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ABSTRACT

The effect of gravity on the earthquake response of one degree
of freedom yielding structures is studied by subjecting them to earth-
quake-like excitation. Interest .is centered on the time required for
yielding to progress to the point of collapse. The results show that
the effect of gravity is to increase significantly the development of
permanent set over that occurring when gravity is ignored. Because
the gravity e'ffect increases as the deflection grows, the permanent
set increases rapidly just prior to failure.

A étatistical study of the time to failure for elasto-plastic
structures indicates that the average time to failure is inversely pro-
portional to the square of the ratio of the earthquake strength to the
lateral yield level of the structure, implying that an earthquake of
short duration would have to possess significantly higher accelerations
than a longer earthquake in order to cause failure of a given structure.

It was found that for the range of periods considered the average
time.to collapse for the yielding structures was independent of period.
For the bilinear hysteretic structure the results show a large increase
in the time of failure when the second slope increases from zero,

Calculations made with simultaneous vertical and horizontal
excitation, and with recorded strong earthquake accelerograms,
indicate that the thesis results, obtained from artificial earthquakes,
should be applicable for strong earthquake excitation.

Comparison of the.results with those of a one~-dimensional
random walk indicates that on the average a yielding structure will

collapse after the input of a certain amount of energy.
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I. INTRODUCTION

The response of structures to earthquake motions is usually
studied under the assumption that the structure is able to resist
strong shaking without failure. In general, this approach implies
relatively small displacements, and therefore the influences of
gravity upon the response can be disregarded. However, when
interest is focused on the possibility of failure and collapse under
the action of strong earthquake motions, gravity effects become
important because the weight becomes the predominant force when
the displacements approach the failure range,

When a structure is designed so that yielding will occur during
an earthquake, this admits the possibility of permanent displace-
ments and eventual collapse; therefore it is of primary interest to
know how near to failure the yielding structure is. This makes it
necessary to take gravity into.account when studying the response.

It is the purpose of this thesis to study the influences of
gravity on the possibility of collapse and failure of structures during
earthquakes by e#amining the failure of simple yielding structures

under earthquake excitation.

Analytical Approach

For many problems in the dynamics of structures, a linear
model does not give an accurate representation of the situation and it
is necessary to consider nonlinear behavior if a realistic representa-

tionn of the phenomenon is to be found.. For some nonlinear problems
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it is possible to show that the nonlinear terms do not change the
character of the response much from the linear solution, and
methods have been developed to find approximately equivalent linear

(1,2) for which the solutions may be rapidly obtained.

systems
Analytical methods also have been developed to obtain approxi-

mate solutions for nonlinear dynamic problems in which the non-

linearity is small in a certain sense. These methods include the

(3),

method of slowly varying parameters'™’; the method of equivalent
(4) (5,6)

linearization'™’; and perturbation techniques
For systems with a few degrees of freedom, the use of analogue
computer techniques can often provide an adequate solution for linear
and nonlinear vibration problems. Analogue computer techniques
also can be adapted to relatively simple systems when analytical
techniques will not provide a closed-form solution, However, if the
significance of the nonlinearity is increased and at the same time the
number of degrees of freedom is raised, the possibility of solving
nonlinear vibration problems by analogies disappears for practical
purposes. The only tool that is available for those problems that do

not as yet allow analytical solutions, and for which the use of

analogues is not practical, is the high-speed digital computer.

Linear Analysis

Because of the nature of the excitation, analogue and digital
computers have been used extensively in earthquake engineering
research. However, digital computations of earthquake response

of structures are not done routinely in practice because of the
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computer time and expense, and also because the values of stiff-
nesses, type and amount of damping and various structural details
usually are not well known.

For cases where detailed calculations are not practical, the
concept of a response spectrum has found wide use in the analysis
and design of earthquake-resistant structures(7’8’9’10’ i1, 12). The
spectrum is the maximum response to an earthquake of a linear one-
degree of freedom oscillator plotted as a function of the viscous
. damping and the peri.c;d of the oscillator. Response spectra are most
cofnmonly made of the velocity, displacement and acceleration, but
spectra of other quantities, such as shear and moment are useful
for design and analysis of particular structures.

Particularly useful for design are the average velocity
spectra and average acceleration spectra, which have been constructed
using the 8 components of the four strongest earthquakes recorded in
America up to 1959(12). These average spectra are used to estimate
the maximum velocities of a one-degree of freedom structure in
response to earthquakes of a specified strength,

Decause of the simple relations existing beiween spectra, the
maximum displacements and accelerations in response to earthquake
motion can be approximated from the velocity spectrum results(io’“)
and other respons'e values also can.be approximated. Spectrum
techniques can be applied also in the design of multistory structures

when modal techniques are applic:able(1 2,13,14,15,16) .
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Yielding Effects

R. W, Clough“n reviewed the dynamic effects of earthquakes
on structures and compared the theoretical results with those obtained
when using the lateral force provisions recommended for the Uniform
Building Code by the Strﬁctural Engineers Association of California
(SEAOC). It was shown that it is necessary to use a yielding model
for the structure if an agreement between the theory and the perfor-
mance of buildings subjected to earthquakes is expected.

It is not practicable to design structures to resist all possible
earthquakes elastically and the currcnt philosophy of earthquake-
resistant design is to insure that a well-designed structure remains
elastic only for moderate earthquake shaking. For great earth-
quakes it is expected that the structural members will experience
relatively large amounts of yielding, but that collapse will not occur.
Thus, some yielding is expected in well-designed structures when
subjected to strong earthquakes such as El Centro, 1940, Chile,

1960 or Alaska, 1964,

The elasto-plastic and bilinear hysteretic models are the most
common yielding relations that have been used for the purpose of
describing observed behavior of structures subjected to earthquake-
type excitation. T, K. Caughey(3’4) and W, D. Iwan(is’ig) have
provided important contributions to the better understanding of the
dynamics of these yielding models. Using the elasto-plastic and other
yvielding models, several authors(zo y21,22,23,24) he-a.ve investigated the

yielding one degree of freedom structure subjected to earthquake
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motions recorded by the United States Coast and Geodetic Survey and
to artificial excitations.

The first computations of the response of a multidegree of
freedom elastoplastic structure to earthquake excitations were done
by G. V. Berg(zs). Figure 1.1 is taken from his results and shows
that an appreciable permanent deformation developed after a
relatively short period of time (10 seconds). It is noted that Berg's
results were obtained neglecting gravity effects., Studies by other

(26,27,28,29)

authors indicate similar results

Gravity Effects

Gravity effects in the response to earthquakes are negligible
for all practical purposes if the structure remains linear. However,
for structures which permit excursions into the plastic range when
subjected to typical earthquakes, gravity effects can be of primary
importance(30). If, during a strong earthquake, a structure begins
to yield and drift as shown in Figure i.1, it is apparent that if the
drift continues to grow, the structure will eventually collapse due
to the effects of gravity. Therefore, although relatively insignifi-
cant for small deflections, gravity must eventually become the
dominant force if collapse occurs.

Probably the first examination of the effects of gravity on
earthquake response was that by Arthur C,. Ruge(31,) who discussed
the gravity effect in the determination of earthquake stresses in

elastic structures with the aid of models, and made estimations of

the changes in period and deflection of a simple vertical cantilever
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loaded at the end with a weight.

L. S, Jacobsen(31) also considered gravity effects when he
analyzed the behavior of a single mass nonlinear structure by the
phase-plane-delta method. A phase-plane solution for large defor-
mations of the structure subjected to a horizontal symmetrical
ground displacement pulse was presented and an appreciable perma-
nent set was obtained. These two references are the only studies
where gravity was considered explicitly in the computation of the

yielding response of structures.

Examples of Gravity Effects

In a broad sense every structure that has collapsed during an
earthquake is an example of the effect of gravity, but to understand
how gravity affects earthquake response, it is informative to examine
structures where failure, though near, has not yet occurred.

During the great Alaskan earthquake of 1964, a simple garage
structure was severely damaged as can be seen in the foreground in
Fi‘vg»u‘re‘l.. Z. In essence, the structure consisted of a heavy wooden
roof supported by the steel pipe columns shown in the figure. After
the earthquake the heads of the columns were displaced horizontally
by 10-5/8 inches and the angle they made with the vertical was about
6.3° (0.11 radians). It is clear that the garage suffered large defor-
mations in the yielding range and it appears that gravity was in this
case on the border of producing collapse.

(33)

Recently'””’, in the vicinity of Matsushiro, Japan, it was

reported that several houses inclined about four degrees in the



*oyenbyjies URMSRIV $96] OUl I03Fe 2Injonilg afeien °7°] eandig




-g-
direction of the street faced by each house., The final inclination
resulted from consecutive increments produced by several earth-
quakes., It appears that in this case, the effects of three successive
earthquakes were similar to that expected from one long earth-
quake. Presumably, further shaking would eventually cause collapse

of the houses.

Organization of the Thesis

In section II of the thesis a simple model is selected for
studying the influence of gravity on the response and failure of
yielding structures. A selection of the important parameters is

(33)

made and artificial earthquakes are selected as appropriate
excitations for the major part of this study.

Section III of this study presents numerical calculations of
response and failure for selected values of important parameters
for the one-story structure when artificial earthquakes are used as
excitations, This section is closed with a discussion of the general
trends in the digital response.

In section IV, sample calculaticns for real earthquakes are
presented and a comparison is made wilh the results obtained in the
previous section, An investigation is made of the influence that the
change from an elastoplastic to a positive bilinear Hystéretic yielding
model has on the time for collapse, using the artificial earthuakes
as excitations., Exploratory computations were made to see if the

introduction of the vertical component of earthquake motion has an

appreciable effect upon the time for failure for an elastoplastic
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structure.

Section V introduces a problem that has the same general
characteristics of the one under study and that is solvable, i.e.,
a random walk with bias. An ‘analys is of this random walk problem
is carried out and an exact expression for the continuous probability
distribution is obtained. The mean and variance of the position as
functions of time are presented. In the same section upper bounds
for the displacement of the structure subjected to earthquake-like
excitation are obtained and a discussion of the suitability of such
bounds are included.

The thesis is concluded with a genéral discussion of the

results obtained.,
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II. RESPONSE OF SIMPLE YIELDING STRUCTURES

A, Formulation and Analysis

The analysis of the behavior of linear structures(31) when
subjected to earthquake excitation in the past has been focused on the
amplitudes of vibration rather than on the failure of the system.
Since a linear structure can fail only by buckling and since most
structures are not near the buckling range, it is natural to omit con-
sideration of gravity in this type of analysis.

As a matter of analytical convenience it has been customary
to use simplified, linearly damped models such as the one shown in
Figure 2.1 to represent structures and these simple structures have
been analyzed for their responses to different excitations(35’36’7' 8,

For the system shown in ‘Figure 2.1 the equation of motion is given by:
mx + cx + Kx = G(t) (2. 1)

in which m .is the mass of thé structure, K is the stiffness {(constant)
and c¢ is the constant for the dashpot considered in the model.

The model given in Figure 2.1 is not able to reconcile theory
with the observed behavior of structures subjected to strong earth-
quakes, and about a decade ago‘ a realistic modification of the model
was initiated. A nonlinear yielding restoring force-deflection relation
was introduced to represent more nearly a real structure. The most
commonly used models were the elastoplastic and the bilinear hyster-
etic relations. Figure 2.2 shows these nonlinear restoring forces;

and the corresponding equation of motion is:
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mx + cx + KF(x,x) = G(t) (2.2)

In these nonlinear relations XY represents the displacement at which
yielding begins.

Ryo Tanabashi(zo)

was one of the first to study the nonlinear
vibrations of structures subjected to destructive earthqué,kes. Using
the elastoplastic relation for the rgstoring force characteristic, he
concluded that slight modifications in the restoring force curve had
little influence on the dynamic behavior of the structure. Subse-
quently, different models of yielding, other than those shown in
Figure 2.2, have been used by different authors(37’38).

In a real structure, the development of yielding depends in a
complicated manner on the axial load and the horizontal component of
the shear force and bending moment, as' well as the geometry of the
cross section, It is possible to study these effécts by approximating
the interaction between these forces to determine the point at which

yielding begins (39)

» but in this thesis this is not done. Rather, the
yvielding characteristics are simplified by considering the yield point
to be a function of the bending deformation only, and effort is concen-
trated upon the basic mechanism of earthquake response and collapse
of the yielding structure.

When a strong earthquake causes large deformations in a
yielding structure, it is possible that the structure will not return to

the original vertical position when the motion ceases, thus permanent

deformations can appear. These residual displacements are
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attributed to the nonlinear character of.the structure and are called
permanent set.

Knowledge of the influence of gravity upon the development of
permanent set is important, since the yielding structure will collapse
if the permanent set reaches values near the displacement that pro-
duces failure statically. Structures represented by models like that
shown in Figure 2.1 ignore gravity, as is seen in Equations 2.1 and
2.2,

A model of a simple structure that considers the effecf of
gravity is shown in Figure 2.3(a). The girder is considered to be
infinitely rigid with a total mass 2m. The columns are also assumed
to be infinitely rigid but without mass. The connections between
columns and the girder and between columns and the foundation are
represented by nonlinear springs that operate in torsion to generate
corresponding nonlinear restoring moments., Together with the four
equal springs are included four equal linear viscous dashpots.

Figure 2.3(b) shows the model in a deflected position.

When gravity is neglected, i.e., when the s’tructure can be
represented by Figure 2.1, then the mass 2in moves only along a
horizontal line. The inclusion of gravity replaces the horizontal tra-
jectory by a curve (it is understood that there is only planar motion)
and for the special case of the simple model of Figure 2.3, this
curve is a circular arc, as is seen in Figure 2. 3(b).

In essence, when gravity is not neglected, the change of height

of the mass of the structure modifies the equation of motion for the
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system under consideration. The reason for selecting a circular
path is to eliminate the cbmplicated relation between vertical and
horizontal motions that exists if the elastic curves of the bending
columns are considered. Fortunately, for most practical cases
the important features of the deflection path can be approximated
very closely by a circular arc. The equation of motion for free
oscillations of the undamped structure of Figure 2.3 can be written
with the help of the free body diagrams shown in Figure 2.4; |
Figure 2.5 shows the convenience of the model selected
through the direct relationship between W, the vertical displacement
of the rhass, and ¢, the angle 6f rotation of the columns. From

the geometry of Figure 2.5 it follows that:
w=4(1 - cos ¢) (2.3)

in which £ is the height of the structure,  is the vertical dis-
plécement of the mass, and ¢ is the angle thé.’c the columns make
with the vertical.,

The sy.rstem shown in Figure 2.4 is in equilibrium when the

D'Alambert forces are included, which leads to the following equations:

2M - Hii cos ¢ - V& singp =0 (2.4)
2M - Hzl cos ¢ - VZE sin ¢ =0 {2.5)
2mz +H +H, =0 | | (2. 6)

2Zmw - 2mg + v, V2

n
(=]

(2.7)

2M+ (V) - Vz)d/Z =0 (2.8)
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in which d is the length of the girder, It is interesting to note that
Equation 2.8 depends on the length of the girder and is needed only
if the individual forces Vi’ VZ’ H1 and H2 are required. For the
purposes of this study this information is not necessary.

The geometry of the structure gives,
z=4 sin ¢ (2.9)
New force parameters H and V are defined as folilows:

H, +H, =2H
(2.10)

<
+
<
13

2V

The introduction of H and V and the use of Equations 2.4 thz;ough
2.7 will give an equivalent system of equations in which interest is
fucused on the evaluation of the angle as a function of time, Simplify-
ing the equivalent system, and recalling that M = KiF(dJ ,(.é) = %F(d},é)

produces:

¢+ S5 F(,6) - fsing=0 (2. 11)

mi

in which F(¢,¢) is a nonlinear function of the type described in
Figure 2.2. If the structure has linear damping and is subjected to

a base excitation u(t), the equation of motion becomes

e 2c . '
¢+m7é+ __IS_ZF(¢,¢)-%Sin¢+—Z(—Qcos¢=O (2.12)

mi

The initial conditions for earthquake excitation are assumed to be
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¢(0) = 0
(2.13)

¢(0) = 0

In Equations 2.11 and 2.12, the influence of gravity is represented
by the term (- -% sin ¢).

'~ Assuming that the deformations are small and that the struc-
_ture remains elastic, equation 2,11 for free oscillations can be

simplified because under these conditions:

sin ¢ = ¢
(2.14)
F(¢,4)= ¢
From 2,11 and 2.14 it is found that:
¢ +(-—K—-2- -§)¢=0 (2.15)
mi '
The period change produced by gravity is given by
To
T = (2.16)

in which To is the period when gravity is not considered.

From the last relation it is seen that the effect of gravity in
the linear range is to increase the natural period of vibrations.
For most structures g/ is much less than K/m/! 2 because

equality of these two terms implies that the structure will fail by
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elastic buckling.

The effect of gravity in the fundamental period of vibration
of multistory structures is also negligible in general, That this is
the case can be seen from examination of the linear structure shown
in Figure 2.6. It is assumed that the mass and story height are
constant throughout the structure and that the deflection of the first
mode can be approximated by a straight line. To determine the
effects of gravity on the fundamental period it is necessary to find
the work done by gravity during the vibration, The gravity effect

can then be approximated by the application of Rayleigh's principle(40)

(K'E')max = Umax - Wmax (2,17)

in which K, E. is the kinetic energy of vibration, U is the strain
energy stored in bending of the crﬁ'umns , and W 1s the work done
by gravity.

For this calculation the interfloor displacement can be ap-

proximated sufficiently well by

(1 - cos -’-’f—‘) (2.18)

in which £ is the story height, A is the amplitude of interfloor
deflection and x varies from O to £.

Defining Af as the change in interfloor height during the
vibration it is easily shown for the deflected shape given by

Equation 2, 8 that



LA NN

N-1

ANNINNN RN Y

m

!

Figure 2.6. Building Model.




24

1r2A2

161

Al =

(2.19)

Because the mass and interfloor displacement are constant through-

out the structure the work done by gravity is
W=mgAN+N-1+N-2+... + ] (2.20)
This series can be summed and using Equation 2.19 it is found that:

2,2
_ mgmr A

Wmax = =357 N(N+1) (2.21)

The interfloor displacement is A, so the velocity of the nth floor is
vn-n(T)Asm(T)t (2.22)

in which T is the fundamental period of the structure.

The maximum kinetic energy of the structure then becomes
N 2
- m Zp2( 2T
(K.E.)__ = = Z n“A%( ) (2.23)
n=14

Equation 2.23 can be simplified to yield

1 2 2mC
(K.E) =13 mA (—Tﬂ) N(N+1)(2N+1) (2.24)

Substituting Equation 2.24 and 2,21 in Equation 2.17 yields:

1 Umax 3g

27 1 2 T 3721(2N+D)

T 3T mAZN(N+)(2N+1)

(2.25)
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But the first quotient in the right side of Equation 2, 25 is 1/T§, in
which T0 is the fundamental period of the structure if gravity is not

considered. Using To’ and solving for T produces

T = (2.26)
' V 3gT
1 - 327N

Comparing Equation 2.26 for N =1 witthquation 2.16 shows
a difference in constants: 32 compared with 4rr2. This difference
arises because a circular path was assumed in the derivation of
Equation 2.16 whereas a trigonometric path was used to obtain
Eqﬁation 2.26,
' For moderately tall buildings, the magnitude of the gravity
- effect implied by Equation 2.26 can be estimated bf letting £ = 10 ft,
g=32 ft/secz, and 'I'o = O.OBN(41). For these values, Equation 2.26

becomes

T = (2.27)
L. N° |
E20(2N+1)

From Equation 2,27 it is seen that for most multistory structures
the gravity effects are negligible, for example, if N = 20 the
increase in period is about one per cent.

For extremely tall structures, Housner and Brady(42) found
that a good estimation of the fundamental period of American build-

ings was obtained when a linear relationship between period and \J N
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is assumed. An approximate period relation of this type for extremely
tall structures would be T = \/N/?.B for N = 20, with this,
Eguation 2.26 can be used to estimate the effect of gravity in the.
period of oscillation for very tall buildings, Taking { = 10 ft,

2
g = 32,2 ft/sec” and T, = \/ N/7.8 produces

T
)

T = (2.28)

‘ﬁ- ,
) 1
52(1 +

SN

It is clear that for N > 20, the influence of gravity on To
is of the same order of magnitude as for N = 20, i.e., about one

per cent.

B. Examination of the important parameters

Equation 2.12 describes the response of a one story elasto-
plastic structure subjected to earthquake excitation, including the
effect of gravity. Before doing any numerical work with Equation
2,12, it is advantageous to transform the equation to dimensionless
form. The equation of motion for the system under consideration

was shown to be:

X 2 ot -
012¢+ KZF(QS,(ﬁ)- -%sin¢+%cos¢=0 (2.12)
mdl

-mt

The concept of critical damping can be introduced into this equation
in the same way as is done for a linear structure. To obtain an

expression for the critical damping relation 2,12 is linearized by



-27-

requiring ¢ to be sufficiently small. From the resulting equation

it is found that

c, - 4
1 K
S = > - & (2.29)
mi mi
The natural frequency of small, linear vibrations is given by
g = —KZ - & (2.30)
mf

From 2.12 and Equations 2.29 and 2.30 follows:

oe C . .
¢ + ?(“&‘i)%‘ﬁ - Esin ¢ +—£~2-F(¢,¢) +%cos ¢ =0 (2.31)

 Defining a.Y as the acceleration that will statically produce yielding
in the four equal springs of the structure under consideration, and

writing the equilibrium equation for lateral yielding gives

2K1¢Y = mgld)y + mlay (2.32)

where:
qSY is the yielding level for the springs and

Algebraic transformations of 2,32 gives:

a
¢Y= ""g'z ' (2.33)

where
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g 1
A= =R (2.34)
lwz -1
o mgl .

Replacing u = ;1'0'('7') in 2,31, where u is the r.m.s. value for the

input, and introducing also the notation:

€4
< °n
ic -
(2.35)
wt=T

the following equation is obtained

2 ° - 'y .
ijg + 2n 3L+ ¥ (4,) +;i.2_ {F(¢,¢) - sin ¢ + 8 a{r) cos ¢}= 0
o

{(2.30)
where the gravity effect is represented by the term (--—%— sin¢).
. w
. o}
Note that F(¢,¢) is not defined unless the yielding level qSY is

given.
Equation 2.36 is a convenient dimensionless form of the

"equation of motion of the simple yielding structure studied in the

. : . Ve
thesis. For convenience, a resume of the dimensionless parameters

used in the equation is given below

T = wot , time n= L ,» damping

|
[
(¢]

-
.

, acceleration A

o IS
I
o~

» length

Gﬂkﬂ’

» yield level ¢ , displacement
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It is informative to give typical values of the selected dimen-
sionless parameters for real structures. Table 1 gives the approxi-
mate values for .:1-1 for the four strongest earthquakes recorded in
America until 1959, (2%

TABLE 1
R.M.S. Acceleration. Real Earthquakes

Earthquake Date —1'1 [ ft/sec 2]

El Centro 1940 2.01
El Centro 1934 1.35
Olympia 1949 1.76

Taft 1952 1.44

Using 2.33 and selected values of N and ay/g, corresponding
angles of yielding, in radians, are obtained and are given in Table 2.
Because A is a measure of how close the structure is to elastic

buckling, representative values of A\ are less than unity.
TABLE 2
Angles of yielding

by
2 a a a .a a
A= g/l < =0.,03 ¥=0,05 X=0,10 —£=0,20 —L=0.30
o g g g g g
0.021 0.00063  0,00105  0.00210  0.00420  0.00630

0.100 0.00300 0.00500 0.01000 0.02000 0.03000
0.484 0.01450 0.02420 0.04840 0.09680 0.14500

It is noted that for typical values of ay/g and \, ({)y is

'small, generally less than 0.10 rad.



-30-

Angle of static failure

It is possible to determine the angle for which static collapse
of an elasto-plastic structure will occur. The maximum angle for

which the structure is statically stable is defined by:
Kqﬁy = mgl sin IQSSI : | (2.37)

in which qSS ‘represents the angle of static failure. After some

'algebra and using relation 2. 33, it .fO].lOWS that
qS = ¢ + A
sin = ‘ 2,38

For typical values of the parameters, the right-hand member of
2,38 is smaller than unity and if qSS is such that sin ¢Sf’= qSS, which is

generally true for real structures, then

. a
= X
o 1=, + - | (2.39)
or
3 . |
T ~ 1+ X (2.40)
y

Relation 2.39 was used to estimate the angles of static
failure given in Table 3 for the same values of A and ay/g that
were considered for Table 2,

The angle ¢S divides the static range of ¢ into stable and
unstable portions and it is expected that it will indicate also the
é.pproximate ranges of stable and unstable motions in the dynamic

casce



-31 -

TABLE 3
Angles of Collapse
¢S
a F=4 a a a
A 2L =0,03 L=0,05 -X=0,10 —Y=0.20 —X=0.30
B B g g 8

0.021 0.,03063 0.05105 0.1021i0 0.20420 0,30630

0,100 0.03300 0,05500 0.11000 ¢, 22000 0.33000

0.484 0.04450 0.07420 0.14840 0.29680 0.44500

For typical values of ay,/g,_'Table 3 shows that the anple for

which collapse will occur statically is rather small.

Selection of the excitation

Unfortunately, very few strong earthquakes have been recorded
in the past. Among recent destructive earthquakes throughout the
world, such as Mexico (1957), Morocco {1960}, Chile {1960}, Iran
(1962), Skopje (1963}, Alaska (1964), and Perid (1966), due to the
small number of instruments available, a recording of the ground
motion was obtained only for Perd (1966),

When recal carthquakes are used to study the statistics of
response and failure of structures it is difficult to interpret the
results obtained. Recorded earthquakes have durations, maximum
accelerations, intensities etc. that vary widely and it is inappropriate
to consider recorded earthquakes as samples from a single ensemble.
When artificially generated ea.z':'thquakes are considered as excitation
for structures, it becomes possible to make more meaningful
statistical studies of response and collapse, because artificial earth-

quakes can be constructed with specified duration and intensities,
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A simple statistical model for earthquake accelerograms has

(23}

been derived and artificial earthquakes have been generated on a
digital computer. The generation process began with an approximate
white noise, i.e,, a process with a power spectral density constant
over the range of intercst, The white noise was formed on the digital
computer from a sequence of uncorrelated Gaussian numbers with a
mean of zero and a variance of unity. The white noise was then
passed through a linear filter, producing artificial earthquakes which
are sections of a stationary Gaussian random process. The pro-
perties of the linear filter were determined from the average un-
damped velocity spectrum described in Reference 12,

Eight 30 second accelerograms are available(34)

, and these
artificial earthquakes, plus selected real earthquake motions, are

the excitations selected for use in this study.
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III, DIGITAL RESPONSE STUDY

A, Selection of Parameters

In a digital response calculation such as this, where many
parameters may influence the response, it is necessary to try to
select a limited number of cases that will provide adequate infor-
mation about the phenomenen, and yet at the same time cover a range

) *
of structures that occur in practice, The selection of the important

parameters is guided by the equation of motion of the model selected

for this study:

H

2 . .
LY ram @ T 4 {F 08 - simg 4

(T} cos QS} =0 (2.36)
dT

wfs

It is seen [rom Lhis equation that the parameters of the problem in-

clude the fraction of critical damping, the frequency or period of the
structure, the yield level ¢ (implicit in F(¢,4) ), the height 4

of the structure and the intensity and form of the earthquake excita-

tion. Each of these parameters will be discussed in turn.

Excitation
When a statistical study is undertaken using earthquake-like
excitation, it is convenient to utilize many samples from an ensemble
of earthquakes., Since real earthquakes do not belong precisely to an
ensemble, bul have characleristics which suggest their classification
in different ensembles, i.e,, different duration, intensity, magnitude,
distance between the site of recording and the epicenter, quality of

the soil at the site where the accelerogram was obtained, depth of
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the hypocenter, etc., and considering that the number of accelero-
grams recorded is quite small(g) » it was thought preferable to do
the basic part of this investigation using an ensemble of well defined
pseudo-earthquakes(34).

The first problem that appears is how to characterize the
excitation with the minimum number of parameters, when the
inter;ast is focused on the time elapsed between the beginning of the
carthquake and structural collapse, if it vccurs. For the artificial
earthquakes, which are samples of a simple random process, it
can be shown that the r.m.s. acceleration is a suitable parameter
for measuring their severity(ZB). In addition it is clear that the
duration of the earthquake has an important role in the collapse of
elasto-plastic structures. In particular, too short a duration does
not make clear the relative safety of the structure as a function of
time. Ideally, each calculation should be carried to failure, if
failure can occur, so one can make an estimate of the nearness to
collapse at the end of shorter excitations, The strong phases of
recorded U. S, earthquakes have not exceeded 25 sec and even in a
great earthquake it is thought that the duration of the strong portions
of the shaking would not exceed one minute. Therefore, 60 sec was
chosen as the basic duration for the artificial earthquake excitation,
Eight 30 seconds-duration accelerograme of artificial ecarthquakes
are available for the principal part of the digital response calcula-
tions. They are reproduced on computer cards using a step size,

At = 0.025 sec. Two of the articifial earthquakes are shown in

Figures 3.1 and 3.2. As mentioned in Chapter II, these are
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generated on a digital computer by passing an approximate white
noise through a filter selected to give spectral properties similar
to those of recorded accelerograms,

For most of the computations of the response and failure of
one degree of freedom yielding structures, four 60 sec long artificial
earthquakes were used., These were constructed from the 30 sec
earthquakes by joining pairs. The pairs were formed arbitrarily
by joining artificial earthquakes 1 and 2, 3 and 4, 5and 6, and 7
and 8.

in view of the fact that this study is based mainly on the
response of structures to artificial earthquakes, it is approI')riate
to give some detailed information about them.

The r.m.s.I acceleration for each of the 8 artificial earth-
quakes was computed as a function of time, in order to see how
quickly a stationary value is approached and to verify that the r.m.s,.
acceleration obtained for each eavrthquake was rvepresentative of the
ensemble, Figures 3.3, 3,4 and 3.5 show the r.m,s. acceleration
for three artificial earthquakes as a function of time. It is seen
that the r.m.s. approaches its stationary value rapidly, generally
being within = 10% by the end of 5 seconds. In table IV,‘the rem.s.
accelerations and zero crossings are given together with other
characteristics of the 8 artificial earthquakes(23). From the above,
it is concluded that the r.m,s. acceleration is a suitable measure
of the severity of the artificial earthqualkes,

The ensemble of pseudo-earthquakes, whose principal

characteristics are given in table IV, have an average r.m.s.,



{ conN wiﬁﬁ@ﬂaud
T IPIOPRITY 10§ woy
1% TIRIS]DIIY S ¥
2t

‘gt @Hﬂ@@«m

_ o . i

S0

~38=

14|




*Z °*ON JEnbuyiied TETOPTMY I0F UDHRIL[IDDY S W'Y ‘H°€ 2Ind1g
G2 o2 G| oY S

: 1 ]

-39.

(009 {

2085/44 00D ‘s'w'J

20

90

80




Gé

'8 *ON Sqenbyjxem [e}d153IV 10 WOWPEIS[DDIY S W'Y

0¢

*g g eandyg

Gl ,
IC - ._ 1 1 O_— m ﬁwO
Aummvw ‘
30
o =20
(= I
|
. o
|
0 -
b -
' ~ .
| 3 -0
ol
w
__
P W90
i]
— S A
v/\/\{/\../\/\ ul




-41-

£°g €L €1 g°L 0°L G*L 8L 6°9

F°90T 2°00T Q°T6  6°I0T S°T10T 7°'%6 F°0¥1
87 "¢
BE'E BT°€. 68%7 €£2°¢€ 2Z°S  66°7 6%*c  70°¢
9°66 -S°00T 8°TOT 6'86 €°S0OT €°00T 71°86 G°S6
L69°0

#6970 00L'0 60L°0 689°0 *EL°0 869°0 %89°0 $99°0

B L 9 g 14 € [4 1
I9quINN WeIZoIas00y

so1)redoxg oyenbuired [eRIDIFIIIY

Al HTAVL

s3urssoxo 010z o8eIdAY

weiforsrosoe sfurssoad oIsy

¥*G6 Ajrsuojur afeisae jo aejusciag

£yrsuajur winajoeds oferoay

q.o
o A [a]
(7P (og'm0) s .T IS
g*2
£31sueur wrnrysedg

*s*witI aFeraaAr jo afejusdiag

*s'uta afersay
© 13
h - = L] L) -
oo 5, (o] < o
1 om

waly



-42-

acceleration of 0,697 ft/secz.‘ This intensity was chosen to repre-
sent earthquakes whose average damped velocity spectra corre-
sponds closely to the standard spectra computed by Housner(iz). A
velocity spectra for one of the artificial earthquakes is shown in
Figurc 3,6,

One way to vary the severity of the excitation is to define a
parameter K, a multiplicative constant used to produce a pseudo-
earthquake of a desired intensity from any sample of the enscemble,
As reported in reference 34, a value of E = 2,9 produces an
ensemble whose strength is comparable to the El Centro 1940 earth-
quake, and an E = 2.1 corresponds to ;m ensemble whose strength

is like that of the Taft 1952 accelerogram.

Period of Vibration

Four different values of the period for small amplitudes were
selected which cover most of the range of interest in the earthquake
problem. The values considered are T =0,5, 1,0, 1.5 and
2.0 seconds (wo = 211'/'1'}. It is noted that the present study is not
aimed at real one-story buildings., A rangeof T=1/2 to T =2
seconds was selected because it includes the periods of most multi-
story buildings. This thesis represents a first step in the analysis
of the effects of gravity; a prelude to the study of multi-story
buildings. Although the analysis may apply to some special one-
story structures, most modern one-story buildings arc constructed

in such a way that collapse is not a problem,
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Damping

Because of {ime and computational limitations the amount of
viscous damping was not varied in this study., The choice of the
damping was the result of the following considerations: Tt is not
advisablc to consider undamped structures because 1) it is known
that response statistics are very sensitive when no damping is
assumed and 2) real structures always have some damping, On the
othgr hand, a large amount of viscous damping‘is unrealistic and
may mask the influence of other parameters on the collapse.
Finally, based on the experimental results obtained by Nielsen{43)
from vibrations of multi-story buildings, 2 per cent of critical
viscous damping was selected as the value to be used throughout

the present study.

Height of the Structures

When gravity is ignored, the response of a yielding structure
does not depend on the length of the columns, £, However, if interest
is focused on the collapse of the structure and gravity is included in
the analysis, it is clear from the equation of motion 2.36 that the
length of the column will have an important influence on the failure
of the structure under consideration. Several values for ! were
selected when analyzing its effects on the t_ime necessary for a given
yielding structure to collapse. The values of £ used in the calcu-
lations are £ =5, 10, 15, 20, 25 and 39 ft. This ranpe extends well

below and above the heights of typical story heights in structures.
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Yield Level

It proved convenient to use two parameters, “bY and ay/g,
to describe the yield level of the structure. These {wo parameters
are related by equation 2.33. ay/g represents the lateral yield
level of the structure and for most of the work reported in this
chapter two values of this parameter were selected: ay/g = Q.05
and ay/g = 0.10, A value of a = 0.05g means that a horizontal
force equal to 5 per cent of the weight of the structure will just pro-
duce yielding. In addition to these two values a few others were
used for special calculations. As will be shown below, the use of
another dimensionless parameter will permit the results obtained
for ay/g = 0.05 and ay/g = 0,10 to be extrapolated to other cases
of interest.

The yielding level for the springs, qby, represents the angle
at whiéh the structure starts to yield. The values of d)y selected for
this study arc obtained from 2.33 and the previously selected values

of the lateral yield level.

Angle of Static Failure

Dynamic collapse of the yielding structure will be defined as
the state in which the angle that the columns make with the vertical
exceeds ¢s' the angle of static failure, and does not again become
less than that angle. The angle of static failure is defined by rela-
tions 2,38 and 2,39, and the values considered below are those which

correspond to the previously selected values of ay/g and qﬁy.
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Equation of Motion., Final Form

When E and a new parameter, € = }:.."gr/:_-).Y are introduced,

the equation of motion 2.36 may be written:

2

L4+l 420, +iy {F16.6) - sin g} + 24 otn) cos s =0 (3.1)
8]

The significance of the parameter 8 will be discussed later in the

chapter.

B. Response and Failure of the Elasto-Plastic Structure

Kquation 3.1 was used in the numerical integration of the
response of the yielding structure to the artifical earthquakes. The
computations wére done on an IBM 7094 digital computer, using both
a 4th order Runge-Kutta method(44} and also a third order Runge-
Kutta method(44’45). The Runge-Kutta method was used because of
the self-starting feature and the long range stability. In no case was
the integration step used longer than 1/20 of the natural period for
small oscillations. Because further reduction of the integration step
size did not modify the response of the structures, it was concluded
that the step size was suificiently small.

The influence of gravity in the response of elasto-plastic one
degree of freedom structures near collapse can be made clear by an
example. From the four 60 seconds-duration pseudo-earthquakes
available, one was selected (3+4) and used to excite a structure with

the following characteristics:
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T=10,5 sec
£ =40 £+
E =3.45

(3.2)
qSY = 0,00204 rad

= 0.1
3y g
¢s = 0,10204 rad

From 3,2 it can be shown that the structure selected is of practical
interest, Having E = 3.45, the r.m.s. acceleration of the pseudo-
earthquake is 2,42 ft/secz, which represents an earthquake about
20 per cent stronger than the most severe recorded in the United
States {see table V},

A value of ay = 0.1g is realistic and within the range of
values considered in design. A period of half a second and a height
of 10 ft represent a structure that is relatively flexible but not im-
possibly so,

The values of qﬁy = 0,00204 rad and ¢s = 0.10204 rad imply
that the 10 ft tall structure will begin yielding when the deflection at
the top is 1/4 inch and will collapse statically when the deflection
reaches i2.2 inches,

The results of four cases are presented in order that the
significance of the results will be clear. For all cases the excitation
was artificial earthquake {3+4).

In case a), the structure is linear, i.e., qby wa..s selected
very large, and gravity was neglected. In case b) the structure is

still lincar but gravity is considered., For case c), the structure is
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elasto-plastic and defined by 3.2, but gravity is again neglected.
Finally in case d), the structure is elasto-plastic as in case c) and
the effect of gravity is included.

In Figures 3.7, 3.8, 3.9 and 3.10, the responses of the
structure for these four cases are given as a functiop of time, The
ordinate, in radians, is the angle that the columns make with the
vertical. |

From these figures it is seen that for the structure defined
by Equation 3.2, the effect of gravity upon the response in the linear
case is negligible. This was also the result found from similar
calculations for other linear structures and other excitations. For
the elasto-plastic structure with gravity neglgcted (case c) appreciable
drift of the equilibrium position is obtained and at the end of the
excitation a permanent set remains.

A different type of response was obtained in the case of the
elasto-plastic structure with gravity. It is seen that the eifect of

gravity is to increase signifif:antly the developrnent of permanent
set over that found .when gravity is not considered, and in this case
the displacement eventually exceeds qﬁs, the failurc angle. Because
the gravity effect increases as the deflection grows, the effects are
accelerative and the permanent set increases rapidly as the failure

angle is approached,



’
o
=3

1

*£31aea8 ou feanjoniys xesurf ‘(p+¢) "burreq *31v o3 osuodsoy ‘¢ °Indy

-

09 0S o  og 02 ol
1 1 1 ] j | 1 Y o T
(299) 900
e e T
200=u  bB1o=k, SbE€=3  140I=I 238G =1 900
| L




*f31aead gipm 'eanjonays xeoul] ‘(P+¢) *byaey *ixy o3 ssuodsay "g°¢ aan3d g

09 0G Ot 0] 0¢ Ol
1l | | { : I 900-
(29s) }
o |
< |
ReTo)
N0.0 =Uu 0_.0Nh0 Gp'€ =3 ._L.Oﬁn% Ummmdh.—. OO

-



+£31a213 ou *aanyonaye oyyseid-03seL *(b+¢) ‘buyiteqy 1y o3 9suodsayg ‘p°g sxndy g

09 06 O% 0¢ 0z 0l
< ﬁoamuh i 1 S 1 1 1 .@OOI
&y

é\ei : 5%3%%?0

200=u  BIO=4  GpE€=3 10Ol 295G0=1 900
v
S
2010 = ¢




ab2-

*f31aead yiim aanjonajs oyseid-o3selq °(p+€) ‘bwizeq 31y o3 suodsayg ‘Qf°€ axndr g

ces)y G2 02 ol
é m

1 }<:<=<<<.<3>5;><<é w0
<00
900 200 = u
e d 600 B 10 =4p
6 St's =3
o b0l =f
o0 c0=d
120

- -—




-53-
C. Analysis of Preliminary Results

It would appear that, when the response and collapse of
structuresare being studied, the intensity of the excitation should
be discussed in relation to the strength of the structure under con-
sideration. More precisely, it seems reasonable to expect that a
structure with a high yield level subjected to strong earthquake
excitation would collapse in about the same time as a structure with
a lower yield level subjected to a proportionally weaker earthquake.
That this is indeed the case for ¢ sufficiently small can be shown
by writing equation 3.1 as:

2 L]
d d P coa E afT
-d—'rg + Zn-di,;_ + (1+X)¢Yf(%‘y N 3;’)- A sde = = -a—Y-Té¢Y_g—’ (sfe]] (b (3.3)

where
; ¢ &
Flp,d) = ,
60,1 ()
y 'y
writing z = ¢/¢Y" and taking
sing=¢, cos ¢=1 (3.4)
equation 3.3 becomes

dzz

dz . E  o(7T)
82 45,82 " = - LAY .
d.,-z an'r + (14\)f{z,2) - \=z =78 8 (3.5)

For a given structure, A\ is a constant depending only on
the geometry; therefore with the conditions that sin¢ = ¢, cos ¢ = 1,
the response z will not be affected by a simultaneous and equal

magnification of the intensity of the earthquake (E)} and of the yield
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level {a_/g).

y

It can be seen from 2,33 and 3.4 that the cffect of varying E
and ay/g proportionally is that the yield level qby and the response
$ are modified proportionally, However, the response, z, is
unchanged and, hence, the time of failure remains the same, pro-
vided that conditions 3.4 are satisfied. The range of this approxi-
mation was investigated by computing the exact responses of three

structures having the following properties:

T

1.0 sec

£ =10 ft (3.6)

E

E7

Using artificial earthquake (7+8) and Equation 3.1 the response was

calculated for the following three pairs of values of E and a.y/g:

E=6,9
a){

a = 0.30
Y/g
E=2.3
b) ; (3.7)
= 0.10
aY/g
E=1.15
c}
\ = 0,05
ay/g

For all three the ratio E/(a.y/g) is equal to 23.
The angle of yielding xf)y and the angle of failure ¢S , are

determined by 3.6, 3.7 and the definitions given in Chapter II:
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¢ =0,0246 rad
a) § y

d}a = 0,3246 rad

¢ _=0,0082 rad
b) ; Y (3.8)

qbs = 0,1082 rad

¢ =0.0041 rad
c) ? Y

qu = 0,0541 rad

It should be noted that the ratio of the angle of stati:é failure to the
angle of yielding has the same value, d)s/éy = 13,2, for the three
cases, | .

The results of the computations can be summarized as
follows: 1) The time for failure in all three cases was 35.5 sec
within a tolerance of 0,2 per cent; and.Z) The fact that the three
times oi failure were the same 1s a verification of the fact that ¢
was small enough so that the motion is described by 3,5. During
the 35.5 seconds that preceeded the collapae, there were plastic
deformations only for about 2,0 seconds, i.c., lcss than ¢ per cent

of the time. The largest values of ¢ were obtained in case a):

= 1.02 , cos¢=0.95
max
It is concluded that for most cases of interest the time to
collapse depends only on the ratic of the intensity of the earthquake
to the lateral yield level and not upon their individual values. The

parameter 9 = E/(ay/g) » wWhich is the ratio of the relative strength
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of the earthquake motion to the strength of the structure, is thus
of special significance in interpreting the responses.

The values of the parameter E are given in Table V for the
earthquakes listed in Table I. The durations and r,m.s8. accelera-
tions were Laken from reference (23),

Recalling that the yield levels of many real structures
typically lie between 0.05g and 0.10g, it is possible to estimate
the range of values of 0 that are of interest for real earthquakes
and real structures. On the basis of the data in Table V and the
above values of lateral yield level, it is conciuded that for most
practical cases, 0 will lie in the range between 20 and 60. The
value of 20 was obtained for the 1934 El Centro earthquake when
0.10g was selected for the yield level and the value of 60 resulted

when the 1940 El Centro earthquake was used with a yield level
of 0,05g,

D. Calculations of Response to Artificial Earthquakes

1. Introduction

Four sixty second pseudo-earthquakes were used for excitation
in order to study the statistical fluctuations of the time of collapse
when the remaining parameters were not varied, Values of the
parameter E were varied between E_. =1.i5 and E = 6,9

min max
to represent the range of interest of the earthquake intensity. The
response and the time of éollapse of simple elasto-plastic structures
were determined numerically by integration of equation 3.1,

The ranges of the parameters selected for this stuﬂy were
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based on the analysis presented in Chapter II, Particular values
of the parameters were used and general trends were investigated,
Appendix I gives a complete list of the elasto-plastic cases solved
numerically , and includes angles of failure, q,'as + time of collapse
tys together with other characteristics of the structures. For the
elasto-plastic oscillator, a total of 169 response calculations was

made,

2. Effect of Different Inputs

At first, the iength of the columns was kept fixed at £ = 10 ft
and the response and failure of different structures were obtained for
four values of the period, T = 0.5, 1.0, 1,5 and 2.0 seconds and
for four values of the parameter 8, 0 = 23.0, 6 = 34,5, 0 = 46.0 and
0 = 69.0, for the four 60 second duration artificial earthquakes.
‘Calling t, the time of failure for a given structure when subjected
to an artificial earthquake and ?0 the average of t, over the en-
semble of earthquakes when the structural parameters are kept
constant, it is of interest to learn if the times of failure for individual
samples of the ensemble of earthquakes will show a dependence trend
upon the period of vibration., In Figures 3,11, 3,12, 3.13 and 3.14
the results are shown plotting the ratio between the individual and
average timés of failure ?0 as the ordinate, The abscissa is the
value of the natural period of the structure for small oscillations.
Fach line plotted represents the results for a different artificial
earthquake., In these figures no consistent trend is apparent in the

responses to individual earthquakes, as the period varies from 1/2
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Figure 3.11., Normalized times of failure,
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Figure 3.12. Normalized times of failure.
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to 2 seconds.

It is clear from the results, however, that large dispersions
can be obtained when different earthquakes of the same intensity are
utilized. This indicates the necessity of obtaining statistical
averages of the times of failure,

To obtain a better insight into the dispersion obtained with
individual earthquakes the ratio to/-t_o was plotted in Figure 3.15 as
a function of O, where to is the time of fatlure for the case con-
sidered, and -t-o is the average time for failure for the corresponding
natural period. It is seen in Figure 3,15 that there i3 no strong trend
in the dispersion when the period changes from b. 51to 2.0 seconds,
four artificial earthquakes are considered, and 06 is kept constant.
When € varies between 23 and 69 there appears to be a tendency
for the dispersion of the results to increase somewhat., This indi-
cates more variations in times of failure of rather weak structures
subjected to strong earthquakes {large 9) than for sirong structures
subjected to weak earthquakes {small 9},

Rather small values for the time of collapse t, are obtained
when.large values of O are considered. It is noted that for small
values of t, the r.m.s. acceleration for different artificial earth-
quakes is not well represented by the parameter E and this fact is
thought to be responsible for the increase in the dispersion observed
in Figure 3.15.

It can be said that Figures 3.11, 3,12, 3.13, 3,14 and 3.15
show no marked dependency of the time of failure upon the period of

the yielding structure. DBecause of this,it seems permissible to
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combine the data for different periods, but for singles values of 8,
Figures 3.16, 3.17, 3.18 anci 3.19 are histogras for 0 = 23,

0 =34.5, 0 =46 and 6 = 69. The ratio to/?o for all periods

is plotted as the abscissa and the frequency of occurrence as the
ordinate. Although the dispersion variea, no conclusive trends are
observed in these four figures as B varies between 6 = 23 a..nd

8 = 69. In Figure 3,20,a histogram is presented constructed from
the data contained in the four preceeding pictures. In this figure
-t_o is not the average from the previous four figures, but is the '1—:'0
appropriate to each different 4.

From vthe above discussion it is concluded that %_0 does not
depend strongly on the period T and Figure ‘3. 15 suggests that 1:0/'1':—0
is also independent of the period. IHowever, ?o is strongly dependent
upon ©, decreasing as © increases, Some dependence of to/-t_o |
on 9 is indicated from Figures 3.15 and 3,16 through 3.18, but it is
thought that the relation is too weak to be determined from the

statistics available.

3. Dependence of -1:_0 on O

It was shown above that the time of collapse for a yielding
structure is strongly dependent on 0, Using the same data contained
in Figure 3,15, but seﬁarating the results ohtained for the four values
of the natural period, it was possible to s.tudy the dependence of the
average time for collapse ?0 upon the parameter 6 when the amount
of viscous damping was constant, and the. length of the columns was

fixed at 10 ft.
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Using four artificial earthquakes, some extra calculations

were done un the digital computer for one particular value of the

period of the yielding structure, i.e., T = 1.0 sec, Those cases

correspond to the values of 8 = 90 and ©

17 and the purpose of

those computations was to define for a morc cxtensive range the
dependence of ?o cn 6 for fixed £, n and T.

From Figure 3.21 it is clear that the relation between ?o
and O is nearly hyperbolic. For each value of 8, Figure 3.21
shows ?0 and also the range of individual times of collapse.

In Figure 3. 22 the dependence of ?o on O is studied for the
four values of T considered, and from the picture it seems that if
Fo depends on the natural period of the structure then that influence
is comparable to the statistical dispersion of the data. The empirical
formula describing the data of Figure 3.22 will be discussed later in
this chapte;r.

.Assuming that the average time for collapse does not depend
appreciably on the period of the structure, it is legitimate to con-
sider all the data contained in Figure 3,22 as belonging to the same
ensemble., New averages for the time of failure were computed across
the ensemble of earthquakes for the several values of the natural

period studied and the results are also plotted on Figure 3. 22.

4} Effect of Story Height

The inﬂuencelof the height, £, of the columns upon time to
collapse was next studied. An investigation was made to see.if

changeé in ¢ alone would produce significant variations in ?o' The
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influence of { was investigated for different natural periods of the
structure.

For the purpose of this study values of 5, 10, 15, 20, 25 and
30 ft of the height of the columns £ were selected and a lateral
yvield level of ay_/g = 0.05 was used together with an intensity of the
earthquakes given by E = 2.3. This gives a value of 0 = 46 for all
cases considered in this particular analysis. Computations of the
response to the ensemble of artificial earthgquakes were done for six
different values of £, and the average time of failure across the
ensemble was determined for each of the cases. The results; that
were obtained show an almost perfect linear relationship between i
and the average time of failure -{o‘ It should be noted that there was
an appreciable dispersion of the values of t, for a particular artificial
earthquake. The computations were done for structures whose
periods of oscillation for small displacements were T = 0,5, 1,0,
1.5 and 2.0 seconds. The results, shown in Figure 3,23, indicate
a linear relationship between average time of failure and the height
of the columns when the rest of the parameters are not varied.

Since four values of T were used for the selected range

of £, it is possible to check if there is any significant dependence
of ?:-0 on T, when only £ is varied. All the data available for
0 = 46 were used to prepare Figure 3.23. From that figure it is
con-cluded that if a clear influence upon the average time of failure
could be assigned to the period of the structure, it is such that it is

not more important than the fluctuations obtained with different
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samples of the ensemble of artificial earthquakes, and it is thought
that many more samples would have Lo be used before being able to
determine the effects of T on the response statistics.

The trend of %—o toward zero as { decreases,which is
apparent in Figure 3.23 arises hecaunse the lateral displacement
necessary to cause failure diminishes as £ decreases, and it takes
a correspondingly smaller time for the displacement to reach this

value,

5) -Correlation Analysis

It is informative to do a study of correlations and regres-
sions(46’4?’48) in order to decide if the influence of T on the time
of failurc should bec considecred, or if it may be climinated as being
less important than the statistical dispérsiOn of the data used for
the analysis.

Based on the results obtained from the digital response, a
statistical study was made with the objective of finding ocut if the
variables £, T and 0 are adequate to estimate the time of collapse

for simple elasto-plastic structures. The relation that has been

studied is of the form
T = Af @B Y (3.9)

where A, a, B, y are constants to be determined.
It is convenient to introduce the variables:
X1 = log t, X3 =log O

erlogl X,=1log T

4
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that transform 3.9 into a linear relation.
Firet cxamincd was the total correlation between X1 and

each one of the variables X5, X3 and X4. The resulting correla=

tion coefficients are:

Ty = 0.656
1‘13'—‘-'0.681 (3.10
1'14 = 0. 118

From 3,10 it follows that £ and 0 are suitable variables to
estirnate .{0’ and that the influence of T (r14), is small.
It is informative to examine also the coefficients of partial

correlation and of multiple correlation. They are given below and
the formulas that define the three different types of correlation coef-

ficients are presented in Appendix II.

L Tya.3 % 0.964 r12_4=-0.7656
rg 5= -0.966 ris 4= -0.683
r14.2= g.121 1'14.3: 0.141
Tra.3 " 0.042 T34.2 " -0.025 (3. 11)
Yo af 0.968 Tis of -0.370
r1'4'23= 0.375 R1(23}= 0.981
R1(24)= 0.662 R1(34)= 0. 688
R1(234}= 0,983

where rxy' , Tepresents the degree of correlation between the two
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variables x and y when the other variable 2z has an assigned value.

In the same way r is the correlation between x and y when

Xy.2zv

the variables z and v are kept constant, Rx(yz) denotes the coef-

ficient of multiple correlation between x and the variables y and =z

and R represents the coefficient of multiple correlation

x(yzv)
between x and the variables y, z and v,

From 3.11 it is seen that the multiple correlation coefficients
where the variables XZ and .X3 appear simultaneously have a value
that is practically unity, reinforcing the conclusion that £ and @
are suitable variables to estimate the average time for collapse of
simple yielding structures.

A comparison of r

12,3 30d Typ a4 Tyg 5 and Ty o4

and R1(24) shows conclusively that the influence of T on

12,4
the time of failure is {within the data obtained in the digitial response
of elasto-plastic structures) less important than the statistical dis-

persion of the data used for this work. Finally, a comparison of two

multiple correlation coefficients R and R

1(23) 1(234) * shows that
nothing will be gained by trying to express the time of failure Eo

as a function of £, 6 and T; it suffices to use £ and 9.

6) Regression Analysis

Considering the conclusions of the correlation study, it is of

interest to find a regression of the type:

— a, B ]
t0=B£' 16 1 {(3.12)

Using all the information obtained from the digital response
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calculations, presented in Appendix I, it is found that

40.98

where £ is measured in ft, ?0 in sec, and 0 is dimensionless.
Observation of the regression presented above suggests a

new relation that may be more suitable [or the estimation of the

time of collapse of simple elasto-plastic structures. The relation

is:

The numerical determination of C gives:

T = 20004 (3.15)
o) 92

which is valid for values of { in the range 5 to 30 ft and for 6

ranging between 20 and 70, Figures 3,24 and 3.25 show the observed

values of '1_:—0 on the abscissa and the camputed values of '1:_0 accord-

ing to 3.13 and 3.15, respectivély, on the ordinates. Observation

of Figures 3.24 and 3.25 shows that relation 3,15 is adequate to

estirmate the average time of faiiure for the elasto-plastic structure.
Considering that the statistical study was made with only

four different artificial earthquakes, and recalling that large dis-

persions were obtained when estimating average times oi collapse,

it seems of no advantage to use a relation more complicated than

35.15 tp estimate ?0.
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For 0 = 46 relation 3,15 gives

t, = 0.945 4 (3,16)

The straight line represented by 3.16 is plotted in Figure 3,23 and it
is seen that 3,16 gives an adequate representation of the dependence
of ?o on £ for this value of @,

Equation 3.15 is plotted also with the data for £ = 10 ft shown
in Figure 3,22, Again it is seeu thal Equation 3,15 adequately des-
cribes the results,

The results presented are pe.rtinent to the response of simple
elasto-plastic structures subjected to very short duration ecarth-
quakes. Examples of such earthquakes are the Port Hueneme
earthquake of Marc':h i8, 1957{9) and the Parkiield earthquake of
June 27, 1966, both of which.have a very .short strong part. The
latter, for whicil an accelerogram is shown in Figure 3, 26, did not
produce major damage in spite of the large maximum acceleration.

To examine the effects of duration, consider a structure with
a yield level ay/g and height £, ar.ld let Ei be the intensity of
the acceleration. Take {irst an earthquake 25 seconds long and
assume that the structure collapses at the end of the earthquake.
Using Equation 3,15, the minimum necessary intensity of the earth-

quake lsg

E, = ‘/ 804 (ay/g)z (3.17)

Consider next an earthquake like Parkfield with an intensity
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E2 and assume that the structure collapses at the end of the strong
part of the excitation, i.e., after one second. Applying Equation

3.15 again and comparing E2 with &, shows that E.?. =5E,,

1

indicating that it would take approximately 5 times the intensity

of earthquake shaking to fail the eiasto-plastic structure in one

second, compared to the intensity causing failure in 25 sec.
Although real structures are usually not elasto-plastic. the

above analysis does indicate that the intensity of shaking necessary

for collapse is probably significantly larger for earthquakes of short

duration.
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IV. SPECIAL EFFECTS IN YIELDING STRUCTURES

A, Examination of Bilinear Hysteretic Structures. Analysis and

Digital Response.

A bilinear hysteretic model often is a more realistic repre-
sentation of real yielding structures than the elasto-plastic model
and it is interesting to see how the results obtained for the elasto-

plastic structure are modified when the yielding relation is changed

to bilinear hystereticai. V. V. Berterc and G. J. Iragorry(49),

J. P, Colaco(50), M. A, Sozen and N. N. Nielsen(sn

52)

» M. Yamada
and I, Nakaza( and E. P, Popov(ss) have authored recent publi-
cations treating the bilinear properties,

Again, a complete anaiytical study of the transient response
of hysteretic structures to earthquake-like excitation is not possible
but numerical solutions of particular cases can be found and these
provide means for understanding the response and its dependence
on important parameters.

It is evident that for a given earthquake, the time of failure
witl increase when the slope of the second line in Figure 4.1 is
increased, because then the restoring moment will be greater for the
bilinear structure than for the elasto-plastic structure, and also the
angle of static failure for the bilinear model will be greater, In
this study calculations are made only for two specific structures so
that the entire range of possible bilinear structures is not covered.
It was decided to select the two structures having the following

characteristics:
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[
il

10 ft.
0.02
1.0 sec.
0.05¢g
2.3

46

I

.

H

Structure I {4.1)

i

i}

o FI%‘.N ]
f

10 {¢.
06,02
Structure II 1.5 sec, (4. 2)
a O.1g
Yy

E =3.45
8 =34,5

H B .
o

1

These parammeters are coﬁsistent with those considered in the
previous chapter and are thought to lie in the range of realistic
structures. The severity of the earthquakes selected (E) represent
medium and strong earthquakes,

Computations of the response were made using equation 2.32
for the numerical integration,with F(d),(:b) representing the bilinear
hysteretic moment deflection relation. The method used {Runge-
Kutta), and the size of the integration step were selected in the same
way as in Chapter IIl. The equation that relates the yielding angle
and the yield level for the bilinear model is the same as for the
elasto-plastic one and is given by Equation 2.36. The angle of static

failure, ¢S, is derived from equilibrium considerations which give:
Ksz + Kz(qﬁS - ¢y) = mg{ sin ¢S {«.3)

In this expression (bY is the angle at which the stiffness changes



-88-

and K and KZ’ the spring stifinesses, are defined by equation 2.2
and Figure 4.1, Transformation of Equation 4.3 gives:

[} KZ— K

5 —
3; - K, - mgf (sin ¢S/65) (4.4)

For sin d:sz qbs, and defining KZ/K = @, this equation can be

written:
o
s i1 -
L S (4. 5)
2
R

When this equation is expressed in terms of the frequency parameter:

2 . K
2K g (.6
mi

there is obtained:

055 ﬂwo
=== - (4.7)
¢ -g-z'a[“-g‘z] |
Lo lw
o o

It is of interest to note that for small displacements,
sin q‘:s ~ dls, there is a singular case for which gravity does not
tend to make ¢ increase beyond qﬁs. This is when the denominators
in the foregoing equations are zero. In this case, the effect of the

spring K, just balances the effect of gravity, that is:

ch = mgt {4. 8)



-89~

Calculated Responses

. The responses of the two bilinear structures specified by
Equations 4.1 and 4.2 were calculated for each of four artificial
earthquakes. The cases that were computed are listed in Table VI.
Figure 4,2 shows the average times to failure, -£o' “The abscissa
is the ratio between the time of failure for the elasto-plastic
structure and for the bilinear structure with the same lower slope,
The ordinate is the ratio between K, and K, , i.c., Kz/mgﬂ
and the curves representing different periods are expected to be
bounded by the line Kz/mgﬂ = 1. The most important feature of
the results is the appreciable increase in the time of collapse when
the secong slope KZ increases from zero towards ch.

With the limited computational data available it is not possible
to determine the dependence, if any, of 'fo/'f:'o Lol upon the period
T= Zw/wo. Since no such dependence was indi?:a:.tlzzé for the elasto-
plastic case it will also be assumed here that there is no such
dependence in the data used to plot Figure 4.2, Under these assump-
tions, a least square fit of the data was performed and the following
expression was obtained:

T

0 _ 1
= K. 0.8 (4. 9)

toela.st-plast - (—m—;‘r)

It should be noted that large cGispersion about the average
time of failure were obtained for the bilinear model when the en-

semble of artificial earthquakes were used. The size of the
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TADLE VIi-a. Summary of Bilinear Response Calculations for
T=1,0 sec; £ = 10 ft; a_/g = 0.05; E = ,2.3;'@5Y = 0.0041 rad

v
KZ 1{2
Case Earthuuake o =z ¢S {rad) t, (sec) Tl
1 (1+2) 0,01 0.0615 5.65
2 (3+44) . . 0.0t 0.0615 5.92 0. 132
3 (516} 0.01 0.0615 10,41
4 (7+8) 0,014 0.0615 17,22
5 (1+2) .02 0.0715 12,75
6 (3+4) 0.02 0.0715 7.74 0.265
7 (5+6) 0.02 0.07156 12.15
8 (7+8) 0.02 0.0715 20,05
9 (1+2) 0.0248 0.0774 15,72
10 (3+4) 0.025 0.0774 9,64 0. 331
i1 (5+6) 0.025 0.0774 12.50
i2 (7+8) 0.025 0.0774 - 21.84
i3 (1+2) 0.03 0.0860 21,62
14 (3+4) 0.03 0.0860 9.95 0.397
15 (5+6) 0.03 0.0860 12.92
16 {7+8) 0.03 0.0860 24,27
17 {1+2) 0.04 0.1090 32.88
18 (3+4) 0,04 0.10690 11.82 0. 530
19 {5+6) 0.04 ¢.1090 16.00
20 (7+8) 0.04 ¢.1090 31,17
21 (1+2) 0.05 0.1500 37.80
22 (3+4) : 0.05 0,1500 19,00 0.662
23 (5+6) 0.05 0.1500 26,50
24 {7+8) 0.05 0,.,1500 41,00
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TABLE VI-b. Summary of Bilinear Response Calculations for
T =1.5sec; £ = 10 [t; ay/g = 0,10; E = 3,45; qby = 0,0184 rad

Case Earthquake = -—K—Z ¢S {rad)
25 (1+2) 0.01 0.1256
26 (3+4) 0.0t 0.1256
27 (5+6) 0.01 0.1256
28 (7+8) 0.01 0.1256
29 (1+2) 0.02 0.1330
30 (3+4) 0.02 0.1330
31 (5+6) 0.02 0.1330
32 (7+8) 0.02 0.1330
33 (1+2) 0.05 0.1660
34 (3+4) 0.05 0.1660
35 (5+6) 0.05 0.1660
36 (7+8) 0.05 0.1660
37 (1+2) 0.075 0.2130
38 (3 +4) 0.075 0.2130
39 (5+6) 0.075 0.2130
40 (7+8) 0.075 0.2130
41 (1+2) 0.10 0.3020
42 (3+4) 0.10 0.3020
43 (5+6) 0.10 0.3020
44 (7+8) 0.10 0.3020

2 {sec)

19.97
13,03
10, 47
14,65
24,02
13.16
10. 67
14.80
35.95
15.85
12.50
20.50
40. 22
23.17
15.90
23,43
56.37

+ 30.95

39.80
41,32

rng!

0.129

0.323

0.484

0.645
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dispersion appears to be approximately the same as for the elasto-
plastic model.

Figures 4,3, 4.4, 4.5 and 4,6 show the time history of the
response of structure I, defined by Equation 4.2 for the elasto-
plastic case, and for KZ/K = 0.02, 0.05 and 0.075 respectively,
when earthquake (3 + 4) was used., For this strucfure KZC= 0.075 K.
It is seen that for the case when KZ = KZC the structure does not
collapse and the response shows two predominant periods that can
be associated with the first and second slopes in the moment-angle
relation under consideration.

On the basis of Figure 4.2 and relation 4.9 it can be con-
cluded that the time of failure of a bilinear hysteretic structure can
be strongly influenced by the second slope, KZ’ of the moment-
angle relation. This agrees with experimental results for stationary
random response of bilinear hysteretic systems. In such systems,
Lutes(54) found that the low-frequency power spectral density of the
response was governed by the smaller of the two slopes of the
restoring moment curve.

When Equation 4.9 is combined wifh ‘Equation 3.15, there is

obtained, for K, < mgf{:

2

2000 ¢

= (@g)z;k (%) o.si

t

o (4..10) .

This equation gives the mean time to failure of a bilinear

system subjected to earthquake shaking of intensity E. The yield
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level, as specified by ay/g, corresponds to the knee of the bilinear
curve. It should Ee noted that this equation gives the mean time to
failure and that it does not predict the actual failure time. Because
of the statistical fluctuations in the calculated t0 for different
artificial earthquakes, Equation 4. 10 is informative as to the
influence of the properties of the structure aﬁd the strength of the

earthquake,; but gives only an approximate idea of the actual failure

time,

B. Response and Failure of Elasto-plastic Structures Subjected to
Real Earthquakes .

It has been shown(23’24)

that when the effect of gravity is
ignored, collapse of the structure not being the subject of considera-
tion,. the ensemble of artificial earthquakes used in this study is
suitable for earthquake engineering research. Ha\/:ing now the
results for artificial earthquake exc.itation with the effect of gravity
included, it is of interest to examine similar calculations when real
earthquakes are used, to see if the resultg are consistent with those
obtained using the artificial earthquakes. Three recorded earth-
quak.e grdund accelerations were used for this purpose:

(1) The N.S. horizontal component of the 1940 El1 Centro
earthquake, which will be called the El Centro earthquake. - °

(2) The S.10E. horizontal component of the 1949 Olympia
earthquake (Olympia earthquake). |

_{3) The N,21E. horizontal component of the 1952 Taft

earthquake (Taft earthquake).
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Some of the principal characteristics of these earthquakes
are given in Table.V in Chapter 1II. In Figures 4.7, 4.8 and 4.9 the
accelerograms for the three real earthquakes are presented in order
to provide a visual comparison with similar graphs of artificial
earthquakes .

What makes the problem under investigation more difficult
is the fact that when the time of failure is studied,’ the relative
positi'on and duration of the strong part of the carthquake become of
primary importance, in contrast to the problem of linear response
in Which the maximum response, i.e., the spectrum value, is more
directly dependent on just the intensity of the shaking.

Recorded earthquake ground motions can be classified into
three types:

(a) The initial portion of the record is of relatively short
duration and is very strong, and the following portion decays quite
.rapidly. Examples of such earthquakes are those recorded at Vernon,
March 10, 1933, and October 2, 1933, Helena, Montana, Oc‘:to.ber 31,
1935, Ferndale, September 11, 1938, and Santa Bafbara, June 30,
1941,

(b) The initial portion of the accelerogram has large ampli-
tudes and is of relatively long duration, the following portion being
of small amplitude. Examples of such earthquakes are: the one
at Los Angeles Subway Terminal, March 10, 1933, 'Kl Centro,
December 30, 1934, and May 18, 1940, Olympia, April 13, 1949,

Seattle, April 13, 1949, and Taft, July 12, 1952,
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(c) A considerable part of the record at the beginning has
small amplitudes compared with the middle part, which has large
amplitudes. The middle part is 'sho'rt, decreasing to the final part,
which has small amplitudes. Examples of such eart.hquakes are:
the one for Ferndale, October 3, 1941, and the one for Hollister,
March 9, 1949,

All of the earthquakes just mentioned are presented with
their respective spectra in reference 9. For the purposes of this
study three earthquakes of group (b) were selected because they
were the strongest recorded in the U.S.A. and probably typify.l

excitations likely to produce collapse of real structures

o}
.
5

also nearest to representing a stationary process and, hence,
should compare better with artificial earthquakes than will types (a)
and {c).

A typical one degree of freedom elasto-plastic structure was
selected for the purpose of comparing the results of Chapter III
with those obtained ;vhen real earthquakes are used. The structure

is defined by the following constants:

a =0.05

y g

n=0,02 (4.11)
£ =10 ft

Two different values for the period of the structure were considered,
T =0,5and 1.0 seconds. The structure was .subjected to the en-

semble of four 60 sec. artificial earthquakes with a value E = 3,16
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(rom.s. = 2.2 ft/sec’; 0 = 63.2).
In Table VII the results are given for the three rcal carth-
quakes and Table VIII shows the corfespond‘mg results for the

ensemble of artificial earthquakes.

TABLE VII. Results for Real Earthquakes

r.m.s. at failure r.m.s. t, (sec)
Earthquake T=0,5 T=1.0 ref, 23 T=0.5 T=1.,0 Average

El Centro 3.65 3.80 2.20 3.26 . 4.44 3.8
Taft 1.05 1.40 1.42 32.8 13.8 23.13
Olympia 1.67 1.57 1.57 11,8 11.9 11.8

TABLE VIII. Results for Artificial Earthquakes (r.m.s.= 2. Z_.ft/secz)

Artificial _ t, (sec)
Earthquake T = 0.5 sec T - 1.0 sec
(1+2) 2,90 2.67
(3+4) 7 85 369
(5+6) 4,67 6.02
(7+8) 3.32 24.80

Average of 8 cases, ?o = 7.0 sec.

Assuming that an extrapolation is permissible, and

récalling that the mean time of failure was found to be inversely
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‘proportional to the square of the severity of the earthquake, as
shown in Equation 3,15, it is possible to estimate the time of
failure for the structure defined in 4,11 for the three real earth-
quakes considered. The results are shown in Table IX together
wit.h. the observed times of collapse. The r.m,s. used to calculate

0 is taken from column 3 of Table VII.

TABLE IX, Computed and Predicted Times of Failure

Earthquake 1, (sec) -t—o {Equation 3.15)
El Centro 3.8 5.0
Taft 23.3 12.0
Olympia 11.8 9.8

The discrepancies between observed and predicted values
in Table IX, though large, are not inconsistent with the spread in
‘values in Table VIII. The predicted value of 7:-0 for artificial
earthquakes with an r.m.s. of 2._20 is 5.0 sec, from Equation 3.15,
w-hich is to be compared with the calculated average of 7.0, andvthe
individual values in Table VIII.

Considering the data in these three tables, it appears that
the statistics are roughly éomparable for the artificial and real
earthquake excitation; no significant differences were found., There
is some reason to suppose that the predicted -1:_0 might be larger
than the calculated value from earthquake excitation if enough cases

were done to define the statistics accurately, This is what would be
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expected if the real earthquakes are not stationary processes, as
then some portions would have greater intensities than indicated by
the r.m.s. values, Since ?o varies inversely as EZ, a smaller

'170 would be expected for a nonstationary process having the same

r.m.s.

It is informative also to see how the time-history response
of a real earthquake compares with those of artificial earthquakes.
Figure 4.10 shows the reSpoﬁse of the structure defined by Equation
4,11 with T = 1,0 sec. to the El Centro earthquake and Figure 4.11
shows the response of the same struéture to artificial earthquake
(5+6) with the same r.m.s.

It is concluded that real earthquakes, to the degree that
they are approximately segments of a stationary process, I;roduce
responses similar to the artificial earthquakes, For real earth-
quakes that are not segments of a stationary process, for example,
strong motion followed by weaker motion, it may be possible to
model them by a sequence of artificial earthquakes of different

intensities. Further research on this problem is desirable.

C. Influence of Vertical Ground Motion on the Collapse of Simple

Yielding Structures

The preceeding analyses were made for one component of
horizontal earthquake motion only, the vertical ground motion being
neglected. In this Chapter several of the structures that were in-
vestigated in Chapter IIl are re-examined when vertical and hori-

zontal motions are acting simultaneously to check whether the
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vertical motion will appreciably shorten the time to failure.
The differential equation of motion for the otructurc when a
horizontal component u(t) and a vertical component Z(t) of an

earthquake are acting, is:

S+ ano(}; +——157F(¢,é) - & sin ¢ +E%lcos¢ - é—ét—)smcb =0

mi

(4.12)

Equation 4,12 differs from E‘quat_ion 2,31 only by the .
addition of the term .Z.(t) sing/f. Recalling that for the range of
values of interest in this study |sin ¢s| = T% |cos q)sl and so, the
vertical motion term, even if .Z-(t) is as intenée as '_u:(t), will be
smaller than one tenth of the u term. This will be the case only
near ¢ = ¢S, for during the first part of the response the .Z term
v;rill be less than one per cent of the u term. Even thoﬁgh the
differential equation is nonliﬁear ifl; can be anticipated that the influence
of the vertical motion will be small,

'1'.he recorded earthquakes in the U.S.A. have vertical com-
ponents that are smaller than the horizontal components, the r.m.s.
values being approximately 1/2 as great. This is further reason to
expect that the time of collapse of a given structure will not be
affected appreciably by the vertical excitation.

The following structure, which was analyzed in Chapter III,

was reanalyzed with simultaneous vertical motion:
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T=1.5 sec.

a =0,1

v g
Eh = EV = 3.45 (4.13)
n=0,02

This structure is the same as structure II defined by relation 4. 2.
In the computations both components of ground motion were the
same, that is, the same artificial earthquake was used for both

components, The results of the computations are shown in Table X.

TABLE X. Horizontal and Vertical Excitation.Results
' for Typical Structure

t, horiz. - to with both
Earthquake comp. only comp.
(1+2) " 15,85 17,50
(3+4) 12,78 13.05
(5+6) 10.19 10.37
(7+8) 14,50 14,37

t = 13,33 sec t = 13,82 sec.

o o

In these calculations the two componcnts are perfectly cor-
related so that the resultant ground motion was on a 45° line, It is
seen that the effect on the average time of failure is to increase it
less than 4%. In three cases t, was increased so that the vertical

component had a slightly stabilizing effect on the structure. It is
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not evident why this should be so, and it is thought that it is not
significant.

In addition, the structure defined below was used to deter-
mine the time of collapse when artif_icial earthquake {1+2) was
used for horizontal excitation and (5+6) for vertical excitation, in

which case the two components are practically uncorrelated.

T =0.5 sec,

a =0.,1

y B
Eh = EV = 3,45 (4. 14)
£ =10 ft.

n=0,02

This structure collapsed in 13,36 seconds under the action of
earthquake {(1+2) when vertical motion was not included. .When the
vertical component was included the time of collapse was computed
to be 13.33 seconds. This shows a negligible effect for the parti-
cular structure and earthquakes considered, in agreement with the
analysis made at the beginning of this section,

It‘is conclude'd that the vertical component of earthquake
motion does not appreciably affect the lateral vibrations and collapse

of structures of the type considered in this thesis.
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V. RANDOM WALK AND UPPER BOUND ANALYSES.

A. Random Walk with Bias

In contrastto linear response, an elasto-~plastic one degree of
freedom structure will yield when the deflection in the structure
reaches a certain level. From the observation of the results obtained
in the digital response study, it is clear that the total displacement of a
yielding st ructure subjected to earthquake-like excitation is a combina-
tion of oscillations around the equilibrium position of the structure and
drifts of its position. In order to be able to learn if appreciable deforma-~
tions and permanent set develop in a yielding structure, it is important
to observe the instantaneous location of its equilibrium position. This
anticipates that the drift represents a very important factor when
studying collapse of simple yielding structures. For the system without
gravity, the inelastic drift is a sequence of ;teps, some positive and
some negativé, with no bias in either direction. However, when the
effect of gravity is taken into account, it can be seen that after yielding
once, there' is an increase in the probability of yielding in the same
direction.

Since no exact solution for the above problem has been found,
one method of attack is to seek a simpler problem that will have the
same general characteristics, namely, a system where successive
equal increments of plastic deformation are positive or negative,
but with a definite bias in the direction of the accumulative drift,

A solvable problem which exhibits these characteristics is a biased

one~-dimensional random walk, It should be noted that the éolution
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obtained for the random walk problem is an ensemble average solu-
tion, so that to compare this solution with digital computations of

the response of structures would require finding averages for many

cases, )

Consider a one dimensionai random walk with bias(ss). A
particle is at the origin at t = 0 and can move either A to the
right or A. to the left, and the duration of each step is 7. Bias is
introduced into the problem by allowing the probability of moving
in either direction to depend on the position of the particle.

M. C. Wang and G. E. Uhlenbeck(sg) analyzed the random walk
problem with an attractive center of force and were able to find
average values. The probability distribution for this problem was
found by M. Kac(59). The same problem was also discussed by
E, Schr‘o.dinger and F, Kohlraush(éo).

A repulsive center of force at the origin of the random walk
problem corresponds to the destabilizing effect of gravity in the
vibration problem. At any one step, the probabilities for making a
step A in the positive or negative directions are no longer equal
but depend on the position of the particle,. If the particle is at KA,
the probabilities of moving in the positive and negative directions
are specified to be 712-(1 + -1—1;:) and 712-(1 - %—) respectively, where R
is aﬁ integer and the positions of the particle are restricted by the-
condition - R= K = R. According to this model, when the particle
is at a location KA, where K > 0, it will more likely move on its

next step to (K+1)A; only when K = 0 will it have the same proba-

bility of moving in either direction. When the particle reaches *RA
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there is zero probability of reversing its motion. This corresponds
to failure,

P(mA,sT) is defined as the .pro.bability that the particle
starting at the origin at t = 0, will be at the position mA after a
time 8T, where A is the length of each step, T is the time elapsed
between steps, and m and s are positive integers. Let Q(K,m)
be the probability that if at time oT the particle is at KA, then at
time (o +1)T it will be at mA, or, in other words, the probability

of going from KA to mA in the interval of time 7.

Q(K,m) =%(1 -%)G(m,K-i) + %(1 +—§)6(m,x+1) (5.1)

where § is the Krbnecker delta. Thus Q(K,m)= 0 except when
m=K-1 or m=K+1, .

Usi'ng Smoluchowski's equation, given in reference 59, one
obtains the following difference equation sat‘isﬁed by P(mA ,8T):

P(ma,s7) = 31 - )P (m+1)a, (s-1)7)

m-1

+ 10+ 2L )P ((m-1)4, (s-1)7 ) (5.2)

which is to be solved with the following initial condition:

P{(mA,0) = 6(m,0) ' (5.3)

The mean position, (m(s)), is given by

(m(s)) =Z nP({nA,sT) (5, 4)



-115-

Using Equation 5,2, it is found, as expected, after some algebra that
(mis)y =0 (5.5)

The variance of the location m(s) is of special importance
since its square root will give information about the location of the

particle as a function of the elapsed time.

(m®(s)) = Z n®P(na ,s7) (5. 6)

n

From equations 5.2 and 5.6 it is found that
2 2 2
(m%s)) = 1+ (4 +—ﬁ)(m (s- 1)) (5.7)

By repeated use of 5.7, the variance is determined to be

2
(m%(s)) = = 5(1 +2) - 1% (5. 8)

Equation 5.8 can be transformed to obtain the corresponding
relation for the continuous problem. Assume that A and 7T approach

zero in such a way that when R approaches infinity the relations

written below are satisfied:

2

-é—=D ; R‘T:i
2T Y

(5.9)
sT = ¢ ; mob = x

From equations 5.8 and 5.9 it follows that

2 , )
(x%) = 3525— [(HER) - 1} (5.10)
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Applying conditions 5.9
2, _ D 2yt _
(x% = (Y - 1) (5.11)

Figure 5.1 ghows the r.m.s. value of x as a function of
time for several values of D and vy and it is seen that there is a
resemblance between these figures, which are ensemble averages,
and the calculated drift of elasto-plastic structures subjected to
- earthquake excitation when grav'ity effects are considered.
Figures 5.2 and 5.3 give the response of particular elasto-plastic
structures to artificial earthquake (7+8).

Relation 5.2 can be easily transformed and the limiting
equation obtained when A and 7 approach zero and R tends to

infinity, according to 5,9:

2
BB L Ly D [piey] +p LY (5.12)
X BXZ

with initial condition:
P{x,0) = &(x) (5.13)

where & is the Dirac delta function.

Using Fourier Transform techniques, equations 5.12 and 5.13,

it is found that

/ Y g _yx? i
P(x,t) = 4f (5.14)
* Y 2nD(e2Yt - 1) P 2D(e?Yt - q)

Equation 5. 14 shows that P(x,t) is a Gaussian distribution in
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x with a variance that is a function of time. The peak of the distri-
bution is infinite at t = 0 in accordance With Equation 5.13, and for
large values of t the peak value of the distl;ibution decreases ex-

ponentially with yt. Thus the particle can be expected to wander

far from the origin as time increases.

From the examination of relation 5,14 it follows that:

x=0 . (5.15)

where x denotes the average value for the location of the particle

after a time t,

Knowing the probability density function and using Equation

5.15, the r.m.s. value far the displacement x can be obtained as

2
0, ST.mM.s. X = S - x"P(x,t) dx . (5.16)
-00

Performing the int‘egration inEquation 5.16 gives:

. 1 .
o, = r.mfs. x ="—YQ (eZYi:_ i)y : (5.17)

which is identical with that obtained directly from the discrete model.

follows!

Hence, the biased random walk variance is given by
, 2t
02 - —D(eZth 1) = B—f—;——-—(eRT _

=5 1) (5.18)

Since x, = RA = the failure point, relation 5,18 can be written as

—=e -1 | (5.19)
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this equation then can be inverted to give:

20‘2

_ RT . X
t-—-z-loggl"'-———éxs% (5.20)

Liet T be {st (p < 1) and obtain

2x ;32'
~T _ RT s
e~t = B 1qg(1+A ) (5.21)

o

‘Now let X, = Iqu, A = the size of plastic increment, and note that
A= ciez for a given yield level a,y since both A and 62 are pro-
portional to the average rate of energy input into the vibrating
system, With these substitutions, relation 5.21 becomes for

2 2
picts [0°<<1,

- . RT 2 '
T~ 5 Qszcws/e ) | (5.22)
This may be written
T = Cof ' ~ (5.23)
o~ 'EZ— .

It is seen that this has the same form as the curve {fitted to the calcu-
lated results in Chapter III and, hence, the biased random walk is
analogous to the problem of earthquake collapse under gravify.

Equation 5.23 can also be written as follows:

ts C2 Eo (5.24)

where: Cz‘ is a constant; MY is the static moment required to pro-

duce yielding; and Eo is the average rate of energy input from white
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noise acceleration. This might be an informative way of looking
at the problem of collapse of simple yielding structures. For a

given structure it follows from equation 5,24 that:

Eoto = constant | (5.25)

which indicates that on the average, a yielding structure will

collapse when a certain amount of energy has been fed into it.

B. Upper Bounds For the Displacement

An analysis of Equation 2.12 indicates that with the methods
now available, there is very little hope for finding an analytical
solution for the amplitude of displacement as a function of time. The
equation is nonlinear and the input will be in general an earthquake
or at best a white nonise. Under those conditions, it was thought to
be of some interest to look at estimations of upper bounds for the
displacement, for systems with linear and with elasto-plastic
restori.ng forces, even though it was not expccted to obtain vAcxy
good Bounds. The procedure to be followed utilizes the fundamental
solutions for fhe homogeneous linearized problem and ce}rta'm
bounds assumed to be known for the excitation,

Consider the following linearized equation:
"§+244 B +Glt) =0 (5.26)

with initial conditions given by

ét;) = dit ) = 0 (5.27)
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where it is known only that the input G(t) is bounded, i.e.,
|G(t) | = Gy (5.28)
From Equations 5.26 and 5.27 the solution can be written as

t
o(t) = -S‘ h(t-T)G(T) dT (5.29)

t
o

in which h{t) satisfies ¢ + 2A&> + Bd) = 0 with initial conditions

$(0) = 0 and ¢(0) = 1. For FEquation 5.26, h(t) is given by

eozt - ep.t
hit) = =— m (5.30)
where
2
a,p=-Ax YA"-B (5.31)
Using § =t-7, 5.29 becomes:
| t-to
o(t) = -S h(E)G(t-£) d (5.32)
o
Letting to approach - 00, there is obtained
oo
¢(t) = —5 h(£)G(t-£) dE (5.33)
o
Taking norms of both members of 5.33 gives:
oo
l$(t) | = G, 5 In(€) | at (5.34)
O.

Relation 5. 34 will allow an estimation to be made of an upper bound

for ¢(t). There are three possible cases depending on whether
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A ; \IB. Only the Case A <\}B is discussed here, For A< \/ B

Equation 5,30 becomes
-At _. ‘/ a2
sinYB-A" ¢ (5.35)

hit) = = ‘/;:E

Making use of 5,34 and 5.35 gives:
G o
|o(t) = ——L—g ]e-Atsin‘/B-Az t] dt (5.36)
\)B-AZ’ °

Replacing the trigonometric function by unity in the last relation, a

first estimation for an upper bound is obtained,

S
ot | = ——r (5.37)

A VB—A2

A more accurate evaluation of Equation 5.36 can be made by

replacing the integral by a series of integrals, as follows:

: 2
G T/4B-A
|¢(t)] 5-—-—1—- 35 e-Aglsin B-AZ g[ dé
o)

B-A

2 B-~-A
+S "/ % at +... ( (5.38)

Making the substitution E=n+ (TI'/ B-AZ) in the second integral,

and £ = v+ (21r/ B-AZ) in the third, etc., and using the identity:

sin (w + n4YB-A%) = - sin nYB-A (5.39)

it is found that equation 5.38 gives:
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G.J 3 3
l6(t) | = —=L= 31 + o AT/{B-A", -2ATyB-A +§ (5. 40)
= |
B-A

where

2
T/YB-AT _ S/ _ a2 _ A2
J =S e Agsin B-A2§ d€ = BBA (1 te An/YB-A )

o]

(5.41)

The series in Equation 5.40 can be summed with the help of

the identity

Z o JAT/YB-AT _ 4 > (5. 42)
§=0 i - e—An/‘/B-A
So from 5.40, 5.41 and 5.42, it follows that
G _ :
o) | = —]-3-1 coth(—é—L——) (5.43)
24B-A%

Since for small p, coth p = 1/p, Equation 5, 43 gives for the case

- when Aw/Z‘/B-Az is small,

2G, o .2
VI = 1 ¥YB-A
[¢(t) | = = A (5.44)

Equations 5.26 and 5.44 state that for usual structures (small
damping, i.e. B >> AZ) the bound appears to be proportional to the
maximum of the excitation, inversely proportional to the square root
of the stiffness and also to the damping. The fact that the bound pre-
sented in 5, 44 increases with C}1 and also increases with 1/A

indicates that only weak bounds will be obtained if 5.44 is used to
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estimate the response. of lightly damped structures to strong ground
motions.

Consider a second problem in which the system is governed
by equations 5.26 and 5.27, and instead of 5,28 the following con-

ditions are imposed:

|G| = G,
(5. 45)
I—c%:-(G(t)) | =G
As before, it is possible to write,
- .
o(t) = "S' h(€)G(t-£) a€ (5.46)
o
Integration by parté in 5,46 gives:
-1 1o"e) ® 4
-6(6) = +{ T nh e -0 a (5.47)
o .
where -h-i(g) is defined as:
d -1 :
¢ [h ()] = hit) (5.48)

The upper bound for the displacement is presented below for the case
A <4/B and the other two cases are omitted. As in the problem

'solved before, h(t) is given by 5.35 when A <4B and therefore:

At
Ly = {A sm\/B A%t +\/B A cos\/B Azt (5.49)
‘} Z

From 5.47 and 5.49 it follows:
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~

$(t) = -G(t) +5

| : _
OoG'(1:-15')‘1——‘?—_;—__—2- JA sin YB-AZ¢ +yB-A% cos YB-A%E] dt
B-A |

0

(5.50)

From 5.50 and 5,45, using an approximation similar to the one
that replaced 5.36 by 5.37, it follows that

G .
I¢(t)i—<-G1+—A?‘31 +———‘9‘-—-2- g (5.51)

B-A

Inspecting 5.51, it can be seen that for usual structures i.e.,
A <<\jB-—, the bound is inversely propbrtional to the value of A and
this again indicates that weak results are expected when 5‘. 51 is
used to describe the earthquake response of lightly damped structures.

In what follows, another upper bound for the displacement will
be estimated for the structure represented by Equations 2,12 and 2.13.
The following notation wi11<be used in order to utilize some results

already obtained:

¢ 289 + B9 +R(9,9) - & sin ¢ = G(1) cos ¢ (5.52)
where
C
g ="“‘1'
m!z
K
BZ = m——’f—z
' (5.53)

R@.8) = L {F.d- 24

m.

Gr) = =3t
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and where K2 is defined through Figure 5.4 by the relation
a = KZ/K’ and K has the same meaning as in relation 2. 2.

Equation 5.52 can be transformed as follows:
¢ +2A¢ +B,¢ = Glt) cos ¢ + £ sin ¢ - R($,9) (5.54)

From 5.54 and 2. 13 it follows that.

200 .
6(1) =S h(é)%G(t-é) cos ¢ + & sin ¢ - R(¢,¢)% ag (5.55)

(o]

The most interesting case is when A <-\/B2 and then ht)
is obtained from 5.35. The use of the techniques presented in the
previous examples will provide an upper bound for ¢. It is easily

verified that:

.
|o(t) | sg (G, +§ +R)[h(E)] dat (5.56)
in which
Gi = IG(t) Ima,x
R, = [R(,9)]
therefore

Q0 .
()| = (G, + &+ R\ |n(&)] a (5.57)
i 2 i

Using 5.34, 5.43 and 5.57 produces

R, + £+aG
60| = (——5 1) coth;————é—’f————% (5.58)

2 " ' 2
2 Z-A




suorje[2a ajdur juewow d1j019lsdy IvAUIIA *F°S san31 g

$ <

~129-




-130-

For an elasto-plastic Structure, B, has a value of zero, since
B, = Kz/mlz, and a = KZ/KE 0. Therefore the amplitude of this
system could reach infinite values, ' For a bilinear structure, de-
pending on the value of a = KZ/K’ the upper bound will bé finite but
it is important to note that for small values of «, amplitudes similar
to the elasto'-plastic response can be expected. | |

- An example is now given to illustrate the practical suita-
bility of the bounds just obtained. Consider the system described by
Equation 5,52, Typical values for the parameters defining the

structure were selected, i.e.,

4 =10 £t
a=0,05
{5.59)
n=0,02
T =1.0 sec (wo = Z'IT).

An earthquake having the intensity of the El Centro earthquake

(1940, N.S.) was used as input, i.e.,
Ja(t)] =9.6 ff:/sec2
max

For these values of the parameters, it is possible to use the approxi-

mation that

/ 2
A 2 BZ-A

coth ——a—e—— =
2 .ATT
2 BZ-A

to get
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2(G, +§ +R))

2
- -
which is valid for A < '\/BZ. Recalling that
A= nw H g =32.2f{t sec2
K
2 Ko K
B, = — = H w = — - .g
2 mlz mﬂz o mﬂz £

~it follows from 5.59 that A = 0.126 and B, = 2,135, therefore

2
A< \f B2 and 5.60 is applicable, giving

6(t)] = 14.42 +3.45 R, (5.61)

where |¢(t)| is measured in radians.

Considering that real structures will collapse for values of
¢(t) of the order of 0.1 radians, it is clear that the bounds just
computed are much too weak to use in estimating the possibilities of
the collapse of simple yielding structures.

It is known, of course, that for a linear 2% damped structure
with a sinusoidal input, at resonance there is 25 times amplification

(61)

of static displacement « With earthquake excitation the amplifi-
cation is found to be approximately 1.0, hence, assuming the same

ratio applies for the present case, the upper bound for earthquake

excitation should be approximately 1/ 25 of the bound 5.61, that is,

|$(t)| < 0.577 +0.138R,
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C. Time Dependent Bound for White Noise Excitation.

When a yielding structure subjected to white noise excitation

is uéed, it is possible to find an upper bound for the displacement
that gives a fairly good description of the drift observed in the
previous chapters.

From Equation 2. 12, with C; = 0, sin p~¢p and cosg~1

it follows that

b-gltg+-E Fg, b = -2 (5.62)
md
introducing the notation
£, Fl¢, ) = G4, 4)
m4
u(t) - | 5.63
-% = N(t) ( )
g/t = 52
produces
§ - 828 +Gl4 §) = N@)  5.6a)

The solution of Equation 5. 64 with zero initial conditions is given
by

. .

g= ] ﬁk—l—gﬁ—’ﬂ{mn - Glg , ¢} ar (5. 65)
o .

The expected value of ¢2 , E[¢2] , can be calculated from Equation

5.65 as follows:

From Equation 5. 65, ¢2 can be written as

t ot '
¢ = Jr f sinh B(t-T,) sinh p(t-Tz){N(TZ)-G}{N(T1)-G}d71,d1’z 5-66)
O O
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Taking expected values of both members in Equation 5. 66 and

recalling that for a white noise

EIN(T {)N(T,)] 2D6(T -T.)
1 2 172 (5.67)
ELN{t)] 0o

and calling

|Glg, 9l

y (5.68)

max
it follows from Equations 5.66, 5.67 and 5.68 that

29 < 2D [ sinh 2Bt - 2ft
- T3\

El¢ 3

2 2
}+ S—(cosh t-1)“  (5.69)
P

For small values of time Equation 5. 69 gives

E[g2] ~ 3 (5.70)

Equation 5.70 agrees with many of the results given in Chapters III
and IV, where rather small deformations were observed for small t.

For large values of time, from Equation 5.69 it is easily shown

that

E[¢%] ~ 2Pt (5.71)

and this result is also in agreement with the numerical computations
of response done in Chapter III and IV.

It is noted that Equation 5.71 coincides for all practical
purposes with the corresponding result obtained for the random walk
problem. For small values of t‘ime, it is thought that Equation 5.69
gives a better representation of the phenomenon thaﬁ the one provided

by the random walk studied above,
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VIi. SUMMARY AND CONCLUSIONS

A, Summa Ty

The effects of gravity on the earthquake response of one
degree of freedom yielding structureswere studied by subjecting
elasto-plastic and bilinear hysteretic oscillators to earthquake-like
excitation. The structures considered were one story frames with
rigid girders and massless columns. The yielding characteristics
were simplified by considering yielding in the columns to be a
function of the bending deformation only. Interecst was centered on
the development of permanent set and on the parameters that
influence the time required for yielding to progress to the point of
collapse. It was the intent of this study that it provide a first step
in the study of the effects of gravity on the yielding response of
multistory buildings.

Four 60 sec long artificial earthquakes served as excitation
for most of the cases studied. They were scaled to have intensities
varyiﬁg between weak motion and shaking 140 per cent stronger than

~the N, S. component of the 1940 E1 Centro earthquake. Four values
of the period of the sfructure, in the range 0.5 to 2.0 sec were
‘selected, because this range includes most multistory structures.
The “amount of viscous damping was 2% in all cases,

Six values Qf the height of the columns of the frame (see
Figure 2.3) were used, ranging from 5 to 30 ft, which extends well
below and above the héights of typical stories in structures., Two

values of the lateral yield level of the structure, 0.05g and 0.10g
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were selected for most of the work reported in this thesis. Two
Srielding mechanisfns were used to model the nonlinear behavior of
the structure: the elasto-plastic and the bilinear hysteretic.

| For most cases of interest, the deflect‘ion at which yielding
beg;ns is small with respect to the column height, and under this
cbndition it was found that the relative strength of the excitation is
determined by the ratio of the earthquake strength to the lateral
strength of the structure. Thus, the excitation could be character-
ized by a parameter 8, defined as tvhe ratio between the intensity of
the eérthquake acceleration (E) and the lateral yield level (ay/g).

For a total of 221 structures the response to earthquake-like

excitation was computed and thé time of collapse obtained., A
statistical study of this data was then done to decide what parameters
were suitable for estimating the time of failure for elasto-plastic
strﬁctures. | The following relation was found from a regression
énalysis.

T = 2000 £ (3.15)
o 62'

This equation gives the average time of collapse of simple elasto-
plastic structures, subjected to earthquakes of a given strength.
In this expression £ is measured in ft, 0 was defined ébove and
.t_o is the average time for‘ collapse. It is significant that 1L.he average
time to failure is independent of the period of the structure.

Three of the vstrongest earthquakes recorded in the U.S. A.

were used to show that similar results are found under real earth-
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guake excitation. Also; two simultaneous components of ecarthquake
‘motions were used, one vertical and one horizontal (perfectly corre-
lated and uncorrelate_d') and it was foﬁnd that the effect of vertical
motion on the time of failure was negligible.

Calculations were made of the response of two bilinear
hysteretic structures to each of the four a.rtificial earthquakes
available, Using the results presented in Chapter III and IV it was
found that the average time of collapse, E-o’ of bilinear hysteretic

structures is described by

T = 2000 ¢ - (4.10)
o . K 0.8y
{1 (=)

This result shows a large increase in the time of failure when the
second slope increases from zero (elasto~-plastic) towards K2c= mgt ,
the slope for which static failure is not possible.

Some ofthe features of the failure of simple yielding structures
under earthquake excitation are comparable to those of a biased one-
dimensional random walk., An analysis of this problem was done
and the continuous probability distribution was obtained. The mean
and variance of the position as functions of time were presented and
it was shown that there is a resemblance between the results of the
biased ranaom walk problem and the thesis problem; for small
values of time, th_e variance of the position-as a function of time is
given by the same type of relation as Equation 3.15 above.

Upper bounds for the displac*;ement during earthquake response

were found for systems with linear and elasto-plastic restoring
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force relations.
Although the results showed the general stabilizing effects
of viscous damping and finite uppef slope on the bilinear yielding }
relation, if. was not possible tc; obtain practically significant bounds

with the techniques used.

B. Conclusions

The results demonstrate that for simple yielding structures,
the effect of gravity is to increase significantly the amount of per-
manent set over that found when gravity is not considered. Large
values of permanent set, of course; will lead to collapse of the
structure.

The time of collapse does not appear to depend on the period
of the structure for the range 0.5 to 2.0 sec considered. It is con-
cluded that if -Eo depends on t‘he natural period of the structure, then
that influence is masked by the statistical dispersion of the data.

It is thought that many more samples would have to be used before
being able to determine the effects of period on the response
statistics.

Relations 3; 1.5 or 4,10 have significant inplication on the
collapse of simple yielding structures subjected to very short dura-
tion earthquakes like the Parkfield earthquake of June 27, 1966,
that had a very short strong phase. The earthquake did not produce
major damage in spite of the large accelerations recorded. It is’
concluded from this study that the intensity of shaking necessary for

i

collapse is significantly larger for earthquakes of short duration,
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- and conversely that a lower excitation may cause féilure if the
duration is longer. |

It appears that the statistics for the artificial and real earth-
quake excitations are comparable. No significant differences were
found when studying the collapse of simple yielding structures. It
ié concluded that real earthquakes to the degree that they are approxi-
mately segments of a stationary process, produce responses similar
to the artificial earthquakes.,

It was concluded that the vertical component of the earthquake
motion does not appreciably affect the lateral vibrations of structures
of the type considered in this thesis.

It is concluded that the time of failure of a bilinear hysteretic -
. structure of this type is strongly influenced by the second slope of the
moment angle relation. In Figure 4.2 it is clearly seen that an
appreciable increase in the time of collapse occurs when the second
slope K2 inéreaées from zero towards KZC = mgl.

Using the solution obtained for the biased one-dimensional
random walk, it was shown that an analogy may be established
between the random walk problem and the thesis problem. An inter-
pretation of the results obtained permits the tentative conclusion that
on the average, a yieiding structure will collapse when a certain
amount of energy is fed in. The random walk analogy appeérs as
promising for further research on the collapse of simple yielding

structures.
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APPENDIX I

The following table contains all the cases considered in the
sfudy of elasto-plastic structures subjected to earthquake-like
excitation, The data given include the yield angle, d)y, thé angle
of failure, (i)s, the time of collapse, t_, and the earthquake

intensity.
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APPENDIX 1I

1) Total correlation coefficients

The expression of the coefficient of total correlation between

two variables is the following(46’48):

) xy - Nxy
r = 1

xy {(Z <2 N':Zz)(z Yz_ N'};Z }z

where x and y are the variables, N is the total number of cases,

and x and y are average values of the variables.

2} Partial correlation coefficients

In the study under consideration four variables are available

and two different types of partial correlation coefficients are.com-

puted(48)' '

2a) The correlation coefficient between two of the variables keeping
constant one of the remaining variables. The expression of this

coefficient is

I -r T
- xy Xz Yz
rxy.z T 2 T2 3
SR WRICE S}

where L. is the total correlation coefficient between the variables

u and w.

2b) The correlation coefficient between two of the variables keeping

constant the remaining two variables. This coefficient is given by:
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r T
Z XVe2 YV.Z
Z2
YVeZ

r
r = 3 K
XY. 2V >
#(1 - rxv.z)(i - T

where rxy z is the partial correlation coefficient between the

variables x and y, keeping constant the variable z.

3) Multiple correlation coefficients

With 'four variables, two types of multiple correlation coef-

(48),

ficients appear the first has two independent variables and the

second type has three independent variables.

3a) The multiple correlation coefficient with one dependent and two

independent variables has the equation:

2 2 3
Ry = {1 - (- - ruy.x)}z

where Tox and ruy'.x were defined in 1) and 2a),

3b) The mulfiple correlation coefficient with one dependent and three

independent variables is given by:

1
fi- -2 -2, g0 -, )

Ru(xy'z) =



