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ABSTRACT

A finite element variational method is described and applied to -
the ahalysis of zero frequency seismic data. This technique presents
a suitable tbol for the analysis of permanent displacements, tilts and
strains caused by seismic events, since it can model variable fault

offsets in heterogeneous media.

The accuracy of the technique is demonstrated by detailed
static field computations for vertical and dipping dislocations acting in
plane strain, corresponding to an infinite-length fault in a homogeneous
half space, by comparison with closed form analytic solutions. A
parametric study of material inhomogeneities and variable fault offsets
reveals that order of magnitude changes in the solutions can occur for

both near and far field displacements and strains.

The technique was applied to the San Fernando earthquake using
a two-dimensional (plane strain) model. The best solution was obtained
by separating the fault into two distinct parts, both having offsets near
the surface a factor of five larger than the average slip. Both stress
drop and displacements vary by more than an order of magnitﬁde along
the fault plane, the maximum occurring at 1 km depth. Several
solutions are investigated for the hypocentral region, one of them

giving as much as 5 m offset.

The Alaskan earthquake of 1964 is also studied in plane strain,
and the observed vertical movements are inverted numerically to yield
a '"best fit" offset on the fault surface. This solution gives good results

for the observed horizontal movement. It is characterized by large
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variations of the slip with a maximum of 33 m below Montague Island.

Then, a relationship is derived, giving energy released as a
function of prestress, fault area, change in the local gravitational
potential energy and fault offset, neglecting nonlinear behavior outside
the fault zone. The finite element method is shown to allow direct
calculation of the terms of the resulting equation from static con-

sideration of failure in a prestress medium.

This is applied to the last solution for the San Fernando earth-
quake, the best fit offset of the Alaska earthquake and a simple model
of the Montana earthciuake, 1959. 1In all three cases, the results
indicate that a spatially variable prestress field gives the best
representation of the tectonic processes involved. The force of gravity
is found to be a significant factor in the energy balance of each event,
increasing the estimate of prestress for the thrust faults and the

apparent stress drop for the Montana normal fault.

For the San Fernando earthquake, the prestress field in the
hypocentral region is shown to exceed critical stress levels corre-
éponding to granite strength as measured in the laboratory, while the
average stress drop for the entire fault is below 200 bars. This is a
possible answer to the apparent discrepancy between laboratory and

average field measurements.

The Wilmington oil field subsidence is modeled by using a finite
element code which solves numerically Biot's consolidation theory. The
best fit is obtained for a very small interaction constant. The models

result in significant stress concentrations which could have triggered



the small magnitude events known as the Long Beach subsidence

earthquakes.
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INTRODUCTION

In the past decade, the fracture and flow of rocks has been given
renewed attention by geologists and geophysicists, with a strong empha-
sis on more quantitative observations. Studies of tectonic processes
associated with the earthquake phenomenon have progressed through
research adva.nceé in three major interconnected fields: theoretical
source mechanism investigations, seismological observations and
analysis covering the entire frequency spectrum and laboratory measure-

ments of fracture and flow of rocks.

Because of cémputational restrictions with respect to closed
form solutions, theoretical geophysics often deals with highly idealized
models. As a result, even though iﬁ provides exact solutions of the
problem treated, it does not represent the physical situation completely.
For instance, the "dislo;:ation" theory (Steketee, 1958; Maryama, 1964)
because of the assumptions of isotropy and homogeneity results in a
problem description which averages the field variable over large areas
of the 'fault'. By the same token, although it provides us with an
increased understanding of broad features of failure in situ, observa-
tional seismology deals only with average source parameters. This is
due to fhe fact that the seismic radiation which carries information
about the failure characteristics is usually analyzed in terms of either
point source theory or dynamic dislocation theory. In both cases, the
source parameters determined from spectral analysis represent only
values averaged over the source regioh. It must be pointed out,
however, that when near field observation is available, the averaging

can be refined to cover portions of the fault area, for instance, the



hypocentral region (Hanks, 1972).

In any event, this thesis will show that the apparent agreement ‘
between source parameters determin.ed from static dislocation theory
and from body wave spectra (e.g., Hanks and Wyss, 1972) is not very
meaningful in terms of failure mechanism. Indeed, we will show that
in the case of the San Fernando earthquake, the strength of the rock in
the hypocentral region is in the range of that measured in laboratory
experiments. This is in sharp contrast with the value of the average

strength of the crust most widely quoted in the literature (Chinnery, 1964).

This study, then, is a contribution to the understanding of tec-
tonic processes relevant to earthquakes, where the source parameters
(prestress, stress drop, fault offset, etc.) are considered with their
variations over the fault surface. This is done by using the finite
element numerical technique. Described extensively in the engineering
literature (e.g., Przemienicki, 1968; Zienkiewicz, 1971) and increasingly
used by geophysicists, this technique is ideally suited for solving tectono-
physics problems. The main advantage of this particular tool is that it
. permits the solution of elaticity problems characterized by nonlinearities,

anisotropy, heterogeneities and arbitrary external or internal boundaries.

VC’hapter I of this thesis describes a special purpose finite ele-
ment scheme, especially suited to modeling ''dislocations' in a hetero-
geneous geological environment. The results compare favofably to the
closed form solution of static dislocation theory for an infinite half
space. Thus, simple perturbations of the half space, such as lateral

inhomogeneities or variations of fault offset with fault width can be



analyzed in terms of their influence on free surface observations.

Chapter II applies this technique to the inversion of free surface
permanent displac;ement caused by the San Fernando and the Alaskan
earthquakes. The results indicate that for both events the '"best fit"
to the data is obtained for a slip vector that varies extensively over

the fault plane.

Chapter III shows how the concept of stress relaxation
(Archambean, 1968) can be utilized to obtain a formulation linking the
static change of strain energy inside a small volume around the earth-
quake fault to the seismic energy which '""leaks'' out of that volume.

It is then shown how the finite element models can directly compute

all the static terms €nvolved in that formulation.

Chapter IV applies this concept to the two eérthquakes treated
in Chapter 1I. While using the fault offsets computed previously, we
introduce various amounts of prestress in the models and show how
this can lead to a self-consistent failure mechanism. The results
indicate that large variations of pArestress and stress changes are
necessary to explain the observations. The Montana earthquake of
1959 is treated in a simple model designed to show a situation where the

surface observations indicate a predominance of subsidence.

Chapter V deals with a special type of earthquake failure where
the prestress field responsible for the events is caused by man's
é.ctivity. The subsidence of the Wilmington oil field is analyzed in the
framework of Biot's consolidation theory and modeled by a dynamic

axisymmetric finite element code. The results indicate that fluid



withdrawal from an underground reservoir can generate large non-
hydrostatic stresses. These stresses are sufficient to explain by

themselves the Long Beach ''subsidence’ earthquakes.



.I. TWO-DIMENSIONAL FINITE ELEMENT METHOD
APPLIED TO "DISLOCATION'" MODELS

Introduction

Following the occurrence of an earthquake, it is always difficult
to ascertain the circumstances, processes, and consequences of the
rupture. It is frequently even difficult to estimate the extent of the
rupture and the amount of relative offset at various points along the
break. Since most, if not all, of the fault break takes place at depth,
we must have the capability to deduce fault behavior from surface
observations if we are to gain a clear understanding of what takes
place in a given earthquake event. In this chapter we are concerned
with the capabili&y of analyzing permanent deformations, i.e., zero
frequency data, such as changes in geodetic controls and permanent

changes in strain and tilt.

Faults typically occur in complex geologic formations, since
they either mark the boundary between two moving plates or a weak
zone in a regional block. Conventional analytic treatments, developed
using Green's function techniques, have very limited flexibility for
representing variations in conditions along the length of the fault and
variations in structural layering in the near field. Certain numerical
techniques can be employed to overcome these restrictions. We chose
to apply what we think is probably the best suited numerical technique
for modeling an earthquake: the finite element méthod. This method
is conveniently formulated for processing by a digital computer, and it

appears that analyses based on the finite element method need be



limited only by the accuracy of the problem description.

The finite element method appeared in the engineering literature
during the mid-fifties (Argyris, 1954; Turner et al., 1956), although its
concepts are found earlier in mathematical physics (Courant, 1943). It
has now become a very important analysis tool for enginéerso However,
the method is just beginning to have its impact in geophysical applica-
tions where irregular geometry, heterogeneities, and nonlinearities
are commonplace. Because of the limited usage of the finite element
method in the geophysical literature, we present a brief, but general,
development of the ”.displacement method" for treating elastic solids.
We also describe how a discontinuity in the displacement field is
treated using the finite element method. The accuracy of the numerical
scheme for simulating faulted material is demonstrated by comparing
computed results with solutions based on dislocation theory for an
infinitely long fault acting in plane strain in a homogeneous half space.
The relative displacement offset is then prescribed point by point along
the fault plane to examine the influence of variations in slip on the
surface displacements. Simple structural boundaries are also treated

to examine how heterogeneities influence the surface behavior.

Finite Element Method

The finite element method is a technique for representing a con-
tinuum by a discrete system. As is done with finite difference methods,
a boundary value problem is reduced to a large number of simultaneous

equations, which are processed by a high speed digital computer. The



solution to these equations provides an estimate of the continuum
behavior, the accuracy of which is only limited by the number of
equations that are used to simulate the continuum. Time-dependent
phenomena simply lead to the repeated application of the set of simul-

taneous equations.

Although this approach to continuum processes can be quite
tedious in that hundreds or even thousands of simultaneous equations
are often needed for suitable accuracy, the method is an extremely
powerful analytical tool in that essentially all aspects of the governing
physics can be simuiated: irregular geometry, heterogeneous and
anisotropic material properties, nonlinear constitutive properties,

and even complex rupture processes,

The method is, however, limited in some respects. For
example, spatial variations that are very small compared to the
regional extent that is being modeled are difficult to simulate accu-
rately. This limitation restricts the direct application of the finite
element method for analyzing details of a stress concentration. Also,
in treating propagating stress waves, the numerical method is best
suited for treating low frequency waves with ten or more elements per

wave length.

The finite element method approach can be utilized by means of
three different approximate methods: (1) the displacement method,
(2) the force method, and (3) the mixed method. in the displacement
method an approximate representation is used for the displacement

field, and total potential energy is minimized in order to put the



displacement field in equilibrium, in an approximate sense. In the
force method an approximate representation is used for the stress
field and complementary energy is minimized in order to make the
resulting strain field integrable (satisfy compatibility equations), in an
approximate sense. Various mixed methods are used that result in
some degree of approximation to both the equilibrium equations and the
cqmpatibility equations. Only the displacement method is developed
here,

The displacement fieid ui(;\c} t) is represented as a linear com-
bination of normalized spline functions (interpolation functions)

55 6 =) U, (62,00
(1.1)

= [o(®] { Ui(t)}

where the symbols [] and { } denote a row matrix and a column
matrix, respectively. The nth spline function <I>n(;\c) is zero every-
where except for the region within the aggregate of elements joining at
node n (see Fig. 1). At node n the spline function is normalized to
unity

d (x)=1.0 | (1.2)

n' n

so that the generalized coordinates {Ui(t)} become nodal displacements
Uin(t) = Ui(xn’ t) (1.3)
For g‘eheral nonconservative systems, the.displacement field

expressed by Eq. (1.1) is required, at each instant in time, to satisfy

the expression for zero rate of virtual work
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dvi 3 - -
£ (P—a— v, + aij —a—X—J 6vi - £ 6vi) av f TS 5vi dS =0

so
in which
uy is the particle displacement
] is the particle velocity
6vi is the virtual particle velocity (continuous in V and zero on
Su)
dv:.l avi : NE

_ 1. . .
T T ST + v, is the particle acceleration

X,
JBJ

aij is the symmetric stress tensor which is related to strain
through constitutive laws

?i = nJ. gij is the traction specified along S,

p is the mass density

_f-i is the body force

V is the region enclosed by S‘1 + S,

Su is that portion of the boundary on which the time history of

displacement, ui(t), is specified

Sy is that portion of the boundary on which the time history of

surface traction, 7i(t), is specified.

If we restrict ourselves to linear elasticity, the virtual work expression

f . du. + E é-l-l—i-—é—au -f.8u dv
70 U S Sl 1) S U S e
-f'r‘_ Su, dS = 0 (1.4)
Sy 1 1

is used to govern the approximate solution where tii = azui/azt. In
this expression stress and strain have been related by the generalized

Hoole 'slaw
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Tik T Bijl ¢
= E... _a_l.li
ikjl 3%
since Eikjl = Eiklj (1.5)

The virtual displacement field tSui is expressed in terms of

virtual displacements of the node points by Eq. (I.1)

éu, T oui 83U, =@ OU, =[® (f)]{&Ui(t)} (1.6)

i° 33Uy,

Similarly, the spline function approximation to the displace-
ment field, Eq. (1.1), is substituted for each term involving displace-
ment in thé virtual work expression and the column vectors of nodal
displacements are factored out of the various integral operators to

yield
%sUi(t)$T< [M] {'{;j_(t)} + [x] {Uj(t)} - {TDi(t)}> =0 (1.7)

where ] = [ [0 0 [29] av
[x..] = [ég'(X)]T E [-a—?—(x)] dv (1.8)
ij Vv oCd¥ ~ ikjl %y~ '
— T = T =
Pyt) = /v [¢(0 1" £ dv + fsa[‘l’(i‘)] 73 95

Since the virtual displacements can be taken one node at a time, the
discretized version of the virtual work expression becomes a time-

dependent set of simultaneous equations

[M] {0} + [Kij] {um} {Bw} (1.9)

Because of the nature of the spline functions, the various inte-

grals are carried out element by element. In fact, for the more
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common element types (triangle and quadrilateral in 2-D, tetrahedron
and hexahedron in 3-D), the [M] and [Kij] integrals have been evalu;tgd
for a typical element geometry assuming p and Eikjl constant, see,

for example, Zienkiewicz (1967) or Przemienieki (1968)). These
element integrals provide the basis for finite element computer codes
that serve to assemble the element properties and process the resulting
set of simultaneous equations. Use of the derived properties of iso-
lated elements endows the finite element codes with great versatility

in the treatment of irregular geometric shapes with mixed boundary

conditions and with inhomogeneous material properties.

The development carried out above is mathematically similar
to, and follows along the lines of, the ordinary Rayleigh-Ritz procedure.
Actually the finite element displacement method was originally devel-
oped from physical arguments. In this latter approach, approximate
nodal force-displacemént relationships are developed for a typical
element using an energy criterion. These isolated elements are then
assembled by equating the displacements common to each node. The
resulting set of simultaneous equations expressed above is then ob-
tained by setting the sum of all of the forces acting at each node point
equal to the product of nodal acceleration times the mass associated
with the node point. The resulting ''stiffness'' terms [Kij] are identical
with the corresponding terms derived above; however, slight differ-
ences can arise in the ""mass' terms [M} and the "load' terms
{ﬁi(t)} because of the manner in which distributed loads and inertial

forces are concentrated at the node points.
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We will describe how the finite element method can be used to
gimulate a dislocation in a continuum. We consider an isolated fault

surface ¥ across which the displacement field is discontinuous, i.e.

UM - v g0 = aux

forz-—-—»z (1.10)

where the superscripted (+) and (-) denote limiting values of the dis-
placement és x approaches Z from opposite sides of the fault surface.
The region occupied by the elements adjacent to £ on the (+) side is
denoted V(+), while the region occupied by those adjacent elements on
the (-) side of Z are denoted V(—). The node points along Z are
bifurcated so that

folho} - {olol - { a0
for x on 2 , or, in general, we write

{U§+)(t)} - {Ué-)(t)} ={ AUi(t)} (1.11)
where A Uin(t) = 0 for BN not on X

For the case where { AUi(t) } is specified, the virtual displace-

ments in Eq. (1.4) simply become

{an(}s,, t)} =[<1>(§)] {U§+)(t)} - [4,'(5)] {Ug-)(t)} (1.12)

since {5 AUi(t)} = 0. The discrete form of the virtual work expression
is altered only slightly due to presence of the dislocation, so that in

place of Eq. (1.9) we get

[M:l {Ggﬂ(t)} + [Kij]{Ugﬂ(t)} - {§§+)(t) } (1.13)

where {U§+)(t)} is given by Eq. (1.11) and
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{_1_?(+)(t)} = {i-@'(t')} +fv(') [<I>(1<,)]Tp [q)(f)] av {A{}i(t)}

+’fv(_)[§§’; (5)} T Eiin [-g-% g)] av {AUi(t)} (1.14)

We note that there is an approximation inherent ir_x this develop-
ment as well as in conventional dislocation theory regarding the manner
in which continuity of tractions is achieved across the dislocations.
Traction continuity is maintained between adjacent (+) and (-) points
which are not aligned across I in the dislocated state. In the above
finite element formulation, force equilibrium is maintained between
complementary halves of each bifurcated node along ¥ even though the
nodes are separated by AUin(t)" This approximation could be eliminated
in the numerical treatment; however, the added complexity is not
needed to simulate earthquake phenomena where the fault displacement

is very small compared to the size of the elements.

In looking ahead to future numerical simulations of an earth-
quake event, we note that traction conditions on £ can more closely
simulate an earthquake rupture process in a prestressed medium than
specifying AUi(t) on £ . This case is handled by simply introducing
traction boundary conditions along the rupture zone. For example,
the slip-stick rupture process could be simulated numerically by
adjusting S, = Z(t) of Eq. (1.38) as; the rupture progresses. Sliding
friction simply indicates nonzero -T—i along S =2 . |

For the purpose of this thesis, we restrict ourselves to time-

independent modeling of heterogeneous dislocation phenomena. The

character of the dislocation is specified by{AUi} which is converted
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into a load vector (concentrated forces applied at the node points) by
Eq. (1.14) with {Aﬁi }= 0. The nodal ‘displacements { U§+)} are ob-
tained by solving Eq. (1.13) with ﬁi}: 0. The complementary set of
nodal displacements {Ui-)}, which differ from {Ugﬂ} only in the
region V(_) adjacent to the fault, are given by Eq. (1.11). Stresses

are obtained from the nodal displacements by substituting Eq. (1.1)

into Eq. (1.5) so that

"h ) - 1kjl[§'§;:| {Ugﬂ} (1.15)
for X in V(+), and _
7 e - 1kJ1[gf (Jj {UJ(-—)} (1.16)

for x in V(-).

This ''dislocation’' approach may result in net increase of
strain energy of the system (see Chapter III of this thesis) because it is
insensitive to the prestress field. Tﬁe fault offset is imposed on the
nodes that define the fault surface instead of the more natural approach
of letting the offset be determined by the forcing function: the distri-

bution of the prestress.

A ''relaxation' of stress can be used as an alternative. This is
done uéing static linear elasticity theory by comparing two equilibrium
situations. The first is calculat‘;ad for a set of displacement boundary
conditions, which, imposed upon the original model define the prestress
field. The second static equilibrium is computed for the same boundary
conditions imposed this time on a finite element grid where a row of

elements defining the fault gouge have been assigned the elastic
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constants of a near fluid. The resulting stresses define the final stress
field, and the difference between the two models defines the relative

displacement and stress change.

By varying the amount of "relax#tion" defined as the change in
shear modulus of the 'fault gouge", one can reproduce the relative dis-
placement distribution that would result from an equivalent ''dislocation''.
Because of the finite thickness of the elements ''relaxed", care must be
taken to avoidb dilation of the fault gouge. This is controlled by Hooke's

law

Tes:

4% Bjata (1.17)

which can be written in plane strain as

Tex) [ 911 12 913 € xx
royl =412 2 4o € yy (1.18)
xy] L9122 933 933 € xy

where the dij are the 6 elastic coefficients characterizing the anisotropy.
1f we want the two sides of the fault to slide parallel to the fault plane,
however, we can simplify the above formula by using an orthotropic
material. Here El’ ¥4 characterize the Young's modulus parallel to
the fauit plane, say the x axis, and EZ’ vy apply to the y direction,

perpendicular to the fault plane. Then (Zienkiewicz, 1972)

B 2
Txx n(l-nvz) nu2(1+ Vl) 0
_ E2 nv,(1+v,) (l-vf) 0
T - 2
vy (1+v)(1= v -2n45)
T 0 1 1 -2 2
Xy L 0 m( +V1)( =Y nvz]

-
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€xx

fyy

€xy | (1.19)
(E1, E2,V1,V5, are the Young's moduli and Poisson's ratios)

where n = EI/EZ and m = ft, /EZ' These coefficients can be chosen
such that partial shear stress drop is achieved on the fault surface
while maintaining a constant stress normal to the fault. Another
technique consists of dropping the shear modulus while maintaining the
bulk modulus unchanged. Then, a linear relationship exists between
the shear modulus and the thickness of the ''gouge''. If the amount of
shear stress drop parallel to the fault is kept constant, the thickness

of the gouge is inversely proportional to the change in shear modulus .

This will be used in chapter IV of this thesis.

Idealized Fault in a Homogeneous Half Space

Historically, (for static problems) geophysicists have treated
faults as a plane surface with a uniform discontinuity in the displace-
ment field tangential to the idealized fault plane. The discontinuity in
the displacement field, referred to as a ''dislocation'’, is injected into
an elastic continuum by a linear process of superimposing concentra-
tions of force along both faces of the fault plane. The elastic compli-
ance of the continuum to the singular load system is obtained by con-
ventional Green's function techniques; however, the resulting integral
expressions that are generated are very difficult and tedious to evaluate.
Solutions for a vertical plane of dislocation in a half space of homo-

geneous Poisson's solid have been evaluated by Steketee (1958a, b) and
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Maruyama (1963, 1964). More recéntly, Savage and Hastie (1966) and
Mansinha and Smylie (1971) gave closed form solutions for the more
general case of a dipping fault plane. Variations in the earth's structure
with depth were introduced (McGinley, 1969) by the superposition of
several half-space solutions offset to represent a layered media. The
spherical geometry of the earth was introduced by Ben Menahem et al..
(1969, 1970) and Singh and Ben Menahem (1969) in order to more

closely model the influences of earthquakes at teleseismic distances.

One of the purposes of this study was to determine the accuracy
of the finite element fnethod for simulating a dislocation. Unfortunately,
getting a closed form solution for a dipping dislocation in a 3-dimensional
half space is nontrivial, even with Maruyama's (1964) Green's functions
as a starting point. However, it is relatively easy to get the displace-
ments due to an infinite length dislocation in a homogeneous half space
and then to compare it with the 2-dimensional finite element solution

acting in plane strain.

In particular, the displacements and stress components at a

point Q(xl, X5 x3) of a half space due to an arbitrary dislocation are

u (Q) = ff u, (PYWy) »(P) dx (1.20)
>
Tmn!Q) = /L u, (PYH™ v (P) dx (1.21)

where the integrations are taken over the coordinates of P (21. EZ’ 23)
on the dislocation surface ¥, where a discontinuity Auk(P) occurs.
Wi and Hﬁn are the Green's function solutions corresponding to the

superposition of strain nuclei at the point P( £y & ¢ 3) and at
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PY El’ £ 0 " 53) (its image across the free surface), plus the Boussinesq
problem of vertical loads on the free surface which are needed to satisfy
the surface boundary conditions. Using Maruyama's (1964) expressio‘n‘s
for the Green's function, we carry out the integration of Eq. (1.20) for
a dislocation surface of infinite length (i.e., we integrate over Z

€ [d, D] X [+00, —00], where d and D are the vertical depths to the
shallowest and deepest points on the fault respectively). The results
for a vertical fault in dip slip, expressed along the free surface (x3 = 0),
are:

Horizontal displacement

2 2
Au3 3 x4 x| f
U, = - (1.22)
h " x21+d2 x2+D2
1
Vertical displacement
Au ‘ x.D x.,d
Uv:_7r—3 gatan g -atan-g- - 21 ) + 21 ) (1.23)
1 1 x1+D xl+d

For a 45° dip slip fault and d = 0, we have

2 2
AV ; Z(ZD—xl) + 4x1 (ZD—xl) + 6x1

U-=-
gm (2.D-x1)2 +x12
-1 2D—x1 -1
+ 4 tan < ” )+2-4tan (-1) (1.24)
1

The finite element procedure described in the previous section
was used to model a vertical and 45° plane dislocation acting in plane
strain in order to examine the accuracy of the numerical method. A

fine mesh of triangular elements is used in the proximity of the
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dislocation to achieve good accuracy, illustrated in Figure 2. At this
point, it bears pointing out that the assemblage of triangles in no way
represents an actual cutting out of a half circle into physically separated
triangles connected at their corners. Compatibility of displacements
guarantees that the junction of elements on their sides is a virtual line
rather than an internal discrete boundary. The infinite extent of the
half space is approximated by a semicircle, 30 fault dimensions in
radius. The continuum exterior to the semicircular assemblage of
elements provides'sovme resistance to displacements along the semi-
circular finite element boundary. The resistance of the exterior con-
tinuum is greater than that which would be provided by traction-free
boundary conditions on the semicjrcular finite element boundary, but
less than that which would be provided by fixing the finite element
boundary displacements to zero along the semicircle. In order to
evaluate the effect of truncating the continuum at 30 fault dimensions,
we computed results using both the zero traction and the zero displace~
ment boundary conditions. It Was found that the results (displacement,
strain, and stress) of the two numerical calculations differed by less

than 1% within 20 fault dimensions of the numerically induced dislocation.

Figure 3 shows the computed displacements at the free surface
for a vertical fault compared to the solution expressed by Eqgs.(1.22) and
(1.23) for d =0, D=16.5km, u, = constant u. The finite element

displacement field obtained with the same parameters, compared within

about 1% accuracy out to 15 fault widths away from the dislocation.
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PLANE STRAIN
FEM MODEL -
} 500 KM —
) Aj

Figure 2. Typical finite elements grid used in this study. The
dimensions are of a half circle with 500 km radius.
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VERTICAL FAULT 16.5 km

5
Units of U + Finite element solution
4- — Closed form solution

_—————T;__
S0 100
DISTANCE FROM FAULT (km)

Mmoo oy
m———— \o S

Figure 3. Horizontal and vertical displacements at the free surface for
an infinite length fault. Vertical dip slip. The other side is
symmetrical.
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Figure 4 shows a similar comparison between a plot of Eq. (1.24)
with the finite element solution using the parameters above. On Figure
4 we also show the vertical displacement of the free surface for a dis-
location which dies out linearly, from u at the surface to zero at the
hypocenter. This is discussed in the next section, but at this point we
note that this particular variation changes the sign of the tilt along a

considerable length of the free surface.

A number of other solutions were calculated using variations of
these parameters. In all cases the finite element code gave surface
displacements in agreement with those obtained from the closed form

solutions to a high level of accuracy.

Influence of Fault Complexities

We now wish to proceed from a simple homogeneous half space
with constant dislocations to more complex models. As was noted in
the introduction, the major problem with earthquake fault modeling is
with inhomogeneities in the medium or on the fault plane itself. Since
our numerical code allows for variations in structure, elastic properties
and dislocation distribution, we made a systematic parameter study in

order to determine their relative influence upon the solution behavior.

Figure 5 shows the influence of variations of the relative dis-
placement along the fault width. For the sake of discussion we choose
to show the extremes among all the variations of fault behavior that
we have studied. In all cases, the fault, infinite in length, is a thrust

fault dipping at 45°, with a focus at 10 km depth. Comparison is made
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HOMOGENEOUS HALF SPACE

150
cm

== CONSTANT DISPLACEMENT
—+— LINEAR DECAY
== EXPONENTIAL

100
—— “pARABOLIC"
VERTICAL DISPLACEMENT
50 AT SURFACE
-10 -5
| ]
—im— 5 10
‘\0 \
2 \\\
-50 &

HORIZONTAL DISPLACEMENT

200
At
bars
-too L
100 STRESS RELEASE
HYPOCENTER
0 e —k——
S— DISTANCE
" m ON FAULT
(&)
g 150
x
@ 100 b RELATIVE DISPL.
WITH DEPTH
-100 { 50
1
004 E 1z 16 km
-150

Figure 5. Influence of variable offset upon the surface movements.
Negative horizontal displacement is to the left. Stress drops
are approximate.
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between quasi constant dislocation, linear decay, rapid exponential
decay and quasi parabolic dislocation displacement, as shown at the

bottom of the figure.

The vertical displacements at the free surface clearly reflect
the behavior of the dislocation. This implies that, if good observations
are available, it should be possible to discriminate between the various
extremes of fault movement at depth. Estimates of average slip along

the fault could then be made with reasonable accuracy.

The horizontal displacements on the other hand do not reflect
the nature of the subsurface faulting so clearly except in the case of a
"parabolic! dislocation. The horizontal displacement it causes is the

only one exhibiting a relative shortening on either side of the fault.

The plots of stress release along the fault surface show some
very interesting features. Because of the linear assumptions inside
each element, these stresses are an underestimate of the true stress
drop on the fault surface. While the constant dislocation model causes
a relatively constant stress release with an average stress drop of
30 bars, the model with linear decay shows a stress release which is
insignificant at depth and grows to 90 bars at the free surface. This
situation is accentuated in the case of the exponential decay of the dis-
location, where the fault surface appears to be loaded at depth while
releasing abnormally high stress at the surface. The parabolic dis-
location on the other hand causes a high stress release at depth while

loading the surface.
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It should be remembered at this point that all of these models
are for a homogeneous Poisson's solid. Clearly, in a real situation
‘the shear modulus of the rock will increase with depth, if only because
of the overburden. Therefore, the stress; drop will be increased at

depth and decreased near the surface,

Figure 6 shows the influence of some simple structural units on
the solution. The elastic constants used in the model are listed in
Table 1 and the geometry of the models is shown at the bottom of the
figure without vertical exaggeration. The order of magnitude contrast
between the alluvial valley and the homogeneous half space is the out-
standing factor here. In the model of a layered half space, extremes
are chosen for the shear modulus of the upper mantle and the low

velocity zone in order to bound their effect.

The influence of these inhomogeneities upon vertical displace-
ments is very limited except for alluvial model #1, where the surface
rises by some 20 cm before reaching the fault on the left side. On the
other hand, the horizontal displacements react strongly to the presence
of the soft valleys mainly because they offer less resistance to the

moment that exists at the tip of the fault.

The stress drop along the fault is reduced by a factor of 5 when
the fault goes through the soft formation. This seems to imply that in
a situation like that of alluvial valley #2 in order to maintain a constant
stress drop along the fault, the dislocation would have to increase ve ry
significantly as it approaches the surface where geological units with

low shear modulus exist.
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VARIABLE GEOLOGY
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Figure 6.
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Influence of simple geology upon the solution of a

45° dip slip fault with a constant offset.
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The horizontal strain caused at large distance by these various
dislocations are listed in Table 2. Distances of 120 km and 150 km
were chosen as examples. Boundary effects are seen at larger dis-

tances in the numerical results.

The main conclusion from this table is that order of magnitude
errors can occur if earthquake strains are simulated by a constant
dislocation in a homogeneous half space rather than the more realistic
situation of a variable dislocation controlled by geoclogy and prestress.
This is very important if one wants to interpret strain offsets at
teleseismic stations. Of course, our model is 2-dimensional and at

distances greater than the actual fault length, end effects would be felt.

This simple parametric study demonstrates, however, that if
the local geology is well known and precise zero frequency data are
available, the finite element method can be employed for a detailed
analysis of an actual earthquake event and fault displacement, stress
drop, moment and the source dimensions can also be determined, as

we demonstrate in the following chapter on applications.
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Table 2

Horizontal strain caused by a 45° dip slip fault as described

in Figures 4 and 5. Scale factor 1077,

Model Distance from fault: 120 km =120 km 150 km -150 km

Constant Dislocation

Homogeneous half space 6.55 5.8 5. 3.8
Layered half space 3.56 3.2 2.8 2.1
Valley #1 5.4 4.5 4.2 3.

Valley #2 » 4.9 4.1 3.8 2.7

Homogeneous Half Space

Constant dislocation 6.55 5.8 5. 3.8
Linear decay 3.9 3.6 3. 2.3
Exponential decay 1.6 1.5 1.2 1.

Parabolic dislocation 5.3 4.6 4, 3.
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II. TWO-DIMENSIONAL MODELS OF THE 1971 SAN FERNANDO
AND 1964 ALASKA EARTHQUAKES

Introduction

We have demonstrated the validity of the finite element technique
for numerically modeling '"dislocations' in a complex geological model.
The method will be applied to two earthquakes characterized by a
relatively large amount of reliable zero frequency observations in an
attempt to invert these data to obtain the displacement offsets that

occurred on the fault surfaces.

The San Fernando earthquake was chosen because of the extensive
post-earthquake geodetic survey performed by severai investigators.
Because the pre-earthquake survey dates back an average of 5 years
before 1971, it ‘was felt that net changes would be polluted by little if
any secular movement, thus guaranteeing unusual accuracy in the net
vertical movement measured. The Alaska earthquake, aside from the
intrinsic interest in it, was chosen because its length, estimated to be
as much as 600 km, makes it a perfect candidate for plane strain

modeling,

Plane strain modeling of the San Fernando earthquake, however,
gives us a less accurate approximation. The total fault length of this
fault is equal to its fault width, and as is shown below this would allow
an accurate plane strain model of the middle of the fault. But, on the
basis of the observations, we divided the fault length into two segments,
which are characterized by differences in their geological setting and

significant variations in their free surface behavior. This leads us to
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model in plane strain two segments of fault with a fault length smaller
than their width. This should result in an underestimate of the fault's v
offsets at depth. However, since the two cross sections studied are
only 3 km apart, they are not independent from one another, and their
interaction can be estimated to improve each inversion. Thus, the
overall accuracy of the results is felt to be sufficient to justify the use

of two-dimensional modeling.

The next section presents a short discussion of the validity of

two-dimensional elasticity applied to three-dimensional problems.

1. Plane Strain Assumptions

Either plane strain or plane stress can be used here since, in
principle, they are interchangeable. Any plane stress problem can be
solved as a plane strain problem by replacing the true value of the

Poisson's ratio », by an apparent value v/{ -v).

However, in plane strain one assumes that

(1) builaz = const., i.e., a uniform state of strain exists in

the third dimension
(2) no body forces exist in the third dimension

(3) no surface tractions exist in the third dimension on the

boundaries.
These requirements satisfy all of the equations of elasticity (motion,
compatibility and constitutive equations). Thus, provided that the
problem at hand can be posed in terms of plane strain, the solution will

be exact.
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In plane stress, however, the first requirement of the above is

changed to requiring no stress in the third direction, i.e.

= 7T = ~= 0
TZZ Xz TYZ

As a result, by contrast with plane strain, there is here an approxima-
tion involved because the above condition does not satisfy all of the
compatibility equations.

All of the subsequent models will then be treated in plane strain,

and the third component of stress is

T = v(T +7r )
ZZ XX vy

and the components of displacement will only be functions of x and y,

not of z, i.e.

f=]
H

u(x, y)

v(x, y)

<
i

For models of earthquakes, this means that our solutions are exact if

and only if

(a) The only body forces to consider are either vertical (force
of gravity) or in the xy plane(there exist tectonic forces only parallel
to the ci'oss section under consideration)

(b) No components of tractions exist in the z direction on the
outer or inner boundaries. Clearly this is the condition most influenced
by the fault ends effects. However, Figure 7 shows the free surface
vertical displacements caused by a fault dipping at 45° for a cross
section at the middle of the fault. One part of the figure is for a fault

with hypocenter at 8 km which breaks the surface and the other part is
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Figure 7. Analysis of the fault length (FL) influence upon the
vertical movement of the free surface.
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for a fault with hypocenter at 12 km and stopbing at 8 km depth. As can
be seen, for fault length equal or superior to the fault width, the re - N
sulting free surface displacement is éssentially the same as that caused
by an infinitely long fault, equivalent to plane strain. For a fault length
much smaller than the width, the vertical offset is reduced significantly
from that obtained by plane strain modeling. As a result, it can be
stated that if the fault is square or close to it, the plane strain model

is a very accurate representation of the middle of the fault. If the

fault length is much smaller than the fault width, the plane strain inver-
sion of vertical offset data will lead to a underestimate of fault slip at
depth.

(c) No warping of the plane is permitted in the z direction. By
placing the cross section in the middle of the fault, one guarantees that
the displacements in the plane (x,y) considered are not functions of
the third coordinate. The displacement plots of Press (1965) for
strike slip and dip slip faults clearly show that no vertical movement

exists on the middle section of a strike slip fault.

The San Fernando Earthquake

Observations and models

The San Fernando earthquake occurred on February 9, 1971, and
the associated permanent displacements were extensively recorded. In
addition, estimates of other event characteristics, including magnitude,
moment, focal mechanism and tectonic interpretations can be obtained
from the combined work of a number of investigations (e.g., Canitez

and Toksbz, 1972; Savage et al., 1972; Whitcomb, 1971; Allen, Hanks,
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and Whitcomb, 1972; Wyss and Hanks, 1972). -As a result, the San
Fernando earthquake is an ideal event for finite element simulation,
our hope being, of course, that this technique will give us a fit to all
the zero frequency data as well as tell us something about the sub-

surface environment in which the failure occurred.

Figure 8 shows a contour map of the change in vertical geodetic
control in the region affected by the event. The data used in this figure
are a combination of data from Savage, Burford, and Kinoshita (1972),
Alewine (1972), Kamb et al. (1971) as well as data from the U. S.
Geological Survey stéff report (1971). The general pattern is a very
abrupt upwarping of the surface associated with two major fault breaks:

the Sylmar fault to the west and the Tujunga fault to the east.

The short Sylmar fault outcrops in the alluvial deposits and
curves southward in its westernmost portion and becomes more left
lateral as opposed to thrusting. The contours indicate that the vertical
displacements begin to taper off immediately north of the fault scarp

without significant warping.

The longer Tujunga segment underlines the boundary between
alluvial and more indurated upper Tertiary sediments. In this area,
there is a sharp increase of vertical displacements north of the fault
scarp. As a result the maximum uplift is found some 1.2 km north of
the eastern segment of the fault and immediately behind the western
segment. It is up to 2.30 m to the east compared to 1.50 m to the west,
and the en-echelon arrangement of the faults is not maintained in the

vertical uplifts.
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In our model we limit ourselves to plane strain, attempting to
fit two distinct cross sections (AA' and BB' of Fig. 9). While the /faul_t
is not infinite in length and our two-dimensional models neglect the end
effects as well as the left lateral component of displacement, we feel
that these effects would not modify the vertical uplift significantly since

the cross sections are in the middle of both fault segments.

Cross sections chosen as representative, along with the geology

that we included in our numerical solutions, are shown in Figure 9.

Along the section AA', through the middle of the Sylmar fault
segment; the surface observations indicate an uplift increasing to 35 cm
at the southern fault wall, with an additional offset of 1.1 m at the fault
break. North of the scarp the displacement grows to a maximum of
1.5 m at a distance of 300 m from the fault and then decreases
exponentially to 30 cm, 4 km to the north. The data near the epicenter
are most likely influenced by secular uplift of the San Gabriel mountains,
and it is pfobable that some of the other data contain a proportion of this

secular variation (in this regard, see Savage et al., 1972).

The geology in the Sylmar area is sketched on the cross section.
We have chosen a boundary between the basement and the Saugus forma-
tion which implies a history of overthrusting of the San Gabriel block
in the southwest direction (L. T. Silver, personal communication). The
Saugus formation (Pliocene to Miocene sediment deposits) is a faulted,
tipped syncline (Palmer and Henyey, 1971), and for simplicity we chose
the boundary to be vertical along the contact with the younger San

Fernando Valley sediments. The basement underlying the San Fernando
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Valley is taken to be at a depth of approximately 4 km, based on

maximum sediment thickness cited by Wentworth and Yerkes (1971).

Section BB' is 2.5 km east of AA'.and is very different in its
geological setting. We also observe quite different displacements. No
displacements larger than 10 cm are observed to the south. North of
the scarp a sharp rise of the surface is recorded with a maximum of
2.30 m, with an exponential decrease noerthward similar to the one of

section AA'.

Important differences in the local geology are observed in this
area. In particular, 3 km to the south of the fault, outcrops of Mint
Canyon and Topanga formations as well as volcanic rocks and basement
coniplex are observed, probably representing a prolongation of the
Verdugo Mountains. We represent these variations in our model by
bringing up the basement complex in a crude syncline fashion. Lower
Tertiary sediments are represented in the same way by the Saugus
formation outcropping some 2 km to the south of the Tujunga fault scarp.
-This leaves a small valley of San Fernando alluvial deposits occupying
the center of the '"Saugus syncline'. The elastic properties of the geo~
logical units are listed in Table 1. They are intended to give the best
average velocities for the ensemble of formations included in these units.
The values chosen for the San Fernando alluvial deposits immediately
adjacent to the fault in section AA' are deliberately taken to be low so
as to approximate the properties of loose gravel, sand and silt. All of

the models used include crust and upper mantle layering as previously

described.
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OBSERVED DISPLACEMENTS AND GEOLOGY
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Figure 9. Observed displacements and assumed simplified geology
for section AA' and BB'. The elastic properties of the
units are in Table 1.
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Finite element solutions

Figure 10 shows the results for section AA'. The best solution
in terms of vertical displacements on the south side was obtained with a
fault dip of 33° with an epicenter 12 km north of the scarp and with a
hypocenter at 8.0 km depth. This fits the best fault plane solutions
obtained by Allen, Hanks, and Whitcomb (1972). We consider the fit
to be acceptable in spite of the fact that we do not closely fit the 24 cm
uplift observed above the epicenter. However, we believe that this
data point is contaminated by a large component of secular strain, and
consequentlyha;re allowed the solution to yield smaller vertical offsets

at this point.

The horizontal displacements é.re plotted in Figure 10, the nega-
tive values indicating movement toward the south. These values are
difficult to compare to surveyed data published by Savage et al. (1972)
because the data have not yet been reduced from changes in surveyed

line length values to absolute displacements.

Figure 11 shows the comparison of observations with our best
finite element solution for section BB'. Here again the fit for vertical
displacements is excellent except for the observation near the epicenter.
The fault used for the solution dips 33° to the north which gives a hypo-
center 13.3 km north of the fault scarp with a depth of 8.5 km. On the
plot of horizontal displacements we indicate the projected position of
two stations used by Savage et al. (1972) in their line length change study.
Stations PL1 and Mesa are 5442.8 m apart and showed a shortening of

1.23 m between 1935 and 1971. In our solution, we find a lengthening
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of approximately 50 cm. Section BB'is almost parallel and 1 km to the
east of the line PLI—Mesa, and we do not expect that a left lateral com-
ponent or secular strain variation could explain a discrepancy of 1.75 m.
This discrepancy can be avoided by using a multiple fault system as we

will show.

Figure 12 gives a comparison of the relative displacements
applied to the fault surface for the solutions shown in the previous
figures. The connection between the portions of the fault plane repre-
sented by sections AA' and BB' is a complication of the simple picture
presented here. Cleérly, since the sections are only 3 km apart,
large differences in the fault offset in these two portions raise questions
as to the accuracy of our plane strain models. This will be investi-
gated in the conclusions of this thesis. In both cases in order to fit the
vertical displacements we need a ''dislocation' which grows linearly
from the focus to a uniform value near the average, followed by an
exponential growth to a relative displacement four times larger than
the average value over the fault. A rapid decay from the maximum

offset is then required to give the observed fault scarp offset.

A possible explanation for this behavior is that the dislocation
grows when it encounters a softer material like the Saugus formation
and begins to decay before reaching the surface because of plastic

deformation in the surface material.

The maximum value of the relative displacement in our best
solution for BB' is quite large. Furthermore, its rapid variation

implies strains in the neighborhood of 4 x 10—3. which could cause
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further fracture or creep phenomenon.

Figure 13 shows the stress drop along the fault surface for/ both
cross sections. For both cases the stress drop remains close to the
average over the whole fault. The small decrease in the stress drop
upon entering the Saugus formation may be due to the shai'p boundary
between the basement and younger sediments. We consider this to be
tenuous since we do not have sufficiently detailed structural data to
resolve such behavior. Once inside the softer '"Saugus syncline' the
stress drop increases rapidly to a maximum of 250 bars for section
BB'and 120 bars for .section AA'. These high stresses and strains
near the surface are very surprising since no aftershocks were observed
in the vicinity of the fault scarp. To the best of our knowledge this
situation was never reported for past earthquakes and it suggests

several possibilities:

() An exceptionally high strain energy was actually stored in
the Saugus formation where the fault displacements were large because
of its geological setting. This hypothesis will be investigated in later
studies.

(b) The '""Saugus'' and the upper layer of materials did not behave
elastically during the earthquake and our calculations of stress drop
could be misleading. A possible indication of nonelastic behavior is
found in Savage et al. (1972) who report 40 cm of afterslip in the days
following the main shock. However, this single point measurement is

open to question.



300

AT
bars

200

100

SURFACE

-100

-200

Figure 13.

48

STRESS DROP ON THE FAULT SURFACE

9 o Section BB’ At =27 bars
e Section AA AT = 15 bars

2 4 6 8 10 12 N 16
FAULT WIDTH km

Shear stress drop parallel to the fault surface. The shear

stress is averaged on a small region around the fault plane
and is an underestimate.



49

(c) Our model of the earthquake is not sufficiently detailed
since it uses one single fault, while field evidence suggests the existence
of several breaks near the surface which could extend to significant
depths. These secondary faults would give rise to surface displacements
which would be misinterpreted in our simpler model so as to lead to a

high stress drop.

We can, in fact,consider a multiple fault model based on the
available evidence. From the work of Bonilla et al. (1971), we find
that near our section BB', in addition to the major Tujunga fault scarp,
two small faults with-significant vertical offset are found in Lopez
Canyon. One is 500 m to the north and dips 65° (Kamb et al., 1971)
and the other outcrops 900 m to the north of the main break and dips
approximately 60°N. In view of thvese observations we modeled a

three-fault system, and the results are shown in Figure 14.

We used a major fault, marked (1), similar to the single fault
used in previous models with a dip of 33°N and an epicenter 13.3 km to
the north, the hypocenter at a depth of 8.5 km. Two small faults branch
out from the major one as indicated (marked (2) and (3)). In order to
fit the observed vertical displlacements we had to apply relative offsets
dying out linearly towards the surface on the three faults. The strains
in the upper 2 km of the crust are not significantly changed in this
model since the sum of the relative displacements on all three faults

are very similar to the best solution with one fault only.

Two improvements are achieved, however. The horizontal dis-

placement obtained here gives a shortening of 70 cm for the line



THREE FAULTS SYSTEM

VERTICAL AND HORIZONTAL
DISPLACEMENTS

o Observation

km

-l A BEST SOLUTION WITH
4l : /ONE FAULT ONLY
FAULT (D) RELATIVE DISPLACEMENTS
ON THE FAULTS

Il
° 2 4 6 8 10 i2 14 i6
250 FAULT WIDTH km
1
bars Iy
sof i
I55 BEST SOLUTION WITH
Iy ONE FAULT
[
ool ':/\(@*@*@
j' STRESS DROP ON THE

MAJOR FAULT

50

1 1

e 16

FAULT WIDTH km

L
12

-10

Comparison of displacements on the free surface, offset
along the faults and shear stress drop for a single fault

and a multiple fault system.

Figure 14.



51

PL1-Mesa instead of a 50 cm lengthening obtained for the single fault
model. The other advantage of this model is seen in the stress drop
along the fault. In this case, the maximum shear stress drop at 1 km
depth is reduced by 30% and the surface loading has almost disappeared.
Thus, the preferred conclusion is that in the portion of the fault
modeled by section BB', the earthquake is better represented by a
major fault surface fingering out into multiple smaller breaks as it

approaches the free surface.

How many of these small faults branch off the main plane and
how much offset or st-ress drop can be accounted for by this explanation
cannot be asserted without more data than are available to us. We
note, however, that the multiple fault hypothesis is an alternative
explanation to the plastic deformation suggested above. However, as
the number of such small secondary faults becomes large, the dis-

tinction between the two is not great.

Source parameters

Based upon the results of this study, it is found that the San
Fernando earthquake is best represented by different fault segments.
The Sylinar segment has an average length of 4 km (based on the
contours of Fig. 7), a width of 14 km and an average offset of 1.12 m.
The Tujunga segment has an average length of 6 km, a width of 15.8 km

and an average offset of 2.35 m.

The seismic moment is usually defined as

M = wUA (Brune, 1968) (2.1)
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where U is the average displacement on the fault. In this case, since

we have variable shear modulus and slip along the fault, we use

surface
M0 = p(x)U(x) dx dy (2.2)
length hypocenter ‘

This gives, for every kilometer of fault length

0.35 x 1025 dyne cm for section AA'
and

0.85 x 10'25 dyne cm for section BB'

Or, for the entire fault system as defined ahove

M, = 6.2 x 10°> dyne cm.

This estimate, based on two-dimensional models, is in agreement
with the moment obtained by Wyss and Hanks (1972) from body wave

data.

The average shear stress drop was found to be 15 and 27 bars
for AA' and BB', respectively. These values are similar to those
reported by Wyss and Hanks (1972) on the basis of P and S wave.
spectra, but the meaning of an average stress drop is unclear in an
earthquake where prestress and stress drop may vary by an order of
magnitude along the féult. Chapter IV will expand on this subject in a

more quantitative way.

Alternative solutions

In our '"principal'' solution, we chose to have the fault slip

increase at a relatively slow rate from the focus up to a depth of 8 km.
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This was caused by our decision not to fit the uplift data near the epi-
center on the premise that it may reflect secular uplift of the San Gabriel
mountains or secondary movement of the San ‘Gabriel fault. It should be
noted, however, that the lack of sufficient vertical elevation data in the
area immediately north of the epicenter places only weak constraints on
fault displacements in the hypocentral region. In fact, because we do
not know enough about the subsurface geology and the prestress dis-
tribution, the numerical technique does not provide unique solutions at

hypocentral depth.

Figure 15 sho§vs several alternative solutions which all fit the
epicentral data, while still giving a reasonable fit to the other post-
earthquake changes in elevation. These solutions represent a more
rapid growth of the fault offset up to a value of 2 m at 10 km depth. As
expected, the shear stress drop at the focué strongly reflects how fast
the offset grows, and‘because of the increased moment twisting the enci
of the fault, the change in principal stress is even more pronounced.
Hanks (1972), on the basis of the large rapid changes in ground dis-
placement at Pacoima Dam occurring approximately 2.5 seconds after
the Pacoima Dam accelerograph was triggered, suggested that fault
displacéments in the hypocentral region may have been quite large,
perhaps as large as 5 m. While this estimate is subject to some un-
certainty, his conclusion that failure initiated in a high strength region
énd was locally accompanied by large offset and stress drop is worth

investigating.

In principle, all the data available could accommodate rather

large displacements, up to 5 m, near the hypocenter, providing the
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fault offset is not more than 1 m at 6 km depth and then follows the
pattern of our principal solution toward the free surface. The reason v
for this is seen in Figure 16 where we plotted the vertical uplift

caused by dislocations which are initiated at several hypocenter depths
with offsets increasing up to a maximum of 5 m before dying out at

6.3 km depth. They represent faults beginning with dips of 33°, 45°
and 60°, respectively, giving hypocenters at 8.4, 9.7 and 12.4 km,

respectively.

Combining solution (3) of Figure 16 with the results from our
principal solution for. the upper 6 km of the fault, we obtain the fault
geometry, vertical uplift and relative displacements shown in Figure
17. This solution satisfies the estimates of hypocentral displacements

of Hanks (1972) as well as the observed static uplift at the free surface.

This unusual solution implies that large strains and stresses
were stored in the hypocentral region since the amount of slip and its
distribution over the fault surface is controlled for the most part by
the prestress environment in which the failure took place. Localized
stress concentrations could be caused by past earthquakes or creep at
depths greater than the hypocenter or by the presence of a high strength
material of small size. Because the fault displacement reduces as the
rupture progresses toward the free surface, this implies that the pre-
stress at 6 km depth was well below failure. Such large strain variations
can only be the result of local geology. This aspect of slip growth and
its implications upon prestress and energy released will be discussed in
greater detail in Chapter 1V, where this particular solution will be

studied at great length.
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3. The Alaska Earthquake (1964)

The Alaska earthquake of 27 March 1964 was accompanied by
vertical tectonic deformation covering an observed area between
170.000 and 200,000 square kilometers (Plafker, 1965). Even though
this area is divided about equally between uplift and subsidence, the
average amount of uplift is about 6 feet as compared to an average sub-

s idence of less than 2.5 feet (Plafker, 1970). This indicates a very
significant increase of local gravitational potential energy caused by
this event. Rough estimates by Plafker (1970) give a net increase of
2 x 1026. ergs, or two orders of magnitude greater than the seismic

energy radiated (EGR =11.4+ 1.5 MS ~2 x 1024 ergs).‘

Studies of the focal mechanism of the main shock and its after-
shock sequence (Stauder and Bollinger, 1966) indicate that the fault
which is 600 km in length and at least 200 km in width is a thrust
dipping to the northwest with a dip of only 10 degrees. We will study
one cross section of this large fault. We choose section BB' of Plafker
(1965, 1970, 1972). This cross section runs southeast-northwest

through the southwest tip of Montague Island.

A large left lateral component of displacement was not apparent
between the Kodiak Island group and the mainland or in the surface
faults on Montague Island (Plafker, 1972). This clearly indicates that
for at least 500 km of its length, the Alaska thrust fault is purely dip
élip. This allows plane strain modeling with a maximum of confidence

in the solutions.
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Savage and Hastie (1966) and Stauder and Bollinger (1966) have
used the ''dislocation' theory described in Chapter Il to compare ~
theoretical profiles with the observations. Of necessity idealized to
perrrﬁt a mathematical analysis, their combined models imply a major
thrust fault dipping at an angle of 10° with a slip varying from 3 to 18 m.
A secondary thrust fault is included (the Patton Bay fault) with a 2.7 m

average offset.

The crustal model used is shown in Figure 18. This model is
from Plafker (1972), and the elastic properties assigned to the units
shown are based on ?-wave velocity measurements from Shor (1962)
and Hales and Asada (1966). Their velocities are essentially those of
typical crustal and upper mantle materials. The observations of
vertical displacement (with their uncertainty) along profile BB' are
gathered from Plafker (1970). The finite element grid used is 800 km
in length and 300 km thick. The grid is shown in Figure 18 as a back-~

ground to the structure.

In this particular application, in order to obtain a fault offset
function consistent with the observed uplift data, we used a stochastic

inversion technique.

The inverse problem of determining a relative offset at depth
from a set of relative displacements data has been described by Alewine
and Jordan (1972). Their :mmerical technique is a special application
of the optimal solution to the linear inverse problém in geophysics
(Jordan and Franklin, 1971; Jordan and Minster, 1971). The theory of

well-posed stochastics extended to ill-posed linear problems, the
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resolving power of finite sets of data and the effective resolution of
data sets corrupted by noise has been presented in several recent-
papers (e.g., Backus and Gilbert, 1970). Thus, we will limit our
presentation of the inversion theory in this thesis to a general dis-

cussion of the results that can be expected from its application.

In principle, the problem as posed is undetermined. The
geology and the tectonic structure of Alaska are not known with accuracy
at depth, and as we showed in Chapter I, changes in the geometry of
the structural units used in the model result in differences in the
inferred fault offsets; In addition, the data (observed surface displace-
ments) are not linearly independent in general, and this adds to the
non-uniqueness problem. Lastly, the-data are contaminated by noise
(uncertainties in the relative measurements), and this has to be taken
into account in the resolvability of the solution. However, there exists
some valid information concerning the physics of the phenomenon. 1If
one assumes that the crustal model shown on Figure 18, however
simplified, is the correct, unique model possible, and if one assumes

further that the data are consistent, then one can find a good fit.

These assumptions act as a linear filter which constrain the
solutio:ﬁ to self-consistency. With these premises, the basic approach
is essentially a simple iteration method. From the finite element
method, we compute the relative vertical displacement at the free
surface caused by a unit offset imposed on each of the nodes which
define the fault plane. A linear combination of these computed ''unit"
uplifts and subsidences gives the toté.l free surface displacements

caused by the same combination of unit offsets on the fault. The trial
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solutiori is thus a linear summation of unit nodal slips., This trial
solution is iterated until the difference between calculated and observed
uplifts tends to a lower bound. Since the lower bound is a direct |
function of the amount of cpntamination in the data and of their con-
sistency, the final solution is known only up to an arbitrary vector in
the null space (Jordan and Minster, 1971). The final solution is,
however, the best fit to the data available in the framework of the

tectonic model chosen.

The calculated fault offset

Figure 19 shows the observed vertical offset along the surface
of fhe cross section. The error bars are assumed to be £25 cm from
Plafker (1970). The rapid growth of the uplift near Montague Island
can be attributed to the Patton Bay fault. The subsidence inland and
the general uplift from the shore towards the ocean can be attributed
to the megathrust. The best solution for the offset of the megathrust
is shown at the bottom of the figure. It follows the pattern of the solution
presented by Stauder and Bollinger (1966), but it differs from theirs

in some major details.

Our maximum offset is 33 m , and the solution requires an
offset 6f nearly 17 m below Middleton Island. The computed vertical
surface motion is plotted with the observations, and we believe the fit
to be seif-consistent. In order to fit the sharp uplift observed at
Montaéﬁe Island, the offset on the Patton Bay fault is an average of

4 m with a maximum of 7 m at mid depth. The local minimum in the
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calculated uplift between the two islands is obviously not unique since
no data exist in that region. This is discussed later in the section on

resolvability.

Figure 20 shows a comparison between the observed and the
c omputed horizontal surface motion. Although these data were not
included in the inversion, the fit is remarkable. For the sake of com-
parison, we adjusted the calculated horizontal surface motions to the
zero isobase of the observations (Station Fishhook and Station Klawasi,
Plafker (1970)). The calculated motion of the intersection of this
isobase with our cross section is actually 4 m. The data that differ the

most from the calculated motion are the most uncertain (Plafker, 1970).

We can thus feel confident that the fault offset function resulting
from the inversion is the best fit to both the vertical and horizontal

surface motion data.

Figure 21 shows a contour plot of horizontal (x direction) and
vertical (y direction) relative displacements throughout the cross section
studied. It shows that because of the free surface, most of the displace-
ment field is partitioned to the left and above the fault plane. The
presence of the Patton Bay fault is clearly visible on the vertical dis-
placement plot. The interpretation is that for this earthquake, the

Alaskan continent overrode the Pacific Plate.

Resolvability

Since the data contain some noise, there exist model perturbations

of our "best fit'' model which still fit the observed surface movements to
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Figure 21. Contour plots of relative displacements of the '"best fit''
solution through the cross section. Contour values have
units of kilometer.
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some close degree of confidence. If we can estimate the errors in the

data, then it is possible to relate them to errors in the solution.

Such a relation between the data space and the model space
exists in the form of a variance operator which has been described in
detail by Jordan (1972). It is to be noted that this Operatér V is

independent of the final '"best fit' solution. Jordan showed that, as a
result, one can perturb a model by an amount ém and still fit the

data to within some confidence limit, say 95%, provided that
am v em > Ki(e)

where K(c) is the factor associated with the confidence coefficient

(here for 95%, K(c) = 1.96).

In this study, we chose a particulé.r perturbation to our best fit
model, a perturbation which we considered to be physically interesting,
and checked this perturbation for the 95% resolvability criterion. If
the perturbation was resolvable to a confidence interval greater than

95%, it was reduced in size until the resolvability was within that range.

The results are shown in Figure 22 where the final perturbations
are shown as stippled areas. They represent for each case the maximum
amount of slip that could be added at that particular node and still give a
fit to the data with a resolvability within the 95% confidence level. This
means that any solution between our !'best fit' and its maximum per-

mitted perturbation would satisfy the data used in the inversion.

As is seen from the figure, the growth of the fault offset from

the hypocenter to the maximum of 30 m is very resolvable. This is
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due mainly to the fact that there is a dense network of data points just
above these nodes. The local minimum in the offset southwest of -
Montague Island is less resolvable. The slip in that portion of the
fault could be increased by as much as 4 m and the calculated surface
displacements would still be within the error bars of the observations.
The behavior of the fault near its surface expression is almost totally
unresolvable by the data used. This upper portion of the megathrust
was below the ocean floor and the only observation available to us for

that region was from Middleton Isiand.

Conclusions

The results presented here represent the best possible solution
for the Alaska earthquake static relative displacements. The fault
offsets are at least 50% greater than those calculated by past researchers
and their variation along the fault surface are proportionally as impor-

tant as those reported for the San Fernando earthquake.

1f we compute the average moment of the megathrust, we get
Mo = uUA

= 3.1x101

! & 6x107x 2.6x107x 18.5x10%
= .9}d030 dyne cm.
From long period surface waves, Kanamori (1970) gives
30
M. = .75%10" dyne cm
L
In view of the large differences in the time scale and the method, the

agreement is very good. The stress drop and strain energy released

for this event will be presented in Chapter 1IV.
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III. THEORY OF ENERGY RELEASED IN SHALLOW EARTHQUAKES

AND ITS NUMERICAL APPLICATION

Introduction

In recent years, the techniques of elastostatics have been applied
with various degrees of success to earthquake modeling. .By comparing
the medium in its final state with the state that existed prior to failure,
one need not consider details of the transient effects associated with the
initiation and propagation of the crack when dealing with the energetics

of the phenomenon.

By simple considerations of static elasticity, one can study
failure as a limit situation which compares states of prestress with
various failure criteria. This allows comparisons between laboratory
.experiments and realistic geological environments in terms of qualitative
stress levels rélevant to the fracture hypothesis of earthquakes (Mogi,
1972).

The ''dislocation’’ theory which computes stress change and
relative displacement fields caused by a ''fault offset' in an infinite
half space is another static approach (Maruyama, 1964; Steketee, 1958).
This approach has had some degree of success in determining average
stress drop from fault offsets obtained from the limited observed
permanent deformation (when available). This theory has, so far, been
successful only in determining special prestress field or energy balance
because it either starts from an unstressed medium into which a fault
offset is forced or because it assumes that the final state is character-~

ized by complete stress relaxation on the fault surface (Smith and
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van de Lindt, 1969). More general dislocation theory was developed to
deal with partial stress drop (e.g., Savage and Wood, 1971). Particular
energy formulations have been developed for specialized cases of stress

dislocations with partial stress drops (Burridge and Knopoff, 1966).

From these developments and others, empirical and special
purpose theoretical formulae have been derived, relating earthquake
parameters such as fault area, fault offset, energy released and stress
drop. These results appear to compare with those obtained from
seismology, but this apparent agreement may be deceptive since both
techniques involve order of magnitude uncertainties. Brune (1970) and
Hanks and Wyss (1972) discuss source parameters such as moment and
stress drop from analysis of frequency spectra in terms of empirical
formulae linking the source to the far field observations. Thus, both
static dislocation theory and spectral analysis of seismic waves deal

exclusively with average features of the fault.

These oversimplified approaches may be misleading if the results
they give are used to analyze the failure of the hypocentral region, in
terms of strength of materials obtained in laboratory experiments. In
particular, we have shown, in Chapter II of this thesis, that order of
magnitﬁde variations of stress drop and offset along the fault plane give
the best fit to the data for the San Fernando and Alaska earthquakes.

As we will show in Chapter IV, these variations lead to a vefy different
view of the earthquake mechanism than the one inferred from teleseis-

mic observations (e.g., Hanks and Wyss, 1972). Clearly, then, a
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theory which takes these spatial variations of stress into account is
needed in order to refine our understanding of such important processes

as failure initiation, stress readjustment and energy balance.

The ''stress relaxation'' theory of Archambeau (1964, 1968, 1970)
which describes the change in the stress field due to the creation of the
rupture zone within it, can be used to compare final and initial static
states. This leads to a general formulation of energy release valid for
arbitrary fault parameters in a geologic environment. These static
formulae can be pumerically simulated using the finite element method,
which in this study has been limited to two-dimensional plane strain.
This method, when applied to failure in a complex prestress situation
allows direct calculations of the change in strain energy, stress drop

and gravitational potential.

Energy Formulation

Most of the basic ideas involved in the following theoretical
development have been discussed previously in Press and Archambeau
(1962), Archambeau (1968, 1972) and Archambeau and Sammis (1970).
Since their formulation was specialized to the analysis of nuclear
explosions, we will briefly review their calculations, with some

important differences, best suited for our present purpose.

We will restrict ourselves to the field of linear elasticity since
it is appropriate to assume that the nonlinear processes involved in the
failure are restricted to a small volume '"inside' the fault plane. They
can be seen to contribute to the energy involved in the failure process

(e.g., heat losses) and not to the tectonic energy radiated which is our
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.concern here.

Féllowing Archambeau (1972), we assume the medium to be
initially stressed and in static equilibrium. Let.a zZero subscript denote
this equilibrium field inside an arbitrary prestressed medium of
volume V with fixed boundaries S (= S, *S; ). With ?denot_ing all the

static forces in the medium, we have

(0)

2% -0 1
J

with boundary conditions

[aé‘?) nj:, = 0 on SQ

[u§0)] = 0Oon Su

Let a (1) superscript denote the equilibrium field after the introduction
of a new boundary within the medium. In this development the new
boundary is the surface enclosing the fracture zone created by the
earthquake (volume Vo surface BVO enclosing the fracture).

The final stress state is o (1)

ij and is to first order

(1)

doij _
a_iTL + £ =0 (3.2)

with the boundary conditions

(1) _
[aij nj] = 0 onS_ and BVO

[u§l)] = 0 on Su

In view of the identical form of (3.1) and (3.2), we can substract them
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and obtain an equation involving the stress change caused by the failure

51, = o0 . 1) (3. 3)
ij ij ¢ ij

and we get, to first order
9 L) = 0
< (070 = | (3.4)
J

In addition at large distances from BVO the stress change vanishes
(Archambeau, 1972).

The strain energy density is 1/2 Ugt.))fg?) initially and in the final
(1) (1) ( ) (1)
“ij

equilibrium state it is-1/2 o where € and € ij are the strains
associated with each equihbmum state. Thus the change in the strain

energy of the medium is

_ (0) (0) _ (1) (1)
SW = E/V; ARy Gy 4V (3.5)

where V = Vot V5. Let Vi with k = 0,1 represent v, and Vi Then

SW = SW, + awo (3. 6)

_ (0) _ (1) e (0) _ (1)
6W1_§/<1_] 13)( ij 13) dv
Vi |

SRR
..f 3 i‘])ei‘]) - UZ ij = 1J2 1) zdv (3.7)
Vi

But in the volume Vi the stress strain constitutive relationship has not

and we have

changed between the two equilibrium states. Then -

S0 (1) _ & 0 (1) (0) (1) (3. 8)

13 13 ijkl ij 1J 13 13
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Hence
1 (1) - .
1) = = ,
W1 5 f& T3 5eijdV + Uij Geij dav (3.9)
v V.
or 1 1
- (0) : 1
8w, _/Uij 5°ij dv > ) Ty deg; dv (3.10)
Vi Vi
N sinc € = _5_12
ow, since €, = ==

and
o1
0..€.. = __8__ (o, .u.) -a;—ﬂ-u.
ij i axj iji axj i

we have after applying-Gauss's theorem to Eq. (3.10)

. X oij>
5w1 = f < aij >¢$uinj ds - f _-—;{—J— Bui av (3.11)
S \'2

3
J
+aVo
whexe s TSR
_ i ij _ 0Ty
Cojy >= = 957 - 5~

From Eqs. (3.1) and (3.2), we have
OLot>_ g (3.12)
oOX. i
J

Now, we can assume in this particular development that the failure along
the fault plane is such that aVo is constituted of two surfaces T of equal
area. X * defines the surface on one side of the fault where Sui = Bu;
and 3 the other side of the fault where Iiui = Bui_. To first order,

R fault area = 1/2 aVo. Define Aui as the fault offset. With

Au, = Su:'_ - 5u,, we get
i i i
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SWI = fs< 55 > t'»uinj ds +j;( 953 >Auinj ds

+ / £ 8u, dV (3.13)
1 1 .
v, |

The second strain energy change term '6Wo can be neglected here, on
the ground that the volume of material inside the fanlt plane is infinitely
small and any energy contained in SWO will be taken up in the irreversible

processes of failure. It will not contribute to the radiated elastic energy.

The total strain energy change is then given by Eq. (3.13) and
oW =~ 8W,. In Eq. (3.13), the first term vanishes if the integration is
carried over the volume of the earth, that is, if we take S to be a free

surface in which case <aij )nj = 0onS.

If; however, er choose to énalyze the energy balance of some
arbitrary finite region around the source as the limits of Vy, we can
follow Archambeau (1972) and re‘placeqthe volume outside Vl by surface
tractions, such that

< %; )nj = fi(t) on S
or if S is far enough from Z

og(_))n. = Oﬂ)n. = fgt) on S
) ) 1
Thus these tractions can be regarded as the origin of prestress inside

the medium. Hence the integral over S becomes

t
f( oij>5uinj ds = ff§) su, dS
S S

Now define a force Fi to be the sum of the body forces and the forces of

tectonic origin by
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T (t) -,
Fi = fi + fi 5 (r _1:8)

where r is a vector to the surface S and 4(r - E—s) is a Dirac delta
function, then we have

oW =/;§ oij> Auinj ds + /V Fy Sui dv (3.14)
1 :

F; is then the sum of bodyﬁ ’arjxd '""tectonic' forces. The only body force
of importance in the earth's crust is gravity, and the ''tectonic' forces
have only a second order effect on SW if the boundary is far enough
from the source.

This is easily proved by looking at the displacement field that
results from the Green's function solution of dislocation theory. Press

and Archambeau (1962) showed that the relative displacement field

behaves with distance from the fault like
Su_'.L ~ (l/r B) with B =2 2

In the numerical models that we will treat, the boundaries were placed
far enough from the source so that the solution did not change whether

we used a zero displacement, no traction or mixed boundary condition.

In this framework, then, the last term of (3.14) can be con-
sidered as the change of gravitational potential energy inside A2 and
the surface integral. Stacey (1968) showed that on a global scale,
static considerations lead to a balancing.of gravitational potential
energy, on the ground that the center of mass of the earth cannot be
moved by an earthquake. Although this is open to éonsiderable debate,
we are concerned here with the energy balance in the immediate vicinity

of an earthquake. Readjustments of gravitational potential on a
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worldwide basis have no-bearing on the local‘situation. This stems
from the'time scale involved in the processes. Ben Menahem and
Israel (1970) postulate that mass readjustments occur on a time scale
of several days through free oscillations. Thus, the local change of
gravitational potential energy computed in the last term of Eq. (3.14)
has to be considered in calculations of radiated seismic energy. Let

Eq. (3.14) be rewritten as

_ (0) A, - 1
oW —Loij Auinj ds - > EA oij Auinj ds + Fiaui av (3.15)
B '

where A=oi. = og(.))- 0(1') on X

AR A I &
This equation, although involving static variables, can be interpreted
as the energy released in the radiation field. Since the region outside
the fracture zone is elastic, the only means of balancing the strain
energy change inside of Vl is through dynamic redistribution of the

energy throughout the medium. As a result of these considerations,

Eq. (3.15) represents the upper bound of the radiated energy. Thus
Eg (0) 1
—~=5W =] ¢!, Au.n.dg - =]A0o.. Au.n, dg + F.Bu, dV
n ij i 2 ij i7j 171
z z v

where 7 is the seismic efficiency factor, function of interaction between

the seismic waves and the rupture zone.

Let an amplitude factor of prestress be defined as
1/2
(ON. |1 (0) ,(0)
AT v\ [ 955 05 v (3.16)»
\Y

and an amplitude of offset of the fault defined as
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: 1/2
1
(U >= ]E(LAuiAuidZ) (3.17)
x

Then, the spatial distribution of the prestress field can be expressed by
a product of the amplitude factor and a prestress field of unit amplitude

Si(jO) function of the geology, so that

oi(?) - ¢ ot0 >si(§’) (3.18)

Similarly, fault induced stress changes and relative displacement fields
can be expressed in terms of products of the fault offset amplitude

factor and fields of unit amplitude

ij Z Hij o%; <0>" 3x; s

on 2

=<U>A Ay
8ui ={U) 8Bi
Au, =<U‘)ACi

Then, the energy change can be written as
sw = <o (O¢ U)/ Sg?)ACinj a3
z
1 2 '
_7<U> /AAiJ.ACi n d2+<U)/ F;8B, dV (3.19)
z \%

If a particular model (i.e., fixed geology and faulc area) is accepted

and a particular solution is obtained, then each of the fields of unit
amplitude are fixed. As a result, Eq. (3.19) can be scen as a quadratic
function of the average fault offset amplitude {U) or as a linear function
of the prestress amplitude ( 0(0)>. This leads to a rather simple

technique to obtain bounds on the prestress amplitude. A first step
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consists of inverting the free surface displacements in order to obtain
the distribution of fault offset with depth. This allows direct computation
of the surface and volume integrals of AAij’ ACi, BBi,Cz or V. Then
by varying the amplitude of the prestress field, we can map the linear

0)

variation of §W as a function of<o(0; . s(ij is determined by the model
chosen. Comparison of 8W with the seismic energy radiated leads to
estimates of (0(053.5 a function of the seismic efficiency. In the next

chapter we will show how to use this technique for several earthquakes.

Note that if the averaging assumptions discussed in the intro-
duction are applied here, toggther with the neglect of body forces, we
get |

E =¢\"XU S A - 1/2a0¢w3A
=C o X{upA
where A is the fault é.rea. This is the expression used by Brune and co

- «workers (Brune, 1968). Note also that Archambeau's (1968) formula

/ B vy e AV (3.20)
Vi

ER=

W

is a special case of Eq. (3.16) for which body forces are assumed to
have higher order effects and Arij = US))C %, i.e., complete stress
release on the fault surface.

Numerical Finite Element Approach

The applicability of finite element techniques in geological appli-
cations has been demonstrated in Chapter II. The numerical programs

developed can be used to model 'dislocations' in a heterogeneous
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medium. The force of gravity can be introduced in all the computer
calculatiohs by assigning a weight density for each of the materials
used in the problem description. These appear in the eqiuations of
motion or equilibrium as body forces. Similarly, the boundary con-

ditions

and (3.21)
Su, =0 on S,

are introduced by locking the nodes on the outer boundary (Su) and by
leaving free that portion of the boundary which describes the surface
of the eal;th (or by introducing mixed boundary conditions). Since we
are interested here in the change of potehtial energy caused by the
introduction of an earthquake fault (or failure zone), two static models
are computed.

A first computation is made with the medium in its initial state.
We impose a prestress field composed of the nonhydrostatic component
of body forces, specified displacements at the boundaries and past
earthquakes (or creep at depth) representing past stress history of the

geological environment. The strain energy and the gravitational

potential energy are computed as

- 5 Zo (O)e O)e (3.22)

o0 _ R () y

A second static equilibrium calculation is made on the final state

represented by the same specified boundary displacements into which a
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rupture is intreduced. 'i‘his is done either by dislocation of a row of

nodes as‘described in Chapter I or by relaxing a row of elements (i.e.,
giving them elastic properties characterized by a low modulus of shear
and a Poisson's ratio approaching 0.5, either uniformly in the element

or heterogeneously with a set of elastic coefficients). This gives

(1) 1 (e (l)e e
w _7262 AT T

(3.23)

(1) _ 15 e (l)e e
P -2%,}:«‘iu].L \%

The difference between the two states gives

sw = wil® - wil) =/};< oy >aun, AT + 8P

where OW is the upper bound on radiated energy and &W - §P gives a

direct estimate of energy released by the fault.

For the purpose of simplicity, we studied systematically a fault
of infinite length, imbedded in a full space composed of 2 homogeneous
Poisson's solid (v=0.25, p=3x 1011 dyne cm). The finite element
grid used is a square grid with sides equivalent to ten fault lengths.
This was judged to allow the use as boundary condition of

Su. =0 on S
i u

so that locking the nodes on the sides would not affect the solution
adversely. The medium is prestressed in pure shear by specifying dis-
placements on the boundaries. Figure 23 shows a contour plot of shear
stress change generated by complete stress relaxation in a 200 bar
prestress.

This is a mirror image of similar plots given by Chinnery (1963)

or Smith and van de Lindt (1969). The same thing can be obtained by
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Figure 23. Stress change for complete stress drop on the fault.
' Prestress is 200 bars pure shear.
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dislocation provided the .fault offset has the quasi parabolic shape
needed to maintain constant stress drop on the fault place. In both
cases, this generated a strain energy density change or maximum
radiated energy of 0.75 x 102'l ergs per km of fault length. Or if the
fault behaves in such a way that the stress drop is every where constant
and equal to 200 bars, this gives

ER = Nx0.75x 1021 ergs per ka of fault area. Brune's

formula

ER =N < o ><u> A

would give the same value for an average relative displacement on the
fault surface of 7.5 m. By varying the amount by which the shear
modulus is reduced in the ''failure'' zone or alternatively by varying the
amplitude factor < u > of the dislocation, we can map Eq. (3,19) at con-
stant prestress. By changing the amount of prestress while holding the

dislocation invariant, we can map Eq. (3.19) as a function of prestress.

(0)

Figure 24 shows the linear behavior of 8W as a function of aij .
As can be seen on this plot, if the medium is prestressed uniformly with
a shear prestress of 200 bars, then, in the absence of gravity, the
maximum energy released is found at theapoint of total stress relaxation
on the fault plane (point A). This particular "earthquake'' could release
more energy, however,if it occurred in a medium with a prestress
superior to the stress drop. For example, point B represents the
energy available for seismic radiation for a fault that results in 200
bars drbp in a prestress field of 300 bars. If body forces are included
and the earthquake results in a net increase (decrease) of gravitational

energy in an amount equivalent to 1.25 x 1021 ergs per km2 of fault,
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SW AS A FUNCTION OF PRESTRESS

sW
in10 ERGS/km?® AREA

Figure 24. Results of energy calculations showing the linear
relationship of 6W with prestress.
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then the energy available for seismic radiation changes by that amount.
This is shown by point C (point D) on the figure. The envelope of.all the
lines of strain-energy-change as a function of prestress, corresponds to |
total stress drop on the fault plane. In the absence of significant body
forces effect, it represents the maximum release of energy for this
model.

Figure 25 shows the quadratic behavior of §W as a function of
< U >(or<A¢>). If the influence of body forces is neglected, the energy
released, given here per square kilometer of fault area, can be inter-

(0)

polated to any fault, providedA %; and ”ij are constant over the fault
plane.

This means that if an earthquake can be represented as a phen-
omenon occurring in a uniform prestress environment in which it
releases a constant stress along its entire fault area, its energy release
can be estimated from Figure 25 by a simple scaling. For instance,
assume that the San Francisco earthquake occurred in a uniform 100 bar
prestress field. Assume that its stress drop was everywhere constant
and equal to 96 bars (Chinnery, 1964). Then, for a fault area of 4.400

km2 (Brune and Allen, 1967), we get directly from Figure 25

21

SW=0.19x10"" x 4400

8.36 x 1024 ergs

This can be compared directly to the seismic energy since this event
had no significant uplift or subsidence. Thus

logjg Egg = 11.8+ 1.5 M

Eop =1.5x 1024 ergs for ML = 8.3
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SW AS A FUNCTION OF STRESS DROP
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Figure 25.

0 W as a quadratic of 0_(0)’ for a uniform prestress field
and various levels of stress drop. Stress drop is constant

along the fault surface.



88
This would indicate a seismic efficiency of about 0.18.

Of course, as we shall see in Chapter IV, we suspect that no
earthquake fits the requirements of uniform prestress and stress drop
and, as we will show, consideration of average values for them leads

to large underestimates of both moment and enérgy change.

In Figure 25 we show the positions of points A and B discussed
earlier. The curves to the right of the line of ""maximum!'' energy
released are dashed because they correspond to events that released
more stress than was available. Those events would be characterized
by a fault '"overshoot' meaning that the system does work rearranging

the prestress field instead of 'relaxing' it.

1f body forces (mainly the force of gravity) are considered, their

influence can be viewed as an ''equivalent'' prestress. From (3.19) we

can write
F.é6B.d
¢ o0y o SVTio v
57 T R acm,ax
v 1) 1]

where <ag)%, > is the prestress equivalent of body forces. Then

oW = ((0(0) >+<ag)bl>> U /sg?)a G dx
: ‘ , >

1.2 |
- = <u> ; .leCinj dz

which is equivalent to a situation without body forces, but an ""apparent”

prestress of
(0) (0)
{o > +<0BF >
Assume an event caused a net loss of gravitational potential energy

such that
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< o0l> = +100 bars
0) _,

If the actual prestress amplitude is o = 200 bars, then the curve
markeél 300 is the actual energy versus stress drop relationship to
consider here. It means that point C in Figure 25 corresponds to the
energy released by an earthquake which occurred in a 200 bar prestress
environment; but resulted in an apparent 300 bar stress drop. This
stress change is actually 200 bars drop and 100 bars ''overshoot'.

Interpreted differently, this event can be seen as transferring gravita-

tional potential energy into seismic radiations.

Conclusions

The particular form of energy release formulation presented
here shows that in order to analyze the energy balance of a shallow
earthquake which results in thrust or normal faﬁlting, one cannot
neglect the influence of changes in the gravitational potential energy.
It was shown through homogeneous models that the finite element
numerical technique can compute directly the energy terms without the

idealizations necessary to make closed form solutions tractable.

The next chapter deals with applications of this technique to
several earthquakes, showing how bounds can be placed on their source

parameters such as stress drop, prestress and energy released.



90

1v. CALCULATION OF PRESTRESS, STRESS DROP AND ENERGY |

RELEASED FOR THREE EARTHQUAKES

Introduction

The preceding chapters have shown how the finite element
numerical technique can be used as a tool to invertlzero frequency
earthquake data in order to estimate the fault offset which caused them.
From these possible solutions, it was shown that such important fault
parameters as moment and stress drop could be directly computed
without averaging. Chapter III showed that by investigating static
equilibrium before and after the injection of a fault, one can place
limits on the energy balance of the event on a local scale. This chapter
will deal with applications of these concepts to three different earth-
quakes. Careful consideration will be given to the possible prestress

environment in which they occurred.

The San Fernando Earthquake of February 9, 1971

This event is a particularly interesting application of the tech-
niques described above. ' The finite element modeling of Chapter II has
shown that in order to fit the observed permanent displacements at the
free surface, the possible solutions all showed an order of magnitude
variation of relative displacement along the fault surface. This allows
useful investigation of stress drop with its variations in space and
comparison with averaging techniques. Furthermore, this earthquake
was accompanied by a net uplift of the free surface, corresponding to
an increase of gravitational potential energy. Alewine (personal

. . 22
communication, 1972) estimated this increase to be between 10~ and
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1023 ergs depending upon the decay of relative displacement with depth.
Wyss and Hanks (1972) on the basis of body wave study estimated the

21.3to 22.3

radiated energy to be in the range of 10 10 ergs.

Clearly, regardless of how individually accurate these estimates
are, they indicate that for this particular event the redistribution of
mass associated with the earthquake is not a second order effect. Thus
considerations of the effect of body forces on the energy balance is

critical here.

For the sake of clarity, we shall start by 'studying the effect of
a uniform prestress upon our principal solution and one of the alternatives
with a large stress drop at the hypocenter. In this case, the boundary
displacements applied on the grid are such that the medium is prestressed
in pure horizontal compression. The force of gravity is not considered.
The first part of Figure 26 shows how such a prestress is effected by the
geology. We have here an average stress amplitude of 350 bars (175 bars
shear stress). The presence of soft sediments (Saugus-type formations
and the San Fernando Valley formation) is clearly visible in the upper
left corner; they reduce the prestress by a factor of 5. The second part
of the figure is an approximate contour plot of the strain energy density
change caused by the failure of the medium along the fault plane. The

relative displacement used here is the one of Figure 9.

Near the surface, where the displacements are unusually large
compared to the average fault offset, there is an increase in strain
energy density. This would be somewhat reduced if multiple faulting

or plastic behavior was considered. The other region of strain energy
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Figure 26. Prestress and final stress distirbution around the fault. The
horizontal lines are the horizontal compressive stress, the
maximum shear stress is shown at 45° from the 0,,,4. The
"dislocation' used is shown in Fig. 12 (BB'). No gravity in this
model.
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increase is found in the i’rypocentral area. The stresses there are not
relaxed and it makes it conceptually difficult to understand why the

fault did not propagate downward. One possibility is that the rupture
started farther up the fault and propagated in both directions growing

in the upward direction because of the free surface and dying out down-
ward because of a possible increase with depth of either the static or
the dynamic stress, or an increase of the strength of the rock with con-
fining pressure. If one of the alternative solutions of Chapter II was
used, on a prestress background of 350 bars, the ''earthquake' would
even be more difficult to explain in terms of failure mechanism. In

this case, the region immediately below the hypocentral region would

be stressed up and the hypocentral region itself would show a significant
overshoot. We would regard this event as impossible since crack tip
stresses seem to exceed static friction or yield stress and the net strain

energy of the system is increased as shown in Figure 27.

Figure 27 shows the results of sevei‘al such calculations. Since
the change of strain energy of the system is linear with prestress, we
" show two lines corresponding respectively to our principal solution for
cross section BB' and to one of the alternatives with rapid growth of the
offset. In both cases, this determines the origin and the slope of each

line. Since we have no gravity acting, these lines correspond to

/E<Uij> Auinjds = 6W

The interpretation is that if our principal solution is the appropriate
one, a prestress of 180 bars is required before any release of energy

occurs. If the alternative solution is preferred, then a minimum of

5
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420 bars is required.

A comparison with the seismic energy calculated by Wyss and
Hanks (1972) from shear waves, by Trifunac (1971) from the Pacoima

Dam accelerogram and E obtained from the Gutenberg-Richter

GR
formulation, is shown in the figure. In order to get the energy released
per km of fault length, we assumed a fault of 10 km length with a cross

section equivalent to BB'.

Since the seismic energy is only a fraction of the strain energy
change, depending on seismic efficiency (i.e., heat losses, nonlinear
behavior, attenuation, etc.), the models presented here would require
an average compressive prestress of at least 350 bars in order to
satisfy the observations. Introduction of the force of gravity would
increase this minimum by a factor of two (assuming an increase of
gravitational potential energy of 5 x 1021 ergs per km of fault length or

an equivalent additional prestress of 350 bars).

By contrast, if we use the conventional formulae, with averaged

fault parameters, i.e.

E=<o0o>u>A

0)

o (0. 1/2A0 = o0 270 bars

with (compressive stress)
<U>=2.35m
A =16 kmz per km of FL

we get the dashed line marked A. Since the slope of these lines is -

. M,
S..> Au.n. ds ~ —
1} 1] M

2

(from Chapter III)
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Figure 27. Change of strain energy versus prestress for section BB'.
Best solution is shown in Fig. 12; the alternative is from Fig. 15.
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a comparison of the dashed line with the solid line with same origin
and drawn parallel to the best solution (line B) gives a direct estimate
of the error made in assuming Uij and Aui constant. Comparison of

the origins is an estimate of the difference between

1/2A0 <u> A and 1/2:/A 73; Auin‘j ds
by

or of the underestimate of energy released by the fault that results from
averaging the fault parameters (here a factor of 4). Clearly, this
simplified approach leads to the conclusion that if average fault offsets,
thus average stress drops, exist, low uniform prestress is sufficient to
gener‘éte' a net energy release. If strong stress drop concentrations
exist, then a large uniform prestress is required before an earthquake
can occur. This stems from our oversimplified prestress field.
Intuitively, one can imagine a natural environment where the prestress
and the stress drop have a quasi parallel distribution over the fault
surface. In other words, if they can both be expressed in terms of a

unit amplitude stress distribution Zij , 1l.e.

(0) : (0)

2., = 74 = 24
1) (/aﬁ?)oég))d}:)l/z <o (0)>
and .
o .
“ * (/‘Ao.éAal.J.dz)”z =<§:71J>
52152 %;

This means that provided Zij has order of magnitude variations along the
fault surface, one can obtain localized prestress of 1 kbar for a '"back-
ground' prestress amplitude of 100 bar. In this text, we shall refer to

the average prestress amplitude as first order. This first order stress



97

could have its origin in large scale tectonic features such as plate
motions of the earth's crust. We shall refer to the variations of &ij as
second order effects. These could be the result of local geology (possibly
on a smaller scale than that modeled here),weak zones such as fault
gouges, porous and fractured formations containing water under pressure
(consolidation or swelling phenomena). Further, past earthquakes or
creep events, ’by redistributing the stress field in a nonuniform fashion,

can be responsible for such second order effects.

Clearly, in order to obtain the second order effects, some
changes are required in our models. This is the subject of the next

section.

Finite element model for ""'second order!'' stress variations

A portion of the finite element grid used is shown in Figure 28.
This grid was designed to model a fault similar to that shown in Figure
17. Recent gravity work (Alewine, personal communication) has con-
firmed that a significant uplift (up to 35 cm) occurred in the San Gabriel
Mountains, thus strengthening the possibility that Figure 17 represents
the 'best fit'. The fault slip will be modeled either by a specified nodal

slip or by relaxation of those elements numbered from 1 to 9.

If the displacement function of Figure 17 is adopted, then clearly,
large variations of prestress are to be introduced in order to obtain
enough relaxation at depth. Since we have no data on the geology at
depth, we will assume that the secular uplift of the San Gabriels (Savage

et al., 1971) and the absence of historic earthquakes in California at
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depths greater than 20 km indicate that the depth prolongation of the San
Fernando earthquake has been responding plastically to the tectonic
forces. This is modeled by forcing a slip on the fault below the hypo-
center (indicated by arrows on the grid). Thus,‘ the prestress field will
be cdmposed of: specified displacements on the sides of the grid, intro-
ducing pure compression horizontally (first order tectonic stress), the
force of gravity, and specified 'creep' at depth, resulting in a large

stress concentration in the hypocentral region.

Considerable debate exists among tectonophysicists as to the
state of stress in the earth's crust, in particular in terms of the stress
distribution that results from the gravitational loading. For depths
greater than, say, 50 km, the consensus is that the variations in
elevation of the crust are supported hydrostatically. Based on the
theory of isostasy, which states that the total mass of rock in any
vertical column of unit cross section is constant, the reasoning includes
consideration of the departures from sphericity of the geoid , postulated
rebound of areas under glaciation during the last ice age and assumed

creep behavior in the upper mantle.

This leads researchers (Stacey, 1969; Birch, 1964) to give
quantitavtive estimates of the strength of materials for the upper mantle.
The upper mantle, then, appears to support stress differenées in the
range of 10 to 100 bars, stress differences associated with a mean
hydrostatic pressure of several tens of kilobars. Thus the upper mantle

is very close to a hydrostatic stress distribution.
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This is not neceésarily correct foar the crust, however. Con-
ventional’ theories, used in underground excavation design, have
assumed in the past that hydrostatic stress distribution is valid for the
earth's crust. However, many authors have recently challenged this

assumption (e.g., Judd, 1964).

If we assume a perfectly isotropic homogeneous block of the
earth's crustin static equilibrium under its own weight, the stress dis-
tribution throughout the body is estimated by one of the following:

(1) The hydrostatic approach

r =7 = r = - r =0
pgZ max

where z is the vertical coordinate.
(2) The two-directional stress approach, which uses the theory of
elasticity for one-dimensional compression of a perfectly elastic solid

with a definite Poisson's ratio {Clark and Candle, 1964),

r =1 =Yg
XX vy +V zz
so with T, = ~P&Z
the r..=1_==1/3 pgz for v=10.25
" xx  yy °e
implying C Tax T 1/3 pgz

These two approaches actually give two extremes for the influence of the

body force pg. The second gives a stress ratio

while the first gives a ratio of 1. Handin (1964) points out that this ratio

is really a function of the strength of the rock in situ, and of the time
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scale of the loading. Deere (1964) shows that because of the difficulty
in measuring an effective Poisson's ratio for the rock mass and because
of the stress history in the crust, the influence of pg may result in a

stress ratio anywhere between 0.33 and 1.

Stress measurements in situ (in tunnels and deep mines) indicate
that the stress distribution is anomalous when compared to the hydro-
static theory (Wantland, 1964). Clearly, these measurements are
limited to the very top of the crust where added complications arise
from erosion (removal of the overlying load without necessarily re-

ducing the horizontal stress).

In the depth range of 10 to 30 km where the hypocenters of the
three earthquakes studied in this thesis are found, no in situ measure-
ments exist. We can conjecture, however, that at those depths, the
rocks can support maximum stress differences equal to those associated
with the support of high mountains and deep oceanic trenches. These
imply that the middle of the crust can support stress differences of the

order of kilobars (Birch, 1964).

If we applied the full gravity load statically on our model, this
would give (with a Poisson's ratio of 0.25) a stress difference of
approximately 2.5 kbars per 10 km of depth. This is clearly too large

for the rocks to support it on a geological scale without flow (Mogi, 1972).

Using complete hydrostatic distribution of the gravity load was
considered unrealistic since consideration of creep in the crust is still
largely a matter of speculation. Birch (1964) indicates that the reduction

of mountains by erosion is probably much more rapid than their spread
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by creep at shallow deptfls which, if we follow Deere, may result in a
ratio rxx'/ s approaching 1. Thus, quite arbitrarily we assumed that
the effect of force of gravity on the sections studied would be best
represented by loading statically one-tenth of the material weight.

This is equivalent to assuming

r
ZZ

- pgz

Tex ry'y = -0.933 pgz
or a stress ratio of 0.933. This result could have been obtained by
loading the material with the full body force while making Poisson's
ratio equal to nearly one-half, thus modeling flowage. In this case,
the natural stress distribution caused by the force of gravity could be
directly computed. However, the rocks involved react nearly like a
Poisson's solid during the time scale relevant to the earthquake
phenomenon. Thus, for the simplicity of the numerical scheme, it was
felt easier to keep for the géological units a Poisson's ratio of nearly

one-quarter, while keeping only a small portion of the force of gravity

as an instantaneous static load.

The best prestress field, in terms of netenergy released and
failure mechanism, was obtained for a tectonic compression of approx-
imatelyv360 bars (180 bars maximum shear stress), a creep on the
fault at depth resulting in a 10 m relative displacement and a shear
stress concentration of nearly 600 bars at the hypocenter. Together
with the nonhydrostatic effect of body forces added as a static load, this

result in the maximum shear stress distribution is shown in Figure 29.
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This represents. the initial stress field of our best model. The
soft Saugus-type formation again results in a local low prestress and the
largest shear stress is found at the hypocenter (985 bars). The contour
plot of stored strain energy density (first part of Fig. 30) shows that
its distribution matches that of shear stress. Thus most of the energy
available to the earthquake is stored in the hypocentral region. This is
dramatized in the second half of the figure where the strain energy
density change caused by relaxing only the hypocentral region (numbered
1 on the grid) is shown.

The net §W can be estimated to be approximately 1 x lO21 ergs
per kilofneter of fault length or a large portion of the total energy
released, comparable, in fact, to the estimates of Trifunac (1972) for

the near field seismic energy.

Systematics of Relaxation

As was described in the preceding chapter, we can study the
prestress-energy release of an earthquake either by imposing an offset
along the fault surface or by ''relaxing' elements parallel to the fault.
'The second technique has the advantage of being more natural in the
sense that the medium responds to the prestress field without intro-

duction of internal forces which could result in overshoot.

Because of stability requirements of the numerical technique
(i.e., relative size of the elements of the stiffness matrix), the material
blocks which are relaxed need have a finite thickness to length ratio.
This can be corrected by assuming that the stress drop is constant

while the strain drop increases with diminishing thickness of the
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ZMIN=  2.4300E-01 ZMAX=

2.6000E 00 DELZ= S5.000CE-01

CONTOUR PLOT OF STRAIN ENERGY DENSITY STORED

ZMIN= -3.S000E-02 ZMAX=

2.8000E-01 DELZ= 5.0000£-02
CONTOUR PLOT OF STRAIN ENERGY DENSITY CHANGE

CONTOUR VALUES

t 2C= 0.0

2 ZC= 0.5000E 00
3 ZC= 0.1000E 01
4 ZC= 0.1500E 01!
5 ZC= 0.2000E Ot
6 ZC= 0.2500E 01
7 ZC= 0.3000€E 01

CONTOUR VALUES

1 ZC= -.5000E-01

2 7C= 0.0

3 ZC= 0.5000£-01
4 ZC= 0.1000E 00
5 ZC= 0.1S00€E 00
6 2C= 0.2000E 0O
7 2C= 0.2500€ 00
8 ZC= 0.3000E 00

Figure 30. Comparison of the stored strain energy before the event,
with the strain energy change caused by relaxation of element
1. Units are 1021 ergs per km-,
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failure zone. This insures that the displacement field away from the

fault and the stress drop remain unchanged.

In the model of the San Fernando earthquake, the elements re-
laxed are indicated in Figure 28 by numbers in the actual sequence of
fault propagation.‘ They have a thickness between 0.5 and 1.5 km.
Table 3 gives the shear moduli assigned to each of the materials,
together with the ''real’ drop in shear strength, assuming a thickness
of the fault gouge of 50 cm. The values in Table 3 are those which
gave a vertical uplift on the free surface similar to the dislocation

solution presented in -Figure 17.

The largest drop of shear strength is found in element 9a where
the largest fault slip occurred. Multiple faults branching off at 1 km
depth would have the same result. The relaxation in the hypocentral
region (elements 1, 2 and 3) is also very significant. This is needed
in order to obtain up to 35 cm uplift in the epicentral area. Similarly,
we left unchanged those materials at the knee of the fault (between
elements 3 and 4) in order to force the free surface uplift to be less

than 10 cm, 6 km north of the fault scarp.

Figure 31 gives a comparison of the relative vertical displace-
ments generated by dislocation and relaxation in cross section BB'.
The resulting displacement fields are remarkably similar except at a
depth of 1 km. There the dislocation generated an 8 m offset at one
point only, while the relaxation spreads it over thel entire length of
element 9a. Furthermore, since the relaxed materials were isotropic,

there is a small amount of dilation occurring, spreading the
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TABLE 3

Shear Modulus

in dynes

2
cm

fromFig. 28 Before

1

2

~9a
9b

.46 x
.46 x
.46 x
.13 x

13 x

10

10

10

10

10

=10

10

10

10

10

11
11
11
11
11
11
11
11
11

11

Relaxed

0.1 x 101

0.1 x lOl»1

0.1 x lO11

0.3 x 101

0.3 x 10ll

0.3 x 1011

072 x 1041

.072 x 1011

.0lx 10ll

.3 0x 1011

Corrected for 0.5

Thickness

3.

3.

3

30.
30.

30.

30.

.2x10

3-x 106

3x106

6

.3x 10

Ox106

OxlO6

0x106

b

6

.2 x 10

6

.0x 10

0x106
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displacements away from the fault ever so slightly.

F"igure 32 compares the shear stress drops obtained by iﬁjecting
the dislocation in the prestress field described above with that generated
by the dislocation. Although the shape of the contours are very similar,
important differences arise here.

Because the numerical computation of stress is made at the
centroid of each element, then transferred to the nodal points by
averaging the stresses of the elements surrounding the node, a signifi-
cant error is introduced in the values given for the nodes on the fault
surface. By contrast, the relaxation gives the actual values of the
stress drop on the fault surface, but because of the finite thickness of
the ''fault gouge'', these maximum stress drops occur on a greater
area than they would if the gouge was only 50 cm thick.

As a result, the actual stress drop plot should be a composite
of the two plots of Figure 32 with the maximum values on the fault
given by the relaxation and the stress drop away from the fault given by
the dislocation model. The result is shown in Figure 33. In any case,
the interpretation here is that our model of the San Fernando mechanism
results in a large stress drop in the hypocentral region up to a maxi-
mum of 650 bars. At 6 km depth, the fault changes slope and locks up,
resulting in a large stress increase up to 400 bars. This places severe
constraints on the history of this event and will be discussed later in
this thesis in terms of failure criteria and aftershocks. At this point,

we will explore further the evolution with time of the fault.



25km
S

20

—30km

ZMIN= -1.6000E 00 ZMAX= 2.1000E 00 DELZ= 5.000CE-01
CONTOUR PLOT OF DISPLACEMENT IN Y DIRECTION — DISLOCATION

IMIN= -1.2000E-03 ZMRX= 2.2000E-03 DELZ= 5.0000FE-04
CONTOUR PLOT OF OISPLACEMENT IN Y DIRECTION — RELAXATION

Figure 31. Vertical relative displacements that result from the finite
element models of '"dislocation' and 'relaxation'. Units are
kilometers.



ZMIN= -3,399GE 02 ZMAX= 2.0025E 02 DELZ= 1.0000E Q2
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SHERR STRESS CHANGE — DISLOCATION

IMIN= -6.364

CONTOUR PLOT O

0
0
; -200
400 §§§§
—-600

02 IMRX= UY.5921E 02 OELZ= 2.000CE 02
SHEAR STRESS CHANGE — RELAXATION

Figure 32.

Shear stress change at 40° dip. Units are bars.
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Evolution with time of relative displacements and stress drop

In this section, we will investigate the growth of the San
Fernando fault by analyzing static equilibrium solutions. With the
prestress field of Figure 29 as a starting model, equilibrium static
solutions are computed for eight different models involving sequential
relaxation of elements 1 through 9 (1, 1+2, 1+2+3, etc.). Since all
transient effects are 'ignored here, these solutions will not in a true
sense give a picture of the time history of the fault propagation. How-
ever, some clear understanding of what these various static solutions
mean can be obtained from consideration of the elastic displacements

in the near field of a propagating fault.

In Haskell (1969) we find explicit expressions of the components

of displacement for a shear fault in an infinite space. In particular, with

ui(‘])(x, t): the elastic displacement component i, computing at
time t and at a point of coordinates x caused by the com-

ponent j of the fault offset

-Auj(t)‘ = fault offset

o = P-wave velocity

B = S-wave velocity

S = area of the fault already broken

£ = coordinates of point of integration on the fault

r =]x-¢ distance of observation point to fault integration
point

f(v) = function of direction cosines; puts a weight on the ampli-

tude of ui(j) and can be taken here as constant for each i

and j set
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v = velocity of crack propagation
we can e,valuate Haskell's formulae for the purpose of defining the
relative importance of the static solution. For a fault with only one
dire.ction of offset in its plane (either pure shear or pure thrust) we
have only six expressions for ui(j), They differ only by a factor f(y)

which corresponds to the radiation pattern. Thus we can write quite

generally i r/B
30£, ()
u( X, t) = ———// (v) { / Au.(E,t-tl) att
' rla 3T
12£, (7) 12£,(7)
+—-—~2-—2—-Au(5 t- r/a)-WAuj('E_,t-rlﬁ)
260 o 2R,
+ ER Auj(:_,t-r a) - FEN Auj(ﬁ, t-r/B) d_f_ (4.1)

Fx:om Eq. (4.1) it is possible for specific values of P and S wave
velocity, as well as for a specific value of the fracture velocity (i.e.,
position of ¢ with time),to get an explicit value of ui(j) as a function of
the fault offset. More specifically, we want to investigate the evolution
with time of a small region ahead of the failure in order to understand
how much the final fault offset of the already broken region influences

t (if at all) in terms of prestress. Thus for distances away from the
source equal or smaller than the distance travelled by a shear wave in

one second (i.e., l < B(l) 3 km)

1
() 1 {/{_3_9/ o
u (X, 1) < o= Au. (¢ t-t') dt
' 4 JJs Bz 1/2 I~

Ap (§,t-1/2) - -—Au(g t-1) -
4;3 ~ {3
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2 . 2 °
+ EEZ Auj(g,t-l/Z) - -;37 Auj(g,t—l)} d¢ (4.2)

This means that a point near the source ''sees'' first the second and
fourth terms of (4.2), together with some portion of the first term.
They have amplitude factors of, respectively, 1/3, 1/36, .and 3.3.
Later, with a time delay equivalent to [x- £)/(@-B), the observation
point "sees'' the third and fifth terms, together with the last part of
the mixing function of the first term of (4.2). These have amplitude

factors of 4/3, 2/9, and 3.3, respectively.

In all cases, this says that in the near field, theAu terms which
contain the static solution as a limit overwhelm the AQ terms. But the

function Auj(é', t) has a rise time which cannot be neglected.

Let us consider only a small region ahead of a propagating crack
tip. Assume the crack propagates at a constant velocity v = 1/2 B.
This means that at our point of observation X (3 km from the hypocenter)
we will have the full static information only from that portion of the
fault which has attained final static offset (meaning Aﬁj = 0 and Auj =<Au>
static). All the observations available on rise time of a fault offset
point out to small particle velocities (of the order of 1 m/sec, B.
Minster,’ personal communication). This implies for a fault offset of

4 m, a rise time of at least 2 seconds.

Clearly, then, the full static information (contained in the first
three terms of (4.2) will reach point x at times such that the fault has
already propagated beyond x. As a result, a static equilibrium solution

for the hypocentral region cannot give a quantitative understanding of
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of the fault's propagation. The successive relaxation solutions can give
us only the final equilibrium displacement and stress field that would be

present if the fault had stopped propagating.

Then, a contrario arguments can lead to a qualitative under-
standing of why it did not stop. On the other hand, these solutions,
because of the superposition principle, give the contribution to the final
static field of each of the fault segments (assuming, of course, that the
relative displacement does not overshoot the equilibrium position during
the fault propagation).

Looking at the size of the elements relaxed, we can have an idea
of the time ''delay'’ involved between each calculation. Taking a crack
velocity of 2.5 km/sec as a reasonable estimate for the average over
the fault width, we get the following:

Element 1 is broken 0.4 seconds after the onset of failure.

Elements 1 and 2 are broken 1.4 seconds after the onset.

Elements 1 to 3 (defining the hypocentral region) have ruptured
after 2.04 seconds.

Then we assume that some short time after that the failure restarts in
the upper portion with the following travel times:

0.44 sec through element 4,

0.88 sec through elements 4 and 5,

1.32 sec through elements 4 to 6,

1.96 sec to break elements 4 to 7, and

3.16 sec to break elements 4 to 8.

If the knee of the fault broke without significant offset, we get a total

travel time of the failure from the hypocentral region of 6. 82 seconds.
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The difference between £wo of the successive travel times given above
is an app’roximation of the time delays between each of the contour plots
shown below.

Figures 34 and 35 show the horizontal displacement caused by
relaxation of elements 1 to 8 (number 6, for example, means that all
six elements numbered 1 to 6 in Figure 28 are relaxed together in a
prestress environment equivalent to the one in Figure 29). The hypo-
central region is represented by sequence 1 to 3. In these positive
co’ntour values indicate a relative displacement to the left of the
figure (south). Figures 36 and 37 show the corresponding vertical dis-
placemehts.

Comnsidering both relative movements together shows that at the
onset of failure (plot numbered 1), the net maximum fault offset is
less than 40 cm. The next two steps show a maximum fault offset
growing to 4 m, the value it will have at the end of the faulting.

Step 2 shows that the significant thickness of the elements
relaxed causes some dilation. At this stage the horizontal component
of offset is greater than the vertical, giving the slip vector a smaller

dip than the fault plane. This is corrected in the third step.

Steps 4 through 8 involve the relaxation of the upper portion of
the fault under a prestress field onto which has been added the hypo-
central relaxation. Throughout this process, the static displacement
field in the hypocentral area remains practically upchanged even though
it was not locked, implying that the movement of the upper portion does
not change the stress field at depth sufficiently to create further

movement.
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The fault offset .on the upper portion of the fault grows according
to the ar’nount of relaxation allowed in elements 4 to 8. Since these were
estimated with the intent of getting the observed vertical uplift at the
free surface, it is not surprising to find a maximum offset at step 8 of
5.5 m. The final relaxation involving elements 9a and 9b results in a
maximum offset of over 8 m. Xach of these relaxations was controlled
by the initial prestress field modified by the relaxation of the previous
steps.

The next two figures (38 and 39) show the evolution of the shear
stress change (equilibrium solution) caused by the eight step process
discusséd above. The shear stress is computed at a dip of 40° giving
a value for the stress drop roughly parallel to the fault plane.

Step 1 shows that the hypocentral region relaxed a maximum of
273 bars (or about 30% of the available prestress) without stressing up
the region ahead of it. Steps 2 and 3 show that if the relaxation at the
hypocenter is increased by at least a factor of two, the knee of the fault
gets a stress increase of 250 bars. The following steps do not modify
the hypocentral region where the maximum stress release remains at a
level of 640 bars. While the stress drop in the upper part of the fault
remains well below 100 Bars, step 4 through step 8 continue the stressing
up of the fault's knee to a final stress increase of 390 bars. This is
shown in Figure 40. It compares the final change in the stress field,
seen as a change of shear stress quasi parallel to the fault and as a
change in maximum principal shear stress. |

These two figures are not identical for obvious reasons. If we

express the stress tensor of the prestress field, it can be written as
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(in two dimensions) for the hypocentral region,

0y (0) (0)
© | irore| | %max O
ij B (0) (0) - 0
T2  T22 0 ol

where the first matrix would be the stress distribution with one of the
directions (1 or 2) parallel to the fault, and the second would be the
expression of the stress tensor in the principal axis.
1f the prestress field is such that the maximum shear stress is
parallel to the fault, i.e., the fault makes an angle of 45° with the

maximum compressive stress, then

o) _ 0 _ 1 <0<0> o) >

12 max 2 max min

and .
0y _ _(0) _ _(0) _ 1 [ (0) 0
T11 % 722 T %y Q'icﬁmx+a;&>

In the final state, we have

(1) (1) (1)
S Tin iz O max 0
ij (1) (1) (1)
™ rlZ r22 0 oanin

where the orientation of the principal axis does not necessarily coincide
with that of the prestress field. Yamakawa (1971) shows that both pairs
of principal axes coincide only in two cases: (1) if the final stress is
purely hydrostatic and the shear stress is completely relaxed, (2) if

all components of the initial stress tensor are uniformly reduced.

As can be seen from Figure 40, this is not the case in our model.

The first figure represents

(0)_ (1)

= T2 12

N2
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while the second is

. () B ¢V
max max max

A hydrostatic final stress field implies

0) _ ,(0) | (1 _ () _
"12  "max and F12 = Tmax = °
and a uniform reduction of Tij would imply

(1) (1) (0) . (0)

11 12 | | °"1i1 °T12

(1) (L - (0) (0)

12 22 €Tz S22
where 0 <c <1,

As we shall see in the next paragraph, we get for the hypo-

central region

7'(112) = 50 bars rgoz) = 750 bars or ¢ = 0.0666
and
1 0
i) = 600 r$9) = 600 or ¢ =1

Since the maximum shear is relaxed at the _hypocenter, we see that for
the onset of failure,at least, the final stress field is near hydrostatic. As
the failure progresses towards the surface, this is less the case as
shown from the increasing differences between the two plots.

The maximum shear stress remaining after the major shock is
shown in Figure 41. It shows that the shear stress concentrations
generated by the San Fernando earthquake would be, according to this
model, at the knee of the fault and at the tip of the rupture below the
hypoceﬁter. It would be in the neighborhood of 800 bars in both these

regions. A three-dimensional model would place additional stress
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Figure 40. Comparison of the final shear stress éhange parallel to the
fault with the change in maximum shear stress (Fig. 29 minus
Fig. 41).
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concentrations all arouﬁd the fault bound;.rie s, similar to the one below
the hypo;:enter.

Following the accepted idea (e.g., Mogi, 1962) that aftershocks
must result from stress increases produced by the main shock, we
suggest that they will be found in this event at the knee of the main fault
(i.e., above and to the south of the main shock) immediately below the

hypocenter and at the lateral boundaries of the rupture plane.

Summary of the fault mechanism

Since the model discussed above has given us a prestress field
as well é.s a stress drop which vary considerably along the fault width,
we can make a reasonable attempt at understanding the failure processes
involved in this event.

Assuming that the prestress field that we investigated is the
critical stress as defined in fracture mechanics, we can test our model
against the failure criteria applicable to frictional sliding or brittle
failure. Since we get the stress field relevant to a small region of the
fault, a direct comparison can be made with laboratory experiments in
an attempt to explain the San Fernando failure in a self-consistent
manner.

Of the current fracture criteria, it appears that Coulomb's
criterion predicts most of the laboratory experiments of sliding friction.
Byerlee (1971, Penrose Conference) showed that experimental data for
rocks scatter about two straight lines

r=0.850 o < 2000 bars (4. 3)
n n

r=500. + 0.6 o, o, > 2000 bars (4. 4)
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where r and o o 2re the shear and normal stresses measured in bars.
The first equation'is relevant for the San Fernando earthquake and can
be viewed as either Mohr's criterion <r = f(an)>or Coulomb's criterion
with a zero shear strength.

Figure 42 shows the variation along the fault surface of both the
shear stress parallel to the fault and the compressive stress perpendicu-
lar to it. The upper plot in the figure shows the prestress relevant to
the failure criterion. The region covered by distances on the fault
plane from 12 to 18 km represents the hypocentral area, dipping at 52°.
For that angle, we can see that Eq. (4.3) is satisfied and the medium
should fail.

To get an idea of the material strength implied by these numbers,
we can apply Griffith's criteria. Griffith showed that, provided
cq1*o, and 3‘:’1 t o, < 0 (where 9y and 0, are the principal stresses
in plane strain), the critical tensile strength of the material is defined
- (91° 03)2

T = ——— (4.5)
8(cl+ %)
Since at the hypocenter, the stresses are approximately

-1500 bars

m

1
0.3 = 350 bars
we get T = -372 bars, which is much lower than the actual shear stress
applied. However, McLintock and Walsh (in Mogi, 1972) modified
Griffith's criterion in order to take into account the fact that in a com-

pressive stress field, Griffith's cracks close up and support an ad-

ditional shear stress. Their critical shear strength is defined as
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1

To= 7 (o017 o3 (1+H)

1/2

+ (0,40 (4. 6)

3)

where [ is the coefficient of sliding friction. Using 0.8 as a typical
value of p (Byerlee, 1967), we get

T = =~850. bars
o

which is close enough to the shear prestress at the hypocénter (18 km
from the surface measured along the fault). Thus, the shear prestress
involved in our ''best'' model is consistent with a critical stress as
given by the modified Griffith criterion. This defines a brittle failure
in two dimensions, and can be used to our model against laboratory
measurements. |

Accepting our numbers for principal prestress as representative

of middle crust in situ, we get for the compressive strength

c 1" 03 = -1850 bars = 27,195 k psi/inz

and confining pressure (here tensional because of the assumed creep

at depth)

o 37 +350 bars = =5.145 k psi/in2

A value of compressive strength near 2 kbar is quoted by most authors
for materials such as granite and quartzite (e. g., Mogi, 1972).

Clearly we cannot improve these values since our models are
two-dimensional, and we have no control on the intermediate stress,
which by virtue of plane strain assumptions is perpendicular to our
cross section and equal to

V(o‘l + g 3) £ -276 bars compression

where v is the Poisson's ratio. However, we can conclude at this
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stage that we have succéssfully modeled the hypocentral region in a
way whic;h is self-consistent with:

(1) the observed vgrtical displacements at the free surface

(2) the interpretation of the Pacoima Dam accelerogram which
requires a large hypocentral offset (Hanks, 1972)

(3) the laboratory experiments of brittle failure in materials

such as those we might expect below the San Gabriel Mountains.

We §vill now apply the same principles to the upper portion of
the fault to see if the models remain consistent in terms of failure
criterion and material strength.

As can be seen in Figure 42, as the fracture propagates toward
the surface, it rapidly reaches a region where the shear stress is con-
siderably less than the compressive prestress. This is what we called
the knee of the fault where it curves toward a 30° dip. The prestress at
that dip, however, is such that Coulomb's failure criterion is once
again satisfied, and the upper portion of the fault can fail.

The stress drop plots show that the compressive stress essen-
tially did not change (which satisfies the stick slip failure hypothesis),
and the major area of stress relaxation is near the hypocenter. It
also shows that once equilibrium is attained, the knee of the fault
stores a very significant amount of shear stress. As was pointed out
earlier, the kinematics of failure are such that this stress buildup may
have reached critical values some time after the fault had already
reached the free surface. This could explain why this particular portion

of the fault did not fail during the main shock.
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1f this is true, the last part of the figure shows that the final
stress stéte is such that Coulomb's failure criterion is satisfied at the
knee of the fault, and we expect aftershocks to occur. The next
paragraph will show that they did. Clearly this picture of the faulting
processes could be modified if we considered the effects of the third
dimension.

However, we pointed out in Chapter II of this thesis that plane
strain assumptions led to an underestimate of the fault's offset at depth
compared to the real situation of a short fault length. Larger offsets
in the hypocentral region would simply increase all the stress estimates
presented here. On the other hand, if the fault was modeled as curving
gently from 50° dip at depth to approximately 30° near the surface, this
would place the knee of the fault deeper and permit some reduction of
the stress stored in this area. However, some aftershocks were found
in the region surrounding the knee of the fault (Whitcomb et al, 1972),
implying that our model is correct at least qualitatively, since if we
modify the pi.cture to the point where the prestress is relieved through-

out the fault plane no aftershocks could have occurred there.

A three-dimensional picture of the event

In Figure 43 we drew a three-dimensional perspective view of
the observed surface uplift. The data are those of Chapter II, corrected
for the epicentral area using the latest gravity measurements of Alewine
(personal communication). The cross sections AA' and BB' treated in

Chapter II are shown in their relationship with the overall uplift.
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The second part.of the figure is a simplified, highly speculative
perspect’ive view of the fault at depth. On sections AA' and BB' at
depth are drawn arrows indicating the amount of thrust (relative offset)
as determined by inversion of the uplift data. These arrows are scaled
so that they are proportional to the values quoted in Chapter II (Fig. 17).
At the junction of the Tujunga and the Sylmar segmenté, we placed a
step in the fault plane. This step dies out with depth from the
measured amount near the surface to zero at the point where the plane
bends to a steeper dip.

This shows that the width of the Tujunga segment is approxi-
mately 1.. 5 km greater than that of the Sylmar segment. This explains,
in part, the discrepancies between section AA' and BB'. However, if
the offset of the step is constructed by assuming that the relative dis-
placement is constant over the length of both segments, it results in a
large gradient of displacement over the surface of the step which cannot
be explained by the difference in width or by the possible lateral
variations of geology. Multiple faulting near the surface can reduce
this problem considerably, but is highly nonunique in terms of number
of small faults and the offsets they carry.

This problem can be avoided if we assume that the offsets of
section BB' are reduced as we move west along the fault length and
those of section AA' are increased as we move east so that the offsets
are equal as they reach the hanging wall. If this is the case, this will
occur in a rather narrow region around the step since the observed

uplift changes rather rapidly between the two fault segments.
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On the basis of 5ftershock analyses (Whitcomb et al., 1972),
and from the trend of the western portion of the Sylmar segment, the
westernmost part of the fault (toward the observer in Fig. 43) is
assumed to be a series of planes which are closer and closer to the
vertical. The two extreme ends, to the southwest near the surface and
to the west near the hypocenter, are shown as thrust planes. They are
postulated by Whitcomb (personal communication) on the basis of a
series of aftershocks which had a thrust fault plane solution.

Most of the major aftershocks were drawn on the figure with
their determined hypocentral location. The numbers assigned to them
are from Whitcomb's classification. They are listed with their magni-
tude and depth determination in Table 4.

A square indicates a strike slip fault plane mechanism and a
circle, a thrust. Aftershock 53 has the characteristics of both strike
slip and thrust, thus it is shown in a place where the fault plane changes
from mainly vertical to a dip of about 30°.

Aftershocks such as 50 and 76 confirm the stress increase below
the hypocenter of the main shock and 82 and 68 confirm the interpreta-
tion of our final stress field at the knee of the main fault plane. Their
relatively small magnitude compared to the stress available to them
(up to 700 bars) can be argued by considering the plot of strain energy
change after the main shock (Fig. 44). As can be seen the area of
stored strain energy density is rather small compared to the size of
the region exhibiting release. Furthermore, as was pointed out earlier,
this model could be viewed as enhancing the fault's knee effect. Thus,

from the point of view of strain energy available to the aftershocks, it
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can be argued that they have the size (magnitude-wise) necessary to
release ti’le stress stored in that area.

All of the other shocks shown here besides those can be inter-
~ preted as fault end effects. The strike slip aftershocks which cluster
along the westerly panel can be explained by considering the strike slip
component of the main shock. A vector construction shows that because
of the change in slope, the thrust vector of section AA' can be trans-
ferred onto the western panel with a significant strike slip component.
A hypothetical strike slip on section AA' could be transferred in the
same manner and result in a significant thrust component of opposite
direction. It is easy to envision how the proper mixing of both would
result in a strike slip focal mechanism for the aftershocks such as

84, 79 or 49, etc.

The energy released

Let us assume that our representation of the San Fernandeo
earthquake is the correct one. Let us assume further that our section
BB' represents the length averaged behavior of an earthquake with the
same energy balance of the total San Fernando earthquake. Let that
imaginary event have a length of 10 km over its entire wg_dth. Then we
can apply the techniques of Chapter III in order to get the energy re-
lationship of the San Fernando earthquake.

Going back to Figure 44, we can show that a major portion of
the strain energy released by the faulting came from the hypocentral
area. There, we find a maximum change in strain energy density of

0.58 x 1021 ergs/km3. Some strain energy was released near the free
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TABLE 4

Aftershock Number -ML Depth
23 4.2 6.
30 : 3.5 11.3
33 3.2 8.
45 3.4 9.5
46 3.9 9.2
49 3.8 1.1
50 : 3.9 12.9
52 : 3.4 9.7
53 3.5 .6
55 3.1 10.
57 3.2 4.4
60 3.6 6.8
62 4.5 7.2
63 3.4 4.9
68 3.5 7.5
71 4.5 3.2
75 4.3 4.6
76 : 3.3 11.3
77 3.7 5.7
79 4.6 - 2.1
80 3.4 6.3
81 4.2 | 7.1
82 3.2 7.9
84 | 4.0 3.0

From Whitcomb et al. (1972).
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surface, but-it could be'argued that coming some 6 seconds after the
onset of failure it probably appeared in the break out phase.

These contours, integrated over the area they encompass, define
the W discussed in Chapter III for this particular model. Since the
center of mass of our model went up, this strain energy released by
the fault is partitioned locally into gravitational potential energy and
dynamic radiations. At this prestress level, the partition is almost
one to one which means that the prestress equivalent of the gravitational
potential increase is equal to approximately one-half the average pre-
stress. This is shown in Figure 45 where the model discussed above is
marked (3). Because of the flexibility of the finite element technique,
we can vary the prestress field while maintaining the fault offset
invariant, thus mapping all possible values of W versus prestress
which would still fit the static observations. This results in the two
lines shown in Figure 45. Lines A and B exhibit the linear relationship
between energy change and average prestress. The others have a com-
bination of more or less slip on the fault at depth and compressive
tectonic prestress. The values quoted on the abscissa axis are averaged
shear stress on the fault surface. Line A is the solution that would be
obtained if the gravitational potential energy was ignored. Thus line
B is the actual amount of energy available for seismic radiation.

Trifunac's (1972) estimate of near field radiated energy from the
Pacoima Dam accelerogram was 1.7 x 1022 ergs. For comparison's
sake with our model of a 10 km long fault we place his estimate at about
2 x 1021 ergs per km of fault length. His value is approximately twice

the highesf estimate of Wyss and Hanks (1972) from teleseismic body



141

ENERGY RELEASED
IN 102! ERGS/km OF FL.

l(TRIFUNAC)

——— ———— e —

| (o)
400 500 600 At ON FAULT

Figure 45. Energy balance for this model of the San Fernando earthquake
per kilometer of fault length. Assumes a constant behavior for a

total fault length of 10 km.
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waves and nearly an order of magnitude bigger than EGR for a local
magnitucie of 6.6. Thus if we assume that Trifunac's estimate is the
best estimate of seismic energy we can conclude that our best model
of the San Fernando earthquake is

(1) The prestress level was averaged over the fault: 350 bars

(2) The average stress drop was between 150 and 200 bars

(3) The local increase in gravitational potential was 7.5 x 1022
ergs

(4) The energy radiated was 4.5 x 1022 ergs, which compared

to E_ implies a seismic efficiency of 0. 4.

The value given for the average stress drop is between a factor
of 10 and a factor of 5 larger than those calculated by Wyss and Hanks
(1972) on the basis of empirical and theoretical formulae. This is not
surprising since the parameters they used are values averaged over the
fault area, and we showed previously that when the fault offset varies by
an order of magnitude in space,tqrelghlent, stress drop and related fault
parameter. estimates can be grossly underestimated. Even here,
when values of stress drop are quoted they are only average values and
are not very meaningf;ll taken out of context. For example, our ''average'
stress drop of about 150 bars varies from 675 bars at the hypocenter to
80 bars at 4 km depth with a stress increase of up to 400 bars at the
knee of the fault. Similarly, the prestress level of 380 bars of our best
solution varies from 850 bars at the hypocenter to about 200 bars near
the surface.

The estimate of prestress most widely quoted in the literature is

attributed to Chinnery (1964) who, upon assuming that the San Francisco
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earthquake of 1906 relieved the entire stress available, computed the
prestress to be equal to the magnitude of stress drop. What he called
the strength of the earth's crust was computed from dislocation theory
and found to be 100 bars. This number may be correct for the maxi-
mum average stress drop for a strike slip earthquake in California,
but it does not necessarily have much meaning. The assumption of
complete stress release is open to considerable debate and it can be
very misleading. As we have shown above, the stress drop can vary

between, say, -500 bars and 1000 bars on a local basis.

Brune et al. (1969), upon finding no heat flow anomaly in the
areas where the San Andreas fault is creeping, found that an initial
prestress of 200 bars (averaged over the region they studied) could fit
the observations. They assumed th;t all of the strain energy released
by the creep was transformed into heat. The uncertainties involved,
however, made them admit the possibility of a 500 bar upper limit for
the average prestress.

Clearly, all of these estimates can accommodate very large
local variations, and we can conclude from them that our models of the
San Fernando earthquake lead to a significant improvement in terms of
understanding the tectonic processes involved in thrust faulting.

The other two earthquakes we studied will show a similar pattern
of large variations of stress drop along their fault surfaces confirming
the fact that the finite element technique is ideally suited for earthquake

modeling.
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The Alaska FEarthquake of 1964

Previous studies by Stauder and Bollinger (1966) of the static
displacement of the Alaska earthquake of 1964 led Plafker (1970) to
estimate the stress change using the values of reduction of the hori-
zontal strain from the dislocation model. He assumed the stress strain
relationship to be

6P = Ee
where 0P is the stress change, E is Young's modulus, e is the strain
change. He found a stress '"drop' of 77 bars averaged over the area and
a maximum of 210 bars near the axis of subsidence. His values are in
fact the horizontal stress that one would get from bending a plate in pure
flexion (e = y/p, where y is the distance to the neutral or unstressed
axis and p is the radius of curvature of the plate). Thus, it is not the
stress drop on the fault surface, but is instead an indication of the
magnitude of stress change involved in this event. A much lower
estimate of stress drop 6n the fault is given by Brune and Allen (1967).
From Savage and Hastie's dislocation model they estimate a stress drop
of 27 bars. This is clearly another example of an average stress drop
value which has little bea{ring on the fault mechanism involved. This
can be seen in Figure 46 where we show a contour plot of the stress
drop generated by the '"best fit'' offset presented in Chapter II and com-
puted throughout the section for a direction approximately parallel to
the megathrust (=10° dip).

As we have said in Chapter III, the stressee;. computed by the
numerical technique on the fault surface are an average of the stresses

at the centers of the elements surrounding the nodes. For the
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dislocation model this results in an underestimate by approximately a
factor of two (function of the width of the elements surrounding the
fault plane).

With the assumption that’ the error is exactly a factor of two,
we see that in our model the stress drop varies along the fault surface
from -86 bars to +215 bars.. Thus a stress drop averaged over the
fault surface could indeed be very misleading.

The details of the variation of stress change are very interesting.
It is found that both ends of tlife fault exhibit a net increase of shear
stress. For the upper portibh of the megathrust, this is in fact an
argument in favor of our bes{t"'fit solution. As we showed in Chapter |,
the lack of data south of Middleton Island made the inversion for that
area completely nonunique. It is easy to show that if we increased the
offset near the trench, the stress change would increase in proportion
and this in turn would make that region a prime candidate for aftershocks.
The fact that significant aftershocks were not observed here argues for
our best fit solution.

Another region of stress increase is found in that portion of the
thrust where the offset function goes through a local minimum (between
Montague and Middleton Islands), We have shown in the section on
resolvability that this is not unique because of the lack of data between
the two islands. This local stress increase, then, is not resolvable.
By contrast, the central portion of the megathrust is well resolved,
and we feel that the maximum stress drop of 215 bé\rs really occurred
below Montague Island. We can thus feel confident that most of the

energy available for seismié radiation came from that central portion
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Figure 46. Stress change and strain energy released for the Alaska
earthquake for an average prestress equal to the average stress
drop. Units are bars and 102 ergs per km3, respectively.
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of the megathrust. This can be seen from the bottom part of Figure
46 wheré the strain energy density change is shown to concentrate
below Montague Island.

In fact, a direct comparison can be made between the strain
energy density plot and the multiple rupture characteristic that Wyss
and Brune (1967) found for this event. They postulate a multiple event
source mechanism whereby the propagating rupture ''triggers' distinct
events larger than the initial rupture of the hypocentral region. The
largest of the discrete events occurred on the megathrust, below
Montague Island, and resulted in a delayed pulse with an amplitude
significantly larger than the initial shock (up to 30 times larger). This
compares very well with our estimate of a large strain energy density
change of up to 0.28 x lO20 ergs/krn3 concentrated below Montague
Island, while for the hypocentral region, the energy density change is
only 0.02 x 1020 ergs/km3. Thus, their dynamic model and our static
analyses appear to agree qualitatively.

The prestress fields applied to the model for the energy cal-
culations were composed of one-tenth of the material's own weight
applied as a body force and a tectonic prestress. This ''tectonic' pre-
stress was obtained by specifying the displacement at the locked
boundaries in the following way: the block representing the oceanic
upper mantle was displaced to the right and the block representing the
continental crust was displaced to the left. This was intended to model
the tectonic situation described by Plafker, i.e., fhe Pacific plate
underthrusting the Alaskan continent. The amount of displacement at

the boundaries of these units was varied in order to vary the prestress
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field. The result is shéwn in Figure 47.’ Total energy values for the
Alaskan e’arthquake can be obtained by multiplying the values quoted by
600, the length of the fault.

Since the released seismic energy is about 1-2 x 1024 ergs(log
EGR =11.4+ 1.5 M) and considering that it can be an underestimate
by a factor of ten or more, we estimate the prestress to have been at
least 150 bars (average shear prestress parallel to the fault). For this
model, the local increase of gravitational potential energy is computed
to be 1.3 x 1023 ergs per km of fault length or a total of approximately
9 x 102'5 ergs for the entife fault. Since this is nearly two orders of

magnitude greater than E ,,, we can conclude that here again con-

GR
siderations of gravity as a local body force is critical for the energy
balance of the earthquake.

The prestréss field used in this study did not contain any large
scale stress concentrations such as would be caused by past earthquakes
or creep at depth. This is why the average prestress values used in
Figure 47 should really be taken to include stresses between 100 to

1000 bars in keeping with the meaning of stress fields used throughout

the thesis.

The Hebgen Lake, Montana, Earthquake of 1959

The Hebgen Lake, Montana, earthquake (M = 7.1) of August 18,
1959, produced an extensive subsidence, and in complete contrast with
the San Fernando event, produced no recorded uplift. Even though some
of the subsidence is attributed by Fraser et al. (1964) as secondary

compaction, it is felt to be significant enough to have generated a
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decrease in gravitationa.l potential energy, which, according to Chapter
III of this’ thesis, must have been transferred into kinematic energy or
stored strain energy. Brune and Allen (1967) estimate an average
stress drop of 355 bars for this earthquake. Based on averaged fault
offsets and derived from an empirical formula this numbe_r is sur-
prisingly large. Using Fraser et al. (1969) isobase map, we choose a
cross section running through the center and perpendicular to the fault
break. Its orientation is northeast-southwest. An elastic half space
with a Poisson's ratio of 0.25 and a shear modulus of 3 x 1011 dyne/cmz
is used. We follow Savage and Hé.stie's (1966) solution for this event
since their 10 m average offset is the one used by Brune and Allen's
(1971) stress drop calculation. In order to get a closer fit to the ob-
servations, we chose a fault width of 25 km instead of their 15. We
consider two models with different fall off of the offset at the hypocenter
(more exactly at the deep end of the fault since the epicenter is assigned
by Savage and Hastie (196 )) to be several kilometers northeast of
the northernmost fault scarp, while Savage and Hastie's solution dips
54° to the southwest. Thus, the model used in this section will not be
unique by any means. It is meant only as an example of radiated energy
being enhanced by gravitational potential drop. The upper portion of
the fault is left as Savage and Hastie assumed it, i.e., 10 m offset at
1 km depth, no offset at the free surface. Since the fault length is 30
km while the width is only 25 km, plane strain modeling is accurate
for the cross section chosen.

Figure 48 shows the observed subsidence and fault scarps and

compareSthem with the best solution obtained from the models. Clearly
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the fit is not very good,' but is satisfactory for a qualitative interpreta-
tion. Tﬂe gravitational potential energy change obtained from our
models will probably be an underestimate since the major discrepancy
between the model and the 6bserved subsidence is near the Red Canyon
fault. Besides body forces reduced to 10% as a static load, the pre-
stress applied to both models is pure horizontal tension at a level of
approximately 400 bars. This makes the maximum shear associated
with the tectonic stress have a 30° angle from the horizontal (i.e.,
dipping at 50° just like the fault su'rface.

Figures 49 and 50 show contour plots of the shear stress drop
parallel.to the fault, the maximum final shear stress and the strain
energy density change. Figure 49 was obtained for a fault offset of
10 m along the entire fault width, offset which ""grows' rapidly at both
ends of the fault (over 1 km at the top and 500 m at the bottom). The
first part of Figure 49 gives a false impression of large stress drop
at depth; actually the fault overshot by a large amount at both ends
of the fault, giving stresses larger than the prestress but with the
opposite sign. Only the middle portion of the fault relaxed the prestress
without overshooting.

This is clearly seen in the second part of the figure where the
final stress is shown to be reduced in the middle (from the bend in the
contour lines) while both ends of the fault exhibit a stress increase of
the order of 400 bars. The plot of strain energy density change shows
that strain energy was actually stored at both ends (up to a maximum
of 1.67 x 1021 ergs/kmB). This is, however, limited to the very tip

of the fault so that net balance shows a drop of 14.5 x 1021 ergs/km of
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Figure 49. Shear stress change parallel to the fault, final shear stress
and strain energy change for model 1. Units are bars and
1021 ergs/km3,
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fault length. This is cléarly unacceptablé even if the fault was driven
to overshoot by the drop in gravitational potential energy.

Figure 50 is then the result for model wherein the relative dis-
placement dies out more smoothly at the hypocenter (from 10 m to 0
over 6.5 km of fault width). The result is a slightly increased stress
drop over the middle of the fault and a stress increase limited to the
free surface and below the hypocenter. The strain energy density
increase is reduced by almost a factor of 10 at the hypocenter and the
net energy balance exhibits a drop in strain energy of 24 x 1021 ergs/km
of fault length.

The same models were run with no prestress which gives direct
measurements of how much work would have to be done to create these
faults. We found 35 x 10Zl ergs/km of fault length for the first model
and only 22 x lO21 ergs/km of fault length for the second. These values
correspond to the origins of the lines of energy versus prestress shown
in Figure 51. The lower set of lines correspond to model 1 and the
upper set to model 2. In each case, the lowest line is the energy re-
leased by the fault relative offset, the upper line is the strain energy
change. The difference between the two is the change in gravitational
potential energy which, for both models, is positive and equal to about
8 x 1021 ergs per km of fault length. The stress drop averaged overv
the fault width and including overshoots for the sake of comparison with
Brune and Allen's estimates are found to be, respectively, 400 and 300

bars. We can compare the possible energy released to E {here for

GR

a hypothetical fault with properties of our cross section and length of

20 km). Assuming that the total energy released is greater than EGR
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Figure 50. Model 2 with small gradient of slip in the hypocentral
region.



156

by a factor of five, we s;ee that the earthquakes described by our
models éould occur in an average prestress environment of less than
200 and 150 bars, respectively, even though work has to be done on
the fault (or the stress drop is greater than the prestress).

From this oversimplified nonunique model of the Hebgen Lake,
Montana, earthquake, we can conclude at least qualitatively the
following:

(1) The average stress drop of 365 bars quoted for this event
may very well be an apparent stress drop in the sense that a significant
portion of it may represent fault overshoot.

(2) The local drop of gravitational potential energy may have
been the driving force since it can be seen as an equivalent prestress
(negative prestress).

(3) The resulting energy radiated contains the change in gravita-
tional potential energy because it is a significant portion of the final
SW.

A simple conceptual model like this one could be made for the
Fairview peak, Nevada, earthquake of 1954 since it resulted in a net
subsidence and in an apparent average stress drop of 180 bars (Savage
and Hastie, 1966; Brune and Allen, 1971). This implies that normal
faulting can occur in a relatively low prestress level (as opposed to
thrust faults) while resulting in a large stress drop. The major differ-
ence between the tectonic processes involved in thrust and normal
faulting could be simply the sign of the local change in gravitational
potential energy since in the first case it absorbs energy released by
the fault motion and in the second it provides a large portion of the

radiated energy.
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Figure 51. Idealized energy balance for the Montana earthquake. The
upper two lines correspond to model 2.
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V. TECTONIC EFFECTS OF FLUID-ROCK INTERACTION

Introduction

In the past decade, geophysicists have been increasingly aware
of the fact that man, through his activities, can modify the prestress
that is generated in the earth's crust by tectonic forces and that
several mechanisms could be important.

Prompted by progress in civil engineering design, we have been
constructing bigger dams and their subsequent filling with water has
had the double effect qf an additional static load and of weakening of
some layers through the raising of water tables. This has generated
some well recorded earthquakes in areas where natural seismic
activity was nonexistent or of very low frequency (Kremasta, Greece,
Kariba Dam, Rhodesia, Monteynard Dam, France and Koyna Dam,
India).

Underground nuclear explosions have been shown to increase
the seismic activity near the Nevada test site and the Aleutian test site,
although there is some statistical evidence that they do not trigger far
field events (Healy et al., 1968). This chapter will be concerned with the
tectonic processes associated with removal of fluids from a stressed
" region. |

The 0il industry has been using a technique known as hydro-
fracture for more than three decades. Used basically as a hydraulic
process for increasing reservoir productivity (Clark, 1949), it involves
injection of brine at bottom-hole pressures equal or superior to 75% of

the overburden. This was known to induce and extend fractures in the
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vicinity of the well (Har'rison et al., 1954). The theory involved the
use of the thick pipe formula

p; = 20H+St

where Oy is the horizontal tectonic stress, St is the tensile strength
of the rock and P; is the hydrostatic pressure applied in the borehole.

These techniques were usually restricted in their geographical
usage to non-tectonically stressed regions, and no earthquakes were
reported with a direct connection with hydrofracture operations
although a denser network would have probably detected small events.
More recently, however, underground injection in tectonically active
regions was used by the oil industry for the purpose of secondary
recovery (or repressurization of an oil field) and by various other
agencies for the purpose of waste water disposal. In this case, by
contrast with hydrofracture, the well head pressure is not of the order
of magnitude of the overburden, but is sustained for long periods of
time. The consequence, as can be seen from considerations of the
simple equations of a well in a confined aquifer, is a build up of
pressure head farther and farther away from the injection point. After
some time, fluid pressure buildups. will spread to areas which because
of tectonic prestress may be in a state of incipient failure.

Such a conceptual model was proposed for the Denver, Colorado
earthquakes of 1962 to 1964 by Healy et al. (1968) by comparing the
time-space distribution of the swarm with the pumping records of the
Rocky Mountain Arsenal well.

In a controlled experiment conducted by the U. S. Geoiogical

Survey at the Rangely (Colorado) oil field, it was found that water
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pressures exceeding thé hydrostatic (water weight) trigger earthquakes
on preexisting faults (Raleigh and Healy, at the Penrose Conference
of September, 1971).

In California, the ground rupture that resulted in the cata-
strophic failure of the Baldwin Hills Reservoir was genetically related
to high pressure pumping in the local oil field (Hamilton and Meehan,
1971).

The last example of earthquake~underground pumping relation-
ship is found in the Wilmington oil field, where as a direct result of
oil removal, the free surface subsided down to a maximum of 9 m.
Several éarthquakes were recorded in the area from December 14,
1947 to April 4, 1961.

The physics of injection and removal is the same and involves
considerations of effective stress and consolidation (or swelling)
phenomena. This is the subject of the next papagraph. Later on, we
shall try to model the Long Beach oil field situation by using an axi-
symmetric finite element program which embodies the theory.

Theory of Effective Stress and Consolidation

Various theoretical models have been developed to describe the
mechanical interactions between the solid and the fluid constituents of
a saturated porous solid material such as soil or rock. Developed by
soil engineers, the basic theory involves considerations of gradual
settlement of saturated soils, i.e., consolidation or compaction.

The first simple mechanism to explain this phenomenon is due

to Terzaghi who developed the effective stress law for saturated soils

as o
0, =0-p (5.1)
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with o, the effective normal stress on a plane, o the total normal
stress oﬁ the plane, and p the excess pore water pressure or neutral
stress (= total pore pressure minus hydrostatic pore pressure ( pwh)).
This is then used by most authors inside the concept of a Coulomb's
failure criterion. Then

_ (0)

Tfailure + an tge

This adequately explains the Rangely oil field microearthquakes
(Raleigh, 1971) and was used in a slightly modified form by Hubbert
and Rubey (1959) to explain overthrust faulting. However, Terzaghi's
approach is es sentialiy one-dimensional and although it is a good
approximation of soils, it is not necessarily adequate for rocks sub-
jected to high tectonic stresses.

Various authors apply correction factors to the effective stress
concept, but these correction factors are empirical in nature and require
laboratory determinations of empirical factors. However, all of these
empirical formulations are not three-dimensional and transient effects
of flow are not considered explicitly.

The next major extension of the theory of consolidation was
made by Biot (1969) in which the process was analyzed in three dimen-
sions. In his formulation, a set of constants is used to account for the
interaction between the rock matrix and the fluid and formal solutions
of his equations have been obtained only in a limited number of cases
for which explicit laboratory tests exist (together with their connection
to Biot's constants). All of this is readily available in the soil engineer-

ing literature (Jumikis, 1962; Scott, 1963; Lee, 1968) and we will limit
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ourselves here to writiﬁg Biot's general formulation with special
referenc;e to the basic assumptioﬁs involved and the physical meaning
of the constants,

All the formulation is linear and as such it applies to saturated
soils and rocks where:

(1) The strains are small compared to unity.

(2) The stresses and strains are linearly related.

(3) The velocities are slowly varying so that inertial forces can
be neglected.

(4) The flow inside the rock matrix is laminar (small Reynolds
number).

(5) The drag forces between the pore fluid and the rock matrix
are linearly related to the relative velocity between the fluid and the

rock grain (i.e., the Darcy's law describes the flow macroscopically).

In a summary of his work (1962), Biot reviews his derivation
of the mechanics of deformation of a saturated porous solid. Essentially
his derivation is based on considerations of the strain energy of the
system which he assumes must be a function of the six strain components
relevant to the rock matrix and a volumetric strain tensor relevant to
the fluid (the fluid content). This last one is defined as (in vector

notation)

£=V. <n(’t'1 -'ﬁ'> (5. 3)

where n is the porosity coefficient, Q is the absolute displacement of
the fluid, U is the displacement of rock matrix. Thus

W = W( ex) fy_’ GZ’ 'YX, 'Yy; ’YZ,‘E) (5’4)
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Then, quite generally, he writes

..o= W
ij aeij
and o (5.5)
_aw
Y

where p is the pressure in the fluid of Eq. (5.1). For an isotropic
medium (or layer of rock) the strain energy is quadratic in strain. This
allows Biot to derive an empirical stress strain relationship for the

medium such that

T’ij = Z“Gij + >\81‘] tkk - af;.p

and (5. 6)
E=ad e tygP

where a and M are constants derived by Biot. They are '"elastic"
coea“.'ficients which have to be determined by performing specific

experiments. For example, Biot defines a implicitly, through an

"unjacketed" compressibility test giving a coefficient

6= (1l ~a)x (5.7)
where ¥ is the compressibility of the rock matrix defined in elasticity
as the inverse of the bulk modulus. This means that physically «a
relates the bulk modulus of the rock matrix to the bulk modulus of the
rock grains. Although not explicitly stated in Biot's work, this involves

a relationship between the pore size and their evolution with time.

From considerations of Eqs. (5.6) and (5.3), we can see that
if a =1 (which is true for some water saturated clay (Biot, 1941)),

we see that the stress strain relationship becomes completely
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connected to the fluid pfes sure (M = oo for incompressible fluid).
Physicaliy this méans that a triaxial compression test (initial p = 0)
Qould result in a volume of seeping water equal to the volume that the
specimen is compressed (& = -( € b eyy + ezz)). Ol;, applied to an
oil field, the total volume of subsidence would be equal to the amount
of oil removed. The other extreme of « should be zero and not the
porosity coefficient as claimed by Biot and Willis (1957). As can be
seen from Eq. (5.6), « =0 and 1/M = 0 (incompressible fluid) leads

to a complete decoupling of the fluid flow and the rock matrix (i.e.,

the rock-fluid system behaves like the rock alone (see Eq. (5.7)).

Equilibrium conditions in the rock matrix can be expressed by
combining the momentum equations for fluid and rock. Thus using
Biot's empirical stress strain relationship and ignoring inertial forces

(small accelerations are required for Darcy's law to apply), we get
3 3 o
2 -g-—-x} (m €1J) + aXJ A 01_] (kk + Pfl

- a_?{.__[aaijp] (5. 8)
J _
or for a homogeneous material, in vector notation

#V21_1'+ [K‘+1/3#] v (v- ) + p? Zayp (5.9)

The left-hand side of (5.9) is the familiar equilibrium equation of
elasticity and the contribution of the consolidation is entirely on the
right-hand side.

The next equation needed to solve the problem is the com-
patibility or continuity of the two phases (rock and fluid). For that, we

use the generalized Darcy's law (which itself is a special case of the
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Navier-Stokes equation). It is written here as

_a.a,_(ﬁ ai)=.1%§§12. +%pfi (5. 10)
1

where k is the permeability coefficient, » is the kinematic viscosity of
the fluid. From Eq. (5.3), we get by differentiating (5.10) py X
Sy =k <§P_ + pf.\ (5.11)
ot v aXi 1);1 ’
From the definition of £ (Eq. 5. 6) this is for an isotropic medium and

assuming that Biot's constants do not depend on time

- : 2
1 )p _ d k9 k 9

or in vector notation

g

X VP = Evnta (e e +e)  (5.13)
ot XX yy 2z

|~

Egs. (5.9) and (5.13) completely define the problem at hand, with the
following mixed boundary conditions

u.(x,t) =C on S
1 u

P(%, t) = constant on the permeable boundaries

—;t— [(I_il; - 'ﬁi)ni] = Qo on the boundaries where a flow is
assigned.

Ghaboussi and Wilson (1971) developed a finite element formulation for
solving this set of equations and boundary c'onditioﬁs for two-dimensional

and axisymmetric problems. Their technique is a direct application

of what is known as Gurtin's variational method which results in a set



166

of integral equations quite similar to those presented in Chapter I of

this fhesi’s (Gurtin, 1964). Isoparametric rectangular elements are
used where the displacements are a quadratic function of the coordinates
(Zienkiewics, 1972). This code uses a simple explicit finite difference
scheme for the time stepping. During each interval of t and t + At, a

linear variation of pore pressure and matrix displacement is assumed.

We used their program for modeling the Wilmington oil field
with only small corrections designed to improve the initial response to

a step function input such as QO.

The Wilmington Oil Field Subsidence

Observations

The Wilmington oil field, located at the southwest end of Los
Angeles, is interesting for several reasons. One is that its surface
has exhibited the largest amount of subsidence on record, directly
attributable to man's activities (Gilluly and Grant, 1949). Because of
its location, the surface movement has been recorded continuously
since the beginning of the oil production (1928). Further, because of
the shearing of several producing wells concomitant with minor
earthquakes, we have a record of the hypocentral location of events
triggered by this activity with nearly absolute precision, together with
a good determination of the amount of slip. Some of these earthquakes
with magnitudes ranging from 2.4 to 3.3 have been recently analyzed
by Kovach, Archambeau and Harkrider (1972) and provide us with
estimates of the average stress drop associated with them. Further-

more, for the central part of the subsidence bowl, the structure can be
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considered almost axis&mmetric which permits us to model it by using
the finite element program of Ghaboussi and Wilson. This stems from
the shape of the reservoir, which for the region involved, looks like a
dome with a very small curvature of its anticlinal axis. This is seen

quite clearly in the subsidence plots of Allen (1971).

Models
Figure 52 shows the finite element grid used in this study. For
simplicity and lack of better information, the layering was represented
as flat. The 12 layers which are represented as perfectly parallel are
essentiaily composed of a thick, ,imper;fious nonproductive top layer
which confines the seven major oil producing zones. Layers 3 and 4
were added because all of the earthquakes occurred at those depths

(Kovach et al, , 1972), and layer 4 is bounded by two thin

layers of clay clearly visible on the spontaneous potential log (in
Manyuga, 1970). An artificial boundary was added between layers 6
and 7 to represent the bottom of the Pliocene. The elastic properties
and hydro-geological characteristics of each layer are shown in Table
5. The geological information is from Manyuga (1970), and the elastic
parameters are from Kovach, Archambeau and Harkrider (1972). The
bottom of the oil-producing strata is Franciscan schist and is clearly

impervious from the SP-R logs.

In order to obtain the coefficient of dynamic viscosity used in
the program, we used an average value for oil at room temperature
or 100 centipoise (10“3 kgrmass/cm- sec). Since we have to model the

oil field for a period of 32 years, we used a first time step of only
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28 days,reaching 32 years by 42 time steps increasing in length. This
insured the stability of the finite difference scheme. During the period
covered by the model (1930-1962), the rate of oil withdrawal remained

practically constant at 100, 000 barrels per day or 18.4 m3/sec.

As a first model, designed to determine the approximate value
of Biot's constant a for the field as a unit, we imposed a constant
pumping rate throughout the 0il producing units with a total yield at the
"well' head of 18.4 m3/sec. Our well is at the center of the axi-
symmetric model, the left-hand side of the grid. Since the oil field is
larger than our grid in the northwest-southeast direction, we imposed
a constant pressure boundary condition on the outer boundary of the
model. This permits flow to occur from the parts of the oil field
outside the grid. For the purpose of solving the equilibrium equation,
a no displacement boundary condition is imposed. The bottom of the
grid is made impervious, displacement free in the vertical direction
and traction free in the horizontal. The free surface is stress free
and layer 1 is quasi impervious. The results showed that for a co-
efficient a= 1 the amount of subsidence matched exactly the total
volume of fluid removed.

In order to get the calculated subsidence to fit that observed, a
coefficient @ = 0.023 was required. This is at least an order of magni-
tude less than the average porosity of the formations, which according
to Biot (1962) is the minimum value for c.

From the discussion of the previous paragraphs, this can be
tentatively interpreted as an indication that under overburden prkessures

such as can be expected at depths of the order of a kilometer, the soft
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sediments of the Los Angeles basin do not behave like soils, but more
like "rocks' whose overall bulk modulus exhibits only small variations
as a function of fluid pressure.

Model 2 has one refinement compared to the first. It was felt
that since layers 2 to 7 (excepting 4) are reported as being the major
oil producing zones and since they have permeabilities nearly an order
of magnitude larger than the lower five layers, we should attempt to
approximate the real situation by making the flow rates proportional to
K (scaled to give a ''well' head production of 18.4 m3/'sec).

This is shown in Figure 53. This contour plot of horizontal flow
is a clear indication of the 'pumping" pattern.. Since it represents flow
rates inside a segment of the axisymmetric model of thickness equal to
the radius, the maximum values at the well ( 1 m radius) are found in
layers 1, 3 and 3 to 5 (=7 liters per meter of well per sec).

Model 3 differs from model 2 in that instead of a constant
coefficient o of 0.023, we scaled o to the value of permeability of each
layer (the best result was obtained for a= 20 K,K from Table 5). This
stems from the assumption that the greater the porosity (permeability),
the more the medium will consolidate like a soil.

Figure 54 shows a comparison between the maximum subsidence
observed (in 1962) and the calculated values for the three models. From
the surface subsidence alone, it seems that the results are insensitive to
the model variations we imposed. In all three cases, the fit is good and
could possibly be improved by giving a slight curvature to the layers and

by varying the properties of the units laterally.
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re 53. Flow rates in cublc meter per second in a sector of the
axisymmetric model. The rates are proportional to the

permeability coefficients of the layers.
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SUBSIDENCE AFTER 32 years

Figure 54. Comparison of observations with calculated maximum sub-
sidence of the free surface.
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Figure 55 shows the same comparison for the horizontal move-
ment. Here the fit is not very good except that all three models have
a neutral axis (separating extension from compression) which matches
the observed. However, Allen (1971) points out that the control on the
observations is not good and the data could be considerably in error. In
fact, although his contour lines indicate a general convergence towards
the axis of the field, this axis is shown to have a horizontal movement
of 1.2 m. Since this should betzeero displacement point (relative, hori-
zontal), 1.2 m ma:y be the size of the error for these data. Here again,
the difference between the models is not significant.

This is not true at depth as is clearly shown in Figure 56. The
upper plot corresponds to model 2, the lower one to model 3. For
model 2, where o was constant throughout the grid, the subsidence is
regularly distributed and appears to be insensitive to the variations in
flow rates with depth. For model 3, the upper layer and layer 4
(=2 x 10-4) behave like pure elastic beams (Eq. 5-7) and the vertical
displacement is larger at the bottom than at the top (reverse from model
2). By contrast, the layers with larger « (0.06) and large flow rates,
show a significant amount of consolidation. The bottom layers of the
"oil field' have coefficients a and flow rates decreasing with depth and
show a small amount of reversed consolidation (swelling). The contrast
between models 2 anci 3 is amplified in Figure 57. This is to be expected
from Eq. (5.6) where a and the pore pressure (function of the flow rate)
are shown to act on the stresses in the same direction. Model 2 results
in a maximum shear stress of approximately 114 bars in the layers with

high flow rates. This shear stress is maximum 500 m from the axis.
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HORIZONTAL MOVEMENT AFTER 32 years

Figure 55. Comparison of observed and calculated maximum horizontal
movements of the free surface.
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For model '3, the maximum shear stress is 489 bars in the same areas.
Furtherm’o.re, it shows rapid changes from layer to layer. In fact,
inside layer 4 the maximum shear stress is only 100 bars, but it is
averaged over by the plotting program. Since a significant amount of
0il was removed from layer 4 (Allen, 1968), we think thatAthe contour
plot is a better representation.

Kovach et al. (1972) report that all seven earthquakes they
studied had a hypocentral depth between 472 and 518 m and an epicenter
approximately 1 km away from the axis of subsidence. This would place
these events in the region of calculated maximum shear stress in both
models. .On the basis of horizontal offsets of 20 cm, rﬁeasured on
redrilled oil wells, they estimate an average stress drop of approxi-_
mately 20 bars. However, on the basis of his source theory calculations,
Archambeau (personal communication, 1972) estimates the prestress to
be at least 50 bars.

Since all these values are averaged over fault areas of the order
of 4 km2 and in view of the results of the preceding chapters of this
thesis, we feel confident that our models, however crude, are a good

estimate of the stresses generated by the Wilmington consolidation.

As a first order estimate, Kovach et al. (1972) give as a failure
criterion the modified Coulomb~Mohr criterion (Eq. 5.2). They
estimate an effective compressive stress (vertical) at 520 m depth of
65 bars. This includes a lithostatic pressure of 114 bars minus a fluid
pressure of 49 bars (plgz in both cases). Thus, following the failure
criterion, they estimate an upper bound for the shear stress at failure

of 65 bars. From Eq. (5.6) we get a direct calculation of all three
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components of stress in the rock matrix (after 32 years of flow, for a

point 1 km away from the axis and at 520 m depth).

1f we use a
generalization of the von Mises failure criterion (Mo

gi, 1972), i.e.

Toct = f(o )

oct
= Claoct
where 'réct is the maximum shear stress in three dimensions, and %t
is the mean effective stress defined as

Toct = 1/3<"1 to, "3)' P

Toct T 1/3<("1'”2)2 +{0y- "3)2 + (03" "1)2> 1z

we get (in the region of the hypocenters) after 32 years (we assume that

the stresses computed at that time are the yield stresses)

For model 1

roct = 43 bars

g

n

218 bars
oct

C1 z.197
For model 2

T = 75.5 bars
oct

o =261,3 bars
oct

i

Cl .289
For model 3

Toct = 265 bars
o , =700 bars

Cl = .378

This increase of the ratio of octahedral stress to mean stress is found
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for other material testea in the laboratory (Mogi, 1972). Even though
the tests 'he reports are for dolomite and involve higher confining pres-
sures, this qualitative agreement indicates that the stress relationship
that results from our models is self-consistent. As a result, the failure
mechanism of the Wilmington oil field subsidence earthquakes is repre-
sented by relatively high prestress levels (when compared to their

average stress drop). We can also point out that T is in the plane

ct
defined by the vertical and radial stresses and is inclined at approxi-
mately 40° to the horizontal. It corresponds to the maximum shear stress
of Figure 57. The faulting associated with the subsidence earthquakes
was horizontal in nature and from the redrilling data, the slippage

places were shown to be thin shale layers of about 2 m thickness. Thus,
the interpretation is that failure occurred in 'weak' zones making an

angle of approximately 40° with the maximum principal shear stress.

Of course, it is possible that a model including elements with a 2 m

scale would rotate locally the principal axis in such a way that the

principal shear stress would become horizontal in the shale beds.

Rate of subsidence and stress build up

The subsidence earthquakes occurred between 1947 and 1961. It
is then of some interest to compare our ''best fit'' solution and its
evolution with time with the availgble data on past surface movements.
Subsidence rates are shown in Kovach et al. (1972) for the years 1946
to the present. From these data it is possible to rhake an approximate
integration with the 1962 subsidence as an initial value, while tying

the results to the reported 3 m total subsidence measured in 1946. The
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Figure 56. Vertical subsidence throughout the oil.field after 32 years of
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result is shown in Figure 58 and the comparison is not entirely satis-
factory. ’One simple explanation could account for most of the dis-
crep‘ancy, In the real situation, because of technological and economical
considerations, it is probable that the progress of drilling, thus of oil
withdrawal, went downward from layer to layer on a time scale which
could cover several decades (Gilluly and Grant ( 1948) report the de-
velopment in 1947 of layers 10, 11 and 12 of our model). We can only
speculate since at this time we do not have layer by layer oil pro-
duction data, but if that was the situation, by adding several curves of
subsidence with time, similar to the one we calculated (scaled to the
layer thiékness and time delayed), one could model more closely the
real sitﬁation. |

The same adding procedure could be followed for the shear stress,
giving for 1947 values about 30% of those quoted above. The shear stress
build up shown in Figure 58 indicates that, once pumping is turned on,
the stress generated by consolidation climbs very steeply to reach values

near its maximum in less than 5 years.

Conclusions

This chapter on consolidation phenomena has shown two important
things.

(1) Rocks in geological environment do not behave like soils, in
the sense that they exhibit a rather weak interaction with their fluid
content. This was found to be true for a sedimentéry unit considered as

very soft and highly porous.
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(2) Relatively sifnple finite element modeling of fluid r'emoval
(or injection) can give a reasonable estimate of the stress field that
results from this particular form of activity. This stress field could
be compared to laboratory experiments as an attempt to predict failure.
A large amount of work remains to be done before prediction becomes a
possibility. Obviously, the models are only as good as the problem
description. This depends on the information available regarding
porosity, intrinsic permeability, fluid viscosity and their variation in
space. Further, parameters appearing in the consolidation theory have
no obvious physical expression which would permit us to assume
reasonable values on purely intuitive grounds. We cannot use the
empirical formulae developed by experiments in soil engineering
because they are not valid for rock matrices found in oil reservoirs. {
However; note that we can, with the experience gained in this study,
make some reasonable models to predict fluid-rock interaction in the
Los Angeles basin.

Obvious future developments should attempt to express the
interaction coefficients in terms of physical parameters measurable in

situ (for instance, from well logs or seismic experiments).
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GENERAL CONCLUSIONS

Numerical schemes that allow for irregular nonhomogeneous
continua must be employed in order to examine the detailed near field
deformations associated with an earthquake. The finite element method,
which has proved to be quite versatile for computing streéses, strains
and displacements in engineering applications, was extended to treat
discontinuities in the displacement field. Judging from the high degree
of accuracy with which vertical and sloping dislocations in a homo-
geneous half space are coﬁputed and the ease with which the numerical
scheme can be applied to irregular geologic structures, the finite
element method is ideally suited for near field earthquake calculations.

The analyses which were presented here are limited only by the
accuracy of the problem description (and the computer time available).
Clearly, in the case of the San Fernando earthquake and our two-
dimensional treatment of it, the major difficulty resides in the problem
description. The geodetic control, one of the most extensive ever
reported, is still too sparse to allow unique solutions. However, it is
interesting to note that Alewine (1972), using closed form analytical
solutions based on dislocation theory to formulate a stochastic inversion
scheme ’of the vertical displacement data, obtained a 'best' solution
which provides displacements along the fault which reach maximum
values near the surface in a manner similar to our solutions. However,
his fault offsets are smaller by 25% reflecting the influence of geology
on our results. Thus, independent work employing a relatively unbiased

inversion method yielded a result similar to ours.
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This also indicates that for the upper 10 km of the fault, the
strain ba]l.a'nce of the earthquake is well determined by the available
data, whether a one-fault or é. multiple-fault model is used. For the
lower portion of the fault, however, the problem becomes ill posed
because of the uncertainty in the geology or prestress and variations in
the fault dip. (Whitcomb's (1971) fault plane solution indicates a 52°
dip of the failure plane at the focus while a recent hypocenter indicates
an average dip of 33° for the entire fault plane.)

| Despite the fact that we limited ourselves to two-dimensional
modeling, thus ignoring the fault's end effects, this study brought out
important new features.

The San Fernando failure process appears to have been quite
complicated. After growing to an offset of from 2 to 5 m near the
hypocentral region, the fault break reduces to a slip of no greater than
2 bm at 10 km depth. Then, depending on the cross section considered,
the fault offset grows exponentially up to approximately 8 m near the
surface. In the last kilometer before break out, the offset reduces to
the observed 2 m fault scarp offset probably as the result of plastic
deformation in the near surface alluvium adjacent to the fault and/or
multiple near surface fracturing.

The stress drops that result from our analysis, although cer-
tainly nonunique, point towards complex fault mechanism. Depending
on the details of the hypocentral region and the "knee'' of the fault, we
get a peak stress drop of approximately 650 bars. ‘Together with the
values of the prestress field which is thought to give the best results,

this indicates that the rock at 10 km depth exhibits strength properties
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of granite at 2 kbar conf-ining pressure (Mogi, 1972).

The model treated here results in a large stress concentration
at the knee t)f the fault which brings the final stress for that area within
the range of material strength for 1 kbar confining pressure. Although
this interpretation seems to be substantiated by the aftershock locations,
it is clear froﬁ the alternative solutions we presented in Chapter II
that this is not well resolved.

Also not well resolved because of the two-dimensional simplifi-
cations is the problem of joining the Tujunga with the Sylmar fault
segment. Our solutions yield a large difference, up to a factor of two,
in the fault displacements between the two sections AA' and BB'.
Although their behavior at depth is similar and section BB' is 1.8 km
wider, the difference between them is so large that it implies rapid
variations in displacement through the region between them. It is
possible that a more complete picture could be obtained in three
dimensions. For instance, it is intuitively reasonable to believe that
we could fit the observations with a main fault similar to AA', which
upon approaching the free surface generates a large number of secondary
faults. Then the only difference between the two fault segments would
be in the number of secondary faults they generate, a function of the
geology in the upper 2 km. Clearly, with the information available to
us, this would be unresolvable and would not change the situation in the
hypocentral region.

~ Strains computed in our models give only oraer of magnitude
fits to the observed strains at the Isabella station (Jungels aad Anderson,

1971). This is not surprising in view of the short fault length. lowever,
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our two-dimensional analysis shows clearly that in order to interpret
strains and tilts at teleseismic distances models taking into account
the geology and fault slip variations are necessary since these factors
are just as important as fault end effects.

While all of the analysis that is presented in the first chapters
is static, we note that the finite element method can also provide a
dynamic simulation of an earthquake, with spontaneous rupture processes
serving to generate the seismic disturbance in a prestressed environ-
ment. The numerical technigque is not well suited for high frequency
motion, nor dynamic behavior in the intermediate range beyond the
near field. However, it could be used to model the Pacoima Dam
record up to about 1 Hertz, for example, and is in any case valuable
especially in combination with analytic methods. The end effects,
however, will play a greater role in the dynamic calculations, thereby
increasing the need for three-dimensional computations.

For the Alaskan earthquake, the situation is quite different. The
geometry of the fault is such that the resolvability of plane strain models
is quite satisfactory. Clearly, more complicated geology and prestress
could be introduced, thereby improving the solution's uniqueness. How-
ever, we feel that micro-geology would have only a second order influence
on the '"best fit'" solution for the fault offset.

By contrast, a lot of work remains to be done on the Hebgen Lake,
Montana, event. Our treatment of it gives only a gross fit to the data,
but it serves its purpose in showing a special case of gravitational
potential energy being transferred locally into the seismic radiation

field. This behavior seems to be a characteristic of normal faulting.
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Meister et al. (1968) report that the Fairview Peak, Nevada, earthquakes
of 1954 released a minimum strain energy of 1.3 x 1023 ergs, while
resulting in a net subsidence of the free surface. They estimate the
release of gravitational potential energy as 4.3 x 1023 ergs. Itis
interesting to note that for this.event Brune and Allen estimate the
average stress drop to be 180 bars or seven times more than their
estimate for the Alaska earthquake.

Thus, we can conclude that the main difference between thrust
faults such as those responsible for the Alaskan and San Fernando
earthquakes are characterized by a large prestress level and raise the

local gravitational potential energy, while normal faults such as Hebgen
Lake and Fairview Peak have a prestress lower than the (apparent)
stress drop while showing a net decrease of gravitational potential
energy.

The effect of pore pressure on the stress field is shown, in
Chapter V of this thesis, to be an extremely important part of the
failure mechanism for the Wilmington oil field earthquakes. Clearly
our models of the oil field and of the interaction between the withdrawn
fluid and the rock matrix were simplified. For instance, we neglected
lateral inhomogeneities in the strata and chemical softening or weakening
of the rock was ignored. However, some major conclusions can be
drawn from our study of the Wilmington subsidence. Without con-
sidering the influence of tectonic stresses (which could be added linearly
to our results), we showed that the potential for triggering earthquakes
by altering the underground fluid-rock condition should be investigated

before any large scale waterflooding or withdrawal is allowed to proceed
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in tectonically unstable #reas, We have also shown that further
theoretical developments are needed in order to express Biot's inter-
action constants in terms of geophysical constants measurable in the
field. This is necessary if we are to predict the behavior of the medium
in response to fluid withdrawal or injection.

Clearly, then, research remains to be done, but we feel that the
numerical modeling methods are a powerful and versatile technique,
and it is conceivable that in the future this approach will provide the
answers to some of the obvious problems that have to be solved in -
tectonophysics. We have shown that analyses of the local variations
of stress drops result in values which compare with stress drops
recorded in laboratory experiments. Three-dimensional dynamic
models incorporating the most recent rheological studies of materials,
plastic behavior, mechanical properties of fault gouge and geological

variations with depth should be possible in the near future.

22
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