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ABSTRACT

Partial differential equations describing the transient
behavior of a non-adiabatic fixed-bed catalytic reactor are derived
with a minimum of simplifying assumptions, These equations are
applied to predict the transient behavior of a reactor for the
oxidation of SOZ’ taking into account the behavior of both the
fluid stream and the associated catalyst pellets.

Stability analyses of the numerical methods of solving
the equations are presented in great detail, as the methods of
analyses available in the literature are inadequate for the compli-
caled system of equations encountered. A special study is made of
the effects on stability of various methods of handling the non-
linear source terms in the equations. Some of the schemes pro-
posed in the literature are found to be subject to severe stability
criteria.

A method of obtaining a rigorous solution is devised. The
method is always stable, and the use of varying time increment
size is allowable. A rigorous solution takes only a few minutes
of computer time with an IBM-7094 computer.

To investigate the effects of various limiting assumptions,
three problems are studied using the rigorous method and also with
methods employing various assumptions. These problems are the
start-up, the loss of cooling with subsequent restoration, and the
response of the exit concentration to a sinusoidal concentré.tion
forcing-function at the entrance. For the system investigated, the
effects of using an "effectiveness factor' model, neglecting radial

changes, and neglecting the axial diffusion and axial velocity
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variations are found to be not large. The neglecting of reverse
reactions, or the use of an average effectiveness factor throughout
the whole reactor causes significant errors,

A simplified method, which for the system studied, gives
a reasonably good approximation to the true solution, is used to
investigate problems in the optimization and control of the reactor,
The frequency response of the exit temperature to a sinusoidal
forcing upon the optimum wall temperature is found to be equivalent
to that of a phase lag network frequently used in regulating systems.

Limitations to the applicability of the simplified method
are discussed.



H &

TABLE OF CONTENTS

INTRODUCTION

LITERATURE SURVEY

DERIVATION OF EQUATIONS

A,

EQUATIONS FOR THE STREAM

Total Continuity Equation

Continuity Equation for the k-th Component
Momentum Balance

Mechanical Energy Balance

Energy Balance

Equation for Pressure

EQUATIONS FOR THE INTERIOR OF THE

- CATALYST PELLET

Continuity Equation for the k-th Component
Energy Balance

SUMMARY OF EQUATIONS TO BE SOLVED
Continuity Equation for the k-th Component
Energy Equation

Pressure Equation

Continuity Equation for the k-th Component in

Catalyst

page

12
14
15

22

25
25
27
30
30
32
33

35



vii

Method W: A method in which space derivatives
are the weighted average of those
evaluated at the end and those evaluated
at the beginning of each time increment.
A weighting factor of 0 <w <1 is used.

Method E: A method in which integrations are
carried out in two steps, first from
time £to £+ w, and then from time £
+ wto £+ 1,

Method F: A method modified from method E for
the two-dimensional problems, Inte-
grations are performed in three steps.

Methods in Which the Source Terms are Evaluated

Explicitly
VARIOUS METHODS OF SOLUTION USED IN
THIS STUDY

Method G: A rigorous method with a minimum
number of limiting assumptidns. Equal
radial increments are used in the

interior of the catalyst.

page

71

73

74

79

85

85



Method H:

Method P:

Method G':

V. RESULTS

viii

A method employing an "'effectiveness
factor' model,

A method employing an "effectiveness
factor" model and the assumption of
negligible radial changes,

Identical to method G, except that
smaller radial increments are used

toward the catalyst surface,

Parameters for the Reactor Selected for this Study

Problem (a) :

Problem (b) :

Problem (c)

Problem (d)

Problem (e)

Problem (f)

A single spherical pellet subject to a
step-change in ambient conditions.
The start-up of a reactor.

Loss of eooling with subsequent
restoration.

Response of exit concentration to a
sinusoidal entrance condition,
Optimization of the wall temperature
Frequency-response of the exit
temperature to the sinusoidal wall

temperature forcing.

page

86

87

88
89

89

90
93

118

121

123

123



VL
VIL

IX,

SUMMARY
NOMENCLATURE

BIBLIOGRAPHY

APPENDICES
'L COMPARISON OF COMPUTER TIME REQUIRED

BY VARIOUS METHODS

II. A FORTRAN PROGRAM FOR METHOD G' - A
RIGOROUS SOLUTION METHOD TO FIND THE
TRANSIENT BEHAVIOR OF A FIXED-BED
REACTOR FOR THE OXIDATION OF SO2

III. TRIAL METHODS WHICH FAILED TO SOLVE
THE REACTOR PROBLEM

page
131

137
142

145

147

177



I. INTRODUCTION

This work is a mathematical study of the transient behavior
of a non-adiabatic fixed-bed catalytic reactor.

A fixed-bed catalytic reactor consists of a large number of
small porous catalyst pellets contained in a fube through which the
reaction mixture is passed for conversion into the desired products,
Some reactors are cooled or heated at the wall, while others depend
on intermediate heat exchangers, The fixed-bed reactor, together
with fluidized-bed reactors and moving-bed reactors belong to the
class of reactors called heterogeneous reactors. In these reactors,
reactions occur only at the exterior catalyst surface and at the
interior surfaces of the catalyst. There are no reactions occurring
in the stream.

In the chemical industry, fixed-bed reactors are quite
popular. They are used, for instance, in petroleum cracking, in
the oxidation of SO2 to SO3, and in the oxidation of naphthalene to
phthalic anhydride.

The problems involved in the design of a fixed-bed reactor
are very complicated. Temperature and concentration change not
only in the axial direction, but also in the radial direction for the
case in which there is cooling at the wall, The diffusional resistance
in the interior of the catalyst gives rise to temperature and concen-
tration gradients inside the catalyst. The film resistance between
the stream and the catalyst surface is usually not negligible. This
gives a total of three dimensional variations in properties. In
addition, the reaction rate expression is usually a non-linear
function of temperature and concentration. The stream velocity

is a function of position due to the variations in fluid density and



void fraction of the bed. Also, strictly speaking, all of the physical
properties are variable, The result of all this is a gigantic problem
which is complicated enough to challenge the solution even by the
largest computers available, to say nothing of a solution by purely
analytic methods.

As will be shown later, other investigators have solved
reactor problems by making various assumptions in order to obtain
a solution within a reasonable time. Since many of these as-
sumptions have never been checked as to whether they are justifia-
ble, it is both interesting and valuable to investigate their effects
on the accuracy of the numerical solution obtained. To do this, a
standard solution obtained by employing a minimum number of
assumptions is required, An efficient way of obtaining such a
solution has to be devised, as such a method has never been
published, and has been considered to be impossible by some
investigators. The main difficulty appears to be the lack of a
stable method of solving the system of equations involved.

Stability analyses of numerical solutions as presented by
many authors have been found to be inadequate for the complicated
system of equations encountered. Therefore, a large part of this
work is concerned with stability analyses.

An exothermic system of the oxidation of 802 to 803 is
taken as an example to study the effects of various assumptions
on the numerical solution obtained. After this, a short-cut method
Qf solving a fixed-bed reactor problem is proposed. This method
is then used in solving an optimization problem and a control
problem in the reactor.



II. LITERATURE SURVEY

Reactor calculations published in the literature have been
performed employing a large number of simplifying assumptions.
The number of assumptions is so large that it seems most con-
venient for later reference to list them first before the works of

various investigators are discussed. These assumptions are:

Assumption A, Diffusion in the interior of the catalyst can
be accounted for by using an "effectiveness factor' model.

Assumption B, Radial changes in temperature and concen-
tration can be neglected, with the transfer of heat between the
stream and the wall approximatéd by the use of a heat transfer
coefficient,

Assumption C. Reverse reactions are negligible.

Assumption D, Axial diffusion is negligible compared to the
much larger transport due to convection.

Assumption E, The Peclet number for both heat and mass
transfer is a constant.

Assumption F, The effectiveness factor may be taken as
constant. _

Assumption G, Radial velocity can be neglected and axial
velocity is constant and uniform,

Assumption H, Film resistance between the stream and the
catalyst surface is negligible.

Assumption I, The effectiveness factor is unity. This
implies that the resistance to diffusion is negligible in the catalyst.

Assumption J, The specific heat of the catalyst and stream
are constant,



Assumption K, Material balance for just one limiting
component is needed,

Assumption L, The reaction rate is a function only of
the temperature and concentration of the stream.

Barkelew(l) studied the stability of fixed-bed reactors with
cooling at the wall, using assumptions B, C, D, G, Kand L. The
reactor behavior near the steady-state was investigated to
determine the region where a reactor is unstable. A reactor is
defined to be unstable if its highest local temperature is sensitive
to slight changes in operating conditions.

2,3, 9 2160 studied the stability of both
adiabatic and non-adiabatic reactors, but from a completely

Amundson, et al.,

different approach. A reactor is said to be unstable if the particle
temperature at the steady-state is not unique, but can have two or
three different values depending on the particle's previous history.
For an unstable reactor, Amundson found that the stream tempera-
ture can jump abruplly from one axial location to another adjacent
location. Assumptions B, C, G, I, J and K were employed. Both
transient and steady-state solutions were obtained. The numerical
method proposed by Crank and Nicolson was used with source terms
iterated until convergence was assured.

(5, 6)

radial changes in temperature and concentration, They proposed a

Deans and Lapidus seem fo be the first to account for

finite mixing-stage model which automatically takes the axial and

radial mixing into account. They used assumptions C, E, G, H, I,
J, Kand L, and obtained both transient and steady-state Solutions.
Using their model, a very large number of axial mixing-stages are
needed, as the total number of axial stages needed should be equal



to the length of the reactor divided by the diameter of the catalyst
pellet.

Lapidus, et al. ,(7) also used the above modcl to calculate
the dynamic response of a three component system, using all the
assumptions shown above except assumption K. They reported
that three days of computation time were needed with an IBM-704
computer,

Richardson and Fahien(s) calculated the steady-state solution
for the oxidation of sulfur dioxide, by using radial diffusivities
estimated from assumption E and by using point values for diffusi-
vities obtained experimentally, They used assumptions D, J, K
and L, and a reaction rate expression correlated from a previous
experiment., Both experimental velocity profiles and an average
velocity were used, They found that the use of the experimental
diffusivity and velocity profile gave the best solution, while the
use of assumption E was found to be poor. These calculated
solutions were compared with experimental results.

A steady-state solution for a system of the type A~ B —C
was obtained by Carberry and Wendel(g). They employed assumptions
A, B, C, Jand K,

(10) calculated a steady-state solution for a problem

Froment
and showed that the radial variations in temperature and concen-
tration are signiticant. He used assumptions C, D, G, J, Kand L,

Both axial and radial mixing in packed beds have been

investigated for various gases and liquids by a number of workers(n_

18). These experimental results show that for gases the axial and
the radial Peclet numbers approach 2 and 11 respectively at high

Reynolds numbers. The Peclet number is defined as the ratio of



the product of the particle éliameter and fluid velocity to the
diffusivity, Fahien and Smith(lg) correlated the radial Peclet
number for mass transfer lo the diameter ratio of the packing
to the reactor tube,

Numerical solutions of heat conduction problems in two

and three dimensions were studied by Douglas and Rachford(zc),

and also by Brian(21). They used a non-iterative implicit scheme
which consisted of integrating in each direction at one time so that

(22)

the scheme proposed by Thomas can be utilized to avoid the

necessity of iterations.

(23) studied the numerical solution of

Stone and Brian
convective transport problems, and proposed a method of solving
one-dimensional problems. Their method, however, does not

seem to be applicable to the solution of multi-dimensional problems.



III. DERIVATION OF EQUATIONS

In this section, the differential equations describing the
transient behavior of a fixed-bed reactor with wall-cooling will

be derived with a minimum of assumptions as listed below:

Assumption M. Catalyst particles are assumed to be so
small that, although actually discrete, they can be considered to
serve as continuous sources (or sinks) of momentum, material,
and heat for the stream. The material contained in the stagnant
film around the catalyst is lumped into the sitream. In other words,
a property in the stream is the lumped average of that in the
turbulent stream and that in the stagnanf boundary film, Also,
it is an average over a volume that is large compared to the
particle size, so that the use of a continuous source is justified.

Assumption N, The radii of the catalyst pellets and the void
fraction of the bed are constant.

Assumption O. Temperature and concentration in the interior
Qf the catalyst are symmetric with respect to the center of a
spherical pellet. _

Assumption P, Knudsen diffusion prevails in the solid, and
the diffusivity can be taken as a constant. The thermal conductivity
of the solid is also constant.

Assumption Q. The same diffusivity for turbulent mass and

energy diffusion is used,

In addition to the above assumptions, assumption J, that the
specific heat of the catalyst and stream are constant, will be used,



A, EQUATIONS FOR THE STREAM

In the following, the stream equations are derived by
applying the principal of conservation, which may be stated

Rate of accumulation _ Net input of . Source

of a quantity the quantity ~ strength (1)

over the exterior void contained per unit volume of the bulk reactor

fixed in space.

Total Continuity Equation

90,
Rate of accumulation of material = £ ?Gi .

Net input of material = -V ¢ (fof'ﬁ) .

Source of material should be the rate of mass transfer through the

= ft !
catalyst surface = { AU 0p .

Note that primes are used to denote properties of the catalyst pellets.
Applying equation (1), we obtain

aof
g ==V (o) Faguyay @

= é% +7W-V, this

Yo

Making use of the substantial derivative,

can be written as



Dcf
————— —_— - .-* ! -
T fo.V .1 + flau ' . (2-a)

Continuity Equation for the k-th Component

a(fofnk)
Rate of accumulation of component k = —s5— °

Net input of k-th component through diffusion and gross motion
= -V (@, + fon, W) .

Source of the k-th component is the rate of transfer of the component
through the catalyst surface due to diffusion and gross motion

= £ 1 1 ' -
f'a;0p "0y + 80" Ky (' - )

Substituting all these into equation (1),

3(fa nk)
f . —- —~ { 1 -
56 = -V + fon ) & fayoptum g+ a0y Ky (nk;j' ) -

(3)

Removing the brackets, this becomes

Bnk acf -
fo; 55 + Iy 55 = -Vomy - n V- (fou) - foli- Vi

1 4 t .
+ 112505y Mg+ 3308 Kc g - ) (4)
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Multiplication of equation (2) by n gives

o0
i . |
fn <g=-n7V- (fcfu) + flau o, 'n, . - (5)

Subtracting equation (5) from equation (4), and employing the
substantial derivative, there results

9.5

=-V.m o+ f'ai"fi'“i'(nki'. - )+ 2,0 Ky - ny). 6)

Now, employing total diffusivities of ¢ r and € dx for the radial
and the axial direction respectively, the diffusional flux of the

component can be writlen as:

on : on

— - . k - .
my = =%y 5+ €p - %Cix S °x (7)

The divergence of this, with the sign changed, will be:

ank —a_ ( on

_ 13 j _K
"Vemy = 3o oty )t Opfax e ) - (7-2)
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Substituting equation (7-a) into equation (6), the continuity equation

for the k-th component, is obtained:

Dn on on
k _ 1 3 k 1 Fo) . k
Ts ~fox w (rogeqy. =) o, = (O x5 )

alcfl'
(I<k + f'u, ') (n - k) . (8)
For actual calculation, it is more convenient to rewrite this in
the form:
f{‘g_(u+1-d e e
o8 f or fcf ar fr ar
de e 30, oan L an e, n
1l "-dx  -dx f ) . dr k  -d k

(8-a)
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Momentum Balance

Using the vector and tensor notations employed by Bird,
et al (28)

foQ
Rate of accumulation of momentum = —a% (—g—g— ).
0
Input of momentum due to gross motion = -V. (fcfﬁ b/ go).

Input of momentum due to the pressure gradient = -V{P,
Input of momentum due to shear forces = ~V.{T,

Input of momentum due to gravitational force = £ cfg' .

Source of momentum is the momentum through the catalyst surface

a a.

1ot o, 1
= e S SRV Fds =0+ F, .

& t

As is shown by this equation, the transport of momentum between
the catalyst and the stream by gross motion is included in the drag
force term shown on the right-hand side; However, this F d for
v’ # 0 should be slightly different from F g for the case u.'= 0,
which is available from the literature., This is so because of the
influence of ui' on a_:tT , which will affect the local shear

ou

- = . -—£ -
Foo=-n(57) &
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All the above expressions are substituted into the balance
equation (1) and there results

fcrfu )y fcfu u
& 0

a_a ( -VEP -V-f1 + foF + F . 9)

1

D

'Removing the brackets, equation (9) becomes

fo, .= 30 - fo u
f 2u fi °f 1 - f -
— e = - — V.{(foi) - —— «Vu-V {P - V.fr
g, o0 g, 20 g, f g,
_ (10)
+ fofg + Fd .
If equation (2) is multiplied by G/ g, there is obtained
30 - fla.u.'o.
m f U - ii fi
— _— o — V' fO' —————— L]
g, °° g, (ogd) + &, D

Equation (10) is now simplified by subtraction of equation (11) to

become
fo, f'a u.'0,.u
f Di _ _ ) - iifi
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Mechanical Energy Balance

For simplifying the energy equation to be derived later, a
mechanical energy balance is required. A dot product of equation

(12) withW is formed to obtain

D 1 2 _ - E s T
f'a_u.'cf.'uz
_ 11 11 . (13)
g0

This equation will be modified by using the following relationships
which are written down without proof:

-U. ViP = fPV.T - V- fP0 (14)

n

~W. [V frl= (r:VEA) -V [7- 4] . (15)

Substituting the above two equations inlv equalion (13), the

mechanical energy balance is obtained:

fcrf-——_ﬁ%————- = fPV.TW - V. fPU+ (1:ViG) - V. [T+ f0]
- - f'aiui,cfi'uz (16
+fc7f(ﬁ-"§)+Fd-u- z . )

0
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Energy Balance

Rate of accumulation of internal and kinetic energy

Net input of internal and kinetic energy by the gross motion of fluid

N - 1 2
--V-fcfu(E+-2-§;u )

Net input of energy due to thermal and enthalpy diffusion

=-V.q-V.H .

Net input of energy due to work done by the gravitational force

Net input of energy due to work done by shear forces = -V .[r.fu] .
Net input of energy due to work done by pressure = - V. {Pu .
Source of energy due to transfer of heat and enthalpy through the

= 1 ' ! .
catalyst surface = { 'a,0p ui'Hi + hiai ('I‘i T)

*aoy' E K (”ki' - Iy ﬁki’ .
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The energj;r balance is now obtained by substituting all the above
expressions into equation (1),

o 1 2 - - _1_ 2 - 7
ﬁfof(E+—2§;;u)--V-fcfu(E+2gou )-V.q-V. Hd

+fou.g- V. {PI- V. [r-fd]+h a, (Ti' -T)+ f'aicﬁ'ui'Hi’

' - H ' . 1
+ a0 2K (’“k].L M) Hki (17)

Removing the brackets this equation becomes

a(E-l-—z-é-uz) -
() 0 + {(E + 1 u2) I .. (E +——1—u2) V. (fo i)
f b 28, 26 28, f
- fcrfu- V(E T )-V.q-V. Hd+f0fu. g- V.fRQ

(0]

- . « fi - _ 1 '
V. [r. ]+ h a, (Ti' T + f'aioﬁ'ui H,

taoy IR (M -0 H o (18)
1 1
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To remove the second term in the left-hand side of this equation,

equation (2) is multiplied by (E + iél- u?) to obtain
0

o0

1 20%% L1 2 o e ay \ 12
i(E +-§§(—) u®) 55 = (E + % ) Vv (fcfu)+faiui'oﬁ (E +'2_g';u )e
(19)
Subtracting equation (19) from equation (18) and rearranging the
result by using a substantial derivative,
D(E + 5—;—- 2)
. (9] _ = . ot e o FviT . . fi7
fo, 56 =-V-q- V-Hy+fod-§ - V-fpd Velr. fal
+ha(T,-T)+fa.c 'u'(H'—E-—l- uz)
it 11174 i Zgo
' - " ! 20
+ 8,0, l)g Kk (nki' nK) H‘ki . (20)

Now the mechanical energy balance derived previously can be used
to remove the kinetic energy term from the left-hand side of this
equation, Subtracting equation (16) from equation (20) and
representing the viscous dissipation term -f7 % VU by &, there
results
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DE - L = i1 -
fo; g = - V' d- V-H - fPV- U+ @+ hoa, (T,' - T)
(21)
1 B
1y ! L L. ’
+f'aicxﬁui(Hi E+2gou )+a1 £ kKk(n Hki Fd u .

From the thermodynamic relation

dE = dH - 4(PV) = C dp.+ z H dn, + (28 )T - V1dP - PdV, (22)
there follows

DE _ o DT, 35 K, [(2H, v] DB _pDV (92-2)
pe = Cppe * £k DB 35T, n ps - Ppe - -

This equation is now substituted into equation (21), and there is

obtained :
DT 3H DP ,DP DV
fo.C, 57 = - 1% Hk De - (BP)T,nDG+fD8 +19:P 55

-V-q-V-. Hd-fPV-u+¢I>+ hiai(Ti'-T)-Fd-u

+f'ai°fi'ui' (H' E +-— 2 g u )+ a0, Z Kk(n nk) ﬁkir . (23)
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Equation (23) will be simplified by the use of the following relation-

ships:
fcrfP -g—‘é’: - fcfP i§—=-%§%—o§= fPV . -Ef%fﬁi - (24)
From equation (28):
ir’d -q=-VEP) - T | (24-2)
By definition:
15 =13+ T viEp) . (24-b)

Substituting equations (24), (24-a), and (24-b) into equation (23),
there results

o€, 55 = - 1% E M b7 ~ % {3p)r,nDetiss - V" @
- . - ! ! ! LI
VeH +@+ha (Ti' T)+faioﬁui (Hi H+———2go u®)

P K by ) et 25)
' i i
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Now the turbulent enthalpy flux is represented by

By = - % s & - % Sax o G (25-2)

Since

dH = deT + 3 Hk dn, + ( (25-b)

)T

if molecular diffusion is neglected, i.e., € a= by combining
equations (7-a), (25-a), and (25-b), the expression for the enthalpy
flux can be written as:

> AT - AT .
Hy=- fdGC 3 °r” %t %ax Yp X x+1§Hkmk

(25-c)
fedr( )Tn( )er fdx(aP)Tn( )er'

Using this,
-V-H, =12 (r0,C e 2Ty 4 2 (oC )EHka
d r or fpdrar fpdxa

- - 1 92 or
BV B+ o e (300, (59

+-§;c[cfe'dx( )T n(ax 3o (26)



21

Equations (6) and (26) are then substituted into equation (25), and

the energy equation for the stream becomes

13 T, 3
190 BT = 7 5% WL, %ar 7)) tox (fcpdxa ) + ha, (T;' -

—_ DP BP o =

1 9 oP o) BH
*3 5 L% dr(aP)T n 3 1+ 5% 19 e (5p) T,n'3x

u2 =
' tag ¢ 1 - — ! -
+f'a,0,. 'u, [Hi H+2go E(nki nk)Hk]

*a%' § Kk(nk - n)(H,' - B

Equation (27) can be written in an alternate form:

or

Ay 1%k, far XY Cfar | 2T

06 - T fcrf(% or fr ar

ehou st ax Cax 290 L ar e 2
x'T & TTC) T T I 2

T)

(27)
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1 T 191 1 >
+ 5 € + (T, -T) + {V-Q+‘I>
f danZ foCp i fOfC

oH DP oP - = 123 oP
“fo(5p), Detivef T Vet ol 0% ©4r5p) ('5;”
-
[ope, () 227,400, 'LH' - H+—E—~2 - n )H ]
+'5‘ frax 3P X ifi 28, Kk K P
?

ta%h R by ) (H ' - ﬁk)j . (27-2)

Equation for Pressure

The momentum equation as given in equation (12) is much
too complicated to be used in deriving an equation for pressure.
Fortunately, only the pressure gradient term and the drag force
. term in that equation are important. If only those two terms are
retained, equation (12) becomes

F 4 = ViP- (28)

If the drag force is put in the form

F,.=-F1 . (29)
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equation (28) will become

i=-L;vP=-1vp. (30)
Compared with the Ergun equation (24),', the factor F should take
the form:
p=lo0) 100G,y 0508107, (31)
f ngo p

Substituting equation (30) into equation (2) with the last term
neglected and dividing through by f,

o0 o) o
i f f
=7 VP + VP Vi) . (32)
Assuming a perfect gas,
MP = o, RT . (33)

Differentiating with respect to time, this becomes

236 36 8 T 28 (34)
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Dividing through by RT and rearranging

i _M 3P °t T P M (35)
80 RT 36 T 36 RT 96 °

Substituting equation (35) into equation (32), and dividing through
by M/(RT), there is obtained

2 P
%

T

W™
RL:)

g
f P
VPV () + 5 55 (36)

- E
M

This equation can be rewritten in a more convenient form:

EE—[_PLJ,_E_?_(E)]BP [P_a_(fi)]f_’z,,_lf___azp
98 " rF cfarF or O, ox ' F x F _2
ar
2
P oP P 3T P oM . (37)
+¥ 3+ F5 "™ 30 !
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B. EQUATIONS FOR THE INTERIOR OF THE
CATALYST PELLET

For the interior of the catalyst, the partial pressures of
various components rather than their weight fractions, are used.
This is more convenient because the reaction rate is usually
expressed as a function of temperature and the partial pressures
of the components, Also, the amount of a component adsorbed
in the solid is a function of temperature and its partial pressure.

Continuity Equation for the k-th Component

Rate of accumulation of component k in lb-moles/sec per unit

volume of the catalyst

. (38)

If it is assumed that the molal flux of component k in the
radial direction of the catalyst can be represented by

Pk' Dk' aPk'

flu' -
RT' TRT' or' ’
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then, the rate of input of component k due to gross motion and

diffusion is

2
‘ p'! r'"D,!' P, '
_ 1 B' 2y k' N Kk lf . (39)
r RT RT! or

Source of component k, lb-moles/(sec)(cu ft) = R, -

Substitution of all these into equation (1) gives

3 P Vi 1 2 2. "k
36 [“——‘RT' B By J =7 ['f'r' v BT
r’sz' 3P, :

. e (40,

TR ar'J” Ry )

Carrying out Ehe differentiation, multiplying through by RT'/(f' +
RT! Vi KkPK ), and rearranging,

25 +
P 2D, 3P, ' ) D, 2°P
08 -1 or' -1 2
- (f'+ RT'Y P Y ! (f' + RT'y, K P Yk ) ar'
i B P 1Bk P
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. RT Rk . 1 f' Pk' 37
) 1 ! t
(f' + RT Yk}—;kpk ) (f' + RT Yklfkpk )
RT'" 9 1t Pk' (41)
ey o (I e )

Energy Balance

Rate of accumulation of internal energy per unit volume of catalyst
i'p. ! Y.
- P:) k = 1 k =
BFY: [E—wkE"*E Py §k+osEs]'

Rate of input of energy due to gross motion and conduction

=1 3 2 K § ' ar
-;,—2_ ar’[f,r'u'zRT'Hk"'r sar’] ’

Rate of input of enthalpy due to diffusion of material

0
18‘!
_ﬁ;ﬁl

r' R,'f" ar'

Iz ' 1T 1
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Using equation (1),

55 [lff r 211{' B+ IK Pk'Yk s * GSESJ'_' ;15 i (% )

i 2 [— freyr 5 I—)-l-{—'— H '+ r'sz' :Hk' aPk'J (42)
r'?' or' k RT' =k RT' or' !

If it is assumed that Eks = Ek' - AEad, (43)

the left-hand side of equation (42) becomes

%[E flg—l’;‘:’gk'+1§§kpk'Yk-—E:ks+osEs =Cg%1

P, Y Y
= , 0 Kk k 3 (. k
+1§§k§@[f§"f7+— Py’ J - I 8Ead o (K Py ) 49)
P Y |
where C = E vt élngk' ’ 'ka+ Gscs . (45)

When equation (40) and equation (44) are substituted into equation (42),



2
P' r°D ' 3P,
o G S (P W e "y R
R ar'( ' g + R SF‘} *EE/ R
% AEad (K P Ky L 2 .2 3y
k =~ dk -k "k ‘r,z or' s or'
1 3 2, B _ . rUDUE apk'l
——— —— - fTaet ¥ —_— 1] i
YR [ frivu' & g Hy RTT . oF (46)
Rearranging this, an energy equation is obtained:
A T L R G U Ry
3% TCr B YT 77 Ck Tk k
s ) %, Yo . 2 B TP
et —— 1 e - - FIp! L Pl
il ELAEadk 56 (BB )+ 2 (-0 o + T )
1 0! [ IT ! ?
o KL (T (P (47
RT o ' RT ‘) o
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C. SUMMARY OF EQUATIONS TO BE SOLVED

The equations which have been derived so far are further
simplified by neglecting the velocity in the catalyst pellet, the
molecular diffusivities in the stream, the space derivatives of
diffusivities, the space derivatives of the specific weight of the
stream, viscous dissipation, the pressure dependence of enthalpy,
the changes in partial volumes, the amount of material adsorbed
by the catalyst, and the coupled derivative terms in the catalyst
equations, These are neglected not only because it is impossible
to include in calculation all the terms in the equations derived
before, but also because the terms neglected are believed to be
much less significant than the terms retained. For instance, in
the original energy equation, i.e., equation (27-a), molecular
energy transport and viscous dissipation terms are apparently
much smaller than turbulent diffusion or heat generation terms.

The equations to be used in the rigorous solution are listed

below with the appropriate boundary conditions:

Continuity Equation for the k-th Component

2 2
_a_nl‘_= o +_Ei£1__1') ?ili{_u Bnk+edrank+edxank
06 r fr or X OX i 31 i -
]
+ DMflk Pki + Dknk . (48)

-Assuming a constant viscosity of 0,032 c.p. and solving

(24)

the Ergun equation for the axial velocity, there results

- 0.01112 + /o. 0001144 + 0, 06740(- —g%’ (- %IE)
Uy = 0.06740 « U F (- 5P, Yx °
X
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The correlation given by Fahien and Smith(lg) for turbulent

diffusivity in a packed-bed is used to obtain, for Dp = 0.25 in,,

9 = 0.00188 u
f X
1A

X 0.0104u .
f X

Where f = 0.35.

The correlation for mass transfer between the catalyst

surface and the stream is used to obtain the folldwing expressions

for the coefficients used in equation (48) (29).

DM1, = 483 ( ——=
DM1, = 610(—1—

_ ‘ u
DM1 T )1.5( X )0.49

= 334 (315 13.45

D1 = -0.0114XDM11 xaoT o
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D2 = -0, 00912 xDMlz xoT ,
Dy = -0.0228 xDMi3, x0T
Boundary conditions are:
8 =0, nk=nk°, k=12, 3
8>0
on
- k _
r=0, =5 0
on
k
r= R, -a—f— = 0 .
on u
_ kK _ X _
2= 0w te (M)
an %
k
X = X, -a-;{— =0 .
Energy Equation:
ATy g caryam oar far 2Pr Cax ot
06 r  Ir or X 93X i arZ f axz
1
+ DM14 Ti +D4T ,

*See footnote on next page.

(49)

(50)

(51)

(52)

(53)
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The correlation for heat transfer between the catalyst and

the surrounding stream is used to obtain:

T ,0.26 u 0.45 ,0.0354.0.51
)20 (X048 )

DM1, =-D, = 390 (g5 13,45 z

Boundary conditions are:

Initial Condition: 6 =0, T = T® . (54)
Symmetry r =0, -g; =0 . (55)
Wall Condition r=R, T=T, (56)
s _ oT _ Ux
Entrance Condition x = 0, =T (T-Tg) . (57
dx
*
Exit Condition ~ x =X, o= =0,
X
Pressure Equation:
W_pf(L,1 2 %y, 1> % o 13
08 rF o or °F or g, o F 'ox Farz

%k
This boundary condition was found to be unpractical for a numerical
solution. The subject will be discussed later.
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2
1 3P 1 oT 1 aM
P2t ["r W M r]j- (58)

Substituting f, Dp, g,» ¥ with numerical values, equation (31)
becomes

F = 0.055 (0.404 + 1,224 x o ux) . (59)

Boundary conditions are:

8=0, P=P° . (60)
r=0,-g—1173=0 . (61)
r=R, u =084 =0 . (62)
x=O,P=Pe ; (63)
x=X, P=P, . (64)
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Continuity Equation for the k-th Component in Catalyst

t f A 1 2 ]
oP, 2Dy Py D TP ' .
38 fy 3 T g *R (65)
T

I'=0.6 .

Knudsen diffusivities are evaluated for each component.
Estimating the surface area as 1. 71 x 106 ftz/lb, and the pore
volume of 0. 0078 ft3/1b, and using the equations given in Smith's
textbook, the results are

(30)

D, =(0.034/3600)it*/sec.
;' =(0.003 1/3600)£t2/sec.

Dy =(0. 031/3600)£t2/sec.

(29)

The reaction rate expression given by Hougen and Watson
for the catalytic oxidation of 802 is to be used. With conversion

factors included, the source terms become:
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RT'_ 0.0257 o4 154 - 14400/T"

1+ /-p——oz e-5. 78 + 9224/T'+ Pso e_g_ 89 1 15220/T’)2

3

x (Pso,, /Po, - Pso, o10. 1 - 20800/T",

2
I
e
o.l.
oy

Boundary conditions:

o
6 = 0, Pkl = ka . (66)
ob. !
k
R (67)
D' P’ P !
= N[k k k _ ' Mk ki
r= ri s R'Ti' T Iik ('0 nk - __R_T:_'— ) . | (68)

Energy Equation in Catalyst:

T _ 2kS oT! . ks 82T' . R 69
o6 " Cr’ @’ T C 2 T
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kg = 0.52 Btu/ (sq. it.) (hr.) CF/tt.) .

C = 18.5 Btu/ (cu.ft.) °F) .

- : (70)
T (1 + ‘/‘PFZ e 5. 78 + 9224/T - P803 e'8. 84 + 15220/T')2

R,

10,1 - 20800
X (Psoz /:P—O—Z - Pgog e T )
Boundary conditions are:
6=0, T = T'® (71)
r=0, &5 =0 (72)
rer, kS s h (T-T)) (73)
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D. COMMENTS ON THE BOUNDARY CONDITION AT
EXIT OF REACTOR

At the exit of reactor, the mass flux of the k-th component
toward the boundary is

ony

(Elk) = fofuxnk - % Cax S - (73-a)

I diffusivity is assumed to be zero outside the packed-bed, the
flux away from the boundary is

(m ) = wlom, . (73-b)
s - "
Since fcfux cfux

by combination of these three equations, there results

any

= 0o . (73-c)
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This condition is mathematically applicable, but is hardly
usable in practice. The axial concentration profile near the
boundary presumably should look like:

axial direction

So, unless extremely fine meshes are chosen, as is shown
with dotted lines, the results would be too inaccurate to be acceptable.
For the finite difference method, it is more reasonable to use the
following approximations:

' n -n n -n
R T S O e )
X ' dx ox Ax Ax Ax

(73-d)

W
ede kN-1 kN)
. 3

Ax

= (73-¢)
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The use of equation (73-d) is based on the fact that the
turbulent mass diffusivity may be taken as zero outside the
reactor. One may tend to think that the condition n

kN+1= kN

is equally logical to use, but in fact such a condition is valid

n

only at the steady-state.
The choice of a backward difference approximation as
shown by equation (73-e), rather than a more accurate approxi-

-2

mation such as the one in which nk&\} is involved, is to make
(2 applicable, Otherwise, an

the scheme proposed by Thomas
iterative scheme would be required,
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IV. NUMERICAL SOLUTION OF THE SYSTEM OF
DIFFERENTIAL EQUATIONS

A. GENERAL DISCUSSION

Difficulties Involved in Solving the Equations:

In a numerical method of solving partial differential
equations, finite difference approximations are used for time
and space derivatives, using finite time and space increments.
The solution at the end of a time increment is obtained from
that at the beginning of the time increment; and the process is
repeated until enough solution is obtained.

Numerous difficulties are encountered in the numerical
solution of the system of partial differential equations which is
derived above. In the following, these difficulties are listed and the
proposals of various workers concerning the methods of handling
these difficulties are discussed.

(a). Non-linear source terms in the differential equations,
Three methods are available for handling the source terms: They
can be evaluated at the beginning of each time increment; the
technique used in Runge-Kutta Method for ordinary differential
equations can be applied (25) ; or an iterative method such as that
suggested by Crank and Nicolson (26) can be employed. The first
two methods are subject to severe stability criteria, while the last
one presents a convergence problem. If a convergent scheme is
devised, the last method is always stable as will be shown later,
but such a method is quite time consuming.
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(b), Predominance of convection over diffusion. This has
been reported to give an oscillatory solution to a two-dimensional
problem when an alternating-direction implicit method is used. If
there were no diffusion, the profiles of temperature and concentration
in the axial direction would be discontinuous for the transient
situation, following an applied step-change in entrance conditions.

At a particular location, the change in a property with time would
undergo a discontinuous change at a particular instant. It is not
surprising that a numerical method cannot handle this convection
problem as well as the diffusion problem is handled. Stone and Brian(zs)
proposed a method of solving the convection problem with improved
accuracy over the Crank-Nicolson's method. However, their method
is applicable to a one~-dimensional problem only,

(¢). The coupling between the properties at the surface of
the catalyst and those in the stream present a multi-dimensional
problem which requires new solution techniques. This will be
discussed later.

(d). A stupendous amount of computation time would be
required if a method based on published techniques were used.

If the source terms are evaluated at the beginning of a time incre-
ment, for the problems to be studied, stability of the numerical
scheme requires that the time increments be less than 1/200 sec.
Stability criteria for such a scheme will be derived later. Total
computation time for one transient solution up to steady-state

would be about 300 hours with an IBM- 7094 computer. Alternatively,
an iterative method can be used to avoid the stability problem, but

(6, 7)

of such a scheme is hard fo estimate,

as Lapidus and others have pointed out, the rate of convergence
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An Ideal Method:

To attain the same order of accuracy, it is much more
efficient to use a method in which the time increment is changed
from time to time to keep the increase of any property, within
one time increment, of the same order of magnitude rather than
to use a method in which time increments are kept constant. For
the former scheme to be applicable, a method is required which
is stable no matter how large the time increment is. Also, to
‘save computation time, it is desirable to avoid the necessity of
relying on iterations, Such a method will be suitable not only for
a transient problem, but also for a steady-state problem, as in
the latter case much larger time increments can be used, and the
steady-state solution will be obtainable in ten or fifteen time
increments, which is competitive against any iterative methods

for solving an elliptic problem.,
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B. LINEARIZATION OF THE SYSTEM OF NON-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS

In the present study, the exothermic oxidation of sulfur
- dioxide, SOZ’ to sulfur trioxide, SO3, by air is selected for actual
calculation.

As a non-linear system is difficult to study, it is desirable
to linearize the non-linear source terms in the equations derived
previously for the reactor problem. Then, by focusing study on
-the behavior of the system in the neighborhood of a fixed time, a
linear system which is amenable to a reasonably simple analysis
is obtained.

For instance, equation (65) can be rewritten as

2

aalzkr “:'D];{Y ZPI'{"‘ Df'}{ 31’2' +Ri<'+ z (aaf;k" ) (Pl -Pp ")
r d or' o X k o
3R,/ |
+ g (T-T) . (74)

Where Rk ' is evaluated with Pk

equations Yor the interior of the (c):atalyst, namely, equation (65) for

's and To’. In this way, the

k = 1to 3, and equation (69), can be combined in vector form as



- — 2-—»
2% %
C — C C — -
55 = DY =+ + (Oy) —3 (8,) & +C. . (75-a)
Where ‘q’:c = col (P, P, P,', T') . (76)
/ , \
2D, 0
f'r!
2D,
f'r'_
(D1) = .y (77)
3
o
0 2
\ CI" /
VA N
D, 0
"f—c"
D,'
""fT’
(Dz) = o (78)
_3
0 ks
kel
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/ 1] 1 1] \
3R, R," 3R,' 3R, ﬁ
aPl' BPZ' BP3' oT!
3R, 3R," R, 3R,
3P 3P, P, T
() = (79-a)
C
3R, R,' R, 2R,
3P, "‘"—apzv P, I
] 1] t 1]
aRp Ry' 3Ry Ry
k 3P1 . BPZ BP3‘ T /
4 N\
R !
1
R,
c %0 3 9-b)
C,'= - (Sc) %, (79-
R, ' 0
.
5
R 1
\ T /

Since (S c) as shown by equation (79-a) is not diagonal, the
solution of equation (75-a) by an implicit method will require an
iterative scheme. To avoid this, equation (79-a) is replaced by
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8 = Mgy @ + L5 - g ) @] (79

where X(S ) is the only non-zero eigen-value of (.Sc), and is equal to
c

oR,' oR,' 3R,’ 3R’

)‘-(SC) = ( apl 2! ) ( 3P3' )+(BT'

H

which is always negative for the problems to be studied.
It is obvious that the eigen-values of L(S ) - (S )(I)] are
zero and - X(S )’ which is always positive.

Replacmg equation (79-a) by equation (79), equation (75-a)

becomes
53, 2, - A
—a—é—— = (Dl) P -7 + (D ) -;—I:'é— “+ 'h(sc) (I)c + CC . (75)

Where Cc = Cc' + ]:(SC) - K(Sc) D] <I>co

: - Ny @ (80)
(8,) “c,




48

In the following, it will be shown that the operation just
performed for transforming equation (75-a) into cquation (75)
corresponds to employing the stoichiometry of the reaction to
account for the dependence upon the other variables of the source
term in the equation for one variable, _ _

If the effect of diffusion is temporarily neglected, it is
apparent that

R.'
P'-P'=(P'-P ')x == . (80-2)

i io k k0 Rk'

oR, ' R,' °R.’

5 " & W (80-b)
i i i

where i, k=110 4; P 4 ' denotes T'; and R 4 ' denotes RT'

Substituting these equations into equation (74), there is
obtained

2
1 1 1 t
oP 2D] BP] ! D] d P1

Kk _ .
FY:) f'r! or' ! 2

or'

-+ Rk ' 4 (Pk' - Pko') A.(SC) . (80"0)
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It should be noted that the diffusion terms have been included
in this equation,

The combined equation corresponding to equation ('7 5-a)
will be:

aifc a?fc aEC -
s = (D) 5=+ + (D,) -a—r'-z.+ )\(Sc) g + 'C’c , (80-4)
where
‘ \
'R 1
1,
R2 !
- Y T
e R 1 "s,) %, (80-e)
3
!
RT0
AN /

Equation (80-d) is identical to equation (75), and the physical
meaning of using equation (75) instead of equation (75-a) has been
established,

Within a short period of time, the terms for the stream
equations can be simplified by removal of the terms containing the
properties at the catalyst surface. For instance, in equation (48),

if Pki' is considered as a function of 6 and D,
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ob, .’
s - ki
Pei' (8 m = Py’ (8, n) + ( . )9 (e - omy)
P, .! 0P, !
ki ki
= P ' - ) n + ( =——) n_. (81)
o ki ank g © k ank 5 k

Where oPki' is Pk'i obtained at time 6 if the stream concentration

remained at oMk which is the value at time 60.

Equation (81) allows equation (48) to be rewritten as:

2 2
?_HE-_-(_u'.,__e_q_l:)??_lf - ank+ “ar ° . “ax ° "k
[ T i or X X i arz i axz
BPkl'

+ [DMIk x ( ank )9 + DkJ n + DMlk { P

P !

ki
- =) . (82)
s )y o

_ Repeating this procedure with equation (53), all the stream
equations can be combined to give the vector equation:
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a§ Y 3% °®
_ i f £
55 = D) 5 + Dy o + (Oy) —5
or
3251,
+ (D,) +(S,) & + C, .
6 3X2 f f f
where
3{* col (n1, Dy, D, T, P) ,
’ €
(-u s
r f
€
(~u_+ ar
r f
edr
(D3)= ("11 +—f—'
°d
(-u_+ ==
r f
0 1
y
“Ux 0
-u
X
-ux
(D4) =
-u
X
P 3 (i y 28
0 % X ' F " x

|

/

(83)

(84)

(85)
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g

(86)

(87)



(3,

Q}

53

oP, !
1
M1, | —— +D
1 an1 8 1] 0
[ apzi
DM1,_ - + D
2 3112 6 2]
[ aP3i'
DM1,, - +D
3\ ) g 3]
: 'aTi'
[DM14' =T ) o T D4]
0 13T _ 1 3
T o8 M 36
( 4 aPli' \
DM1 P, - n
1 KO 11 anl g © 1
p
y BPZ’ N
DM1,| P. - L
2 \o 21 anz g © 2 J
DM1 P, - ff} n )
3|1 03 03
1 3 B )
BTI' \
' - ——
DM14 [ T, ( 5T 8 0T
Y,
0

(88)

(89)
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C. TRANSFORMATION OF THE SYSTEM OF LINEAR PARTIAL
DIFFERENTIAL EQUATIONS INTO A SYSTEM OF ORDINARY
DIFFERENTIAL EQUATIONS

Thus far, the linear partial differential equations (75) and
(83) have been obtained. These equations are valid over a short
period of time after a certain fixed time around which the behavior
of the system is of interest. However, the stability analysis of
partial differential equations is not generally known. However,
the analysis of the stability of a system of ordinary differential
equations is well-established., For this reason, before carrying
out a stability analysis, if is desirable to transform the system
of partial differential equations into a system of ordinary
differential equations, which are applicable at a particular
location in space., This can be accomplished by assuming that
the solution to the system of partial differential equations can

be expanded into a complex Fourier series over the space (27).
Thus, for the stream:
% =ZG0 " V-33® , (90)
f + °f = °f
k k .
2mj r/Lr :
where k = . (91)



y - . (92)

jr and jX are integers from -«*to+ « ,

Lr and LX are periods in the r and x directions
respectively.

The space derivatives in equation (83) are usually approxi-
mated by central difference formulae. For example

3% E:(r+Ar,x)—5(r-Ar, x)

(el) 5= — 1 (93)
or ‘aty 24r ‘

Using the expansion expressed in equation (90), this

derivative becomes
3% > . ik_Ar
f -1 P ik.y T
(37 )at3 = 3% [k’; Gy ®) (e e U )
i Sm(krAr)
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. isin(krAr)
e (k) - (94)

z
k

Taking the limit as Ar — 0, equation (94) gives

3%, .
(F day = 2 1 &M (95)
Similarly, for the x-derivative,
2@ isin(k Ax)
{ - > T X

and as a limiting value when Ax goes to 0 :

o, .

For the second derivative:

— [<I>f(r+ Ar, x)—Zd:f(r, x)+<I>f (r- ar, x) ]

or” aty Ar?

o
g
wil»
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| m iF. §, LK -1k Ar
=——§EG(k)e (e -2+ )
Ar® k
9 krAr
R - 4 gin“ ( 3 )
k Ar

Taking a limit as Ar -~ 0, there is obtained the differential value:

2>

° & 2\ =
— L= EES)E® . (99)
or aty k
Similarly:
, k_Ax
23, Lo -dsm? ()
—5 = I @, (B 5 . (100)
oxX aty k [iV'4
3, o |
—5 L=z (-kx ) fif (k) . (101)
ox aty k
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If equations (90), (95), (97), (99) and (101) are substituted

into equation (83), there is obtained:

dZ & (k)
—gg— = Oy Zil, & @)+ (09 T ik & @)+ OYICI) & @
+ (Dg) 2 (k) & @ + (5) REACE (102)

Or one can write this for Just one harmonic of the Fourier series:

ae® 2 2 -
go— = [ik,(Dg) + ik (D) - k “(Dg) - k “(Dg) + (5) 1&; ()
+C =) FM+C, R (103)

where (A) = [ik (Dg) + ik (D krz(Ds) - kxz(D6) +(8) 1 . (104)

4)-
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If finite difference approximations are used for the space
derivatives, instead of equation (103), the following equation is
obtained by substituting equations (90), (94), (96), (98) and (100)
into equation (83) and retaining just one harmonic:

- - . . 2 krAr
dcﬁf(lz) _ [1 sin (krAr) i sin (kxAx) 4 sin® ( 5 )

. (D) + —p—2— (D)- (D

Ar 3 4 A1_2 5)

Do
—~
-

\

= (B) & ® + C, ) |, (105)

i sin (krl.\.r) i sin (kxAx)
where (Bf) = — (D3) t— (D 4)

2 krAr kxAx
4sin® (5—) 4sin(Z—)

- - 52— (D) + (sf)] : (106)

Arz AX
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For the interior of the catalyst, the expansion

& = e - = ik _r! (107)
@c B 15(: ' (I)C (kr') " IE . Gc (kr')e r! ’
r T
where k, = 2./ Ly, (108)
j., = integers from - *to + *

r

L, = period in r' direction

is employed.

Using the above expansion, equation (75) can be transformed
into the following, if only one harmonic is written:

de, (k..

— = '[ikr,(Dl) - kr,2(D2) * M) 0713, k,)+C, G,

= (AC) 60 (kl") + 6(3 (krt) ’ (109)

where (A) = [ik_'(D,)- k2 (D)) + hg (D 1 . (110)
C
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And if finite difference approximations are used for space

derivatives:
= 2 kr'Ar'
dad, (k.,) isin (k4r) 4 sin” (——) N
r c
+ Cc (kr') = (Bc) @c (kr,) + Cc (kr') , (111)
2 k_,Ar
isin (k,,Ar) 4 sin rz
where (Bc) = Ny (Dl) - Ar'z (Dz) + X(Sc)(I) (112)

It has been shown that at a particular location in space, the
system of partial differential equations for the stream as represented
by equation (83) can be expanded into an infinite number of systems of
ordinary differential equations represented by equation (103) for one
particular harmonic; and similarly, equation (75) can be expanded into
an infinite number of systems like that shown by equation (109). If
space derivatives are approximated by finite difference methods, in
place of the above mentioned equations, equations (105) and (111) are
obtained. Note that the use of finite difference approximations for
the space derivatives simply reduces the absolute values of the
diagonal elements in matrices (A,) and (A o)+ As will be shown later,
this will have the effect of rendering the stability criteria slightly less
severe for an unstable method, such as the forward difference method.



62

D, STABILITY ANALYSIS

Definition of Stability

For the system of partial differential equations (83) to be
stable, it is required that the system of ordinary differential
equations (103) be stable for all k, i.e., for all harmonics of
the Fourier series. By being stable it is meant that the solution
is bounded as time goes to infinity. So, in order to study the
stability of the original system of partial differential equations,
one can alternatively investigate the stability of the deduced
system of ordinary differential equations.

For simplicity, K is dropped in equation (103) to obtain:

d-b
£ 3 |

It must be noted that (Af) and C ¢
- constant only for a short duration of time, and that they are functions
of k.

can be considered to be

The behavior of this system of equations and the behavior of

various numerical solutions to this system can now be investigated.

| ¥ all eigenvalues of (A) are distinct, the analytic solution
of equation (113) is

3, = Zg et e‘ﬁj - ale (114)
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with £, 's satisfying the initial condition

& =% &6 . (115)
J

It is obvious that if all )» 's have negative real parts, <I>f will
be bounded and reach the steady— state solution -A~ 1C as 6~ « no
matter what the initial condition is. A matrix having eigenvalues
with all negative real parts will be called a stable matrix in this
study.

A numerical solution to equation (113) can be put in the form:

6/h+ . -1x
() = 2 /h b, - A7, (116)

with mj's satisfying the initial conditions

& =Iuwb . (117)
J

For the numerical solution (116) to be stable, it is required
that all qj's be less than one in absolute value. A stable numerical
scheme should therefore generate a g (or g's for a multilevel method)
of modulus less than one if its (or their) corresponding eigenvalue
of the original matrix has a negative real part.
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In case there is one (or maybe more than one) eigenvalue,
say Xj, which has a positive real part, then there exists corre-
’sponding to this lj a q]. with modulus greater than one, In this case,
both the analytical and the numerical solutions will grow without
bound as time increases, and the system is said to be unstable. If
one is using a three or more level method, corresponding to the )‘j’
there would exist one or more parasitic roots qj', qj"" etc. .The
absolute values of these must be smaller than one, or the numerical
solution will be unsatisfactory as some spurious solutions will grow
in magnitude as time goes on.

Solutions (114) and (116) show that only the complimentary
solution is related to the stability of the system. Therefore, in fhe
following it is appropriate to investigate only the homogeneous
equation:

gj'i =(A) & . (118)

In the above equation, all the subscripts have been dropped
for simplicity. The stability of a numerical method for solving
equation (118) will be analyzed by finding the relationship between
an eigenvalue of (A) and the corresponding g for the numerical
method. A mapping of one upon the other will be shown on two
complex planes to indicate the region of stability.
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Forward-Difference Method

This is the simplest of all methods and is easily applicable

to a non-linear problem. In this method, the right-hand-side of

equalion (118) is evaluated al the beginning of each lime increment,

Thus:

then equation (119) becomes

[(I)(Q' 1) - h(A)] qﬁ'ﬁ =0 .

For equation (121) to have a non-trivial solution, it is

necessary that

(D(q - 1)-h(A)l= 0 .

And from this the relationship:

(119)

(120)

(121)

(122)
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Aho=q-1 (123)
is obtained.

This relationship is shown in Figure 1, The shaded area
on the Ah-plane corresponds to the shaded area on the g-plane,
and these are unstable regions. This plot shows that the applica-
bility of this method is very limited because of the small stability
region, If A is a pure imaginary number, (which corresponds to
a pure convection problem), the plot tells that the corresponding

lq | is always greater than one, and, therefore, the method is
unstable no matter how small a time increment is taken.

Crank-Nicolson's Method(zﬁ)

In this method, the right-hand-side of equation (118) is the
average of that evaluated at the beginning and that evaluated at the

end of a time increment:
@)1 = 0. 5h (A) (‘I’£+ 1t qzz) . (124)

Substituting equation (120) and rearranging

{(I) (q-1) - 0.5h (g+ 1) (A)] qtd = 0 . (125)
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For existence of a non-trivial solution, it is necessary that

(D@-1) - 0.5h (q+ 1) (A)|= 0, (126)
From this, wm=2-1 (127)
q+ 1

Equation (127) is plotted in Figure 2. For Ah with negative
real parts, the corresponding q's are always within the unit circle
on the g-plane. Hence, the method is unconditionally stable.
However, for the case where \h lies on the imaginary axis -~ this
is the case of pure convective transfer without diffusion and sources --
the corresponding q will have an absolute value of one. In this case,
once an error is introduced in the solution, it will never decay but
will oscillate with the same amplitude from then on. This explains
why for a pure convection problem, or for a problem where diffusion
is much smaller than convection, it has been necessary to use
artificially larger diffusivities to smooth out the oscillations inherent
to the numerical solution. In Figure 2, this is equivalent to the
shifting of the Ah to the left, so that the corresponding |q| will be
less than one, and whatever errors introduced in the process of

computations will decay.
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Backward-Difference Method

In this method, the right-hand-side of equation (118) is
evaluated at the end of each time increment:

(}Z""l- @/@ =h(A) @/e+1 . (128)
Substituting equation (120), this becomes

[a) (@-1) - hq (A)] B =0 . (120)

I a non-trivial solution exists for this equation, it is required
that

I(I)(q-l)-hq(A)'=0, (130)
and consequently
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This is plotted in Figure 3. The method is seen to be
always stable as is the Crank-Nicolson method. In addition, it
is noted that this method should give a smoother solution than
the latter method for solving a convection problem. An imaginary
eigen-value of (A) generates a q of modulus less than one, and
the result is that errors will tend to decay, as is the case where

there is diffusion.
Method W

This method is best explained by the following equation:

@

e 1 By =R Iwd, +(1-wdgl. (132)

The Crank-Nicolson method and the backward-difference
method discussed previously are merely two particular cases of
this method employing w = 0.5 and 1 respectively.

It can be easily shown, as for the previous three methods,
that q and Mh are related by the relationship:

- 1
o= +q(1 — - - (133)

For w 2 0.5, the method is always stable, As w approaches
1, the solution will become smoother and smoother, but with an
inevitable sacrifice in accuracy. A good combination of accuracy
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and smoothness should be obtained by a suitable choice of w.
Method E

This method is represented by:

—

@£+W-¢£ = wh (A) q:/“W , (134)
Cpr1- % T h(A) Crrw (135)

This two-step method will be shown to be equivalent to the
one-step method w just discussed.
Combining equations (134) and (135),

Substitution of this equation into equation (135) results in

&,,,-% = hWWwE, +Q-WFI - 137
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Thus, the two-step method represented by equations (134)I
and (135) has been shown to be equivalent to the one-step method
expressed by equation (137), which is identical to equation (132)
for method w.

Method E is important because, as will be shown later, it

can be modified for the solution of multidimensional problems.
Method F

In the previous section, method E was shown to be identical
to method w, which is unconditionaily stable if w 20.5. Never-
theless, method E must rely on an iterative scheme to solve a
two-dimensional problem, such as the one presented by the system
of differential equations for the strcam. Method F is a modification
of method E, and is suitable for solving a two-dimensional problem.
The method is expressed by:

— * - —— = —r s, ——
). w 2, wh (Al) W + wh (Az) @ - (138)
& Xk . F = & * & *k

D w q’ﬁ Wh(Al)q’,e. W+Wh(A2)¢,€+W . (139)

— —

Gp,1-8 = n(A)F,, *+h(A)F, . (140
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1sin (k,0r) 4 sinz( ‘é ) |

where (Al) =|—5 (D3) - 2 (D5) , (141)
k Mx
i sin (k_x) 4sm2( x )

(Az) = "‘“‘—'A'i""_“" (D4) = 9 (Ds) + (Sf) . (142)

Ax

This three-step method shown by the above equations is in
fact equivalent to a one-step method, as will be demonstrated
below: '

| Multiplying equation (140) by w and subtracting the product
from equation (139),

oWt = WEy +1-WE . (143)

Subtracting equation (139) from equation (138) and rearranging
result in

—

2+ w - E,Q+ wor wh (AZ)(E/H 1° 61) o (144)

=)

Then, substituting equations (143) and (144) into equation
(140), one obtains: '
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o, 1 % = [0+ W)@ T n) wd,, ; +1- wa,l .
| (145)

This is the one-step method equivalent to the three-step
method shown by equations (138), (139) and (140). This method
is always stablc, no matter how large h may be, if w 2 0.5, and
also if, for a stable system, the matrix

(A = UD + v (A )T (&) (146)

is stable for all i{"S.

In the stream equations, (Sf) is diagonal, and so both (AI)
and (A2) are diagonal. Let the diagonal elements in a certain row
be a; = a+ iBl, 2y = O+ iBz for (A1) and (Az) respectivgly.
Then the corresponding element for (A) should be a = (a1 + az)

+ 1 (31 + BZ)‘ By substituting these into equation (146), the corre-
sponding element for (AN) is found to be

ay = a.N+iBN

(o +a)+1(By+8y)

1+ wzhz(an1 +1i 131)(<:n2 + iaz)_
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(0 + ) +1(B; + By) . (147

1+ thz(alaz - BIBZ) + iwzhz(oc1 By + 0231)

Therefore, taking the real part alone

(cn1 + az) + won? [(12 (0‘12 + 812) + 0y (azz + 322)3

oy = 3.3 544 g - (148)
[1+ w°h (a1a2 - 5162)] + W h (cnlfs2 + aaﬁl)
From equation (141), it is obvious that
o < o - (149)

So, for the case a, < 0, it follows from equation (148) that

oy < o - (149-a)

If this is true for all rows of the matrices, the method should be
stable,
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The case Gy > 0 is trivial because in this case, as will
be shown next, the source terms can be evaluated at the beginning
of each time increment without affecting the stability of a numcrical
method. However, if method F is still used in such a case,
stability requires that

2,2, 2 2
ay [1+ w’h® (0, + B,9) 1+ o, [1+ wlh? (¢, 2+ 8,91 <0, (150)
which can be rewritten as

a, [1+ woh? Ia1 F] <-oa [1+ w2h? Iaz Iz] ] (151)

For a stable system

a1+a2 <0,
or
Gy < -0y . (152)
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So, it laygl < layl , (153)

equation (151) will be satisfied, and the method should be stable.

Methods in Which the Source Terms are Evaluated Explicitly

The simplest case is the one in which the source terms are
evaluated at the beginning of each time increment, If the Crank-
Nicolson method is employed for the space derivatives, such a
method can be expressed by:

—

@

e1- % = 0. 5h (D) (¢£+1+¢£)+h(s) @, - (154)

£

Because of increased complexities, a different approach will
be taken to investigate the stability of this scheme.
Rearranging equation (154), there is obtained:

g, .= W-050OT [(D+0.50 (D) +h(89)1F, (155)

If the maximum eigenvalue of matrix
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(E) = 1 (1) - 0.5h (D) ]-1 [(T) + 0.5h (D) + h (S)] , (158)

is of modulus less than one, the recurrence formula (155) will
lead to a bounded solution as ¢ is indefinitely increased. The
analysis for a general case is too difficult and a special case in
which matrix (S) is also diagonal will be investigated. For a
diagonal matrix, the diagonal elements are its eigen-values.
The inverse of a diagonal matrix is another diagonal matrix in
which the diagonal elements are the inverses of the diagonal
elements of the first matrix, Let €y dk and S1e be k-th diagonal
elements of (E), (D) and (S) respectively. Then:

1+0,5hd +hs

_ k k
® = TT-05hdy : (157)
It Sy is real and positive, for a stable system
Re(dk) + 8, < 0 ,
or 8, < - Re(dk) . (158)

The following relationship follows immediately
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1+0.5hdk-hRe(dk)

ey | < T-0.5hd,

1- 0.5h Re (dk) + 0, 5h Im (dk)
1-0.5h Re (dk - 0. 5h Im(dk)

=1,

So, the scheme is always stable.
i Sy is real and negative,

and for lek | to be smaller than unity, it is required that

] 1+0.5hRe(dk)+hskl< 1-0,5h Re (d) ,

or

-2 < hs, < -hRe(d) .

k k

The right-hand inequality is automatically satisfied and the
criterion becomes

(159)

(160)

(161)

(162)
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-2 < hs_ . (163)

It is interesting to note that the relationship shown by
equation (163) is identical to the stability criterion for the
forward-difference method of solving equation (118) for the
case where (A) = (8). '

For the problems which will be investigated later, Sy
can be as small as - 400, and for such a case, h should be

smaller than 1/200 sec.
Now, the method proposed by Brian will be investigated® L),
The method can be expressed by:

@y, 12" 8 =050 (DB, 4o+ 050 (G (169)

—

<]§1+1-<I)£=h(D+S)<Iz/Q+1/2 . (165)
From equation (164) can be obtained

Gy, 1" @-0.50OT @+ 0.50©IF, , (160)

and substituting this equation into equation (165) results in
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=h(D+8) [(-0.50 T LM +0.50(9IF, . (167

It is very difficult to find the region of stability for this
scheme. However, some important conclusions can be drawn
by comparing equation (167) with equation (119), First, even for
the case where (S) is diagonal and positive, there is no guarantee
that the scheme is stable., And for the case where the diagonal

elements of (S) are negative, it is required that

1+0.8hs, > 0, ~ (168)
which is identical to equation (163) for the previous method.
If

1+0.5nhs < 0, (169)
then, the corresponding eigen-value of matrix

D+8) [M- 0.5 7T LD+0.50 D)7 ,

will have a positive real part, and the scheme will undoubtedly
be unstable.

The methods using one of the Runge-Kutta's schemes are
more complicated, but are similar to the one just mentioned in that
the source terms are first evaluated at the beginning of a time incre-
ment, and similar stablll’cy restrlctlons should exist. Fox‘zs) gives
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the stability requirement of the Runge-Kutta method for solving
ordinary differential equations. |



85

E. VARIOUS METHODS OF SOLUTION USED IN
THIS STUDY

Method G

This is the method used to obtain the rigorous solution,
The equations derived are solved as they are except that two
more assumptions are introduced. These are assumptions E
and J, which assume that the Peclet number for both heat and
mass transfer, and the specific heat of the catalyst and stream
are constant,

Central difference approximations for all the space
derivatives are employed. Method F and method W are used
for the stream and for the catalyst interior respectively, and
w = 1 is chosen to make the solution smoother. The lineari-
zation shown by equation (74) is carried out for each time
increment and the coefficients in equé,tion ('75) and (83) are
evaluated at the beginning of the time increment. The properties
within the catalyst at the end of each time increment are ex-
pressed as functions of corresponding stream properties and
substituted into the stream equations to obtain 6f and (Sf .
After the stream equations have been integrated in both radial
and axial directions, the results are used in the boundary con-
ditions for equation ('75), which is integrated to obtain the
solution at the end of the time increment. In each of these
integrations, the scheme proposed by Thomas and described -
in most textbooks on numerical solution of partial differential
equations is utilized to avoid the necessity of iterations(zz).
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It shbuld be emphasized that the success of method G in
solving a reactor problem lies in the elimination of catalyst
surface properties in the stream equations, so that, in effect,
the integration in the catalyst interior and that in the stream
can be carried out simultaneously.

Method H

In order to save the lengthy calculations for the catalyst
interior, an additional assumption -- assumption A -- to simplify
method G, which is described above, is employed. The concept
of an effectiveness factor which is frequently used in a steady-

- state case is assumed to hold even in a transient case. If the
reaction rate is expressed in an apparent first order form with

respect to PSO ', and it is assumed that temperature is uniform

2
throughout the same catalyst pellet and that a quasi-steady-state

is always reached, the effectiveness factor will be(28)

E. F. = 3 [ll/ C(;th lp - 1] , ‘ (170)
w .
- le'
where Y= I‘l’ D , (171)
1

and 01 is the coefficient in the rate expression



P.~'+C, . (172)

As C1 is not constant, the effectiveness factor shown in
equation (170) is calculated at the beginning of each time increment.

The accumulation of material in the catalyst is neglected,
and the amount of a component reacted or produced by the reaction
as calculated by using the effectiveness factor is equated to the
amount transferred from the stream. The accumulation of heat
in the catalyst, however, is taken into account.

As in method G, a property at the catalyst surface is ex-
pressed as a function of its corresponding property in the stream,
Substituting this into the stream equation; integrating to get the
stream property at the end of a time increment; the surface
property from the obtalned stream property can be calculated,

Method P

To further simplify the calculations, a method involving two
more assumptions was tested, They are assumptions B and G.
This is the same as the plug-flow model commonly used in reactor
calculations except that axial mixing is still taken into account,
whereas the plug-flow assumption usually neglects the existence
of any kind of mixing, The same effectiveness factor model used
in method H is used in this method.
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Method G'

This method differs from method G only in the way the
properties in the catalyst interior are calculated. Instead of
solving equation (65), the substitution

!
o= (Y (173)
1

is used
to transform equation (65) into

2
aP t 16 D ! 3 P ' 20 D . aP \
- : k 1. 5 k k " 0. 5 k \

30 o2 (r') - + p—- ()™ =+ R ,(174)

and the boundary condition (68) into

D,' °P. ' MP.!
.é..kak k =Kk(on-...-1£—1$- ) (175)
I © TRTy W £k RT,

By making this transformation, the accuracy of solution is
greatly increased, as smaller radial increment sizes are used
toward the surface of catalyst, where the changes in properties
are more rapid, than toward the center of catalyst. A half
increment is used at the center of the catalyst pellet.
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V. RESULTS

Various problems involved in the reactor for the oxidation
of SO2 were solved by using the four methods described before,
An IBM-70984 computer was used, and the programs were written
in Fortran, For methods G and G', a total of 13 subroutines
were employed, and about 700 Fortran cards are needed.* For
method P there are only about 300 Fortran cards in the program,

Because the coefficients in the pressure equation, i.e.,
equation (37), are extremely large, the equation is integrated by
using a double precision arithmetic in order to prevent the
accumulation of errors which has been found to be serious enough
to give a useless solution, when a single precision arithmetic is
employed,

Unless otherwise stated, the number of space increments
taken in each direction is 5, except that, for method G', 5.5
increments are taken in the direction of the radius of the catalyst.

Parameters for the Reactor Selected for this Study

The following are the parameters of the reactor studied:
Radius of reactor = 1 in.

Radius of catalyst pellets = 1/8 in,
Entrance composition = 7. 1% 80,, 11% 0,, 81, 9% N,

* ‘
The program for method G' is given in Appendix IL
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Entrance temperature = 1200°R
Entrance pressure = 15, 0 psia
Exit pressure = 14, 7 psia

A sketch of this reactor is shown in Figure 4,

Problem (a)

To see whether method G' with 5, § increments in the catalyst
is adequate in predicting the behavior inside the catalyst, a dependa-
ble solution is needed. Such a solution can be obtained only by
employing a large number of increments, To do this for the entire
reactor would cause both storage and time problems in a computer,
For this reason, the behavior of a single catalyst pellet which is
subjected to a step-change in the surroundings will be studied,

A single spherical catalyst pellet initially filled with air at
1200°R is subjected to a step-change in the surrounding stream
composition and temperature. The stream concentration and

temperature is then held constant at n = 0,03068, n = 0, 1443,
802 803
ny = 0.08487 and T = 1419, GOR, which is the steady-state solution

obi%ined by method G for problem (b), at the center of stream and
0, 6 ft. from the entrance.

The concentration profiles within the catalyst as obtained by
methods G and G' are plotted in Figure 5, Two different radial
increment sizes were used for method G', but no significant difference
is noticed from the figure for the use of 5.5 increments and 23.5
increments. The result obtained by method G, however, shows a

large deviation.
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In Figure 6 the effectiveness factor is shown as a function
of time., This was obtained by method G' by dividing the rate of
SOz-transfer from the stream to the catalyst by the rate of reaction
of SO2 calculated from the surface composition and temperature,
and also estimated by the use of equation (148), The effectiveness
factor obtained by method G is only shown at the steady-state. The
plot shows that method G is very inaccurate, and that the estimation
of the effectiveness factor by equation (148) is poor at the very
beginning, but is about as good as the one obtained by method G
with 5.5 radial increments.

Problem (b)

The start-up of the reactor is studied. The reactor is
initially filled up with pure air at 1200°R. The composition of the
entrance stream is suddenly switched to the operating one, and the
wall is kept at 1200°R.

Axial profiles in stream composition and temperature were
obtained by methods G and G' and are shown in Figures 7 and 8
respectively. As already pointed out in the study of problem (a),
method G is found to be very poor.

Figure 9 is a plot of the steady-state concentration profile
within the catalyst, calculated by method G' at the center of the
reactor and 1. 2 ft. from the entrance.

1.)0- '-profiles in a catalyst located at the hottest spot in the
reactor arg shown in Figure 10 for various times.
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Figure 11 shows the axial velocity at various axial locations,
and at various times. To check the accuracy of method H, the
steady-state solution obtained by method H is shown with that
obtained by method G' in Figures 12 and 13. Maximum difference
in the quantity ng, is only 5% and that in temperature is 7. 5%.

The steady—zstate radial profiles in Ngo and temperature are
shown in Figurcs 14 and 15. The results of bo%h method G' and
method H are plotted. Maximum difference of 8, 5% is observed

for the temperature, while the difference in n is much less,

In Figure 16 the transient changes in e?c(i)tznso at the center
of stream are shown., Both methods G' and H were uéed, and two
different time increment sizes were used, The fotal times needed
by each method to reach a steady-state are shown on the plot. The
maximum difference between the solutions obtained by methods G'
and H with the use of approximately the same time increment size
is about 20%. The steady-state solutions are much closer - less
than 5% difference. |

The transient response of the stream temperature at the
hottest spot in the reactor is shown in Figure 17. Methods G' and
H gave a maximum difference of only 7.5%. The effect of the size
of time increment is found to be much less in this case than the
case of concentration response,

In method P radial variations in properties are neglected
and we have only bulk mean properties at each axial location. So,
the solutions by methods G' and H will be compared with that of
method P on the basis of bulk mean properties.

The bulk mean temperature and SO2 distributions at the

steady-state are shown in Figures 18 and 19 for methods G', H and
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P. A maximum of only about 12% difference beiween these methods
is noticed for the temperature distributions, while the Ngo ~-distri -
bution is pretty much the same for all the methods. 2

Transient temperature changes in the stream 0, 6 ft. from
the entrance are plotted in Figure 20, The result of method H is
not much different from that of method G'. But the result of method
P is quite different, the maximum error being about 30%.

Figure 21 shows the transient changes in Ngh at the exit.

2 which deviate

Method H and method P gave about the same results,
from that of method G' by a maximum of 25%.

For method P, the solutions obtained by using 5, 10 and 20
axial increments are shown in Figures 22, 23 and 24. It appears
that the use of 10 axial increments does somewhat improve the
solution over that obtained by the use of 5 increments -- about 12%
difference -- but the use of more than 10 increments does not
materially improve the accuracy.

The effect of using different time incrcment sizcs in method
P is depicted in Figure 25. The total time needed in each case to
reach a steady-state is indicated. Note that the use of larger time
increments only affects the transient solution, and has no effect on
the steady-state solution,

In Figure 26, the steady-state temperature distributions
obtained by method P are shown with or without the use of assumption
F - constant effectiveness factor. The maximum error caused by
using assumption F is about 70%.

The effect of using assumption D, which neglects axial
diffusion, is shown to be negligible in Figure 27.
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Problem (c)

In an actual operation of a reactor, one might encounter an
occasion where the cooling system suddenly breaks down for some
reason. Therefore, it would be interesting to see how the reactor
would respond in such a situation. In the following, the case in
which the cooling at the wall is suddenly lost after a steady-state
has been reached for problem (b) is studied. Also, a modified case
in which after a temporary loss, the cooling will be restored is
investigated.

In Figure 28, the response of the exit temperature is shown
for both cases just mentioned. The results given by methods G',

H and P are seen to be quite close.

The response of n at the exit is plotted in Figure 29.

Again the solutions by allst(zgee methods, namely, methods G', H
and P, are not sighificantly different. The importance of the
reverse reaction is clearly manifested in this solution, Because

of the loss of cooling, the reactor warms up, with the result that
reaction rate is increased and less 802 is left at the exit, But as
the reactor temperature keeps going up, the reverse reaction also
becomes more and more significant, and finally around 1000 seconds
from the time cooling was lost, the trend reverses and the amount

of SO2 left at the exit increases as the reactor is further heated up.
The case in which the cooling is restored at 1600 seconds from the
time of the loss of cooling also points to the importance of the
reverse reaction. After the restoration of the cooling, the reactor
temperature drops, resulting in an increased yield due to a decrease

in the reverse reaction. But when the reactor temperature has
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reached the optimum value -- the value which gives a maximum
yield -- the yield starts to decline. The case where the cooling

is restored at 800 seconds does not show a maximum yield point.
This is so because the reactor temperature at 800 seconds is below
the optimum reactor temperature. In the same figure, we also plot
the result computed by method P with the reverse reaction neglected.
After fhe loss of cooling, the yield keeps increasing until a steady-
state temperature is reached and the amount of SO, at the exit is

almost nil.

2

Problem (d)

A sinusoidal variation of SOz— concentration is forced on the
entrance stream after a steady-state has been reached for problem

(b). The response of SO,-concentration at the exit will be studied.

2
Figure 30 shows the response of the exit Ngn to the
2 b
sinusoidal entrance condition g = 0, 146097 + 0, 03 sin (0).
2 b,0

All the methods G', H and P are used, but the results are not much
different. The amplitude of the sinusoidal wave is reduced to about
one fifth of the entrance wave. The phase lag is about 1. 26 seconds,
which is larger than what would be expected from the time it takes

for the fluid to travel the length of the reactor -- about 0. 43 seconds.
The larger lag can be caused by the axial diffusion, the material
contained inside the catalyst, and the chemical reaction. For the
case without chemical reactions taking place, Deisler and Wilhelm(lz)
derived an expression relating the phase lag to various parameters.

However, for the present problem, no analytic expression can be
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found. Such an expression can be found by a frequency response
study which will be made for problem (f).

Problem (e)

This is an optimization of the wall temperature to obtain
the highest conversion of SO2 to 804, with all the other parameters
kept constant. In this study, it is assumed that there is no '
temperature limit for the fixed-bed below which the catalyst.
temperature should be kept. Method P is used and the result
is plotted in Figure 31. The optimum wall temperature with the
same entrance temperature of 1200°R is found to be (T - 1200)
= 160°R. The steady-state solution with this new wall temperature
is shown in Figure 32, With this wall temperature, the yield is
96. 5%, while in problem (b) where the wall temperature was kept
‘at 1200°R, the yield was only about 80.1%. We note that if the
reverse reaction were neglected, the highest yield would be obtained
without wall cooling.

Problem (f)

The frequency-response of the exit temperature to sinusoidal
wall temperature forcing will be studied. This information should
be useful for designing a control loop for the control of the exit
temperature by wall-cooling. The maintenance of a correct temper-
ature for the exit stream is of utmost importance in attaining the
highest yield from a given reactor.
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Siﬁce method P has been shown to be reasonably accurate
for solving the present problem, we use method P in studying
problem (f).

After a steady-state has been attained with (T - 1200)
= 160° R, a sinusoidal wall temperature expressed by '

(T, - 1200) = 160 + 5 sin (w6)

is used where w is a frequency in rad/sec.

For w = 0, 001 rad/sec., the results are shown in Figure 33.
Both the exit temperature and the SOz-concentratmn are shown.
From the temperature plot, gain = 0, 902, and phase lag = 21, 6°.

Similar plots are obtained with other frequencies, and gain
and phase lag are read from each plot. The combined relationship
between gain and frequency is shown in Figure 34, and that between
phase lag and frequency is shown in Figure 35. These two plots
would be of use in the design of a control loop for the control of the
exit temperature of the reactor.

Using the method described by Ceaglske(3 1), the transfer
function represented by Figure 34 is found to be

_ 3.6::10'3 s+2.15x10'1
G(S) b -1 X -3
2.15x 10 s+3.6x10
4,668 + 1

TS (176)
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This transfer function is equivalent to that of a phase lag
nei:work(32 33) shown below, if

pov)

o = 5874 Coam)
2
and
C,R, = 4.66 . ‘ | (178)
. R, ’
--;-—-——VWWV‘
R,
| C:L,J |

A Phase Lag Network

It is not surprising that the exit temperature response to the
wall temperature change should correspond to the phase lag network:
Figure 31 shows that the yield is almost invariant to a slight change
in wall temperature if the latter is close to the optimum one. There-
fore, the reaction rate does not play a role in the present frequency
response study, and the system is almost linear. The equi\?alence
between the two systems simply means that we can assign a re-
sistance to the transfer of heat between the wall and the exit stream,
a resistance to the heat transfer between the exit stream and the
catalysts, and a capacitance to the heat capacity of the catalysts.
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VI SUMMARY

In the present work, the differential equations describing
the transient behavior of a fixed-bed reactor are derived with as
few assumptions as possible. The stream equations are derived
with the assumption that the same diffusivity can be used for
turbulent material and energy diffusion,

Although the subject of stability analysis of numerical
solutions of partial differential equations has been widely studied,
the methods of analysis published so far are still inadequate for
analyzing the complicated system of equations involved in the fixed-
bed reactor. Hence, a large amount of effort has been put into
stability investigations. )

To carry out the stability analysis of the numerical solution
of the system of partial differential equations, the source terms are
first linearized. Then, it is assumed that the solution can be ex-
panded into a complex Fourier series 'and, therefore, corresponding
to each harmonic of the expansion, the system of partial differential
equations becomes, at a particular location, a system of ordinary
differential equations, such as equation (113). The stability region
of a numerical solution of such a system of equations is obtained by
finding the locus of the values of (A\h) which give |q | = 1, where A
is an eigenvalue of (Af) and q is the frequency factor of the numerical
solution corresponding to the (M), This method of stability
analysis is found to be convenient and easy to understand, - Also,
the method of analysis is more practical for general problems
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with source and convection terms than the one given by Richtmyer(2.7)_
According to the latter's method, the presence of source terms does
not affect the stability of a numerical method, nor does the presence
of lower order derivatives, which, in our problem, are the predomi-
nating convective transport terms. Actual numerical solutions have
revealed that Richtmyer's analysis is impractical. A numerical
method which is stable in Richtmyer's sense has been found to be
unstable in the sense defined in this work.

The present analysis has shown that the presence of source
terms and convection terms presents stability problems as does the
presence of the diffusion terms.

The partial differential equations in which convection terms
dominate over diffusion terms are found to be unsuitable for solution
by a forward-difference method because of instability, For the
Crank-Nicolson method, the convection terms cause oscillations
and a modified method, such as method W or method E with w >0, 5,
is needed to make the oscillations decay.

The effects of various methods of handling the source terms
are also investigated, It is found that positive source terms can be
evaluated at the beginning of each time increment without causing
any stability problems., For negative source terms, such a method
will result in instability unless a severe criterion is met, The
scheme suggested by Brian, or similarly that employed in a Runge-
Kutta method for ordinary differential equations are found to be
unstable unless similar stability criteria are satisfied. If the source
terms are treated as the space derivatives are handled, as by the
use of method W with w > 0,5, there would not be any stability
problems, However, for the cases where the source terms are
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coupled, that is, if the source terms in the equation for one
variable are functions also of some other variables, such a
scheme would require iterative methods. For the fixed-bed
reactor prbblem studied, the source terms, which are coupled,
can be handled by using a special technique shown by equations
(79) and (75) to avoid the necessity of iteration. The physical
implications of using such a scheme are shown, and the results
of such a solution have been shown to- be reasonably accurate
by comparing the solutions obtained using different time incre-
ment sizes, For the case of coupled source terms where no
special techniques are applicable, it is proposed that only the
source terms be iterated, with the space derivatives treated
as in method W or mefhod F, depending on the dimensionality
of the problem. _

Based on the stability analysis, a method which is un-
conditionally stable is devised to obtain a fairly rigorous solution
of the system of equations including the equations for the interior
of the catalyst. The method is called method G'. Using 5 space
increments in each direction, it is demonstrated that such a
rigorous solution can be obtained with a few minutes of computation
time with an IBM-7094 computer., Such a solution is of primary
importance not only for checking the legitimacy of various simpli-
fying assumptions usually made in reactor calculations, but also
because in some reaction systems, the solution could be the only
one that would be reasonably accurate.

‘Using the rigorous solution as a standard, the effects of
various simplifying assumptions have been established for the
reaction system investigated:
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1. Neglecting of the axial diffusion causes negligible
effects -- less than 5% difference.

2. The assumptions that radial velocity can be neglected
and axial velocity is constant and uniform are good. The maximum
variation in axial velocity is only 10%, and the maximum radial .
velocity is 3 x 107° ft/sec.

3. The use of a constant effectiveness factor throughout
gives a poor solution, with a maximum error of 70% in temperature.

4. Reverse reactions are not always negligible,

5. The use of an "effectiveness factor' model causes some
error in transient concentration changes. This is to be expected
because by making that assumption, one does not account for the
accumulation of material in the catalyst. At the steady-state, the |
effect of _the assumption is found to be negligible, even though an
apparent first order rate expression has been substituted for the
rigorous expression in order that the model can be used.

6. Neglecting radial changes in properties and using a heat
transfer coefficient to approximate the transfer of heat from the
stream to the wall causes some errors in transient temperature
changes, but does not have much effect on steady-state solution.

Generally speaking, the effects of using an "effectiveness
factor' model and neglecting radial changes are not large, and the
use of the simplified method, namely, method P, is reasonably
accurate for the problems studied.

A simplified method is valuable particularly in practical
applications. A method should be faster than real time responses
in order to be usable in an on-line computer for a reactor control.
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In a preliminary design of a reactor, only a fairly good solution is
needed, and a simplified method like method P should serve the
purpose, |

However, method P must be used with caution, as there
are three obvious limitations on its use:

a. Method P just gives the bulk mean temperature in the
stream and the surface temperature of the catalyst. The maximum
value of the temperature in the catalyst located at the center of
stream is needed if the catalyst cannot be overheated, and it is not
given by the method.

b. The system of the oxidation of SO2 is carried out under
atmospheric pressure, and the main resistance to the response of
the system is contributed by the heat capacity of the solid catalysts.
In other words, the temperature equation is the one that controls
the response of the system. Hence, the accumulation of material
within the catalyst can be neglected without causing appreciable error,
Under a high pressure reaction system, the "effectiveness factor'
model might cause significant error,

c. The effect of neglecting radial changes was found to be

not too large, but for a case in which the diffusivities in the catalyst
are very large, the non-linearity of the reaction rate expression
might become more pronounced, and the assumption of négligible

radial changes could give an inaccurate over-all reaction rate.

Since for the system investigated, method P has been found
to be fairly accurate, the method is used in finding the optimum wall
temperature for obtaining a maximum yield, It should be emphasized
that only by including the reverse reaction can such an optimization
study be made, | '
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The control of the exit temperature 1s essential to attaining
the highest conversion, The exit temperature can be controlled by
varying the wall temperature, according to the measured exit
temperature, To obtain the information needed in the design of
such a control loop, method P is used to find the frequency response
of the exit stream temperature with a sinusoidal forcing upon the
optimum wall temperature., The results show that the system is
equivalent to a phase lag network commonly used in regulating
systems.

These are merely two of the many applications for which
method P can be employed. Needless to say, for some cases, the
use of a more rigorous method, such as method G' may be required
to give an accurate solution, .

Although method G' was developed for the solution of
reactor problems, the techniques used in the development of the
method should be helpful in the solution of other problems. In
the method, an implicit scheme is used, with non-linear source
terms linearized to avoid the necessity of iterations. A special
technique is employed to handle the coupling between the stream
properties and the catalyst properties. Time increments are chosen
each time to make the changes in properties within one time incre-
ment almost constant, The result is that method G’ is mbre than
one thousand times faster than the trial methods which employ
the techniques available from the literature.
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VII. NOMENCLATURE

a, : outside surface area of catalyst per unit bed volume;
(sq ft)/(cu ft).

(A), (B), (D), etc. : square matrices of order 5 for stream
equations and 4 for catalyst equations,

Bj eigenvector corresponding to qj.
C heat capacity defined by equation (45); Btu/(cu ft)( °F).
o] column vector of 5 or 4 elements,
Cp isobaric heat capacity per unit weight of fluid; Btu/1b°F.
C2 electrical cabacitance.
D, molecular diffusivity of component k; (sq ft)/sec.
D' : diffusivity of component k in catalyst; (sq ft)/sec.
s |
k 1 <
DMl = XKk .
AEad, : heat of adsorption as defined by equation (43); Btu/1b-mole,
Ein : input voltage.
Eo ¢ output voltage.
) - : unit vector in radial direction (of the bed).
€ ¢ unit vector in axial direction,
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factor defined in equation (30).

drag force per unit bed volume; 1b/(cu ft).
exterior void fraction,

void fraction in catalyst.

transfer function.

time increment, i.e., A6,

heat transfer coefficient between catalyst and stream;
Btu/(sq ft)( 0F)(sec).

turbulent enthalpy flux; Btu/(sq ft)(sec).
/-1,

identity matrix.

vector with components kr and kx.
thermal conductivity of catalyst; Btu/(sq ft)( °F/ ft)(sec). |
Dk/ (film thickness).

adsorption coefficient of component k,

, Li_, Lr’ : periods inr, x and r' directions respectively.

diffusional mass flux of component k; 1b/(sq ft)(sec).
molecular weight of the k-th component.

weight fraction of k~th component in stream.

partial pressure of componént kin ca.talyst; atm,

heat flux plus enthalpy flux due to molecular mass
diffusion; Btu/(sq ft)(sec).
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frequency factor shown in equations (116) and (120).
radial distance from center of reactor; ft.

radial distance from center of catalyst particle; ft.

electrical resistance.

rate of generation of component k per unit volume of

catalyst; 1b-moles/(cu ft)(sec).

1 " !
T & BBy

interstitial mass average velocity in stream; ft/sec.

velocity in the catalyst interior, which is assumed to be
in the radial direction of spherical pellet; ft/sec.

axial velocity outside the exit of reactor; ft/sec.

vector with components r and x.

Greek Letters:

T e

real part of an eigenvalue.

imaginary part .of an eigenvalue,

turbulent diffusivity in radial direction; (sq ft)/ sec.
turbulent diffusivity in axial direction; (sq ft)/sec.

edr + D.

sd.x+ D.

eigenvector of matrix (A), corresponding to 7‘3"

an exponent depending on mechanism of adsorption of
component k on catalyst.
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n | : viscosity; (Ib)(sec)/(sq ft).

¢} ¢ time; sec.

A : eigenvalue of matrix (A).

§j's : .coefficients in equation (114).

o specific weight of stream; 1b/(cu ft),
& : column vector of order 5 or 4.

o viscous dissipation = - (f1 : Vu).
T : shear stress tensor; 1b/(sq ft).
wj's ! cocfficients in oquation (118).
Superscripts:

- :  vector,

! : interior of catalyst.

- : partial quantity.

o :  initial,

Subscripts:

C. ¢ catalyst.

d ¢ diffusion,

e : entrance,

f | : stream,

i . interface between catalyst and stream.,



k-th component.
solid.
: tangential.

molal quantity.

at reference time.,
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APPENDIX I

COMPARISON OF COMPUTER TIME REQUIRED BY VARIOUS
METHODS

A. Various Methods Employed:

Method G':
This is a rigorous method employing a minimum of
simplifying assumptions. |

Method H:
An "effectiveness factor' model is used in this method
in addition to making the assumptions used in method G'.

Method P:

In addition to making all the assumptions employed by
method H, assumptions of negligible radial changes and axial
velocity variations are used in this method.

B. Problems Studied:

Problem (b):
The start-up of the reactor is studied.

Problem (c):
The behavior of the reactor upon loss of cooling with
subsequent restoration is studied,
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Problem (d):
The response of the exit concentration to a sinusoidal

variation of 802- concentration at the entrance is studied.

C. Comparison of 'Computer Time Requirement by the Various
Methods:

The amount of computer time required on an IBM-7094
by the various methods for solving the various problems are
tabulated, the time being shown in minutes:

Problem (b) Problem (¢} Problem (d)
Method G’ 6 7.5 2.5

Method H 2 2.5 1
Method P 0.5 0.7 0.2
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APPENDIX II

A FORTRAN PROGRAM FOR METHOD G' - A RIGOROUS SOLUTION
METHOD TO FIND THE TRANSIENT BEHAVIOR OF A FIXED-BED

REACTOR FOR THE OXIDATION OF 302

Notations

Stream equations are written in the form:

3G 3G 3G 22G . 2G

g +EX —

= B — +C — + ER
KB or X a7 =

+DM1ch +DxG

at

Catalyst equations are written in the form:

A 2

3G _ oG °G

-a-§ = B -a—r-, + ER ;;2 + SOURCE .
ADT : time increment; A6,

ADT1 : w(4ae).

- (A-1)

(A-2)

B, C, D, ER, EX, DM1 : coefficients in equations (A-1) and (A-2).

!
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BTEMP : temporary variable used in carrying out integration.

CM1, CM2, CM3 : coefficients in finite difference equations.

DM : right-hand-side of finite difference equations.

DR : or | |

DX oAx

DR1 ; Ar'

D1 : coefficients in boundary conditions for catalyst equations.
D2 : same as above.

DT : A8 to be used for the first increment.

E : allowable increase in G per one time increment,

FU : F factor in the momentum equation.

G(K, M, N):. K = 1: weight fraction of SO, in stream.

2
= 2: weight fraction ‘of 803 in stream.

= 3: weight fraction of 02 in stream,
4: temperature in stream,

= b: pressure,

N R R R ORA
i

6 to 11: partial pressure of 802 in catalyst; 11 for

surface,

K = 12 to 17: partial pressure of 803 in catalyst. 17
for surface.
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K = 24 to 29: temperature in catalyst; 29 for
surface of catalyst.

GENT : entrance concentrations, temperature and pressure.
M ¢ radial inde#. |

MR1 : number of radial increments.

MR  : MR1 + 1.

N : axial index,

NX1 : number of axial increments,

NX ¢ NX1 + 1. |

QTEMP : temporary variable used in carrying out inteération.
RP : radius of catalyst.

RW . radius of reactor tube,

RATE]1 : factor in reaction rate expression,

SPWT : specific weight of fluid in stream,

, TIME :,total time from beginning, 6,

™ : wall temperature. : _ ,
UX cu
p-4
UR Py,
W : weighting factor,
Input

Card No. 1: NOGO, NOT, (213)
K NOGO = 1, start from time 0.
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If NOGO = 2, read in previous solution and continue
from that. .
NOT: number of increments before stop.

Card No. 2 : RATE1, DT, (2F10,0).
Card No. 3: E(1to 7), (7TF10,0).

Card No. 4 : E(8 to 9), (2F10,0).

Card No. 5 : RW, XEXIT, RP, (3F10,0).

" Card No. 6 : GENT(1 to 5), TW, (6F10. 0).

Print-out

E(1 to 9)

RW, XEXIT, RP
GENT, TW

TIME, Stream properties, Properties at catalyst interior for the
location M= 1, N= 2. For other locations, results are printed

out every 10 time increments only,

Flow Diagram

The flow diagram of the program for method G' is shown in
Figure A-1, |
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‘ Startl
Read NOGO, NOT, RATEl, DT,
E, RW, XEXIT, RP
Y
(Print E, RY, XEXIT, RP
1

Set initial conditions for Kel,4
Set NX, MR

Call GATc(to calculate coefficients
for catalyst equations)

(i.ead and print GENI, TW )

Set initial conditions for K=5,29

NOGO=2

{

Read in prev:louo) * =1

solution
| I

(Write starting.time &G )

Call UXFU(to find u, & F)
Call IMID(to evaluate DML & D)
Call SADT(to pick 49 )

Set GL = G - '

1

Call GINT(to integrate from L
toL + 1)

Time = Tdme + AQ

NOTIME = NOTIME + 1

Call PRINT (print time & G)

'NOTIME € NOT _

NOTIME = NOT
(Punch Time & G )

Figure A-1, Flow Diagram for Method G',
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COMPLETE FORTRAN PROGRAM FOR METHOD G'
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APPENDIX III

TRIAL METHODS WHICH FAILED TO SOLVE THE REACTOR
PROBLEM

In the following, the various trial methods which failed to
solve the reactor problem are listed. The notations used in Part
IV of the thesis will be employed. |

Method 1.

This method can be represented by:

=

r1” B 1" ha,vg (D)(¢£+ 1% . 1) * 2havg () Ce (4-3)

(A-4)

1

whex_'e havg 5

For the case where all the eigenvalues of (S) are positive,
this method was found to be more efficient than any of the methods
proposed in the literature. For such a case, the method is as
accurate as Crank-Nicolson method. The former is faster than the
latter as the former does not require an iterative scheme, while
the latter does.

If the matrix (S) has a negative eigenvalue, the method is
always unstable. This can be seen from the relationship between
- an eigenvalue of (S) and its corresponding q for the case (S)>> (D):
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. |
=94 -1 -
Agh = 45 . (A-5)

For the reactor problem, the eigenvalues of (S) can be
negative, and the method is unstable.

Method 2.

This method is expressed by:

—

@, 1-%,=hD0.58, ,+0.5%)+h(S)(1.5¢:-058, ,).

(A-6)

For the case (S) >> (D), the relationship between an eigen-
value of (8) and its corresponding q is:

=9 -9 -
)\Sh 1.5g- 0.5 ° (a-7)

It is easy to see that }\sh >~ 1 is required for the method
to be stable, This criterion is twice as severe as that for the
method in which the source terms are evaluated at the beginning
of each time increment.
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Method 3.

In this method the stream equations are integrated from
time £ to time 4+ 1/2, with the source terms evaluated at time £ .
Then the catalyst equations are first integrated from time [ to
time £+ 1/2, with the source terms evaluated at time £+ 1/2,
and further integrated to time £+ 1, using the same source terms
evaluated at time {+ 1/2. Stream equations are then integrated
from time £+ 1/2 to time £+ 1, using the source terms at time
A + 1. In this way, no iterations are needed. This scheme looks
logical but was found to give wave-like oscillations, unless
extremely fine time increments were used.

- Method 4.

The method is shown by:

By, x- B = whiA)) S, *+ wh(A,) &, + whid) &, . (A-8)
o, - Gy = wh(a)E,, ¥+ whiA) G, **+wh(Ag)F, . (A-9)

B

Kokk _ = T % P Kok *
rw - wh(Al) . w * wh(Az) (IZH W wh(A

Py %k
3 By e
(A-10)

k'eu

'I’£+ 1° q:/( = h(Al) q’,£+ w* + h(A2) q’£+ w**"' h(A3) '1'14- *;** * ‘(A-11)
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Where (Al) Ecorresmnds to the transfer between stream
and catalyst surface, (A,) &to axial transfer, and (A3)E>to radial
transfer. S

This four-step method can be reduced to an equivalent
one-step method shown below:

8y, 1- & = [0+wh? (A (&) + wPh? (A) (Ag) + W' (A,) (&)

- W (A) (A) (Ag) T h (&) [wd), +(1-Wd]1. (A1)

An exact stability region for this method is hard to find,
but some qualitative observations can be made: This method
should be stable for the case where the eigenvalues of (Al) are
negative. For the case where the eigenvalues of (A1) are
positive, the method would be unstable unless time increments
are very small.,

In the above, only major methods have been listed. Those
methods which are just slight modifications of the above methods
are not listed, I methods 2, 3 or 4 had been used, a transient
solution of a typical problem investigated in this work would have
taken at least a couple of hundred hours of computation time with
an IBM-7094 computer. In contrast to this, method G' took only
a few minutes of computer time,
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PROPOSITIONS
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PROPOSITION I

This proposition is concerned with a graphical solution of
transient heat transfer in cylindrical coordinates.

Schmidt developed a method in which temperature is plotted
against the logarithm of the radius, and the method has been in
common use for a long time. The proposition is that more accurate
results can be obtained by the use of another function w (n) in place
of Zn (n) used in Schmidt method. _

The equation describing transient transfer of heat in the
radial direction is

%o
|
215

(P-1)

o
@
]
A
4
+
by

where T = temperature

K = thermal diffusivity
r = radial distance
0 = {ime

The following finite difference approximations are commonly

used:

T - T '
m+1, n m, n (P-2)

AB

=
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T _ Tm,n+1_2Tm,n+Tm,n—1 (P-3)

Ar

. T - T
oT m, n+1 m, n-1
- S ’ (P-4)

where m refers to time and n to space.
Substituting equations (P-2), (P-3) and (P-4) into equation

(P-1) and taking Kéo 1 , there is obtained, after rearranging
a2 2
_ 1 1
Tm+1,n™ T | _le,n+1
n+ 4 +n—l T2
2. 2

P S | | (p-5)

n +__I m, n-1 )
2

i

Equation (P-5) can be exactly satisfied by plotting T against w (n).

w (n) is such a function of n that Aw 1= i » bW 4
' n-s 1 n+%
2 n-+- 2
2
= 1 , as is shown in Figure P-1, This function can also be
n + E . . \

approximated by
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w@ =4nn)+0,035n" 1. 834 (P-8)

Equation (P-86) indicates that Schmidt method is inadequate
for small values of n, i.e., toward the center of the cylinder,
The new method has been shown to give betier results than Schmidt
method,*

\ m,n-1

o m+1,n\’
% ' Tm,n+1
% Aw Aw \
g n—l n+l
12 172
I S
2 2

wn)= nn+ 0,035 n" 1,834

Figure P-1

%
See Student Report No., 954.
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PROPOSITION II

It is proposed that a horizontal distillator as shown in
Figure A be employed in high vacuum distillations, and that a
conventional bubble-cap distillation column be modified as shown
in Figure B so that a much shorter column can be used without
causing flooding.

In Figure A, q's are perforated plates dividing the
horizontal distillator into a number of compartments in series.
The purpose of the dividing plates is to rcducc the mixing of the
vapor. The liquid in each compartment is sprayed at the top in
order that the vapor-liquid contact will be sufficient. The liquid
level is maintained by leaving the separating plates unperiorated
at the lower part as shown in the figure. Since the vapor is not
bubbled through the liquid as in a bubble-cap column, the pressure
drop of the vapor upon travelling through the distillator is much
less than the corresponding drop through a bubble-cap column,
Therefore, the horizontal disti]laior should be more suitable for
high vacuum distillations than a bubble-cap distillator.

Figure B shows a vertical bubble-cap column, in which the
conventional down-spouts have been replaced by the simple level
controllers utilizing the fact that a centrifugal pump is far more
effective in pumping the ligquid than the vapor. Other kinds of
liquid-level controlling devices can be used. The centrifugal pumps
should keep the liquid-level in each tray fairly constant. Ina
conventional bubble-cap column, a large liquid head in a down-
spout is required to overcome the large pressure drop in the vapor.
The result is that the height of the column is undesirably large. If
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the liquid-level is controlled as is shown in Figure B, the spacing
between two consecutive trays can be smaller, and the total
column height would be smaller, with a possible net saving in

the total construction cost, as the cost of the liquid-level
controlling device should not be expensive.
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PROPOSITION III

This proposition was originally made in May 1962, and
was concerned with the article by Reamer, Opfell and Sage,
which appeared in L E, C, 48, 475(1956). The article deals with
measurements of liguid diffusivities with a diffusion cell shown
in Figure P-2.

It was proposed at that time that equation (2) in that
article be modified to take into account the transfer across the
interface of the less volatile component. It was also proposed
that the diffusion equation describing the problem be solved by
transforming the space coordinate into a new one with the origin
at the liquid-vapor interface. The diffusion equation based on
the new coordinate system was derived but was not solved by the
writer, .

Since that time, things have changed in the Chemical
Engineering Laboratory. Graue* has given a complete solution
of the problem. In the following, the solution to the problem
will be obtained in a different way.

The partiail differential equation describing the problem
can be written in a fixed coordinate system as

ack azck
(=5 )5 = Dy ¢ ) . (P-17)
00 ‘x ckj axz 8

%
Student Report 993
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gko( 8) of ocomponent k added
L per unlit interface area per
Il unit time

vapor

x - X(9)

liquid

Figure P-2, Diffusion Chamber"
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Boundary conditions are:

8=10, o =0 . (P-8)
o
x=X(0, o =o0 . (P-9)
* 'k kb
X= @ 0 =0 . (P=10)**
[o]
T o*
dxX(9) - . g ,:rk"' - (P-11)
de. ke 1- Vk( Od - ‘V_m Ujd
x = X(9),
0, o, V, * h
i (ky _dX e |y, kd 'ki
» ) T - * .
ckj *ox / df k, ke 1 sz O1d V;( %4 J
(P-12)

Let the solution of equation (P-7) subject to the boundary
conditions be

o, =0 - Berfc X . (P-13)

sk .
This condition is used for simplicity.
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It is obvious that equation (P-13) satisfies the: differential
equation, so, if it also satisfies all the boundary conditions, it
would be the solution of the problem.

The boundary condition (P-10) is automatically satisfied.,
Using boundary condition (P-9), there is obtained:

o, =0 -Berfc( X(e)e)l/i .
]

k k

(P-14)
b o Lz O

Since equation (P-14) has to be satisfied for all 8, there
follows:

X(8) /
1732
2 (Dyy; ©)

= A = constant . (P-15)

Substituting equation (P-15) into equation (P-14), there
is obtained:

(% = %o

= = meﬁcx . (P"16)
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Differentiating equation (P-13) with respect to x and
combining with equations (P-15) and (P-16), the gradient at
the interface is obtained '

| 2
aC'k _ (Ukb- O'ko) I e-‘}\. (P- 17)
S )at X(e) ~ T J/m (Dckj 8)l/Z \erfch) ° |

Substituting equations (P-11) and (P-17) into equation
(P-12), there results

DT, -2 Vit O = % )
(6, -0 ) CKJ(G )=x% 1- —2 4 .
kb kd 8 \erfch ke l'vkl ckd_vjﬂ do
(P-18)
Now, from equation (P-15)
X(6) = 21 (... 9)/2 (P-19)
ckj *
Therefore
D ..
ax() _ o /_cki | ' (P-20)
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Combination of equations (P-20) and (P-11) gives

-2 Foox
Dckj - Tke *Vm . . (P-21)
R A 1-‘?7'kl de-vjﬂ. do

Substituting equation (P-21) into equation (P-18), there
results

V*
9 - =% ) TT¥ Tcki-v ¥ G
) b "o ke kd~ ‘it jd
Ae  erfc A= .
V., ¥ (o, -o)
kt kT kg

The right-hand side is known. X can then be found from a
plot of {A e’L2 erf ciM]vs. M. Such a plot can be easily made.

The value of A so found is then substituted into equation
(P-21), and there is obtained
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0 - M ckj 6" 12
R, = v . . (P-23)
- 3 - ¢
1 vk(?_ Ok d vj‘l cj P

Integrating equation (P-23) with respect to time and
squaring the result, the expression for the diffusivity is obtained

m2 vk * 12
D . = * : ~ * ® (P-24)
ckj 4)\2 9 1- Vk % Vj crj d

To compare with the approximate solution given by Graue,
equation (P-24) is combined with equation (P-22) to become

. 2 2 V, ¥ (o ~a_) 2
D mm (e)“ erf c(¥) 1 k K, Rq
s = - % - * .
K 46 (0, -0 ) 1=V * o~ V57 %
b o (P-25)

This is the expression for evaluating the diffusivity from
measured quantities m and 6.
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NOTATIONS

o

ckj

: Chapman-Cowling diffusivity of component k with respect

to component j.

r%kc : rate of addition of component k per unit area per unit time,
m : total amount of component k added,

X : coordinate shown in Figure P-2.

X(8) : coordinate of the interface,

O : weight of component k per unit volume,
9 ¢ time,

Subscripts:

0 : initial.

b : bubble point,

d : dew point,

Superscripts:

%

: average quantity.
: partial quantity.
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PROPOSITION IV

This proposition deals with the finite stage model of Deans
and Lapidus for solving transient problems in fixed-bed reactors.

For the case of no chemical reactions and non-porous
packings, a differential balance for a trace component can be
written as follows, if the axial Peclet number is 2:

ox pe,, or
where C : concentration.
Npe : radial Peclet number.
r
r . dimensionless radial distance based on particle
diameter.
x  : dimensionless axial distance defined as above,
t : dimensionless time based on d p/u.
d D : particle diameter,
u : axial velocity.

To solve equation (P-26), they proposed a finite stage
model consisted of a two-dimensional array of perfectly stirred
tanks. _Théy showed the equivalence between the differential
balance and the finite stage model only for the one-dimensional

case. For the two~dimensional case, they performed a numerical
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experiment to choose the required radial increment size which
would bring the model into exact agreement with an experimental

value of Nper* .
In the following, it will be shown that the choice of the

radial increment size can be determined mathematically without
resorting to experimental calculations, In this way, the
analogy between the two models would be more clearly seen,
The merits and demerits of the finite stage model will also be
discussed.

Let the size of a mixing stage be (&x) (Ar), and let m
represent the radial stage number, and n the axial stage number,
As an approximation to equation (P-26), the finite stage model

employs
dCy\ _
(31.:_)“'; %, n-1" Cm, n °? (P-27)
_ 1 Ar
Where@mn-l"(i'ﬁ)c 1
’ m-ﬁ, n-1
1 Ar
+ ('2' + ﬁ)C 1 . (P-28)
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From equations (P-27) and (P-28), it is seen that in the
finite stage model, the right-hand side of equation (P-26) is
approximated by the concentrations at three mesh points only.

In connection to this, it is noted that by using a central difference |
method, the approximation requires the concentrations at five
mesh points,

Using Taylor series expansions for two independent
variables, there result:

hx ,3C Ar 9

C =C - =7 (=) - 5 (=%)
m-—%,n-l m,n 1! *x’‘m,n 2x1 ‘or m, n
(w)? | 3% (ar)? | %C (ax) (ar) 3°C
rhov () reyr (T3) 0 T

’ X m, n or m, n

£ 08, ad) (P-29)
) x| 3C Ar C

¢ 1 -Cm,n“ﬁ('a'f)m,n+2x1 (ar)m,n
m+§,n—1
L e w? oy () (a) 3°C

21 axz m, n 14 arz m, n 2 oxor

+ 0 (xS, ard) . (P-30)
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Adding equations (P-29) and (P-30), neglecting terms of
order (Ax°, Ar°) and dividing through by 24x:

2 2 2
(D), (DBl (2

ox’m, n" 2 2 2

ox Séx ar- m, n
C +C -2C
m+%,n—1 m—%—,n-l » B
= . (P"Sl)
25x

Subtracting equation (P-29) from equation (P-30), and

dividing through by r(Ar)Npe
r

1 1

1_ (%) mig,n-l m-grolow o (pes2)
N ) r(Ar) N rN qXor .

per ' 'per per

I we take Ax = 1, Ar =/="— , equations (P-31) and (P-32)
pe .
I

can be combined to give:




1,C 1 Ar

= (=) = C (5+%=)

rtor‘m,n m+_21_,n_1 2 8r
.0 (1o G 1 %

m-%, q-1 2 8r m, n ere X or

r

. NP B (P-33)
cﬁm, n-1 m, N ere axor *

Combining this equation with equation (P-286), there is
obtained:

1 ?%C

ac\ _
(’&‘t’)ﬁ; Qm, n-1" Cm, n” IN o, oxor :
r

(P-34)

Tzhis is identical to equation (P-27) excluding the term

1 @

rN oxor ’
pe.,

model, If central difference approximations were used for all

which is therefore, the error of the finite stage

the space derivatives in equation (P-28), errors of such a method

3 3
would be [(Ax)2 il + (Ar)2 -a—g , Which is smaller than the

8};3 or

one for the model,
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There is one definite advantage in the finite stage model:
No boundary conditions are needed at the reactor exit so that a
steady state solution can be obtained by integrating from the
entrance toward the exit without using any iterations. If the
model were not used, the same thing would be possible only by
neglecting the axial diffusion., However, the model has a serious
disadvantage that as many axial increments are required as there
are catalyst pellets in the axial direction. The total number of axial
increments required is in the order of hundreds for actual reactors.
This is much more than what is required by accuracy considerations.
Besides, for the same size of space increments, the finite stage
model is less accurate than an usual numerical method employing
central difference approximations.,

In conclusion, the model is of doubtful value in reactor
calculations.

Reference: Deans, H. A and L. Lapidus, A. I. Ch, E, Journal,
6, 656 (1960).
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PROPOSITION V
In a non-isothermal non-isobaric multicomponent system,

it is proposed that the transports of material and energy by

turbulent mixing be described in the following analogous ways:

o) dnk

(mdk)y = -0c T - (P-35)
0. dH
(Hd)y hnd - Q edy a‘}'f‘ . (P'36)

where (f dk)y : mass flux of the k-th component in the y-direction'

due to turbulent mixing.

(I% d)y : enthalpy flux in the y-~direction due to turbulent
mixing,

o . specific weight of the mixture,

S dy : eddy diffusivity in the y-direction.,

n : weight fraction of the k-th component.

H : enthalpy of the mixture.

By using the concept of enthalpy diffusion expressed by
equation (P-36), an interesting relationship can be obtained.

Since

- bz SH -
dH = deT + 1}3 denk+ ( 5 )T,n ap (P-37)
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by combining equation (P-36) with equation (P-37), there is
obtained

(P-38)

Substituting equation (P-35) into equation (P-38), there
results

(P-39)

Equation (P-39) is identical to the one frequently used in
the literature, except that the last term is not present in the
latter.



