in the amps required to produce the field. As long as the same coils

are used for future experiments, quoting in amps is more useful since we can measure

the computer controlled currents more accurately. Use these conversions for a rough

calibration of the current-to-magnetic field: Bx = 2I, By = 2.4I, and Bz = 4.2I,

where I is in amps and the magnetic fields are in Gauss. The field in x̂ is produced

by a pair of coils inside the vacuum chamber with 20 turns each. The coil radius is
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3.5 cm and their separation is 7 cm. Coils external to the vacuum chamber—wrapped

around the 6” diameter windows—produce the field in ŷ. The ẑ field is produced by

a single coil of 5 turns and radius 4 cm placed in the vacuum chamber and wrapped

around the atom chip assembly.

x y z U D Z MOT RP OP Abs
atom chip trapping steps (A) (A) (A) (A) (A) (A) -∆ I/Is

t=[-5,5]s; U-MOT loading (a) 0.9 0.5 0.9 20 0 0 3.4 24 on off off
t=[0,20]ms; U- to D-MOT 0.5 0.5 0 erf→0 erf→2.2 0 3.4 24 on off off
t=[20,20]ms; D-MOT hold (b) 1.2 0.4 0 0 2.2 0 3.4 24 on off off
t=[40,2.7]ms; sub-D cooling 0 0 0 0 0 0 14 1 on off off
t=[42.7,0.3]ms; field decay 0 0 0 0 0 0 – 0 off off off
t=[43,0.6]ms; optical pumping 2 0 0 0 0 0 – 0 off on off
t=[43.6,5.4]ms; D-trap hold (c) erf→3 0.9 0 0 erf→3.5 0 – 0 off off off
t=[49,8]ms; D-trap shift 3 -1 0 0 3.5 0 – 0 off off off
t=[57,20]ms; D-trap rotate (d’) cos→1 sin→-3.5 3.7 0 3.5 0 – 0 off off off
t=[77,8]ms; D- to Z-trap (d”) 1 -3.5 3.7 0 erf→0 erf→3.5 – 0 off off off
t=[85,100]ms; Z-trap (e) 1 -3.5 3.7 0 0 3.5 – 0 off off off
t=[185,10]ms; free fall 0 0 0 0 0 0 – 0 off off off
t=[195,40]ms; fluorescence 0 0 0 0 0 0 3.4 24 on off off
t=[195,40]ms; absorption 0 4.5 0 0 0 0 – 0 on off on
t=[235,1]ms; reset 0.9 0.5 0.9 20 0 0 3.4 24 on off off

Table 2.1: Schedule of magnetic and optical fields for atom chip loading and trapping.
The time for each step is quoted as “t = [α, β],” where α is the start time and β is the
step duration. The letters in parenthesis label the steps depicted in the pictures in
Figure 2.7. The columns are (from left to right): the current in the coils providing the
bias field in x̂, ŷ, and ẑ; the current in the macro U-wire; the current in the chip-based
D-wire; the current in the chip-based Z-wire; the detuning, ∆, of the MOT beams
in units of the transition linewidth, γ = 2π · 5.2 MHz; the intensity of MOT beams
with respect to the saturation intensity for this transition, Is = 1.1 mW/cm2; the
status of the repumper (RP), optical pumping (OP), and absorption imaging (Abs)
beams. The orientation of the bias field axes are shown in Figure 2.7. The +ẑ axis
is pointing away from the plane of the substrate. For the bias fields, see text for the
coil current-to-field conversions. The entries “erf →,”“sin →,” and “cos →” indicate
the function used to change the current in the time β to the quoted final value.

2.4.1 Macro U-MOT

Magentic microtraps are typically no deeper than 1 mK in energy, and our first task

is always to cool the diffuse gas of cesium atoms in the vacuum chamber from the

temperature that they emitted from the source oven (> 300 K) to a temperature

below the trap depth. (Atom trapping and cooling is most commonly performed with

alkali atoms, and cesium is our specific atom of choice2.) We also want to collect these

cooled atoms in a compact volume for efficient funneling into ever tighter magnetic

2D. Steck has compiled an excellent set of notes containing information regarding the properties
of cesium and other trappable alkali atoms [82].
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traps. The MOT can accomplish both tasks: the atoms are cooled to 100 to 200 µK

and collected in a ball a few millimeters in diameter. The MOT works by using red-

detuned laser beams and a quadrupole magnetic field to exert a damped, harmonic

force on each atom traversing the trapping zone [66]. The lasers impinge upon the

trapping zone from all six orthogonal directions and exert a damping, Doppler force

on the atoms [46]. For cesium, these lasers are red-detuned by a few linewidths

(γ = 2π · 5.2 MHz) from the F=4 to F’=5 hyperfine transition and are circularly

polarized. A repumping laser beam is necessary to prevent the shelving of atoms into

the lower, dark hyperfine state. This laser is tuned to the F=3 to F’=4 hyperfine

transition and is introduced to the trap region most easily by overlapping its beam

with one or more of the MOT beams.

For the MOT beams, the two along the axis of the anti-Helmoltz field are of op-

posite circular polarization to the four in the plane perpendicular to the axis (i.e. the

plane parallel to the face of the wire coils). In practice, three of the six independent

laser beams can be replaced by retroreflecting the remaining three beams. This au-

tomatically produces the correct polarization for each pair of laser beams if there is

a quarter-wave plate in front of the retroreflection mirror (this plate’s orientation is

unimportant). A good strategy for getting the correct combination for the orienta-

tion of the laser beam polarization and quadrupole field is to first set the circular

polarization orientation of the three retroreflected beams correctly with respect to

the orientation of the anti-Helmholtz coils as mention above. There are two correct

relative polarization possibilities. Pick one orientation and the sign (orientation) of

the quadrupole field will at most need to be flipped once to attain a MOT. Of course,

one needs to be careful that ambient magnetic fields do not push the center of the

quadrupole field out of the center of the intersection of the lasers. It might be nec-

essary to manually adjust the field compensation coils to ensure that the quadrupole

field is centered in the optical field.

For atom chip experiments, we have an extra difficulty in that the chip itself blocks

laser beam access to a would-be MOT positioned a few millimeters above the chip’s

surface. This problem is solved using the technique of the mirror MOT [2], which
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Figure 2.8: Diagram of the mirror MOT experimental set-up. A quadrupole field,
two 45◦ laser beams, and one retroreflected grazing beam (perpendicular to the page
and not shown) form a MOT 1.5 to 4 mm above the substrate. The polarization
orientation of the horizontal grazing beam is the same as the 45◦ beam parallel to the
plane of the coils (i.e. the beam into the page is σ− polarized).

uses the chip surface as an optical mirror to reflect laser beams in two of the three

cardinal axes. Figure 2.8 illustrates this scheme. The mirror eliminates the need for

beams to traverse the lower half-space: four of the six beams are formed by reflecting

two beams off of the mirror at 45◦, and the other two are formed by grazing horizontal

beams above the atom chip and perpendicular to the plane formed by the other four

beams. Conveniently, the polarization of the reflected beams off the chip’s mirror

is maintained in the correct orientation. Note that the axes of the quadrupole field

must be rotated 45◦ with respect to the surface of the atom chip. This field may be

created by anti-Helmholtz coils outside the vacuum chamber, but a more compact

and integrated solution is to use the field created by a macro U-trap located inside

the vacuum chamber [64]. As shown in the vector field plot in Figure 2.3 (a), the axes

of the quadrupole field from a U-trap are also rotated 45◦ from the plane of the wire

substrate. This is fortunate since the mirror MOT can be formed by simply using

the U-trap’s quadrupole field which eliminates the need for cumbersome coils of wire

draped around the chamber at 45◦. We will denote the mirror MOT formed with

a U-trap as a “U-MOT,” and if a macroscopic sized-wire is used for the U, we will

designate it a “macro U-MOT” to distinguish it from microwire-based U-MOTs.



51

The macro U-MOT uses a block of copper milled into a U-shape and the dimen-

sions of the base of the U are 10 × 5 × 5 mm and the sides are 2 mm wide and 5

mm thick. We typically run 20 to 30 A of current through the copper U-shaped

block, and when combined with a few Gauss bias field, a U-trap of a gradient of a

few G/cm is formed in the tightly confining directions. This is sufficient to create

the macro U-MOT from a vapor of cesium atoms. A macro U-MOT is easier to form

than a mirror MOT generated by external quadrupole fields for three reasons: 1) The

tip of the U-wire—residing inside the vacuum chamber—is pre-positioned less than

a centimeter from the intended trap minimum, and this makes it easy to ensure that

the quadrupole field center is within the laser intersection volume. In contrast, a

pair of 10 cm scale coils positioned outside the vacuum chamber must be accurately

aligned in three dimensions to position its trap center within the one cubic centime-

ter laser trapping zone. 2) The anisotropy of the macro U-MOT’s quadrupole field

makes zeroing the field in the weakly-confining direction simple. Even small bias

fields can displace the MOT along the base of the U and the field is zeroed in this

direction when the MOT atoms reside in the center of the U. Of course, this forms

an easy control of the MOT’s position, and we did not notice a drastic decrease in

MOT population when the atoms were displaced less than approximately 3 mm from

the center of the 10 mm wide base of the U-shaped wire. We used this ability to

shift the MOT over a ∼6 mm distance to load the cooled atoms into two distinct

microwire traps fabricated on the same chip (i.e. cold atoms could be fed into two

separate microtrap networks). 3) The U-wire base forms a nice guide-to-the-eye for

aligning the horizontal MOT beam parallel to this straight edge. We have found

that the macro U-MOT’s population is highly sensitive to the correct alignment of

this laser beam to the weak axis of the U-trap’s quadrupole field as well as to the

alignment of the two horizontal beams with each other. The horizontal beam should

not be retroreflected since it is deformed after grazing the chip surface (the chip edge

should clip the beam at approximately one third of its diameter to ensure that the

field maximum is only a few millimeters from the substrate surface), but rather two

independent, counterpropagating beams should be overlapped. The MOT population
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is much more sensitive to this alignment than to that of the two 45◦ beams which we

found can—and should be—misaligned. We have found that the macro U-MOT is

spatially unstable and contains fewer atoms—by an order of magnitude—when these

two 45◦ beams are perfectly overlapping. Misaligning them by a few degrees corrects

this problem, and this holds true for normal mirror MOTs as well. A good align-

ment procedure is to overlap the reflected 45◦ beams and then slowly walk one off

the other until the trap is stable and the atom number is maximized. We found that

misaligning the horizontal beam pair is only detrimental to the performance of the

MOT.

The atom chip substrate is attached to the top of a 0.8 mm thick copper-clad

teflon circuit board, which is in turn attached to the top of the U-shaped copper

block. The sapphire atom chip substrate is 1 mm thick, but since the macro U-MOT

can be formed up to ∼4 mm above the top of the U-shaped copper block, there

is plenty of room for these non-magnetic materials to slip in between. The teflon

circuit board—which is relatively vacuum safe and obtained from a microwave circuit

company—is primarily used as a support structure for the electrical feedthrough pads

connecting the atom chip’s microwires to macroscopic pins. Additionally, this teflon

circuit board has a 70 µm thick cladding that can be circuit-milled into mesoscopic

U-traps and Z-traps. We formed a U-MOT and U-traps with such a device. The

maximum supported current is nearly 7 A for 1 s pulses and the minimum wire

width—limited by the drill bit accuracy—is approximately 250 µm.

Figure 2.7 shows the microtrap loading sequence used in our gated waveguide

experiments for cavity QED on a chip. The goal is to perform all the atom trapping

and cooling in one area of the chip, transport the atoms to a remote region of the chip

where a microcavity will not obscure any of the trapping or imaging laser beams, and

then magnetically deliver the atoms to the mode of the cavity. The sequence begins

with a macro U-MOT. The atom chip hangs upside-down in the vacuum chamber to

allow time-of-flight temperature measurements to be taken. This can be performed

by either fluorescence or absorption imaging and typically a drop of delay 5 to 20 ms

is required. If the chip were right-side-up, the atoms would crash into the chip surface
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in this time. Having the atoms drop away from the substrate also improves detection

image quality since there is less scattered light from the chip surface. Panel (a) of

Figure 2.7 shows a fluorescence image of the macro U-MOT beneath the substrate.

The horizontal line at the top is scattered MOT light—used for fluorescence imaging—

off of defects on the substrate surface. There are typically 106 cesium atoms in the

macro U-MOT, and it is located 2 mm below the substrate. The cloud width is

roughly 1 mm in the tightly confined directions and 2 mm in the weakly confined

direction. The image in Panel (a) is taken in the ŷ direction as defined by the axes

next to the image of the atom chip displayed in Panel (f). This is the chip used for

all the images in this figure. The macro U-MOT is loaded from vapor for ∼5 s. The

bias fields in x̂, ŷ, and ẑ are used to maneuver the macro U-MOT to the tip of the

D-shaped microwire on the substrate. This is shown in Panel (g) which is the top

view of the atom chip in Panel (f). This image is also taken in fluorescence and the

45◦ MOT beams illuminate the rough electroplated gold on top of the microwires.

The white cloud in the red circle labeled “(a)” is the macro U-MOT photographed at

the end of the 5 s loading period which we will define as t = 0. The macro U-MOT

positioned at the tip of the D-shaped wire is 2 mm above the surface.

We have two sets of biasing coils for each cardinal direction. One set nulls the

ambient magnetic field and is driven with an unchanging current. The current in

the other set is computer controlled and is used throughout the experiment to either

supply shimming fields for adjusting trap positions or to supply the larger bias fields

necessary for forming microwire traps. Typical bias fields in ŷ and ẑ used to align

the macro U-MOT above the D-trap are listed in the t=[-5,5] s row of Table 2.1.

2.4.2 D-MOT

At t = 0, the macro U-MOT is brought closer to the substrate surface so that the

atoms may be trapped with the atom chip’s microwires. To perform the transfer,

the current in the macro U-wire is reduced to zero in 20 ms with the smooth “erf”

function (see Equation 2.7). The bias field in x̂ is held constant (or only reduced
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slightly) to maintain a mirror MOT as the decreasing wire current brings the trap

center closer to the surface. To ensure the current is completely off, an electrical

relay disconnects the wire circuit at t = 20 ms. This prevents day-to-day offsets in

the U-wire supply from disturbing the microtraps. The use of a relay is generally a

good idea if the atoms will be trapped near an unused wire that is connected to a

power supply. In making BECs, current fluctuations in unused wires can heat the

atoms out of the trap during the long evaporative cooling sequence. In practice, the

power supply for the U-shaped copper block (PowerTen 60 V/55 A) takes ∼10 ms

to respond to control signals and the current is not completely zero by the time the

relay disconnects the (low-inductance) circuit.

During the macro U-MOT trap lowering, the atoms are transfered from the macro

U-MOT to a mirror MOT generated by the D-shaped wire on the chip surface. We

call this a D-MOT, and this is used instead of a P-shaped wire to increase the trap

volume. The current in the D-wire is increased to 2.2 A using an erf function, and in

20 ms the MOT of atoms are gradually shifted from the starting position of the macro

U-MOT to the position of the D-MOT defined by the D-wire current and the bias

field in x̂. The MOT laser fields force the atoms to make this spatial shift in a short

period of time and is a nice technique for transferring the atoms without having to

ensure that the macro U-MOT is perfectly aligned with the D-MOT, or in practice,

that the centimeter-sized U-shaped copper block is accurately positioned with respect

to the sub-milimeter sized D-wire. This allows us to align the two by eye during the

gluing process without much worry. We have demonstrated this transfer with 50%

efficiency: the macro U-MOT typically contains 1.5 × 106 atoms and the D-MOT

contains 7.5×105 atoms. This efficiency could perhaps be improved by using a wider

D-wire.

During the step from t = 20 ms to 40 ms, the atoms are allowed to settle in

the D-MOT, and we bring the atoms closer to the surface by increasing the x̂ bias

current to 1.2 A. The D-MOT trap minimum is 1 to 2 mm from the surface with a

trap gradient of 13 G/cm in the tightly confining directions x̂ and ẑ.
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2.4.3 Sub-doppler cooling and optical pumping

At t = 40 ms, the atoms are prepared for loading into the magnetostatic D-trap. The

atoms need to be further cooled and optically pumped to a strong magnetically trap-

pable state. In the MOT, the cesium atoms are at the Doppler-limited temperature of

124 µK. To achieve high capture efficiencies in the magnetic microtrap, the atoms are

sub-Doppler cooled to ∼10 µK in 2.6 ms (this exact time is not crucial, but should be

longer than about 2 ms and shorter than 5 ms). This is accomplished by red-detuning

the MOT lasers and turning-off and zeroing the magnetic fields to the mG level or

better. This latter requirement is quite tricky to accomplish and we now describe

our technique for doing this in the presence of an atom chip. In a normal free-space

MOT, one can zero the fields by seeing how the atoms expand in an optical molasses

after the fields are shut-off. If there is a remanent field, the atoms will preferentially

expand in that field’s direction. One can then adjust the nulling fields in x̂, ŷ, and

ẑ until the atom cloud expands slowly and symmetrically. With the presence of the

atom chip only a millimeter below the cloud, this expansion becomes more difficult

to detect. Moreover, defects on the mirror surface imprint anti-trapping zones onto

the the mirror MOT region. The atom cloud expands in strange ways through these

zones which makes the field zeroing difficult. It is important to have as smooth a

mirror as possible and to ensure that the MOT beams are of equal intensity before

attempting field zeroing (unequal beam intensity can mimic a residual magnetic field

due to radiation pressure). By carefully observing the expanding cloud in three di-

mensions simultaneously (good optical access is required), the fields can be zeroed

even in the presence of the atom chip. Other groups have used the Hanle effect to zero

the magnetic field. While more sensitive to non-zeroed fields, this is more difficult to

perform. The magnetic field nulling can be further optimized by measuring the cloud

temperature from free-fall expansions: for a given fall time, a better field zeroing will

increase the cloud density which signifies a lower atom cloud temperature.

After sub-Doppler cooling, the system is allowed a short time—0.3 ms—for all

fields to decay before the optical pumping process begins. Since the D-trap—turned-
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on post-optical pumping—will require a strong bias field in the x̂ direction, we perform

the optical pumping with the quantization axis in x̂ to ensure the atoms are not

jostled by too many shifting fields. The optical pumping beam is directed at the

cold atom cloud in x̂ along a 4 G bias field for approximately 0.6 ms. There are two

Zeeman ground states that the atoms can be pumped into for (optimal) confinement

in magnetic traps: the F=4, mf=4 state and the lower energy F=3, mf=-3 state. For

the upper hyperfine state, a σ+ beam tuned to the F=4 to F’=5 transition combined

with the repumper will shelve the atoms in the F=4, mf=4 state, while for the lower

hyperfine state, the repumper combined with a σ− beam tuned to the F=3 to F’=2

transition will pump them to the F=3, mf=-3 state. With respect to eliminating

hyperfine changing collisions, it is best to pump the atoms to the F=3 ground state

(see Chapter 5).

2.4.4 D-trap and rotation

The sub-Doppler cooled and optically pumped atoms are recaptured in a magneto-

static trap using the D-shaped wire on the atom chip. The intervening, non-trapping

steps only last ∼3.6 ms which is too short a time for the cloud to have expanded or

dropped significantly. Since the atoms have already been confined in a trap that uses

the D-wire (i.e. the D-MOT), the atoms are already spatially mode matched to the

D-trap, which is one of the advantages of using the D-MOT. The Munich group uses a

slightly different microtrap loading procedure that skips the D-MOT (or in their case,

a P-MOT). This alternative procedure requires accurately shifting the macro U-MOT

(or externally generated mirror MOT) into the position of the P-trap. The atoms

are then sub-Doppler cooled, optically pumped, and finally transferred directly to the

magnetostatic P-trap without using a chip-based MOT. An additional step is added

before the sub-Doppler cooling that compresses the atom cloud: the MOT lasers are

detuned and these beams and the repumping beam are decreased in intensity while

the gradient of the quadrupole field of the MOT is increased. This step could be

added to our procedure to see whether it helps to improve the D-trap capture effi-
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ciency. In our current procedure, the D-trap collects 40% (roughly 6 × 105) of the

original macro U-MOT’s atoms.

The atoms are allowed to acclimate in the D-trap for a few milliseconds before

the rotation begins. The D-trap is formed with a 6 G field and 3.5 A wire current.

This is the maximum current we can safely pulse through uncooled wires that are

100 µm wide and 5 µm tall. More recent atom chips have wires that are 12 µm tall

and will safely support larger currents. The trap minimum is 0.5 to 1 mm above the

surface and the D-trap has a gradient of ∼50 G/cm—sufficient to support the atoms

against gravity which exerts a force equivalent to 23.3 G/cm on the cesium atom.

The atoms are pushed to the start of the curve of the D-trap with a 2.4 G field in ŷ

for 8 ms before the rotation begins. The rotation can be accomplished in as little as

20 ms, but slower field ramps—up to 200 ms—minimize cloud heating and increase

the number of atoms remaining in the trap. However, in a chamber with higher than

optimal vacuum pressure decreases trap lifetime and a quicker rotation leaves more

atoms to conduct the experiment. For high vacuum pressures there is an optimal

rotation time to minimize cloud heating while minimizing background collisional loss.

For short rotation times, we measured that the atoms are heated to 50-70 µK after

the Z-trap transfer. Alkali atoms other than cesium can be evaporatively re-cooled

down to the 10 µK level or lower3. The field in x̂ is not wholly extinguished at the end

of the rotation since this field helps the shift the atoms into the correct position for

transferring into the Z-trap. The trap gradient is increased to > 100 G/cm before the

next transferring steps. For atom waveguiding, we found that with the wire currents

restricted to 3.5 A, the atoms need to be less than 700 µm from the chip surface to

maintain high enough trap gradients.

2.4.5 Z-trap transfer

The final step is to transfer the atoms from the rotated D-trap to the Z-trap. The

microwires for each traps are only located a few tens of microns from one another.

3See Chapter 5 for a discussion on the collisional peculiarities of cesium.
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The traps formed from the D-wire and the Z-wire can therefore be made to coincide

if the the trap gradients are small enough. The atoms are transfered from one to the

other by slowly swapping the microwire fields. This is most simply accomplished by

maintaining the same bias field in ŷ while exchanging the current in the two wires.

We can transfer the atoms with nearly perfect efficiency in 8 ms. This procedure

exchanges the atoms between two independent wire networks and can be used more

generally. The efficiency of the entire transfer from the macro U-MOT to the Z-trap

is 33% (∼5 × 105 atoms remaining). Once the atoms are in the Z-trap, we are free

to transport the atoms down the waveguide at will. Alternatively, we could transfer

the atoms to an H-trap instead of a Z-trap. In this case, we have found that the side

wires should have a current of 2 A while the guidewire should have a current of 3.5

A. In either case, an x̂ bias field of 2 G increases the oscillation frequency of the Ioffe

trap in x̂.

2.4.6 Imaging

After manipulating the atom cloud with the microwires, one generally wants to image

the atoms to diagnose the cloud’s position, atom number, and density distribution.

Imaging an atomic cloud near the chip surface is difficult, and one usually needs to

drop the cloud if the atoms are initially trapped closer than 100 µm from the surface.

Imaging can occur within 0.5 to 1 ms of the cloud drop and this time is simply limited

by the need for the magnetic trapping fields to decay. The longer the delay time, the

larger the cloud expansion. The rate of the cloud expansion is an indicator of the

temperature of the cloud, and measuring this is crucial for optimizing the magnetic

field zeroing during the sub-Doppler cooling stage and for minimizing trap heating

during cloud transport.

There are two methods for imaging atoms and both of which are listed in Table 2.1.

Fluorescence imaging uses the light scattered off the atoms into 4π to capture a

picture of the atom cloud. A CCD camera placed behind a high numerical aperture

lens system collects the scattered light. The light from the MOT is typically used
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to excite the atoms. Shifting the MOT light into resonance will enhance the image

contrast since more photons are scattered during the same CCD integration time.

We typically integrate the image for 1 to 2 ms—anything longer produces a streaked

image as the cloud begins to fall and expand. We fluorescence image in all three

directions which is very important for performing quick experimental diagnostics.

Absorption imaging is an alternative method for imaging atom clouds. While

fluorescence imaging is easy to perform, it is very difficult to obtain accurate atom

number measurements. This is due to the uncertainty in calibrating the scattered

photon rate and collection efficiency: the total laser power and detuning, the lens

system collection efficiency, and the CCD camera’s quantum efficiency and photon

count-to-voltage calibrations must all be accurately measured. In contrast, all of these

calibrations drop-out for absorption imaging. In this case, the CCD camera images

the shadow that the atom cloud imprints onto a single, collimated, on-resonant laser

beam. The trade-off is that a second, computer controlled beam is required and clear

optical access must be reserved for the laser to pass unobstructed into the vacuum

chamber, across the chip surface, and out of the chamber to magnifying lenses and

into the CCD camera. Furthermore, a bias field should be maintained parallel to the

circularly polarized light to provide a quantization axis. This maximizes the number

of absorbed photons. We can absorption image only in ŷ, and an 11 G field in ŷ is

used during the 0.5 ms integration time. It is important to use an absorption beam

on resonance and with an intensity much less than Is to eliminate the detuning and

intensity calibration from the atom number estimation. The optical density (OD) per

pixel is:

OD/pix =
σ0Np

PxPz

, (2.8)

where σ0 is the absorption cross section, σ0 = (3/2)λ2/π, Np is the number of atoms

in that pixel, and Px and Pz are the pixel dimensions in x̂ and ẑ for an image in the x̂-

ẑ plane. The only calibration required is to measure the spatial area of a rectangular

pixel. This can easily be done by taking an image of a finely ruled measuring stick

placed at the same focal point as the atoms, and counting the number of pixels per
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ruler tick provides this calibration. The camera has to be temporarily moved to place

the ruler at the same distance from the CCD camera as the atoms in the vacuum

chamber. When using analog CCD cameras, we allot 40 ms after the first image to

acquire a second image without the atoms present (this 40 ms incorporates the time

it takes for the atoms to move out of the image and the ∼30 Hz repetition rate of

the analog camera). We divide the two images to obtain the OD. For more accuracy,

a background image should be subtracted from these images before dividing. Note:

one should make sure that the images are not saturated—CCD camera gain is usually

unnecessary—and the bias field should be optimized to ensure a maximal absorption

rate.
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Chapter 3

Experimental Details

This chapter discusses experimental details of our atom chip trapping system. We

present how and why things are assembled, where to buy certain specialized equip-

ment, and specific do’s and don’ts of the experiment.

3.1 Vacuum system

Our vacuum system is UHV compatible—with ConFlat-style gasket fittings—and our

experiment usually runs in the high 10−9 Torr range. This pressure is higher than

what the chamber and pumps could normally achieve and is limited by material

forming the atom chip that is not fully vacuum safe. The main part of the chamber

is a custom-made 6” diameter “Spherical Square” from Kimball Physics. It is similar

to part number MCF600-SS200408-A but with two of the four pairs of mini-ConFlat

ports (1.33” diameter) replaced with extended 2.75” diameter ConFlat ports. The

chamber is shown in Figure 3.1: Panel (a) shows the bare chamber without the two 6”

windows and the atom chip; and Panel (b) shows the sealed chamber with the optics

arranged for atom trapping and cooling. The two 6” window ports are used for optical

detection, the horizontal MOT beams, and manual access enabling installation of the

atom chip assembly. The two lower 2.75” widows—angled at 45◦—are used for the

45◦ mirror MOT beams, and the upper two 45◦ 2.75” ports are connected to electrical

feedthroughs. One of these feedthroughs has a two-pin, high-current feedthrough from

Huntington Labs which we use for supplying the 20 to 30 A macro U-MOT current.
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Figure 3.1: a) Open vacuum chamber without atom chip installed. b) Vacuum cham-
ber and trapping optics.

The other upper 45◦ 2.75” port has a 4” ConFlat expander that connects to a 25-pin,

low-current electrical feedthrough from MDC. Current pulses < 100 ms and < 4 A

are possible with this 25-pin feedthrough. Two horizontally situated mini-ConFlat

ports are connected to viewports that are used for imaging and optical pumping,

and the other two are used for the output of the cesium oven and an 8-pin electrical

feedthrough. This latter electrical feedthrough is from MDC (ISI) and is very fragile.

It is attached to a 2.75” ConFlat expander to ensure intra-chamber pin contacts do

not short. We found that small leaks in the electrical feedthrough pins can be plugged

by applying a drop of Epotek 353 epoxy to the base of the offending pin and curing

it at 80◦ using heater tape wrapped around the flange.

A note about vacuum part supply companies. While MDC (ISI) has many prod-

ucts and can ship quickly, we have found that their electrical feedthroughs and mini-

ConFlat windows are prone to leak. Varian and Kurt J. Lesker’s seem better, but

we should explore other companies for electrical feedthrough products. The Kim-

ble group has reported that MDC’s UHV valves can seize. We now buy right-angle

valves from VAT even though they are more expensive. Kevin Birnbaum’s thesis [83]

contains more vacuum chamber lore and a good description of vacuum part cleaning
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procedures1.

The intra-chamber electrical wires are Kapton coated and are purchased from

MDC. We use screw-on connecting pins from MDC to make most of the contacts,

though the contacts to the atom chip are made with crimp-on pins which reduce the

amount of solder in the chamber. We do not use any low-temperature flux-based

solder in the chamber. A few solder joints on the atom chip use high-temperature

silver solder and flux-less ultra-sounding solder—both of which are more vacuum

compatible.

We use an oven to create the background vapor of cesium atoms in the chamber.

An alkali dispenser could be used for future, lower vacuum pressure experiments, but

for now the oven has worked well (see Chapter 10 for more information regarding

dispenser use). The cesium oven consists of no more than a cracked cesium ampule

in a valved-off section of metal bellows wrapped with heater-tape. One gram cesium

ampules can be purchased from Aldrich for less than $60. The glass ampule comes

filled with nitrogen and with a score in the glass for easy cracking. Before placing

in the oven, the ampule should be acetone-cleaned in an ultrasound bath and rinsed

with methanol like most other vacuum parts. Cesium is flammable when exposed

to water and should never be exposed to air. On the rare occasion that the cesium

oven must be opened to air, one should be careful not to knock or bang the metal:

in air, cesium will form a thin layer of oxide that protects the interior from bursting

into flames, and this layer should remain intact until the chamber is resealed or the

cesium is disposed of in a controlled manner.

A simple oven is formed from a mini-UHV right-angle valve from Varian that

connects the vacuum chamber to a small-radius, 6” long cylindrical bellows. This

bellows may be purchased from Varian and should be capped on one end with a

mini-ConFlat blank and not a window—the cesium and the repeated heating will

destroy the window over time. The bellows from Varian is just slightly wider than

the glass ampule, and one may crack-open the ampule under vacuum by simply giving

1The cleaning and assembly procedures used in our lab are not quite the same, but the differences
do not warrant description here other than to say that some of the procedures in Birnbaum’s thesis
are more thorough than what is required for our non-BEC atom chip experiments.
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the bellows a quick snap with the hand. This should be performed only under slight

vacuum since the cracked ampule will immediately release its nitrogen. Running a

turbopump in a low-speed, safely mode will ensure that the chamber pressure is low

enough to not introduce water to the newly-exposed cesium while preventing the

nitrogen from damaging a faster rotating turbopump. Cesium melts just above room

temperature, and to introduce cesium vapor into the chamber, the oven should be

heated to 50◦ to 80◦ C with heater-tape. Bands of heater-tape can be purchased from

Cole-Palmer and are plugged directly into variacs.

The metal of the oven should be heated evenly to prevent the cesium from collect-

ing on one patch of surface instead of entering the chamber. (Some groups purposely

chill one area of the cesium oven to have more control over its vapor pressure or to

collect the cesium back in to the oven after the day’s experimental run is finished.)

We found that a new oven—or one that has not been used in a while—needs to be

heated for a day or more before a significant vapor pressure of cesium can be detected

in the main chamber. We presume this is due to the need for the cesium to migrate

through the bellows and to the valve aperture. Inevitably, the main chamber will

have to be opened to air during the lifetime of the cesium ampule, which can be

several years at normal usage. (In our atom chip experiments, the chamber is vented

every few months to swap-in a new device.) The oven valve should be shut during this

chamber venting. The pressure in the oven will still rise, but will not fully come-up to

air pressure and the cesium will mostly be isolated from water. We noticed, however,

that after pumping-down the chamber, the oven needs to be baked again for a day or

more. We assume this is due to the need to bake-off a thin film of oxide that forms

on the cesium due to the small amount of water that leaks through the valve while

the main chamber is exposed to air. During atom trapping experiments, the oven

valve may either be left constantly opened or be periodically opened and closed to

release pulses of cesium vapor. The time constant for cesium vapor pressure decay in

the chamber is approximately one hour. One can crudely control the cesium vapor

pressure by adjusting the oven temperature. Sometimes an imperceptibly small bead

of cesium migrates to the main-chamber side of the oven valve. In this case, one
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will notice that it is unnecessary to open the valve to obtain a usable cesium vapor

pressure in the chamber. Rather, one only has to heat the closed oven. Cesium vapor

pressure in the chamber can be detected by scanning the MOT lasers over a hyperfine

resonance at a few Hz. The chamber will flicker in the NIR at the location of the

laser beams when there is sufficient cesium.

The top 2.75” ConFlat flange of the chamber is attached to a four-way cross that

connects a Varian Eyesys Mini-IMG vacuum gauge, a VAT valve for connecting extra

pumps, and a fiber optics feedthrough. This feedthrough is of the design made by

E. Cornell’s group at JILA [84], and we use a double-hole Teflon ferrule to provide

for the fiber input and output. The bottom 2.75” ConFlat flange is connected to a

Varian VacIon Plus StarCell 40 ion pump which is itself connected via a VAT valve to

a Pfeiffer TMU 071 P turbopump backed by a Pfeiffer diaphragm pump. For space

efficiency, the ion pump and turbopump are located underneath the chamber in a 2’

hole custom-bored into the laser table. There is a blanked Kwik-Flange connected to

the turbopump that is used to flush the system with nitrogen during chamber venting

to minimize the amount of water coating the inner chamber surface. The chamber is

pumped-down in the following manner. With the VAT valve to the ion pump open,

the diaphragm pump is turned-on2 for 10 min before ramping-up the turbopump. The

Pfeiffer turbopump should ramp-up to full speed, 1500 Hz, in a few minutes3. The

turbopump must be water-cooled. Make sure the Neslab chillers have been refilled

with water—this should be checked every 6 months—and a small fan should be used

on the turbopump if the chamber is being baked. As the turbopump turns-on and

starts pumping down, the Eyesys Mini-IMG vacuum gauge voltage will begin to fall

from around 8 V (10−2 Torr) to around 6 V (10−4 Torr) in 12 hours4. This gauge

reads non-linearly from atmosphere to 10−2 Torr, but nonetheless provides a decent

pressure guide since its output voltage monotonically increases from 4 V to 8 V as

the pressure approaches 10−2 Torr.

2When using a fiber taper in the chamber (see Chapter 6), the VAT valve should be opened
slowly to prevent the diaphragm pump from creating too large of a pressure differential.

3If unused for more than a month, the first attempt at ramp-up will fail. The turbopump will
resume normal operation after stopping and restarting the ramp.

4To convert to Torr: pressure in Torr = 10V−10, where V is the Eyesys Mini-IMG output voltage.
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A bake-out is required when the atom chip assembly is in the chamber, and the

ion pump will not bring the pressure down into the low 10−8 Torr otherwise. One

should attempt to turn-on the ion pump before the bake-out begins just to see if there

is a vacuum leak. Spraying methanol around leak-prone areas of the chamber will

cause the ion pump current—which is proportional to chamber pressure—to spike

upwards. To turn-on an ion pump, it is good practice to briefly flip the power switch

on a few times. This is presumed to knock-off dirt from the ion pump’s magnets.

The ion pump has a voltage monitor that is proportional to the ion pump current (1

V = 1 mA). When first turning-on the ion pump, the monitor voltage is around 12

V. When the chamber pressure is low enough for the ion pump to start working, this

voltage hovers around 12 V for a few minutes before quickly shooting downwards.

Under normal operating conditions, the voltage will reach 2 to 3 V in around 10 to

20 minutes. Without a bake-out the pressure might not fall too far below this, but

achieving this monitor voltage means that the chamber does not have a large leak.

The chamber should be tested again with methanol to see if there are any smaller

leaks. Of particular concern is the fiber optic feedthrough. The Teflon ferrule will

most likely need to be tightened periodically throughout the bake-out process and the

methanol test aids in gauging when and by how much to tighten (over-tightening can

stress the fiber). During pump-down and bake-out, the cesium oven should be opened

periodically to allow its pressure to equilibrate with the main chamber. However, one

should make sure that the valve is not left open during bake-out which would allow

too much cesium to escape the oven. The oven valve should be opened slowly to

prevent the pressure differential from breaking a fiber taper.

The bake-out can begin once the chamber has been leak-checked. The chamber

is wrapped in oil-less aluminum foil, encircled as evenly as possible with heater-tape,

and wrapped once again with aluminum foil. The ion pump has its own built-in

heater. These heaters are controlled and powered with variacs and the temperature

should be slowly raised over the course of a day. The final temperature—measured by

thermistors external to the chamber, on the atom chip, or on both—should be as high

as the chamber material will stand to efficiently bake-off water and other chamber



67

contaminates. The honeycomb of the laser table can withstand up to 80◦ C, but we

have been able to heat the chamber and ion pump to nearly 200◦ C without noticing

any deformation. With the atom chip, the chamber’s outside temperature should be

no higher than 150◦ C. The ion pump should be shut-off during the first few hours

(or overnight) of the bake-out since the chamber pressure will rise higher than the

ion pump’s safe operating limit. Subsequently, the pump should be turned-on during

the bake to assist the turbopump in evacuating the chamber. Within the first hour

the ion pump’s monitoring voltage should drop from 12 V to 1 V and stabilize at a

few hundred mV during the bake. The chamber should be baked for at least a day

before slowly turning-off the heat. As the bake comes to an end, the ion pump’s

voltage should quickly drop to the sub-100 mV level and continue to drop until it

reaches a base pressure (quoted in volts) less than 25 mV. It is important to open

and close the cesium oven valve during this process as well. Once the VAT valve

and the turbopump are closed, the pressure should drop slightly. Over the next few

days, the pressure will rise and fall as the chamber “burps” (i.e. as pockets of gas

are expelled). Eventually the chamber should reach a good operating pressure in

the sub-10 mV range. The Varian ion pump manual contains a voltage-to-pressure

conversion. The voltage readings at the pressure decades are: 1 V→ 10−6 Torr; 60

mV→ 10−7 Torr; 4 mV→ 10−8 Torr; 0.2 mV → 10−9 Torr. We are able to form a

MOT at pressures as high as 30 mV, but operation around 4 to 15 mV is better.

We do not have an ion pressure gauge installed in the experiment: we have used a

nude UHV-24 Varian gauge in the past but found it to be unreliable. The Varian ion

gauges in glass bulbs, though ungainly, seem to be more robust.

To vent the chamber, use the Kwik-Flange port to nitrogen backfill the chamber

piping up to the VAT valve. A nearly sealed plastic garbage bag can be attached

to the end of the Kwik-Flange to provide an extra volume of nitrogen. Turn-off

the ion pump and any vacuum gauges, and make sure that the cesium oven valve is

tightly closed (this is very important!) Slowly crack-open the VAT valve until the

chamber has reached atmosphere. Ideally, the nitrogen purge should be operated

continuously, but this is impractical since the chamber is usually open for several
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Figure 3.2: Atom chip assembly. a) The U-shaped copper block. b) The main copper
support structure with U-block and TEC attached. c) Atom chip assembly in the
vacuum chamber with electrical wires attached to pins.

days before pumping down again.

3.2 Atom chip assembly

The atom chip assembly—from top to bottom—consists of the sapphire atom chip, the

copper-cladded Teflon circuit board, the macro U-shaped copper block and TEC, and

finally the main copper support structure (see Figure 3.2). Onto the latter piece the

macro U-shaped block is glued with the thermally conductive Epotek H77 epoxy. A

thin Teflon insulator is inserted between the two. The support structure also houses

the two pairs of intra-chamber x̂ bias field coils and the single ẑ coil. Set-screws

attach six copper dowels—which are mounted to the top of the vacuum chamber—to

the copper support structure. This suspends the atom chip assembly in the center of

the chamber. The two high-current electrical feedthrough pins slide into slots in the

U-shaped copper block and are fixed in place with set-screws.

The atom chip and Teflon circuit board are glued together using the vacuum-

safe Epotek 353 epoxy. Unlike the H77, this glue cures quite quickly at modest

temperatures (> 80◦). Although it would be nice to use the thermally conductive

H77 epoxy, it cures too slowly, which allows the atom chip and the Teflon circuit

board to slip and misalign from one another. These two boards are aligned by visually
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matching marks on the sapphire atom chip substrate to those on the Teflon board

that have been pre-printed to ensure that the atom chip is orientated properly in

the vacuum chamber and with respect to the macro U-wire underneath. The Teflon

board with chip attached is secured to the copper support structure with a screw

which allows easy installation. The chip assembly is designed to maximize optical

access to the trapping regions.

An ultrasonic soldering iron allows us to connect thin copper wires to the gold

patterned on the sapphire substrates. While fluxless and not much more difficult

than normal soldering, the ultrasonically-fashioned joints are not perfectly solid and

need to be redone on occasion. Care should be taken when handling the atom chip

assembly—especially during vacuum chamber installation—that stress is not applied

to the joints. The copper wires attached to the sapphire chip are routed to the Teflon

board and soldered to the copper cladding with silver solder. This solder contains

flux, but this is easily removed with ultrasonic cleaning, and the silver alloy is much

more vacuum-safe than normal solder. Attached to the Teflon board are brass pins

purchased from ITT Cannon (Newark). These pins connect the Teflon circuit board

wires to macroscopic Kapton-coated wires in the chamber. We use the Protel, IsoPro,

and QuickCAM software packages and a Quick Circuit 5000 circuit miller to create

the wire pads in the Teflon board. The sapphire substrate and Teflon board assembly

must proceed in a specific order to ensure that all parts can be ultrasonically cleaned

and heat-cured without breaking the microwires or solder joints: 1) make the atom

chip and mill the Teflon board; 2) drill holes in the Teflon board and clean the TEC

and the mounting nut; 3) glue on the nut with Epotek 353 at the same time as gluing

on the TEC with Epotek H77 (heat at 150◦ C for 1 hour); 4) using sliver solder,

attach the brass pins and copper wires to the Telfon board; 5) bend pin edges to

ensure good optical access above the solder joints; 6) clean in an ultrasound bath of

acetone; 7) glue the sapphire substrate to the Telfon board with Epotek 353 for 30

min at 80◦; 8) ultrasonically solder wires to the atom chip; 9) attach mirror, cavity,

and fiber taper to atom chip using small drops of photoresist and UV curable glue.

A thermistor is glued to the sapphire substrate with Epotek H77 to provide in situ
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Figure 3.3: Laser system schematic. Note that many mirrors, lenses, waveplates,
neutral density filters, and other optics are not shown.

temperature measurements, and the chip temperature rises by ∼8◦ C during typical

atom trap operation.

3.3 Laser system

The laser system supplies the MOT trapping and repumping beams, the optical pump-

ing beam, and the absorption imaging beam. In this section we will discuss the diode

laser system used to produce and control these beams as well as the detection system

we propose for use in the microcavity experiments discussed in Chapter 6.
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Figure 3.3 shows the laser system. We use three diode lasers: a master laser for

the optical pumping, absorption imaging, and injection lock beams, a slave laser for

the MOT beams, and a laser for the repumping beam. The master and repumping

lasers are built using the design from J. Buck and C. Nägerl (a former graduate

student and a postdoc in Kimble’s group, respectively). These are built-upon the

original designs discussed in Reference [85, 86]. The diode is housed in a New Focus

mirror-mount and the diffraction grating—mounted in the Littrow configuration—

is attached to the face of the mirror mount and can be adjusted with the mount’s

micrometers. This assembly rests atop two TEC stages and is housed inside a sealed

aluminum box for added temperature and acoustical stability. The laser frequency

is most coarsely controlled by the temperature set-points of the TEC stages. A

piezo stack mounted between the mirror-mount face and the horizontal micrometer

provides sub-1 kHz bandwidth frequency tuning by shifting the grating angle, and a

FET board adds a MHz bandwidth modulation signal to the diode current for fine-

tuning and adding a modulation for deriving the laser lock error signal. There is

a clean F=4 cesium resonance at the ∼4.8 setting of the diode current adjustment

dial. The laser outputs 31 mW of power at this setting. The repumper current dial

should be set at ∼6.1 for a clean F=3 signal, and this gives 42 mW of output power.

The lasers can be continuously locked over a period of a day or more, and the diode

current and/or piezo needs only to be adjusted if the room humidity changes. While

the air conditioning system does a good job of keeping the temperature at ∼22◦ C,

the humidity is allowed to fluctuate from 20% to 65% depending on the season and

weather. This causes mode-hops, and every six months or so the grating needs to be

adjusted with the mirror-mount micrometers.

Both the master and the repumper lasers are locked to transitions in cesium us-

ing the saturation-absorption method [87]. The low-frequency but large amplitude

perturbations are negated by the piezo branch and high-frequency perturbations are

nulled by the diode current feedback branch. The diode current is modulated at 3.5

MHz to derive the error signal. To produce the MOT trapping beams, the frequency-

locked laser beam must be further intensity and polarization stabilized, and its cross
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section must be filtered into a smooth Gaussian with high pointing stability. More-

over, the intensity and frequency need to be adjusted for the sub-Doppler cooling and

magnetic trapping stages of the experiment. To accomplish this, the laser must pass

through many power-depleting passive and electro-optical elements. The diode cur-

rent that is optimal for bringing the laser into resonance with the F=4 ground-state

manifold only supplies 31 mW of laser power. This is not large enough to satisfy

all the power needs of the various optical elements and still provide MOT laser in-

tensities, I, much larger than the saturation intensity Is = 1.1 mW/cm2. We solve

this problem by employing a slave laser to act as a laser power amplifier for the mas-

ter. It is difficult to simultaneously satisfy the requirement of frequency stability and

high power for a single diode laser, and this master/slave technique distributes the

frequency control and high-power generation to two separate lasers.

The master laser is locked to the F’=4 to F’=5 cross-over transition in the F=4

hyperfine ground-state manifold. This cross-over transition is 125.5 MHz red-detuned

from the F=4 to F’=5 cycling transition. The beam from the master laser (shown in

blue in Figure 3.3) is split into two at a polarizing beamsplitter cube (PBC) with one 5

mW beam sent to supply the beams for optical pumping and absorption imaging and

the other 25 mW beam sent to a double-passed acousto-optical modulator (AOM)

to produce the injection lock for the slave laser. The double-passed AOM (#1 in

Figure 3.3) is set to 69.0 MHz for the MOT loading step and 50.5 MHz for the

sub-Doppler cooling step. We use a 80 MHz center frequency AOM purchased from

IntraAction (all of our AOMs are purchased from this company). The purpose of this

AOM is to enable variable detuning of the slave laser: for a fixed slave laser diode

current, the slave follows the frequency of the injected laser (within a ∼100 MHz

bandwidth) and double-passing the AOM allows variable detuning without changing

the injected beam’s path. The total detuning imprinted on the injected beam by

AOM #1 is +138 MHz for MOT loading and +101 MHz for sub-Doppler cooling.

After the slave laser, the beam passes through AOM #2 which controls the beam’s

intensity and decreases the beam detuning by 30.5 MHz. The total detuning for the

MOT trapping beams is +108 MHz, and this is 3.4γ red-detuned from resonance with
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the cycling transition (γ = 2π ·5.2 MHz). For sub-Doppler cooling, the total detuning

is +70.5 MHz which is 13.6γ red-detuned from resonance.

The slave laser is injection-locked by spatially mode-matching the master laser

beam into the slave’s diode. The temperature and current of the diode are adjusted

to capture the lock, and for injection input powers of ∼1 mW, the slave laser follows

the frequency of the master over the detuning range of AOM #1. Even though double-

passing AOM #1 should eliminate beam pointing variation between the two detuning

set-points, we noticed that the beam shifts enough to degrade the injection locking

performance. We filter the beam with a short single-mode fiber to map pointing

instability into intensity variation. This solves the problem since the frequency and

output power of the slave laser are very insensitive to injection lock power fluctuations

at the 10 to 20% level. Misaligning the output polarizer of the slave laser’s optical

isolator allows one to pass the injection lock beam through the isolator and into the

laser diode. The optical isolators from Optics For Research have a beam rejection

port at the output polarizer, and a small fraction of the slave laser beam is redirected

through this port when the polarizer is misaligned. Injection beam mode-matching

is achieved by overlapping this beam with the rejected beam and matching the two

beam’s widths. The slave laser lock quality is greatly affected by this mode-matching

and this needs to be re-optimized every few weeks. Our slave laser outputs 140

mW when the current controller dial is set to ∼8.25, which is the optimal setting

for locking the master laser’s injection beam. The slave diode’s temperature needs

to be adjusted to make the slave operate at a different output power. The slave

laser’s output beam is shown in purple. We monitor the injection lock quality with a

saturation-absorption set-up, but do not use the set-up for any feedback control of the

laser. This beam then passes through AOM #2 which uses the -1 order to decrease

the beam’s detuning and to control the beam’s intensity. This is a 40 MHz center

frequency AOM. For sub-Doppler cooling, AOM #2 attenuates the beam power by a

factor of 10 and extinguishes the beam during the magnetic trapping steps.

After AOM #2, the MOT trapping beams pass through a polarization-maintaining

(PM) fiber. This fiber serves four purposes: 1) Decouples the laser control system



74

from the chamber optics. This prevents misalignment of the control system from

propagating all the way to the MOT alignment optics; 2) Filters the spatial mode

of the beam into a Gaussian profile (the AOM’s distort the beam shape); 3) Con-

verts pointing instability into intensity noise that is subsequently filtered-out using

a Thorlabs noise eater. This is an LCD polarizer that variably attenuates the beam

to maintain a constant power. 4) Rejects retroreflected MOT beams, preventing the

slave laser lock from being disturbed by an excess of reflected light. The power of

the beam pre-fiber is 54 mW (the zeroth order beam from AOM #2 has 42 mW of

power). The post-fiber power is 25 mW when set for the MOT beams, and 2.2 mW

for the sub-Doppler cooling beams. The AOM #2 and fiber allow 1 µm of power

to pass during the magnetic trapping stages, and a mechanical shutter can be used

to completely extinguish this light if needed. Post-fiber and noise eater, the beam

is further filtered by a pinhole. This is overkill, but serves as a compact beam ex-

pander. The beam is expanded to a 1 cm diameter and split into four beams using a

series of half-waveplates and PBCs. The intensities are controlled by the waveplates

so that counterpropagating MOT beams at the position of the chamber are intensity

balanced. Irises are used as aids in overlapping the beams. Beams “(a)” are used for

the two 45◦ mirror MOT beams and have slightly more power than the two horizontal

mirror MOT beams, “(b).”

The repumping laser is constructed and frequency-locked in the same manner

as the master laser. The repumping laser is locked to the F’=3 to F’=4 crossover

transition in the F=3 ground-state manifold, which is 100.6 MHz red-detuned from

the F=3 to F’=4 transition. The beam passes through a 100.6 MHz AOM (#5, 110

MHz center frequency) to bring this beam into resonance and to allow controllable

beam attenuation. The repumping beam then passes through neutral density filters

before being expanded and overlapped onto the 45◦ MOT beams.

The optical pumping and absorption imaging beams are produced and controlled

by AOMs #3 and #4, respectively. These AOMs are detuned by +125.5 MHz to bring

the master laser’s beam into resonance with the cycling transition. The absorption

beam is put through a PM fiber for spatial filtering. The output of the fiber is
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expanded and collimated at a width of 2 cm by an achromatic lens to improve image

quality. Due to constraints imposed by the chamber, the optical pumping beam

happens to be aimed at a CCD camera that is used for fluorescence imaging. AOM

#3 cannot extinguish the beam below the sensitivity of the CCD camera, and we must

use a mechanical shutter to completely extinguish the beam when it is not in use.

We employ a shutter fashioned from an ordinary computer speaker [88]. An opaque

flag is attached to the solenoid of the speaker, and flipping the direction of the drive

current makes the flag pop up and down. We can extinguish a tightly focused beam

in 20 µs and produce pulses of 1 to 2 ms. This device is simple to build, and at a

cost of ∼$20, is much cheaper than commercial alternatives.

We intend to use our lab’s Coherent MBR 110 Ti:Sapphire laser (pumped with

a Coherent Verdi V8) for the cavity probe beam. Using an electro-optical modula-

tor (EOM) we lock the laser to transitions in either the F=3 or F=4 ground-state

manifolds. For the GHz detunings that will be required for probing the vacuum Rabi

structure of the photonic bandgap (PBG) and microdisk atom-cavity systems, we

could either let the laser free-run at these detunings or use a beat-note lock [89].

The laser is passively stable to within a few hundred MHz—as measured by an in-

house Burleigh wavemeter— and has a linewidth of ∼100 kHz. The cavity linewidths

are larger than a GHz, so detuning without locking for initial experiments is not

inconceivable.

The optimal drive power for the PBG and microdisk cavities is in the 10 nW

range which is inconvenient for shot-noise limited detection. This power is too large

to use Geiger-mode APD’s and too low for Si photodiodes. We plan to use either

heterodyne detection with a Si 125-MHz Photodetector from New Focus (1801), or

photon counting with a cw-mode Si APD from Analog Modules (712A-4). The Analog

Modules APD has a gain of 7.7×107 V/W, an AC-coupled bandwidth of 80 MHz, and

a NEP of 20 fW/
√

Hz. At a power of 10 nW [30 nW], the photon counting detection

would be shot-noise limited by 3.8 dB [6.2 dB] with a 1 µs detection integration. The

signal size would be 0.77 V for 10 nW of optical power.

The New Focus Si photodetector has a gain of 2.5 × 104 V/W, a NEP of 2.8
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pW/
√

Hz, and a measured saturation power of 140 µW. For a signal power of 30 nW,

an integration time of 1 µs, and a local oscillator (LO) power of 140 µW, we could

achieve 3.1 dB shot-noise limited detection. The signal-to-detector noise would be

∼300, and the signal size would be 50.8 mV. We plan on using an all-fiber heterodyne

mixing set-up with a 97.5/2.5 fiber-based beamsplitter. The LO will be 10 MHz

detuned from the signal to ensure the beat signal is at the low-noise frequency band

of the detector but high enough to have a 1 MHz detection bandwidth centered about

the beat signal frequency. The 10 MHz beat signal will be captured by a 14-bit,

100 MHz bandwidth digitizing board from Gage Applied Technologies and we will

digitally mix-down the signal. This LO detuning will be generated by the difference

frequency between two AOMs to ensure that no RF noise will leak into the beat signal

bandwidth.

We would eventually like to be able to lock the microcavity. Since both the cavity-

laser detuning and the cavity linewidth are so large, we will need a high bandwidth

detector to derive the error and/or beat-lock signals. Menlo systems makes a Si

APD that could be used with low probe power: their APD210 has an AC-coupled

bandwidth of 1 GHz, gain of 2.5× 105 V/W, and an NEP of 280 fW/
√

Hz.

3.4 Computer control system

A computer is required for 100 µs time-scale control of the laser system, microwire

currents, magnetic fields, and CCD camera image acquisition and processing. We use

a combination of Labview and Matlab to control various DAQ boards and pulse-

delay generators. The system is divided into a master computer and three slaved

instruments consisting of one computer and two pulse-delay generators. The master

computer contains the main control programs, sets the master trigger, and houses

the National Instruments (NI) DAQ boards. The slave computer captures the CCD

camera images with a NI IMAQ board and uses Labview to process, display, and

record them. A Stanford DG535 pulse-delay generator receives the master trigger
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and sends out two secondary triggers, and a BNC 555 pulse-delay generator sends-

out four TTL pulses that control various elements of the experiment.

The experiment is governed by five programs in the master computer—one Matlab-

based and four Labview-based. The Matlab program generates data files which con-

tain a synchronized sequences of voltage outputs for the analog and digital output

channels. The analog channels output the control voltages for the magnetic coil and

microwire power supplies. The digital outputs send TTL pulses to various triggers,

AOM RF switches, shutter triggers, etc. This program is modular in that each trap-

ping step is self-contained and may be added or subtracted from the experiment or

modified without affecting the others. The modules contain the voltages and dura-

tions for each output channel, and the program produces plots that chart the timing of

all of the channel voltages. This is useful for debugging and diagnosing the microwire

and coil currents. The code for this program is listed in Appendix B, Section B.4. The

program outputs a series of .dat files for each channel, and two Labview programs—

one for the analog channels and one for the digital—read these files and upon a TTL

trigger, synchronously outputs the files’ voltages.

The analog channel Labview VI (such as Waveguide.vi) is run in loop mode:

the experiment trigger causes the program to read the data files into the NI DAQ

boards for output. There are two NI boards used for analog output. The PCI-MIO-

16E-4 has only two analog outputs, and we also use it for generating the Stanford

DG535 trigger. The NI PCI-6713 has 8 analog outputs. Note: neither of these two

boards can be used for outputting a binary waveform due to the lack of an on-board

internal clock. The digital output VI, DO.vi, functions in a similar manner. In loop

mode, the program waits for a trigger before sending a digital binary waveform to

one or more ports of the NI PCI-6533 board which contains 32 channels partitioned

into 4 ports5. The VI, Trigger− DG535.vi, sets—via GPIB—the trigger mode of

the Stanford DG535. During normal experimental operation, this should be set to

external trigger, but in debugging the MOT it is often useful to set the trigger to

5Due to a bug in this VI, to terminate this program one must release the loop-mode button and
allow one more trigger to pass. Otherwise Labview crashes.
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internal mode with a sub-Hz repetition rate.

The VI that starts each experiment is Series− DG535.vi. The experimental du-

ration and repetition delay time are set in this program. The duration is the time at

which after t = 0 the CCD camera acquires an image, and this time should be set ac-

cording to the timing schedule produced in the Matlab program. The repetition delay

time, usually around 5 s, is approximately the MOT loading time. This program also

has the ability to scan the experimental duration in time steps of one’s choosing. With

a GPIB connection, Series− DG535.vi sets the trigger delay times of the Stanford

DG535. The DG535 has two TTL pulse outputs defined by channel A plus B and

by channel C plus D. The AB pulse triggers the CCD camera’s asynchronous reset

and the image acquisition board. The CD pulse triggers the experiment—the DAQ

boards and the BNC pulse-delay generator—and Series− DG535.vi calculates the

delay of this pulse to ensure that the image is acquired during the intended moment.

The BNC 555 outputs four TTL pulses: channel A (active low) is the macro U-wire

shut-off and has a width and delay of 2 s and 20 ms, respectively; channel B (active

high) opens the optical pumping shutter for a 10 ms pulse centered about the optical

pumping step; channel C (active low) turns-on AOM #3 for the optical pumping

beam; and channel D (active low) activates the sub-Doppler cooling detuning and

intensity attenuation. The width of the channel A pulse sets the MOT duty cycle,

and this can be tuned to adjust the atom chip temperature since the macro U-wire

dissipates heat. The BNC 555 instrument should be replaced by the digital output

DAQ channels.

The experimental control sequence procceeds in the following manner. After set-

ting the experimental timing sequence and analog voltage magnitudes with the Mat-

lab program, the VIs Waveguide.vi and DO.vi, are initialized in loop-mode. The

experiment duration is set in Series− DG535.vi and the experiment begins when

this VI is run either in loop-mode—for continuous operation—or single-shot mode.

Series− DG535.vi sets the correct delay times in the Stanford DG535 via GPIB and

then sends a TTL pulse from a digital output of the PCI-MIO-16E-4 board to trig-

ger the DG535. The DG535 then triggers the image acquisition board in the slave
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computer to wait for a CCD camera signal, sends an asynchronous reset pulse to the

camera, and outputs a tigger pulse to the PCI-MIO-16E-4, PCI-6713, PCI-6533, and

BNC 555. The VIs then begin to synchronously output the data points in the Matlab

generated files to the PCI-MIO-16E-4, PCI-6713, and PCI-6533 boards. The output

time resolution can be adjusted in the software, and 100 µs is sufficient for present

purposes.

We use a separate slave computer for the image acquisition because we found it

difficult to get the NI IMAQ and NI DAQ boards to work simultaneously on the same

computer. Regardless, the master computer does not have enough PCI slots for all

the boards, and an extra computer is necessary regardless. The slave computer has

two VIs for image acquisition, one for fluorescence imaging and one for absorption.

The programs display the image in real time as well as the atom number and cloud

width, and automatic image saving is incorporated. Both VIs run a Matlab script

to calculate the atom number calibration and to fit Gaussians to slices of the atom

cloud. The gain and integration time of the CCD cameras (Cohu models 2100 and

4920) can be adjusted with on-board switches. Asynchronous resetting is required of

the analog cameras because they are triggered off the 60 Hz power signal. We use

the cameras in “frame” mode to maximize the image resolution in each integration

time. However, in this mode only every other horizontal line is captured and the

image resolution is reduced by half in the vertical direction. The first image acquired

after an asynchronous pulse is garbage, and the image capture VIs wait to record the

second, ∼16 ms delayed image. The triggers from the Stanford DG535 are designed

to account for this delay. For absorption imaging, a background image is captured

∼32 ms after the first.

We use Kepco power supplies for all the microwire and magnetic coil currents

except for the macro U-wire which is powered by a PowerTen 60 V/55 A supply (0-5

V current control). Crydom solid-state relays are used for fast termination of the

wire currents, and fast-acting protective fuses are installed at both the positive and

negative terminals6 for each microwire power supply. All Kepco supplies are operated

6We protect both terminals since the power supplies are linked by the crossing microwires.
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in “fast” mode to allow rapid current switching. Current-controlled Kepco 20-20 (20

V/20 A) BOPs are used for the x̂ and ŷ axis bias coils to enable fast switching and bi-

polar current operation. These are operated in current mode and controlled by a ±10

V voltage from the computer DAQ boards. The microwires are supplied by Kepco

25-4 (25 V/4 A) supplies. These can be wired to be either in current or voltage mode

and are controlled by a voltage from the computer DAQ boards. Current mode is

preferable, but if a circuit relay is installed, voltage control must be used. In current

mode, a 0-1 V control signal spans the 4 A range and in voltage mode, 0-10 V spans

the 25 V range. If the supply is to be grounded, the positive terminal must be shorted

to ground. To float the supply, disconnect this short and install an opto-electrical

grounding isolator between the computer DAQ voltage signal and the supply’s control

circuitry: if the latter is not done, the computer ground will propagate through the

control circuitry into the power supply. A Burr-Brown ISO124P chip is suitable for

this optical isolation.

Future experiments should use a digital CCD camera for absorption imaging.

These 12-bit (and higher) resolution cameras will be a great improvement over the

8-bit analog cameras. Moreover, they can be triggered at will, removing the compli-

cations that arise from synchronizing the experiment timing to the 60 Hz power line

signal and would allow more rapid capture of background images. Although the com-

puter control system is a hodgepodge of several programs and instruments, it is quite

robust and transparent to debug. However, future experiments might want to con-

solidate all the NI board control into Matlab: the newest version of Matlab—Version

7—contains NI drivers that could allow a more compact programming interface than

using several Labview VIs. Another alternative is to use the ADwin-GOLD system

that we recently purchased. It has a dedicated CPU that can be easily programmed

to produce all the analog and digital input and output.
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Chapter 4

Fabrication of Micro-Magnetic
Traps for Cold Neutral Atoms

This is an updated and expanded version of Reference [8].

Many proposals for quantum information processing or quantum feedback exper-

iments require precise control over the motion of neutral atoms, as in the manip-

ulation of coherent matter waves or the confinement and localization of individual

atoms. Patterns of micron-sized wires, fabricated lithographically on a flat substrate,

can conveniently produce large magnetic-field gradients and curvatures to trap cold

atoms and to facilitate the production of Bose-Einstein condensates. The intent of

this chapter is to provide the researcher who has access to a standard clean-room

enough information to design and fabricate such devices.

The clean rooms of Professors Michael Roukes and Axel Scherer were used ex-

tensively is this research. Eyal Buks, Darrell Harrington, and Marko Loncar were

generous with their time in teaching the author the basics of photolithography and

ion milling.

4.1 Fabrication Challenges and Constraints

Fabrication of atom chips poses several challenges in addition to those encountered in

standard photolithography [90]. Many applications require the wires to be a couple

microns wide by a few microns tall and spaced only a few microns from one another.

One micron resolution is near the limit of standard photolithography, and much care
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must be taken to accurately produce these micron-sized wires. Wires with widths

much less than a micron—though perhaps important for realizing potentials with

sub-micron scale features—are of limited usefulness for creating large magnetic field

gradients and curvatures since they become limited to the same maximum current

density as micron-sized wires [68]. Further fabrication complications arise from the

need to trap the atoms near the substrate’s surface, and the need to connect the

microwires to macroscopic leads without blocking optical access. A common tech-

nique for trapping atoms near the substrate surface, the mirror magneto-optical trap

(mMOT), requires that this surface be an optical mirror as well as the support surface

for the microwires (see Figure 2.8) [2]. The substrate surface needs to be larger than

5 to 10 cm2 to accommodate the reflected trapping beams as well as to allow the pads

for macroscopic wire contacts to be outside of the mirror area and not blocking the

optical access needed for the trapping, imaging, and pumping beams. Consequently,

the wire pattern must be flawless over an exceptionally large surface area: during

fabrication one must be extremely careful that no dust or surface defects break or

short the wires.

The major fabrication challenge lies in increasing the height of the wires to a

few microns. Even the smallest wires need to support up to an amp of current,

and consequently, the cross-sectional area of the wire must be maximized. This

reduces wire resistance and limits the heating that causes wire breakdown. Moreover,

attention must be paid to the thermal conductivity of the substrate and mounting

system to ensure sufficient power dissipation. Sapphire or polished aluminum nitride

(AlN) substrates provide sufficient thermal conductivity, but are slightly trickier to

use for fabrication than more standard substrates. The group of Joerg Schmiedmayer

in Heidelberg has recently found that Si coated with an insulating oxide layer is the

optimal substrate in terms of thermal conductivity [91].

The use of microwires to create an Ioffe trap illustrates these challenges. The wire

pattern shown in Figures 4.1(a) and (b) creates a 3D harmonic trap when combined

with a perpendicular homogenous bias field [3]. Unlike a quadrupole trap, the Ioffe

trap has a non-zero field at the trap center and thus does not suffer from Majorana
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spin-flip losses. An atom is confined within the Lamb-Dicke regime when its recoil

energy is less then the trap’s vibrational level spacing (η = (Erecoil/Evib)
1/2 < 1), and

for a cesium atom this occurs when the trap curvature exceeds 2 × 106 G/cm2. To

achieve this extremely large field curvature in all three dimensions, the radius of the

wire pattern in Figure 4.1(a) must be smaller than ∼30 µm. For a trap of inner radius

10 µm, outer radius 15 µm, and wire current I = 1 A, the curvature and Lamb-Dicke

parameter, η, at the center of the trap in the axis perpendicular (plane parallel) to

the substrate is 2×108 G/cm2 (2×1010 G/cm2) and η = 0.38 (η = 0.11). The closely

spaced wires can only be a few microns wide, and even if fabricated to a height of 2 to

4 microns, the wires would need to support the large current density of ∼ 1011 A/m2.

The accommodation of laser beams for atom cooling, loading, and imaging constrains

and complicates the atom chip’s design. The trap minimum is only 7 µm from the

substrate’s surface, and the mirror patterned on the surface for use with the mMOT

must neither short the Ioffe wires nor extend more than ∼5 µm from the surface. The

following sections describe the necessary fabrication tools and the techniques we use

to overcome these challenges.

4.2 The elements of atom chip fabrication

Microfabrication is a labor intensive process, often involving several weeks of trial

and error to perfect the fabrication recipe. However, once the process works, five

to ten atom chips can be produced over a span of two to three days. The intent

of this paper is to provide the researcher who has access to a standard clean-room

enough information to design and fabricate an atom chip. We will describe the use

of fabrication instruments and techniques only insofar as they are relevant to atom

chips. Fabrication is not an exact science, and the techniques described here may not

be optimal, but nevertheless have proven successful for the chips we have fabricated.

In photolithography, UV light shone through a photomask casts shadows onto

photoresist, a light sensitive polymer, which is coated on the surface of the substrate.

Either positive or negative photoresist may be used, with the primary difference be-
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Figure 4.1: The planar Libbrecht-style Ioffe trap. a) When combined with an opposing
bias field, this wire pattern produces a 3D harmonic potential above the substrate
with a non-zero field at the trap center [3]. b) A planar Ioffe trap with an on-chip
bias coil fabricated with gold on sapphire using the lift-off method. In the sample
shown here, the wire height is 1.5 µm and the minimum wire width is 10 µm. The
gold between the wires forms a mirror for creating a mirror MOT.

ing that exposed areas of positive photoresist are removed after developing whereas

exposed areas remain in a process using negative photoresist. The various fabrication

techniques differ in how the wire metal and photoresist are used to create the wire

patterns. For instance, the wire metal may be either thermally evaporated into the

trenches created in the photoresist, or grown upward trough the trenches by elec-

troplating onto a seed metallic layer underneath the photoresist. The photoresist

and unwanted metal are removed leaving only the desired wire pattern. Generally,

chip fabrication consists of six steps: creating a photomask containing the desired

wire pattern, using photolithography to transfer the wire pattern to photoresist on a

substrate, thermally evaporating wire material, increasing the wire height, preparing

the surface mirror, and making contacts to macroscopic wires. The details and exact

order of these steps vary depending on the specific requirements of the microwire pat-

tern to be fabricated. For instance, wires wider than 30 µm or less than one micron in

height may be fabricated with a much simpler technique than thinner or taller wires.

This section discusses the steps common to all techniques. Procedures required to
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increase the wire’s thickness pertain to individual fabrication techniques and will be

discussed in the next section.

4.2.1 The photomask

The photomask is typically a 10 cm square piece of glass or transparent plastic on

which is printed a positive or negative 1:1 image of the wire pattern. Wire patterns

with widths or spacings less than ∼30 µm require a professionally made chrome

mask: one in which the pattern is written with chromium on a glass plate. We have

used the company Photronics, Inc. (telephone 619-992-8467) to make photomasks

from AutoCAD drawings. Much care must be taken in producing the AutoCAD

files since not all functions are properly converted to the company’s file format. In

particular, all shapes should be drawn as closed, unfilled polylines. These masks are

quite expensive, costing between $600 and $800, but have sub-micron resolution and

are typically shipped within a week. It is possible to purchase a laser writer to produce

in-house photomasks with resolution down to 0.8 µm. This can be a cost-effective

alternative to purchasing individual masks from companies.

Many commercial printing shops are capable of printing overhead transparencies

with high enough resolution to serve as photomasks for wire patterns with features

larger than ∼30 µm. The line edges are granular on a scale of a few microns, and the

UV exposure time must be adjusted to account for the ink not being perfectly opaque.

However, the one day turn-around, low cost of ∼$20, and ease of file preparation—

only an .eps file is typically needed—make the transparency photomask quite an

attractive alternative for large features.

4.2.2 The substrate

As mentioned earlier, the substrate material for the atom chip should be carefully

chosen: it must be electrically insulating, highly polished, not susceptible to fractures

upon localized heating, and an excellent thermal conductor. We found that both

sapphire and AlN substrates satisfy these requirements. Sapphire substrates 0.5 mm
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to 2 mm thick with surface areas of several cm2 may be purchased from companies

such as Meller Optics, Inc. (telephone 800-821-0180) for $30 to $50 apiece. A surface

quality of 80-50 scratch-dig is sufficient for fabrication. The thermal conductivity of

AlN, 170− 180 Wm−1K−1 at 20◦ C, is ∼4.5 times higher than that of sapphire [68].

We measured that the max current density supported by microwires on AlN, ∼2×1011

A/m2, is a factor of two greater than for microwires patterned on sapphire. This was

measured using electroplated gold wires of varying cross-sections patterned exactly

the same way on both AlN and sapphire substrates. Specifically, we used several 3

µm and 20 µm wide wires whose heights ranged from one to three microns. The

substrates were glued to room temperature copper blocks using Epotek H77 (Epoxy

Technology, telephone 978-667-3805), a thermally conductive epoxy. Reference [91]

finds that substrates of oxide on silicon have superior thermal properties to sapphire

and AlN, and this silicon substrate is in some cases more amenable to standard

microfabrication techniques.

Compared to AlN, sapphire substrates are easier to use for fabrication because

their transparency allows one to detect and avoid defects and dust during the pho-

tolithography process. Moreover, with a transparent substrate, it is easy to align fea-

tures on the substrate to devices on the surface underneath. Polished AlN substrates

may be purchased in bulk for less than ∼$75, and unlike sapphire, AlN substrates

can be cleaved with a diamond scorer to any shape desired. We were able to dice

a ≥ 1 mm thick sapphire substrate using a diamond saw, but on occasion the sub-

strate cracks in undesirable ways. The polished AlN still has a considerable amount

of surface roughness—one micron wide plateaus a few hundred nanometers tall are

typical—but we found that it is nevertheless possible to fabricate on this surface per-

fect three micron wide wires spaced less than three microns from one another. The

surface bumps simply map directly onto the upper surface of the wires.
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4.2.3 Substrate cleaning

Before the photolithography process may begin, the surface of the substrate must

be cleaned to remove all organic material and dust. Although some of the following

steps may seem unnecessary and “overkill,” investing the time to thoroughly clean

minimizes the chance that after many hours of work, one discovers that a piece of

dirt has broken or shorted a wire. The first step is to immerse the substrate in a

beaker of “piranha etch,” sulfuric acid and hydrogen peroxide in a 10:1 volume ratio

brought to 100◦ C on a hot plate for ∼5 min. Teflon coated, flat-tipped tweezers are

ideal for manipulating substrates. After the etch, the substrate should be placed in

a beaker of acetone, heated again to 100◦ C for a few minutes, and finally inserted

into an ultrasound cleaner for few more minutes. In extreme cases of substrate grime,

a cotton tipped dowel can be used to manually wipe away the dirt. Acetone leaves

a thin film—and sometimes even particulate—when allowed to dry on a substrate’s

surface. It is imperative that one spray isopropanol (IPA) onto the substrate as

it is removed from the acetone bath. This rinses the surface of acetone and wets

it with IPA which does not dry quickly. The substrate must then be rinsed with

methanol, which is relatively clean and does not leave a film, and immediately blown

dry with an air or nitrogen gun. It is crucial that the air jet is aimed almost parallel

to the surface so that the methanol is blown-off rather than dried on the substrate.

When done correctly, the only remaining dirt particles will be along the edge of the

substrate that is downwind of the air jet, and not in the center fabrication region. If

the substrate is reasonably clean after the piranha etch, then the acetone step (which

may actually add some dirt particulate) may be skipped, and the substrate should

instead be immersed in IPA and placed inside an ultrasound cleaner.

4.2.4 Thermal evaporation

Certain fabrication techniques, to be discussed below, require that a 100 nm metal

layer be thermally evaporated before coating the surface with photoresist. We take

this opportunity to discuss the thermal evaporation process. We use gold for the
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wires because of its high electrical conductivity, resistance to corrosion, and ease

of evaporation, electroplating, and wet etching. To successfully deposit gold on a

substrate’s surface, one must first evaporate a 50 Å metallic layer that promotes

adhesion between the gold and the sapphire or AlN. We typically use chromium, but

titanium may also be used. At the level of our current experiments, the magnetic

effects from the thin layer of chromium are negligible. In a thermal evaporator, the

substrate is mounted in a vacuum chamber facing a tungsten crucible positioned a few

tens of centimeters below. The crucible, known as a boat, can hold 10 to 20 pieces

of ∼2 mm long and 0.5 mm diameter gold wire. Current flows through the boat,

melting the gold and spewing it upwards toward the substrate. A calibrated crystal

monitor measures the deposition rate. One to two boats are sufficient to deposit 100

to 200 nm of gold, and this costs $10 to $15 per boat. There are typically only four

sets of electrical feedthroughs in the evaporator’s vacuum chamber, and to deposit

more gold, one needs to bring the chamber up to atmosphere, reload the boats with

gold, and pump back down to base pressure (∼ 1× 10−6 Torr)—a process that takes

about an hour. The substrate mounting area allows several substrates to be coated

at once. Evaporating less than 1 µm of gold is reasonable, but depositing more

than 1 µm becomes too expensive and time consuming, and the quality of the gold

surface begins to diminish. Moreover, the vacuum chamber eventually becomes hot

which may result in the failure of the crystal monitor or the burning of photoresist.

Sputtering the gold is an option that we have not explored, but may be more efficient.

Some groups have reported an intermittent difficulty with getting the adhesion

layer to “stick” regardless of whether Cr or Ti is used, and have not found a consistent

culprit. This results in the pealing away of the gold layer after evaporation. We have

only had one episode of this occurring (in what is known as the “left” evaporator in

Roukes’ lab), and we believe it was caused by the combination of a leaky and dirty

vacuum chamber. The Cr or Ti became corroded either as it evaporated onto the

substrate or once it was attached. The vacuum pressure would rise abnormally upon

the melting of the Cr or Ti boats. The problem was solved by simply switching to the

“right” evaporator, but this is hardly a long-term fix and an inspection and thorough



89

cleaning of the “left” evaporator should be done.

4.2.5 Photoresist spinning and baking

Photoresist does not always adhere well to the substrate’s surface. Before coating

with photoresist, the substrate should be baked on a hot plate at ∼150◦ C for a few

minutes to remove surface moisture. However, caution must be taken with custom-

cut sapphire substrates. A few of these have cracked after being placed directly on a

120◦ C hot plate. Slow ramping of the hot plate temperature may be required.

Hexamethyldisilazane (HMDS) should be used with sapphire and quartz sub-

strates to promote adhesion (this is unnecessary for AlN). Only a few monolayers

of HMDS are required: after baking, place the sapphire in a dish next to several

drops of HMDS and cover for a few minutes. Note that both HMDS and photoresist

are carcinogenic and should be handled with care.

Spinning photoresist onto a substrate is a relatively straightforward process. The

substrate, with beads of photoresist dripped onto its surface, is spun by a vacuum

chuck to a few thousand rpm for several tens of seconds. A faster rotation results in a

thinner film of photoresist. Typically, a film thickness of a few microns is possible with

standard photoresists, and there exists special resists that are four to twenty microns

thick. These thicker resists are often important for making tall wire structures. The

thickness of a photoresist may be increased beyond its specification by dripping resist

onto its surface during rotation. After spin-coating, the photoresist needs to be baked

on a hot plate to prepare the polymer for UV exposure. The exact temperature and

bake duration are often crucial to the success of the fabrication. We would like to note

that it is possible to layer microwire patterns on top of one another by fabricating

each new wire layer on top of a spin-coated insulator such as polyimide [92]. This

will be discussed further in Section 4.2.10.
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4.2.6 UV exposure

The central step in photolithography is the UV exposure of the photoresist. An

instrument known as a mask aligner allows one to accurately position the photomask

flush to the substrate’s photoresist-coated surface, and a built-in UV lamp exposes

the photoresist for a specified amount of time. Essential for photomask and substrate

registration is an optical microscope mounted on the mask aligner. This enables

one to simultaneously view the wire patterns on the mask and on the underlying

substrate. Dust particles or scratches often remain on the substrate even after a

thorough cleaning. If these defects are sparse, then the substrate may be translated

so that the wires avoid all defects. Aligning the chip’s wire pads along one or more

edges of the substrate further constrains the relative position of the photomask to

the substrate. It should be noted that it is difficult to properly develop the pads (or

other wire features) less than a millimeter from the edge due to photoresist beading.

Certain fabrication recipes require the photoresist to be baked and exposed again

before developing. For periodic micron-sized features such as those used for making

an atom mirror (see Chapter 8), it may help to remove the beaded photoresist at the

edge of the substrate to allow the substrate to lie flush against the photomask.

It is good practice to clean the chrome photomasks after every use. Photoresist

can stick to the surface, and if left for days, will produce hard-to-remove specs that

can block the UV light, creating unwanted features or breaks in the patterned wires.

Immersing in a dish of acetone and rinsing with IPA and methanol is sufficient for

routine cleaning. Some chrome masks can withstand ultrasound cleaning as well as

being wiped with a soft, lint-free cloth, and this seems to be the only way to remove

encrusted grime or particulate.

4.2.7 Developing

To remove the photoresist regions defined by the UV exposure, the substrate must

be immersed and slightly agitated in a beaker of developer for a few tens of seconds

followed by a water rinse. The exact developing time depends on the previous fab-
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rication steps, but it is generally possible—especially with the transparent sapphire

substrates—to see a characteristic change in opacity of the photoresist as it becomes

fully developed. For instance, when using a positive process, one first sees the ex-

posed photoresist turn hazy, revealing the wire pattern. After a few seconds, the hazy

region sloughs off exposing the bare substrate and leaving darker, patterned regions

of photoresist. If a mistake is made at any point in the photolithography process,

the substrate can be reused by removing the photoresist in a beaker of acetone and

cleaning the substrate as mentioned above, starting with the ultrasound.

4.2.8 Ozone dry stripping

Certain fabrication processes require the substrate surface to be etched in an ozone

dry stripper. This uses UV light, ozone, and heat to remove thin films of unwanted

organic material, photoresist, or HMDS that may prevent the deposition of thermally

evaporated or electroplated gold. The time and temperature of the process may be

adjusted to optimally remove organics without over-baking the photoresist.

4.2.9 Wire contacts

Wire bonding and ultrasonic fluxless soldering are useful methods for attaching macro-

scopic wires to the substrate’s contact pads. Wire bonding is the standard method

for making contacts to micro- or nanofabricated devices. The wire bonder attaches

each end of a thin thread of gold wire to a pad using a heated, ultrasonically vibrating

tip. The thin wire may be stretched over several millimeters between the pad on the

substrate and a pad on the substrate support structure. The pads on the support

structure may then be connected to standard wire contact pins. Because the wire

threads are prone to break and cannot individually support more than a few hundred

mA of current, it is necessary to make several redundant bonds per pad. This process

can be quite time consuming. As an alternative, ultrasonic soldering irons are capable

of attaching regular wires to sapphire or AlN using fluxless solder. Attaching wires

is nearly as simple as standard soldering, and the fluxless solder is vacuum compat-
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ible to at least 10−9 Torr. Unfortunately, the solder material forms mounds on the

substrate’s surface that can limit optical access.

4.2.10 The mirror

Finally, we would like to discuss methods for making the atom chip’s surface mirror-

like. This is a crucial step for ensuring good mirror MOT performance and for min-

imizing scattered light. The latter is important for imaging the atoms with the

substrate as a background.

The most compact method involves simply patterning gold on the entire chip’s

surface except for thin, ≤ 10 µm wide gaps around the actual wires [7]. This tech-

nique does not add any additional steps to the fabrication procedure, but it does

increase the likelihood that surface defects will short the wires through contacts to

the large mirrored areas. The mirror gaps that define the wires imprint defects onto

the reflected mirror MOT beams, but we have nevertheless been able to trap more

than a million cesium atoms with this less than perfect mirror. It is important that

the wires themselves are highly reflective. Thermally evaporated or sputtered wires

work well for this, but electroplated wires do not. The gold electrodeposition process

grows wires with a granularity large enough to scatter light non-specularly. Although

we have been able to form good mirror MOTs with electroplated wires, it is impossi-

ble to fluorescence image atoms looking down onto the substrate when the atoms are

above these wires. This limits diagnostic capability.

Coating the chip’s surface with an insulator and then applying a mirror coating can

produce a more specular mirror, though at the expense of additional material between

the atoms and the wires. Since the atoms can no longer be trapped immediately above

the wires, this limits the maximum attainable trap gradient which scales inversely

with trap height. Nevertheless, we have found the various forms of this technique

quite useful.

Epoxying a silver mirror (with Epotek 353) to the surface forms a good mirror,

and it eliminates any corrugations on the mirror surface caused by the underlying



93

wires [50]. Unfortunately, the minimum distance between the atoms and the wires

is set by the mirror and epoxy thickness. An improved mirror can be made by

epoxying a dielectric mirror onto the surface. The mirror was grown on a sacrificial

glass substrate with a detachable layer between the mirror and the glass. The device

to be mirrored is glued onto the mirror with a thin layer of Epotek 353, and after

curing the device plus mirror easily peal-away from the glass substrate. Anti-reflection

coatings can be attached to difficult-to-coat windows in the same manner1. Vacuums

of 2 × 10−10 Torr, in a chamber baked to 150◦ C, have been achieved despite using

this glue and dielectric coating.

An alternative technique, which hasn’t been completely successful, is to spin one

or more layers of photoresist onto the substrate. Swabbing with acetone removes

the photoresist covering the wire pads near the substrate’s edge, and the mirror is

created by using a mask to thermally evaporate gold only onto the coated region.

This technique is simple and works well as long as there are no vertical protrusions

of gold from the wires to short to the gold mirror layer. We find that one micron

tall wires are fine, but wires 5 to 15 microns tall can on occasion short to the mirror

even when the surface is coated with three layers of photoresist. We have tried to wet

etch the protrusions away before reapplying the photoresist without success. Another

drawback of this method is the fact that the photoresist shrinks after a hard baking.

A mirror placed on the photoresist before baking will wrinkle terribly. However, one

placed on the resist after a hard bake will not wrinkle too badly after subsequent

hard bakes. Unfortunately, the photoresist does not planarize the wires, and the wire

pattern and wire surface roughness is mapped onto the mirror. The photoresist is

removable with acetone in an ultrasonic bath, and once baked is compatible with

vacuums down to at least 10−9 Torr and perhaps slightly lower.

A similar, but much better technique—no shorting problems—is to use polyimide

(Kapton) coatings in place of the photoresist. Polyimide is extremely viscous, and

when spun onto a substrate and hard baked, forms a tough yellowish protective

1This coating is produced by the German company OIB (Optical Interference Components)
http://www.oib-jena.de/firmenpreng.html
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coating. With a single spin, coatings up to 10 microns can be obtained, and with hard

baking the film is UHV compatible and acts to planarize wires or other protrusions

on the substrate. It is this last attribute that makes polyimide widely used in the

semiconductor industry. We purchased our polyimide, Pyralin PI2560, from HD

MicroSystems. The thickness for a spin of 2000 rpm is 8 µm and increases to 11 µm

for a 3000 rpm spin. (The company sells a similar polyimide, PI2562, that coats up

to 2 µm.) Application requires an adhesion promoter, VM-652, bought in addition

to the polyimide. The coating procedure is as follows. Pipet the VM-652 onto the

substrate as it is held in the vacuum chuck of the spinner. Wait for 20 seconds and

spin dry for 30 seconds. The spin speed can be the same as used in the polyimide

application step. Bake the VM-652 coated substrate on a hot plate for a minute

at 120◦ C. Be careful not to crack a custom-cut sapphire substrate—a temperature

ramp might be required. Placing the substrate back on the vacuum chuck, pipet

enough polyimide to cover roughly half the surface. The spinning will cause it to

cover the rest. The rotation should start at 500 rpm for 5 seconds before rotating

at final speed—2000 to 3000 rpm—for 30 seconds. Remove substrate, and with a

towel soaked in acetone, quickly wipe-off any polyimide coating the bottom of the

substrate. To prevent flowing, immediately place the substrate on a ∼100◦ C hot

plate for an initial cure of roughly 5 minutes. One will notice that the polyimide

surface becomes smoother as it bakes on the hot plate. To fully cure the polyimide

and prepare it for UHV chambers, it must be hard baked to 350◦ C for an hour. A

slow ramp is required to prevent substrate cracking. The Munich group has noticed

bubbles forming in the polyimide, but we have never seen this problem. It might

have been due to an expired polyimide sample: they bought a new batch of PI2560

and the problem never arose again. The main vat of Pyralin PI2560 must be kept

refrigerated, and a sample in a room temperature bottle will expire in a month or so

and should be discarded.

We found that for 12 to 14 µm tall wires, the polyimide spun at 2000 rpm produced

a 50% planarization (only a ∼6 µm bump remained). A soft bake followed by another

coating resulted in a 40% further planarization, but a third soft bake and application
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Figure 4.2: Polyimide-coated waveguide atom chips fabricated with electrodeposited
gold on custom-cut sapphire. The polyimide has been removed above the wire pads
revealing the shiny gold underneath. The substrates have a maximum width of 5 cm
in the horizontal direction, and the wires are 12 to 14 microns tall. a) Waveguide
with P-trap loading. Minimum wire width is 50 µm. Three coats of polyimide. b)
Directly loaded waveguide from U-trap. Minimum wire width of 100 µm. A single
coat of polyimide.

didn’t change the height of the bumps. Rather, the bumps simply became wider.

After a hard bake, the bump height returned to ∼6 µm: the polyimide shrunk slightly.

Hard baking between each polyimide application would work much better. Wires

much shorter than 10 microns would be much easier to planarize, and the Munich

group has found this to be the case. The polyimide surface forms a suitable surface for

additional microwires, allowing the creation of multilayered chips. Cured polyimide

is easy to flake-off the surface of the substrate, which is necessary for uncovering

the wire pads, but seems impervious to acetone. Coating with polyimide forms a

UHV compatible and easily cleanable protective layer for the delicate microwires and

should, if possible, be used. Figure 4.2 show two sapphire substrates coated with

polyimide.

Our first attempt at making a mirror MOT using a gold-coated polyimide and 12

µm tall wires proved unsuccessful. Although it formed a smooth, specular surface,

the wire bumps—several 100 microns in width—misdirected enough laser power to

prevent the MOT from forming. Further improvements in planarization will mitigate

this problem (for instance by hard baking between each layer application), and enable
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the use of polyimide as a desirable technique for making atom chip mirrors.

Recently, we have been making atom chip mirrors by simply gold coating a thin—

130 to 170 µm—glass cover slide, and attaching it to the chip either face up or down

with a small drop of photoresist. The mirror is only 90% reflective when placed upside

down due to the Cr adhesion layer. A mirror MOT was made with such a mirror and

the low laser scattering allowed nice fluorescence images of the atoms to be taken.

We have noticed that Cs from our oven begins to discolor (through accumulation,

presumably) the gold mirror after a few months of exposure. A mirror MOT may

still be formed, but the mirror scatters more light into the imaging CCD cameras.

Using a Cs dispenser might help to improve this situation.

4.3 Specific fabrication techniques: wet etching,

ion milling, lift-off method, and electroplating

The minimum required wire dimensions vary significantly depending on the atom

chip’s application, and an optimal fabrication technique should be chosen accord-

ingly. This section gives the recipe and discusses the relative merit of each fabrication

method.

4.3.1 Wet etching and ion milling

The simplest chip to fabricate has wire widths no smaller than 30-40 µm and wire

heights less than 1 µm. A transparency mask should be used for the photolithography

(see Section 4.2.1). The wire height is set by a thermally evaporated or sputtered gold

layer and the photoresist masks the gold intended for wires from the wet etch solution

(see Figure 4.3[a]). To begin the procedure, the cleaned substrate should be placed in

the ozone dry stripper for five minutes at 65◦ C to ensure that no organic material will

prevent the adhesion of chromium and gold. The thermal evaporation step follows,

with the thickness of the gold layer determined by chip’s current density requirements.

Because the photoresist adheres well to gold, only a 5 min bake at 180◦ C is necessary
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Figure 4.3: Fabrication techniques. a) Patterned positive photoresist masks the gold
layer from the gold and chromium wet etch. b) The argon ions mill away the gold
not covered by positive photoresist. c) Gold is thermally evaporated into the trenches
patterned in the negative photoresist. The undercut allows the photoresist and un-
wanted gold to separate from the substrate without peeling away the gold in the
trenches. d) Wires are defined by gaps in the positive photoresist, and the walls of
the photoresist guide the wires as they are electroplated. After electroplating, acetone
removes the photoresist and gold and chromium wet etches remove the seed layer.
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for adhesion (this temperature might be too high for cut sapphire substrates). Wet

etching removes exposed gold, and the photoresist should be patterned so that it

covers the areas intended for wires, i.e. the photoresist should be a positive image of

the wire pattern. A photomask on which the wires are opaque, used in conjunction

with positive photoresist, will produce a positive image of the wire pattern. We use

the photoresist AZ5214 (Clariant), which can serve as both a negative and positive

photoresist depending on the bake and exposure procedure. The positive process

recipe is as follows: spin coat at 5000 rpm for 50 s, bake at 95◦ C for 2 min, expose

for 10 to 20 s, and develop in AZ327 MIF (or some similar developer) for 30 s. All of

the above times are approximate and will vary depending on the UV light intensity of

the specific mask aligner and on various environmental conditions such as humidity.

It may be necessary to try various exposure and bake times to find the optimal

recipe. These exposure times are based on the 16 mW/cm2 UV intensity of our

mask aligner. To remove the gold not covered by photoresist, submerge the substrate

in gold etch solution (Gold Etchant TFA, Transene Company, Inc., telephone 978-

777-7860) for a few tens of seconds until only the dull gray of the chromium layer

remains. Finally, remove the chromium layer with chrome etchant (CR-7S, Cyantek,

Co., telephone 510-651-3341). Figures 4.4 (a) and (b) show a substrate patterned in

this manner. The wet etch dissolves the gold isotropically, and the decrease in wire

width is insignificant for wires and wire gaps larger than 10 to 20 µm. Of course,

transparency masks cannot be used for features smaller than a few tens of microns.

Ion milling can be a useful alternative to wet etching. Instead of removing the

unwanted gold with an etch solution, argon ions anisotropically bombard the surface,

removing the gold not covered by photoresist (see Figure 4.3[b]). This method can

produce very narrow features, limited only by photoresist resolution, with heights

determined by the thermally evaporated gold layer. The photoresist is also milled,

but this is of no consequence as long as it is thicker than the gold layer. The substrate

may become quite hot during the ion etching, and one needs to be careful that the

substrate does not overheat, causing the photoresist to become hard and difficult to

remove. We have used ion milling to make atom chips as well as to etch a common
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a) b)

Figure 4.4: Gold wire patterned using the wet etch technique. (a) This atom chip
contains a quadrupole trap in the U configuration. The gold wire, patterned on
sapphire and surrounded by a gold mirror, is 300 µm wide and 1 µm tall. (b) Close-
up of the wire region. The gold appears darker than the uncovered sapphire substrate.

hard drive for use as a magnetic atom mirror (see Chapter 8 and Reference [12]).

4.3.2 The lift-off method

The quick and easy wet etch technique is unfortunately not suitable for wire widths

smaller than 20 µm, and ion milling machines are not readily available. The lift-off

method should be used for the case in which the wires need not be taller than 1

µm but less than 20 µm wide. However, if the surface quality of the sub-10 micron

wires is important to the application (e.g., for BEC experiments), then the lift-off

method will be worthwhile regardless of the height of the wires (see Section 4.4 for

more details about these constraints).

In contrast to the wet etch technique, the photoresist in this method is used as

a mask for the deposition of thermally evaporated gold. Trenches are created in

a negative photoresist using a photomask with opaque wires, and evaporated gold

deposits both into the trenches, adhering to the substrate, and onto the surface of

the photoresist (see Figure 4.3[c]). If done properly, the walls of the trenches have an

overhang—which looks like an undercut when viewed from above—that prevents the

unwanted gold on the photoresist from connecting to the gold in the trenches. An
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acetone bath dissolves the photoresist, allowing the unwanted gold to lift-off leaving

the wire pattern formed from the gold in the trenches.

After cleaning the substrate, the AZ5214 is spun on the substrate for 45 s at 5000

rpm. The maximum height of the thermally evaporated wires is set by the thickness

of the photoresist since lift-off will not work once the top of the gold connects with

the gold on the overhang. We have been able to achieve lift-off with wires 1.5 µm tall

by spinning the photoresist on at 2000 rpm and thermally evaporating many boats of

gold over a period of three to four hours. The photoresist should then be baked for

45 s at 100◦ C, UV exposed with the photomask for 10 s, baked again for 45 s at 123◦

C, UV exposed with no mask for 2.1 min, and developed for 25 to 35 s. Developing is

finished when one can see the wire pattern in the photoresist. A successful undercut

can be seen in a microscope as a bright outline of the edges of the trenches. Before

thermal evaporation, the substrate should be placed in the ozone dry stripper at 65◦ C

for 5 minutes. This removes unwanted material that could prevent gold adhesion, and

does not seem to hamper photoresist removal as in the electroplating process described

below. To promote lift-off, the acetone bath should be heated on a hot plate, and the

substrate, while inside the beaker, should be sprayed with an acetone squirt bottle.

It is very important that all of the gold-coated photoresist be pealed away before the

substrate is removed from the acetone. Otherwise, once dried, the unwanted gold

flakes become extremely difficult to separate from the surface. Difficulty in achieving

lift-off may be overcome by briefly exposing the substrate to ultrasound. This is risky,

however, since the gold wires might be stripped-off as well. Figure 4.1 (b) shows an

atom chip fabricated with the lift-off method.

4.3.3 Electroplating

The above methods rely on thermal evaporation to achieve the required wire thickness.

This limits the wire heights to ∼1 µm. Electroplating the wires can increase the wire

height considerably: for example, we have made 3 µm wide wires 4 µm tall, and 50

µm wide wires 14 µm tall. Thick photoresist spun and patterned on a thin gold seed
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layer provide a template for the growth of the wires. The walls of the photoresist

maintain a constant wire width as the wire height increases (see Figure 4.3 [d]). An

acetone wash followed by a brief wet etch removes the photoresist and gold seed

layer. Electroplating is a tricky process that does not always produce reliable results.

We provide here a general guideline for the process, and with this process we have

typically been able to achieve a wire height accuracy of ±0.5 µm.

Fabrication begins with cleaning and ozone dry-stripping the substrate, followed

by the thermal evaporation of a 100 to 150 nm seed layer of gold along with a

50 Å chromium adhesion layer. For proper vertical wall guiding of the wires, the

photoresist must always be taller than the electroplated wires, and a photoresist

thicker than that one used in the aforementioned techniques is necessary. Clariant’s

AZ9200 series photoresists are 4 to 24 microns thick, and can achieve aspect ratios of

5 to 7 with resolutions of < 1 µm to 3.5 µm depending on the resist thickness. After

spin coating, it should be baked on a hot plate at 110◦ C for two minutes, and then

the photoresist should be UV exposed for 60 s (or longer depending on the photoresist

thickness) using a photomask with transparent wire patterns. The resist is developed

in a 1:4 solution of AZ400K and water for 10 seconds to a minute depending on the

exact solution concentration: the exposed photoresist will turn hazy before dissolving

away. The gold seed layer also acts as the cathode in the electroplating process, and

some of the photoresist must be wiped away with acetone—or a blank spot should be

designed in the photoresist—to serve as a contact for the cathode lead. An ozone dry

etch is then used to remove any layers of HMDS, photoresist, or organics that might

mask regions of the gold from the electroplating solution. The time and temperature

of this process is crucial: too long an exposure at too high of a temperature will make

the photoresist difficult to remove between closely spaced wires, and too short an

exposure will not remove enough unwanted masking material. For example, we found

that an 18 s room-temperature ozone dry etch was optimal for removing unwanted

material while also enabling the removal of photoresist between wires spaced by 3

µm.

Alternatively, if a rectilinear wire cross-section is not desired, then the cathode
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may be connected to the wires on the substrate post-acetone removal. The wires may

be formed from performing lift-off, wet-etch, or ion milling and should all be shorted

together with connections that are subsequently scratched-out. These electroplated

wires grow horizontally as well as vertically with roughly semicircular cross sections.

We use an ammonium gold sulfite solution from Metakem GmbH for the elec-

troplating. A sodium gold sulfite solution from Technic, Inc. did not work as well.

Specifically, it would turn brownish (from clear) during a deposition, preventing it’s

reuse and causing large towers of gold to form on the wire. The Metakem solution,

with 15 g of Au/liter, is poured into a roughly 1200 mL container and heated to ∼65◦

C. The anode, also purchased from Metakem, is platinized titanium (type B mesh,

size 10 × 10 cm). Place the anode mesh vertically into the container so that a part

of it is above the solution. The depth of the container should be so that the sample,

when suspended vertically in the solution, is completely submerged: any excess so-

lution will be unnecessarily subject to evaporation. Attach the positive alligator clip

to the anode mesh outside the solution and the negative clip to the substrate’s gold

seed layer (the cathode). The cathode alligator clip usually has to be in contact with

the solution for the substrate to be completely submerged. The current should be

off when the substrate is submerged and turned on or off gently thereafter. We have

found that a 1 mA current does not activate the deposition, but a 20 mA current

deposits 6 to 7 microns of gold per 20 min. With a 40 min deposition, 12 to 14 um

tall wires can be made. The substrate should be gently agitated while electroplating

to promote even plating and suppress the formation of ∼5 µm tall towers of gold.

After electroplating, the substrate, anode, and container should be rinsed with water.

The gold solution can be reused, but should be filtered if flakes of material appear.

Both our group and the Munich group noticed an uneven, shadow-like effect on

the cross-sectional height of electroplated wires using the Metakem solution. The

section of an exposed wire next to a steep photoresist wall will not electroplate as

well if the solution is stirred so that the wall creates a fluidic shadow on the wire: the

wire’s cross-section is no longer rectilinear, but rather thins on one side. Reversing

the direction of fluid rotation creates wire thickness shadows on the wire’s opposite
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side. Agitating the substrate in random directions helps to mitigate this effect, and

the Munich group saw that it might be preferential to not stir the solution at all.

They also noticed that the use of a fresh batch of solution seems to mitigate this

problem.

To prepare for wet etching the seed gold layer away, the photoresist should be

removed in a room-temperature acetone bath. Sometimes it is difficult to remove the

photoresist between wires spaced only several microns from one another, and in these

cases the substrate—while in the acetone—should be placed in an ultrasound for a

few minutes. The gold should not peel away since it is attached to the entire substrate

surface. After rinsing the acetone away with IPA and methanol, the gold seed layer

is removed with a ∼15 s wet etch. The chromium adhesion layer should also be wet

etched away. Occasionally, the air jet does not remove all of the methanol from the

substrate, and tiny drops of methanol can sometimes dry on the leeward side of the

wires. This dried methanol acts as a mask for the gold etch, leaving small puddles of

seed layer that can short adjacent wires. These puddles can be removed by rinsing

with methanol, blow-drying from a different angle, and briefly wet etching a second

time. The surface reflectance of the gold is typically diminished after the wet etch,

and a mirror fabricated with this gold may not be ideal. A second photolithography

step can add photoresist on top of the wires and/or areas of the seed layer to protect

them from the wet enchant. The protected seed layer is suitably reflective for forming

a mirror MOT.

A surface profilometer, commonly known as an alpha step machine, is quite useful

for quickly measuring the height of the wires. Inevitably, a few substrates must be

spent optimizing the electroplating process for a specific wire height. Figures 4.5

(a) and (b) show an atom chip-based BEC interferometer that we fabricated by

electroplating on an AlN substrate2. The smallest features are five, 1 mm long wires

that are each 3 µm wide, 4 µm tall, and spaced less than 3 µm from one another.

2Wire pattern designed by T. Steinmetz and P. Hommelhoff at the MPQ/LMU in Munich. See
Chapter 10 for more details.



104

a) b)

Figure 4.5: An atom chip-based BEC interferometer fabricated by electroplating onto
an AlN substrate. a) The chip can produce a BEC and transport it to the center
region where b) five wires 3 µm wide, 4 µm tall, and spaced by 3 µm can split the
BEC in a double-well potential.

4.4 Trap fragmentation

In 2002, it was discovered that BECs in an elongated, cigar-shaped trap held within

tens of microns from the wire surface can fragment into “sausage-link” sections [93,

94, 95, 62, 96]. This is due to the roughness and meandering of the wire surface

which results in the deviation of the wire current away from linear propagation along

the wire. An errant magnetic field 103 to 104 times smaller than the trapping field

causes the BEC to fragment into local potential valleys. In the last two years, groups

determined that electroplating wires is much worse for making smooth wires and is the

main culprit behind this fragmentation problem [97, 91]. Thermal evaporation and

sputtering are superior for creating smooth wires and should be used in experiments

that confine BECs in tight traps near the wire surface.
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4.5 Conclusion

The techniques described in this paper provide a basic starting point for the design

and fabrication of atom chips. The precise control of atomic position enabled by

these chips is quite crucial to many areas of research. Moreover, these devices allow

an incredible miniaturization of experiments involving cold atoms. From constructing

atom optical elements to studies of BECs and cavity QED, atom chips are proving

invaluable to the fields of atomic physics, quantum optics, and quantum computation.
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Chapter 5

Cold Collisions and Cesium
Microtrap Losses

Magnetically trapped cesium has an exceptionally large susceptibility to collisional

losses, greatly hampering the ability to perform evaporative cooling long enough to

achieve a BEC. In fact, a cesium BEC was first formed only after the employment of

an optical dipole trap in 2003, eight years after the first dilute gas BECs in rubidium

and sodium [98].

When we tightly confine cesium in magnetic microtraps, we must pay attention to

its collisional loss mechanisms to ensure efficient trapping and loading. This chapter

is taken—with additional references and comments—from an unpublished set of notes

the author wrote in late 2002 which describe the collisional loss mechanisms we face

when trapping and cooling alkali atoms. Particular emphasis is paid to cesium and its

peculiarities. We also document an analysis of U-MOT and U-trap decay dynamics

in a cesium-based experiment performed in the fall of 2002. To the best of our

knowledge, this constitutes the first collisional rate measured with an atom chip, and

the measured value is consistent with those found from previous experiments from

other researchers using different experimental systems. These measurements greatly

aided our understanding of U-MOT performance and helped us to optimize trap

loading efficiencies.
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5.0.1 Collision Basics

Since the late 1980’s, the ability to trap, laser cool, and evaporatively cool alkali atoms

to the µK regime and below has enabled researchers to study collisional physics in this

hitherto unexplored regime [99, 46]. In turn, a better understanding of cold collisions

has led to many other achievements. A clear understanding of trap losses led to the

production of an atomic BEC by way of evaporative cooling, and collision studies

uncovered the Feshbach resonances of cesium which explain why a cesium BEC has

been so elusive until recently [100, 101, 98].

The method of partial waves is often used to describe collisions. The Hamiltonian

for a collision between two particles is

H = − ~2

2µR2

d

dR

(
R2 d

dR

)
+

~2l(l + 1)

2µR2
− Cn

Rn
, (5.1)

where µ is the reduced mass, the second term is the centrifugal energy for a partial

wave l, and the last term is the interaction potential [46]. Using the above Hamilto-

nian, the Schrödinger equation can be solved for each partial wave. The cross section

is

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl, (5.2)

where δl is the phase shift between incoming and outgoing wave functions. At the

low temperatures of cold collisions, only the s-wave, l = 0, partial wave contributes

to the cross section. In this case it is useful to define a scattering length,

a = − lim
k→0

δ0(k)

k
, (5.3)

and the cross section becomes σ = 8πa2 [46].

In the last few years, much interest has been paid to the variance of the scattering

length due to Feshbach resonances. These resonances occur when the scattering ex-

cited state is nearly degenerate with a bound molecular state with different quantum

numbers [102]. An external magnetic field can shift the energy levels of these states
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with respect to one another, which results in a tunable scattering length [103]. Ce-

sium has many low magnetic field Feshbach resonances, and these cause its scattering

length to vary dramatically (to even negative values) over a magnetic field range of

zero to a couple hundred Gauss [101, 104, 102, 105, 106]. Reference [107] provides a

thorough and up-to-date discussion of cesium Feshbach resonances. The tunability

of the scattering length has enabled research groups to manipulate the atomic inter-

actions in a BEC. Specifically, in tuning the interactions from repulsive to attractive,

C. Weiman’s group has seen the collapse and explosion of rubidium condensates.

Reference [108] and [109] provide information on these resonances in rubidium.

Manipulation of BECs via Feshbach resonances has led to the formation of molec-

ular BECs and BCS gases [110, 111]. Unfortunately, these Feshbach resonances are

the cause of the exceptionally high ground-state collisional rates in cesium. By un-

derstanding these resonances and exploiting them using external magnetic fields, re-

searchers have been able to suppress ground-state collisions, enabling them to achieve

Bose-Einstein condensation in cesium [112].

5.1 Cold collision processes

The terms cold collisions and ultra-cold collisions are often used interchangeably in

the literature. One can, however, distinguish between the two regimes [99]. Cold

collisions occur between 1 mK to 1 µK which is accessible with laser cooling, and

the ultra-cold regime begins below 1 µK and extends to the lowest temperatures

achievable by evaporation cooling, approximately 10 nK. In the ultra-cold regime,

research has focused on elastic collisions since these rates determine the efficiency of

evaporative cooling. This section will instead focus on trap losses in the cold-collision

regime. In general, trap losses may be categorized as follows: excited-state collisions,

diffusive loss, background collisions, ground-state collisions, and Majorana spin-flip

losses.
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Figure 5.1: Excited-state collisions. Figure adapted from References [99] and [46].

5.1.1 Excited-state collisions: MOT loss mechanisms

Excited-state collisions are the main decay channel for atoms trapped in a MOT

[46, 99]. These light-assisted collisions occur when two atoms collide while one atom

is in the P excited state, and in this case the potential is dominated by a −C3/R
3

dipole-dipole interaction as opposed to the shorter range −C6/R
6 van der Waals

ground-state potential. At the Condon point,

Rc =

(
C3

~|δ|

)1/3

, (5.4)

the quasimolecule is excited with the red-detuned, −δ, trapping light (see Figure 5.1).

The Condon point is typically 1000 to 2000 a0 for δ equal to a few γ.

Radiative escape and fine-structure changing collisions are two exoergic processes

that may lead to MOT losses. At low temperatures (less then 1 mK), the collision

time of the atoms is comparable to their decay lifetime. After excitation at the

Condon point the quasimolecule may decay while R < Rc, and the emitted photon is
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lower in energy by C3/R
3
c − C3/R

3. This radiative escape (RE) process:

A+ A+ ~ω → A∗2 → A+ A+ ~ω′, (5.5)

may release enough kinetic energy to expel the atoms from the MOT.

As the atoms near their closest approach, the asymptotic S1/2 + P3/2 state mixes

with the asymptotic S1/2 + P1/2 state. If the quasimolecular state does not decay

before this occurs, then atoms can exit the collision in the lower energy fine-structure

level:

A+ A+ ~ω → A∗(P3/2) + A→ A∗(P1/2) + A+ ∆EFS. (5.6)

This is known as a fine-structure changing collision (FCC), and the energy imparted

to the atoms is well over tens of Kelvin—more than enough to eject the atoms from

the trap.

Measurements of the excited-state loss rate in cesium vary from βes = 1 to 20×

10−11 cm3/s [113, 114, 115, 116, 117]. The first measurement of these collisions, made

by Weiman’s group, showed that βes rises from 2 × 10−12 cm3/s at 4 mW/cm2 of

laser power to 1 × 10−11 cm3/s at 12 mW/cm2. Below 4 mW/cm2 they observed a

sharp increase in the loss rate to ∼8×10−11 cm3/s at 2 mW/cm2. They attribute the

low intensity loss mechanism to hyperfine-changing collisions (HCC) between ground-

state state atoms: when the optical intensity is lowered, the atoms spend more time

in their ground states and these collisions release enough energy to allow the atoms to

overcome the lower trap depth (see Section 5.1.4). Saturation intensity for the F=4 to

F’=5 cycling transition in cesium is 1.09 mW/cm2, and typically the total power from

the six MOT beams is a least 12 mW/cm2—well into the FCC and RE loss regime.

Subsequent measurements by Libbrecht, Julienne, and Gomer’s groups find βes in

the range mentioned above, and Julienne’s group in Reference [114] measured the FS

rate to comprise 25% the total excite-state loss rate. Other alkali atoms generally

have a lower βes. For instance, the values of βes at 10 mW/cm2 for 85Rb and 87Rb

are 3.4 × 10−12 cm3/s and 1.0 × 10−12 cm3/s, respectively, and the 7Li loss rate is

∼1.0× 10−12 cm3/s [99].
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Optical shielding is a technique to suppress excited-state collisions. A blue-

detuned laser can prevent the colliding atoms from reaching the attractive potential

Condon point. See Reference [104] for a collision suppression technique based on

tuning cesium’s Feshbach resonances.

The earliest description of cold, excited-state collisions is the semi-classical GP-

model proposed by Gallagher and Pritchard in 1989. The JV-model—a more quantum

mechanical extension to the GP-model—was introduced by Julienne and Vigué two

years later [118, 119]. In both models, the collisional rate constant is factored into

two terms: a probability for quasimolecular excitation and survival of this excitation

to short distances; and the probability for a trap loss collision occurring given that

the atoms are in the quasimolecular state at close range. These models form the basis

for the interpretation of many experimental results as well as the basis of more recent

and sophisticated models. Please see References [99, 46] for details regarding the GP-

and JV-model and for current theoretical techniques.

5.1.2 MOT diffusion losses

Libbrecht’s group measured the MOT loss rate due to stochastic diffusion of atoms

out of the trap at high quadrupole field gradients [116]. The diffusive losses are

incorporated into the atom number rate equation by adding a −N/τdiff decay term.

Diffusive loss dominates for above gradients of 1 kG/cm, and this loss limits MOT

sizes to > 5 µm. Specifically, τdiff = 1 s for ∇B = 1.5 kG/cm and I/Isat = 1.5.

5.1.3 Background losses

Residual atoms in the vacuum chamber collide and expel trapped atoms, and these

losses affect both the steady-state number of atoms in a MOT and the decay rate of

a magnetostatic trap. In a vacuum typically used in trapping experiments, 10−9 Torr

or lower, these residual atoms mainly consist of the background vapor of alkali atoms

being trapped (in our case, cesium). In this regime, we can neglect the non-cesium
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atoms, and the MOT state equation becomes

dN/dt = R−N/τcs, (5.7)

where R is the capture rate and 1/τcs is the loss rate due to Cs-Cs background

collisions. The capture rate and the loss rate are

R = 1/2nV 2/3v4
c (m/2kT )3/2, (5.8)

1/τcs = nσcs(3kT/m)1/2, (5.9)

where V is the trapping volume, n is the cesium vapor density, vc is the capture

velocity, σcs is the cross section for trap ejection due to background collisions, and

T is the cesium vapor temperature [120]. Typical values for a cesium MOT are:

V = (0.1 cm)3; vc ∼ 15 m/s; and σcs = 2 × 10−13 cm2. Solving Equation 5.7 gives

N(t) = Nss(1− exp−t/τcs), and the steady state number of atoms, Nss, is independent

of the cesium vapor pressure

Nss = Rτcs = V 2/3/(
√

6σcs)v
4
c (m/2kT )2. (5.10)

One can measure the lifetime, τcs, by recording the ramp-up time of the MOT.

This, in turn, provides a good measurement of the cesium background pressure, Pcs,

using the following expression,

Pcs =

√
kTm

τcsσcs

√
3
. (5.11)

As long as Pcs is the largest contribution to the vacuum chamber pressure, than

the Pcs independence of Nss allows one to lower Pcs while maintaining a high MOT

atom number. This becomes useful if the atoms are transferred to a purely magnetic

trap in which the trap loss is dominated by the −N/τcs term. The loading time

must increase, however, and this might be prohibitive for experiments requiring the

collection of many data points.
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If the vacuum pressure is not dominated by Pcs, then Nss is no longer independent

of Pcs. An elevated vacuum pressure is usually caused by light gases unremoved by

the turbo and ion pumps during bake-out. Helium has a larger cross section with

cesium than the lighter H2 and is consequently the dominant concern [115]. The

He-Cs collisional rate equation is

1

N

dN

dt
= −n0βhe, (5.12)

where βhe is the loss rate in cm3s−1, and n0 is the He background density. Willems

et al. in Reference [115] calculated that βhe
∼= 2× 10−9 cm3s−1.

Adding a He-Cs collisional loss term to Equation 5.7, we find

dN/dt = R−N/τcs −N/τhe = R−N/τ ∗, (5.13)

where

τ ∗ =
τcsτhe

τcs + τhe

and τhe =
kT

Pheβhe

. (5.14)

The new steady-state atom number, N∗
ss = Rτ ∗, equals

N∗
ss =

V 2/3

√
6σcs

v4
c

( m

2kT

)2 1

1 + Pheβhe

Pcsσcs

√
m

3kT

. (5.15)

Figure 5.2 plots N∗
ss for V = (0.1 cm)3 and vc = 8 m/s. High helium background

pressures can be a serious limit to MST lifetime: helium not only adds to background

collisions but also increases the Pcs required to trap a large number of atoms in the

MOT. This is a major concern in making a BEC on a chip as discussed in Chapter 10.

5.1.4 Ground-state loss mechanisms

Magnetic traps cannot capture atoms in their lowest energy ground-state. Ernshaw’s

theorem tells us that it is impossible to create a magnetic field maximum in free space,

and consequently, atomic strong-field seeking states are impossible to trap magneto-

statically. However, it is possible to trap weak-field seeking atoms in a magnetic field
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Figure 5.2: N∗
ss as a function of the ratio between the He and Cs pressure. Plotted

for parameters similar to our experiment.

local minimum. For example, cesium may be trapped in the F=4, mF =4 or F=3,

mF =−3 Zeeman levels of its hyperfine ground-states. Because the F=3, mF =3 state

always has the lowest energy in a magnetic field, magnetically trapped states are

unstable. Magnetic dipole-dipole interactions between two colliding atoms cause spin

relaxation to smaller or untrapped |mF | states. Moreover, the F=4 state is susceptible

to magnetic dipole-dipole mediated hyperfine changing collisions (HCC) to the F=3

state. The energy released is large enough to expel the atoms from the MST. This

is particularly severe in the case of cesium: the 9.2 GHz hyperfine splitting transfers

0.22 K worth of energy to each atom.

For sodium and rubidium, the collisional loss rates due to HCC and spin relaxation

are in the 6 to 10×10−15 cm3s−1 range, and this is low enough to allow BEC formation

in magnetic traps even in the upper hyperfine state. Unfortunately, cesium’s ground-

state loss rate is a factor of 100 larger, and its hyperfine splitting is also much larger.

The collisional loss rate for cesium in the F=4, mF =4 ground-state is

β(T )4,4 = (1.5± 0.3± 0.3)× 10−11T−0.63 cm3s−1, (5.16)
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and the loss rate for F=3, mF =−3 is

β(T )3,−3 = 2.2× 10−12T−0.78 cm3s−1, (5.17)

where T is in µK [121, 100]. Using optical dipole traps, collisional loss rates of

β4,4 = (1.1± 0.1± 0.2)× 10−11cm3s−1 (5.18)

and

β3,4 = (1.5± 0.2± 0.3)× 10−12cm3s−1 (5.19)

are reported in Reference [122], the latter for Cs(F=3)-Cs(F=4) HCC collisions. For

the type of Ioffe trap used in Reference [100], the loss rate can be expressed as

β(B, T )3,−3 = (38± 12)× 10−12B2T−0.78 cm3s−1, (5.20)

where B, the bias field, is in mT and is related to the trap oscillation frequency by

ωxy ∝ B−1/2.

These high collisional loss rates have thwarted all attempts to attain BEC in

cesium with magnetic trapping. Optically trapping cesium in the F=3, mF =3 lowest

energy ground-state has recently led to a cesium BEC in the Innsbruck group of Rudy

Grimm and Christoph Nägerl [98]. Three-body collisions, in which two atoms form a

molecule and the third carries away excess energy, lead to the expulsion of all three

atoms and is an obstacle to effective evaporative cooling. Measurements indicate that

this rate is 1.5×10−25 cm6s−1 [100, 123]. Recent experiments have measured loss rates

due to heteronuclear loss rates in simultaneously trapped cesium and rubidium [124]

and cesium and lithium [122].

5.1.5 Majorana spin-flip losses

Quadrupole fields are easy to produce using a pair of coils with opposite currents,

and just a few amperes can generate a large enough field gradient to trap atoms in



116

a MOT. Unfortunately, the quadrupole trap is susceptible to a loss mechanism, and

consequently, there are no bound states for the atoms. A quadrupole trap works

while the atom’s spin adiabatically follows the field as the atom moves: the Larmor

frequency must be larger than the rate of change of the magnetic field experienced

by the atom,
gµ0r∇B

~
>
v

r
, (5.21)

where v is the velocity of the atom, and r is its distance from the trap center. If this

adiabatic condition fails, then the atom’s spin can no longer follow the field and may

spin-flip to an untrapped state. This occurs when the atom passes near the zero of the

quadrupole field. Here the magnetic field becomes so weak that the Larmor frequency

approaches zero while the atom’s velocity remains relatively constant. This Majorana

spin-flip loss mechanism prevents long-term trapping in a magnetic quadrupole trap.

Replacing the quadrupole field with an Ioffe-Pritchard trap, which has a non-zero

field minimum, solves this problem. For cesium, an Ioffe-Pritchard trap with a 1 G

field minimum is sufficient to prevent non-adiabatic spin-flips.

To estimate the Majorana spin-flip loss rate one needs to find the flux of atoms

through the surface defined by rb ∼ v~/gµ0∇B. For an only slightly elliptical trap,

the density of atoms is roughly 3N/4πl3, and the velocity of atoms as a function of

the cloud radius, l, is found by application of the virial theorem: mv2 = gµ0l∇B.

Dividing the trap volume by both the atom velocity and the above surface area, we

find the decay time to be τ = (m/3~)l2, which for cesium traps of radii 500 µm and

50 µm is 180 s and 1.8 s, respectively. During evaporative cooling, the slower atoms

spend more time near the center of the trap, and this causes the loss rate to quickly

increase [125].

5.2 Cesium microtrap losses

As mentioned in the introduction to this chapter, our main purpose for investigating

alkali trap loss mechanisms is to determine to what extent this limits our ability to
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trap cesium in a high gradient magnetic microtrap. The following sections discuss

cesium trap loss mechanisms as they relate to the U-MOT and U-trap used in our

experiments. A major goal is to explain and mitigate the large U-MOT loss rate we

measured in our microtrap experiment.

5.2.1 U-MOT losses

A major difficulty we face in these experiments is to efficiently load atoms from

the mirror MOT into tight microtrap waveguides and Ioffe traps (such as the tiny

Libbrecht-style traps). The use of a U-MOT is an intermediary step that allows

the precise transfer of the mirror MOT atoms into the U-trap. One could load the

U-trap directly from the mirror MOT, but this requires a precise shifting of the

MOT’s external quadrupole field to the position of the U-trap during the transfer.

By comparison, loading atoms from the mirror MOT to the U-MOT is more robust

due to the continual presence of the MOT light forces as the quadrupole fields are

exchanged. Once the atoms are in the U-MOT, sub-doppler cooling can be performed

and the U-trap turned on without much worry about spatial mode matching since

the U-wire magnetic field for the U-MOT and U-trap are one and the same.

Our current procedure utilizes a substrate-based U-trap to form a U-MOT in

the vicinity of the mirror MOT. The atoms are transferred to the initial U-MOT

with 100% efficiency, but they still need to be lowered much closer to the substrate

surface to obtain the magnetic field gradients sufficient to form a U-trap. We find

that lowering the U-MOT precipitates a rapid loss of atoms. The measurements and

analysis in this section were performed to obtain an understanding of this process

and collisional processes in microtraps in general. The knowledge gained enabled us

to design a more efficient loading procedure that is discussed in Chapter 2.

Figure 5.3 shows a typical U-MOT decay curve as the trap height decreases and

the trap compresses. We believe the atom loss is due to excited-state collisions. The

trap compression exacerbates the excited-state collisional loss, and the smaller trap

surface area decreases the loading rate from vapor atoms. This lower loading rate
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Figure 5.3: U-MOT decay upon compression. At t = 0, the microwire is turned on
and the bias field ramps to full value in t = 2 ms. The external quadrupole field
ramps off by t = 2 ms. ∇yB varies from 5 G/cm to 90 G/cm.

leads to a much smaller Nss, and the trap cannot recover to its original number of

steady-state atoms.

With regards to maximizing microtrap loading efficiency, we learned two lessons

from these measurements: 1) MOT light should be extinguished as early as possible to

prevent excited-state collisional losses exacerbated by a compressed trap. The cesium

atoms should be transfered to the U-trap at a distance higher from the surface to

minimize the required U-MOT compression. This is accomplished by using a U-wire

capable of supporting 2 A of current, allowing the capture into the U-trap of atoms

high above the substrate surface. 2) The mirror MOT should be as spatially mode-

matched to the U-MOT as possible to minimize MOT transfer time. The mirror MOT

in this experiment was formed using a quadrupole field produced by coils external to

the vacuum chamber. This technique was abandoned in subsequent experiments in

favor of using a macro U-MOT formed by a half-centimeter scale block of copper in

the shape of a U and positioned underneath the atom chip. This has the capability for

trapping atoms from vapor while providing a quadrupole profile much more similar to

that used by the on-chip U-MOT, thus maximizing the spatial mode matching during



119

Figure 5.4: U-trap coordinate system.

the transfer. Moreover, we no longer had to worry about accurately aligning the center

of the large, exterior mirror MOT coils to the ∼100 µm sized U-wire feature inside

the vacuum chamber: the macro U-MOT is pre-registered to the U-MOT microtrap

to provide nearly turn-key trap loading.

The following analysis may provide a model for future microtrap-based collisional

rate measurements. Though the quality of the data could be improved-upon in a

subsequent experiment—by using absorption instead of the less accurate fluorescence

imaging, for instance—we believe the conclusions and methodology remain valid.

To test the excited-state collision explanation for the observed U-MOT decay,

we measured the decay for different gradients in both tightly-confined directions,

ŷ and ẑ, and in the weakly-confined direction, x̂, for three different final trap heights,

yfinal = 1, 0.5, and 0.33 mm (see Figure 5.4)1. The gradients and trap minimum

in ŷ of the U-MOT are not independent of one another and the following are only

approximate expressions:

∇yBapprox =
2π

µ0

B2
bias

I

y0 approx =
µ0

2π

I

Bbias

. (5.22)

1yfinal = y0(t →∞) is the final resting position of the atoms in ŷ.
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Generally the gradients in both x̂, ŷ, and ẑ increase as the final trap height decreases

(see Figures A.3, A.4, and A.5 and Appendix A for non-approximate expressions

for the ŷ gradient, ∇yB, and position of the field minimum, y0). This gradient

increase compresses the trap and by accounting for this volume compression in the

trap population equation, we arrive at a description of the U-MOT trap loss. The

trap population equation is

dN

dt
= R(t)− N

τback

− βN2

V (t) + V0

. (5.23)

The R(t) term in Equation 5.23 describes the trap loading from background vapor.

The capture cross section decreases as the surface area of the trap decreases, and this

leads to a diminished loading rate. Comparing a 1-D model to experimental data,

References [126, 127] calculate how the capture rate depends on the trap gradient.

The capture rate, R, is proportional to the trap surface area, S, multiplied by the

fourth power of the capture velocity, vc [120]. The papers by Meschede’s group find

that v4
c varies as (∇B)−2/3, and because S is proportional to (∇B)−2, we find that

R ∝ (∇B)−8/3. The gradient varies as a function of time in our experiment, and this

adds a time dependance to the capture rate:

R(t) =
Ns

τback

∇yB(0)8/3

∇yB(t)8/3
, (5.24)

where at t = 0, R equals the MOT steady-state value of Nss/τback. This model is

applicable for an isotropic MOT, but the U-MOT is highly elongated in one direction:

we use the gradient in the tightly-confined ŷ direction in the above expression since

the gradient in x̂ is negligible. Neglecting the gradient in the weakly-confined x̂

direction does not significantly change the results of this section because the excited-

state collisional term in Equation 5.23 dominates during the time scales associated

with the U-MOT loss (see Figures 5.10 and 5.11).

The second term in Equation 5.23 accounts for the background collisions. The

background collision rate is equal to (0.3± 0.1 s)−1 for the experiments described in
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this section.

The excited-state collisional loss term—the last one in Equation 5.23—accounts

for the rapid atom loss that occurs as the U-MOT compresses. V (t) is the trap

volume as a function of time and β is the collisional loss rate. As mentioned ear-

lier, increasing the trap gradients shrinks the volume of the trap which exacerbates

this collisional loss. Experimentally we see that the U-MOT remains cigar-shaped

throughout compression and a slice perpendicular to the long axis of the U-MOT

remains roughly circular. Therefore, to obtain an expression for V (t) we may replace

the gradient in ẑ with that in ŷ, and write the volume as a function of the gradient in

the tightly-confined direction, ŷ, and the gradient in the weakly-confined direction,

x̂, as:

V ′(t) ∝ 1/(2π[∇yB(0, y(t), z(t), Bbias(t), I)]
2 · 2∇xB(0, y(t), z(t), Bbias(t), I)). (5.25)

The first three indices of B are for the centroid of the atoms as a function of time

where x(t) has been taken to equal zero. Note: the positions of the atoms, y(t) and

z(t), are not necessarily the position of the field minimum, y0 and z0, at time t, since

atoms track this minimum with a time delay. The last two indices are for the U-

trap’s bias field and wire current, respectively. Using ∇zB(0, y(t), z(t), Bbias(t), I) in

this expression instead of squaring the gradient in ŷ is problematic since this gradient

vanishes for certain values of y0 (see Figure A.5 in Appendix A and the corresponding

text). At t = 0, the experimentally measured volume is V ′
0
∼= 9× 10−5 cm3, and the

volume as a function of time is

V (t) =
V ′(t)V ′

0

V ′(0)
. (5.26)

The actual trap volume does not follow V (t) for large t because of heating. The

V0 constant in Equation 5.23 is an effective final volume added to account for this

heating.

The time dependence of the volume and capture rate arises from the variation of
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the magnetic field gradients that the atoms feel as they settle into the compressed

U-MOT as it is brought closer to the substrate surface. Qualitatively, as the bias

field ramps-up to Bbias in 2 to 3 ms, the trap field minimum shifts to a predetermined

position less than a millimeter above the substrate surface. From the mirror MOT

height of 3 to 4 mm, the atoms slide down the U-trap magnetic field potential until

they are damped by the trapping lasers to zero average velocity at the trap field

minimum, yfinal = y0. To model V (t) and R(t) we need to calculate ∇iB(t): we must

account for the time variation of the bias field as we evaluate the trap gradients at each

position of the atoms. Specifically, we must measure or calculate y(t), z(t), Bbias(t),

and ∇iB(0, y, z, Bbias, I) to find ∇iB(0, y(t), z(t), Bbias(t), I). The expressions for the

trap gradients as function of position, current, and bias field are listed in Appendix A.

At t = 0, the wire current is instantaneously turned on, and a computer sends

a 2 ms linear ramp to the power supply for the bias field coils. The bias coils have

significant inductance, and the power supply can only ramp the current with a 0.5

ms time constant. Convolving the power supply response with the linear ramp, we

find

Bbias(t) =
Bbias

τr
(t− τ + te−t/τ ), (5.27)

for t ≤ τr and

Bbias(t) = (Bbias −Bbias(τr))(t− τ + te−t/τ ) +Bbias(τr), (5.28)

for t > τr, where τr is the linear ramp time, Bbias is the target bias field value, and

τ is the power supply response time. Figure 5.5 shows Bbias(t) along with the ideal

bias ramp.

From trap images we can measure the position of the atoms above the substrate as

a function of time, y(t). Figure 5.6 shows several experimental y(t) curves for different

values of yfinal, I, and Bbias. Generally, smaller yfinal and larger final trap gradients

increase the rate at which the atoms sink to the bottom of the trap. If atoms exactly

followed the position of the trap field minimum y0(t) (see the Appendix A for the

calculation of y0(t) as a function of Bbias(t)), then we would expect y(t) to behave
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Figure 5.5: Bbias response to a τ = 2 ms linear current ramp. The power supply has
a τr = 0.5 ms power supply response time.

as shown in Figure 5.7 after accounting for the time variation of Bbias. This clearly

does not mimic the experimental data shown in Figure 5.6, and even though we use

the experimental y(t) data for finding V (t) and R(t), we would like to have a better

understanding of what determines y(t). A reasonable model for the force in the ŷ

direction on an atom at the center of the trap includes a potential from the magnetic

field gradient and a damping force due to the trapping lasers:

ÿ +
γ

m

1√
2πσ2

e−((y−y0(t))/
√

2σ)2 ẏ +
µb

m
∇yB(0, y, 0, Bbias(t), I) · sign(y − y0(t)) + g = 0,

(5.29)

where γ is the damping coefficient. The atoms experience a large magnetic field when

they are far from the trap minimum, y(t) 6= y0(t), and this field shifts the Zeeman

levels away from resonance. Combining this effect with the misalignment of the lasers

with respect to magnetic field when y(t) 6= y0(t) causes the strength of the damping

force to diminish. We model this by multiplying the damping term in Equation 5.29

by a Gaussian that turns-on the damping when the atoms are within a σ of y0(t).

Comparing Figures 5.8 and 5.9, we see that this model qualitatively reproduces the

experimental data for the same wire current and bias field. In Figure 5.9 the upper
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Figure 5.6: Experimental data of the U-MOT distance above substrate versus time
for several values of the current and bias field. Curve: a) yfinal = 0.33 mm; I = 2
A; Bbias = 12 G. b) yfinal = 0.33 mm; I = 0.5 A; Bbias = 3 G. c) yfinal = 0.5 mm;
I = 0.5 A; Bbias = 2 G. d) yfinal = 1 mm; I = 2 A; Bbias = 4 G. e) yfinal = 1 mm;
I = 0.5 A; Bbias = 1 G.

curve is y(t), the lower curve is the velocity in mm/s, σ = 0.1 mm, and γ = 5.1×10−23

kg/s (which was calculated using our trapping laser’s intensity and detuning).

We now have all the ingredients to solve Equation 5.23: y(t) comes from 4th order

rational fits to experimental data such as that displayed in Figure 5.6, Equations 5.27

and 5.28 express Bbias as a function of time, and analytical expressions for trap

gradients in x̂, ŷ, and ẑ for a given y(t), Bbias(t), and I are given in Appendix A.

The data for each U-MOT decay curve was taken for different combinations of I and

Bbias, which resulted in final trap gradients ranging from ∇yB = 10 to 360 G/cm and

final trap heights of yfinal = 0.33 mm to 1 mm.

We fit each decay curve (using the corresponding values for I and Bbias) with

Equation 5.23, allowing β and V0 to be free parameters. The bootstrap method is

used to obtain error bars for each data set [128]: We assume a model for the errors

and adjust its parameters so that the resulting reduced χ2’s for the fits equal one.
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Figure 5.7: y0 versus time as Bbias(t) ramps-up in τ = 2 ms and τr = 0.5 ms.
yfinal = 0.28 mm; I = 1 A; Bbias = 6 G.
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Figure 5.8: U-MOT distance above substrate versus time. The trap parameters are
yfinal = 0.33 mm; I = 0.5 A; Bbias = 3 G; ∇y,zB = 90 G/cm; ∇xB = 11 G/cm.
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Figure 5.9: Calculated distance and velocity of an atom at the U-MOT center. I = 0.5
A; Bbias = 3 G.

The error model contains three terms:

σ2(N) =

(
m · 100× 103 atoms

N

N0

)2

+

(
s ·

√
N(1 + 4(∆/γ)2 + 6I0/Isat)

γ/2 · 6I0/Isat · π/d2

)2

+ (g · 20× 103 atoms)2, (5.30)

where ∆ = 10 MHz is the detuning from resonance, γ = 5.2 MHz is the spontaneous

emission rate, and the saturation parameter, I0/Isat, equals two. The first term in

Equation 5.30 describes the mirror MOT atom number variation due to loading. The

next term accounts for the variation in detected atom number caused by shot noise,

and last term is the noise due to background light and electronic noise in the imaging

system. The parameters m, s, and g are free fit parameters, and are varied to satisfy

the equation χ2(σ)/ν = 1 for each data set, where ν is the number of data points

minus the number of fit parameters. Averaging the values obtained for each U-MOT

decay curve gives m = 1.4± 0.4, s = 0.5± 0.5, and g = 2.8± 0.9.

The U-MOT population equation, Equation 5.23, is in the form of a Riccati equa-

tion, f ′(x) = q(x)f(x)2 + p(x)f(x) + r(x), which cannot be solved in general [129].
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If we can justify neglecting the r(x) term, then this equation assumes the form of a

Bernoulli equation, f ′(x) = q(x)[f(x)]n + p(x)f(x), with n = 2. Bernoulli equations

are easily solved by using the substitution u(x) = [f(x)]1−n. This results in the linear

differential equation, u′(x) = −p(x)u(x)− q(x), which has the general solution

u(x) =
−
∫ x

0
µ(x)q(x)dx+ u0

µ(x)
, (5.31)

µ(x) = e
R x
0 p(x)dx. (5.32)

Neglecting the R(t) term in Equation 5.23 and using the above solution to the

Bernoulli equation, we find that

N(t) =
N0e

−t/τback

N0β
∫ t

0
e−t/τback

V (t)+V0
dt+ 1

, (5.33)

with N0 being the initial atom number. Is it possible to neglect the loading term?

We see from Figure 5.10 that in a low gradient trap R(t) is only significant in the

beginning of compression, and Figure 5.11 shows that R(t) is insignificant in a high

gradient trap. Qualitatively, these figures demonstrate that it is safe to disregard the

loading term. Moreover, using the population equation without the loading term and

with the errors determined by Equation 5.30, we still find reduced χ2’s very close to

unity for all of the data sets (see Figure 5.12).

We use the Levenberg-Marguardt method, supplying our own Jacobian, to fit the

nonlinear model to our U-MOT decay data sets. The derivatives of Equation 5.33

needed to form the Jacobian matrix are

dN

dβ
=

−N2
0 e
−t/τback

∫ t

0
e−t/τback

V (t)+V0
dt(

N0β
∫ t

0
e−t/τback

V (t)+V0
dt+ 1

)2 , (5.34)

dN

dV0

=
−N2

0βe
−t/τback

∫ t

0
e−t/τback

(V (t)+V0)2
dt(

N0β
∫ t

0
e−t/τback

V (t)+V0
dt+ 1

)2 . (5.35)

Qualitatively, the fits are remarkably successful throughout the large parameter
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Figure 5.10: The loading and collision terms in Equation 5.23 for a low-gradient trap
of: I = 0.5 A, Bbias = 1 G, and ∇yB = 10 G/cm.
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Figure 5.11: The loading and collision terms in Equation 5.23 for a high-gradient trap
of: I = 1.5 A, Bbias = 9 G, and ∇yB = 270 G/cm.
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range for U-MOT gradients and heights. Figure 5.13 shows typical U-MOT decay

curves with the fits superimposed. We expect the value of β to remain constant

for all the fits regardless of the current and bias field for the trap, and it should

also be consistent with previously measured values of cesium excited-state losses (see

Section 5.1.1). Indeed, we do not see much variation of β with respect to trap pa-

rameters (see Figure 5.14). There does appear to be some small increase of β with

gradient, but this is less than a factor of ten over the large variation of ∇yB. The fit

value for V0 does not seem to vary much for U-MOTs of different heights and final

gradients. Figure 5.15 shows these values for V0. The error bars take into account

the covariance of V0 with β. The fractional error in each fit value varies between 0.2

and 0.8 depending on the degree of the covariance between β and V0. The errors in

the fitted values originate from the errors in measured atom number as described in

Equation 5.30, and because the overall level of uncertainty in atom number varies

little between data sets, we expect the fractional errors in β and V0 to not vary by

more than a factor of ten between data sets. This relatively constant fractional error

explains the correlation between small fit values and small error bars for β and V0.

Moreover, there does not seem to be anything obvious about the raw data or curve
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Figure 5.13: Typical fits to U-MOT decay curves. 1) yfinal = 1 mm; I = 0.5 A;
Bbias = 1 G. 2) yfinal = 0.5 mm; I = 0.5 A; Bbias = 2 G. 3) yfinal = 0.33 mm; I = 2
A; Bbias = 12 G.

fits that would suggest an alternative explanation for this correlation.

The covariance matrices for each fit can be combined to produce an error estimate

on the mean of β and V0. The expressions for the weighed mean and combined

covariance matrix are

µ =

∑
µi/σ

2
i∑

1/σ2
i

, (5.36)

σ̄2
µ =

1∑
1/σ̄2

i

, (5.37)

where σ2
i is the error on each mean value and σ̄2

i is the covariance matrix for each

fit [130]. Figure 5.16 shows the confidence interval of 68.3%, and the weighted mean

values of the fit parameters with 1-σ errors are β = (4.1 ± 0.3) × 10−11 cm3s−1 and

V0 = (7.8 ± 0.7) × 10−8 cm3. If we repeat the fitting procedure with fixing β at the

above value, then we find that the weighted mean of V0 is a factor of seven lower and

the mean χ2 increases to 2.3.

Although the above double parameter fit is optimal for minimizing the χ2 for all

the various trap parameters, physically we expect β to be a fixed value. We repeated
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Figure 5.16: Covariance of β and V0 at a confidence interval of 68.3%. β = 4.1 ±
0.3× 10−11 cm3/s; V0 = 7.8± 0.7× 10−8 cm3.

the fitting procedure while setting β to a fixed value. We compiled V0 fits for several

values of β to find the fixed β that minimizes the the root mean square of χ2 − 1.

As shown in Figure 5.19, a minimum exists for a β value approximately equal to

12.5 × 10−11 cm3s−1: the optimal V0 is equal to 4.8 ± 0.2 × 10−8 cm3. Figure 5.17

shows the values of V0 as a function of trap gradient when β = 12.5× 10−11 cm3s−1.

The weighted mean and error of V0 is 4.8± 0.2 × 10−8 cm3. Figure 5.18 shows the

reduced χ2 for each fit. The degree to which the mean of these χ2’s deviates from

unity provides some measure of the quality of fit for this specific fixed β.

Our values for the excited-state loss rate are consistent with that of the previous

measurements described in Section 5.1.1. Moreover, the values for V0 are consistent

with what we measure from trap images. We feel that our model, Equations 5.23

and 5.29, does a reasonable job of explaining U-MOT loss and dynamics during

capture and compression from a mirror MOT.
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Figure 5.17: V0 with β fixed at 12.5 × 10−11 cm3s−1. The V0 weighted mean is
4.8± 0.2× 10−8 cm3.
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5.2.2 U-trap losses

To load the U-trap, sub-doppler cooling and optical pumping is performed subsequent

to the U-MOT loading and positioning. Once captured inside the U-trap, the atoms

need to be held long enough to enable transfer into an Ioffe trap which is usually

in the form of a Z-trap. This section examines the loss mechanisms that limit the

lifetime of a cesium U-trap.

5.2.2.1 Background collisions

The vacuum chamber used for these experiments typically has a pressure between

1 × 10−9 to 1 × 10−8 Torr. We are limited to this pressure due to the quantity and

sub-optimal vacuum quality of the atom chip materials in the chamber. The use of a

cesium oven without a quick shut-off valve precludes the extinction of cesium vapor

pressure during the post-MOT phase of the experiment. We believe the background

gases—dominated by the lighter elements such as helium—are in sufficient concen-

trations to put the vacuum quality of the chamber in the PHe/PCs ≈ 0.3 regime (see

Figure 5.2). The lifetime due to background gas collisions is on the order of 0.5 s for a
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pressure of 1×10−8 Torr and increases to around 5 s for pressures lower than 1×10−9

Torr. Techniques to increase the trap lifetime while maintaining large trapped atom

numbers are discussed in Chapter 10. In these experiments—performed in collabo-

ration with the group in Munich—a desorption-based dispenser of rubidium is used

instead of an oven as the alkali source and a UV light for chamber wall alkali desorp-

tion is used to transiently increase the loading rate of the MOT. The dispenser and

UV light can be shut-off quickly during the experiment, allowing an initial capture

of a large number of atoms while providing a low background pressure later in the

experiment to obtain long magnetic trap lifetimes.

5.2.2.2 Ground-state collisions and Majorana spin-flips

T = 120 µK T = 1 µK
τ4,4, τ3,−3 τ4,4, τ3,−3

r l τMaj n = 1× 106 n = 3× 104 n = 1× 106 n = 3× 104

22 µm 102 µm 0.91 s 0.41 s, 5.7 s 14 s, 191 s 0.02 s, 0.14 s 0.67 s, 4.57 s
44 µm 204 µm 3.6 s 3.3 s, 46 s 110 s, 1,531 s 0.16 s, 0.14 s 5.4 s, 37 s
60 µm 280 µm 6.9 s 8.6 s, 121 s 287 s, 4,017 s 0.42 s, 2.88 s 14.1 s, 96 s

Table 5.1: Lifetimes for Majorana (τMaj) and ground-state losses (τ4,4 and τ3,−3) in a
U-trap. The ground-state loss rates are applicable to the Z-trap as well.

From Equations 5.16 and 5.17, we calculate the ground-state collisional rates in

the U- and Z-trap for various trap volumes and initial atom numbers. Table 5.1 lists

these lifetimes for N = 1 × 106 and 3 × 104 atoms, for atom temperatures equal

to T = 120 and 1 µK, and for trap dimensions consistent with measurements from

U-trap images. The T = 1 µK [T = 120 µK] entries are for the case in which the

U-trap is loaded with [without] sub-Doppler cooled atoms. (Actually, sub-Doppler

cooling only provides ∼3 µK cesium atoms at best).

One can see that colder atoms exacerbate the collisional rate due to their higher

density in the trap. Of course, lower temperature provides a more efficient loading

into subsequent small phase-space traps. It is also apparent that trapping in the F=3,

mf=-3 state is preferable to the F=4, mf=4 state due to the absence of hyperfine

changing collisions. We performed an experiment in which the atoms were optically
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pumped into the F=4, mf=4 state (as opposed to the F=3, mf=-3 state) and noticed

a marked decrease in the trap lifetime. It seems possible to have a ground-state

collision-limited Ioffe trap of more than a few seconds with ∼ 1× 105 atoms at sub-

Doppler temperatures.

Our U-trap has high magnetic field gradients of more than 300 G/cm which may

increase the Majorana spin-flip rate beyond those of background or ground-state

collisions. The non-zero field minimum of the Z-trap prevents these spin-flips, but

this trap is typically loaded with an initial U-trap whose Majorana spin-flip rate must

be considered to maximize atom loading number and transfer efficiency. A U-trap is

highly elongated and this anisotropy slightly enhances the loss rate with respect to a

spherical trap of equal volume. We use the method of Section 5.1.5 to estimate the

spin-flip loss rate in a U-trap, now accounting for the trap’s anisotropy.

We begin calculating the loss rate by first defining two lengths associated with

the nonadiabatic crossover region:

rr =

√
v~

gµ0∇rB
, and rx =

√
v~

gµ0∇xB
. (5.38)

The coordinate notation follows that of Figure 5.4 with ŷ the strongly-confined trap

axis and x̂ the weakly-confined trap axis. Images of the trap confirm that the confined

cloud of atoms is approximately cylindrically symmetric about x̂, and we make the

approximation that the spatial extent and gradients of the trap in ŷ can be used for

those in r̂, where r2 = y2 + z2. The trap gradients, ∇rB = ∇yB and ∇xB, are listed

in Appendix A.

The virial theorem enables us to write

m(v2
r + v2

x) = gµ0(r∇Br + l∇Bx), (5.39)

where r and l are the radii of the trapped cloud along the r̂ and x̂, respectfully. The
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decay rate is

1/τMaj =
1

πr22l
·
√
v2

r + v2
x · 2πrrrx, (5.40)

1/τMaj =
~
rm

(
1

l

√
∇rB

∇xB
+

1

r

√
∇xB

∇rB

)
. (5.41)

Comparing the lifetimes of a spherical trap and a U-trap with the same volumes, we

find
τsph

τUtrap

=

(√
rl

2
√

3

)2/3
(

1

l

√
∇rB

∇xB
+

1

r

√
∇xB

∇rB

)
. (5.42)

For a U-trap 0.33 mm above the substrate,√
∇rB

∇xB
≈ 3.9, (5.43)

and
τsph

τUtrap

= 1.33. (5.44)

Majorana spin flip loses are slightly worse in a U-trap than in a spherical trap of

equal volume.

From trap images we find that typically 60 µm ≥ r ≥ 22 µm and 280 µm ≥ l ≥

102 µm. With these upper and lower bounds, we conclude that 6.9 s ≥ τMaj ≥ 0.91

s. The U-trap’s Majorana spin-flip loss rate is of the same order of magnitude as the

loss rate from ground-state collisions, and the U-trap should be converted to a Z-trap

as soon as possible after loading.

5.2.3 Elastic collisions

Evaporative cooling is an essential ingredient in achieving BEC. In its simplest form,

the trap height is lowered to allow the highest energy atoms to escape, and the

remaining atoms rethermalize to a lower temperature through elastic collisions. (More

commonly, an RF “knife” is employed [46].) In the case of a U-trap, the atoms are

compressed by increasing the trap gradients. This leads to heating and the trap height
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must be simultaneously increased to prevent the atoms from ”spilling over” the trap

edge [68].

For a two-dimensional linear trap the temperature scales as

T = α4/7 (5.45)

when the potential is compressed by α [68, 131]. In a U-trap, the trap depth increases

proportionally to the bias field, and the trap gradient increases with the square of the

bias field: Increasing the bias field from Bi
bias to Bf

bias = βBi
bias causes the gradients

at the center of the U-trap to increase by

∇Bf
bias

∇Bi
bias

= β2, and

α ∼ β2. (5.46)

The final temperature is T ∝ β8/7, and this increases only slightly faster than the trap

depth, which is proportional to µbβBi. For the F=4, mf=4 and the F=3, mf=−3

states, the bias field only needs to be 1.8 G and 2.4 G, respectively, to have a trap

depth larger than the typical initial temperature of 120 µK. Moreover, increasing the

trap gradients by a factor of 10 only increases the temperature by a factor of 1.4.

Sub-doppler cooling the atoms to much less than 120 µK, or starting with a trap bias

field larger than 3 G ensures no spillover atom loss.

5.2.4 Concluding remarks

As the above analyses suggest—and the experiments discussed in other chapters

confirm—it is possible to load cesium atoms into magnetic microtraps for a time

long enough to perform cavity QED experiments in spite of this atom’s unusually

high collisional loss rates. However, we do need to be careful in how we load these

traps. Using a macroscopic wire located below the substrate to capture the atoms at

the mirror MOT position with strong gradients allows us to be able to immediately

shut-off the trapping lasers, thereby minimizing excited-state collisions. After a cool-
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ing and optical pumping stage, quickly exchanging a U-trap with a Z-trap suppresses

Majorana spin flips. If the atoms are optically pumped to the F=3, mf = −3 level

with a temperature in the tens of µK, then we can trap several hundred thousand

cesium atoms for more than a second.

Magnetic microtraps provide a new experimental setting to measure collisional

losses as demonstrated in our measurement of the excited-state collisional loss rate

of cesium. Further studies of collisional properties may be performed with the use

of atoms confined in carefully engineered magnetic microtraps. For instance, tight

confinement of two atoms in a harmonic microtrap potential could be employed to

determine their scattering length. A spectroscopic measurement of the trap’s level

shifts would reveal the strength of their collisional interaction [132].
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Chapter 6

The Atom-Cavity Chip:
Combining microwire traps with
photonic bandgap cavities and
microdisks

This chapter is loosely based on paper [44]. The analyses have been updated and

extended. The use of microdisk cavities for our experiments is discussed and a section

comparing various cavity systems is included.

6.1 Introduction

The development of techniques necessary to manipulate single atoms and photons and

to control their interactions is an important addition to the toolboxes of nanotech-

nology and quantum control. An important advance would be the development of a

compact and integrable device to serve as a single atom detector [54, 23] or a repeater

and processing node in a quantum network [1]. The system comprised of a strongly in-

teracting atom and photon—cavity quantum electrodynamics (QED) [133, 134, 33]—

provides the basis for realizing such devices. Single atom detectors could play as

important a role in the burgeoning field of atom optics [135] as single photon detec-

tors do in conventional optics. The advent of Bose-Einstein condensates (BECs) of

neutral atoms and the production of degenerate fermionic condensates [111] further

highlights the importance of developing single atom read-out devices.
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Figure 6.1: Model system for neutral atom cavity QED. A cesium atom—often ap-
proximated by a two-level system—is localized inside a high finesse resonator shown
here as a Fabry-Perot cavity.

To achieve these goals in cavity QED, a neutral atom must be inside the mode

of a high-quality cavity with small mode volume: the atom-cavity system must be in

the strong coupling regime. Strong coupling requires the atom-cavity coupling, g0, to

be much larger than both the atomic dipole decay rate, γ⊥ = γ/2, and the decay rate

of the cavity field, κ (see Figure 6.1). Specifically, the saturation photon number,

m0 = γ2
⊥/2g

2
0, and the critical atom number, N0 = 2γ⊥κ/g

2
0, must both be much less

than unity. Achieving strong coupling in the lab becomes the challenge to design,

fabricate, and ultimately load atoms into cavities that simultaneously minimize mode

volume (g0 ∝ 1/
√
Vm) and maximize the Q (κ ≡ πc/(λQ)).

State-of-the-art neutral atom cavity QED experiments have achieved strong-

coupling parameters as small as [m0, N0] ≈ [10−4, 10−3] by either dropping [37], or

vertically tossing [38] a cold neutral atom between the mirrors of a high-finesse, low-

mode volume Fabry-Perot cavity. Intracavity atom trapping for durations up to 3 s

has been demonstrated by coupling a secondary optical beam into the Fabry-Perot

cavity to form a Far Off Resonance Trap (FORT) [40]. Recently, cavity cooling ef-

fects and a side-coupled optical dipole trap have increased this trapping time to ∼15

s [136, 137].

The intent of this chapter is to introduce a cavity QED system based on magne-

tostatic delivery of atoms to a photonic bandgap (PBG) or microdisk cavity, and to

discuss the ability of this system to detect single atoms. Figures 6.2 and 6.3 show scan-

ning electron microscope (SEM) images of a PBG and microdisk cavity, respectively.
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Figure 6.2: Images courtesy of O. Painter and A. Scherer’s groups at Caltech.

This experimental system—magnetostatic confinement of atoms inside the field mode

of these microcavities—raises the possibility of achieving an experimentally robust,

integrated, and scalable cavity QED apparatus. Mastering the integration of a single

atom and photons—quintessentially quantum components—presents an entirely new

prospect for technology: quantum computation and communication. Cavity QED

provides a rich experimental setting for quantum information processing (QIP), both

in the implementation of quantum logic gates and in the development of quantum

networks [34, 1]. While not necessary for single atom detection, confining the atom

in the Lamb-Dicke regime inside the cavity for long periods of time is an important

step towards accomplishing QIP using cavity QED. Moreover, quantum feedback ex-

periments with this system will provide an excellent setting to explore the real-time

actuation and measurement of an open quantum system.

Patterns of micron-sized wires can create magnetic field gradients and curva-

tures sufficiently large to accurately guide and trap atoms above the surface of

the substrate [3]. These magnetic microtrap devices—commonly known as atom

chips [51, 50]—can be fabricated using standard photolithography techniques [49, 8]

and have been successfully used not only to trap and waveguide neutral atoms, but

also to create and manipulate Bose-Einstein condensates [60, 61]. The proximity of

the atoms to the chip’s surface naturally facilitates the integration of magnetically

trapped atoms with on-chip cavities such as microdisks or photonic crystals. Chap-
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Figure 6.3: a) and b) SEM of AlGaAs microdisks of ∼9 µm diameter. c) SEM of
SiNx microdisk of diameter 8.4 µm. Image courtesy of O. Painter’s group at Caltech.
The diving board-like structures are supports for holding the fiber taper in place.

ters 3, 2, and 4 discuss atom chip design, fabrication, and operation in more detail,

but we include a short introduction in the following.

Atom chips exploit the interaction potential, V = −~µ · ~B, between an atom’s

magnetic moment, ~µ, and a wire’s magnetic field, ~B, to trap or guide weak-field

seeking states of a neutral atom. The simplest example of a magnetic microtrap

involves the combination of the field from a U-shaped wire with a homogenous bias

field, Bbias [2]. The bias field, parallel to the wire substrate and perpendicular to

the base of the U-wire, serves to cancel the curling field of the wire to form a two-

dimensional quadrupole trap for the weak-field seeking atoms. The atoms are confined

in the third dimension by the fields from the side wires of the U-trap, forming a cigar-

shaped trap above the wire surface. The position of the trap minimum above the wire

surface, r, and the gradient of the trap are completely determined by the magnitude
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Figure 6.4: Schematic of a photonic bandgap cavity. An array of holes of periodicity
commensurate with λ induces distributed Bragg reflection of in-plane light. Light is
confined perpendicular to the plane in an optically thin transparent membrane of high
index with respect to vacuum. A defect hole—typically of smaller diameter—supports
a localized cavity mode. Figure from Reference [1].

of Bbias and the current, I, in the U-wire,

r =
µ0

2π

I

Bbias

, ∇B =
2π

µ0

B2
bias

I
. (6.1)

For example, with a wire current of 1 A and a bias field of 10 G, the atoms are

trapped 200 µm above the surface in a field gradient—perpendicular to the base of

the U-wire—of 500 G/cm.

An atom is trapped in the Lamb-Dicke regime when its recoil energy is less than

the trap’s vibrational level spacing, ηLD = (Erecoil/Evib)
1/2 < 1, and this regime has

been achieved inside a Fabry-Perot resonator by using a FORT [40]. Ioffe traps—

which are non-susceptible to trap losses due to Majorana spin flips—may be formed

either by a similar Z-trap [2] or by using wires forming patterns of nested arcs [3].

Although this latter Ioffe trap is more complicated, it does allow the possibility of

magnetically trapping atoms three-dimensionally in the Lamb-Dicke regime inside a

photonic bandgap cavity coplanar with the wires (see Figure 6.5 (b)) [1].

Magnetic microwire traps and PBG cavities form a scalable architecture for a

quantum information processor using neutral atoms [1]. A chip would contain many

PBG cavities, each with its own independently controlled magnetic microtrap. The
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Figure 6.5: a) Simulation of the cavity mode in a hexagonal lattice photonic crystal.
The cavity mode is centered and well-localized about the defect hole. b) Sketch of a
PBG cavity with an integrated Ioffe microwire trap. The red dot shows the location
of the trapped atom within the defect hole. Given current microwire technology, the
wire pattern radius and wire thickness would need to be scaled-up by a factor of 10.
The PBG hole size is ∼ 100 nm, and the wire diameter and width would be ∼ 10
µm and ∼ 1 µm, respectively. c) Cross-section of PBG cavity and Ioffe trap through
a line intersecting the defect hole. The trapped atom—depicted as a red dot in the
center of panels (b) and (c)—would be located inside the cavity field maximum at
the center of the defect hole. Figures adapted from References [24] and [1].

atoms can be introduced to each cavity at will, and on-chip photonic waveguides

network the light between the cavities, built-in detectors, and laser sources. Figure 6.4

sketches the operating principle of a PBG cavity, and Figure 6.5 depicts the scheme

for integrating a microwire Ioffe trap with this resonator system.

Simple waveguides for the atoms can be formed from the Z-trap by extending

the base of the Z-wire, allowing the atoms to ballistically expand along the field

minimum above the elongated wire. Wires perpendicularly intersecting the elongated

base of the Z-wire can serve as independently controllable gates to aid in the local

confinement of the atoms in the waveguide. Chapter 2 discusses this waveguiding

technique in detail. Beam splitters and conveyor belts have been demonstrated using

similar techniques [51, 50].
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6.2 Cavity QED with microcavities

This section discusses the use of PBG and microdisk cavities for neutral atom cavity

QED with atom chips, and compares their properties to other resonator systems used

for cavity QED. Section 6.3 details our scheme for integrating these microcavities with

atom chip-based magnetic waveguides. The following Chapter 7 discusses a similar

experimental system that utilizes a fiber-gap Fabry-Perot cavity.

6.2.1 Photonic bandgap cavities

Two-dimensional photonic bandgap (PBG) cavities—perforated semiconductor struc-

tures that confine light through the dual action of distributed Bragg reflection and

internal reflection—are in many respects ideal for cavity QED [24]. Their small mode

volume and modest quality factors open the near-term possibility of achieving ex-

tremely small strong coupling parameters: [m0, N0] = [10−8, 10−4]. As inherently

stable, flat, monolithic structures, PBG cavities do not need the support structure

for active stabilization that Fabry-Perot cavities require. Moreover, their compact-

ness and compatibility with fiber optics-based input and output couplers allow one

to envision an array of PBG cavities, atom microtraps, input/output couplers, and

other processing devices all on the same integrated chip for the formation of a node

of a quantum network. Reference [138] presents simulations of the fiber taper-to-

cavity photonic crystal coupling and references [139, 140, 141] describe experimental

demonstrations. This work is done in close collaboration with Oskar Painter’s group

at Caltech, which has developed the PBG cavity design and fabrication as well as the

system for fiber taper coupling.

We plan to use PBG cavities of the graded defect design discussed in reference [142]

and demonstrated in references [143, 144]. These consist of a rectangular lattice of

air holes in an optically thin, high refractive index slab waveguide. The holes grad-

ually decrease in diameter towards the center, forming the cavity. Experimental

measurements of such cavities fabricated in silicon membranes (see Figure 6.6 (a))

and operating at λ ∼ 1.6 µm possess Q’s as high as 40,000 with modal volumes of
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Vm ∼ 0.9 cubic wavelengths (λ/n)3 [144]. Scaling the system down to an operat-

ing wavelength suitable for a cesium transition (852 nm), the central hole diameter

is ∼100 nm and the membrane thickness is ∼170 nm. For the Q and Vm values

mentioned above and taking λ = 852 nm and n = 3.4, the atom-cavity coupling at

the center of the cavity can be as high as g0 = 2π · 16 GHz while the decoherence

rates are [κ, γ⊥]/2π = [4.4 GHz, 2.6 MHz]. This gives strong coupling parameters of

[m0, N0] = [1.3× 10−8, 8.8× 10−5], which are much smaller than those achieved in re-

cent experiments using Fabry-Perot cavities, [m0, N0] = [2.8× 10−4, 6.1× 10−3] [37].

For experiments with single neutral atoms, the PBG cavities need to be fabricated

out of membranes transparent in the near infrared (≤ 900 nm). This precludes the

use of silicon or InP that have been used previously. The wavelength of the D2

transition of cesium—our atom of choice for trapping experiments—is 852 nm, and

we are investigating the suitability of both AlGaAs and SiNx as PBG substrates at

this wavelength. The AlxGaAs1−x, with x ≈ 0.3, is more desirable due to its higher

index of refraction (n = 3.4) compared to SiNx’s 2 ≤ n ≤ 2.3. AlGaAs microdisks

tested at the 1.4 µm band have yielded Q’s as high as 3.6×105 [145], but unfortunately,

high Q operation at 852 nm has proven more difficult. The material we have used

so far has been too absorptive at 852 nm, greatly suppressing what should have been

an equally high cavity Q. We have not been able to fine-tune the Al percentage and

quality of the AlGaAs substrates to eliminate this absorption problem. Part of the

difficulty is due to the fact that this material is not grown by us, several months

to procure each batch, and is quite expensive. Obtaining and verifying a target Al

percentage is therefore difficult.

SiNx, though possessing a smaller n, is perhaps a much more promising substrate

material for the PBG cavities. Substrates of usable quality can be grown in-house, and

higher quality samples are inexpensive to purchase and can be obtained with short

lead-times. Moreover, PBG and microdisk fabrication in SiNx is simpler because SiNx

can be etched directly with a mask formed from e-beam resist whereas AlGaAs needs a

harder mask. This requires an additional step to grow and etch a secondary, sacrificial

mask between the e-beam resist and the AlGaAs. Experiments in Oskar Painter’s
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Figure 6.6: (a) SEM image of a photonic bandgap cavity and waveguide (WG) fabri-
cated in silicon. (b) Schematic of the fiber taper coupler. (c) Finite-difference time-
domain calculated electric field amplitude of the cavity mode taken in the center of
the membrane. (d) SEM image of an optical fiber taper aligned above a photonic
crystal waveguide. Figure from Reference [44].

group have demonstrated Q’s as high as 3× 106 at 852 nm in SiNx microdisks, which

leads us to believe that high Q’s might be obtainable in SiNx PBG cavities as well.

The cavity is coupled to a photonic crystal waveguide, which in turn is evanes-

cently coupled to an optical fiber taper. By positioning the fiber taper—whose min-

imum diameter is on the order of a micron—along the axis and in the near field of

the photonic crystal waveguide, highly efficient (greater than 97%) fiber coupling into

and out of the photonic crystal waveguide can be achieved [139] (see Figures 6.6 [b]

and [d]). Light coupled into the photonic crystal waveguide is reflected by the PBG

cavity and recollected in the backward propagating fiber taper mode. Coupling and

recollection efficiencies of 44% have been achieved (see Figure 6.7) [141].

Figure 6.6 (a) shows the boundary between the waveguide and the cavity: the

top four rows of holes are the end of the waveguide, which is formed in a similar

fashion to the cavity, except that the holes are graded in only the lateral dimension.

This boundary is also depicted in Figure 6.7 (b). This design maximizes the mode

matching between the waveguide and the cavity modes [138]. The waveguide may be
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Figure 6.7: (a) Schematic of the fiber taper coupling system. (b) Simulation of the
photonic crystal waveguide to cavity interface. Note that the field maximum in this
simulation is in the material—not the holes. A mode with the maximum in the hole
will be used for our neutral atom experiments. Figure courtesy of O. Painter’s group
at Caltech.

bent to allow atom insertion access into the cavity unencumbered by the fiber.

6.2.2 Microdisks

The microdisk cavity—akin to microsphere resonators, but two-dimensional—support

whispering gallery modes around its rim [146, 145]. The cavity mode has an evanes-

cent tail that extends a fraction of a wavelength into the vacuum. Single atoms

positioned outside the disk’s rim can couple to this evanescent tail. Microdisks are

easier to fabricate than PBG cavities and possess much higher Q’s at the expense of

a factor of ∼10 increase in mode volume. We have made microdisks out of materials

suitable for operation at 852 nm (AlGaAs and SiNx), and used them for fabrication

and quality factor diagnostics. Figure 6.3 is an SEM image of typical microdisks

fabricated by O. Painter’s group [145]. Recently, 8.4 µm diameter microdisks in SiNx

have been fabricated. At λ = 852 nm, these microdisks have a Q = 3 × 106 and a

mode volume of Vm = 12(λ/n)3, with n = 2.0. Since the maximum of the cavity field

is in the dielectric, the resulting g0 is reduced by a factor of ∼3 at the position of
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Figure 6.8: Schematic of the fiber taper-to-microdisk coupling scheme. Figure drawn
approximately to scale. Courtesy of O. Painter’s group.

Figure 6.9: Fiber taper coupled to a 9 µm diameter AlGaAs microdisk cavity. The
pink regions reveal the undercut material, and the black shadows demarcate the
plateau regions.

an atom assumed to be at the edge of the disk. Nevertheless, strong coupling can be

achieved with [g0, κ,m0, N0] = [1.5 GHz, 180 MHz, 1.5× 10−6, 1.3× 10−4].

As these microdisks are also suitable for our cavity QED experiments with mag-

netically guided cesium atoms, we will be using them in our first atom-cavity chip

experiments. We use a fiber taper to couple light into and out of the microdisk

resonator’s whispering gallery mode. Figure 6.8 depicts the coupling scheme. Cold

atoms will be magnetically guided to the edge of the disk opposite the fiber taper.

An image of a fiber taper coupled to a 9 µm diameter microdisk is shown in Fig-

ure 6.9. The microdisks are fabricated on a plateau to prevent the fiber taper from

touching—and coupling to—the bulk material. Coupling efficiencies of ≥ 97% have

been demonstrated in both microdisks and microtoroids with this technique.
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6.2.3 Comparison to other cavity systems

The table in this section compiles cavity QED parameters for various cavity QED

resonator systems.1 The first five entries are resonator systems employed by other

researchers, and the last three are resonators that are featured in this thesis. We have

included microwave and circuit QED to provide an interesting comparison. Detection

of vacuum Rabi splitting in quantum dot-based systems has recently been reported,

and we refer the reader to References [147, 148, 149] for more information.

For all but the microwave, circuit QED, and fiber-gap Fabry-Perot systems, the

g0 and Q is quoted assuming the operating wavelength of λ = 852 nm and cesium’s

D2 transition dipole moment (µ = 2.686× 10−29 C m). In this table, g0 is defined as

half the single-photon Rabi frequency and accounts for the fact that the atom might

not be located in the maximum of the cavity’s electric field:

~g0 = ~µ · ~E = ξµ

√
~ω

2e0Vm

= ξγ⊥

√
3cλ2

4πγ⊥Vm

, (6.2)

where ξ ≤ 1 accounts for the atom’s position. The mode volume is

Vm ≡
∫ ∫ ∫

ε(~r)| ~E(~r)|2d3~r

max[ε(~r)| ~E(~r)|2]
, (6.3)

where ε(~r) is the cavity’s spatially-dependant dielectric function. The fiber-gap Fabry-

Perot entries are based-on the D2 line of 87Rb (λ = 780 nm), which is the atom used in

our experiment reported in Chapter 7. For this transition in 87Rb, the dipole moment

is only 5.7% smaller than cesium’s, and the g0’s listed in Table 6.1 have been adjusted

accordingly. The microwave and circuit QED systems use Rydberg atoms [150] and

Cooper pair boxes [151, 152], respectively. The atomic decay rate for the microwave

cavity system is γ/2π = 5.3 Hz. Experimentally, the Cooper pair box decay rate is

γ/2π = 0.7 MHz [152], but is projected to be less than γ/2π = 0.08 MHz [151].

The table lists the Q’s for each system, though for the two Fabry-Perot systems—

1Cavity QED is an exciting, and therefore, rapidly advancing field. In the formation of Table 6.1,
the author has attempted to compile a fair and up-to-date snapshot of this field. Please excuse any
omissions and inaccuracies—none were intentional.
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one using macroscopic mirrors and the other with glued films on the tips of fiber

optics—cavity finesse, F , is quoted as this is a more common measure. For conver-

sions:

κ =
πc

λQ
, F =

πc

2Lκ
, F =

λQ

2L
. (6.4)

The last two columns of the table list the coupling to dissipation ratio, g0/max[κ, γ⊥],

and the “rate of optical information per atom,” I = g2
0/κ [134, 153, 154]. The former

is a measure of the number of Rabi flops the system can undergo, and the latter is an

indicator of the amount of information that can be gleaned about some aspect of the

atom-cavity dynamics. Note that the coupling to dissipation ratio for the microwave

case is limited not by κ or γ⊥, but rather by the limited transit time of the Rydberg

atom through the superconducting microwave cavity (ttr ∼ 100 µs). In all other cases,

atoms can be trapped inside the resonator mode longer than 1/max[κ, γ⊥]

An attempt has been made to list the current experimental state-of-the-art along

with projected limits of each system. This is done explicitly to remove any confusion

regarding the fundamental capabilities of each cavity design. A similar table found in

Spillane et al. [57] denoted the PBG cavity experimental result [44, 144] as a theoret-

ical upper bound for this resonator system’s potential for cavity QED experiments.

Comparisons between the PBG and the microtoroid are best made on an equal basis

as is attempted in Table 6.1. Contrary to the conclusions in Spillane et al., current

theoretical projections indicate that PBG cavities can attain smaller critical photon

and atom numbers, a higher coherent-to-dissipation ratio, and a greater information

rate. With respect to experiments in the near term, PBG cavities in silicon have

slightly better atom-cavity coupling characteristics. Of course, this assumes that the

fabrication of PBG cavities in 852 nm transparent materials will not degrade their

performance, and this is under current investigation.

With regard to neutral atom cavity QED, PBG cavities have the advantage over

other microcavites (i.e. microdisks [145, 56], microtoroids [57], microspheres [20,

155, 156, 55]) in that the field maximum of the cavity mode can be located in the

vacuum rather than inside the dielectric material (ξ = 1). Moreover, they are much
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more two-dimensional which aids in large-scale integration. Cavity QED experiments

using these microcavities will all have to contend with the Casimir-Polder potential

since the atoms will be placed within a fraction of an optical wavelength from the

dielectric. In comparison to these microcavites and Fabry-Perot resonators [156, 157],

the PBG cavity’s mode volume is significantly smaller—less than a cubic wavelength–

which results in a much larger g0. Although the PBG cavity’s Q is not currently

as large as the other optical resonators, experiments in silicon have produced PBG

cavity Q’s of 4 × 104 [144] and 6 × 105 [158] which allow g0 to be larger than κ.

Theoretical predictions indicate that Q’s as high as 2.2 × 107 might be achievable

by using a double-heterostructure of photonic crystals, leading to unmatched atom-

cavity coupling parameters.

Note that the g0 quoted in reference [144] and listed as Painter Group in Table 6.1

is lower than one would expect from the quoted mode volume, Vm. This is due to the

fact that this particular cavity was designed for a field maximum at the edge of the

central hole, not in the center, and this results in an ξ = 0.4. PBG cavities used for

our cavity QED experiments will have the mode maximum in the central hole.

The experimental state-of-the art for SiNx microdisks—which operate at 852

nm with n = 2.0—achieve critical atom and photon numbers of [m0, N0] =

[1.6× 10−6, 1.3× 10−4] with n = 2.0 and a diameter of 8.4 µm. These cavities are

projected to reach [m0, N0] = [1.0× 10−7, 2.6× 10−7] in the future by refining the

fabrication process, decreasing the diameter, and using n = 2.3 material. These val-

ues account for ξ ∼ 0.33, corresponding to an atom positioned at the edge of the

disk 2. Since the normalized field maximum outside the disk scales roughly as 1/r

and the mode volume as r−4/3, g0 ∝ r−5/3 is the scaling of the coupling as a function

disk radius. Radiation losses do not pose as stringent a limit on the diameter—and

hence mode-volume—of the microdisk as for the microtoroid. For instance in SiNx,

radiation-limited loss affects the Q only below 6 µm at 852 nm. Consequently, the

mode volume of the microdisk can be roughly a factor of 10 smaller than that of the

2The atom should not actually be placed on the edge of the disk, but this forms a reasonable
reference point that is consistent with previous microsphere treatments.
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miroctoroids. This largely compensates for the lower Q of the microdisk: the pro-

jectedm0 and coupling to dissipation ratio are comparable to those of the microtoroid,

though the N0 and I are a factor of 10 worse.

6.3 Experimental proposal

As a first generation experiment, we would like to bring a trapped cloud of cold

neutral atoms—cesium in our case—into contact with a PBG or microdisk cavity,

simultaneously demonstrating the integration of a microfabricated cavity with an

atom chip and the strong coupling of a neutral atom to a microcavity. Standard

laser cooling and trapping techniques [46] are used to load cold atoms into the mag-

netic microtraps and waveguides. Typically, atoms are collected in a variant of the

magneto-optical trap (MOT) that uses the atom chip surface as a mirror to form four

of the six required laser cooling beams [2]. This mirror MOT and subsequent sub-

doppler cooling allows the collection of 106, ∼10 µK atoms a few millimeters above

the chip’s surface. Conveniently, the quadrupole field from the U-trap is in the same

orientation as the magnetic field required to form a mirror MOT. The atoms can be

transfered to the U-trap by replacing the mirror MOT’s quadrupole field with that

of the U-trap while maintaining the cooling lasers in the same configuration. This

creates a MOT using the microwire magnetic field—a U-MOT—which automatically

spatially mode-matches the atoms to the U-trap once the cooling lasers are extin-

guished. Sub-doppler cooling and optical pumping stages are added as well. The

mirror MOT employed in our lab is actually a macro U-MOT that can trap atoms di-

rectly from vapor. It uses a large copper U-shaped block carrying 20 to 30 A located

underneath the atom chip [64] and eliminates the need for bulky coils external to

the chamber, while ensuring a smooth, spatially mode-matched atom transfer to the

smaller, magnetostatic U-traps on the atom chip surface. Chapters 2 and 3 contain

more technical details regarding our atom chip trapping system.

Figure 6.10 is a rough schematic of the atom-cavity chip experiment. The chip

is divided into two regions, one for laser trapping and cooling of the atoms in a U-
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Table 6.1: Comparison of cavity designs. See text for details and citations.
[g0, κ]/2π g0 I ≡ g2

0/κ

Cavity design (MHz) Q m0 N0 max[κ, γ⊥] (Mbits/s)

Fabry-Perot
experimental [110, 14.2] F=4.8×105 2.8×10−4 6.1×10−3 7.8 5.4×103

projected [770, 21.7] F=7.9×106 5.7×10−6 1.9×10−4 36 1.7×105

Microsphere
experimental [24, 3.3] 5.3×107 5.3×10−3 3.0×10−2 7.2 1.1×103

projected:
V minimized [750, 7900] 1.4×104 6.1×10−6 7.3×10−1 0.01 4.5×101

Q maximized [280, 0.048] 2.4×1010 4.3×10−5 3.1×10−6 107 1.1×107

Microtoroid
experimental [86, 1.4] 1.2×108 4.6×10−4 1.0×10−3 33 3.3×104

projected:
near term [450, 1.8] 1.0×108 1.7×10−5 4.5×10−5 173 7.3×105

V minimized [700, 18.8] 9.3×106 6.0×10−6 2.0×10−4 37 1.6×105

Q maximized [430, 0.007] 2.5×1010 2.0×10−5 2.0×10−7 165 1.6×108

Microwave
experimental [0.024,0.00017] 3×108 3.3×10−6 2.5×10−8 3 2×107

Circuit QED
experimental [5.8, 0.8] ∼ 104 7.3×10−3 3.3×10−2 7.7 2.6×102

projected [50, 0.6] ∼ 104 6×10−5 1×10−6 83 3×104

Cavity designs featured in this thesis
Fiber-Gap

Fabry-Perot
experimental [186, 2650] F=1.1×103 1.0×10−4 4.2×10−1 0.07 7.8×101

projected [423, 500] F=1×104 1.9×10−5 1.5×10−2 0.8 2.2×103

Microdisk
experimental:
semiconductor [8600, 1200] 1.5×105 4.5×10−8 8.1×10−5 7.3 3.9×105

SiNx [1500, 58.7] 3×106 1.5×10−6 1.3×10−4 26 2.5×105

projected:
SiNx [2000, 1.8] 1×108 1.0×10−6 2.6×10−6 110 1.2×107

Photonic
Bandgap

experimental:
Painter Group [16000, 4400] 4.0×104 1.3×10−8 8.8×10−5 3.6 3.7×105

Noda Group [33400, 293] 6.0×105 3.0×10−9 1.4×10−6 114 2.4×107

projected [33400, 8] 2.2×107 3.0×10−9 3.7×10−8 4175 8.8×108
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Figure 6.10: Schematic of the atom-cavity chip experiment. The microwire U-traps
and atomic waveguides are shown as yellow wires. The light gold area centered about
the initial U-trap is the mirror for the macro U-MOT, and it’s size roughly represents
the footprint of the reflected trapping laser beams. The atoms are the red cylinders,
pictured as they are transported towards the PBG or microdisk cavity which is shown
as the white chip glued to the substrate’s surface. The grey line is the fiber taper
which is glued to the thin glass cover slip shown as the transparent white rectangle.

Figure 6.11: a) The atom-cavity chip to be used in the experiment. The fiber taper
is attached. b) The atom chip with microdisk cavity mounted to the chip assembly
block. The fiber taper is coupled to a microdisk cavity on the SiNx substrate.
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MOT and U-traps, and the other for the microcavity and its fiber taper coupler. The

two regions are connected by a microwire waveguide to transport the atoms from the

laser cooling region to the cavity. These regions must be separated by at least 1 cm

in order for the bulk of the cavity to not obstruct the 45◦ 1 cm2 U-MOT beams.

The thickness of both the microcavity’s substrate and the fiber taper mount is small

enough that it does not obstruct the horizontal U-MOT beam, allowing a simple,

straight Z-trap waveguide as depicted in Figure 6.10 and 6.11. For experiments using

taller, less compact cavities—such as the Fiber-Gap cavity discussed in Chapter 7—a

waveguide with a 90◦ bend is required to convey the atoms out of the horizontal

beam before being guided into the cavity mode. This can be accomplished either by

using a two-wire guide [74] or by rotating the atoms in a P-trap—similar to a U-trap

but with the base wire bent allowing a rotating bias field to change the orientation

of the atoms [159]—before transferring the atoms into a Z-trap waveguide aligned

perpendicular to the initial U-trap. The Z-trap waveguide design has the advantage

that the straightforward addition of a few coplanar wires can serve as gates and

loosely confine the atoms once they reach the cavity. We have demonstrated such a

P-trap waveguide scheme in our lab at Caltech and in the experiments in Munich.

Chapter 2 describes the operation and relative merits of these waveguides in detail.

In the cavity region, the atoms are suspended 400 to 500 µm above the surface of

the waveguide’s microwires. This allows enough room for the ∼300 µm thin micro-

cavity substrate and fiber taper mount to be placed in the gap between the atoms

and the microwires. Once the atoms are transported to a position above the PBG or

microdisk cavity, the current and bias field of the guide are adjusted to lower the cold

atom cloud into the mode of the cavity. A thermoelectric cooler (TEC) is located

underneath the atom chip to counteract heating due to the microwire waveguide and

aids in maintaining a specific cavity detuning from the frequency of the driving laser

and atomic resonance. We have not yet measured how well the microcavity is ther-

mally isolated from the microwire heating, but a significant time lag in thermalization

could aid in controlling the detuning during each experimental shot. We estimate a

cavity tunability of 20 GHz/◦C for the semiconductor substrates and 5 GHz/◦C for
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the SiNx. With TEC control of 10−2 ◦C, we should be able to achieve a 200 MHz

tuning resolution with the semiconductor substrates and 50 MHz with the SiNx. This

resolution is sufficient for the PBG cavity, since its linewidth is on the order of several

GHz. The ∼180 MHz loaded linewidth of the microdisk poses more of a difficulty

with regards to detuning control, and operation in the dispersive regime might be

necessary for initial experiments. For the PBG [microdisk] cavity, the vacuum Rabi

splitting spans ± 16 [1.5] GHz, which is well within the temperature tuning capability

of the TEC. For both the PBG and microdisk cavities an error signal could be derived

by probing on a greatly detuned cavity resonance and separating this beam from the

detection beam with a dichroic filter. However, this probe power needs to remain

under ∼1 µW to avoid melting the fiber taper. In the future, a tuning mechanism

other than temperature would be desirable. For instance, a piezoelectric material

incorporated with the substrate could tune through stress, or an electro-optical ma-

terial imbedded in the cavity mode could tune the resonance by changing the index of

refraction via DC electric fields. Chapter 3 contains more details regarding the laser

probe detuning, detection, and cavity detuning control and locking.

To create a compact structure, the fiber tapers are glued to the substrate in the

exact position necessary for coupling to the microcavity. The taper is formed by

pulling a fiber by micro-steppers in a hydrogen torch. It is crucial that the fiber be

introduced to the edge of the blue flame to prevent heated air currents from sucking

the taper into the center of the flame. To produce straight tapers, the fiber should be

held by the micro-steppers as close to the flame as possible. Transmission is monitored

while pulling the taper which provides a measure of the taper’s thickness. As it is

thinned, the fiber changes from single-mode to multimode and back to single mode. In

this last transition, the transmission begins to drop as the diameter becomes ≤ λ, and

the pulling should be halted at this point. The taper is quite fragile: The fiber taper

is bent in a U-shape which applies natural strain on the taper, keeping it straight and

rigid. Instead of a U-shaped fiber taper, we tried to glue straight-tensioned fiber tapers

to the atom chip but found they broke even under the slightest chip agitation. We now

glue the U-shaped fiber taper to the top of a thin (∼120 µm) glass coverslip and then
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glue this cover slip to the atom chip. The fiber taper is cantilevered off the coverslip

with glue joints located a few millimeters from the tapered section (see Figure 6.10).

This minimizes optical power loss at the joints: if placed too close to the tapered

region the glue joints act as fiber position-to-optical power transducers. We use a

low-shirink UV curable glue (Dymax, 50 W UV lamp, OP-66-LS or OP-4-20663) for

securing the fibers. The OP-4-20663 glue is more transparent and easy to manipulate

than the opaque OP-66-LS, though this latter glue seems to shrink less. The cure

occurs within 3 s at room temperature. Although the UV glue has relatively little

shrinkage, we found that the position of the fiber taper can move up to a micron in a

random direction during the curing. This is not as important for the PBG waveguide

coupling, but this movement does ruin the taper-to-microdisk coupling. By gluing

the U-shaped taper to a coverslip before gluing the cover slip to the atom chip, we

found that the taper can be accurately secured due to the added mass and rigidity

the coverslip provides. In a vacuum chamber, the taper is susceptible to breaking

during the initial roughing. This should be done as adiabatically as possible to avoid

a quick pressure change inducing “wind.” Both our group and that of Kimble/Vahala

have noticed that for pressures ≤ 1 Torr, heat can no longer be carried away from

the taper and mW’s of optical power melts the fiber taper. We have found that the

tapers can withstand at least 1 µW of power in the vacuum chamber and perhaps

slightly more. As discussed in the following section, optical powers no greater than a

few 100 nW are required for single atom detection.

The delivery scheme described above provides a non-deterministic source of weakly

trapped atoms to the cavity mode. For the PBG cavity, the field of the cavity mode is

concentrated in the central ∼10 holes (see Figure 6.6 (c)). For the specific PBG design

shown in Figure 6.6, the field has two maxima, one in each of the two central holes and

offset by 45 nm from each hole’s axis. We expect to transport a few times 105 atoms

in a cigar-shaped cloud of density 1011/cm3. The cross-sectional area of this cloud

parallel to the chip is larger than the 0.4 µm2 area of the PBG cavity that is occupied

by the field, and we estimate there is a ∼ 10% probability of an atom encountering

one of the central 10 holes per cloud interaction. With an experimental repetition
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Figure 6.12: The fiber taper-to-atom chip alignment set-up. A 3D translation stage
with a two-axis goniometer stage assists in cavity-taper coupling alignment. The
transmission is probed with a scanning New Focus Velocity laser, and the alignment
is monitored optically through a high-power objective.

once every ∼5 seconds—limited by the U-MOT replenishing time—we foresee the

accumulation of a significant number of events in a reasonable amount of time. As

discussed in Section 6.4.1 below, we expect to detect strong signals during single

atom transits through the PBG cavity’s central holes. If we assume a cesium cloud

temperature of 10 µK, then a cesium atom whose velocity is parallel to the axis, ẑ, of a

central hole will interact with the mode for a time duration of ∼10 µs. The microdisk

cavity has a mode volume ∼10 times larger than the PBG cavity, and because the

cavity diameter—typically < 10 µm—is smaller than the cloud extent, single atom

transits should be detected more frequently than in the PBG cavity experiment.

6.4 Single atom detectability using PBG cavities

To investigate the PBG cavity’s response to a strongly coupled atom falling through

a central hole, we solve the semi-classical optical bistability equation for a qualitative

understanding of the interaction and—using a two-level atom—the quantum master

equation to obtain a more quantitative description. Although neither of these treat-
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ments fully encompasses the complexity of the system, we presume that they are

sufficient for demonstrating the feasibility of the device for single atom detection. For

tractability, these calculations ignore the fact that g0 and the detunings are of the

same order or much larger than both the hyperfine ground-state and excited-state

splittings, which for cesium are 9.2 GHz and 151 to 251 MHz, respectively. In other

words, the atom-photon coupling is much stronger than the coupling between the

electron and nuclear spins. This is an unusual situation and requires a full quantum

calculation of the atom-PBG cavity interaction that includes the full cesium D2 mani-

fold of states. Kevin Birnbaum and Scott Parkins recently wrote a Matlab code (using

the Quantum Optics Toolbox by Sze Tan [160, 161]) to account for the full manifold

of states and the optical pumping from a linearly polarized probe beam. Details and

results of this calculation are presented in Kevin’s thesis [83]. The simulation was

run at weak driving—intracavity photon number much less than unity. Qualitatively,

the vacuum Rabi peaks persist, but appear at different detunings and with different

widths than expected from the two-level atom treatment. In addition, at least two

sharp transmission peaks emerge. These might be caused by quantum interference

phenomena from the field coupling to the multitude of atomic states [162]. The code

used for the simpler simulations presented in this chapter and Chapter 7 is included

in Appendix B, Sections B.1 and B.1.

The optical bistability equation is a semi-classical description of the transmission

of a cavity containing atoms [163],

y =
x[(

1 + 2
N0(1+(∆/γ⊥)2+y2)

)2

+ i
(

θ
κ
− 2∆

γ⊥N0(1+(∆/γ⊥)2+y2)

)2
] 1

2

. (6.5)

In the above equation, x is the input field, E/
√
m0, where E is the amplitude of the

driving field; y is the output field, α/
√
m0, where α is the intracavity coherent state

amplitude; ∆ is the atom-laser detuning; and θ is the cavity-laser detuning3. This

semi-classical equation is derived under the assumption that operators can be replaced

3∆ = ωa − ωl and θ = ωc − ωl.
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by their expectations (i.e. â → 〈â〉 = α, where α is a c-number) and joint operator

moments may be factored (i.e. 〈âσ̂†〉 → 〈â〉〈σ̂†〉) [25]. These approximations break

down for the PBG and microdisk cavity experiments since quantum fluctuations can

no longer be ignored when [m0, N0] << 1 for a single intracavity atom.

The solutions to the unconditional master equation paint a more accurate picture

of the atom-cavity system. Under the two-level atom, electric dipole, and rotating-

wave approximations, the equation for the density matrix, ρ, of the joint state of the

atom and cavity is as follows:

ρ̇ =
−i
~

[
Ĥ0, ρ

]
+ γ⊥(2σ̂ρσ̂† − σ̂†σ̂ρ− ρσ̂†σ̂)

+κ(2âρâ† − â†âρ− ρâ†â), (6.6)

Ĥ0 = ~∆σ̂†σ̂ + ~θâ†â+ i~E(â† − â) + Ĥint, (6.7)

Ĥint = i~g0ψ(r̂)
[
â†σ̂ − σ̂†â

]
. (6.8)

In this equation, σ̂ is the atomic lowering operator and â is the cavity field annihilation

operator. Along the axis of the central cavity hole, the mode function, ψ(z), closely

approximates a Gaussian of width ∼225 nm, centered about the midpoint of the ∼170

nm thick cavity membrane (the hole diameter is ∼ 100 nm). In ψρ, the field is roughly

azimuthally symmetric and decreases in magnitude towards the walls of the defect

hole in an approximately Gaussian fashion. The steady-state density operator, ρss,

as a function of various drive strengths, coupling strengths, and detunings is found

by solving equation 6.6 with ρ̇ss = 0. Operator expectations are 〈Ô〉 = Tr[ρssÔ].

The coupled (dressed) eigenstates of the atom-cavity are characterized by the

Jaynes-Cummings ladder as depicted in Figure 6.13. The dressed states at each

rung of the ladder are split by
√
n~g0, where n ≡ 〈â†â〉 is the number of photons

in the intracavity field. As n becomes large,
√
n+ 1/

√
n → 1, and the ladder rungs

become equally spaced by ~Ω, where Ω is the Rabi frequency. In this case, the system

exhibits phase bistability [164] and the system resembles that of a strongly-driven

free-space atom: a Mollow triplet is exhibited in fluorescence, and power broadening

in absorption. When n << 1 the atom-cavity system is in the linear, weak driving
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Figure 6.13: Jaynes-Cummings ladder of atom-cavity eigenstates for [∆, θ] = 0.

regime and only the lowest rung is driven. This latter case is depicted for the PBG

cavity in Figure 6.14 (b) and (c), black ♦ curve (though E should be much less than

one rather than 0.1 to truly represent this regime). The vacuum Rabi peaks are

separated by 2g0 and of width set by the mean of κ and γ⊥.

6.4.1 Single atom detection signal-to-noise

The remainder of this section is devoted to analyzing the master equation for various

drive powers and detunings. Our main purpose is to judge the feasibility of detecting

single atoms using PBG cavities, and a thorough study of the phenomena associated

with the Jaynes-Cummings Hamiltonian is beyond the scope of this chapter. For

more information on atom-cavity structure and dynamics, see References [67, 134]

and the various theses from H. J. Kimble’s group [165, 166, 153, 21, 22, 154]. Kevin

Birnbaum’s thesis contains information specific to a high-g0 cavity QED system [83].

The expected cavity output in photons per detector integration time, ∆t, and

photon detection efficiency, η, is4

N = 2κ∆tη〈â†â〉, (6.9)

4The energy decay rate of the cavity is 2κ. All mentions of g0, κ, and γ⊥ include the factor of
2π.
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with noise fluctuations of variance

(∆N)2 = 2κ∆tη(〈â†ââ†â〉 − 〈â†â〉2), (6.10)

For all the parameters considered here in the strong coupling regime, the intracav-

ity field is in not quite a coherent state, and the transmitted field varies from sub-

to super-Poissonian counting statistics as the intracavity field sweeps across a mean

intracavity photon number of ∼1. However, the field statistics are never far from Pois-

sonian, and for computational simplicity we assume a coherent field when calculating

shot noise: ∆N ≈ Nshot =
√
N .

We define the signal corresponding to an atom transit as

S = 2κη∆t(abs[〈â†â〉1 − 〈â†â〉0]), (6.11)

where 〈â†â〉i is the intracavity photon number in a (possibly detuned) cavity with

an intracavity atom (i = 1) and without an intracavity atom (i = 0). The noise

obscuring S is caused by shot noise on both of these detected cavity transmissions:

Snoise =
√

2κη∆t[〈â†â〉1 + 〈â†â〉0]. (6.12)

The signal-to-noise, S/N , for single atom detection is S/N ≡ S/Snoise.
5 The num-

ber of spontaneously emitted photons during an atom transit detection of time ∆t

is NSponE = γ∆t〈σ†σ〉6. Note that instead of photon counting, heterodyne detection

may be used, in which case expectations of â rather than â†â are the relevant quanti-

ties. The results of the simulations presented here are qualitatively similar for either

case, though the calculated S/N might be lower for heterodyne detection [153].

Figure 6.14 shows master equation simulations of the PBG cavity transmission as

a function of (a) atom detuning [θ = 0], (b) laser detuning [∆ = θ], and (c) cavity

5This expression is a lower bound on the S/N since for post-processed detection of the atom
transits we could average away the shot-noise from the empty cavity transmission and exclude
〈â†â〉0 from Equation 6.12. However, for real-time measurements—in quantum-limited feedback
experiments, for instance—〈â†â〉0 should be included.

6γ = 4πγ⊥
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Figure 6.14: PBG cavity transmission as a function of a) atom detuning [θ = 0], b)
laser detuning [∆ = θ], and c) cavity detuning [∆ = 0] for one intracavity atom and
[g0, κ]/2π = [16, 4.4] GHz. The drive, E (measured as the empty cavity intracavity
photon number on resonance) is E = 0.1 in the black ♦ curve, E = 1 in the blue
� curve, and E = 10 in the red ◦ curve. The green solid curve is the empty cavity
transmission. All curves are normalized to the empty cavity transmission at each
curve’s drive strength.

detuning [∆ = 0]. We assume cavity QED parameters of [g0, κ]/2π = [16, 4.4] GHz

for the PBG cavity (see Table 6.1). As the intracavity power is increased from weak

to strong driving (black ♦ to blue � to red ◦), the vacuum Rabi peaks—initially sepa-

rated by 2g0—fill-in towards zero detuning as higher rungs on the Jaynes-Cummings

ladder are excited. Figures 6.15 through 6.19 are slices of Figure 6.14 for various

detunings chosen to highlight different atom-cavity response regimes. Panels (a) plot

the transmission versus drive power which is measured in intracavity photon numbers

for a resonant and empty cavity. The red curve is the empty cavity transmission at

the given θ, the solid black curve is the solution to the semi-classical optical bistability

equation 6.5, and the black dots are the solutions to the master equation 6.6.

The semi-classical solution is added as both a guide to the eye and as an indicator

of the transition from linear to non-linear system response. The saturation photon

number designates this onset, 〈â†â〉1 = m0, in the semi-classical regime. The most
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striking aspect of the two solutions pictured in panels (a) is the “washing out” of the

bistability in the quantum treatment for this strongly-coupled, on-resonant single-

atom cavity system. In the single atom and low intracavity photon number regime,

the quantum fluctuations are non-neligible n ≈
√
n, invalidating the assumptions of

the semi-classical description. In loose terms, the quantum fluctuations are of the

same order of magnitude as the hysteresis loop, and in the steady-state behavior of

the system, bistability is averaged away. One should note that not all bistability

is washed-out in steady-state functions of the strongly-coupled QED system: one

can find detuned parameter regimes where amplitude bistability persists [32]; and

moreover, the Q-function of the strongly-coupled system at high drive powers (E � 1)

exhibits a bifurcation in phase [164].

With the cavity-laser detuning set to zero, Figures 6.15, 6.16, and 6.18—in which

θ = 0 but ∆/2π = [0, 9.2, 16] GHz, respectively—show that a deficit of photons

transmitted through the cavity—a “down-transit”—can be detected for a drive of a

few intracavity photons. The ∆/2π = 16 GHz detuning is chosen to probe the atom-

cavity eigenstate, and the θ = 0, ∆/2π = [0, 9.2] GHz detunings are chosen for their

ease in experimental implementation: the cesium hyperfine splitting is 9.2 GHz and

the laser can easily be locked to the lower hyperfine transitions, naturally providing

this detuning. Because we do not have good control over the cavity resonance, it is

much simpler to match the laser resonance with the cavity [θ = 0] and detune the

laser from the atom. Chapter 3 discusses these issues in more detail. Figures 6.17

and 6.19 plot transmission of the system with the atom and cavity on-resonance with

each other: laser detunings of 9 GHz and 16 GHz, respectively. In these detuning

regimes, an excess of transmitted photons—“up-transits”—are observed during the

presence of an intracavity atom.

Panels (b) and (c) of Figures 6.15 through 6.19 show the signal, S, and signal-to-

noise, S/N , respectively, that we expect from probing the PBG atom-cavity system

at these detunings and drive powers, and with a detection efficiency of η = 0.44

and integration time of ∆t = 1 µs. Table 6.2 summarizes the achievable S/N for

each detuning set. The “Maximum S/N” set of columns lists the maximum S/N
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obtained by optimizing over drive power. The highest S/N ’s are attained for θ =

0 and drive powers of ∼40 nW. For the θ 6= 0 case, the S/N ’s—though lower—

saturate at nearly a factor of ten higher drive powers. This could be quite useful

for ameliorating the typically stringent detector requirements for implementing shot

noise-limited detection (see Chapter 3). While these S/N ’s of ∼150 are encouraging,

the number of spontaneously emitted photons per 1 µs integration, NSponE/µs, at

these drive powers is not insignificant (though constitutes only ∼0.01% of S). This

is not terribly detrimental to our initial single-atom detection experiments since we

mainly want to know if the atom is coupled and the driving light at these large

detunings doubles as a repumping beam: brief signals are acceptable. However, for

future experiments we would like to have the atom magnetically trapped in the Lamb-

Dicke regime for long periods of time using an Ioffe trap. Both heating and optical

pumping to untrapped states due to the spontaneous emissions will limit the lifetime

of the magnetic trap, thereby reducing the coupling time of the atom-cavity system.

Calculations of the sort performed by K. Birnbaum and S. Parkins [83, 162] should be

investigated to understand the severity of the optical pumping, even for these large

probe detunings. The heating problem is more tractable. Each spontaneously emitted

photon has a probability—suppressed by the Lamb-Dicke parameter—to excite the

atom out of the trap’s ground state and into ever higher vibrational levels. One

needs to calculate the average NSponE—and average time—it takes for the atom’s

wavepacket to be lost either by being excited to an energy larger than the trap’s depth

or by being extended to such a width that the atom has a chance to encounter the wall

of the PBG cavity. The magnetic trap’s depth, oscillation frequencies, and Lamb-

Dicke parameter can be accurately known, ensuring the accuracy of this calculation.

The second set of columns, under the “NSponE/µs = 1” heading, lists the S/N for

drive powers that limit NSponE to be equal to unity during a ∆t = 1 µs integration

time. This demarcates the drive power below which spontaneous emission becomes

negligible. For drives of a few nW—roughly ten times lower than for the maximum

S/N case—the signal-to-noise is still significant for most detuning regimes. It may

be possible to find other detuning regimes that exhibit better S/N while minimizing



168

Figure 6.15: (a) The transmission of the PBG cavity as a function of drive strength—
measured in intracavity photon numbers for a resonant and empty cavity—calculated
from Equations 6.5 (black line) and 6.6 (black dots). The empty cavity transmission
is shown as a dashed red line. (b) The expected signal S as a function of drive
power—quoted as ~ω times the resonant, empty intracavity photon number—during
an atom transit with a ∆t = 1 µs integration time. Error bars correspond to Snoise.
(c) The expected signal-to-noise S/N in a ∆t = 1 µs integration time. For this plot,
[g0, κ]/2π = [16, 4.4] GHz and [∆, θ] = [0, 0].

NSponE.

6.4.2 Simulated atom transits and cavity induced force

Simulated photon counts during atom transits are shown in Figures 6.20 and 6.21.

We assume the atom moves with constant velocity, v = 2.5 cm/s, through the axis of

the cavity mode ψ(z), making a full transit of the Gaussian waist in 10 µs. In both

plots the drive strength is 2 intracavity photons. As the atom transverses the cavity,

the coupling g(t) = g0ψ(vt) also varies as a Gaussian, which modulates the output

photon flux. The mean photon count, N , and variance, (∆N)2, are found by solving

for ρss for each g(t) in time steps of ∆t = 1 µs, chosen to simulate a finite bandwidth

photodetector. Each point includes additional shot-noise selected randomly from a

normal distribution of standard deviation ∆N . The figures show that even with shot-
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Figure 6.16: Same as Figure 6.15 except [∆, θ]/2π = [9.2, 0] GHz.

Figure 6.17: Same as Figure 6.15 except [∆, θ]/2π = [9.2, 9.2] GHz.
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Figure 6.18: Same as Figure 6.15 except [∆, θ]/2π = [16, 0] GHz.

Figure 6.19: Same as Figure 6.15 except [∆, θ]/2π = [16, 16] GHz.
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Table 6.2: Comparison of S/N for various cavity detunings. For each cavity system
and detuning, the table’s columns are divided into two sections: the first lists the
cavity drive that maximizes S/N regardless of NSponE during a ∆t = 1 µs detection,
and the second lists the S/N for a cavity drive that limits the NSponE/µs to equal
unity. The drive is listed here as both the resonant, empty intracavity photon number
〈â†â〉r0 and the cavity input drive power P = 2κ~ω〈â†â〉r0 to facilitate comparisons
between panel (a) and panels (b) and (c) in Figures 6.15 through 6.19 and Figures 6.24
through 6.26. The “≥” symbols indicate that the maximum S/N is possibly outside
the range of drive powers accessible to this Fock basis-limited simulation.

Maximum S/N NSponE/µs = 1
Cavity [∆, θ]/2π (GHz) S/N [〈â†â〉r0, P(nW)] NSponE/µs S/N [〈â†â〉r0, P(nW)]
PBG [0, 0] 208 [3, 39] 11 98 [0.4, 5.2]

[9.2, 0] 198 [3, 39] 10 94 [0.4, 5.2]
[9.2, 9.2] ≥141 ≥[20, 258] 15 9.7 [0.2, 2.6]
[16, 0] 181 [3, 39] 9 87 [0.4, 5.2]
[16, 16] ≥97 ≥[40, 516] 13 26 [0.04, 0.5]

Microdisk [0, 0] 154 [15, 7.7] 12 65 [2, 1]
[1.5, 0] 149 [15, 7.7] 11 64 [2, 1]

[1.5, 1.5] ≥30 ≥[50, 25] 12 8 [0.04, 0.5]

noise, both up-transits (a) and down-transits (b) of single atoms through the axis of

the central PGB cavity hole are clearly detectable. Moreover, it seems possible to

detect atom transits that only experience 20% to 30% of g0. During an experiment, we

expect to detect a low background of signals from marginally coupled atoms—such as

those grazing the field extending from the surface of the PBG membrane or slipping

into holes away from the central region—punctuated by sharp pikes representing

atoms fully coupled to the field inside the central holes. It should be noted that

the mean photon numbers and noise in Figures 6.20 and 6.21 are not derived from

a quantum trajectory calculated from the conditional master equation [25], but are

simply calculated using ρss from the unconditional equation 6.6. This is acceptable

given the inherent limitations of the model as mentioned at the beginning of this

section.

The atom will experience a force,

〈~f〉 = −i~∇g(~r)〈â†σ̂ − âσ̂†〉, (6.13)

as it encounters the cavity mode. Figure 6.22 shows simulations of this force on
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Figure 6.20: Simulated photon counts due to atom transits through the axis of the
cavity’s central hole. Blue dots (left axis) are the photon counts, and the green, dashed
curve (right axis) is the Gaussian variation of g(t)/g0 = ψ(z(t)) experienced by the
atom during its transit. Calculations are for detunings of (a) [∆, θ]/2π = [16, 16] GHz
and (b) [∆, θ]/2π = [0, 0] GHz. Drive power is set for optimal S/N .

Figure 6.21: Same as Figure 6.20. Calculations are for detunings of (a) [∆, θ]/2π =
[9.2, 9.2] GHz and (b) [∆, θ]/2π = [9.2, 0] GHz. Qualitatively, the atom transit signals
are nearly identical to those in Figure 6.20.
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Figure 6.22: The force on an atom traversing the PBG cavity mode ([g0, κ]/2π =
[16, 4.4] GHz). a) [∆, θ]/2π = [16, 16] GHz. b) [∆, θ]/2π = [16, 0] GHz. Drive power
is set for optimal S/N .

a cesium atom as it traverses the mode of a central hole of the PBG cavity. The

maximum acceleration on an atom dragged though the cavity mode at velocity 2.5

cm/s is |〈fmax〉|/MCs ≈ 2× 108 m/s2, corresponding to a change in velocity of

∆v =

√
|〈fmax〉|∆z

MCs

≈ 5 m/s (6.14)

over half the length of the cavity mode, ∆z = 100 nm. In the above equations, MCs

is the mass of a cesium atom. This agrees with a simple estimate using

~g0 = 0.5MCs(∆v)
2, (6.15)

which yields ∆v = 10 m/s. Fabry-Perot experiments have detected effects of the cav-

ity interaction on the atomic motion [167]. The simple estimate using equation 6.15

gives a smaller value of ∆v ≈ 0.7 m/s for the Fabry-Perot experiments, implying that

the motion of the atom traversing the mode of the PBG cavity will also be signifi-

cantly affected. A more detailed calculation [168, 169] of the force and momentum
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diffusion using a master equation beyond the two-level atom approximation is neces-

sary to make predictions about the behavior of an atom in an attractive, red-detuned

cavity mode or in a repulsive, blue-detuned mode. The close proximity of the atom to

the sides of the PGB cavity’s holes will surely affect the system’s dynamics due to the

Casimir-Polder potential [170], and this will need to be addressed in more detailed

simulations. In future experiments, the force on the atom due to the Casimir-Polder

potential may be counterbalanced by careful cavity light detuning and/or by using the

magnetic microtrap. Regardless, any experimental information about this potential

in this unique geometry will be quite interesting.

6.5 Single atom detectability using microdisk cav-

ities

We repeat a similar analysis as in Section 6.4.1 for the feasibility of detecting single

atoms with a microdisk cavity. For the master equation simulations, we assume a

SiNx microdisk of diameter ∼8 µm and a (loaded) Q of 1 × 106, which is a factor

of 3 less than that quoted in Table 6.1 for the intrinsic Q attainable in current

experiments. This results in cavity QED parameters of [g0, κ]/2π = [1.5, 0.18] GHz.

Figure 6.23 plots the microdisk cavity transmission versus various detunings, and

Figures 6.24, 6.25, and 6.26 are transmission versus drive power plots for [∆, θ]/2π =

[0, 0], [1.5, 0] GHz, and [1.5, 1.5] GHz, respectively. As with the PBG cavity, the

[∆, θ] = [0, 0] and [∆ = g0, θ]/2π = [1.5, 0] GHz cases show that an atom down-

transit can be detected, while the [∆ = g0, θ = g0]/2π = [1.5, 1.5] GHz detuning

enables the detection of an up-transit. Adjustment of θ is not as experimentally

feasible as ∆, and down-transist detection will be attempted initially.

Table 6.2 lists the projected S/N for the three sets of representative detunings. As

discussed in the previous section, spontaneous emission is detrimental to the lifetime

of the atom in a magnetic trap. We can achieve S/N ’s that are slightly less than

half that for optimal cavity driving even when limiting the drive power so that the
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Figure 6.23: Microdisk cavity transmission as a function of a) atom detuning [θ = 0],
b) laser detuning [∆ = θ], and c) cavity detuning [∆ = 0] for one intracavity atom and
[g0, κ]/2π = [1.5, 0.18] GHz. The drive, E (measured as the empty cavity intracavity
photon number on resonance) is E = 0.1 in the black ♦ curve, E = 1 in the blue
� curve, and E = 10 in the red ◦ curve. The green solid curve is the empty cavity
transmission. All curves are normalized to the empty cavity transmission at each
curve’s drive strength.

number of spontaneously emitted photons is equal to 1 during the detection time

∆t = 1 µs. Single atom detection with microdisks seems feasible with drive powers in

the tens of nW. For the [∆ = g0, θ = g0] case, S/N is maintained out to a drive power

of 25 nW and beyond, which eases the detector requirements for shot noise limited

detection (see Chapter 3). The resonance of the microdisk exhibits a double peak

due to the degeneracy lifting of two counterpropagating modes by disk defects [171].

These modes are out-of-phase standing-waves and are separated in frequency by a few

hundred MHz. In future experiments, the two modes could be driven separately—

one blue-detuned, one red-detuned—to form an optical trap for an atom near the

rim. Effects due to the simultaneous coupling of these two driven modes to the atom

should be observable.
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Figure 6.24: (a) The transmission of the microdisk cavity as a function of drive
strength—measured in intracavity photon numbers for a resonant and empty cavity—
calculated from equations 6.5 (black line) and 6.6 (black dots). The empty cavity
transmission is shown as a dashed red line. (b) The expected signal S as a function
of drive power (quoted as ~ω times the resonant, empty intracavity photon number)
during an atom transit with a ∆t = 1 µs integration time. Error bars correspond to
Snoise. The detection efficiency is assumed to be η = 0.97. (c) The expected signal-
to-noise S/N in a ∆t = 1 µs integration time. For this plot, [g0, κ]/2π = [1.5, 0.18]
GHz and [∆, θ] = [0, 0].

Figure 6.25: Same as Figure 6.24 except [∆, θ]/2π = [1.5, 0] GHz.
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Figure 6.26: Same as Figure 6.24 except [∆, θ]/2π = [1.5, 1.5] GHz.

6.6 Conclusion

The integration of atom trapping and cooling with photonic bandgap and microdisk

cavities on a chip introduces a robust and scalable cavity QED system to the toolbox

of nanotechnology. A device allowing cooled neutral atoms to be delivered via a

magnetic microtrap and waveguide to the mode of a graded lattice PBG cavity or

a microdisk cavity is feasible given present technology. Calculations using the semi-

classical optical bistability equation and the unconditional master equation indicate

that it will be possible to detect single strongly-coupled atoms with this atom-cavity

chip.
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Chapter 7

Fiber-Gap Fabry-Perot Cavity:
The first atom-cavity chip

This chapter describes an ongoing experiment performed in collaboration with Pro-

fessors J. Reichel and T. W. Hänsch and their student and postdoc, Tilo Steinmetz

and Dr. Yves Colombe, respectively. The experiment is located at the MPQ/LMU in

the Schellingstraße labs. Several of the figures in Section 7.2 were made by D. Hunger

and the members of the Munich group listed above.

7.1 Introduction

This experiment constitutes the first demonstration of an atom-cavity chip: atoms

magnetically delivered to and trapped within the mode of an on-chip optical resonator.

The presence of the atoms modulates the cavity transmission with a detection sensi-

tivity approaching the level of a single atom. This is a step forward along the route

to create miniaturized and robust single atom detectors, and is an important addi-

tion to the toolbox of nanotechnology. Moreover, it is a proving ground for studying

the dynamics of a magnetically trapped atom coupled to an optical resonator. The

atom chip presents the near-term possibility for creating an on-chip BEC [60] and

magnetically transporting it into the mode of the fiber-gap cavity.

Several other atom chip and Fabry-Perot combinations have been proposed in

recent years. At Caltech, we have investigated a system with an atom chip combined

with countersunk supermirrors, though we tabled this experiment several years ago
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in favor of the photonic band gap (PBG) and microdisk experiments discussed in

Chapter 61. Though the mirrors in this proposal are large (7.5 mm diameter), they

are high finesse (F = 105 to 106) and easily obtained2, which allows immediate

incorporation into the experiment: no extra fabrication is necessary. The atom chip,

made from sapphire, is cut in-house with a diamond blade post-microwire fabrication.

Figure 7.1 is the schematic for this proposed experiment. The mode of the Fabry-

Perot cavity is a distance four times the mode waste, w0 = 24 µm, from the chip

surface, which is far enough to not be clipped by the chip’s surface. The atom chip

bridge that supports the microwires must be no smaller than around 1 mm in width to

maintain structural integrity. This forces the mirrors to be ∼1 mm from each other.

(With custom-cut mirrors like those used by Kimble’s group, the mirrors could be

spaced much closer.) This large cavity length severely constrains the minimum mode

length, but with a cavity finesse of F = 106, one could achieve strong coupling with

[g0, κ, γ⊥]/2π = [6.8 MHz, 75 kHz, 2.6 MHz] and [m0, N0] ≈ [7.2 × 10−2, 8.3 × 10−3].

This assumes a cavity of radius R = 10 cm. The microwire waveguides pictured

in Figure 7.1 are simple one- and three-wire guides, but using double-layer atom

chips would allow Z-traps or Libbrecht-style Ioffe traps to be fabricated on the bridge

providing intracavity trapping in 3D and in the Lamb-Dicke regime (see Chapters 2

and 4).

Other groups have proposed using fiber pairs on atom chips to excite and detect

the fluorescence of magnetically guided atoms [54]. The group of N. P. Bigelow has

detected atoms with such a scheme, though not with single atom sensitivity [172].

E. A. Hinds’ group and collaborators have recently built miniaturized Fabry-Perot

cavities using microfabrication techniques [173].

The atom-cavity chip experiment discussed in this chapter was originally proposed

in Reference [23]. A cavity is formed from opposing ends of optical fibers spaced

27 µm from one another. Onto each end of the optical fiber is glued a concave

1We have recently learned that the group of V. Vuletić at MIT has built a similar device, but
with cavity mirrors separated by several centimeters.

2From REO, for instance: Research Electro-Optics, Inc., 1855 South 57th Court, Boulder, Col-
orado 80301.
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Figure 7.1: Fabry-Perot atom-cavity chip using commercial supermirrors. The min-
imum mirror spacing is roughly 1 mm and the radius of curvature is R = 10 cm,
resulting in strong coupling parameters of [m0, N0] = [7.2 × 10−2, 8.3 × 10−3] for
F = 106 and [g0, κ, γ⊥]/2π = [6.8 MHz, 75 kHz, 2.6 MHz].

dielectric mirror of radius 1 mm. A finesse of F = 1050 has been achieved, and the

cavity QED parameters of such a device are [g0, κ, γ⊥]/2π = [186, 2640, 3] MHz and

[m0, N0] = [1.0 × 10−4, 4.2 × 10−1] for 87Rb atoms. This is in the “bad cavity” limit

of cavity QED, κ > g0 > γ⊥ [163], but nevertheless single atom detection can still be

performed as discussed in Section 7.3.

We have been able to magnetically guide and trap dilute clouds of cold atoms in the

resonator mode and detect their presence via the modifications to cavity transmission

due to atom-cavity coupling. We can detect the atom cloud undergoing a retroreflec-

tion from the magnetic waveguide terminus by observing—via cavity transmission—a

double passage of the atoms through the cavity. Recently, we have obtained data sug-

gesting progress towards the observance of optical bistability and single atom transits

in this system.

7.2 Experimental details

This section is divided into two parts: operation of the atom chip waveguide; and the

construction and operation of the fiber-gap cavity. Figure 7.2 provides an overview

of the experiment.
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Figure 7.2: Schematic of the fiber-gap cavity atom chip experiement.

7.2.1 Atom chip loading and waveguiding

The vacuum chamber—with base pressure∼2×10−10 Torr—is of the glued-cell design,

and is discussed in detail in Chapter 10, Section 10.2 and in Reference [17]. The atom

chip is first glued to a “base chip.” This base chip contains several isolated wire pads

and a large H-wire—several hundred microns in wire width—that can carry several

amps of current and form a U-MOT. The contact pads of the microwires on the atom

chip are wire-bonded down to the base chip’s wire pads. The base chip is glued to

the polished edges of a missing face of a cubic glass cell, thereby sealing this face

with the chip. The atom chip is fully contained inside the glass cell, but the base

chip’s wire pads extend outside the vacuum chamber defined by the edges of the glass

cell. In this manner, a simple, compact electrical feedthrough is formed for all of the

atom chip’s wires (see Figure 10.8 in the discussion in Section 10.2). A clip formed

from a modified computer female PCI slot is secured onto the edge of the base chip,

forming the connection between the wire pads and macroscopic wires. The layout of

the base chip’s wire pads and the structure of the PCI clip are fashioned to prevent the

obscuring of the MOT and detection laser beams. Figures 7.3 and 7.4 show the glass

cell with the base chip/atom chip attached to one face of the vacuum cell. Both the

atom and base chips are AlN substrates with microwires fabricated on the top surface

using the electroplating method discussed in Chapter 4. The wires, made of gold, are
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Figure 7.3: The vacuum cell assembly. The copper block at the top is a water-cooled
heat sink. The glass cylinder is a glass-to-metal converter and is glued to the cubic
glass cell. The Rb dispenser is located inside this cylinder. The base chip forms the
top face of the cell and its wire pads extend outside of the vacuum to serve as the
electrical feedthroughs. This picture is of the cell assembly used in the experiment
discussed in Chapter 10, but it is similar that used in the fiber-gap cavity experiment
discussed here.

5 µm tall. The P-trap has a wire width of 100 µm, and most of the waveguide has

wire widths of 70 µm except the wires nearest to the resonator position which are 50

µm wide.

The cell walls can be antireflection-coated, but are not in the current experiment.

A thermoelectric cooler (TEC), temperature sensor, and water-cooled copper block

are attached to the top (air-side) of the base chip. This is for the regulation of the

chip’s temperature—important for stabilizing the cavity resonance—and for allowing

larger microwire currents by providing a good heat dissipation channel. The surface

of the atom chip is coated with a dielectric that is transparent for much of the visible

spectrum but is highly reflective at 780.2 nm, the wavelength used for trapping 87Rb

atoms in a mirror MOT. This coating is discussed in more detail in the next section.

The fiber optics leading to the fiber-gap cavity are threaded through a notch in the

glass cell between the base chip and the glass cell. Ultrahigh vacuum safe glue—

Epotek 353—is used to seal this hole and to glue the cell to the chip as well.

The atom trapping, cooling, and microtrap loading proceeds in a similar manner as
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Figure 7.4: Fiber-gap Fabry-Perot cavity and atom chip assembly. Though transpar-
ent in visible band, the atom chip has a mirror dielectric coating on its surface for
creating a mirror MOT at 780.2 nm.

discussed in Chapter 2 for the Caltech-based experiments. Important differences are

the use of Rb instead of Cs, which permits the relatively straightforward production

of BECs; the use of anti-Helmholtz coils external to the vacuum chamber to form

the initial MOT instead of a macro U-MOT; and the use of an alkali dispenser in

place of an oven. The experiment begins with a mirror MOT loaded from a vapor

of 87Rb atoms produced by the combination of a dispenser run at low-current and

the pulsed operation of a UV light source (see Chapter 10 for more information on

this technique). The mirror MOT is formed by ∼1 cm2 beams and centered on the

P-trap shown in Figure 7.5. The vacuum cell is surrounded by water-cooled coils,

two pairs of coils per cardinal axis. One pair acts as both a permanent ambient

magnetic field null and as a generator of an adjustable bias field. The second pair

is in an anti-Helmholtz configuration for the production of a gradient field. These

latter coils are seldom required in the experiment. The MOT’s anti-Helmoltz coils

are angled at 45◦ with respect to the chip surface to enable the formation of a mirror

MOT. The external coils, despite the fact that they obscure optical access, are used

instead of a macro U-MOT to maximize the number of atoms initially collected.
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Once collected in the mirror MOT for ∼8 s, the atoms are transfered to the U-MOT

formed using the base-chip’s U-trap. The atoms are then loaded into the P-trap in a

manner similar to that described in Chapter 2. Instead of a straight waveguide, the

P-trap is used to deliver atoms to a 90◦-rotated waveguide to enable the placement

of the fiber-gap cavity assembly—which is several millimeters tall—away from the

MOT trapping beams, thereby leaving them unobscured. Typically ∼8 million 87Rb

atoms are initially loaded into the mirror MOT, and around 40% of these atoms are

transfered all the way to the initial Z-trap of the waveguide in 200 ms. The lifetime

of the Z-trap is ∼8 s. This efficiency is dependent on both the transfer efficiencies of

each step and the initial atom number, the latter due to the limited volume of the

P-trap which cannot accommodate arbitrarily large numbers of atoms. Z-trap atom

number optimization becomes a balancing game between obtaining a large initial trap

population culled from a high vapor pressure of 87Rb in the cell and attaining a long

magnetic trap lifetime which is achieved by operating at low vapor pressure. The

optimization difficulty lies in the fact that the optimal transfer parameters for each

step—trap position, confinement, and hand-off time—are slightly dependent on the

atom number at each step.

The atoms are ready to be guided to the fiber-gap cavity once they are confined in

the initial Z-trap. Figure 7.5 shows a close-up of the microwires on the atom chip used

in this experiment. The wire terminus labels (GU1, GL3, etc.) and the coordinate

axes relate to the labels used in the Matlab script in Appendix B, Section B.3 that

simulates the magnetic field, gradient, and curvature of the waveguide and the various

traps. After the P-trap [+P1,-P2]3 transfer, the Z-trap may be formed by flowing

current in wires [+GU1,-GL2] or [-GU2,+GL1] with a bias field in −ẑ. Typically,

a wire current of ∼2 A is used with a bias field of Bẑ ≈ −16 G resulting in a trap

height of ∼250 µm. The current and bias field are fine-tuned to match the trap height

with the height of the resonator mode, 225-230 µm. For the case of [-GU2,+GL1], a

weak bias field in +x̂ should be added to enhance the trap curvature in x̂: For this

orientation of wire currents, a +x̂ bias field adds to the field of the Z-trap’s side wires,

3The “+” in front of the wire terminus label designates the side with positive potential.
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Figure 7.5: Close-up view of the atom chip. The wires are identified by “guide” (i.e.
G1), “gate upper” (i.e. GU3), or “gate lower” (i.e. GL2). The P-trap wire is [P1,P2],
where the brackets denote the beginning and end of a wire segment, respectively. The
transparent grey vertical lines indicate the position of the fiber-gap cavity.

while for fields Bx̂ ≤ 0 (i.e. the field in −x̂), two generally undesirable dips in the

potential form at the intersection of the side wires and base wire. A field of Bx̂ ≈ 2

G is sufficient for eliminating these dips.

In practice, an alternative Ioffe trap is used instead of the standard Z-trap: current

is flowed through [+G1,-GU2] to form the base wire and one of the side wires, and

current in [-GU1,+GL1] forms the other side wire. This allows easy atom injection

into the waveguide by ramping-down the current in [+G1,-GU2] while simultaneously

ramping-up the current in [+G1,-GU8]. Notice that the same wire terminal is used,

G1. This can be done by using two independently-controlled floating power supplies

sharing the G1 connection but sinking current into different final wires. The speed of

this wire exchange affects the length and velocity of the cloud of atoms propagating

in the waveguide.

Before launching into the waveguide, the 87Rb atoms are evaporatively cooled with

an RF knife for 3 s [46]. To enhance cooling efficiency, the atoms are compressed in

the initial Ioffe trap by increasing the bias field to 45 G while maintaining the [+G1,-

GU2] current at 2 A. This increases the phase-space density of the cloud, resulting in
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a tighter packet of atoms propagating in the waveguide. Without this step, the atomic

cloud is quite diffuse and only gradual changes in cavity transmission are observed

when the cloud traverses the resonator mode. Greater than 104 atoms typically remain

in the trap after the cooling stage. The RF-cooled atoms are decompressed into the

original trap and the [+G1,-GU2] current is replaced with [+G1,-GU8]. The current

in [-GU1,+GL1] may be increased to give the atom cloud an extra push. Depending

on the exact manner of the trap release, the atoms travel down the waveguide at about

6 cm/s (8 mm in ∼140 ms). Once the atoms have reached the resonator position—

located above the [GU6,GL6] wire—the atoms may be confined in a H-trap using the

wires [-GU5,+GL5] and [-GU7,+GL7] in addition to [+G1,-GU8] and the bias fields

in −ẑ and +x̂. In addition to—or instead of—this H-trap, a dimple trap may be

formed at the resonator. This is accomplished by running a current of approximately

1 A in [GU6,-GL6] and increasing Bx̂ to 5 G. This bias field cancels the field from

the wire, forming a dip in the potential directly above the wire at the position of the

resonator mode. Sufficiently RF-cooled atoms will collect into this dimple trap. The

atomic cloud’s position is adjusted in the resonator mode to maximize the atom-cavity

coupling signal. This is done by making slight modifications to Bẑ, which changes the

trap’s height in ŷ, and by applying a non-zero Bŷ, which moves the trap minimum in

ẑ. Figure 7.6, generated by the Matlab code in Section B.3 of Appendix B, plots the

magnetic field of the waveguide plus dimple.

7.2.2 The fiber-gap cavity

The cavity is formed by gluing concave dielectric films to the tips of fibers and mount-

ing an opposing pair of fiber tips a few tens of microns from one another. Each fiber

tip is glued to a shear-mode piezo with the tip slightly cantilevered from the piezo

end (see Figure 7.7 for a image of an actual cavity formed in this manner). The fibers

are affixed to the piezos using UV curable glue (purchased from Dymax) which can

be set with low shrinkage in less than 3 s. The two piezos are glued to a small Macor

block that is itself glued to the atom chip. Cavity alignment is performed in the
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Figure 7.6: Magnetic field plot of a waveguide plus dimple (located at x ≈ 7750 µm)
generated by the Matlab script in Section B.3 of Appendix B. The wire currents and
bias fields are as follows: [+G1,-GL8] has 2 A, [+GU1,-GL1] has 2.5 A, [-GU6,+GL6]
has 1 A, Bx̂ = −5 G, Bŷ = −1.8 G, Bẑ = −16.3 G, and ymin = 245 µm. Note,
there are some differences between this field and current configuration and the one
described in the text: the signs of some of the currents and fields are flipped and the
guide wire extends to GL8 instead of GU8. The trapping principle remains the same.

Figure 7.7: Image of the fiber-gap Fabry-Perot cavity. The mirror spacing is 27 µm.
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following manner: one fiber tip is initially glued to a piezo, while the other is held in

a 5-axis translation and rotation stage. The stage is adjusted until the TEM00 cavity

resonance is optimized, and at this moment the second fiber tip is UV glued and the

stage detached. The transmission is monitored during the cure to ensure that proper

alignment is maintained throughout. Figure 7.8 illustrates the procedure for attach-

ing the cavity mirrors to the fiber tips. The concave mirror is fabricated by coating

a 1 mm radius hemispherical glass ball lens with a detachable dielectric coating: the

layer between the mirror coatings and the glass is sacrificial which allows the mirror

to “peel-away” from the glass substrate4. The fiber tip is glued to the apex of the

coated ball lens with a drop of NIR transparent UV-curable glue as shown in panel (b)

of Figure 7.8. After curing, the fiber is tugged upwards, separating the coating from

the glass. Finally, the excess coating is broken-away leaving a small mirror coating

glued to the end of the fiber tip as shown in panel (c) of Figure 7.8 and in Figure 7.7.

The finesse of the cavity formed with these mirror coatings is F = 1050. The cavity

length is 27 µm and the radius of curvature is approximately the same as the ball

lens, 1 mm.

Figure 7.9 is a schematic of the fiber-gap cavity laser coupling, detection, and

locking set-up. A beam from a laser diode—locked to the 780.2 nm resonance of

the D2 line in 87Rb—is coupled into the single-mode fiber that forms the input to

the fiber-gap cavity. Before the coupling, this free-space beam passes through λ/2

and λ/4 waveplates to control the intracavity polarization. Light reflected by the

cavity is picked-off by a non-polarizing beamsplitter and directed into a Thorlabs

photodetector. It is very important that angle-cleaved fibers are used. This eliminates

oscillations in signal intensity that are caused by the formation of an etalon between

the cavity input mirror and the fiber input facet. The fiber used for the output

of the cavity is multimode to maximize the collection efficiency of the transmitted

intracavity light. The transmitted light is out-coupled from the fiber to allow the

interjection of a mechanical shutter before re-coupling the light into the fiber input

4This coating is produced by the German company OIB (Optical Interference Components)
http://www.oib-jena.de/firmenpreng.html
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Figure 7.8: a) The fiber is carefully lowered to the top of the coated ball lens. b) UV-
curable glue attaches the fiber tip to the dielectric mirror coating. c) After curing,
the fiber is tugged upwards, detaching the coating from the glass lens. d) Excess
dielectric film is flaked-off, leaving behind the small mirror coating attached to the
fiber tip.

Figure 7.9: Schematic of the fiber-gap cavity set-up.



190

of the APD detector. This mechanical shutter blocks the high-power cavity lock light

that would damage the APD, but opens for the low-power probe light during the

atom-cavity coupling phase of the experiment. The Si APD is from PerkinElmer

and has a minimum dark count rate of 157/s and saturates at a photon flux of

approximately 107/s.

The cavity is tuned by applying a DC voltage to one of the two cavity piezos.

The other piezo is driven with an AC voltage of frequency equal to ∼11 kHz, which

is limited by the piezo resonance. This adds a frequency dither to the reflected

light that is used to produce an error signal with the aid of a lock-in detector. The

error signal, suitably amplified, is fed back to the second piezo to maintain cavity

lock. The lock bandwidth is a few hundred Hertz. The large linewidth of the cavity

(> 2.6 GHz) and the use of piezos force this lock to be in the less-desirable slow

modulation regime as discussed by E. Black in his tutorial on the Pound-Drever-

Hall technique [174] (see also Reference [175]). Error signal detection in reflection is

sub-optimal, but eliminates the need for reducing atom detection signal-to-noise by

syphoning-off photons from the transmission signal. The reflected signal rides atop

a large DC offset due to the superposition of rejected light from the free-space to

fiber and fiber tip to cavity interfaces. We do not have separate laser sources for the

cavity lock and probe beams. Consequently, the cavity lock must be turned-off when

the beam is attenuated during the atom transit detection sequences. The optimal

driving power for maximizing signal-to-noise is around 20 pW, and the max cavity

lock power is approximately 10 µW. The AOM that controls the probe laser detuning

has an attenuation range of > −80 dB and is used to shift the drive power from probe

mode to lock mode. Despite the lock non-optimalities, the cavity is quite stable and

the lock can be maintained for long periods of time. This is greatly aided by the

containment of the cavity in a vacuum chamber and the large linewidth of the cavity

which makes it less susceptible to mechanical vibrations.

Near-resonant stray light from the high lock power in the resonator quenches the

lifetime of the atoms in the magnetic trap. To avoid this, we shut-off the cavity

lock and attenuate the cavity probe to ≤ 0.2 pW before the RF-cooling stage. This
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occurs roughly 3 s before the atom transits, and the cavity length is free to wander

off resonance in this time period. The TEC temperature stabilizes the chip to within

0.01 ◦C, aiding the passive stability of the cavity length. However this feedback loop

is very slow, and cannot compensate for the transient heating caused by the microwire

power dissipation. Within a few tens of milliseconds after the turn-on of the microwire

current, we can observe a shift in the cavity resonance, and during a typical atom chip

wire sequence the resonance can shift by many linewidths. This temperature shift is

mitigated by only gluing one end of the Macor block to the chip which reduces its

thermal coupling. Nevertheless, a feedforward procedure is implemented to ensure

that the cavity is on resonance as the atoms transit the resonator mode. The extent

to which the cavity is detuned for a specific microwire sequence is measured and

subsequently negated by applying an appropriate feedforward voltage to the piezo.

This procedure is of course cumbersome since it needs to be re-calibrated each time

the microwire sequence changes to account for the differing power dissipation. Future

experiments should use a secondary laser resonant with a far-detuned cavity resonance

to lock the cavity. This beam shouldn’t affect the atom motion if suitably far-detuned

and of low power. A dichroic mirror can pick-off this light from the probe beam.

7.3 Signal-to-noise and spontaneous emission anal-

ysis using the master equation

In a manner similar to that of Section 6.4.1 of Chapter 6, we analyze the fiber-gap

Fabry-Perot cavity’s capability for detecting single atoms. Refer to that section for

definitions of signal, noise, detunings, etc. As mentioned earlier, the present cavity

has F = 1050, L = 27 µm, and R = 1 mm. The cavity waist is w0 = 5.3 µm. A

previous incarnation of this experiment used a cavity of F = 600, L = 40 µm, and

R = 1 mm, but in this section we will focus on the current, higher finesse system.

Table 6.1 includes the cavity QED parameters for the fiber-gap cavity as well as

comparisons to other resonator systems used for cavity QED. While worse than most
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current resonator systems, the fiber-gap cavity is relatively compact, easy to build,

and integrates well with magnetic microtraps. The cavity QED parameters for this

system are [g0, κ, γ⊥]/2π = [186, 2640, 3] MHz and [m0, N0] = [1.0× 10−4, 4.2× 10−1].

This current implementation of the fiber-gap cavity is in the so-called “bad cavity”

limit of cavity QED, κ > g0 > γ⊥ [163], but as we show in the following, single atom

detection is still possible. A major difficulty, however, lies in the inability of this

cavity to suppress the spontaneous emission of photons during a probe period long

enough to detect a single atom. This hampers our ability to maintain the atom in a

magnetic trap post-detection.

As a major goal of this experiment is to detect single atoms, the analysis presented

here is for the case of a single intracavity atom. The Matlab script used in these

simulations—presented in Appendix B, Sections B.1 and B.2—can be modified to

simulate the effects of more than one intracavity atom. Simulations in the multi-

atom regime are important to enable the exact calibration of the intracavity atom

number. From atom cloud density measurements at the position of the resonator,

we can determine that there are ≤ 10 atoms in the resonator for most of the data

presented in Section 7.4. However, at present we cannot determine the atom number

more precisely. We will return to this problem in Section 7.4.

Cavity QED with multiple atoms and a single atom are similar to one another

in the regime of weak driving. The first rung on the Jaynes-Cummings ladder (Fig-

ure 6.13) is unmodified for N atoms5 if one replaces the single atom-cavity coupling

rate, g0, with an effective coupling rate geff =
√
Ng0. Here, g0 is the atom-cavity

coupling rate for each individual atom and may not necessarily be of equal magnitude

to the g0 in the single atom case. For higher rungs on the Jaynes-Cummings ladder

the energy eigenvalues differ. For instance, the second rung of excitations for the

single atom case is divided into two levels spaced by 2
√

2~g0, while for the N atom

case there are three levels, with the upper and lower level split from the middle by

±
√

4N − 2~g0. For N � 1 these levels are split by ±2~geff . As noted in Refer-

5Please excuse the redundant notation with Equation 6.9. The meaning of N will be clear from
the context.
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ence [153], the eigenvalues for the second excitation in the N � 1 case approximate

that of classically coupled oscillators: it is important to note that the semi-classical

equation 6.5 can accurately describe the system of N � 1 for any drive strength

even when geff is much larger than κ and γ⊥, but this equation fails when N=1 for a

similarly strongly coupled system. This highlights the important role that quantum

fluctuations play in this system: the single atom case produces qualitatively different

dynamics that are only properly described by the quantum master equation 6.6. Note

that the multi-atom g0 may be smaller than the single atom g0, but the total multi-

atom coupling geff may be equal to the single atom coupling for the N = 1 case. In

other words, even though the N � 1 atoms may be each individually weakly coupled

but collectively strongly coupled to the cavity mode, the N � 1 system dynamics are

not equivalent to that of a strongly coupled single atom.

7.3.1 Signal-to-noise and spontaneous emission

We now turn to the determination of this fiber-gap cavity’s ability to detect single

atoms. The atom-cavity system is most easily run on-resonance due to the lack of

extra EOM and AOMs in the laser system. (Though the cavity could be detuned

from probe laser resonance θ 6= 0 by suitably offsetting the feedforward control.)

Figure 7.10 shows the cavity transmission, signal S, and signal-to-noise S/N versus

drive for [∆, θ]/2π = [0, 0]. This is plotted for a detection integration time ∆t =

100 µs, which is typical for this experiment, and a detection efficiency of η = 0.05.

This detection efficiency incorporates three mechanisms for photon loss: absorption

and scattering of photons by the cavity mirrors, η1 = 0.1; and photon loss during

propagation from the output cavity mirror to the APD, η2, and the APD quantum

efficiency itself, η3. In this experiment η2η3 = 0.5. The full detection efficiency,

η = η1η2η3, may be modeled as a beam splitter placed between a zero-loss cavity and

a perfect detection channel. The S/N scales as
√
η∆t.

The maximum signal-to-noise, S/N = 9.8, is obtained at a drive power of 17

pW and an empty, resonant intracavity number of 2 × 10−3. Single atom detection
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Figure 7.10: a) The transmission of the fiber-gap Fabry-Perot cavity as a function of
drive strength—measured in intracavity photon numbers for a resonant and empty
cavity—calculated from Equations 6.5 (black line) and 6.6 (black dots). The empty
cavity transmission is shown as a dashed red line. b) The expected signal S as a
function of drive power—quoted as ~ω times the resonant, empty intracavity pho-
ton number—during an atom transit with a ∆t = 100 µs integration time. Er-
ror bars correspond to Snoise. The photon detection efficiency is η = 0.05. c)
The expected signal-to-noise, S/N , in a 100 µs integration time. For this plot,
[g0, κ]/2π = [186, 2640] MHz and [∆, θ] = [0, 0].

seems to be feasible with the current system. However, the number of spontaneously

emitted photons during the ∆t = 100 µ detection is quite large—657—and poses

a severe problem for non-destructively detecting the atom in a magnetic trap. As

mentioned in Chapter 6, both the heating and the optical pumping to untrapped

states due to the spontaneous emissions will limit the lifetime of the magnetic trap,

thereby reducing the coupling time of the atom-cavity system. Each spontaneously

emitted photon has a probability—suppressed by the Lamb-Dicke parameter if the

atom is confined in this regime—to excite the atom out of the trap’s ground state and

into ever higher vibrational levels. To estimate how severe this will be for our system,

one needs to calculate the average NSponE—and average time—it takes for the atom

to be lost either by being excited to an energy larger than the trap’s depth or excited

to such a spatial extent that the atom has a chance to encounter the fiber-gap cavity

mirrors.

The fraction of the signal, S, that is due to the spontaneous emission of photons
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out of the side of the cavity mode versus the suppression of transmission due to atom-

cavity coupling is equal to 15.7% for these cavity QED parameters of [g0, κ]/2π =

[186, 2640] MHz. While the spontaneous emission does not comprise the majority

of the missing photons constituting the signal, it is still quite high. Even if we

fix the S/N to equal a minimum of 3, 61 photons are spontaneously emitted in

a time ∆t = 9.3 µs. Heating and optical pumping due to spontaneous emission

seems unavoidable with a fiber-gap cavity of this volume and F = 1050. Setting the

detuning parameters, [∆, θ], to be non-zero does not seem to help much. Even with

η = 1, a reasonably thorough parameter search—which is difficult due to the need

for optimizing over ∆, θ,∆t, and drive power—only revealed a narrow detuning set

in which the S/N was ∼2 while maintaining NSponE ≤ 1. The irrepressible NsponE in

this system is caused by the fact that g0 � κ, resulting in a N0 = 4.2× 10−1 that is

not quite small enough to ensure low intracavity fields at high S/N . In more realistic

situations where η < 1, NSponE is unaffected while S/N is suppressed—a combination

which is detrimental to our goal of non-destructive single atom detection.

Figure 7.11 shows the transmission for various scanned detunings at different

drive powers. Significant S/N can be achieved most simply with [∆, θ] = 0, but

detuning the cavity from the laser and atom also produces S/N > 1. Panels (a)

through (c) show the most straightforward detuning schemes, but others are possible.

In particular, detunings of [∆, θ]/2π ≈ [±0.8, 3] GHz reveal a sweet-spot in which

the S/N ≈2 while the NSponE ≤ 1. This is shown in Figure 7.12 for ∆t = 100

µs and drive of E = 0.01 intracavity photons (referenced to an empty, on-resonant

cavity). However, the use of η = 1 for this plot is unrealistically high. Adjusting

the drive and ∆t does not seem to help to increase the S/N where NSponE crosses

unity. For comparison to other choices of η and ∆t, note that S/N scales as
√
η∆t

(see Equations 6.11 and 6.12) whereas NSponE scales as ∆t. Figure 7.13 repeats this

S/N versus NSponE analysis for the detunings used in Figure 7.11 and a drive of

E = 0.01 intracavity photons. In each of the three cases, ∆t = 100 µs and η = 1, and

unfortunately in none of these cases is it possible to adjust ∆t to obtain a S/N > 1

while maintaining NSponE ≤ 1.
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Figure 7.11: Fiber-gap cavity transmission as a function of a) atom detuning [θ = 0],
b) cavity detuning [∆ = 0], and c) laser detuning [∆ = θ] for one intracavity atom and
[g0, κ]/2π = [186, 2640] GHz. The drive (measured as the empty cavity intracavity
photon number on resonance) is E = 0.001 in the black ♦ curve, E = 0.01 in the
blue � curve, and E = 0.1 in the red ◦ curve. The green dashed curve is the empty
cavity transmission. All curves are normalized to the empty cavity transmission at
each curve’s drive strength.

With the same cavity length and mirror radius of curvature ([L,R] =

[27 µm, 1 mm]), one would need a cavity of finesse F = 20000, given η = 0.25 and

∆t = 0.09 µs, to have a S/N = 3 while spontaneously emitting less than one photon

per ∆t. The next generation of this experiment, to be built in Prof. J. Reichel’s new

ENS labs in Paris, will use a different technique to create the fiber-gap cavity mirrors

that will greatly increase F while also decreasing Vm. The new scheme uses a focused

and pulsed CO2 laser of carefully controlled intensity to melt the core of the fiber at

its tip [176]. A dimple in the core is formed with radius of curvature equal to 200 µm.

Coating companies have estimated that the smoothness of this dimple should readily

allow a mirror finesse of F = 104. Unlike the current system, the new mirror does not

extend past the tip of the fiber, and this allows the fiber gap to be 15 µm or smaller.

Taking cavity parameters of [F , L,R] = [104, 15 µm, 200 µm], the achievable cavity

QED parameters are [g0, κ]/2π = [423, 500] MHz and [m0.N0] = [1.9×10−5, 1.5×10−2].

These are the values listed in Table 6.1 for the projected performance of the fiber-gap
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Figure 7.12: Fiber-gap cavity transmission with and without an intracavity atom
along with plots of the signal, S; noise, Snoise; number of spontaneously emitted
photons, NSponE; and S/N . These are plotted for η = 1, ∆t = 100 µs, and a drive
E = 0.01. The laser-cavity detuning θ is fixed at 3 GHz, but the atom-cavity detuning
varies between ±2 GHz. The plots are for one intracavity atom and [g0, κ]/2π =
[186, 2640] GHz. The y-axis for the panels lists the number of photon counts per
∆t except for the magenta (4) curve for which the y-axis denotes the magnitude of
S/N . The S/N ≈ 2 while NSponE ≈ 1 at detunings of [∆, θ]/2π ≈ [±0.8, 3] GHz.

Figure 7.13: Fiber-gap cavity transmission with and without an intracavity atom,
and plots of the signal, S; noise, Snoise; number of spontaneously emitted photons,
NSponE; and S/N . These are plotted for η = 1, ∆t = 100 µs, and a drive E = 0.01.
The three panels are plots as a function of a) θ, b) ∆, and c) laser detuning, [∆ = θ],
for one intracavity atom and [g0, κ]/2π = [186, 2640] GHz. The y-axis for the panels
list the number of photon counts per ∆t except for the magenta (4) curves in which
the y-axis denotes the magnitude of S/N .
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Figure 7.14: Same as for Figure 7.10 except [g0, κ]/2π = [423, 500] MHz and
[F , L,R] = [104, 15 µm, 200 µm]. [∆, θ] = [0, 0].

Fabry-Perot cavity system. While not quite in the “good cavity” limit of cavity QED,

this improved cavity system allows single atom detection with much larger signal-to-

noise, S/N ≈ 120. Figure 7.14 shows the cavity transmission, S, and S/N versus

drive power for zero detunings.

The maximum S/N occurs at a drive of E = 0.25 (400 pW). A detection time

of ∆t = 100 µs is used. For these mirror coatings, an effort will be made to increase

η1 to 0.5, which combined with a pessimistic estimate of η2η3 = 0.5 gives η = 0.25.

Spontaneous emission comprises only 0.87% of this cavity’s on-resonance S, which

is 940 photons for ∆t = 100 µs and E = 0.25. Because the on-resonant S/N is so

much larger for this cavity, we can decrease the drive power to E = 2 × 10−4 (0.3

pW) and have a NSponE ≤ 1 while still obtaining a S/N = 5.6 with ∆t = 100 µs.

Better performance might be achieved with non-zero detunings. We can also achieve

NSponE ≤ 1 by driving at E = 0.25 (400 pW) but decreasing the detector integration

time to ∆t = 0.06 µs. With a cavity of [L,R] = [15, 200] µm a finesse of only

F = 6000 is required to have NSponE ≤ 1 while maintaining a S/N = 3 (∆t = 0.12

µs). This sets an approximate lower bound on F that we need to surpass in other to

achieve non-destructive single atom detection with this length fiber-gap Fabry-Perot

cavity.
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Figure 7.15: The force on an atom traversing the fiber-gap cavity mode. [g0, κ]/2π =
[186, 2640] MHz, [∆, θ]/2π = [−800, 3000], and the drive is E = 0.002.

7.3.2 Simulated atom transits and cavity induced force

Figure 7.15 shows the force on a 87Rb atom dragged at v = 6 cm/s through the

F = 1050, [L,R,w0] = [27, 1000, 5.3] µm cavity (see Equation 6.13). The detuning

is [∆, θ]/2π = [−800, 3000] and the drive is E = 0.002. The maximum force on the

atom is F/mRb = 123 m/s2, which imparts a change in velocity of ∆v ≈ 1 to 2 cm/s

on the atom. This is comparable to the atom’s incoming velocity, and the cavity field

at this detuning should noticeably affect the atom’s trajectory.

Figure 7.16 presents a simulation of the photon flux transmitted by the cavity

as an atom passes through the resonator mode in a trajectory perpendicular to the

cavity axis and in the center of an anti-node. The atom’s velocity is 6 cm/s. Panel (a)

shows the signal with a detection integration time of ∆t = 100 µs and drive E = 0.002

(17 pW), and Panel (b) is the same but with ∆ = 10 µs. As discussed in Section 6.4.2

of Chapter 6, the noise, ∆N , of this signal is found by solving for ρss for each g(t) =

g0ψ(t) in time steps of ∆t, chosen to simulate a finite bandwidth photodetector. Each

point includes additional shot-noise selected randomly from a normal distribution of

standard deviation ∆N . Again, we make the caveat that simulation is not derived

from a quantum trajectory calculated from the conditional master equation [25], but

is simply calculated using ρss from the unconditional equation 6.6.
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Figure 7.16: Simulated photon counts due to an atom transit through an anti-node
and perpendicular to the fiber-gap cavity axis. For this cavity, [g0, κ]/2π = [186, 2640]
MHz. Blue dots (left axis) are the photon counts, and the green, solid curve (right
axis) is the Gaussian variation of g(t)/g0 = ψ(t) experienced by the atom during
its transit. The calculation is for detunings of [∆, θ] = [0, 0], and a drive power
E = 0.002 (17 pW). a) ∆t = 100 µs and the maximum S/N = 44. b) ∆t = 10 µs
and the maximum S/N = 14. In both of these plots η = 1.
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Figure 7.17: Absorption image of waveguided 87Rb atoms as they approach the fiber-
gap cavity mode. The image is doubled due to the absorption laser beam being
reflected from the atom chip’s mirrored surface. The atoms are the bright, vertical
cigar-shaped region in the middle; the cavity position is at the upper tip of the cigar;
and the fiber tips are the faint (red) horizontal regions intersecting the atom cloud.

7.4 Experimental results

This section presents some of our preliminary experimental results. Figure 7.17 is an

absorption image of the atoms—post-RF cooling—being magnetically guided toward

the fiber-gap cavity mode. The first detection of atoms with a fiber-gap cavity was

made with the F = 600, L = 40 µm, R = 1 mm cavity. The cavity QED and

critical coupling parameters for this cavity were [g0, κ]/2π = [139, 3125] MHz and

[m0, N0] = [2.3 × 10−4, 9.7 × 10−1]. Unfortunately, during the course of these initial

experiments, the vacuum cell developed a leak from an unfixable crack. The atom chip

and cavity were replaced, this time with the better cavity of F = 1050, L = 27 µm,

and R = 1 mm that was the focus of much of the analysis in Section 7.3. However,

the first measurements were performed with the F = 600 cavity and the first atom

transit detection is shown in Figure 7.18. This signal had to be averaged over many

trials (∼20) since we had yet to RF-cool the atoms and fully optimize the position

of the waveguided atoms as they pass through the resonator mode. Nevertheless, we

were able to make transmission versus drive power curves as shown in Figure 7.19

(b). In this figure, the signal is averaged 10 times and the cavity and laser are on-
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resonance with the atom transition. Panel (a) shows the atom cloud transit signals

for four different drive powers: The bottom black curve has the lowest drive power

and the top blue curve has the largest. The variance in transmission is presumably

due to a varying intracavity atom number as the atom cloud of variable density passes

through the resonator mode. By taking different time slices of the these transmission

curves, we can form plots such as those in panel (b). Each of the three curves

is taken at time slices of relatively constant cavity transmission, and we therefore

expect each curve to represent a different but approximately constant intracavity

atom number, N . Since geff =
√
Ng0, the black (�) curve should represent a system

with stronger atom(s)-cavity coupling than the red (◦) and green (4) curves which

are taken at later times and consequently lower atom densities. Provided there are

less that 10 atoms in the cavity for the black (�) curve, these transmission versus

drive power plots qualitatively follow the shape, position, and relative depth that we

would expect if the intracavity photon number is roughly 10 times more than what

the “Reference level” (measured post-cavity) indicates6. (For rough comparisons, see

Figure 7.10.) This factor of 10 roughly concurs with the estimation of η1 = 0.1 for

this batch of cavity mirror coatings, though some fraction of η2 should be accounted

for as well. This estimation is very loose and is not based on any stringent curve

fitting. Such a fitting sequence should be performed, though it will be difficult since

not only is the intracavity atom number uncertain but so is the calibration of the

x-axis. Specifically, the calibration of the intracavity power is unknown due to the

difficulty in measuring the photon loss from the interface between the coupling fiber

and the microscopic mirror coating and the loss in the coatings themselves. Moreover,

the rejection of light mode-mismatched into both the input and output fibers must

be taken into account in such a measurement. While upper bounds can be placed,

exact calibration would be difficult7. Although there is a considerable amount of

6The high transmission spike at low drive powers remains unexplained. A simple cause would
be the background and dark counts of the APD. Careful measurements of these count rates seem
to rule this out, but a duplicate APD with perhaps better dark count rates should be used as a
cross-check. Perhaps optical pumping at low drive powers in the magnetic trap is the culprit.

7However, Jun Ye recently communicated to Jakob Reichel that the techniques presented in
Reference [157] might aid in determining this calibration.
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Figure 7.18: The first magnetically guided atom transits detected with a fiber-gap
Fabry-Perot cavity integrated on an atom chip. For this cavity F = 600, L = 40 µm,
R = 1 mm. The atoms generally take ∼140 ms to arrive at the cavity mode. a) The
first detection signal. b) After an optimization of the position of the atoms inside
the cavity mode, the detection signal is enhanced. The time bins are 500 µs and the
trace is averaged 20 times.

light scattered by the coatings into 4π, the fraction of this light that interacts with

the atoms—located in the center of the cavity—should be of the correct orientation

to re-couple into the cavity mode and should not be treated differently. A major

goal would be to perform a master equation fitting sequence that varies the relative

intracavity atom number, N , and drive power, E, as well as the detunings ∆ and

θ. Although a major undertaking, the high sensitivity of the cavity transmission

to these parameters provides enough constraints to pin-down the atom number and

intracavity photon number calibrations.

With the new, higher finesse fiber-gap cavity, we have been able to see atom cloud

transits in a single-shot; double passage of the atom cloud through the resonator

due to the reflection of the atoms at the terminus of the magnetic waveguide; a

signal reminiscent of optical bistability; and a sharp dip in the transmission that may

indicate the temporal resolution of a few or even a single intracavity atom. Panels

(a) and (b) of Figure 7.20 show the on-resonance cavity transmission of a RF-cooled

cloud of atoms guided through the cavity. In panel (a), zero averaging has been done,

while 10 averages have been taken for the transmission signal in panel (b). Panel

(c) shows a “double-bounce” of the atoms through the cavity caused by reflection at
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Figure 7.19: a) Atom transits through the fiber-gap cavity for different drive powers.
Drive power increases from the black to the blue curves (bottom to top). For this
cavity F = 600, L = 40 µm, R = 1 mm, [g0, κ]/2π = [139, 3125] MHz, and [m0, N0] =
[2.3×10−4, 9.7×10−1]. Ten averages are taken for each curve. b) Transmission versus
drive for three different intracavity atom numbers.

the terminus of the magnetic trap. The second dip is smaller than the first due to

the loss of atoms from spontaneous emission, collisions with the cavity mirrors, and

normal magnetic trap loss. As expected, by switching the wireguide current from

[G1,GL8] to [G1,GU8] we observed a difference in the time delay between the dips in

transmission. A possible future experiment that would highlight the unique abilities of

this atom-cavity chip would involve the periodic introduction of magnetically trapped

atoms into and out of the cavity mode. The atoms would be confined in a Z-trap

centered at the resonator mode ([GU5,GL7], for instance), and the bias field and wire

current adjusted to move the atoms vertically in and out of the resonator mode while

maintaining a constant trap compression. For [∆, θ] = 0, one should detect periodic

dips in cavity transmission that decrease in amplitude with time. The attenuation

of signal amplitude would be caused by the loss of atoms due to optical pumping,

collisions with cavity mirrors, and the natural decay of atoms from the magnetic trap.

These rates could be measured by fitting the decaying envelope of the periodic atom

transit signals. By repeating the experiment with and without an intracavity light

field, and noting the unperturbed lifetime of the magnetic trap, one could distinguish

and measure the individual decay rates.
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Figure 7.20: a) Single shot measurement of an atom cloud passing through the fiber-
gap cavity. b) Same as (a) but averaged 10 times. c) Double passage of the atoms
through the resonator mode due to reflection at the terminus of the magnetic waveg-
uide. ∆t = 100 µs, [g0, κ]/2π = [186, 2640] MHz.

By detuning the cavity system, we have been able to enter a regime in which there

are an excess of photons coming out of the cavity during the atom transits. These “up-

transits” are shown in Figure 7.21. The detunings are [∆, θ] ≈ [−3.5γ,−κ] in Panel

(a) and [∆, θ] ≈ [2.3γ, κ] in Panel (b). In Panel (c) the ∆ detuning is the same as in

Panel (b) but θ is slightly larger. The exact cavity-laser detuning is hard to calibrate

in these data runs since the cavity is detuned by simply adjusting the feedforward

signal and not by precisely offset-locking the cavity. For a single atom, Figure 7.12

shows the expected cavity transmissions, S, and S/N for similar detunings used for

the data runs in Figure 7.21. The Figure 7.12 calculation is qualitatively consistent

with the up-transit signal observed at early and late times in the atom cloud transit

through the cavity. However, during the peak atom density at t ≈ 45 ms, the up-

transit regime switches to a down-transit in Panels (a) and (b). This may be due

to the increase in geff which shifts the eigenmodes of the atom-cavity system. This

behavior is not seen for the detunings in Panel (c). Fitting these types of data curves

for varying detunings and drive powers should allow us to calibrate the intracavity

atom and photon numbers.

A hint of optical bistability in this system has been observed by ramping the drive

power up and down during a single shot of constant atom flux through the cavity.

Panel (a) of Figure 7.22 shows the window of nearly constant resonator transmission
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Figure 7.21: a) [∆, θ] ≈ [−3.5γ,−κ]; b) [∆, θ] ≈ [2.3γ, κ]; c) ∆ detuning is the same
as in (b) but θ is slightly larger. The data are averaged 20 times in (a) and (b) and
10 times in (c). ∆t = 100 µs, [g0, κ]/2π = [186, 2640] MHz.

that we infer is due to constant atom flux. We use this window to take the trans-

mission curves that are shown in panel (b). This situation is similar to atomic beam

experiments since the atoms—confined only in two-dimensions—have a non-zero mean

velocity as they pass through the resonator (see Reference [166] and citations within).

One disconcerting feature of the supposed optical bistability curves in panel (b) is the

absence of a sharp field switching. This could be caused by the stochastic variations

of the atom number and atomic motion which would induce geff to fluctuate, or by

the random fluctuations of the cavity detuning which is not locked during the atom

transit portion of the experiment. It would be interesting to see if a model incorpo-

rating the stochastic fluctuation of geff and θ accounts for this washing-away of the

normally sharp hysteresis cycle. To rule-out thermal effects, an experiment should

be done that tries to ramp the drive back and forth several times to see if the optical

bistability curves are retraced. Trapping atoms in a Z-trap and/or dimple trap at

the resonator would aid in eliminating the loss of atoms that is presumably the cause
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Figure 7.22: a) Regime of nearly constant intracavity atom flux. ∆t = 100 µs.
b) Same as (a) but averaged 10 times. c) Possible optical bistability signature.
[g0, κ]/2π = [186, 2640] MHz.

of the disparity in the high drive power transmissions of the black and red curves in

panel (b). Instead of taking one data point per drive power in a single-shot, a future

experiment should generate the optical bistability curves by ramping the drive to a

series of set values and taking several data points at each value of the drive.

Our efforts to see single atom transits by diluting the waveguided atoms—via

extra RF cooling—have been unsuccessful so far. The dip in transmission vanishes

rather than revealing discrete spikes. One possible explanation is that the single atom

S/N is not as high as it should be given the calculated g0 and κ. This may be due to

a non-optimal polarization of the intracavity field and/or to optical pumping of the

atom that renders it dark before the end of the detection period. To test this, we shut-

off the microwire waveguide magnetic field as the atom cloud passes the resonator.

The Bẑ = −16 G is maintained, which provides a large quantization field parallel to

the resonator axis. In the first trial only a small atom transit signal was observed.

This is expected since the large bias field Zeeman shifts the atom out of resonance

with the cavity and laser probe (the detuning is 1.4 MHz/G). We recover some of

the transmission signal depth by offsetting the laser diode lock to compensate for

this detuning. The fiber-gap cavity–whether due to the epoxy, the mirror coating, or

fiber itself—has an unknown birefringence. We rotated the λ/2 and λ/4 waveplates

to attempt to obtain purely circularly polarized light in the cavity mode. Soon after
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adjusting these waveplates, we observed a sharp dip in transmission immediately after

the waveguide turn-off time at t = 20 ms. The detection resolution was reduced to

∆t = 50 µs without reducing the depth of the down-transit dip (see Figure 7.23).

While this seems like a promising single atom detection signal, the transient behavior

of the system at this detection time casts doubts upon this conclusion. Further

measurements are required to fully understand what is occurring. We can be sure,

however, that adjusting the intracavity polarization greatly improves detection S/N .

Ideally, we would like to trap the atoms in a Z-trap and/or dimple trap at the resonator

and see several time-resolved transmission dips that become ever more rare as the trap

density is reduced. Towards these ends, we are currently trying to improve the loading

efficiency of the Z-trap and dimple trap at [GU5,GL7] and [GU6,GL6], respectively.

The dimple trap is advantageous since the field at its minimum can be rotated [50] to

be nearly in line with the resonator axis which would provide an in-trap quantization

field. To improve the trap loading, a quadrupole trap—generated by external anti-

Helmholtz coils—is superimposed on the waveguide field and biased to rapidly shift

(within less than 100 ms) the atoms down the waveguide while maintaining high

phase-space density. So far we have only been able to hold atoms in the Z-trap

and dimple trap in the cavity mode for 20 ms. Once improved, we hope to have a

well-controlled system with which to pursue signatures of single atom transits.

7.5 Outlook

In addition to single atom detection with this novel atom-cavity chip, we are actively

pursuing the on-chip production of a BEC for the purpose of insertion into the mode

of the fiber-gap cavity. On-chip BEC production has already been achieved in an

identical atom chip system in our labs in Munich (see Chapter 10). The current plan

is to pre-cool the atoms at the location of the initial trap at the beginning of the

waveguide. Then the waveguide will open and by using either the assistance of a

dimple trap or the external quadrupole trap, shift the atoms to the position of the

resonator. Once in position, final evaporative cooling will be performed, producing
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Figure 7.23: a) Transmission dip after turning-off the magnetic waveguide at t = 20
ms. The Bẑ = −16 G bias field is maintained after the waveguide is turned-off and
the probe field detuned to compensate for the atom’s Zeeman shift. The sharp signal
appeared after adjusting the intracavity polarization. ∆t = 50 µs. b) Same as (a)
but averaged over 24 trials. [g0, κ]/2π = [186, 2640] MHz.

a BEC in an Ioffe trap that is brought into the cavity mode. Optical Fock-state

generation is one potential application of having many cold and well-localized atoms

in a cavity [177, 178]. Studies of the superfluid to Mott insulator transition would be

interesting in this experimental situation, as would be the demonstration of a “quan-

tum tweezer” [179]. Injecting a secondary light field into the cavity could form dipole

traps for the creation of the Mott insulator phase [180] while the primary cavity probe

couples to the atoms for cavity QED measurements. Similarly, an intracavity, attrac-

tive optical dipole potential could be used for extracting single atoms from a BEC

passing through the cavity as it travels along the magnetic waveguide. This quantum

tweezer [181] could be useful for delivering one and only one atom to the ground state

of an intracavity trapping potential. Measurements of the photon counting statistics

(for instance, g2(τ)) for a stationary BEC coupled to a cavity would be interesting to

compare to that measured from a coupled cloud of thermal atoms [182].
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Chapter 8

Atom Mirror Etched from a
Common Hard Drive

This chapter includes the material contained in publication [12] and augments it with

additional figures and experimental details.

8.1 Overview

Laser cooling and trapping techniques have made possible the preparation of ex-

tremely cold samples of atoms. Atom optics employs elements such as mirrors, lenses,

gratings, and beam-splitters to manipulate these cold atoms in a fashion similar to

the familiar photon optics [46]. The advent of atom lasers from the Bose-Einstein

condensation of neutral atoms [183] has enhanced the importance of developing atom

optical elements. In particular, atom mirrors—surfaces that reflect atoms—play a

crucial role in the field of atom optics, and it is of keen interest to develop mirrors

that are simple to fabricate yet highly specular. In this chapter we demonstrate a

straightforward technique to produce large area, high resolution permanent-magnetic

structures on flat, rigid, and inexpensive substrates.

Several types of atom mirrors have been fabricated using evanescent light

fields [184], dynamic magnetic fields [185], and static magnetic fields [10]. Evanescent

mirrors repulse atoms from a prism surface using a potential created by a blue-detuned

light field. Although magnetic mirrors cannot generally be modulated as easily as

evanescent mirrors, they do offer many advantages: passive operation, compactness



211

(no laser access is needed), and much larger repulsive areas.

Magnetic mirrors employ a sheet of alternating current or magnetization to create

an exponentially increasing potential near the mirror surface [186]. To lowest order,

this potential is proportional to B0e
−ky. The surface field, B0, sets the maximum atom

energy that can be reflected, and the spatial period of the current or magnetization,

a = 2π/k, determines the amount of time the atoms interact with the mirror. The

magnetic mirror approximates a perfectly flat mirror as B0 increases and a decreases.

For example, if B0 = 1 kG and a = 1 µm, a cesium atom in the 62S1/2 F = 4, mF = 4

state will be reflected when dropped from a height of 0.4 m, and will only interact

with the mirror for 5 µs if dropped from 2 cm.

Mirrors made from serpentine patterns of wires can produce time-dependent re-

flection potentials. However, they have not been fabricated with periods smaller than

10 µm, and the power dissipated by the small wires requires cooling by liquid nitro-

gen and pulsed operation [53]. Sinusoidal magnetization of audio-tape, floppy disks,

and videotape can produce magnetic mirrors with magnetization periods down to

12 µm [10]. Mirrors made from millimeter-sized arrays of permanent magnets have

been demonstrated, as have mirrors produced by 1 to 4 µm periodic structures fab-

ricated by sputtering ferromagnetic material onto a grooved substrate patterned by

electron-beam lithography [11].

We recently fabricated a magnetic mirror by etching a common hard drive, and

we used this mirror to retroreflect a cold cloud of 106 cesium atoms. Hard drives

offer several advantages for making and using atom mirrors. The common hard

drive provides a large surface area of thin magnetic film whose surface is specifically

designed to be very flat, smooth, and rigid. Furthermore, the film’s remnant magnetic

field and coercivity can be as large as 7 kG and 3 kG, respectively [187]. An atom

mirror could in principle be fabricated with a 2 µm periodicity over the entire surface

of the hard drive. Old or discarded hard drives may be used: an Apple hard drive

from the mid-1990’s was used for the experiment presented here.
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Figure 8.1: A cross-section of the etched hard drive. The magnetization is in-plane.
See Reference [187] for a description of the hard drive layers.

8.2 Design and fabrication of the hard drive atom

mirror

We fabricate the mirror by etching 2 µm wide, ∼100 nm deep trenches into a 1 cm2

section of the surface of the hard drive. These 100 nm trenches extend past the

magnetic layer to form a periodic array of 1 µm wide, 30 nm thick, and 1 cm long

stripes of cobalt alloy (see Figure 8.1). The cobalt alloy is granular, which enhances

the coercivity and allows us to magnetize the material in plane and parallel to the

short axis of the magnetic strips. The typical grain size is 20 to 50 nm [187], and

we expect the magnetization to be uniform for our much larger features. We do not

know the exact materials and thicknesses of the layers of the proprietary hard drive.

However, etching ∼100 nm is sufficient to remove the magnetic layer.

Standard photolithography is used to create the etch mask. After cutting the

hard drive into 2 to 3 cm2 sections (see Figure 8.2), positive photoresist (TSMR-8900

from Tokyo Ohka Kogyo Co.1) is spun onto the cleaned hard drive surface for 40 s

at 4200 rpm. A 5 min bake at 98◦ C followed by a 15 s UV exposure and 65 s in the

developer (NMD-W 2.38%) maps the photomask lines into the resist. To make the

one micron periodic features, it is important to have the photomask perfectly flush

with the photoresist on the hard drive. For this to be accomplished, it is imperative

that one removes the beaded photoresist at the edge of the substrate with a second UV

1Asa Hopkins has since found that AZ1518 works as well.
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Figure 8.2: The relative size of the hard drive sliver used in this experiment. The
square discolored region is the 1 cm2 etched pattern.

Figure 8.3: Example of etched hard drive with 8 µm wide magnetic strips and 4 µm
wide trenches for viewing convenience. (a) AFM of etched drive. (b) Black and white
stripes are the magnetic bits. The magnetic layer is removed in the neutral grey
vertical stripes. (c) An 8 kG magnetic field erases the bits and creates north/south
pole stripes defined by the vertical etch edges.

exposure. The sample is ion milled with argon in a inductively coupled plasma (ICP)

system. We etch for 8 minutes at a forward power of 100 W, ICP power of 400 W, and

an argon flow of 40 sccm. The remaining photoresist is removed with acetone and, if

necessary, a soft swab. To erase the hard drive’s bits and magnetize it as a mirror,

we insert the hard drive section into the field of an 8 kG electromagnet whose field is

parallel to the surface and perpendicular to the magnetic stripes (Figure 8.3 illustrates

this process). This is done by holding the hard drive in the correct orientation as the

electromagnet is slowly ramped up and back down.

The magnetic field from the etched hard drive, with in-plane magnetization, M0,

parallel to the short axis of the magnetic stipes, is analogous to a periodic sheet of
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alternating in-plane magnetization +M0/2 and −M0/2. In the infinite array limit,

the magnetic field above the surface is

B2 = B2
1e
−2ky + 2B1B3cos(2kx)e−4ky +B2

3e
−9ky + ..., (8.1)

where B1 = µ0M0(1 − e−kb)/π, B3 = µ0M0(1 − e−3kb)/3π, and b = 30 nm is the

thickness of the magnetic layer. The field has no components in the z-direction, and

rotates with a period equal to a in the x-y plane. Cesium atoms in the F = 4, mF = 4

state, which has the largest weak-field seeking magnetic moment, would have to be

dropped from a height of 25 cm to penetrate to a height at which the second term in

the expansion is equal the first, so to a good approximation the field may be written

as

B ≈ B1e
−ky +B3e

−3kycos(2kx). (8.2)

For our hard drive mirror, B1 is equal to 2 to 4 kG depending on the specific cobalt

alloy. When a = 1 µm, the ratio of the first harmonic term to the purely exponential

term for a cesium atom dropped from a height of 2 mm (20 mm) is 1×10−6 (1×10−3)

at the turning point y = 0.8 µm (y = 0.4 µm). Subsequent to this experiment, we

learned that custom hard drive platters could be made for us with B1 as large as 20

kG [15], enabling the reflection of much higher energy atoms or the creation of tighter

traps (see Chapter 9).

The etched hard drive used for the experiment has a ≈ 3 µm and c ≈ 1 µm

resulting in a ratio of magnetic layer to gap that is approximately 1:2. Figures 8.4

(a) and (b) show 20 µm wide AFM and MFM scans of the hard drive surface. The

trenches in the AFM scan are dark, and the light to dark variation of magnetic

strips shows the north and south poles of the magnetization. Figure 8.4 (c) shows

a 20 µm cross-section of the MFM scan: peaks represent the north and south poles.

To describe the field above our etched hard drive, Equation 8.2 can be modified to

account for the deviation from a 1:1 width ratio by multiplying B1 by sin(πc/a) and

B3 by sin(3πc/a). In our device, the ratio of c/a ≈ 1/3 decreases the B1 term by 0.9,

but causes the corrugation term to nearly vanish.
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Figure 8.4: Twenty micron wide (a) AFM scan, (b) MFM scan, and (c) MFM cross-
section of the etched hard drive surface.

8.3 Experimental details

The atom mirror is placed facing upwards in a vacuum chamber pumped to 5× 10−9

Torr (see Figure 8.5). In contrast to the experiments that use a standard magneto-

optical trap (MOT) to trap and cool the atoms ∼ 2 cm above the mirror, we use the

mirror MOT technique to collect the atoms 1.5 to 4 mm above the surface [2]. A MOT

requires the zero of a magnetic quadrupole field to be centered at the intersection of

six circularly polarized laser beams coming from all cardinal directions. To satisfy

this configuration near the hard drive surface, two 1 cm diameter beams of opposite

circular polarization reflect at 45◦ from the 1 cm2 etched region (see Figure 8.6).

A retroreflected beam is positioned perpendicular to the 45◦ beams and grazes the

surface of the hard drive. Aligning the axis of the quadrupole field with one of the 45◦

beams completes the mirror MOT configuration. The trapping lasers, each with an

intensity of 4 mW/cm2 and 1 cm wide, are detuned by 10 MHz from cesium’s F = 4,

F ′ = 5 cycling transition. A repumping beam tuned to the F = 3, F ′ = 4 transition

is superimposed onto both the grazing beam and a 45◦ beam. The atoms are loaded

from a thermal vapor.

In previous experiments using a perfectly reflecting gold mirror, we have been able

to trap 2 × 106 cesium atoms in a mirror MOT and cool them to 3 µK. One might
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Figure 8.5: The hard drive is clamped-down onto a teflon block in the middle of the
vacuum chamber. The diffraction grating character of the etch hard drive is apparent
in this image which is taken through one of the AR coated 6” viewports.

expect trapping and cooling to be much less effective with the etched hard drive due

to its poor qualities as an optical mirror: the reflectivity is only ∼50% in the etched

area and 60-70% in the un-etched, it is a good optical grating with up to 3 diffracted

orders visible, and the magneto-optical Kerr effect degrades the circularity of the

reflected 45◦ beams. Nevertheless, we have been able to collect 1 × 106 atoms and

sub-doppler cool them to 11 µK. Achieving this low temperature is crucial because

the atoms released directly from the mirror MOT, at a temperature of ∼120 µK,

expand too quickly and become too diffuse to detect by the time they reach the hard

drive surface.

The poor optical reflectivity of the mirror does slightly complicate the sub-doppler

cooling procedure; however with careful zeroing of the magnetic field it is still possible

to achieve polarization-gradient cooling to 11 µK in a (downwards) moving reference

frame. The problem arises because the reflected 45◦ beams are too attenuated to

properly counterbalance the incoming beams, forcing the atoms downwards in the

absence of a quadrupole field. For optimal sub-doppler cooling, one should adjust the

bias fields until the atoms drop straight downwards and expand as slowly as possible.

This can be achieved by taking fluorescence images from all three angles, adjusting

bias fields between image sets, and gradually increasing the image delay time. The

atoms are optically pumped into the F = 4, mF = 4 Zeeman sub-state just before
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Figure 8.6: Diagram of the experimental set-up. A quadrupole field and two 45◦ laser
beams and one retroreflected grazing beam form a mirror MOT 1.5 to 4 mm above
the etched hard drive.

being dropped, and we apply a 100 mG bias field parallel to the magnetic stripes in

order to maintain alignment of the atomic spins while they are falling/bouncing.

8.4 Results

We have been able to detect two full bounces of the atoms from the hard drive atom

mirror2. Figures 8.7 (a) and (b) show data from five runs of the experiment. The top

panel shows the mean position of the atoms above the hard drive surface as a function

of time. Superimposed is a curve depicting the expected trajectory of a particle falling

under gravity and bouncing from a hard wall. The slope of a line fit to the lateral

expansion of the falling atom cloud provides a measure of the atoms’ rms velocity.

A non-specular mirror would heat and diffusely scatter the reflected atoms as they

bounce, resulting in a sharp increase of the cloud expansion rate. We made a linear

fit to pre-reflection (t < 15 ms) data in each of the data sets, and deviation from

this line, post-reflection, would be evidence of non-specularity. The dashed segment

2A movie of the bouncing atoms—taken by fluorescence imaging—may be found on either the
author’s or the MabuchiLab’s website [188].
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Figure 8.7: Panel (a) shows the mean height of the atoms above the hard drive surface
during the first bounce. Panel (b) shows the residuals from a linear fit to the width
of the expanding atom cloud.

demarcates the region of unfitted data, and we do not see any increase or offset of

the residuals in this post-reflection region: to within the experimental resolution, we

do not detect any deviation from specular reflection.

We have realized a specular atom mirror built by etching a common hard drive.

Magnetization periodicity of 3 µm has been achieved, and we believe it would be

straightforward to reduce this to 2 µm with photolithography and to ∼1 µm using a

large area electron-beam writer. The hard drive atom mirror is compact, passive, rela-

tively simple to fabricate, and possesses a large remanent magnetic field. Moreover, it

has several desirable properties for applications beyond the simple reflection of atoms.

The hard drive’s large coercivity should allow one to use wires fabricated directly on

its surface to augment the mirror’s ability to manipulate atoms. Likewise, electric

pads could be printed on the surface. These pads would allow state-independent

forces to act in concert with the state-dependent forces from the mirror’s magnetic

field to perform quantum logic gates necessary for quantum computation [13]. The

mirror can trap cold atom gases in 2D, and can act as an adjustable grating when

used in conjunction with a magnetic bias field [14, 189]. Large area mirrors can be

fabricated, and it seems possible that these mirrors could be useful for guiding or con-

fining cold neutrons [190]. As hard drive platters are expected to have good surface
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flatness and substrate rigidity, it may be possible to create 2D waveguides by holding

an opposing pair of atom mirrors a few microns apart. Corner cubes and other such

atom optical devices are possible.
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Chapter 9

A 1-D Magnetoelectrostatic Ring
Trap for Neutral Atoms

This Chapter is adapted from Reference [45] and contains more references and a few

extra pieces of information.

We propose a novel trap for confining cold neutral atoms in a microscopic ring

using a magnetoelectrostatic potential. The trapping potential is derived from a

combination of a repulsive magnetic field from a hard drive atom mirror and the

attractive potential produced by a charged disk patterned on the hard drive surface.

We calculate a trap frequency of [29.7, 42.6, 62.8] kHz and a depth of [16.1, 21.8,

21.8] MHz for [133Cs, 87Rb, 40K], and discuss a simple loading scheme and a method

for fabrication. This device provides a one-dimensional potential in a ring geometry

that may be of interest to the study of trapped quantum degenerate one-dimensional

gases. With custom hard drive materials, trap frequencies in excess of 100 kHz may

be attainable.

9.1 Overview

Creating ever more sophisticated trapping potentials has become a standard method

for the study and manipulation of cold neutral atoms, allowing the investigation of

fundamental quantum dynamics as well as providing a basis for quantum information

processing. The manipulation of trapped atoms on atom chips allows the implementa-

tion of many different atom optics elements for trapping, waveguiding, interferometry,
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etc. [50, 68, 51]. Most atom chips use micron-sized current-carrying wires to generate

the magnetic trapping fields. We propose to construct a magnetoelectrostatic ring

trap, consisting of a hard drive atom mirror that provides a repulsive force on low-

field seeking atoms [12] and electric pads that attract polarizable atoms via the Stark

effect [70, 10, 80]. Schmiedmayer and Hinds and Hughes have proposed a range of

such traps, including large-area two-dimensional traps, wire-based waveguides, and

quantum-dot-like single state traps. Such traps could be used to construct beam

splitters or to implement collisional quantum gates [13]. Here we propose a novel

ring trap for cold neutral atoms constructed from a conducting disk placed above

the atom mirror surface, which produces a trap with a deep ring potential around

the edge of the disk. Unlike the ring-shaped waveguides for neutral atoms recently

proposed [191], and demonstrated [192], this ring trap would create a tight enough

potential to confine a degenerate gas in a 1D regime.

9.2 Ring trap design

Let us first examine the trapping potential from a charged conducting disk above a

hard drive atom mirror. The hard drive’s sinusoidal pattern of magnetization results

in a repulsive potential—for atoms in weak-field seeking states—in the form of a

decaying exponential [186]

Umag = mFgFµBB0 exp[−2πz/a]. (9.1)

The amplitude, B0, depends on the remnant magnetization of the mirror as well as the

magnetic sublevel mF and Landé gF -factor of the atomic ground state. The decay

length is proportional to the periodicity a of the magnetization pattern. A small

externally applied magnetic field perpendicular to the magnetization of the hard disk

eliminates zones of zero magnetic field which would allow Majorana spin-flip losses.

The atom’s low velocity allows the spin adiabatically to follow the magnetic field and

thus the trapping potential depends only on the field magnitude.
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In order to create a trap, the repulsive force from the mirror is balanced by an

attractive force due to the DC Stark effect. The atomic potential due to an electric

field is

UStark = −1

2
α |E|2 , (9.2)

where we assume that we are working with atoms such as cesium or rubidium which

possess only a scalar polarizability in the ground state. A charged conducting disk

creates high electric fields near its edge, resulting in a strong short-range attractive

potential.

The mirror is made out of an etched hard drive whose aluminum substrate is

grounded. The boundary conditions consist of a ground at the mirror surface, and

a constant potential on the surface of the thin conducting disk which is placed a

distance d, typically on the order of a micron, above the mirror. The electric fields are

calculated from the solution to the Poisson equation with these boundary conditions.

The combined atomic potential due to the charged disk and mirror creates a trap

above the conducting disk, which is deepest near the edge of the disk.

As an example, consider a conducting disk of radius 10 µm, placed d = 0.6 µm

above a hard drive atom mirror. Let the hard drive have a field at its surface of

2 kG (a typical number for a commercial hard drive), and a periodicity of 3 µm in

the magnetization. The trapping potential for cesium in the F = 3, mF = −3 state

near the edge of the disk has a depth of 16.1 MHz (770 µK) when the potential on

the conducting disk is 14.2 V. For 87Rb in the F = 2, mF = 2 state, the trap has a

depth of 21.8 MHz (1.05 mK) when 18.5 V is applied to the disk. These two atomic

states will be used in all examples for the remainder of the paper. See Figure 9.1 for

the 133Cs potential. The 87Rb potential looks qualitatively the same, with a slightly

deeper minimum. See Table 9.1 for trap parameters for a range of geometries for 133Cs

and 87Rb, respectively. For 40K, the optimal applied voltage is 4% larger than that

for the 87Rb trap, and trap frequencies scale up by a factor of (mRb/mK)1/2 = 1.48

relative to the 87Rb case.

The potential applied to the conducting disk is chosen to create the deepest trap
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Figure 9.1: The atomic potential for Cs with 14.2 V on the disk. a) A cross section
of the atomic potential in the plane containing the axis of the disk. The contour lines
are spaced 4 MHz apart. The distance r along a diameter of the disk and the distance
z above the disk are plotted on the horizontal and vertical axes, respectively. b) The
potential along slice #1 in (a). c) The potential along slice #2 in (a).

Table 9.1: Cs133 and Rb87 trap parameters for several disk radii r and disk-hard drive
separations d.

Trap depth Trap frequencies
d (µm) r (µm) V (MHz) ωr/2π (kHz) ω⊥/2π (kHz)
133Cs

0.6 5 13.3 17.0 24.4 44.1
0.6 10 14.2 16.1 29.7 40.6
0.6 20 14.8 15.4 30.6 37.0
1.0 5 9.4 8.5 18.0 31.1
1.0 10 10.2 8.2 21.2 28.0
1.0 20 10.8 8.1 22.1 26.3

87Rb
0.6 5 17.3 22.9 36.0 63.4
0.6 10 18.5 21.8 42.6 56.8
0.6 20 19.2 20.6 43.7 52.7
1.0 5 12.2 11.4 25.7 44.0
1.0 10 13.3 11.2 30.8 40.4
1.0 20 14.0 10.7 31.5 37.5
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while still maintaining a barrier between the trap and the disk surface. If the potential

applied to the disk is too large, atoms will simply be forced directly into the disk and

lost. The separation between the mirror and the conducting disk must be chosen

carefully. The trap becomes shallower as d is increased, due to the decay of the atom

mirror field. As d is decreased the trap becomes deeper because a higher voltage can

be used on the disk while maintaining the potential barrier between the trap and the

surface.

The curvature of the trap is large enough that the atom is confined in the Lamb-

Dicke regime. The Lamb-Dicke regime is defined as the regime in which

η = (Erecoil/Etrap)
1/2 < 1. For the parameters of Figure 9.1, the effective harmonic

frequencies for [133Cs, 87Rb, 40K] in the radial direction are [29.7, 42.6, 62.8] kHz, and

[40.6, 56.8, 83.8] kHz in the direction perpendicular to the substrate. We obtain a

Lamb-Dicke parameter of η ≤ 0.26 for 133Cs, η ≤ 0.30 for 87Rb, and η ≤ 0.37 for 40K.

Significantly higher trap frequencies are possible with the use of custom magnetic

materials, which can have remnant magnetic fields of up to 2.4 T [15]. For the same

trap geometry as Figure 9.1, but using this custom magnetic material with a corre-

spondingly higher applied voltage, the harmonic frequencies for 133Cs, for instance,

are 103 kHz in the radial direction and 137 kHz in the perpendicular direction. The

higher remnant magnetic field also allows the disk to be placed further from the hard

drive while maintaining significant trap depth.

9.3 Device electrical leads and trap perturbations

A thin lead running along the hard drive surface may be used to connect the disk to a

voltage source. The maximum possible voltage on the disk is limited by the breakdown

electric field of the dielectric material separating the lead from the conducting hard

drive surface. An insulator which can support a field of 106 V/cm is sufficient to

enable the application of ∼20 V on a lead ∼200 nm from the hard drive. In order to

minimize the perturbation that the lead produces on the atomic potential from the

disk, the lead should be as narrow as is practical (∼1 µm) and placed much closer
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Figure 9.2: a) Schematic of the magnetoelectrostatic ring trap drawn to scale. The
disk is 20 µm in diameter, with a 1 µm wide lead connected via a central stem.
The dotted lines show the hard drive atom mirror’s 2:1 etch pattern with a 3 µm
periodicity. b) Cross section of the disk (with the vertical direction scaled up by a
factor of 5), showing—from top to bottom—the disk, stem, lead, insulating layer, and
etched hard drive.

to the hard drive surface than to the disk. At this location, the repulsive force from

the mirror is much stronger and no trap forms around the charged lead. In order to

connect the lead to the disk, the disk is placed on a thin stem, with the lead connected

to the bottom of the stem (see Figure 9.2).

Three dimensional solutions to the Poisson equation indicate that the effect from

the lead on the trapping potential is minimized if the stem connecting the lead to the

disk is located at the center of the disk. For a 10 µm disk and a lead placed 0.25 µm

above the hard drive surface (0.35 µm below the surface of the disk), the trap depth

for a 133Cs atom rises to ∼11.5 MHz above the lead, which is a ∼30% loss of trapping

potential compared to the unperturbed trap. The width of the perturbation is a few

µm, which is slightly wider than the lead. A shallower trap in which the electric pad

is placed further from the mirror surface is perturbed less by the lead. Use of custom

magnetic materials would allow deeper traps to be constructed further from the lead,

thereby minimizing the height of the perturbation [15].

There are several possibilities for minimizing or eliminating the perturbation due

to the lead, or tuning it to be of a particular height, other than simply adjusting the
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trap geometry. The most versatile possibility is to add an additional photolithography

step to insert another electric pad directly above the lead, separated by a thin insu-

lation layer. The voltage applied to this separate pad can be used to compensate for

the effects of the lead. In particular, the voltage on a pad the same width as the lead

and placed 100 nm above it could be tuned to completely eliminate the perturbation

(to within the percent-level accuracy of our calculations) or turn it into a dip rather

than a bump. Complete elimination of any perturbation is possible by expanding

such a pad to cover the entire surface, with a hole to allow the stem to reach from

the lead to the disk. Another possibility is to charge the disk not with a lead but

with an intrachamber electron beam. Such a system would be hard to charge and

discharge quickly, requiring a loading scheme that does not require a rapid change to

the charge distribution.

9.4 Fabrication

We intend to fabricate the device as follows. The hard drive atom mirror is etched

in the manner described in Reference [12], maintaining the 2:1 ratio of magnetization

stripe spacing to minimize higher harmonics. The stripe periodicity will be ≤ 3 µm.

A deposition of a ∼200 nm thick insulating layer of silicon dioxide or silicon nitride is

necessary to prevent shorting between the electric pads and the hard drive surface (see

Figure 9.2). This layer is thick enough to both support the voltage difference between

the pads and underlying surface, and to help planarize the 100 nm deep corrugations

of the etched hard drive. The ∼50 nm tall, ∼1 µm wide gold leads are patterned

on the insulator surface using standard photolithography and thermal evaporation of

the adhesion metal and gold layers [8, 90]. To create the stems, the surface is spin-

coated with photoresist to a predetermined thickness to achieve optimal disk to atom

mirror spacing. Photolithography is again used to create vertical, cylindrical holes of

1 µm diameter in the photoresist located at the terminals of the gold leads. The gold

stems are electroplated from the gold leads through the cylindrical guide holes to the

top of the photoresist. A third photolithographic process and thermal evaporation
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patterns the 20 µm diameter gold disks attached to the tops of the stems. Finally,

the photoresist is removed using standard techniques, leaving behind the mushroom-

like structures. It is not entirely necessary to remove the photoresist underneath the

disks, as small amounts of photoresist will not impair the vacuum too greatly: field

simulations show that to below the percent level, leaving the photoresist under the

disk does not disturb the electric field. Moreover, perturbations to the trap due to

disk edge roughness or due to the hard drive trench corrugations are both negligible

to the percent-level resolution of our calculations.

9.5 Trap loading and surface effects

The trap is conservative once the voltage is established, and the kinetic energy of

the atoms must be lowered for them to stay in the trap. A simple, but inefficient,

method of loading this trap is to drop a cloud of cold atoms from a magneto-optical

trap (MOT)—sub-doppler cooled to 10 µK—onto the device. The atoms are captured

by turning on the voltage on the electric pads as the atoms are passing through their

classical turning point above the atom mirror. Simulations indicate that this scheme

can capture 1 to 2% of the dropped atoms. The fraction is small because the voltage

ramp must be quite fast (∼2× 10−4 seconds) in order to remove enough energy from

the atoms to trap them, while the atom cloud takes roughly 2× 10−2 seconds to pass

through the trapping volume. This scheme has many different parameters over which

loading can be optimized, including the initial position, size and density of the MOT

before it is dropped, and the shape and speed of the voltage ramp. Ramping up the

voltage on the conducting disk is the simplest scheme for trapping the atoms, but it

is possible that another procedure, involving atomic transitions or other degrees of

freedom in the system, could be more effective and is currently being investigated.

Using a procedure similar in spirit to that employed in Reference [14] but involving

Raman transitions could prove to be more efficient. The following is a rough sketch of

such a scheme. For the example of Cs atoms, the ring trap potential would be designed

so that the lower F = 3, mF = −3 hyperfine state is trapped whereas the upper state,
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F = 4, mF = 4, is untrapped. A series of Raman transitions combined with optical

pumping would transfer the population from the untrapped to the trapped state at

the moment when the atoms enter the position above the mirror that corresponds

to the final trap minimum. Although the Raman and optical pumping beams are

always on during this loading sequence, this population transfer is spatially selective

due to the high magnetic field gradient of the atom mirror which Zeeman shifts the

states into resonance with the Raman beams only at a detuning given by the specific

position corresponding to the final trap minimum. If the atom mirror is oriented

upwards, than falling atoms that are not trapped during the first bounce could be

trapped during subsequent bounces. A more involved, but perhaps ultimately more

adaptable method would be to use microwires on the chip surface to guide a cold,

dense cloud of atoms to the disk, which is how one might deliver a BEC to the ring

trap.

Given a loading efficiency of 2%, a 10 µm radius ring trap will capture roughly

30-50 atoms from an uncompressed, dropped cloud of 107 atoms and temperature 10

µK. In order to capture more atoms, disks can be arranged in an array covering a

larger surface area. The volume of the trap deeper than 200 µK is 1 to 2× 10−9 cm3.

Simulations indicate that these traps can be placed roughly 20 µm apart without

significantly disturbing each other. Therefore, roughly 20% of the surface can be

covered with the traps. Combining the loading efficiency with this surface coverage,

roughly 103 atoms can be trapped. The leads can be routed though spaces between

the disks with either a separate lead for each disk or a shared network of leads. Instead

of disks, a pattern of concentric rings could also densely cover the surface.

Several undesired effects, such as heating, fragmentation of Bose-Einstein conden-

sates, and a reduction of trap lifetimes have been detected in microtrap experiments

involving atoms near room-temperature surfaces. The trap proposed here is not

susceptible to heating due to technical noise on currents in microwires and to the

fragmentation problems caused by the spatial variation of these currents [93, 62, 97].

However, the trap remains susceptible to atom loss due to spin flips induced by mag-

netic field fluctuations from thermal currents in the metal forming the electric pads,
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as detected in several experiments [96, 193, 170]. Surface effects in this system will

most closely resemble those in Lin et al., wherein the skin depth for the transition

frequency between trapped and untrapped magnetic sublevels of the atoms is much

larger than both the distance of the atoms from the metal surface and the thickness

of the metal conductor. As reported in Lin et al., at a distance of 2 µm this Johnson

noise limits the lifetime of 87Rb atoms above a 2 µm thick copper conductor to a

few 100 ms—ample time for detecting atoms in the ring trap. The metal film used

for the electric disk pad in the ring trap will be ten to a hundred times thinner than

that used for the above experiment, and we expect this to further minimize the trap’s

loss rate [194, 195, 170, 196]. Specifically, the thickness of the disk can be adjusted

between 50 to 200 nm without significant effect on the trap parameters. An addi-

tional surface effect was recently found in an experiment by Cornell’s group which

measured a perturbation to the potential of a magnetic trap less than 30 µm from a

surface containing 87Rb adsorbates [197]. Modification of the disk potential might be

required to adjust for this perturbation.

9.6 Discussion

Several future improvements or extensions of this trapping concept are possible. For

example, the decoherence effects due to the proximity of a conductor could be mit-

igated with the use of a dielectric magnetic film in place of the hard drive, and

dielectric pads charged via an electron beam in place of the conducting disks. In

addition, disks, rings, wires, and other shapes could be used to trap and manipulate

the atoms just above the surface, and voltages adjusted to shift the atoms from one

potential into another. Integration of these traps with magnetic microtraps based on

current-carrying wires on the surface is also possible. Small single-atom traps with

additional electrostatic pads to control the barrier heights could produce a system

capable of performing quantum logic gates [13].

In the past several years, there has been much experimental and theoretical inter-

est in trapped one-dimensional (1D) quantum degenerate gases (see References [198,
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199, 200, 201, 202, 203, 204] and the citations within). Trapped 1D gases require

kBT, µ � ~ω⊥, where T is the temperature, µ is the chemical potential, and ω⊥ is

the transverse trapping frequency. Various regimes of quantum degeneracy—of which

a 1D gas of impenetrable bosons, the Tonks-Girardeau (TG) regime, is of particular

interest—can be explored by changing the density of trapped atoms or by modifying

the interactions between atoms via Feshbach resonances. In the latter case, a mag-

netic bias field for adjusting the s-wave scattering length, a, can be added parallel to

the magnetization stripes of the atom mirror without affecting the potential of the

magneto-electrostatic ring trap. In a 1-D trap, the chemical potential is

µ = 2~ω⊥an1D, (9.3)

where n1D = N/L is the number density and L is the length of the trap. With

respect to 87Rb, a common alkali used for BEC, kBT/~ω⊥ is smaller than 0.05 for

temperatures below 100 nK. The TG regime requires that the mean interparticle

separation, 1/n, be much larger than correlation length, lc = (~/2mnω⊥a)1/2, where

m is the atom’s mass, n = N/L is the number density [201]. This constraint limits

the number of 87Rb atoms in the ring trap to N � 2mω⊥aL/~ = 490 [1600] atoms

for a device of circumference L = 2π · 20 µm, ω⊥ = 2π · 40 [2π · 130] kHz, and

an a unmodified by Feshbach resonances (the field at the trap minimum is ∼12 G).

Overcoming the challenge of detecting so few atoms may be possible through the

incorporation of microwire traps [202].

The ring geometry adds a unique element to the many-body physics of the 1D trap.

Josephson effects in trapped BECs have been investigated theoretically for the case

of a double-well potential (see Reference [19] and citations within) and investigated

experimentally in an optical standing wave [205]. A BEC in this magneto-electrostatic

ring trap system with interspersed Josephson junctions formed from the addition

of micron-sized perturbations to the trapping potential—such as those caused by

wire leads, possibly tuned using additional pads—is reminiscent of superconducting

electronic systems. The ratio of the chemical potential to the perturbation barrier
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height can be adjusted with the trap parameters such as d, r, atom number, and disk

potential, as well as the use of additional electric pads, to cause the perturbation

to act as either an impenetrable wall, a tunnel junction, or a scattering center. For

example, taking the conceivable limits of the ring trap, to form a tunnel junction

in a ring trap of r = 5 µm, ω⊥ = 130 kHz, and containing 1000 Rb atoms, the

perturbation would have to be adjusted slightly above µ = 47 kHz which could be

accomplished via the secondary electric pads described in Section 9.3. The utility of

this 1-D ring trap is highlighted by recent proposals for using a BEC in a double ring

to create a SQUID-like device for neutral atoms [206] and for investigating quantum

chaos in the system of the quantum kicked rotor [207]. Matter wave interferometry

is one potential application.

This magnetoelectrostatic trap for cold neutral atoms—derived from balancing

the repulsive force of an atom mirror with the attractive force from a charged disk—

introduces a novel ring trapping geometry for cold neutral atoms. Fabrication of this

trap is straightforward, and an array of such traps can trap a significant number of

atoms. Furthermore, such a trap may allow the exploration of interesting many-body

physics in a one-dimensional ring trap. This device is an example of the rich potential

for developing novel atom optical elements through the integration of a hard drive

atom mirror, charged pads, and microwires.
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Chapter 10

Splitting a BEC in a Magnetic
Double-Well Potential: Atom
interferometry and Josephson
effects on an atom chip

This chapter discusses an atom chip experiment whose goal is to coherently split a

Bose-Einstein condensate (BEC) in a magnetic double-well potential. Such a device

can be used for atom interferometry [208] or for studying Josephson effects in a

matter wave system [209]. This experiment is being performed in collaboration with

the group of Professors Theodore Hänsch and Jakob Reichel at the MPQ/LMU in

Munich. The purpose of this chapter is to describe the experimental apparatus,

present the simulations we performed regarding the Josephson effects observable in

our specific double-well trap, and finally relate the non-ideality of the current chip

design that obscures these effects. We will not discuss the physics of matter waves in

a double-well potential in detail, but rather refer the reader to several papers on the

topic (see References [210, 19] and citations within).

10.1 The double-well chip

The magnetic double-well potential in our experiment is formed from a pattern of

rectilinear microwires on an atom chip. Figure 10.1 (a) shows a sketch of the relevant

wires. The experiment begins with a BEC trapped above the intersection of wires #2
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Figure 10.1: a) Microwire layout for producing a magnetic double-well potential. b)
Single-well potential in x̂ formed with wire currents I4, I1, and I3 with bias fields By

in +ŷ and Bx in +x̂. The potential minimum is centered above wire #2. c) Double-
well potential in x̂ formed from the same currents as in (b) but with the addition of
I2. The peak of the barrier is centered above the wire with current I2 and the wells
are spaced by slightly less than 2L. Ub is the magnitude of the barrier’s energy, and
d is the barrier’s full width at half maximum.

and #4. The BEC could be either condensed at this intersection point or waveguided

to this location from the initial trapping zone. The BEC is confined using a dimple

trap. Trapping in ŷ and ẑ is provided by the wireguide formed from current, I4,

in wire #4 and a bias field, Bŷ, in +ŷ. Confinement in x̂ is provided by currents

I1 and I3 in wires #1 and #3, respectively, combined with a bias field, Bx̂, in +x̂.

The magnetic field from these wires and bias fields form an approximately harmonic

potential well above the substrate. Panel (b) of Figure 10.1 shows a slice of the

harmonic potential in the x̂-ẑ plane. This potential is deformed into a double-well by

the field from the current I2 in wire #2. In contrast to the currents I1 and I3, the

oppositely flowing current I2 produces a field that adds to Bx̂ rather than subtracts

from it. This produces a potential barrier in the harmonic potential well, splitting

it into two as shown in Panel (c). In this manner a double-well potential is formed

whose axis is along x̂ and is roughly cylindrically symmetric in the ŷ-ẑ plane. The
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barrier height, Ub, and width, d, is most readily adjusted with I2, but this height and

the trap frequencies may also be tuned by manipulating the relative magnitudes of

I1, I3, and Bx̂. In general, I4 > [I1, I2, I3] and Bŷ > Bx̂ so that the fields in x̂ may

be viewed as perturbations on the otherwise homogenous waveguide formed from the

I4 and Bŷ
1. To first order, it is the 2-D confinement due to I4 and Bŷ that sets the

height of the double-well trap above the substrate. The double-well potential, U , may

be approximated by a harmonic potential in ŷ and ẑ with a Gaussian barrier along x̂

and centered at x = 0:

U(ρ, x) = mω2
x(λ

2ρ2 + x2)/2 + Ub exp(−x2/2d2), (10.1)

where ρ2 = y2+z2, and λ = ωp/ωx. The λ parameter characterizes the degree to which

the two lobes of the double-well are of a “pancake-shape” (λ � 1) or “cigar-shape”

(λ� 1) [19].

When the barrier width is large and Ub � µc, the two separated BECs are

decoupled—tunneling is suppressed—and the phases evolve independently. An atom

chip-based atom interferometer may be formed with this device by coherently splitting

and recombining the BEC using the I2 current to manipulate the barrier height [208].

Several other groups are also pursuing atom interferometry with BECs using mi-

crowire traps [211, 212, 73] and a few have demonstrated BEC splitting and the

detection of interference fringes upon trap release [81, 213, 214]. (See Reference [215]

and citations within for information regarding the optical dipole-based double-well

traps.)

10.1.1 Josephson effects

Josephson effects can be explored in this double-well system when the barrier is no

longer impenetrable, but rather allows weak coupling between the BECs in each lobe.

The oscillation rate and atom number current amplitude are exponentially sensitive

1This fails to be true in the case of the non-ideal wire layout of our chip (see Section 10.1.2).
Bŷ < Bx̂ is required to overcome the stray fields produced by the current perturbations at the wire
intersections.
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to the overlap of the BEC wavefunctions in this barrier region. Great care must

be taken in designing the tunneling junction geometry to ensure that the Josephson

plasma oscillation frequency, ωJP , and the population oscillation amplitude, ηmax, are

large enough to be detected. We define this amplitude to be η(t) = [Nl(t)−Nr(t)]/N ,

where Nl and Nr are the atom population in the left and right wells, respectively, and

N is the total number of atoms in the condensate. Reference [19] provides a rough

estimate of the maximum amplitude of the oscillation:2

ηmax ≈
exp[−

√
md2(Ub − µc)/4~2]

(ma2λ4N2ωx/~)1/10
. (10.2)

To maximize the exponential in ηmax, d should be minimized and Ub—while always

having to be larger than µc—should be as close to the chemical potential as possible.

The number current may be further maximized by decreasing m, the atomic mass; a,

the s-wave scattering length; λ; and N . The atom species is usually fixed, though a

might be modifiable by Feshbach resonances, so λ and N remain as the most easily

adjustable parameters for maximizing ηmax. The λ ratio is minimized with the “pan-

cake” geometry which increases the junction area. A large condensate population, N ,

exacerbates the mean-field interaction which inhibits tunneling. Quantum and ther-

mal phase fluctuations between the BECs in the two wells must also be considered

when designing the double-well potential to ensure the coherence of the system [210].

Following the method of the Williams paper [19], we have calculated ηmax and

ωJP for the double-well potential produced by our atom chip. Matlab scripts were

written to solve the necessary equations listed in this paper. These scripts are quite

lengthy and have not been included in Appendix B. Please contact the author to

obtain a copy of this Matlab code. This system is described by the Gross-Pitaevskii

equation,

i~
∂

∂t
Φ(r, t) = [−~2∇2

2m
+ Vext(r) + g|Φ(r, t)|2]Φ(r, t), (10.3)

where |Φ(r, t)|2 is the condensate density, Vext(r) = U(ρ, x) for this double-well, and

g = 4π~2a/m is related to the s-wave scattering length and is the coupling con-

2Note: References [19] and [210] use different and sometimes contradictory notations.
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stant characterizing the strength of the non-linear term arising from the interacting

atoms [216]. It is this mean-field interaction that limits ηmax < 1 and introduces

into this system the phenomenon of quantum “self-trapping” wherein tunneling is

suppressed for initial population differences larger than ηmax [19]. The Josephson

and the self-trapping effects were recently observed experimentally in a double-well

experiment using optical dipole traps [209].

An approximate time-dependent solution to this double-well system is found in

the case of Ub > µc by solving the Gross-Pitaevskii equation using a two-mode

ansatz [217]. Specifically, the Gross-Pitaevskii dynamics in the double-well may be

described by a superposition of wavefunctions localized in the left (l) and right (r)

wells:

Φ(r, t) = ψl(t)Φl(r) + ψr(t)Φr(r), (10.4)

where for case of the left well ψl(t) =
√
Nl(t) exp(iφl(t)) and φl is the phase of

the left-localized condensate. A variational procedure using a Gaussian ansatz for

the symmetric and anti-symmetic combinations of Φl and Φr provides an accurate

description of the system (see Reference [19] and the citations within). These wave-

functions are found by minimizing the Gross-Pitaevskii energy functional:

E[Φ] =

∫
dr[

~2

2m
|∇Φ|2 + U |Φ|2 +

g

2
|Φ|4]. (10.5)

Once Φ is found, η(t) and φ(t)—and consequently ηmax and ωJP —are obtained by

substituting Φ back into the Gross-Pitaevskii equation. This is the procedure we

implemented numerically for our specific double-well potential in the Matlab code

discussed previously. Using the notation of Reference [210], the solutions to Equa-

tion 10.3 may be used to find the “capacitive-like” energy, EC , due to the atomic

interactions, and the tunneling energy, EJ :

EC = 2
dµi

dNi

, (10.6)

EJ =
~2

m

∫
dy dz[Φl

∂Φr

∂x
− Φr

∂Φl

∂x
]x=0, (10.7)
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where i equals either l or r (i.e. µl is the chemical potential of the BEC in the left

well), and this should be evaluated for N divided equally between the two wells. In

the Thomas-Fermi limit, EC = (4/5)µi/Ni [216]. In the limit of strong tunneling,

ωJP ≈
√
ECEJ/~ and to have quantum phase fluctuations be small, the condition

EC/EJ � 1 must be satisfied. The BEC temperature should be kept lower than

approximately EJ to negate the effects of thermal fluctuations. See Reference [210]

for details regarding these issues.

10.1.2 The magnetic double-well

Before we can solve for ηmax in our system, we must first calculate and characterize

the magnetic double-well potential produced by the actual wire layout on our atom

chip. A photograph of the chip wires is in Figure 4.5 of Chapter 4. It is evident that

the wires are not perfectly thin like those in the model of Figure 10.1. This is due

to the fact that the wires must be able to support several hundred mA of current for

100 ms or more. In particular, the central wire must support a current I4 & 0.5 A.

The actual device, shown in Figure 4.5, has five splitting wires instead of the three

shown in Figure 10.1. This was done to add redundancy, and to allow the creation of

a larger barrier width for atom interferometry by using the two or three central wires

for the I2 current. The wires are 4 µm tall, and the guiding wire, #4 with I4, is of

width 20 µm, and the three (or possibly five) splitting wires, #1, #2, and #3 with

I1, I2, and I3, are 2-3 µm wide and spaced by L = 2 µm.

A Laplace solver was written in Matlab to calculate the actual current flow in this

pattern of finite-width wires. This calculation was undertaken because it was only

after the fabrication of the chip that we realized that the non-ideal current flow at

the intersection of the wires might perturb the formation of the double-well potential.

Specifically, since the guiding wire is so much wider than the splitting wires, the

current from the splitting wires flows into the guiding wire rather than straight across:

The current makes a 90◦ turn from ŷ to x̂ which produces undesirable stray magnetic

fields at the wire intersection. Figures 10.2 and 10.3 show the electric potential and
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Figure 10.2: Potential on the wires of the double-well atom chip.

Figure 10.3: Currents flowing through the wires of the double-well atom chip.
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current flow in our wire pattern (only three splitting wires are considered). The

deviation from ŷ for the currents in the splitting wires would not affect the trap

potential if the atoms were confined further away from the surface than the width of

the guiding wire, 20 µm. However, for this experiment the atoms need to be within 20

µm from the surface to ensure the proper formation of a double-well potential. The

double-well trap maximizes ηmax and ωJP the closer the trap minimum is to the wire

surface (i.e. a smaller d and λ can be attained when the trap minimum is closer to the

chip). While the field from the segments of the splitting wires that effectively extend

to +∞ ŷ and −∞ ŷ allows the formation of a double-well potential even at these

small trap heights, the distortion of the current flow in the guide wire intersection

skews the axis of the double-well away from x̂. This prevents the attainment of as

low a d and λ as we would expect from the ideal case of non-intersecting wires.

We wrote a 3-D Biot-Savart solver in Matlab for computing the magnetic field

from the current pattern found from the numerical solutions to the Laplace equation.

Future investigations should use a commercial software package for doing this more

efficiently. The following figures show the 2-D slices of the magnetic field forming the

double-well in the x̂-ẑ plane taken along the axis of the double-well trap (Figure 10.4);

in the x̂-ŷ plane at zmin, the minimum of the trap in ẑ (Figure 10.5); and in the ŷ-ẑ

plane at the center of a well (Figure 10.6).3 In this experiment, the mirror coating

on the atom chip is roughly 15 µm tall, and this prevents the trap minimum from

being much less than ∼20 µm from the wires if surface effects are to be minimized:

in these calculations zmin = 20 µm4.

We found that currents of I1 = −193.6 mA, I2 = 265.2 mA, I3 = −195.5 mA,

and I4 = 650 mA and bias fields of Bŷ = 50 G and Bx̂ = 131.25 G maximize ηmax

and ωJP for our actual wire pattern and a trap minimum at zmin = 20 µm. We fit

these 2-D slices of the magnetic field to find the trap frequencies, ωx, ωy, and ωz,

and d and Ub.
5 These values are inserted into the Gross-Pitaevskii equation solver,

3The origin of these axes do not correspond to those in Figures 10.2 and 10.3. However, the axis
labels are consistent throughout Figures 10.4, 10.5, and 10.6.

4With respect to the ẑ origin in these plots, the position of the wires is z ≈ −18 µm.
5ωy and ωz are approximately equal, and we take ωρ to be their average for solving the Gross-
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Figure 10.4: Magnetic field in the x̂-ẑ plane taken along the axis of the double-
well trap. The field is produced from the wire currents and bias fields shown in
Figures 10.2 and 10.3. The barrier height is almost imperceptible due to the effort to
make Ub = 1.5µc.

Figure 10.5: Magnetic field in the x̂-ŷ plane at zmin = 20 µm above the wires. The field
is produced from the wire currents and bias fields shown in Figures 10.2 and 10.3. The
barrier height is almost imperceptible due to the effort to make Ub = 1.5µc. Darker
regions (blue) show a smaller magnetic field than the lighter (red) regions.
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Figure 10.6: Magnetic field in the ŷ-ẑ plane at the center of a well. The field is
produced from the wire currents and bias fields shown in Figures 10.2 and 10.3.

which then allows the calculation of ηmax and ωJP for our trap parameters. We found

ηmax = 1% and ωJP = 2π · 14 Hz for a double-well system of N = 1000, Ub = 1.5µc,

zmin = 20 µm, ωx = 1.8 kHz, ωρ = 3 kHz, and d = 6.5 µm. If we had used a

different atom chip mirror that allowed the trap minimum to be closer to the surface,

then for zmin = 8 µm we could have improved the amplituted and frequency of the

Josephson oscillations to ηmax = 1.5% and ωJP = 2π ·72 Hz with a double well system

of N = 1000, Ub = 1.5µc, zmin = 8 µm, ωx = 5.2 kHz, ωρ = 8 kHz, and d = 3.8 µm.

The ηmax is not spectacular for either of these cases, and number current oscillations

of this amplitude would be hard to detect experimentally. The skewing of the double-

well and the large trap height are the main limiting factors in this experiment. It

would be difficult to shrink the wire spacing, L, by much more than a factor of two,

and so large improvements to d would be hard to realize. In both of the above cases,

λ ≈ 1.6 which is not yet into the high junction area, “pancake” trap regime which

would greatly improve the ηmax.

Pitaevskii equation.
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Experimentally, we have been able to create and trap BECs above the wire in-

tersections used for the double-well trap. A cold cloud of 87Rb atoms are collected

in a Z-trap —after a mirror MOT, U-MOT, and P-trap (see Chapter 2 for load-

ing details)—before being waveguided to the double-well region. The waveguiding

is accomplished by RF-cooling the trapped atoms before transferring them from the

Z-trap to a long wireguide. The guide wire, #4 in Figure 10.1, delivers the atoms to

the intersection of wires #4 and #2. As the atoms pass down the guide wire with

current I4 ≈ 2 A, the wires with I1 and I3 form a dimple trap that confines the cold

atoms in the splitting region. Final BEC production is performed by RF evaporation

at this location. Unfortunately, an unintentionally large current in the guide wire

coupled too much current into the splitting wires and overheated and broke some of

them before we were able to attempt a double-well trap.

The next generation of the double-well atom chip takes into account the Joseph-

son junction engineering intuition we have gained by performing the calculations

presented above. Three improvements will be made: the atom chip will be bilayer;

the splitting wire spacings, L, will be smaller; and the detection system improved

to allow a lower BEC population, N . The small splitting wires will be on a layer

separated from the large guiding wire by a 10 µm thick insulating layer of polyimide.

Since the splitting wires and the guide wire no longer intersect, we will not have to

worry about either burning-out the splitting wires or the stray magnetic field from the

non-ideal current flow at the intersection of the wires. A smaller trap population, N ,

increases the maximum atom current oscillation between the wells (see Equation 10.2

for ηmax). With a similar wire pattern and a trap height of zmin = 7.8 µm, we should

be able to produce a double-well trap of d = 3.2 µm, ωx = 0.5 kHz, ωy = 1.8 kHz, and

ωz = 2.1 kHz. While λ is larger in this trap than before, by using only N = 50, we

can achieve a ηmax = 30% while keeping the quantum phase fluctuations below 0.05

(see Reference [210] for information regarding this latter quantity). A major challenge

will be in ensuring that ambient magnetic field fluctuations or current supply noise

do not jiggle the double-well trap and dephase the oscillations. Low-noise, custom

power supplies are being employed and µ-metal shielding installed to help mitigate
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these unwanted effects.

10.2 The glued-cell chamber

The high gradients produced by magnetic microtraps evaporatively cool atomic gases

to degeneracy more rapidly than in more standard magnetic traps. Consequently, the

vacuum pressure in the trapping chamber can be higher since the trap lifetime doesn’t

need to be as long. This allows one to relax the vacuum chamber design requirements,

thereby enabling the use of a much more compact BEC production system [17]. A

major practical difficulty of atom chip experiments is the connection of typically 20

to 40 electrical contacts from the chip to the outside of the vacuum chamber without

blocking optical access or introducing incompatible vacuum materials. Fortunately,

the less stringent vacuum requirements allow us to solve all these problems in a

relatively elegant manner by allowing the use of relatively vacuum-safe epoxy: the

atom chip substrate itself forms one of the walls of the vacuum chamber by being

glued to an open face of a glass cell. This enables great miniaturization and forms a

natural way to create an electrical feedthrough since the edge of the chip can extend

outside the vacuum chamber. The entire volume of the vacuum chamber can fit inside

a roughly 1 m3 space. Combined with a compact diode laser system, this forms a

space-efficient apparatus for BEC production (see Figure 10.7 (a)).

Figures 7.3 and 10.7 (b) show this chip assembly. Attached to a standard UHV

(ultra-high vacuum) vacuum system—comprised of a valve to a turbo pump, a com-

pact ion pump, titanium sublimator, and a vacuum gauge—is a glass-to-metal seal

built on a 2.75” Conflat piece. The glass part is an open-ended, roughly 1” diameter

cylinder. This is pictured in the lower half of Figure 7.3. The face of the top edge

of the cylinder is polished in-house to enable smooth mating with the face of a glass

cell glued on top of it. The cubic glass cell is purchased from Hellma for about $50.

We order it without one of the glass faces, and with a diamond-tipped hole-cutter

we drill-out a hole in the face that mates with the glass-to-metal seal. The polished

edge of the glass cylinder is glued to the face with the hole and the atom chip is
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Figure 10.7: a) Glued-cell vacuum chamber for atom chip BEC production. The
vacuum chamber piping and ion pump are obscured by the black breadboard. b)
Close-up of the glued-cell mounted inside the magnetic field coils. Notice the extension
of the base chip outside of the vacuum chamber.

glued to the polished edge of the missing face of the Hellma cell. The final assembly

is shown in Figure 7.3. The dark amber areas are the glue seals. We use the UHV

compatible glue, Epotek 353. This epoxy cures at 80◦ C for 30 min and makes a

good vacuum seal at these joints without too much out-gassing. We have been able

to achieve pressures as low as 1.5 × 10−10 Torr in these glued-cell chambers. The

cells are reasonably strong and can withstand a ∼150◦ C chamber bake. However,

we have noticed that they are prone to develop micro-fissures at the glue joints after

6 months to a year under vacuum. Nearly all of these cracks have been satisfactorily

sealed with the addition of small glue patches.

The vacuum cell with chip occupies a cubic volume of only ∼30 mm on each side.

This allows the close placement of magnetic bias field coils, which in turn minimizes

the power dissipation required to produce a field of tens of Gauss at the atom trap

position. The atom chip is larger than the face of the Hellma cell, and the part

extending outside this cell is used as the connection point for the chip’s microwires.

The left panel of Figure 7.4 and Panel (b) of Figure 10.7 show how this is done: the

metal pads on the chip extend from inside the vacuum to the air, and the Epotek

353 forms a tight seal over and between these several micron tall wires and the glass

Hellma cell. A female PCI slot from a computer is used to couple the wire pads to
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Figure 10.8: Atom chip glued to “base chip” with the thermally conductive epoxy,
Epotek H77. The top chip (roughly 30× 30 mm) contains the microwires, and these
wires are wire bonded down to the contact pads on the base chip (wire bonds not
shown). The base chip also contains a several hundred micron wide wire for creating
a U-MOT. This wire is located underneath the upper atom chip. The wire pads of
the base chipshown in the left and rightmost extremes of the pictureextend outside
the vacuum and form the electrical feedthroughs

macroscopic wires. This connector is arranged so as not to block optical access to

the trapped atomic cloud. On the top face of the atom chip—which is exposed to

air—a water-cooled copper block, thermistor, and thermoelectric cooler are attached

to cool and temperature stabilize the atom chip. The atom chip that is glued to the

cell may not necessarily be used as the primary chip device. In our experiments, a

secondary chip that contains the smallest microwire features is glued to this “base

chip.” This secondary atom chip is smaller than the surface area of the cell’s face

and is entirely contained within the vacuum chamber. Figure 10.8 shows these two

chips glued together. The wire pads from the smaller, main atom chip are connected

via wire bonds to the lower base chip. Up to 10 wire bonds are required per pad

for redundancy in case of bond breaking and to enable the conductance of up to

an amp of current. To improve thermal conductance between the two chips, a thin

layer of thermally conductive epoxy, Epotek H77, attaches the chips to one another.

This epoxy is not as UHV compatible as the Epotek 353 and care should be taken to

minimize its vacuum-exposed surface area.

Atom chip and base chip assembly. The two AlN substrates are glued together
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with thermally conductive epoxy (Epotek H77). The wire pads of the base chipshown

in the left and rightmost extremes of the pictureextend outside the vacuum and form

the electrical feedthroughs.

The cell walls and the atom chip’s surface are coated with a dielectric film that

forms an anti-reflection (AR) coating and a mirror, respectively. The film is of the

detachable kind described in Chapter 7, Section 7.2.2. The coating is glued to the

atom chip and cell wall with the Epotek 353 epoxy, which in thin films is transparent

in the NIR. This is a nice technique as it enables the AR coating of hard-to-reach

places such as the inside of the vacuum cell.

In the interest of compactness, we trap atoms in the initial mirror MOT using

a vapor of 87Rb atoms in the glass cell that is attached to the atom chip. The

most difficult aspect of BEC production in the glued-cell chamber is the balance

between large trap atom number and long trap lifetime. Although evaporative cooling

occurs more rapidly in the high gradients of the atom chip, one still needs to start

with around 107 atoms so that at the end of the cooling cycle, which takes 5-6

seconds, one has more than 105 remaining. A high vapor pressure of 87Rb during MOT

loading is required for high trap populations, but during the magnetic confinement

thereafter, the vapor pressure should be low to eliminate the background collisions

that quench trap lifetime. These seemingly contradictory requirements are satisfied

by time-dependently controlling the vapor pressure. This is accomplished by the

combined use of a Rb dispenser [218, 219] and a UV desorption light [220].

The dispenser is the source of the Rb vapor pressure and operates by resistively

heating a Rb compound to several hundred degrees Celsius. The Rb compound is

contained in a metal jacket a centimeter or two long that has a thin ∼1 mm wide slit.

When ≥ 2.5 A of current flows through the metal jacket the Rb compound is heated

and pure Rb is released. The Rb vapor pressure can be precisely tuned with the

dispenser current. The Rb dispenser and Kapton-coated wire contacts are shown in

Figure 7.3. The metal jacket is positioned vertically with the slit facing towards the

opposite side of the glass cylinder. It is important that the slit not face the atom chip

surface or else hot atoms will bombard the MOT and magnetic trap. The dispenser
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must be properly conditioned before operation to prevent “dirt” from being emitted

along with the Rb. The general procedure is to heat the dispenser with higher than

normal currents (∼5 A) that one increases every few hours. The vacuum pressure

spikes each time the current steps to a higher value, but reduces after a half-hour

as the dirt is removed from the dispenser. References [83, 218, 219] contain a more

thorough discussion of this procedure.

A UV source is flashed-on during the MOT loading phase to transiently increase

the vapor pressure of Rb in the vacuum cell which increases the MOT atom number.

The UV light desorbes Rb from the glass cell walls, allowing a factor of 5 to 20

increase in MOT number depending on the desorption efficiency and ambient vapor

pressure of Rb (i.e. there is a larger fractional trap population increase for lower initial

vacuum pressures). Certain types of glass work better than others for absorbing

Rb, and it seems like Pyrex is superior to quartz and fused silica (the group of J.

Thywissen at the University of Toronto has been quite successful with the technique

using Pyrex). Generally, the first flash of the UV light after a prolonged pause in the

experimental cycle desorbes more Rb than in subsequent flashes. Halogen bulbs from

overhead projectors, though white light sources, contain enough UV for this purpose.

Unfortunately, they become quite hot and take a few seconds to completely turn-off

when the drive current is shunted to ground. The heat of the bulb can disturb the

glued cell and thermally detune cavities within the cell. Royal blue and UV LEDs

are now on the market and can be used instead. The UV LED is said to be superior

even though it only emits a few tens of mW. We have used the 50 W UV light source

from the Dymax UV curing set-up for this desorption to great effect. Unfortunately,

this 50 W source is quite expensive and prone to breakdown.

We use the Rb dispenser at a very low current, 2.5 to 2.8 A, to introduce a

constant, low level of Rb into the chamber. The UV light source is turned on for the

first ∼5 s of the ∼8 s MOT loading sequence, during which the added Rb increases

the vacuum pressure to the high 10−10 to low 10−9 Torr range. The UV is off during

the last 3 s to allow the chamber to decrease back down to a steady-state vacuum

pressure in the low 10−10 Torr range. After the MOT phase, the magnetic traps are
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loaded and the combination of high initial atom number and low chamber pressure

allows evaporative cooling to quantum degeneracy without losing all of the trapped

atoms. Some groups only run the dispenser once a day at a high current to coat

the cell walls instead of continuously running it at low current. Care must be taken

to balance the dispenser current and the UV light source operation time and bulb

position to optimally provide high atom number and long lifetimes. We place at least

two Rb dispensers into the chamber in case one is extinguished. Their lifetime at

normal operating currents and conditions seems to be greater than one year. Future

experiments will use a chilled copper block to cool the Rb dispenser rapidly after

shutting off the current, thereby allowing the Rb emission to be quickly quenched.

This will allow the pulsed operation of the dispenser as well as the UV light.
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Appendix A

Magnetic Fields, Gradients, and
Trap Minima of U- and Z-Traps

This appendix lists the analytic expressions for the field calculation of the U-trap.

All wires are assumed to be infinitely thin, and this approximation breaks down

only when the trap minimum, y0, is less than a wire width, w, above the substrate

surface [2, 50, 68]. The magnetic field at a distance y from the finite-width wire is:

B(y) =
µ0I

πw

(
π

2
− arctan

2y

w

)
. (A.1)

This reduces to

B(y) ≈ µ0I

πw

(
π

2
− 2y

w

)
, (A.2)

for y ≤ w. It is important to note that because the near-wire gradient is

∇B(y) = −µ0

2π

1

y2 + (w/2)2
, (A.3)

the wire width must be decreased to achieve arbitrarily high gradients for reasonable

wire currents. An analytic expression exists for a wide wire, but is too cumbersome

to list here and numerical simulations should be performed instead. Moreover, in

these near-wire situations, numerical calculations involving the Laplace equation are

often required to account for the actual current flow between wire intersections. The

double-well experiment discussed in Chapter 10 was one such case. Although we

have written MATLAB code for these numerical simulations, we recommend the use
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of FEMLAB for all future calculations due to its flexibility and optimized coding.

For quick simulations of the U-traps, Z-traps, and microwire waveguides, the follow-

ing analytic expressions for the fields are sufficient and allow the fast searching of

parameter space. Appendix B, Section B.3 contains MATLAB code incorporating

the expressions for easily running simulations of arbitrary combinations of rectilin-

early arranged U-traps, Z-traps, dimple traps, microwire waveguides, and external

quadrupole and single coil fields.

A.1 Infinitely thin linear wires

We first list expressions for the fields from wires that form the building blocks for

U-traps, Z-traps, and microwire waveguides with gates: infinite wires, wire segments,

and half-infinite wires. All coordinates are as they appear in Figure 5.4. The field

from an infinite straight wire in ẑ:

BInfWire =
µ0I

2π

1

x2 + y2
[−yx̂+ xŷ] . (A.4)

The integral for finding the field from a wire segment (given here with the wire

extended along x̂) is

µ0I

4π

∫
[yẑ + zŷ] dx′

[(x− x′)2 + y2 + z2]
3
2

=
µ0I

4π

x′ − x

α
√
α+ (x− x′)2

, (A.5)

where α = y2 + z2. For a wire segment symmetrically positioned about x = 0 and of

length L, this expression becomes:

BSymSegment =
−µ0I

4πα

[
L−√

4α+ L2
−

+
L+√

4α+ L2
+

]
[yẑ + zŷ] , (A.6)

where L± = L ± 2x. For the U- and Z-trap we need to have expressions for a half

infinite wire from both 0 to +∞ and −∞ to 0. For wires positioned along ẑ, we have
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for the +∞ case:

B+∞ =
µ0I

4π

[
β

(x− x′)2 + y2

]
[−yx̂+ (x− x′)ŷ] ,

β = 1 +
z

γ
,

γ =
√

(x− x′)2 + y2 + z2. (A.7)

For the −∞ case:

B−∞ =
µ0I

4π

[
−yx̂+ (x− x′)ŷ

γ2 + zγ

]
. (A.8)

The U-trap, centered at x′ = 0 as in Figure 5.4, is formed in the following manner:

BU = B+∞(x′ = −L/2) + B+∞(x′ = L/2) + BSymSegment +Bbiasẑ. (A.9)

Similarly, the Z-trap is

BZ = B+∞(x′ = −L/2)+B−∞(x′ = L/2)+BSymSegment +BZbiasẑ+BXbiasx̂, (A.10)

where the last term is commonly used to manipulate the trap curvature and minimum

field.

A.2 Force on an atom in a U-trap

The force on an atom with a magnetic moment, m, is

F = (m · ∇)B (A.11)

= mx
∂B

∂x
+my

∂B

∂y
+mz

∂B

∂z
.

Let us assume that away from the center of the trap the atom’s spin always follows

the magnetic field:

mi = gµ0Bi/
√
B2

x +B2
y +B2

z . (A.12)
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Near the center, where the field vanishes, the atom’s spin no longer follows the field,

but let us write the force as

Fi ∝
∂Bi

∂x
+
∂Bi

∂y
+
∂Bi

∂z
. (A.13)

The relevant partial derivatives for the U-trap field expressed in Equation A.9 are

listed below. Though messy, we write them here due to their importance in the

fitting routine used in Section 5.2.1.

A± = x± L/2,

β± = 1 +
z√

A2
± + y2 + z2

,

BUtrap =
µ0I

4π
[Bxx̂+Byŷ +Bz ẑ] ,

Bx =
yβ−

A2
− + y2

− yβ+

A2
+ + y2

,

By =
2z

y2 + z2
+

A+β+

A2
+ + y2

− A−β−
A2
− + y2

,

Bz =
4πBbias

µ0I
− 2y

y2 + z2
,

∂Bx

∂x
= y

[
∂β−
∂x

1

A2
− + y2

− ∂β+

∂x

1

A2
+ + y2

− 2β−A−
(A2

− + y2)2
+

2β+A+

(A2
+ + y2)2

]
,

∂By

∂x
=

∂β+

∂x

A+

A2
+ + y2

− ∂β−
∂x

A−
A2
− + y2

+
β+

A2
+ + y2

− β−
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+
2A2

−β−
(A2
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− ...

−
2A2
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(A2
+ + y2)2

,
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∂y

y

A2
− + y2

− ∂β+

∂y

y
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+
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∂By

∂z
=

∂β+

∂z

A+

A2
+ + y2

− ∂β−
∂z

A−
A2
− + y2

+
2

y2 + z2
− 4z2
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A±z

1− z/
√
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1

(A2
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√
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1

z −
√
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cos

[
arctan

(
−z√
A2
± + y2

)]
. (A.14)

A.3 U-trap minimum and gradients

To find the minimum of the U-trap, we must find x0, y0, and z0 so that Bx, By, and

Bz separately vanish. From the symmetry of the U-wire layout in Figure 5.4 we know

that x0 = 0. The expressions for By(x = 0) and Bz(x = 0) give us the following

equations for y0 and z0:

0 =
Lβ0

L2/4 + y2
0

+
2z0

y2
0 + z2

0

,

y0 =
µ0I

4πBbias

+

√(
µ0I

4πBbias

)2

+ z2
0 ,

β0 = 1 +
z0√

L2/4 + y2
0 + z2

0

, (A.15)

From the first equation we see that z0 ≤ 0, and we have verified this experimentally

for both sets of wire current and bias field orientations.

The remainder of this appendix contains plots relevant to understanding how the

U-trap’s field minimum and gradients evolve during the compression and lowering of

the trap center. For all plots, x = 0, and unless otherwise noted, L = 1.5 mm.

The numerical solution of Equations A.15 for y0 and z0 is plotted in Figures A.1

and A.2. Note that the curve in Figure A.1 represents the difference between y0

calculated with the side wires and the value for y0 that ignores the field from the side

wires, defined as y0 approx (see Equations 5.22). The fits are to a 4th order rational
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Figure A.1: Difference between y0 and the simplified expression, y0 approx = 2πη/µ0,
as a function of η = I/Bbias.

that is only a function of η = I/Bbias.

Using the y0 and z0 fits, we calculate the U-trap field gradients at the trap min-

imum and the results are shown in Figures A.3, A.4, and A.5. The plot of ∇zB is

strange in that the gradient passes through zero to become negative for some values

of y0(η). This can be understood by noting that the magnetic field changes from be-

ing positive along +ẑ to being negative in along the +ẑ. This switch occurs because

as z0 becomes more negative, the quadrupole field pattern rotates with respect to

the z-axis. Consequently, the z-axis passes through collinearity with an axis of the

quadrupole field, and the gradient changes sign. The gradient sign change shifts back

to positive once y0 becomes small and the field rotates back again. This process does

not cause the atoms to be lost in the ẑ direction because we assume the spins follow

the field adiabatically. However, the trapping laser orientations will not be perfectly

aligned with the quadrupole field, and this will transiently degrade the performance

of the U-MOT.

Figure A.6 shows the difference between the full calculation for y0 and the ex-

pression, y0 approx, that does not account for the field of the side wires. The simpler

expression, y0 approx, overestimates the gradient by as much as 25 to 50 G/cm.
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Figure A.2: Log plot of z0 as a function of η. With no side wires present, z0 would
equal 0.
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Figure A.3: The U-trap gradient in x̂ at the trap minimum for Bbias varying between
0.1 to 12 G. I = 1 A.
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Figure A.4: The U-trap gradient in ŷ at the trap minimum for Bbias varying between
0.1 to 6 G. I = 1 A.
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Figure A.5: The absolute value of the U-trap gradient in ẑ at the trap minimum for
Bbias varying between 0.1 to 7 G. I = 1 A.
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Figure A.6: The trap gradient in ŷ using the full calculation for y0 versus the sim-
pler y0approx = 2πη expression. Note that the simpler expression overestimates the
gradient. Bbias varies between 0.1 to 7 G. I = 1 A.

Not surprisingly, decreasing L increases the x̂ gradient. Figure A.7 plots ∇xB for

L = 0.5, 1, and 1.5 mm. Finally, Figure A.8 plots the ratio of the gradient in ŷ to

that in x̂. At 0.5 mm above the substrate, the trap anisotropy increases dramatically.
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Figure A.7: The U-trap gradient in x̂ plotted for various values of L. Bbias varies
between 0.1 to 9 G. I = 1 A.
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Figure A.8: The anisotropy of the U-trap in ŷ versus x̂ as a function of trap height.
η = I/Bbias = 0.125 to 10 A/G.
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Appendix B

Matlab Code

This Appendix includes the template Matlab codes used for simulations in this thesis

and for computer control of the atom chip waveguiding experiment.

B.1 Cavity QED: transmission, signal-to-noise, and

spontaneous emission

This Matlab code, RunMastEqn.m, calls the MastEqn.m function—presented in the

next section—to calculate the cavity transmission, the signal, and the signal-to-noise,

S/N , for arbitrary cavity QED parameters [g0, κ, γ⊥,∆, θ]. The code presented here

calculates these for varying drive power but can easily be modified to calculate them

as a function of g, ∆, and θ as desired. For comparisons, the code solves both the

optical bistability equation 6.5 and the two-level atom master equation 6.6. See Kevin

Birnbaum’s thesis [83] for code that extends beyond the two-level approximation. The

code presented here creates a plot of transmission versus drive power, signal versus

drive power, and S/N versus drive power. The Fock-state basis N can be assigned

for each drive power, which minimizes computational overhead. For instance, using

N = 100 for a drive intracavity photon number of n = 0.001 is overkill, but is

absolutely necessary for n ≥ 40. We ran this code on a double 3 GHz Xeon processor

under Linux, and found that we could reach a Fock state basis of 107 before crashing

the calculation. For most parameter regimes, an intracavity drive of n = 50 to 70

could be reliably simulated.
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clear

figure_series1 = 1;

figure_series2=figure_series1+1;

figure_scale = 1;

%----------constants

hbar=(6.626e-34)/(2*pi); %J s

c=3e8; % m/s

e0=8.85e-12; %coul^2/N-m^2 permitivity of free space

mcs=2.207e-25; %kg mass of Cs

mud=2.686e-29; %C m dipole moment D2 for Cs cycling transition

Lambda=852.4e-9; %m cesium D2

gammapara=2*2.6e6*2*pi; % for cesium D2

% mrb87=1.443e-25; %kg mass of Rb87

% mud=2.534e-29; %C m dipole moment D2 for Rb87 cycling transition

% Lambda=780.2e-9; %m Rb87 D2

% gammapara=2*3e6*2*pi; % for Rb87

wl=2*pi*c/Lambda;

%----------cavity QED parameters

% for Fabry-Perot let cavity_parm=0, for others let cavity_parm=1

cavity_parm=0;

if cavity_parm==0;

F = 1050;

R = 1e-3;

L = 27e-6;

w0=sqrt((L*Lambda/6.3)*sqrt((2*R-L)/L));

V=pi*w0^2*L/4;

kappa=pi*c/(2*L*F); % divide by 2pi for Hz

g0=mud*sqrt(hbar*wl/(2*hbar^2*e0*V)); % divide by 2pi for Hz

else cavity_parm==1;

g0=16e9*2*pi;

kappa=4.4e9*2*pi;

end

% The cavity detunings

Delta=0e9*2*pi; % divide by 2pi for Hz

theta=0e9*2*pi; % divide by 2pi for Hz

% Detection parameters

eta = 0.44; % detection efficiency

Int_time = 10e-6; % seconds, 1/bandwidth of detector

% number of atoms

N_atom=1;

% drive power quoted in intracavity photon number in empty, resonant

% cavity

Drive=[1e-5 1e-4 4e-4 1e-3 4e-3 1e-2 2e-2 4e-2 6e-2 0.1 ...

0.2 0.4 0.6 1 2 6 10 15 20 30];
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% Fock basis

N=[5 5 5 5 5 5 5 5 5 10 10 10 10 15 20 30 40 60 80];

if length(Drive)~=length(N)

error(’Drive and Fock basis mismatched’)

end

%------------------------master eqn soln

% The cavity QED parameters are normalized to gammapara(llel) for

% numerical stability

g=g0/gammapara;

k=kappa/gammapara;

energydecay=2*kappa;

gammapara_norm=1;

Delta_norm=Delta/gammapara;

theta_norm=theta/gammapara;

DriveField = k.*sqrt(Drive);

input_vec1=[g k gammapara_norm Delta_norm theta_norm];

input_vec0=[0 k gammapara_norm Delta_norm theta_norm];

for i=1:length(Drive);

tic

[ss_photon_numbers(i),var(i),Rho_ee(i)]= ...

MastEqn(DriveField(i),N(i),input_vec1);

[ss_photon_numbers0(i),var0(i),Rho_ee0(i)] = ...

MastEqn(DriveField(i),N(i),input_vec0);

toc

end

% transmission vs. drive plot

Counts=real(ss_photon_numbers);

EmptyCounts=real(ss_photon_numbers0);

Trans=Counts./Drive;

figure(figure_series1)

loglog(Drive,Trans,’.k’,’MarkerSize’,16,’MarkerFaceColor’,’k’);

hold

%------------------------optical bistability eqn soln

gammaperp=0.5*gammapara;

n_0=gammaperp^2/(2*g0^2);

maxx=10;

nn=1000;

DriveOBE=sqrt(nn)/(40*sqrt(n_0)); %nn is scaled drive

C=g0.^2.*N_atom/(2.*kappa.*gammaperp);

Delta_norm2=Delta./gammaperp;

theta_norm2=theta./kappa;

x=(0:.00001:maxx).*DriveOBE;

a=(1+2.*C./(1+x.^2+Delta_norm2.^2));

b=(theta_norm2-2.*C.*Delta_norm2./(1+x.^2+Delta_norm2.^2));
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y=sqrt(x.^2.*(a.^2+b.^2));

X=(x.^2).*n_0;

Y=(y.^2).*n_0;

T=(x./y).^2;

loglog(Y,T,’k’,’LineWidth’,2);

% without atom

CC=0;

xnoatom=(.01:.1:maxx).*DriveOBE;

a=(1+2.*CC./(1+xnoatom.^2+Delta_norm2.^2));

b=(theta_norm2-2.*CC.*Delta_norm2./(1+xnoatom.^2+Delta_norm2.^2));

ynoatom=sqrt(xnoatom.^2.*(a.^2+b.^2));

X1=(xnoatom.^2).*n_0;

Y1=(ynoatom.^2).*n_0;

Tnoatom=(xnoatom./ynoatom).^2;

loglog(Y1,Tnoatom,’--r’,’LineWidth’,2);

%------calculation of spontaneous emission per integration time

signal=eta.*abs(EmptyCounts-Counts).*energydecay*Int_time;

err=sqrt(eta.*(EmptyCounts+Counts).*energydecay*Int_time);

% DriveNew=Drive.*energydecay*Int_time;

DriveNew=Drive.*energydecay.*hbar.*wl.*1e9; % in nW

SN=signal./err;

[signalmax signalmaxindex] = max(signal);

[SNmax SNmaxindex] = max(SN);

[drivemax maxdriveindex] = max(DriveNew);

%------calculation of spontaneous emission per integration time

SponE = real((Rho_ee.*gammapara).*Int_time);

Sig=-(real(ss_photon_numbers)-real(ss_photon_numbers0))...

*Int_time*energydecay;

RatioE=SponE./Sig;

Ratio_Optimum=RatioE(SNmaxindex)

%---------------tranmission vs. drive plot

title({[’L = ’,num2str(L*1e6),...

’ {\mu}m, F = ’,num2str(F),’, g_0 = ’,num2str(round(g0*1e-6/6.28)),...

’ MHz, \kappa = ’,num2str(round(100*kappa*1e-6/6.28)/100),...

’ MHz’]; [’\Delta = ’,num2str(Delta*1e-6/(2*pi)),’ MHz; \Theta = ’...

,num2str(theta*1e-6/(2*pi)),’ MHz; SponE = ’...

,num2str(round(Ratio_Optimum*1000)/10),’% of signal’]}...

,’FontSize’,12,’FontWeight’,’Bold’)

ylabel(’Transmission’,’FontWeight’,’Bold’)

xlabel(’Intracavity Photon Number’,’FontWeight’,’Bold’)

axis([0.5*Drive(1) nn.*10 1e-4 1.0])

hold

%---------------------signal and S/N figures

figure(figure_series2)
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subplot(2,1,1)

errorbar(DriveNew,signal,err,’.’)

Int_time2=round(Int_time*1e6*100)/100;

MaxPhoton=DriveNew(SNmaxindex);

ylabel([’Signal per ’, num2str(Int_time2),’ \mus integration’]...

,’FontWeight’,’Bold’)

title({[’N = ’,num2str(N_atom),’, L = ’,num2str(L*1e6),’; \eta = ’...

,num2str(eta),’; {\mu}m, F = ’,num2str(F),...

’, g_0 = ’,num2str(round(g0*1e-6/6.28)),’ MHz, \kappa = ’...

,num2str(round(100*kappa*1e-6/6.28)/100),’ MHz; \Delta = ’...

,num2str(Delta*1e-6/(2*pi)),’ MHz; \Theta = ’...

,num2str(theta*1e-6/(2*pi)),’ MHz’];...

[’Int time = ’,num2str(Int_time2),’; SponE/Int time = ’...

,num2str(round(SponE(SNmaxindex)*10)/10),’ Photons; Max SN =’,...

num2str(round(10*SNmax/SN(SNmaxindex))/10)...

,’; Optimal Drive/BW = ’,num2str(round(MaxPhoton)),’ Photons’]},...

’FontSize’,10,’FontWeight’,’Bold’)

axis([-1e-3*drivemax (drivemax*figure_scale+100) ...

0 (signal(SNmaxindex)+signal(SNmaxindex)*0.5)])

subplot(2,1,2)

plot(DriveNew,SN,’.k’)

axis([-1e-3*drivemax (drivemax*figure_scale+100)...

0 (SNmax/SN(SNmaxindex)+10)])

ylabel(’S/N’,’FontWeight’,’Bold’)

xlabel(’Drive (nW)’,’FontWeight’,’Bold’)

B.2 Master equation for a two-level atom

Using the Quantum Optics Toolbox [160, 161], this Matlab function calculates the

steady-state density operator ρss by solving the cavity QED master equation 6.6 pre-

sented in Section 6.4. This function is to be used with the program RunMasterEqn.m

listed in the previous section (or a variation of this program).

function [ss_photon_numbers,var,Rho_ee]=MastEqn(DriveField,N,input_vec)

wl = 0; % define laser frequency as zero detuning

E = DriveField;

g = input_vec(1);

kappa = input_vec(2);

gamma_par = input_vec(3);

wa = input_vec(4);

wc = input_vec(5);

ida = identity(N); idatom = identity(2);
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% Define cavity field and atomic operators

a = tensor(destroy(N),idatom);

sm = tensor(ida,sigmam);

% Define projection operators into excited/ground state

proj_e = tensor(ida,1/2*(idatom+sigmaz));

proj_g = tensor(ida,1/2*(idatom-sigmaz));

% Hamiltonian

H = (wa-wl)*sm’*sm + (wc-wl)*a’*a + i*g*(a’*sm - sm’*a) + i*E*(a’-a);

% Collapse operators

C1 = sqrt(2*kappa)*a;

C2 = sqrt(gamma_par)*sm;

C1dC1 = C1’*C1;

C2dC2 = C2’*C2;

% Calculate the Liouvillian

LH = -i * (spre(H) - spost(H));

L1 = spre(C1)*spost(C1’)-0.5*spre(C1dC1)-0.5*spost(C1dC1);

L2 = spre(C2)*spost(C2’)-0.5*spre(C2dC2)-0.5*spost(C2dC2);

L = LH+L1+L2;

% Find steady state density matrix

rho_ss = steady(L);

% Calculated the steady state intracavity photon_number and it’s

% variance. Rho_ee is the excited state population which allows

% one to calculate the number of spontaneously emitted photons

ss_photon_numbers = expect(a’*a,rho_ss);

n2 =expect(a’*a*a’*a,rho_ss);

var =sqrt(n2-(ss_photon_numbers).^2);

Rho_ee =expect(sm’*sm,rho_ss);

This function may also be used for simulating the presence of more than one atom

by defining an atomic operator, smi, and collapse operator, C2i, for each atom i. Up

to 10 atoms were introduced without noticing any computational slowdown. The

Hamiltonian and the Liouvillian then become (for the case of i = 2):

H = (wa-wl)*sm_1’*sm_1+(wa-wl)*sm_2’*sm_2 +...

i*g*(a’*sm_1-sm_1’*a)+i*g*(a’*sm_2-sm_2’*a)+(wc-wl)*a’*a+i*E*(a’-a);

L2_1 = spre(C2_1)*spost(C2_1’)-0.5*spre(C2dC2_1)-0.5*spost(C2dC2_1);

L2_2 = spre(C2_2)*spost(C2_2’)-0.5*spre(C2dC2_2)-0.5*spost(C2dC2_2);

L = LH+L1+L2_1+L2_2;
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B.3 Magnetic field, gradient, and curvature for U-

and Z-traps and waveguides

This Matlab script, Waveguide.m, uses the function Field.m—provided below—to

calculate and plot any slice through the 3D magnetic field above an arbitrary ar-

rangement of rectilinear wire segments, both finite and semi-infinite. Bias fields in

x̂, ŷ, and ẑ are included as well as a quadrupole field from coils whose axis is along

the waveguide. The code presented here is for the case of the Munich atom chip as

described in Chapter 7 and pictured in Figure 7.5. It is easily adjusted for any other

rectilinear wire pattern, specifically that used in the microcavity experiment at Cal-

tech (see Chapters 2, 3, and 6). The GLeft and GRight designate the beginning and

end of each segment of the wireguide designated as the wire G1 to the intersection

of GU8 in Figure 7.5. The GU and GL are the semi-infinite wires that form the sides

of the the U- and Z-traps, the waveguide gates, and the dimple wires. They are also

listed in Figure 7.5. The wireguide is positioned along x̂ while the side wires are

along ẑ. ŷ is perpendicular to the atom chip. Field.m calculates the field analyti-

cally using expressions listed in Appendix A1. The fields from finite wire widths can

be calculated analytically, but the expression is too unwieldy to list here or include

in this code. In cases where this is needed, full numerical solutions of the Laplace

equation are usually required as well: Experiments in which atoms are closer to the

wire than the wire width are usually performed for purposes requiring more preci-

sion than waveguiding (for example, BEC splitting in a double well as discussed in

Chapter 10). In these cases, a full numerical simulation should be performed using

commercial packages such as Femlab.

clear

%plot freq (1) or G/cm^2 (0)?

%plot gradient of x (1) or z (0)?

freq=1; xplot=0;

% all distance in units of microns

resolution=50; % resolution of the plots

plotleft=-2000; % boundary of plots

1Note: these expressions are valid only as long as the atoms are no closer the chip surface than
the microwire’s width (see chapter 2)
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plotright=9000;

% shrifting and quadrupole coil radii

R1=50e3; R2=50e3; RQ=50e3;

% Number of turns in quadrupole or shifting coils

N1=87; N2=N1; N=87; shim=0.85;

% Coil currents

I_Quad=0*N*shim;

I_Coil1=-0*N1*shim;

I_Coil2=0*N2*shim;

% Coil positions (half the distance between coils)

Q_Coil=40e3;

OffsetY=0e3;

D_Coil1=-40e3;

D_Coil2=40e3;

% Bias fields (in Gauss)

B_xbias=-5*1; % (- for positive wire currents)

B_ybias=-1.8*0;

B_zbias=16.3;

% wire layout (1) for wire presence and (0) for wire absence

Guide_Wires= [ 1 1 1 1 1 1 1 0 0];

Guide_Current = -2; %needs to be negative if sides are positive

GateU_Wires = [ 1 0 0 0 0 1 1 0];

GateU_Current= [2.5 1 1 1 1 -1 2 1];

GateD_Wires = [ 1 0 0 0 0 1 0 0];

GateD_Current= [2.5 1 1 1 1 -1 2 1];

Guide_Off=0;

max_guide=length(Guide_Wires);

for i=1:max_guide

if Guide_Wires(i) == 1;

I_Guide(i)=Guide_Current; %amps

else

I_Guide(i)=Guide_Off; %amps

end

end

% wire guide segment layouts:this is for the Munich guide, adjust

% accordingly

GLeft(1)=-5e3;GRight(1)=-1e3;

GLeft(2)=GRight(1);GRight(2)=1e3;

GLeft(3)=GRight(2);GRight(3)=3e3;

GLeft(4)=GRight(3);GRight(4)=5e3;

GLeft(5)=GRight(4);GRight(5)=7e3;

GLeft(6)=GRight(5);GRight(6)=8e3;

GLeft(7)=GRight(6);GRight(7)=9e3;

GLeft(8)=GRight(7);GRight(8)=10e3;
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GLeft(9)=GRight(8);GRight(9)=11e3;

% gate wires, upper segments

GateU_Off=0;

max_gate_u=length(GateU_Wires);

for i=1:max_gate_u

if GateU_Wires(i) == 1;

I_GateU(i)=GateU_Current(i); %amps

else

I_GateU(i)=GateU_Off; %amps

end

end

% positions are along the wire guide

GU(1)=-1e3;

GU(2)=1e3;

GU(3)=3e3;

GU(4)=5e3;

GU(5)=7e3;

GU(6)=8e3;

GU(7)=9e3;

GU(8)=10e3;

% gate wires, lower segments

GateD_Off=0;

max_gate_d=length(GateD_Wires);

for i=1:max_gate_d

if GateD_Wires(i) == 1;

I_GateD(i)=GateD_Current(i); %amps

else

I_GateD(i)=GateD_Off; %amps

end

end

% positions are along the wire guide

GL(1)=-1e3;

GL(2)=1e3;

GL(3)=3e3;

GL(4)=5e3;

GL(5)=7e3;

GL(6)=8e3;

GL(7)=9e3;

GL(8)=11e3;

% unit conversions

GLeft=GLeft.*1e-6;

GRight=GRight.*1e-6;

GU=GU.*1e-6;

GL=GL.*1e-6;
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Q_Coil=Q_Coil.*1e-6;

OffsetY=OffsetY.*1e-6;

D_Coil1=D_Coil1.*1e-6;

D_Coil2=D_Coil2.*1e-6;

RQ=RQ.*1e-6;

R1=R1.*1e-6;

R2=R2.*1e-6;

% set the trap min for calculating the slice in 3D

y=abs(2000*I_Guide(2)/B_zbias)

% permute coordinates to create slices in other planes.

[x,z]=meshgrid(plotleft:resolution:plotright);

x=x.*1e-6;y=y.*1e-6;z=z.*1e-6;

B_xbias=B_xbias*1e-4;

B_ybias=B_ybias*1e-4;

B_zbias=B_zbias*1e-4;

[B_tot,QuadField_x]=Field(I_Guide,GLeft,GRight,x,y,z,R1,R2,D_Coil1,...

D_Coil2,I_Coil1,I_Coil2,B_xbias,B_ybias,B_zbias,I_Quad,Q_Coil,...

RQ,OffsetY,max_guide,GU,max_gate_u,I_GateU,GL,max_gate_d,I_GateD);

B_tot=B_tot.*1e4;

x=x.*1e6;y=y.*1e6;z=z.*1e6;

figure(1)

meshc(x,z,B_tot)

xlabel(’X axis (\mum)’)

ylabel(’Z axis (\mum)’)

zlabel(’B field (G)’)

% axis([-5000 11000 -2000 2000 0 max(max(B_tot))+10])

% If there is a quadrupole field, this prints its gradient

gradQuad=100*(diff(QuadField_x(round(length(QuadField_x)/2),:))./...

100e-6);

Quad_Gradient=abs(min(gradQuad))

Bmin=min(min(B_tot))

% plots the gradient and curvature of the wire field

[GradBx,GradBz]=gradient(B_tot,resolution*1e-4);

[GGradBx,GGradBzx]=gradient(GradBx,resolution*1e-4);

[GGradBxz,GGradBz]=gradient(GradBz,resolution*1e-4);

if xplot==1

figure(11)

meshc(x,z,abs(GradBx));

xlabel(’X axis (\mum)’)

ylabel(’Z axis (\mum)’)

zlabel(’Gradient of B field, X-axis (G/cm)’)

% axis([-5000 11000 -2000 2000 0 max(max(GradBy))])

if freq==1

figure(12);
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meshc(x,z,12.7.*sqrt(GGradBx));

xlabel(’X axis (\mum)’)

ylabel(’Z axis (\mum)’)

zlabel(’Frequency of Trap in X-axis (Hz)’)

% axis([-5000 11000 -2000 2000 0 max(max(GGradBy))])

else

figure(12);

meshc(x,z,GGradBx);

xlabel(’X axis (\mum)’)

ylabel(’Z axis (\mum)’)

zlabel(’Curvature of B Field, X-axis (G/cm^2)’)

% axis([-5000 11000 -2000 2000 0 max(max(GGradBy))])

end

else

figure(11)

meshc(x,z,abs(GradBz));

xlabel(’X axis (\mum)’)

ylabel(’Z axis (\mum)’)

zlabel(’Gradient of B field, Z-axis (G/cm)’)

% axis([-5000 11000 -2000 2000 0 max(max(GradBy))])

if freq==1

figure(12);

meshc(x,z,12.7.*sqrt(GGradBz));

xlabel(’X axis (\mum)’)

ylabel(’Z axis (\mum)’)

zlabel(’Frequency of Trap in Z-axis (Hz)’)

% axis([-5000 11000 -2000 2000 0 max(max(GGradBy))])

else

figure(12);

meshc(x,z,GGradBz);

xlabel(’X axis (\mum)’)

ylabel(’Z axis (\mum)’)

zlabel(’Curvature of B Field, Z-axis (G/cm^2)’)

% axis([-5000 11000 -2000 2000 0 max(max(GGradBy))])

end

end

function [B_tot,QuadField_x]=Field(I_Guide,LL,LR,x,y,z,R1,R2,...

D_Coil1,D_Coil2,I_Coil1,I_Coil2,B_xbias,B_ybias,B_zbias,I_Quad,...

Q_Coil,RQ,OffsetY,max_guide,LU,max_gate_u,I_GateU,LD,...

max_gate_d,I_GateD)

%----------Defs

mu=(4*pi)*10^-7; %N/A^2

Beta=y.^2+z.^2;

for i=1:max_guide
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const_G(i)=mu.*I_Guide(i)./(4*pi);

B_G(:,:,i)=-const_G(i).*((LL(i)-x)./(Beta.*sqrt(Beta+...

(x-LL(i)).^2))-(LR(i)-x)./(Beta.*sqrt(Beta+(x-LR(i)).^2)));

B_Gz(:,:,i)=B_G(:,:,i).*y;

B_Gy(:,:,i)=B_G(:,:,i).*z;

end

for i=1:max_gate_u

AU(:,:,i)=x-LU(i);

Alpha_U(:,:,i)=sqrt(AU(:,:,i).^2+y.^2+z.^2);

ZU(:,:,i)=1+z./Alpha_U(:,:,i);

const_GateU(i)=mu.*I_GateU(i)./(4*pi);

B_GateU(:,:,i)=const_GateU(i).*(ZU(:,:,i)./(AU(:,:,i).^2+y.^2));

B_GateUx(:,:,i)=B_GateU(:,:,i).*(-y);

B_GateUy(:,:,i)=B_GateU(:,:,i).*AU(:,:,i);

end

for i=1:max_gate_d

AD(:,:,i)=x-LD(i);

Alpha_D(:,:,i)=sqrt(AD(:,:,i).^2+y.^2+z.^2);

const_GateD(i)=mu.*I_GateD(i)./(4*pi);

B_GateD(:,:,i)=const_GateD(i).*(1./(Alpha_D(:,:,i).^2+...

z.*Alpha_D(:,:,i)));

B_GateDx(:,:,i)=B_GateD(:,:,i).*(-y);

B_GateDy(:,:,i)=B_GateD(:,:,i).*AD(:,:,i);

end

B_Gz_tot=sum(B_Gz,3);

B_Gy_tot=sum(B_Gy,3);

B_GateUx_tot=sum(B_GateUx,3);

B_GateUy_tot=sum(B_GateUy,3);

B_GateDx_tot=sum(B_GateDx,3);

B_GateDy_tot=sum(B_GateDy,3);

Coil1x=(mu/2)*R1.^2.*I_Coil1./(((x-D_Coil1).^2+R1^2).^(3/2));

Coil2x=(mu/2)*R2.^2.*I_Coil2./(((x-D_Coil2).^2+R2^2).^(3/2));

const_QuadField=3*mu.*I_Quad.*Q_Coil.*RQ^2./(RQ^2+Q_Coil^2).^(5/2);

QuadField_x=const_QuadField.*x;

QuadField_y=-0.5.*const_QuadField.*(y-OffsetY);

QuadField_z=-0.5.*const_QuadField.*z;

B_tot=sqrt((B_GateUx_tot+B_GateDx_tot+B_xbias+Coil1x+Coil2x...

+QuadField_x).^2+(B_Gy_tot+B_GateUy_tot+B_GateDy_tot...

+B_ybias+QuadField_y).^2+(B_Gz_tot+B_zbias+QuadField_z).^2);
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B.4 Computer control code for the atom chip ex-

periment

This is the Matlab code used for producing the .dat files that control each of the

analog and digital output channels. Chapter 3, Section 3.4 contains more informa-

tion regarding the program’s use. This program calls a “Calibration” function that

contains a list of the computer output voltage-to-power supply current conversions.

I = V/α, where α is the conversion factor. The conversions are: α = 0.5 for the

Kepco 20-20; α = 0.25 for the Kepco 25-4, current controlled; and α = 0.09 for

the Power10. For the voltage controlled Kepco 25-4, the computer voltage-to-supply

voltage conversion is 0.4.

%%%%%% Update rate should be 10000 updates/sec.

%%%%%% "Bias" is the Utrap bias field made by the intra-chamber

%%%%%% coils. "Top" coil is in the z-axis

%%%%%%%%%%%%%%%%% Supply Key:

% % Supply Key = 1 Kepco 25-4 Current Control: label: #1, 2, 4, 5

% % Supply Key = 2 Kepco 20-20 Current Control: Digital,Analog

% % Supply Key = 3 Kepco 36-30

% % Supply Key = 4 Power10 Lower Supply

% % Supply Key = 5 and higher Kepco 25-4 Voltage Control: label: #3

clear

warning(’off’,’Matlab:dividebyzero’);

%-----------Initilization-----------------------

Bias_Supply=2;MacroU_Supply=4;Y_Supply=2;Top_Supply=5;

DTrap_Supply=1;GuideWire_Supply=1;HLeft_Supply=1;HRight_Supply=1;

[I_Bias, I_MacroU, I_Y, I_Top, I_DTrap, I_GuideWire, I_HLeft,...

I_HRight]=Calibration(Bias_Supply,MacroU_Supply,Y_Supply,...

Top_Supply,DTrap_Supply,GuideWire_Supply,HLeft_Supply,...

HRight_Supply);

DointsperTime=10; %points/ms

ms=1*DointsperTime;

on=0; %Laser TTL

off=1; %Laser TTL 5 for analog, 1 for digital

short=1; %Relay TTL 5 for analog, 1 for digital

disconnect=0; %Relay TTL

onAbs=0; %AOM 1 TTL

offAbs=1; %AOM 1 TTL 5 for analog, 1 for digital

%-----------Detection--------------------------

det=1; %0 for Fluor, 1 for Abs
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%-----------Times------------------------------

ShiftTime = 1*20*ms;

HoldTime = 0*0*10*ms; % rarely used

DMOTime = 1*20*ms;

DTransTime = 0*0*5*ms;

CoolTime = 1*2.7*ms;

DecayTime = 1*0.3*ms;

ODTime = 1*0.6*ms;

DTrapTime = 1*0*5*ms;

MagShiftTime = 1*8*ms;

RotateTime = 1*20.4*ms;

RevRotateTime = 0*0*40.0*ms; % used for diagnostics

HTransTime = 1*15*ms;

HTrapTime = 1*2*ms;

FreeExpand = 1*1.0*ms; % min of 0.3 ms for abs imaging

ImageTime = 1*40*ms;

CaptureTime = 1*ms;

TimeToImage = ShiftTime+HoldTime+DMOTime+DTransTime+CoolTime+...

DecayTime+ODTime+DTrapTime+MagShiftTime+RotateTime+...

RevRotateTime+HTransTime+HTrapTime+FreeExpand;

TimeToImage = TimeToImage/ms

TimeTotal = 10*(TimeToImage+(ImageTime+CaptureTime)/ms);

if mod(TimeTotal,2) == 1

CaptureTime = 1*ms;

else

CaptureTime = 1.1*ms;

end

%-----------Current and Field Final Setpoints--------

BiasFin = 0.9; %A

MacroUFin = 22; %A

YOffsetFin = 0.5; %A

AbsDetectFin = offAbs;

TopOffsetFin = 0.1; %V

DTrapFin = 0.0; %A

GuideWireFin = 0.0; %A

HLeftFin = 0.0; %A

HRightFin = 0.0; %A

SubDopplerFin = off;

TrapLaserFin = on;

HLeftFinRelay = disconnect;

HRightFinRelay = disconnect;

%-----------Image and Ramp Setpoints-----------------

trunc = 1;

YOffsetAbsImage = 1*(YOffsetFin + 4);
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%-----------Special Current Setpoints----------------

MacroURampFin = 0;

DTrapHold = 1.5; %A rarely used

DTrapLoad = 2.20; %A

DTrapTrans = .5; %A rarely used

DMTrapStart = 3.5; %A

DMTrap = 3.5; %A

DMShift = 3.5; %A

DMRotate = 3.5; %A

BiasShift = .5; %A

BiasHold = 0.5; %A rarely used

BiasDLoad = 1.2; %A

BiasDTrans = 0.0; %A rarely used

BiasOD = 2; %A

BiasDMTrapStart = 3.0; %A

BiasDMTrap = 3.0; %A

BiasDMShift = 3.0; %A

BiasRotate = 1.0; %A

BiasHTrans = 1.0; %A

BiasH = 1.0; %A

TopOffsetShift = 0.0; %V

TopOffsetHold = 0; %V

TopOffsetDMOT = 0.0; %V

TopOffsetDTrans = 0.0; %V

TopOffsetDTrap = 0.0; %V

TopOffsetMShift = 0.0; %V

TopOffsetR = 0.4; %V

TopOffsetH = 0.4; %V

YOffsetShift = YOffsetFin + 0.0; %A

YOffsetHold = YOffsetFin + 0.0; %A

YOffsetDMOT = YOffsetFin - 0.1; %A

YOffsetDTrans = YOffsetFin + 0.0; %A

YOffsetDTrap = YOffsetFin + 0.4; %A

YOffsetMShift = YOffsetFin - 1.5; %A

YOffsetRStart = YOffsetFin - 1.5; %A

YOffsetRFin = YOffsetFin - 4; %A

YOffsetHTrans = YOffsetFin - 4.0; %A

YOffsetHTrap = YOffsetFin - 4; %A

YTransferMax = 3.5; %A may be used instead of H-trap

YTrapHold = 3.5; %A may be used instead of H-trap

YTrapRampFin = 0; %A may be used instead of H-trap

GuideWireTrans = 3.5*1; %A

HLeftTrans = 2.0*0; %A

HRightTrans = 2.0*0; %A
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GuideWireHold = 3.5*1; %A

HLeftHold = 2.0*0; %A

HRightHold = 2.0*0; %A

GuideWireRampFin = 0; %A

HLeftRampFin = 0; %A

HRightRampFin = 0; %A

HLeftTransRelay = short;

HRightTransRelay = short;

HLeftHoldRelay = short;

HRightHoldRelay = short;

%-----------Events---------------------------------

Shifting = 1 + ShiftTime;

Holding = Shifting + HoldTime;

HoldDMOT = Holding + DMOTime;

DTransfer = HoldDMOT + DTransTime;

Cooling = DTransfer + CoolTime;

FieldsOff = Cooling + DecayTime;

OpticalDumping = FieldsOff + ODTime;

DTrapping = OpticalDumping + DTrapTime;

MagShift = DTrapping + MagShiftTime;

Rotating = MagShift + RotateTime;

RevRotating = Rotating + RevRotateTime;

HTransfering = RevRotating + HTransTime;

HTrapping = HTransfering + HTrapTime;

Drop = HTrapping + FreeExpand;

FluorImage = Drop + ImageTime;

CaptureF = FluorImage + CaptureTime;

AbsImage = Drop + ImageTime;

CaptureA = AbsImage + CaptureTime;

%-----------Processes-------------------------

%%%%%%%%%%%%% Shift

time = 1:Shifting;

if length(time) ~= 1

x=-2:4/Shifting:2-4/Shifting;

Bias(time) = BiasShift;

MacroU(time) = (MacroURampFin-MacroUFin)/2.*...

(erf(x)-erf(-2))+MacroUFin;

YOffset(time) = YOffsetShift;

TopOffset(time) = TopOffsetShift;

DTrap(time) = 0;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = on;
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AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

else

Bias(time) = BiasFin;

MacroU(time) = MacroUFin;

YOffset(time) = YOffsetFin;

TopOffset(time) = TopOffsetFin;

DTrap(time) = DTrapFin;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = TrapLaserFin;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

end

%%%%%%%%%%%%% Holding

x=-2:4/HoldTime:2-4/HoldTime;

time = (Shifting+1):Holding;

Bias(time) = BiasHold;

MacroU(time) = (MacroURampFin-MacroUFin)/2.*...

(erf(x)-erf(-2))+MacroUFin;

YOffset(time) = YOffsetHold;

TopOffset(time) = TopOffsetHold;

DTrap(time) = DTrapHold;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = on;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% DMOT

time = (Holding+1):HoldDMOT;

Bias(time) = BiasDLoad;

MacroU(time) = 0;

YOffset(time) = YOffsetDMOT;
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TopOffset(time) = TopOffsetDMOT;

DTrap(time) = DTrapLoad;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = on;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% DTransfer

y=-2:4/DTransTime:2- 4/DTransTime;

time = (HoldDMOT+1):DTransfer;

Bias(time) = BiasDTrans;

MacroU(time) = 0;

YOffset(time) = YOffsetDTrans;

TopOffset(time) = TopOffsetDTrans;

DTrap(time) = DTrapTrans;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = on;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% Cooling

time = (DTransfer+1):Cooling;

Bias(time) = 0;

MacroU(time) = 0;

YOffset(time) = 0;

TopOffset(time) = 0;

DTrap(time) = 0;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = on;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;
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%%%%%%%%%%%%% FieldsOff

time = (Cooling+1):FieldsOff;

Bias(time) = 0;

MacroU(time) = 0;

YOffset(time) = 0;

TopOffset(time) = 0;

DTrap(time) = 0;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% Optical Dumping

time = (FieldsOff+1):OpticalDumping;

Bias(time) = BiasOD;

MacroU(time) = 0;

YOffset(time) = 0;

TopOffset(time) = 0;

DTrap(time) = 0;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% DTrap

z=-2:4/DTrapTime:2-4/DTrapTime;

time = (OpticalDumping+1):DTrapping;

Bias(time) =(BiasDMTrap-BiasDMTrapStart)/2.*...

(erf(z)-erf(-2))+BiasDMTrapStart;

MacroU(time) = 0;

YOffset(time) = YOffsetDTrap;

TopOffset(time) = TopOffsetDTrap;

DTrap(time) = (DMTrap-DMTrapStart)/2.*...

(erf(z)-erf(-2))+DMTrapStart;

GuideWire(time) = 0;

HLeft(time) = 0;
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HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% MagShift

time = (DTrapping+1):MagShift;

Bias(time) = BiasDMShift;

MacroU(time) = 0;

YOffset(time) = YOffsetMShift;

TopOffset(time) = TopOffsetMShift;

DTrap(time) = DMShift;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% Rotate

w=0:RotateTime-1;

time = (MagShift+1):Rotating;

Bias(time) = (BiasRotate-BiasDMShift).*...

(1-cos((trunc.*pi.*w)./(2*RotateTime)))+BiasDMShift;

MacroU(time) = 0;

YOffset(time) = (YOffsetRFin-YOffsetRStart).*...

sin((trunc.*pi.*w)./(2*RotateTime))+YOffsetRStart;

TopOffset(time) = TopOffsetR;

DTrap(time) = DMRotate;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% RevRotate

w=0:RevRotateTime-1;
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time = (Rotating+1):RevRotating;

Bias(time) = (BiasRotate-BiasDMTrap).*...

(1-sin((trunc.*pi.*w)./(2*RevRotateTime)))+BiasDMTrap;

MacroU(time) = 0;

YOffset(time) = (YOffsetRFin-YOffsetRStart).*...

(cos((trunc.*pi.*w)./(2*RevRotateTime)))+YOffsetRStart;

TopOffset(time) = TopOffsetR;

DTrap(time) = DMRotate;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% HTransfer

y=-2:4/HTransTime:2-4/HTransTime;

time = (RevRotating+1):HTransfering;

Bias(time) = BiasHTrans;

MacroU(time) = 0;

YOffset(time) = (YOffsetHTrans-YOffsetRFin)/2.*...

(erf(y)-erf(-2))+YOffsetRFin;

TopOffset(time) = TopOffsetH;

DTrap(time) = (0-DMRotate)/2.*...

(erf(y)-erf(-2))+DMRotate;

GuideWire(time) = (GuideWireTrans-0)/2.*(erf(y)-erf(-2));

HLeft(time) = (HLeftTrans-0)/2.*(erf(y)-erf(-2))+0;

HRight(time) = (HRightTrans-0)/2.*(erf(y)-erf(-2))+0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = HLeftTransRelay;

HRightRelay(time) = HRightTransRelay;

%%%%%%%%%%%%% HTrap

y=-2:4/HTrapTime:2-4/HTrapTime;

time = (HTransfering+1):HTrapping;

Bias(time) = BiasH;

MacroU(time) = 0;

YOffset(time) = YOffsetHTrap;

TopOffset(time) = TopOffsetH;

DTrap(time) = 0;
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GuideWire(time) = (GuideWireHold-...

GuideWireTrans)/2.*(erf(y)-erf(-2))+GuideWireTrans;

HLeft(time) = (HLeftHold-HLeftTrans)/2.*...

(erf(y)-erf(-2))+HLeftTrans;

HRight(time) = (HRightHold-HRightTrans)/2.*...

(erf(y)-erf(-2))+HRightTrans;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = HLeftHoldRelay;

HRightRelay(time) = HRightHoldRelay;

%%%%%%%%%%%%% Drop

time = (HTrapping+1):Drop;

Bias(time) = 0;

MacroU(time) = 0;

YOffset(time) = 0;

TopOffset(time) = 0;

DTrap(time) = 0;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

if det==0

%%%%%%%%%%%%% FluorImage

time = (Drop+1):FluorImage;

Bias(time) = 0;

MacroU(time) = 0;

YOffset(time) = 0;

TopOffset(time) = 0;

DTrap(time) = 0;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = on;

AbsDetect(time) = offAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;
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HRightRelay(time) = disconnect;

%%%%%%%%%%%%% Capture

time = (FluorImage+1):CaptureF;

Bias(time) = BiasFin;

MacroU(time) = MacroUFin;

YOffset(time) = YOffsetFin;

TopOffset(time) = TopOffsetFin;

DTrap(time) = DTrapFin;

GuideWire(time) = GuideWireFin;

HLeft(time) = HLeftFin;

HRight(time) = HRightFin;

TrapLasers(time) = TrapLaserFin;

AbsDetect(time) = AbsDetectFin;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

TotalTime = [0:CaptureF-1]./ms;

elseif det==1

%%%%%%%%%%%%% AbsImage

time = (Drop+1):AbsImage;

Bias(time) = 0;

MacroU(time) = 0;

YOffset(time) = YOffsetAbsImage;

TopOffset(time) = 0;

DTrap(time) = 0;

GuideWire(time) = 0;

HLeft(time) = 0;

HRight(time) = 0;

TrapLasers(time) = off;

AbsDetect(time) = onAbs;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

%%%%%%%%%%%%% Capture

time = (AbsImage+1):CaptureA;

Bias(time) = BiasFin;

MacroU(time) = MacroUFin;

YOffset(time) = YOffsetFin;

TopOffset(time) = TopOffsetFin;

DTrap(time) = DTrapFin;

GuideWire(time) = GuideWireFin;

HLeft(time) = HLeftFin;
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HRight(time) = HRightFin;

TrapLasers(time) = TrapLaserFin;

AbsDetect(time) = AbsDetectFin;

Vacant2(time) = 0;

Vacant3(time) = 0;

HLeftRelay(time) = disconnect;

HRightRelay(time) = disconnect;

TotalTime = [0:CaptureA-1]./ms;

end

%---------Plots----------------------------------------------------

figure(1)

plot(TotalTime,2*Bias,’b’,TotalTime,MacroU,’k’,TotalTime,...

5*TopOffset,’g’)

legend(’Bias’,’MacroU’,’TopOffset’,2);

axis([0 max(TotalTime) -5 35])

figure(2)

plot(TotalTime,-1*YOffset,’r’,TotalTime,DTrap,’k’,TotalTime,...

GuideWire,’g’,TotalTime,HLeftRelay,’b’,TotalTime,HRightRelay,’c’);

legend(’YOffset’,’DTrap’,’GuideWire’,’HLeft’,’HRight’,3);

axis([0 max(TotalTime) -5 8])

figure(3)

AbsDetectPlot=AbsDetect;

TrapLasersPlot=TrapLasers;

plot(TotalTime,AbsDetectPlot,’y’,TotalTime,TrapLasersPlot,’r’)

axis([0 max(TotalTime) -0.25 1.25])

legend(’AbsDetect’,’TrapLasers’,2)

%---------Conversions to Volts-------------------------------------

Bias = Bias.*I_Bias;

MacroU = MacroU.*I_MacroU;

YOffset = YOffset.*I_Y;

TopOffset = TopOffset.*I_Top;

DTrap = DTrap.*I_DTrap;

GuideWire = GuideWire.*I_GuideWire;

HLeft = HLeft.*I_HLeft;

HRight = HRight.*I_HRight;

%---------Errors---------------------------------------------------

if max(MacroU) > 3.2

error(’MacroU too high’)

end

if max(DTrap) > 0.875

error(’DTrap too high’)

end

if max(GuideWire) > 0.875

error(’GuideWire too high’)
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end

if max(HLeft) > 0.875

error(’HLeft too high’)

end

if max(HRight) > 0.875

error(’HRight too high’)

end

%---------Binary--------------------------------------------------

BinPortA = TrapLasers.*1 + AbsDetect.*10 + HLeftRelay.*100 + ...

HRightRelay.*1000 + 0.*1000 + 0.*10000 + 0.*100000 + 1.*1000000;

for i=1:length(TrapLasers)

StrPortA = num2str(BinPortA(i));

PortA(i) = bin2dec(StrPortA);

end

%---------Files---------------------------------------------------

fid1 = fopen(’DO.dat’,’w’);

fprintf(fid1,’%f\n’, DortA(1));

fclose(fid1);

fid1 = fopen(’Bias.dat’,’w’);

fprintf(fid1,’%f\n’,Bias(1));

fclose(fid1);

fid1 = fopen(’MacroU.dat’,’w’);

fprintf(fid1,’%f\n’,MacroU(1));

fclose(fid1);

fid1 = fopen(’YOffset.dat’,’w’);

fprintf(fid1,’%f\n’,YOffset(1));

fclose(fid1);

fid1 = fopen(’TopOffset.dat’,’w’);

fprintf(fid1,’%f\n’,TopOffset(1));

fclose(fid1);

fid1 = fopen(’HLeft.dat’,’w’);

fprintf(fid1,’%f\n’,HLeft(1));

fclose(fid1);

fid1 = fopen(’Vacant2.dat’,’w’);

fprintf(fid1,’%f\n’,Vacant2(1));

fclose(fid1);

fid1 = fopen(’GuideWire.dat’,’w’);

fprintf(fid1,’%f\n’,GuideWire(1));

fclose(fid1);

fid1 = fopen(’DTrap.dat’,’w’);

fprintf(fid1,’%f\n’,DTrap(1));

fclose(fid1);

fid1 = fopen(’Vacant3.dat’,’w’);

fprintf(fid1,’%f\n’,Vacant3(1));
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fclose(fid1);

fid1 = fopen(’HRight.dat’,’w’);

fprintf(fid1,’%f\n’,HRight(1));

fclose(fid1);

fid1 = fopen(’DO.dat’,’a’);

for i=2:length(DortA)

fprintf(fid1,’%f\n’, DortA(i));

end

fclose(fid1);

fid1 = fopen(’Bias.dat’,’a’);

for i=2:length(Bias)

fprintf(fid1,’%f\n’,Bias(i));

end

fclose(fid1);

fid1 = fopen(’MacroU.dat’,’a’);

for i=2:length(MacroU)

fprintf(fid1,’%f\n’,MacroU(i));

end

fclose(fid1);

fid1 = fopen(’YOffset.dat’,’a’);

for i=2:length(YOffset)

fprintf(fid1,’%f\n’,YOffset(i));

end

fclose(fid1);

fid1 = fopen(’TopOffset.dat’,’a’);

for i=2:length(TopOffset)

fprintf(fid1,’%f\n’,TopOffset(i));

end

fclose(fid1);

fid1 = fopen(’HLeft.dat’,’a’);

for i=2:length(HLeft)

fprintf(fid1,’%f\n’,HLeft(i));

end

fclose(fid1);

fid1 = fopen(’Vacant2.dat’,’a’);

for i=2:length(Vacant2)

fprintf(fid1,’%f\n’,Vacant2(i));

end

fclose(fid1);

fid1 = fopen(’GuideWire.dat’,’a’);

for i=2:length(GuideWire)

fprintf(fid1,’%f\n’,GuideWire(i));

end

fclose(fid1);
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fid1 = fopen(’DTrap.dat’,’a’);

for i=2:length(DTrap)

fprintf(fid1,’%f\n’,DTrap(i));

end

fclose(fid1);

fid1 = fopen(’Vacant3.dat’,’a’);

for i=2:length(Vacant3)

fprintf(fid1,’%f\n’,Vacant3(i));

end

fclose(fid1);

fid1 = fopen(’HRight.dat’,’a’);

for i=2:length(HRight)

fprintf(fid1,’%f\n’,HRight(i));

end

fclose(fid1);
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[29] V. Vuletić, A. T. Black, and J. K. Thompson. External-feedback laser cooling

of gases, 2004, quant-ph/0410168.

[30] J. E. Reiner, H. M. Wiseman, and H. Mabuchi. Quantum jumps between dressed

states: A proposed cavity-QED test using feedback. Phys. Rev. A, 67 042106,

(2003).



289

[31] J. E. Reiner, W. P. Smith, L. A. Orozco, H. M. Wiseman, and J. Gambetta.

Quantum feedback in a weakly driven cavity QED system. Phys. Rev. A, 51,

(2004).

[32] M. Armen and H. Mabuchi. To be published, 2005.

[33] H. Mabuchi and A. C. Doherty. Cavity quantum electrodynamics: Coherence

in context. Science, 298 1372, (2002).

[34] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller. Decoherence, continuous

observation, and quantum computing: A cavity QED model. Phys. Rev. Lett.,

75 3788, (1995).

[35] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. Quantum state transfer and

entanglement distribution among distant nodes in a quantum network. Phys.

Rev. Lett., 78 3221, (1997).

[36] S. J. van Enk, J. I. Cirac, and P. Zoller. Photonic channels for quantum com-

munication. Science, 279 205, (1998).

[37] C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble.

The atom-cavity microscope: Single atoms bound in orbit by single photons.

Science, 287 1447, (2000).

[38] P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe. Trapping an atom with

single photons. Nature, 404 365, (2000).

[39] J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman.

Cavity QED with optically transported atoms. Phys. Rev. A, 69 051804, 2004.

[40] J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nägerl, D. M.
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Joseph, J. Schmiedmayer, and P. Krüger. Matter wave interferometry in a

double well on an atom chip, 2005, quant-ph/0507047.

[82] D. A. Steck. Cesium D line data. available at http://steck.us/alkalidata, 2003.

[83] K. Birnbaum. Cavity QED with Multi-Level Atoms. PhD thesis, California

Institute of Technology, 2005.

[84] E. R. I. Abraham and E. A. Cornell. Teflon feedthrough for coupling optical

fibers into ultrahigh vacuum systems. Applied Optics, 37 1762, (1998).

[85] C. E. Wieman and L. Hollberg. Using diode lasers for atomic physics. Rev. Sci.

Instrum., 62 1, (1991).

[86] K. G. Libbrecht and J. L. Hall. A low-noise high-speed diode laser current

controller. Rev. Sci. Instrum., 64 2133, (1993).

[87] J. H. Shirley. Modulation transfer processes in optical heterodyne saturation

spectroscopy. Opt. Lett., 7 537, (1982).

[88] K. Singer, S. Jochim, M. Mudrich, A. Mosk, and M. Weidemüller. Low-cost

mechanical shutter for light beams. Rev. Sci. Instrum., 73 4402, (2002).

[89] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski.

Simple scheme for tunable frequency offset locking of two lasers. Rev. Sci.

Instrum., 70 242, (1999).

[90] M. J. Madou. Fundamentals of microfabrication. CRC Press, New York, 2001.
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