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ABSTRACT

It has been proposed that large annulenes have
alternation of bond length. 'the height of the annulene
singlet transition energies has been cited as evidence
for bond altermnation.

This thesls shows that the mechanism of bond alterna-
tion is inadequate to reproduce the experimental spectrum
of the annulenes. I am able to explain the height of the
annulene singlet transitions by the use of the altcrnant
molecular orbital method.

It appears that simple MO methods and even limited
C.I. treatments seriously underestimate the energy
depression of the ground state through electron correlation.

It is shown that the tendency towards bond length
alternation exhibited by the simple MO method is an
artifact of this method, and should not be taken seriously.
'Some of the limitations of the AMO method are examined
and it is shown how the AMO method may be extended to

gigma as well as pi electrons.
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INTRODUCT ION-

In small linear molecules double bonds are shorter
than single bonds. In ring molecules such as benzene,
the conjugated honds are of equal length. The question
arises as to whether, in long conjugated polyenes, the
bond lengths away from the ends are equal as in benzene,
or unequal as in butadiene.'

This question ﬂas first investigated by Lennard
Jones (1) in 1937, and Coulson (2) in 1938. They con-
cluded that the bond 1engths'away from end effects would
be equal,

In 1949 Kuhn (3) discovered that the electronic
energy levels of large polyenes were too high, unless it
was assumed that the bond lengths were unequal. In 1956
Platt (4) suggested a mechanism he called "configuration
interaction" to explain the apparent inequality in bond
length. This suggested mechanism consists of the inter-
action of wvarious excited states with the ground state
through bond length alternation.

It has been shown by many (5,6,7,28,34) that free
electron models predict bond length alternation must occur
even without end effects for sufficiently large conjugated
- molecules. Most predict a critical size of about thirty

(30) conjugated bonds.



The ring molecules cyclooetadecanonaene (C18H18)’
and cyclotriacontapentadecaene (C3gH;p) have been synthe-
sized (Sondhéimer (30,31,32,33)). These annulenes exhibit
"abnormally high" excited singlet energies.

The amount of bond alternation necessary to explain
these spectra is unreasonable¥* (Gouterman and Wagniere
(10)). Such bond alternation would require either a very
high value for the first derivative of the resonance
integral B , or a correspondingly high value of the first
derivative of the coulomb integral between p orbitals on
neighboring carbon atoms. |

It therefore becomes reasonable to look for other
explanations of the spectra. Longuet~Higgins (8) dismisses
the possibility that the spectra might be explained by
configuration inferaction. He does a sample calculation
showing that interacting certain configurations of C;gH;g
makes only a slight change in the molecular energy levels.
This method is.inadequate because there is a very large
number of configurations that can interact with the ground
state configuration, and the cumulative effect mlght be
quite large, although each individual interaction is small.

A calculation by the complete configuration inter-

action method is impractical with a large number of pi

*See chapter II, part 5.
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electrons, because of the extreme length of such a calcu-
lation. | | |

A different approach is the alternant molecular
orbital (AMO) method (11,12,13,22,23,24,25,26). This
method accounts for most of the electron correlation energy
without having to choose excited configurations to mix with
the.ground state configuration. Using this method I have
calculated the gr-ound state energy and lowest excited state
transition energies of cyclofctadecanoaene (CON), and
cyclotriacontapentadecaene (CTP).

The results of alternant molecular orbital method
calculations are qualitatively different from those of
independent electron models. I will show that the greatest
difference is the existence, in alternate hydrocarbons
obeying Hiickel's rule, of a finite energy gap between the
ground state and the lowest excited singlet states.* This
energy gap prevents bond alternation by Platt's mechanism,
and explains the "abnormally high" excited singlet energies.

I will show in chapter VII how sigma-pi interactions
may be added to the alternant molecular orbital method by

a device akin to sigma bond spin polarization (19).

*See chapter III, part 6.



&
CHAPTER 1

ON PREDICTION OF BOND ALTERNATION WITH
INDEPENDENT ELECTRON MODELS

PART 1. GENERAL CONSIDERATIONS

Suppose we iﬁagine a conjugated ring of 4N+2 carbon
atoms, such as benzene. We introduce a slight distortion,
x, causing the bonds to alternate in length. The distortion
will cause a mixing of bonding molecular orbitals X, with
antibonding molecular orbitals X,. The mixing is propor-
tional to the distortion, x. By elementafy perturbation

theory, this gives an energy lowering to the n'th m.o. of:
6Eﬁ¢rxzﬁaﬂ ' (L.1)

1/4E for the‘highest bonding orbital is proportional
to the number of conjugated atoms in the ring. In the

Hickel theory it is:
1/OE ~~ (cosc (T774N+2) ) /4 = (W+1/2) /71 (1.2)

We may find by this method the total energy lowering
per bond by adding up the BE,.

5 Nl i-EnN_x2(1+1/3 +1/5 +... . +1/(2041)) (1.3)

The summation in equation 1.3 diverges as %ln(2N+l).

For sufficiently large N this term will dominate all



others in the distortion emergy, and bond length alterna-
tion would be expected. More detailed calculations leading
to the same general conclusion are given in references
(5,6,7,28). Varilous approximations are used but all agree
that bond length alternation should develop with about
thirty conjugated bonds. Coulson and Dixon (34) have made
a similar calculation with valence bond theory, leading

to bond alternétion with a slightly smaller ring, but
their calculation depends strongly on the use of a Morse
function instead of a parabolic one. This dependence upon
a particular type of curve would seem to make his conclu-
sions unreliable, even within the framework of valence

bond theory.

PART 2. A QUANTITATIVE CALCULATION OF THE
PLAUSIBILITY OF BOND ALTERNATION IN CON (C18H18)

For our molecular orbital theory we shall make

three approximations.

‘1. That the sigma bonds are independent of each
other and of the pi bonds. This assumption
ignores changes of hybridization during distor-
tion of the sigma bonﬁs.

2, We shall consider only interactions between
neighboring atoms.

3. We shall neglect coulomb and exchange interac-



tions, but include overlap.
The problem of bond alternation is closely related
to the molecular force constants. In particular, the By,

distortion leading to bond alternation only occurs if the

By, stretching force constant is negative. BRecause the

force constants play such a major part in the problem of
bond alternation, it is appropriate that force constants
play the major part in our theory. We shall use as our
only empirical constants the B,, and Alg stretching force
constants of benzene. 1 feel that this approach is more
reliable than those used in the literature that involve
spectroscopic constants, although the conclusions are
very similarx.

If the first derivatives of the overlap integral and
the resonance. integral, dS/dr and d B/dr, were zero, then
the Alg and the By, force constants would be identical.
Thuis we see that the terms involving second derivatives of
S or ;g must contribute equally to Kp1p and Kpgy.

The contribution of these terms is proportional to
the bond order. Since the bond order of a conjugated bond
not near any end effects will tend to be constant, the
contribution of these terms to the total force constants
will vary little from molecule to molecule. The actual
values of the second derivatives of S and ﬁ% are therefore

unimportant for our purposes,
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Following Mulliken (14), we shall assume that B/S

is a constant.
The Calculation of KAlg Benzene

_ S . S
E = ‘*g(m‘L‘”’Z‘H 3,

439(1/(1+s)2+ 1/(1+28) %) s! (1.4)

=
Ll

]
i

4B ((148)  +(1+25)"2)
-8P'S" ((148) *+2(1+28) )

If we make the usual assumption for benzene that
S = 0.25, then:
E" = 4.3383"-8.837R'S’ (1.5)
We introduce here the force constant Ko-? which is

the force constant of a single sigma bond.

Kalg benzene = Koﬂ']a“E" = K +0.723g"-1.4738's"

(1.6)

The Calculation of KB2u Benzene

What follows applies equally well to an annulene

with any other N. Let us consider an annulene with a Boy
distortion. The short C-C bonds will have an overlap S
and a resonance integral E%. The long bonds will have

overlap 5, and resonance integral BZ We set Si/Sz =



BL/By = 87, 51 = 4T, S, = ¢ T, = ¢8, fr = 6 B.

We set up the secular equation for the pi molecular
orbitals, using p atomic orbitals as the basis functions.

A portion of the matrix follows:

------------------

0 #B-4TE £ ¢ 1B-¢"lTE 0 0
0 0 ¢ 18-¢"11E -E $B-4TE 0
0 0 0 $B-4TE E e
0 0 0 0 e il

We divide each row of the matrix by B-TE, and let

Q = E/(B-TE). The same portion of the matrix now is:

0 ¢ -Q gt 0 0

0 0 pL -Q ¢ 0

0 0 0 # -Q 1
0 0 0 ¢ -Q

The eigenvalues of this matrix are:

ﬁ = (¢-¢'1)2+4 cos Zrn/ (2N+1) (1.7)
~NéneN

E, = Q.B/(1+Q,T) (1.8)

EY = B(14QuD)"2(QuD) ! (1.9)
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E" = R((14Q,1) " A@yD) - 2(14,1) (@M D D)

Now at ¢ = 1,
Q)" =0, (Q,I)" = T"Q,+Q)T
Now B/T = B/S is a constant, so: at ¢ = 13

2

E" = (14QnT) ™ (B"Qy+BQ)

From equation 1.7 and the definitions of @ and B,

the following may be derived at 4 = 1:

B" = 5"—p’1(p3)2; QB = 4(6%)"1_(5')2 (1.11)
I I O RT- LIDL e (1.12)
Q, = 2 cosJBr (1.13)
Kpoy = K¢+(2N+1)“1§E;; (1.14)

For benzene, N = 1,

- Leary2
Kpou = K40.723 "+1.286°(8') (1.15)

We may use the relationship ﬁ"lp' - s~1g1 = 48°';

combining equations 1.6 and 1.15 gives:
Ka1g-Kg2y = -6.5938'S’ (1.16)

These force constants of benzene are known experi-

mental quantities (Whiffen (15)).
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- 7.62x10%dynes/om Ry = 3.94x107dynes/
KAlg = 7.62x10"dynes/cm B2y — <. 94x ynes/cm
Combinihg equation 1,16 and the above gives:
5
KAlg"KBZu = -6.5939}8' = 3.68x10"dynes/cm  (1.17)
- 5 ' = Llgloay2
B's' = -0.558x10”dynes/cm pr- (5) (1.18)
"'1 ] 2 — 5
B (ﬁ) = ~2,23x10"dynes/cm (1.19)

The Calculation of Kpg, C1gH1g

The molecule cycloBctadecanonaene, known as CON, or
(18)-annulene (Sondheimer (31)) or CygHjg, is believed to
be planar (Sondheimer (30), Weiss and Gouterman (37)). We
apply equations 1.12, 1.13 and 1.14 with N = 4 to derive:

sl )02 |
‘Kp2u Gpghyg T K2 687 () 0. 6518" (1.20)

With equation 1.15, and the experimental benzene

force constant, wc find:

o 1 9
K = 1.40 'Y7-0.042p1"
B2u CgHyg g g P (1.21)
+3. 94x105dyne8/cm

From equations 1.19 and 1.21, we find:

5
Kp2u CygH;4 = 0-82x10 dynes/cm-0. 042" (1.22)
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The -0.0425" term can be expected to be small. If

B" = 0, corresponding to p decreasing exponentially with

distance, then p" = 6"'1(@')2 = -2.23x105dynes/cm, then:

5
K = (0.91x10”dynes/cm (1.23)
B2u C18H18 y

PART 3. POSSIBLE ERRORS

There could be an error in the calculation of 9"1(?,')2
(equations 1.4 through 1,19) due to assuming one can use
the same K, for both the Alg and B9, benzene distortions.
The K, for the B,, vibration would have to be about
1x105dynes/cm greater than for the Alg vibration to increase
the value of @"l(@')z sufficiently to cause bond alternation
This seems somewhat unlikely, because one would expect the
By, distortion to change the sigma bond hybridization,
causing the B, K, to be less than the Anga_.

No major error in the calculations is to be expected
because of the assumed value of 0.25 for the overlap
_ integral, because those molecular orbitals that contribute
most to lowering the By, force constant (stretching) are
the higher energy ones that are least sensitive to the
value of the overlap integral, The assumption that fg/s
is a constant should be safe for the same reason.

Longuet-~Higgins (8) does a similar calculation

including coulomb and exchange interactionms in a simple
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way, with very similar results. It therefore seems unlikely
that a similar use bf coulomb and eXchange interactions in
the preceding éalculation would make much difference.

The term 8" would have to be +20x10°dynes/cm to
bring about bond alternation (see equation 1.22). This

seems to be much toc large to be believed.
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CHAPTER 1T

PROPERTIES OF THE ANNULENES

PART 1. THE ULTRAVIOLET ADSORPTION SPECTRA OF
THE ANNULENES

In the Hickel theory each annulene will have four
degenerate lowest excited singlet states. Electron repul-

1

sion breaks the degeneracy, leaving the states "B

2u’

lBlu, and]Elu. The transition from the ground state to
the degenerate 'E, state is dipole allowed, and gives
the strongest absorption. The other two transitions are
dipole forbidden, and of lower energy. The 1B1L1 transi-
tion may borrow intensity effectively from the 1E1u
transition by vibrational interactions (see Moffitt (35)).
For this reason, the 1Blu absorption is fairly intense,
while the absorption of the lBZu transition remains quite

weak. This analysis allows us to make spectroscopic

assignments primarily on the basis of intensities.

The assignment for benzene is as follows (see

Pariser (18)):

1321_1 4.71 e.v.

18,4 5.96 e.v.

1
Elu h.76 e.v.
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The (18)- and (30)-annulenes show only two easily
identifiable peaks, Sondheimer, Wolovsky and Amiel (30).

We make the assignment supported by Longuet-Higgins (8):

(18) ~annulene (30) ~annulene
e, 27,000 cnl g, 23,300 cm™l
s, 22,300 cm™t 18,, 19,100 em™!

The lBZu transitions are not identifiable at room
tempperature, but Gouterman and Wagniere (10) report an
ultraviolet spectrum at 77K for the (18)-annulene. From

their spectrum, they make assignments:

(18) -annulene

g,, 27,060 cm™?
18y, 21,345 em™t
185, 20,350 em™t

Gouterman and Wagniere's (10) 779K spectrum has much
better resoclution than the room temperature spectra of
Sondheimer etc. (10), but the bands assigned to the 1BZu
transition are still rather weak, and there may be some

reason to suspect this assignment.*

*See chapter V, part 4.
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PART 2. OTHER PROPERTIES OF THE ANNULENES

There are several reports of X-ray analysis of the
structure of the (18)-annulene, Sondheimer, etc. (30)
reports the (18)-annulene to be planar and to have a center
of symmetry. The center of symmetry precludes bond alter-
nacion. They also report an NMR experiment showing a
splitting between the inner and outer protons of the
(18)-annulene. Such splittings are caused by ring currents.
Ring currents are characteristic of aromatic compounds and
constitute strong evidence against bond alternation.

Weiss and Gouterman (37) report an X-ray analysis of
the (18)-annulene showing the molecule to be planar and
without bond alternation. In addition, they report carbon-
carbon bond lengths.*

There appears to be little data available on the
(30) ~annulene, because of its chemical instability and low
solubility in organic solvents, Sondheimer, etc. (30,32).

See Sondheimer (33) for further references on
- "Recent Advances in the Chemistry of Large Ring Conjugated

Systems.'
PART 3. PREDICTION OF HUCKEL THEORY

As the Huckel theory predicts only one energy for

the three transitions, we may consider the Hickel theory

*See figure 1.
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FIGURE 1
THE (18)-ANNULENE

The "transoid" bonds (light lines) are 1.382 %.003 8
The "cisoid" bonds (heavy limes) are 1.419%.004 8
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FIGURE 2
THE (30)-ANNULENE, CYCLOTRIACONTAPENTADECAENE

This annulene is of Dgyp, Symmetry. We will assume that

all the hond lengths and bhond angles are equal.
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to predict an average energy. In benzene the 1Blu transi-
tion at 48,070 em™ L is very near the average energy of the
132u= lBlu, and 1Elu transitions.

In the (18)- and (30)-annulenes, we do not know
where the lB2u transitions are; but we know (part 1) that
the 1B1u energies are below the lElu energies.

It seems fairly‘safe to assume in these cases that
the average transition energies cannot be much below the
lBlu energies, and may be above these energies. It there-
fore seems logical to apply the Hiuckel theory to the lBlu
transitions only.

We should expect the lBlu transition energies of
benzene, the (18)-annulene, and thc (30)-annulene to be
in about the ratio of one to one-third to one-fifth. We
would predict the 1Blu transition energies of the
(18) ~annulene and the (30)-annulene to be respectively at
16,000 cm L and 9,600 ecm™l., This is far from the experi-
mental values given in part 1.

It has been proposed by Kuhn (3) and Longuet-Higgins
(8) that this disagreement is the result of bond alternation.
I shall make calculations to see if this mechanism could
~account for the disagreement between the experimental and

Huckel 1Blu energies of the (18)- and (305~annu1enes, and
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also to determine the amount of molecular distortions

necessary to account for these anomalies.
PART 4. THE EFFECT OF MOLECULAR DISTORTION

For the lBlu benzene transition:

AE = 48,070 em™! = -25/(1-32) (2.1)
§=0.25=T
then:
B = -22,530 em~l = B (2.2)
From equation 1.8 we find:
AE - -(1-qfr?) "Laque (2.3)

For the lB]_u (18)-annulene.transition:

AE = 22,300 en™l, Q, = 0.4876 (2.4)
From equations 2.4 and 1.7 we find:

4 = 1.1856 (2.5)

We will assume an exponential form for the resonance
and exchange integrals. This is a reasonable approximation
because we have shown that the second derivatives of S and
ﬁ do not play an important part. AWe write, for the

distortion br:
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I

br = a 1lng (2.6)
then:

Br

I

0.1703a (2.7)

At the equilibrium position, the net force on each

atom is zero.

0 = Fpgy = Ko-Br +(201) "% E! (2.8)
2 n

EL = 28(14Q,T) " ta 1Q;Lsinh(26x /a) (2.9)

0 = Fpgy, = br(K+2.638/a%) (2.10)

We may make the same calculation for the (30)-

annulene, We find that:

Q; = 0.4204, S5r = 0.2065a
(2.11)
0 = Fgau~ Br (Ko +2.608/a%)

Equations 2,10 and 2.11 agree very well as to the

size of B/az. From equations 1.15 and 2.10 we get:

B/a2 = -6.3x105dynes/cm (2.12)

a =0.278

PART 5. DISCUSSION

Equation 2,12 differs from equation 1.19 almost by
a factor of three. If we had started from equation 2.11,

the difference would have been even greater. We conclude
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that bond alternation is not responsible for the disagree-
ment between the eXperimeﬁtal and Hiickel 1Blu energies of
the (18)- and (30)-annulenes.

There are two other facts supporting this conclusion.
Gouterman and'Wagniere.(IO) show that if there was tunnel-
ing between potential minima, there would be vibronic
effects on the optical bands. As these effects have not
been observed, the potential barrier must either be very
large or nonexistent.

The lBlu transition of an annulene belongs to Clar's
p-bands (Moffitt (35)). Streitwieser (17) gives an
empirical formula for the p-band energies of polyenes that
agrees well with the experimental 1Blu energies of the
(18)- and (30)-annulenes, This agreement would be very
unlikely if some unusual mechanism such as bond alternation
were affecting the spectra of these annulenes, without
affecting the spectra of the cata~-condensed hydrocarbons,
on which the empirical formula is based.

In a later section I shall discuss this empirical
formula in more detail, and give a theoretical justifica-

“tion for it.¥*

*See chapter III, part 6.
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CHAPTER III

INTRODUCTION TO THE ALTERNANT MOLECULAR
ORBITAL THEORY

PART 1. EXPLANATION

In the first chapter we showed that the simple
Hiickel molecular orbital theory is inadequate for dealing
with long conjugated polyenes. The main failing of the
simple Hlckel molecular orbital scheme is the lack of
account for electron correlation.

The alternant molecular orbital (AMO) method treats
the problem of clectron correlation by using different
orbitals for different spins., The orbitals for electrons
of different spin are concentrated in different regions

of space, thereby minimizing the electron repulsion energy.
PART 2. NOTATION

We shall follow the notation of Lowdin (12,13) as
far as possible., ¢ will be used for atomic orbitals
(AO's); *’for molecular orbitals (MO's); and a for
alternant molecular orbitals (AMO's). Greek letters
zj;)),cr specify the AQO; small Roman letters i, j, k iden-
tify the MO; and capitals I, J, K label the AMO.

In alternant systems the molecular orbitals appear

in pairs:
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\}/K =z° dMCMk +Z* BuCuic (3.1)
Yr-x° AT Sall PO

The zo and §* denote summation over the "unstarred"

and “starred" atoms respectively. The molecular orbital
functions that take account of overlap are not quite this
simple, but we may still group them in pairs.

From each pair of MO, a pair of AMD are constructed,

ag cosOg \H: + sin@y ""—1; (3.2)

EK = cosOKLﬁ{ - sinOK\yE
0cektl/4

The ay have the following orthogonality relation-

ships:

Coxlaz) = Grlas) - (las) = o (3.3)
KAJ
Grlo) = Grfad- 1
G [ax) = cos20g -
PART 3, ELECTRON SPIN

The "a" orbitals have their largest amplitudes on

"unstarred" atoms, and the '"a" orbitals have their largest
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amplitudes on the "starred' atoms. The "a' electrons are
given parallel spins so that no two "a' electrons can
occupy the same atomié orbital simultaneously. The spins
of electrons in "a" orbitals are also parallel so no two
"a" electrons may be in the same atomic orbital simultane-
ously.

Let us suppose we have an alternant hydrocarbon with
Z2n conjugated electrons. We put the first n conjugated
electrons in "a"™ orbitals, and the second n electrons in

"a'" orbitals. The total spin of the first n electrons will

be n/2, as will be the total spin of the second n electrons.

S, = Sz = n (3.4)

a a

The simplest spin function with this property is:
61 = &(L)K(2)-+-- oﬂf(n-l)ot(n)ﬁ(rﬁl) e -ﬁ(Zn) (3.5)

This spin function is not an eigenfunction of s2.
To make Sl an eigenfunction of 82 we must take the proper
projection. If we want to find a singlet state, we take

the singlet projection Sp, of 51:

2
S(a¥z) SPg = 0 (3.6)
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PART 4, LIMITING BEHAVIOR OF AMO
GROUND STATE WAVE FUNCTIONS

As the .XK approach zero, the "a" orbitals become
completely concentrated on the "unstarred" atoms, while
the "&" orpitals become concentrated on the "starred"
atoms, In the presence of overlap this perfect alternat-
lon occurs when the AK are slightly greater than zero,.

If we were to separate the atoms of & molecule, the
'XK would decrease to zero. At complete separation, each
atom would get exactly one of the conjugated electrons.
This correct result is slso prediected by valence bond
theory, but not by simple Hiickel MO theory.

We may compare the AMO theory with the valence bond
theory. At perfect alternation, the AMO theory puts
exactly one electron on each atom, The antisymmetrized
wave functlon is antisymmetric with respect to the exchange
of the spatial coordinates of any two "starred", or any two
"unstarred" atoms. This sntisymmetrized wave function
wlll therefore consist of equal contributions from every
nonionic valence bond configuration in which each electron
on an "unstarred" atom is palred with an electron on a
"atarred" atom.

Compared to the full configuratlon interaction
treatment, the AMO method is least accurate when the simple

Hilckel MO and valence bond theorles give equally poor wave
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functions.

PART 5. AMO'S FOR EXCITED STATES

For excited states, it Is useful to iIntroduce

"antibonding" AMO's,
az = cosfg \VE + sinfg \ﬁ( (3.7)
ag = cosby LVE - 8inbg \Vk

The orthogonality relationships among the anti-
bonding AMO are the same as among the bonding AMO. In

addition there are the relationships:

(s | )= & |-3K>= (as 13z =<3, | &) = o

R#J
Cog | 3 = (g lag) =0 (3.8)

<aK (a-K->= - (QK’ EK = 5in26

Let us imagine we excite an electron from a bonding
to an antibonding orbital. The excited electron must go
into an orbital that is orthogonal to all other AMO orbitals
of the same spin. Thus 1f the excited electron is to have
the same spin as the elecirons in the "a" orbitals, 1t must
be in an QK orbital, The ag orbital will have its smallest

amplitudes on the "unstarred" atoms, and so the excited

electron will achieve only a small energy lowecring
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through exchange interactions with electrons of its own
spin. We see that in the AMO theory, exciting a single
electron raises not only the one-electron energy, but
increases the electron repulsion energy as well. This rise
in the electron repulsion energy will not diminish as the
size of the molecule increases, because of the increase in
the number of electrons. We would therefore expect the
AMO theory to always produce a finlte energy gap between
the ground state and the lowest excited states, no matter
how large the molecule. This question will be discussed

in detaill later.
PART 6. AMO EXCITED STATES

There are several methods available for construct-
ing excited states, Pauncz (23,24) constructs states of
different multiplicity by starting with the simple spin
function 6;, and taking the projection with the desired
total spin. He uses this method to construct the 3Blu
gtate of benzene. He finds it is necessary to use a many-
parameter wave function in the construction of multiplet
states (24). This is probably because a multiplet state
must have, in molecular orbital lénguage,_at least one
electron in an antibonding orbital. The AMO wave function

will have to emphasize MO configurations in which the

antibonding electron(s) came from one of the higher enexgy
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molecular orbitals, in order to keep the energy of the
state low. This means that the higher AMO of the multiplet
wave function must haVe.considerably more alternation than
the lower AMO.

There is an obvious method for comnstructing the 1y

2u
1
and B states. One converts one of the AMO patks into a

Tu
bonding MO ¥k and an antibonding Mo Y& singlet. These MO's
are no longer alternant. The remaining electrons maintain
their ground state spin orientations, and one retains only
the singlet spin projection. 1In cyclic polyenes the
molecular orbitals come in degenerate pairs. One may there-
fore construct a degenerate pair of singlet excited state
wave functions as above. Mixing two such degenerate confi-
gurations wili give i:he leuand l-Blu states of a cyclic polyene.

| The electrons in the nonalternant orbitals have

lost their spin correlation with the rest of the electrons
in the system. This loss will raise the electron repulsion
energies of the two involved electrons. The increase in
electron repulsion energy will approach a constant value
as the size of the polyene increases indefinitely, so with
this model there will always be a finite energy gap between
the ground state and the lowest 1Blu and 1B2u stares.

The construction of the lElu states is by my own
method, and a description of this.method will be left to

chapter IV. We will only say here that there will always
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be a finite energy gap between the ground state and the
lowest degenerate lElu states.

The above discussion suggests a semiempirical method
of correcting for electron correlation in the Hiickel theory.
For transitions of a given typé, such as the p-band transi-
tions of Clar, we add a constant energy term to the energy
calculated for the upper state by the Hilickel method. 1In
this way we introduce the finite energy gap found with AMO
theory. We choose our constant energy term and our reso-
nance and other integrals so as to satisfy as nearly as
possible the experimental energies of as large a class of
polyenes as possible.

Just such an empirical method as we have proposed
has been carried out by Streitwieser (17 for Clar's
p-bands. His method has up to now lacked our thcoretical
justification. The constant energy term he uses for the
p-bands is 10,000 em . To apply the method to cyclic
polyenes, we note that the lBlu transition of cyclic poly~

~enes, is the p-band. The method predicts the lBlu

L and for

transition for the (18)-annulene at 23,000 cm”

the (30)-annulene at 18,000 cm~l. Comparison with the

table on page 14 shows how well the method has worked.
In the next chapter I shall present a detailed

mathematical apparatus to be used in calculating the ground
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state of the annulenes, with the purpose of calculating

excited state transition energies.
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CHAPTER IV
CALCULATION OF TRANSITION ENERGIES

PART 1. THE GROUND STATE WAVE FUNCTION

The ground state wave function‘fg will be an anti-
symmetrized product of a space function §,, and the spin
function Sp,. @, is a product of alternant molecular

orbitals.

Qo = aI(l)......aN(n)Ei(n+l) ..... Eﬁ(Zn) (4.1)

By making full use of the spin function Sp,, one
may obtain equations which involve integrals over spatial

coordinates of the electrons only (Pauncz, De Heer and

Lowdin (12)).

SR Sk PSSR TS

(4.2)

The operator H__ may be any Hermitian operator that

P
is symmetric in the coordinates of the electrons. P¥ is

any permutation of the spatial coordinates of the electrons.
The symbol p;p stands for Lowdin's '"characteristic number";
it is the number of '"a" functions among the first n AMO
T
of P ¢0.
We wish to be able to calculate properties of low

energy transitions. In such a calculation the higher
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energy electrons play a special part, because they go from
a_bonding to an antibonding orbital. We therefore want to
take special care to use good orbitals for the higher energy
orbitals.

If one uses a single @ for all the AMO, as Pauncz,
De Heer, and Lowdin (12,13) do, one is likely to make a
considerable error in calculating excited state energies,
because the ground state energy of the excited electron
will not be good. (We are assuming most of the tranmsition
energy involves a single electron.)

Lf one uses the many-parameter method, with a
separate O for each AMO, the calculation for any molecule
larger than benzene becomes very cumbersome (22,23).

A good compromise should be to use two parameters,
one for the lower energy AMO, and a second for the higher
energy AMO. The 0 used for all the lower energy AMO will
be called 83, and the O used for the higher energy AMO
will be called 0,5. The lower energy AMO will be called
M1" orbitals, and the higher energy orbitals will be
called "2" orbitals. The electrons in these orbitals will

be designated in the same way.

PART 2. THE NORMALIZATION INTEGRAL

We may use equation 4.2 to find the normalization

integral, S. Because of the orthogonality relationships
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(equation 3.3), only certain permutations contribute to S.
These allowed permutations are of the form:

n
pr = |1 p 4.3
k=1 K | %3

where P may bé either a transposition of k and ntk, or
the identity operator.

Let us have p pairs of "1" orbitals, and q pairs of
"2" orbitals. Then:

ptq = n (4.4)
-1
P q n P\ f{q }¢u \2u
1 t’
Spq = mT Z (U.l-a—u?) (u 1\ (uzp%IAZ

If q or 1-)% is small, it is convenient to introduce

the variable R in place of Azz

R = (1-)2) (4.5)

2usy = u b
M2 = L (ED (R (4.6)
We may substitute equation 4.6 into equation 4.4:

u' a1
01 " T u€‘=0 u£=0 g‘o lul-i‘uz\ (E]) (32\'(4'7)

1 2

(P8 ot
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We may rearrange the terms in equation 4.7:

EYEEND - " G )

(4.8)
It is easy.to show that for any [x]<1:
09 fu tu
(l_x)-(ul"l'f'i"l) _ Z (u_]_?an) (us-£) 4. 9)
U2=f 2 '
q (o-uq-u
-x)~(PHL-up) = § L2y (-
(1~x) "~ (pFl-up) u2=-ngq"u2 ) x(d-ug) (4.10)
- (pt+E+2) _ + g+l 8
(1-x%) : = (’ ) )X
- (l_x)-(u1+f+l+p+l-u1) (4.11)

When we consider the coefficient of xq'f, we find

that:

+1 u1+u2) n"U.l"U.z
(gﬂf) - = (uz_f (Q"uz ) (4.12)

usz
We may substitute equation 4.12 back into equation

4.7, again rearranging terms, and find:

R féo L Ee)6r)-

,\%‘ﬁ (-r)E | (4.13)
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From equation 4.13 it is obvious that if R=0, SP q is
. >
indcpendent of q, For this reason, we may ignore non-
alternant orbitals.

We may define the function

p fu +f °

re 00 = (g ) = 1)
1

Tf’o(X) =1

Tf,P"‘l(X) = Tf-l,P+l(X) + XTf,p(X) (4.15)

From equation 4.15, the TfaP(X) may easily be gene-
rated. This is particularly useful when using a computer.
Then:

o q -1
p,q = % g f—l—%-l-]) (%)(“R)f Tf,P( >\21) (4.16)

PART 3. THE ONE-ELECTRON ENERGY

Our calculation of the one-electron energy Es
follows very closely that of Lowdin, etc. (12). The only

important difference is that we use two parameters instead
- of one.

We first introduce the vne~electron gperator hl'

ff’g hl‘i’kdv (4.17)

w = Klhg{K) = jaK* hy ap dv

SEK* hl aH dv

#

hyge = Cefng]k)

=
it

hpg (thl‘K)
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We divide the one-electron energy into two parts.
EI = E; + E5. E; is the one-electron energy of the.
"1" orbitals, and E, is the one-electron energy of "2"

orbitals., We introduce the energies:

T W orbitals Prac i) (4.18)
S 7 orpicars CRE KK

Yo~ ;%; orbitals RE Tk

AW, = (hgg =Py

M2 orbitals
We carry out the routine algebra as in Lowdin, etec.

(12), and find:

- _ -1
E) = W, Aldwlsp—l’q(sp,q) (4.19)
_ -1
Ep = Wy = MATS, 105, o)
The S notation brings out in detail the exact

Pd
nature of the factor multiplying the W. It is easy to see

how equation 4.19 is to be generalized in the many-parameter
model. Fdr the many;parameter model, one uses a separate
AW for each AMO paii, and one replaces Sp-l,q by the norma-~
lization integral calculated with the appropriate pair of

AMO vacated. We might write thils as:
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E =W --(%QKQHK sK)s‘1 (4.20)

PART 4. THE ELECTRON INTERACTTION ENERGY
We shall use for the AMO coulomb integrals:

Yeo = (RRILL) (4.21)

and for the AMO exchange integrals:

by = (RL|IK) (4.22)

We distinguish three types of electron interaction.
First, there are interactions between electrons in "1"
orbitals, We call these 1-1 interactions. The interactions
between 1" electrons and '"2'" electrons we call 1-2 inter-
actions. The interactions among "2" electrons we call 2-2
Interactions,

In what follows, the superscripts K-L, 1-1, 1-2,
or 2-2 will refer to these three types of interaction.
Following Pauncz's method with this addition, we write for
the interaction between two pairs of occupied AMO designa-

ted by K and L. The _AEEL will be defined later.
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The definition of the other J\ are arbitrary until we
have defined JLO. The simplest définition ofJAq)is'to set

-A-o equal to Sp’q. With this definition:

W-AD NG =85, - AfSpo1q (4-25)
(-3 N2 - - X55p,q-1 (4.26)
(I"E)J\Sl = 5p-1,q4 ~ p.q (4.27)
(L)) = 5p,a-1 " 5p.q (4.28)

The previcus four equations may be written in the

many-parameter notation used in equation 4. 20.

(1-\2) f&K
(1-,{%)&;1{ =5, -8 (4.30)

i

g - /\IZ{SK (4.29)

OQur many-parameter notation has the advantage of
great compactness and simplicity. We shall write out the
equations for the other .A. in the many-parameter notation,

followed by the two-parameter notation.

2 -

(]-'AK)(]-'A%)_AIE]_L S - . KSK - ALSL +AKAZSKL
WA AP NGE =5, - s+ )X, -

(1-40) (-4 KT

(4.31)

#i

it

(S-Sg-Sp+SpAAL



40

In the above, S¢1.

is the normalization integral

after the K and L AMO have been vacated. We may write

a relationship for Sy in terms of the other S.
C@-pADsy - -Ahse - WEADsg
Equation 4.32 may be rewritten:
(1-AP) (Sgr-S1) = Byp, = (LA (Sgp-Sp)
If we also define:
S - 8g - 8 + Sgr, = Dy,

We may rewrite equations 4.29-4,31:

(1-)) Q- AHNGK

1

(1-X2) (1-A3) (8-Dgp)
+ (1-AD Dy APy
A A-ADNGE = By - W-ADP

(1-)D -AH NGE

(1-AD) (1-XP) (8-Dgp)

+ Dyp - (Aé+AE)BKL

i
=]
1
o

(1-AD (1-AD N&GE

1-AD) @D NG

DKL’\KXL

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

32)

33)

34)

35)

36)

37)

38)

39)
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For the two-parameter notation we write:
S]— - Sp-laq - Sz - Spsq-l

811 T S5-2,4 5127 8,.1.q-1 S22

It
v

(S19-57)/(1- A%) = b = (819-8,0/(1- )

S

51 - 89 + S519=d

_ 9\ 2
S - 28) - 8y =Dyy = (- XDy

V2]
i

o 2.2
25, + Sgp = Dop= (1- Xp) “dgy

(4.40)
- Sp,q-Z
(4.41)
(4.42)
(4.43)

(4.44)

(4.45)

The lower case variables s, b, d, dqq, d22 will be

used exclusively in what follows.

TheJAL‘S used in equations 4.23-4.24 are arbitrary

convenient to define:

A, -

We may then find the other./\_in terms of

quantities defined in equations 4.43-4.45.

N2 = s - 2+ Xob + a/(aAD a-B)

until we choose be. For computatlons we shall find it

(4.46)

the

(4.47)
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AL =6 - a7ca-)dH a2

It

132 = Alxzd/((l-A%)(l-)g))
Mt = s+ (Ndq-2+2d/ (1-A2)) (4.48)
Nt =w - %611
Alst - 910
N = s+ b/ (- D)) (4.49)
= o-a/a-Xp)
2% = s + Xoldgp Yo-2o+2d/(1- N3)) (4.50)

N2 =1 - a9y Xoy-d/(1- Xy)
N232 =050 %

N%2 = s + Do (-bra/(1- X)) (4.51)

li

N2 -n - ara- 0%

In order to evaluate b and d, we start from equations

4.22, 4.4k, and 4. 45.
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-1, | i
| b = % g (qfl) (P"‘If)'f‘l) l(-R)fo-i-l,p-]_( Azl)l (4.52)

_1 Ll (qe1N py £, 2o fokEt2) -1 )
d=35 f=Zo (qf )('R) ()f'f"(p p ) Ter1,p¢ A1)

el o

The J's we used in equations 4.47-4.51 are closely
related to those of Pauncz. To get Pauncz's.ﬁ_, we set

/\]_ =/\2 “A, and multiply by (n2~1)n(1-)‘2)3,

PART 5. THE MOLECULAR ORBITAL ELECTRON
REPULSION INTEGRALS

We shall use the method of Pariser (18) in calculat-
ing coulomb and exchange integrals. This method involves
the formal consistent neglect of differential overlap
between atomic orbitals and the adjustment of some theorec-
ical quantities by empirical or semiempirical procedures.

The neglect of differential overlap reduces
considerably the number of integrals that need be considered,

For any pair of molecular orbitals k and k we may write:
(kk|kk) = (Rk|kk) = (kk|kk) (4.53)

We may expect equation 4.53 to be especially good if
the orbital k is of high energy, because then the charge

density on the bonds will be small.

For any two pairs of orbitals we write:
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(kk]33) = (kk]33) = (RE[33) = (RR|3T) (4.54)
GRIED = Grfed) = k(& = GRIKD) (4.55)
Grlki) = Gk]RD = GElki) = GRJED) (4.56)

The symmetry of the (18)- and (30)-annulenes is
assumed to be Dg,. However, in constructing the molecular
orbitals, we shall assume that the symmetry of the

Zn-annulene is Dy ... With this perimeter model, the Gy

appearing in equation 3.1 will be:

pic = (Zn)'lfﬁ/“k

with \W = exp(iff/n)

(4.57)

From the actual atomic coulomb integrals (“ﬂlﬂv) we

define average integrals:

2
= % ugj(vvhwmm (4. 58)

The Cu;depend somewhat upon the molecule involved,

. For example, C3 for benzene is the coulomb repulsion
integral between electrons in p orbitals on opposite sides
of the ring. The carbon atoms involved are in a cis

configuration. In the (18)-annulene, two-thirds of the
atom pairs contributing to C5 are in a trans configuration,
leading to a lower value for C3.

We introduce the additional quantities:
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j23
o 02 (4.59)

— 1 Il '
¢, = ELE]. Com-1

For the quantities mentioned in equations 4.53-4.59

-c-e

I

we may write:

(kk[kk) = 2(€CHT,) | (4.60)
and |

(kic\ik) = 2(C,-T,) (4.61)

kef 39> = Lee e, (4.62)

(kk|73) = 3(C -C ) (4.63)

Gkfki) == A=£l CcuWH(E=3) (4.64)

(jEIEj) - 515‘:;1 G (-3 UyMR=3) (4.65)

0f the molecular orbital coulomb and exchange
integrals that are not equal to one of the integrals in
equations 4,60-4.65, most are zero becausc of the Den
molecular Symmetry. The rest are small because they depend
upon terms such as (ﬂ}l‘\w) - cM-p‘.

Because of the above considerations, we do not

expect the best SCF molecular orbitals to differ much from
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those defined by equation 4.57. The exception will be
when the D¢, molecular symmetry allows mixing of molecular
orbitals of the same, or very nearly the same energy.

This will occur, for instance, with the k=3m and k=@Mmole-

cular orbitals in the (18)-annulene.
PART 6. THE AMO INTEGRALS

From equations 4.53~4.57 and the definitions of the

AMO orbitals (equation 3.2), we may prove:

¥xr + Yer = 2(kk}11) =T, + T, (4.66)
(KR|TT) + (RR|3T) = 2} (kk]ij)

2(RR |IT) = 20 Ay (Kk|33)

iz = )\é(k&li&k) + (kk|kk) ~ (kk|kk)

Sz = A2 (k] k)

by = (K3 (jk)cosz(gk-Oj) + (ki ]jk)sin2(0k+0j)

Bz = (ki Jik)cos®(0,05) + (kI JTiysin’(e,-0,)

i

(KIJR) + ®T|TK) = ((kd |RD+CRF TR0

+ A (k3 [3K) - (] [3K))
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(®I|TR) = (kj|ik)cos?(8-87) - (kjlik)sin®(0g+ap)
(KT|I®) = (ki jk)cosz(gKmJ) - (klek)sinz(eK-o_I)'

PART 7. THE INTERACTION ENERGY

If the K orbital is a "1" orbital, we may write for

equation 4.24:
B = k) - (ki) &) (1-AD) (4.67)
+ (kfclik)s"l[f\zl(l- )\Zl)b-(ﬂ

If the J orbital is also a '"1'" orbital, we write

for equation 4.23:
(4.68)

2K = 4(kk]ii) - 2(kilik) -,2(1-A21)(Ej\'j12)
- 257la )y (kifii0 + 28 b(1-Rg ) Wil iR

If the K orbital is a "2" orbital, we write:

|
il

2
(kk|kk) - (kk|kk) (L- A2) (4.69)
+ (kfclfck)s'l /\zz(b(l- )3‘2) -d)

If the J orbital is also a "2" orbital, we write:
' (4.70)
4(kk]33) - 2(k|ki) - 203k kD A- )

+ 287t >%2(jilﬁj)(-d+b(l-)€é))
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If the J orbital is a '"1" orbital, and the K orbital

is a 2" orbital, then:.
ETK = 4(kk)33) - 203k kj)cos®(0-0,) (4.71)
] 2(jk|k3)sin(0,+0,)
- 2(3klki)s tsin?(01-07) -
(b( Azl“f* A22+A1A2~1)+d)
+ 23'1(jE|Ej)c082(01+02) -

(=d+b (1-)o= A2+ M)

The next step is to sum equations 4.67-4.71 over the
appropriate molecular orbitals. We must first decide which
orbltals are to be '1'" orbitals, and which *'2" orbitals.

We shall let the top two pairs of AMO be '"2" orbitals and

let all the other orbitals be "1" orbitals. Then q = 2,

P = n-2 .
We define the quantities:
_ % (4.72)
A=21 T =1 .
= z:.Cupos Li = i;( ) Ckfos A
n,3
2 Slnu_(n 2)

Gy = 2— WK =
Mmoo S -
=..!£23 S:Ln%“
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n-3
2
Z (kj[iK) = F (4.73)
= . D=3
ik 5
n-3
2
§ Z &j)jk) = F
— _n-3
isk )
(Jklki) = co—‘c':“e-B

UM orbitals j="2" orbitals

| (3kl&3) = ¢4To-a
k="1%" orbitals j="2" orbitals

ZZ (jk|kj) = C, iC 1B

k,j = "2" orbitals

Zz (3k|ki) = -C HC kA
>

j="2" orbitals

We are now ready to express the total electronic

pl interaction energy.
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In the absence of MO alternation, the imnteraction

energy is:

0 2_ e _ . Yed
E® = (n®-1)CHC) - F+B - 2¢, + T, (4. 74)

— .2
Eine = E® + 2(C,y-C,~B) (sin"(8,-6,)

- _ 2 2
((1-s 1d-—s 1‘0( /\]_+ )\2+J\1A2--1))

- - 2
- T+ NF+s (i~ X)) -sla)

- Ce +Cy - A+ _}?2(69-60+A) (1+(1~ )\22)3 -1p

-1
-s d)
. | 2
- 26 + 2T, + 24 + 2(cos“(0,49,))

(Co-T,-8) (s 1b (1= X - Mordhp) -s~1a)

An examination of equation 4.75 shows a part inde-

pendent of b and d. This part of the interaction energy

is what we would get if we did not take the singlet
projection of the spin function &;. The terms proportional
to b have a positive sign, because the singlet projection

of the wave function can be expected to have a'higher
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electron repulsion energy, and a lower one-electron
energy than any of the multiplet projections. The term

proportional to d becomes small for large n.

PART 8. THE 3Blu STATE

Following Pauncz (2), we construct 351u states by
using Spy, the triplet projection of 61. The wave function
of the 3Blu state is then the antisymmetrized product of
¢ Spy . (See equation 4.1)

By making use of the properties of the spin function
Spy, one may obtain an equation (Pauncz (2)) similar to

equation 4, 2.

(B F O o [

P1p
SN,

The constant C may be taken as arbitrary, the other

.y (4.76)

symbols having the same meaning as in equation 4.2. For
convenience we will let C = 1/((n+2)(n+1)).

By following a procedure very similar to that of

equations 4.4-4.18, we find:
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: q £ -
0 = i 2y O WUT) T re A7) @

- o [Ept2y-1 2
2(}31 ‘Tf+1,p()\1)

W0
1
-

o
i
H‘ l

%5‘ (q:fl) ((P+§+1) ule-l-l,p-l( ’\21) (4.78)
2T g, OB CRE

q-
a - z%(q 1) - Xbea P45%)" Tf+2,p<,\21) (4.79)

. (p+§+2>—1 e ( )\zl))(_R) £+1
If we use equations 4.77, 4.78, and 4.79 to define

Sp’q, b, and d, equations 4.19-4.51 are true for the 3Blu
state. These equations follow as a result of our choice
 for the constant €. If we again let the top two pairs of
AMO be "2" orbitals, and all the rest be '"I'' orbitals,
then p=n-2, q=2, and equations 4.19 and 4.75 define the
energy of the 3B111 state.

| This 3Blu AMO wave function is peculiar, in that

it does not correspond to any Hlickel MO wave function.
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If we set all but 6ne of the )Us of the AMO's equal to
» unity, the AMO wave function becomes a Hickel function

with the two unpaired electrons occupying the remaining

pair of AMO.

1 1

PART 9. THE LOWEST "B, AND "B, STATES

We construct wave functions for the 1Blu and

lBZu states from functions resembling the 04 and 6, of

Moffitt (31). For the (2n=4N+2)-annulene, 03 equals the

antisymmetrized product of:

O3 = E‘Na-ml' RENIPE (e R R Yx (4.80)

e e ANAL ) BN "“N-l\'hq]

SpO/ﬁ

0, equals the antisymmetrized product of:

' '%11 (4.81)

A sp /AT

_..:,Es"’/-ﬁa-N—l-l"maN Yrmi " i

-
Qs = Y—Na-Nﬂ‘ T AN q/-'ﬁg-Nﬂ' '

For the 13 or p state:

lu

U = (93+0,) /A2 (4.82)
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For the 1Bzﬁ or alpha state:

V = (03-6,)/NT (4.83)

The functions'03 and @, are degenerate and ortho-
gonal. The normalization integral S for 03 will be:

(4.84)

5% Sp,q-1 7 F']"‘T £ (fﬁf)ﬂ) -l(q;-l)-('R)fo,p(Azl)

;.Q
;_..i

i
(]

We shall have all but the N and -N orbitals be "1"
orbitals, For 05 the N orbitals are molecular orbitals
leaving the -N orbitals to be "2 orbitals. We have
p = n-2, q= 2,

We define the following quantities:

S' =S, 0= 57 T ()\ (4.85)

= L 2
P p(Opl(Al) p+L 1p1()\1))

= 1 2
Q= 5y 11, p-1¢AD

o R 2
R = SRy 2,p-1¢ A1
(1- )\1) ( 1

U= seryery (RTp o (A - e A

) (T 1 ()))

)
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The energy of the 03 functiom is:
| T, = €% - (Cy-C,-8) - 8W, A,5'/25 (4.86)
~aw1 A 1(P+A22Q) /8
+ s~ Lp+ )\1 AZQ) (€q-C,-8) (cos2(01+02))
+ S_l(P- )\1 /\2Q+R') (co—é‘e-B) (sinzgl-gz)
+ s d @, T ) Nos'-um

The interaction energy between 03 and 8, is:
(4.87)

Hy, = <03‘H194> = -%-(A-B) + (EE-EO-%A) Xs'/s

T o= = (L
By = Eo, - Hy, = E('By,) (4.89)
PART 10. THE LOWEST 1'E1u STATE

For the (2n=4N+2)-annulene we consider in analogy
to the usual Hiickel function, the AMO function @, equals

the antisymmetrized product of:

——— —

a_y- -8y 18N418-N2 - - 8N-18N  SPg (4.90)
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¢1 has,é lﬁzg component as well as a 1E1u component,
To get rid of the extraneous 1E28 component we introduce
the function #,. #, equals the antisymmetrized product of:

a (4.91)

-N"T'aN—laNa-N°'°'aN-laN+l Sp

@1-0o has 1E2g symmetry, but is probably a poor
approximation to an electronic state. In MO language, it
contains no single excitations from the Hiickel ground state,
whereas we would expect such MO configurations to play an

important part in the lowest 1E2g state.

‘I’(l"Elu) = (§;+05) /AT (4.92)

For the actual algebraic manipulations it is found
most convenient to express @; as the antisymmetrized

product of:

a_n Ao 1 AN AN-19N sp (4.93)

This expression for ﬁl is identical except in form
to 4.90.

The normalization integral S for the 1E1u state is
identical to that of the lBlu and'leu states (see equation

4.84). We define the following integrals:
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D =-.n-2,' q = 2
Ry = 541 (To, p( N2k T p (AT 6.9
R, = srarry(- 201, ( N+, (X))
42T, 6 X/ G+2))
= ST, p XD - FFf,p (X1

So = WTLP(XZI)

_ 2 2
5 = ST R T2,p-1¢ AL

Then:
(4.95)

E(lE, ) = B+ A - AW, AL R+ R, + N80 /8
-8, N ,(Ry¥5,) /25 - 2@ T HN,
- R+ AZZRS)(]_» zl)ﬁ/s . (1-),22)R0A/s
+ (sin%0,-0,) (Cy-C,-B) (R, +R;) /S
- (sin%0;-05) A1} 5 (Rg+S;) A-B/s +

(1- Y2 (1- X¥p) (€4-T-B)R, /S
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- (sin26'+67_)(R4""R5) (Cy-Co-2)/5 - %Rscsinzgls in26,)
((Cp-Co-8) Rot5(a-B) ( Xt A, AV /S

In chapter IV I have shown how to find AMO wave
functions and energy levels for the lower excited states
of the annulenes. In the next chapter, the results of
numerical computations on the 7094 computer will be given.
The weaknesses in the present AMO approach will be examined,

and possible improvements mentioned.
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'CHAPTER V

RESULTS OF 7094 COMPUTATIONS

PART 1. BENZENE

The first calculation is of the energy levels of
benéene using the empirical integrals of Pariser (18).

The energy depression of the ground state relative
to the Huckel ground state is 0.668 e.v. The transition

energies to the excited states are:

(5.1)

3 1 1 1
Biu Bou Blu B

3.325 e.v. 5.28 e.,v. 6.503 e.v. 6.843 e.v.

The calculation for the BBlu state has been done
before (De Heer and Pauncz (24)); my result is in complete
agreement,

The experimental values for these quantities are;
3.59 e.v. 4.71 e.v. 5.96 e.v. 6.76 e.v.
(Pariser (18))

Direct comparison shows us that the empirical
integrals of Pariser (18) do not reproduce the actual

spectrum with any precision. Since the integrals of

Pariser were originally chosen to match this particular
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spectrum, it would appear to be more reasonable to choose
integrals that, with AMO wave functions, would match the
ekp erimental transit iéns .

It is now known that the 3Blu state of benzene is
distorted (DeGroot and van der Waals (36)). It has been
estimated (De Heer and Pauncz (24)) that the symmetrical

form of benzene in the 3

B, state is 0.2 e.v. higher in
energy than the distorted form. We will therefore try
to match the theoretical spectrum to 3.79 e.v. for the
3 -
Blu transition.

I follow the method of Pariser (18) by choousing C,y

and 03 theoretically. I use their values of:

C2 = 5,682 e.v. C3 = 4.978 e.v.

By matching the experimental transitions to the
calculated AMO transitions we determine the values of
CO’_ Cl, and B A Fortran program was written to calculate
the transition energies and their first derivatives with
: fesPect to CO’ Cl,anxié?. In successive iterations, new
-CO’ Cl, and p are caleculated by linear interpolation.
First, an attempt was made to use the 3 singlet
transitions to fit the experimental transitions. The
successive iterations diverged instead of converging, with

the 1B211 level remaining too high.
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Then, the 3B1u state was substituted for the 1Bzu
state, and the iterations converged nicely.
The resulting ihtegrals were:
AMO Empirical Integrals
(5.2)

Cy = 10. 2346 e.v. C; = 7.16524 e.v.

6 = 2.4207 e.v.

These integrals may be compared to those of Pariser

(18).
Pariser Empirical Integrals

CO = 10.959 e.v, Cl = 6,895 e.v.

ﬂ——f 2.371 e.v.

The depression of the ground state energy relative
to the Hiuckel ground state with the AMO empirical integrals

is:

BE, = -0.398 e.v. (5.3)
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We find for the AMO wave functions and transition

enexgies of the various benzene states:

(5.4)
1 2 E Bexp.
1y 9448 8159 0
lg +* .

331u 9628 .7357 3.790 3, 79%
‘B, .9483 , 8685 5.156 4,71
13111 .9463 .9563 5.960 5.96
1

E,, ,9468 7137 6.760 6.76

An interesting point is that in the 1Blu singlet,
A)Z is greater than )\l' An examination of equation 4.87
shows that the matrix element H34 is smallest when )62 is
large. Since H34 enters the energy of the 1Blu state with
a plus sign (equation 4.88), ;\2 must be large, explaining
- the anomaly.

The question also arises why the 1B2u AMO energy
should be sa much above the experimental energy. One
way to approach this question is to examine the behavior

of the AMO wave functions in various limits. We know

*This experimental transition energy is adjusted to
what one would expect for symmetrical benzene.
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that in the absence of electron repulsion, the AMO wave
functions become Huckel wave functions. We now consider
the opposite limit, in which we let the resonance integral

g approach -zero, In this limit, Al’ and Az approach

zero, and the lAlg and 3}1u states become what is described

in valence bond language as nonionic. Simple group
theoretical arguments show that the lBZu AMO state becomes

a mixture of singly-lonized structures of the figure 3(a)

1

- type, while the 1Blu and AMO states include also

Elu
structures of the 3(b) type.

Valence bond theory allows five singlet nounionic

structures. From the two Kekule structures one may con-

1B2u state. From the three

Dewar structures one may construct a lAlg'statc and a

1

struct a lAlg state and a

degenerate pair of Ezg states (see figure 4).
In figure 5 we display the energies of the AMO
states with those of the corresponding valence bond states.

We see that the energy of the 1

Bzu AMO state is very much
; . 1 1.
worse than that of the "By, or “E; 6 states.

From this point of view, it is not surprising that
the AMO energy for the 1BZu state came out .45 e.v. above
the experimental value.

A possible method of improving the apparently poor

1B2u AMO wave function would be to introduce configuration

interaction. One might use as a basis set just those AMO
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+ +
FIGURE 3(a)
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FIGURE 3(b)
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A COMPARISON OF THE ENERGIES OF VB WAVE FUNCTIONS AND
' AMO WAVE FUNCTIONS IN THE LIMIT AS THE RESONANCE
INTEGRAL 6 APPROACHES ZERO
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configurations necéssafy to produce the appropriate VB
wave function as well as the appropriéte Hlckel MO
function in the proper limits. The difficulty with this
method is that it may very well be as complicated as the

usual configuration interaction method.
PART 2. THE (18)-ANNULENE (CON)

From chapter II part 2 we know that the (18)-
annulene has D6h symmetry. To classify the symmetries
of the molecular orbitals we must treat the real and
imaginary components of the complex orbitals separately.

Let:

I

the real part of ’VZ \h: (5.5)

M+
¥.- = the imaginary part of ’V?\{i

Then we may classify the MO symmetries as follows:

Alu Aoy Elg Eou Blg BZg (5.6)
0 ¥ ot 3" 3"
6" 6" st 5 9
+ ot

The energy splittings between the 0 and gf, and

between the 31 and 9 MO are so great that we may assume
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that these MO are very close to the best self~consistent

field MO.

The 3" and 6~ orbitals are exact self-consistent
field (SCF) orbitals because they are the only orbitals
of their respective symmetries. We may construct the

3
from the 3~ and 6~ orbitals. We may also construct from

pair of alternant moleculayx orbitals 33- and a,-

the 3+ and 6+ orbitals the alternant orbitals a3+ and
Eé+. If we use the same @ in constructing the Aq-
and 33+ orbitals, this pair of orbitals will span the

same function space a&s the a5 and a_3 orbitals. In
the groﬁnd state, the 33' and as+ orbitals are occupied
by electrons of parallel spin, so we are justified in
replacing these two orbitals by the ag and a_g orbitals.
We may replace the Eéu and Eé+ orbitals by the Zé.and
3;3 orbitals for the same reason.

The energy splitting between the +2 and -4 molecular
orbitals is about l.SBﬁ. The interaction leading to theix
- mixing in the best SCF molecular orbitals is of long range,

involving the difference between atomic coulomb integrals

for atoms separated by 3 or more bonds.

If we used a ground state wave function with the
same O for the a, and a_, orbitals, the error in not
using the best SCF orbitals here would vanish, as it

vanished in the case of the +3 and -3 orbitals. In any
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case, we expect the error introduced by not using the SCF

orbitals in the ground state to be small.

In the case of

excited states in which an electron is taken out of a -4

orbital, the error should be more important, leading to a

too high theoretical energy.

The 8 MO is much higher in energy than the 2+ and

4~ MO, and is not expected to contribute much in the

formation of the lower SCF orbitals.

The discussion of

the remaining E, and Elg orbitals follows the same line

and leads to the same conclusions.

The following values ol CR were taken from the

benzene program (part 1), or were calculated from the

atomic coulomb integrals tabulated by

Co = 10.2346 e.v.
Co = 5.682
C, = 3.243
Cg = 2.478
Cg = 2.155

C-ﬂ= Czn_’A = C“
To = 4.1500

Co-C, = 6.0845
A = 2.7516
F = 7.1571

Ol

Pariser (18):

7.16524 e.v.

4. 209

2.745
2,256

2.152

3.8781

0.2719
0.2820

(5.7)
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A program was written to calculate the wave func-
tions and energy levels of various annulene AMO states.
Tﬁe integrals of 5.7 ére used as input. The depression of
the (18)-annulene ground state relative to the Huckel
ground state was found to be 1.404 e.v.

We find for the AMO wave functions and transition
energies of the various (18)-annulene states: (See
table on page 71.)

The Eex

P
their spectrum was taken at 77°K. The E, [ are taken from

are taken from Gouterman and Wagniere (10);

some configuration interaction calculations performed by
Weiss and Gouterman (37). I have converted both from

wave numbers to e.v.
PART 3. THE (30)-ANNULENE (CTP)

The (30)-annulene has Dy, Symmetry. We classify the

MO symmetries in the same way we did with the (18)-annulene.

ﬁ # (5.9)
A1y Aoy JElg Ezu Blg BZg
0 1T 2T gt 3"
6t 6~ 5t 4t ot 9-
12F 12- 7t gt 15
11F 10%
13T 14t
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The question of the effect of mixing MO of the
same symmetfy:sPecies is very similar in the (18)- and
(30)-annulenes. The same arguments lead qualitatively
to the same conclusions, with the possibility that mixing
is a little more important in the (30)-annulene because
the MO energies are closer together. We still expect that
using the best SCF orbitals would lower the transition
energies to the excited states somewhat.

The following values for electron repulsion
integrals were taken from the benzene program (part 1),
or were calculated from the atomic coulomb integrals

‘tabulated by Pariser (18):

Cg = 10.2346 e.v. Cq; = 7.1652 e.v. (5.10)
C, = 5.682 Cy = 4.0548

c, = 3.1254 Gy = 2.5890

C, = 2.1898 C, =1.9302

Cg - 1.7444 Gy = 1.6023

Cio = 1.5062 Cpq = 1.4211

Cip = 1.3662 Gy = 1.3292

Cy, = 1.3068 Cis = 1.3056

Cou” C2n-M= CM

C, = 2.9384 C, = 2.7659
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Cg-Ce. = 7.2872 Ce-C,=0.1725
A = 2.4306 B =0.1713
F = 16.4843

We find the wave functions and AMO energies of the
(30)-annulene by the annulene program. The energy
depression of the AMO ground state relative to the Hilckel

ground state is 1.8588 e.v.

(5.11)
Al‘ Az Exvo Eexp

1

Apg L9612 4962 0 ;

331 .9722 4052 1.0749 -

u

1 _

By, .9679 . 6951 2.1680 -

B .9716 L9467 2. 7406 2.37 e.v.
lElu L9719 © .3548 3.4505 2.89 e,v.

PART 4. DISCUSSION OF THE AMO METHOD

We have found that in both the (18)- and (30)-

annulenes, the AMO method overestimates the transition

1

energies of the lBlu and Elu states. In contrast, the

c.I. calculétion of Weiss and Gouterman does well on the

transition energy of the (18) ~annulene, lg state, but

lu
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underestimates the transition energy of the]ﬁﬁu state.

The assignment of the g state to the series of weak

2
bénds leading to 2.52 evu* seems doubtful since both our
AMO calculation and Weiss and Gouterman's C.I. calculation
indicate there should be a splitting of about .6-.7 e.v.
between the lBlu and lBZu states,

The AMO transition energies of the (18)-annulene
seem to be uniformly about 1 e.v. above the C.I1, energies
of Weiss and Gouterman.* This is probably because the
limited C.I. method is inferior to the AMO method for
depressing the energy of the ground state. (See Swalen
and de Heer (25)).

We found in the case of benzene, that the AMO
excited singlet wave functions are not sufficiently
flexible to reach the minimum electron repulsion energy
VB configurations. This lack of flexibility applies
equally to the excited singlet states of the (18)- and
(30)-annulenes. As these annulenes have more closely
- spaced interacting configurations than benzene, we may
expect the lack of flexibility of the excited singlet
state AMO wave functions to be more serious.

It is difficult to predict what error was intro-

duced by using a two-parameter AMO theory rather than

*See page 71.
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the many-parameter AMO theory. We know that we have
underestimated the energy depression of the ground states

relative to the Hiickel ground states. We suspect we have

3

overestimated the "B, transition energy, since the energy

1u
of the "B, AMO state should be greatly improved¥ by the

many~parameter AMO theory.

*See chapter III, part 6.
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CHAPTER VI

POSSIBILITY OF BOND LENGTH ALTERNATION WITH
ALTERNATE MOLECULAR ORBITAL (AMO) MODEL

PART 1. THE BEHAVIOR OF THE Ay

We have seen (page 4) that the highest bonding
orbitals play an especially important part in the problem
of bond length alternation. For this reason we shall use
separate Oy for each alternate molecular orbital, and pay
particular attention to the behavior of 0, for large n
and Yk/n = /2,

For very large n, we may replace the spin function

Sp, (equations 3.4-3.6) by 51. (See Pauncz, etc. (12).)

6, = K1y Hmy Batay - - Bam) (6.1)

This simplified spin function leads to a simplified

expression for the energy.

B =W - 2% A (b - By (6. 2)

E = Y2 Yor + 2 Yor - ‘éKL

K~L

+ %XKK
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From equation 4.66:

Yo * Vg = € + T, 6.3
R (kk|kk) - (1- )\i) (kk | kk)
Let S, = sin20,

whax = (1 A (1 Ap) (3 ki) (6.4)
+ (1- A (It X)) (3k[ky)
1+ A (1= A Glkd)
+(1- M) (1- A (i)
+ 25 8, (k&) + (k\k3))

%%K = -?(hEE-hkk) + 2AK(kE(£k) (6.5)

-3 S A a0~ 3R
i

(1~ A (k3 {700 - (k3 | 55))

-2 A8y ((ki | Fi+(3 | K0 ) /8¢

= 0 at energy minima

At j=-k, (&j{j) = kilikd, A; = M+
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If cosl¥§(<l, then (kj)ik) ;:(i}\ii); and for any
iy ((R3)3K) - (k3 J3R) + (RCG-DICDR) = (R(-3)}(-1)K)) and
((F1JK) - G50 + G ENR) - (:RED|EHR))
are proportional to co;%?, as is hi- - hkk'

We therefore find that equation 6.5 méy be written

as.;

g%K = tepms 0(>\K) + terms O(cosnl:llg) =0 (6.6)

This can be true only if }\K is proportional to

Tk 19
cos for cos— 4.

We may notice that using the spin function & is
equivalent to setting the-/\.l and--,\--4 equal tvo, and
setting the other _/L's equal to zero. Actually, the other
.A-'.':s are proportiomal to 1l/n, and all the __/\ls are func-
tions of the /\12( A more complete treatment could introduce,
at most, a term proportional to 1/n in the expression for

)‘k with cc;s‘“'?k £L1l. We may therefore write:

Tk

xk = Acos"~ + B/n : (6.7)

when n is large and cos'%k—k<1.



79
PART 2. BOND LENGTH ALTERNATION

Let us introduce into our annﬁlene a slight distor-
tion x (as in chapter I}, causing the C-C bond lengths
to alternate. For the short bonds we will have a resonance
integral ﬁl = B- xﬁ‘, and for the long bondsp2 = ﬁ-l' Xg
Each of the atomic coulomb integrals between starred and
unstarred atoms will change similarly. We introduce

distorted molecular orbitals.

cos XL \fﬁ + 1 sin x \+% (6.8)

Xy
Xp = cos xp L*ﬁ + 1 sin Xy ‘h£

From the distorted molecular orbitals X we con-

struct distorted alternate molecular orbitals bk'
bk = cos@) X + sinQ X[ (6.9)

= COS8 Xk. EIK

+ i sin X ag
bk. = CO'SOk Xk. - Sin@k X};

= cos Xy EK + i sin Xy aﬁ

The ground state wave function of the distorted
molecule is construed from the b in the same way we

previously constructed the ground state of the undistorted



80

molecule from the ayp . For small distoriions the @ will
be unchanged from their values for the undistorted molecule.

We know by symmetry that 0,=0_,, and that Xy = -X_y, the xp

being proportional to the bond length distortion x. The

expressions in terms of the various by integrals will be

formally the same as the expressions for the undistorted
molecule in terms of the a;, integrals. (chapter IV).

It is easy to prove from the orthogonality and normaliza-

tion of X and Xy that the <A are independent of the X

This allows us to treat the./\ as constants when minimizing

the energy with respect to the x.

PART 3. THE PI ENERGY
(6.10)

B =W - zk)\k(ﬁ4+ﬁ5)6(ﬁlhlﬁ)-(klhlk))-
cos2xk[JLo+((E(hlk)

~(k‘h\§))i SinZXk Lf%é}

For the higher bonding orbitals we may neglect overlap,

and:

(kih]k) - (k]h]k) 45(:08'!-:11‘:— (6.11)

(k|h]k) - (k|hfi) 4ip'x P L4

n
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It is this second term that is mainly responsible
for the distortion of the molecular orbitals.

The coulomb and exchange integrals involving k
molecular orbitals may be divided into two types: those

involving a product of k orbitals (b, )*(b,) or(Ek)*(Ek),

and those not containing one of these combinatcions but
containing (Bk)*(bk) or (bk)*(Ek). The latter type

integral is always multiplied by \,. (6.12)

2(by )% (b, ) = (K)*(K)+(k)*(k) + 8, ((k)*(k)+(K)*{k))
= Mc(eos2i0) ((R* () - (1)* (1))
-1 Ay (sin2x ) ((B)* (k) - (k)*(K))

We see that all the terms in the energy dependent

upon % are of order_;\k.or less. These terms will

contribute only to exchange interactions between starred

and unstarred atoms, (coswk/g <<1).
20, 0%(,) = N ((BY*(R)+()* () (6.13)
+(cos2x, 18, s1n2x, ) ((K)*(k)- (i%j*(fc))

+(Spcos2x -1 sin2x) ((k)*(k) - (k)*(X))



For small Jkk, we may represent Sk as § = 1--% ;\i;

the energy may be expanded in terms of'Ak.

o 2
At Epin., Ag= Bi/2Ck. (6.15)
An examination of equations 6.12 and 6.13 shows

that only B, is a function of x;, Apand C are independent

of xp.
By o is of order x, therefore:

d2g _ 2 '
5=+ 4Bk)\k = 2B, /Cy (6.17)
a¥e

The term Gy derives primarlily from the Sk term
((k)*(k)+(k)*(k)) in the exchange integrals (b b.|h. h.).
8 k731PK 3

This term is primarily responsible for lowering
the probability of finding two pi electrons on the same
carbon atom. The term ((R)* (k) +(k)*(k)) is insensitive

to changes of k in the region cos%?-LAI. Ck will also be

insensitive to changes of k in the same region. (. will
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be approximately proportional to the average value of Sj,
as this average times S, determines the probability of
finding a "k" electron sharing a carbon atom with another
pi electron. Lowdin (13) has shown that as n®?09Q, his
single A approaches a constant value. It is therefore
reasonable to assume that our average Sj also approaches
a constant value, (§3 cannot exceed one In any event).
We may therefore assume that C, is nearly independent of
k and n, when n is large and cos%?chl.

The term B, 1is principally concerned with interac~
tions between starred and unstarred atoms, and especially
with the interaction between neighboring atoms. By; is

proportional to coslk (COS%F—(‘I). (See discussion of SKL
n

and Ak’ equation 6.5.) Bkl is proportiomal to siﬂ%? .
anh term in By, contains either a factor of SiHZXj, or
Xpl, or xC&; for small molecular distortions these terms
are small. The terms involving_ca are significant only

for small u, because C] drops off like w2, By, like C,

is nearly independent of n with n large and coé%?Lcél
held constant.
We may now express the energy per bond in terms of

x and the small X -
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(6.17)

o 2,1 | 1 (N
E = E  + Kx »:-nxjﬁLj()\jxj) +nJZ(>‘ij) jll,\j
L
+ -ﬁ?. %EJZ.MJKC AJXJ)(ARXR)

The term le/Aj = ?.CJ when )\j and x, are small
(equation 6.15). 1If )\j 1s not small, then le//\j will

approach a function F(k/n) as n&» 0. K is a force constant

depending upon the bond order. Lj and Mjk come out of

sz. Lj approaches a function L(j/n) as n->00, because

the G drop off sufficiently rapidly. Mjk behaves like

log fj-kl /n, for small ]j-ki /n. These off diagonal terms

will be ignored. By differentiating with respect to x,

j
we find: |
ij = -XLj/éCj (6.18)
- 1 2 2
E.  <~E + & & szj/Cj)x (6.19)

%:L;,Z/Cj approaches a constant as n-»0d, so there
J
is no divergence to cause any great change in the By, force

as n increases. For this reason it is very unlikely that

for any nd3, K‘BZu would vary greatly from its benzene value.
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PART 4. SUMMARY

We find that the proper variables to describe the

AMO distortions are the ‘*kxk’ The second derivatives of

the energy with respect to these variables do not approach

zero as k/n approaches 1/2, while the terms in the energy

involving derivatives with respect to X remain bounded.
The lack of the singularicy in the contribution of

the k'th orbital to Kz, 2s k/n approaches 1/2 removes the

factor diverging as ~log(n) in the calculation of Kg oo
(chapter I). As this factor is not very large in free
electron mndels, (leading to bond alternation only for

n about 15 or above), the slight residue that may be left
of it in the AMO theory (terms proportional, perhaps, to
1/n) should not be big enough to make any great change in

KBZu' I predict no bond altermation for the annulenes.
The use of the )\kxk to describe the AMO distor-

may be intuitively justified by noting that at J\k“O,

variation of X, only changes the pﬁase of b,. With the

use of )\ %, to describe molecular distortions, no such
k*k 2

curiosity occurs.
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' CHAPTER VII
SIGMA-PI INTERACTION BY THE AMO METHOD

PART 1. SIGMA WAVE FUNCTIONS

We shall use the AMO method to calculéte the sigma~
pi exchange interactions. We shall start with valence

bond function for the sigma electrons.

O = §, ((L(DTG2HH1)0L(D) (7.1)

0, = 5, (0. (D) -05(1)07 () (7.2)
- 2 2

N = 24 27 |0, W =2 - 20,0,y (7.3)

Gg is the spatial part of a low energy singlet
sigma bond wave function between adjacent atoms 1 and 2.
0, is the space part of a triplet wave function. We will
assume that atom 2 is atarred, and atom 1 is unstarred.

We construct an alternant valence bond (AVB).

0, = 07 cosU, + 07 sin0 . (7.4)

The AVB concentrates the first electron on the "1%
atom, and the second electron on the 2" atom. Ths spin
of the first electron is aligned parallel to that of the

i electrons in the "a' orbitals, and the spin of the
p P
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second electron is aligned parallel to that of the pi

electrons in "a™ orbitals.

If we had only one AVB, we would write:

2

(S, #8)° = GH1T - 1/4 = (szis,)” (7.5)

s =0
The operators Sz and Sz were defined In chapter III (part 3)
~as the spin operators for the a and a electrons respective~
ly.
We define Sy and Sy as the spin operators respec-
tively for the first and second electrons in equations

7.1 and 7.2. ‘
We may note that <0'S \0;>"—= <0't\0’t>= 1 (7.6)

CAATIN

The permutation of electrons 1 and 2 gives:

P1o0g = 05, POy = - O (7.7)

]
From the above ecquations, wc find:
Gyt G Pl - cos2op = Ay (7.0

@4 determines the triplet character of the sigma
bond. Since the energy gap between the singlet and triplet

state of a sigma bond is high, (about 5-15 e.v. (19)), 64
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will be small., We shall use a single O for all our

orbitals. It will be convenient to introduce the quantity:
R = (1-Ap) (7.9)

This R will play the same part with the sigma bonds that
the R introduced in the theory of the ground state energy
played with the highest bonding orbitals.

There are 2n C-C bonds in one of our conjugated
"rings. If each of these bonds are AVB bonds, we may
combine the spin of all the 1" electrons to make a total

spin 537, and all the spin function for which:

(8, + 87 = Bu@uHl) - (5,45,)° (7.10)

PART 2. THE METHOD

We may use the results of chapter IV, with p=n,

and q=2n, to find the values of Sp,q: b, d, and the N

that we want. We may use the R defined in equation 7.9
for this purpose.

The pi electron energy may be calculated as in
chapter IV. There remains the ¢ - interaction energy
and the sigma energy. We divide the sigma energy lnto

two parts., The first part, Ed‘, is the energy of the
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isolated sigma bonds. The second pért, Eg., is the

interaction ehergy between'neighborihg sigma bonds. The

. . .
major part of Es; that will concern us results from the

exchange energy of two sigma electrons from neighboring
bonds on the same atom. The sigma-pi interaction energy,
Eﬂzc., is dependent upon the exchange energy of two

electrons on the same carbon atom.

PART 3. THE SIGMA ENERGY

Let:
= E(HOD L B - (TR (7.11)
£ = n@EAE) - 0 AAEEY - n(l- \D) By

S

Sigma-Sigma Bond Interaction Energy

A change of sign of Qge does not change EOP. From
this it follows that E may-be expanded in integral
powers of R. We may divide Eg- into a coulomb part and an
exchange part.

C _ g0

. ]
EZ 2 coul + EZ exch (7.12)

Nomenclature

We will number the atomic sigma orbitals in the C-C
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bonds in serial order as we go about the ring, starting

on an unstarred atom,
C12C%346C540C
M : [ .
Orbitals O.Zm-l’ O'Em form the m'th sigma bond,

between carbon atoms m and mtl.

ES oul = Ac THR T CCRZ P (7.13)
The coefficient A, is independent of /\ﬂ-, because
when R=0, the sigma electron spins are decoupled from the
pi electron spins. As R increases, charge moves from the

bonds in toward the atomic centers. For this reason, B,

and Cc involve only integrals such as:
(82(0‘1014‘0'20-2) - 28(0'10-2) ‘ G‘mO'm> (7.14)

Here 8 = <0'1‘0'1> . (We are assuming that orbitals

not sharing a common bond have zero overlap.)

The charge density on the left of the above integral
behaves as a quadrapole, and the integral rapidly

vanishes as 0_ moves away from bond "1." 1If O is adja-

cent to bond "1® the integral is still small. We shall

. . o,
assume that B, and C. are small compared to dE;/dR.
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'EZ _ ex_ch

For consistency it will be assumed that exchange

integrals between sigma orbitals not sharing a common bond

or atom are zero. With this assumption, the only exchange

integral that appears in Eg-is the.(Géﬁblﬁéﬁb) = Jy3 inte-
gral. ' (7.15)
5 aen = gy (0 (G GG
+(1- >\2c,) N o e /g,
+(1- ) o -6, % s /N2

Jos equals about 1.24 e.v. (Altmann (21))

PART 4. THE SIGMA-PI ENERGY

In the expression of the sigma-pi energy there occur
coulomb and exchange integrals'involving a pair of sigma

orbitals, such as (707,or 070]. We introduce operaturs

to transform these orbitals.

1 -
Ty 0107 = 5010740507 = 1, 0,0, (7.16)
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T, 0707 =K O 050,078 = T, 0,0,
Ty 0707 = (070740,05) = T, 0,07
The sigma-pi energy may now be written as:
il An_A_-;'(Tl+(sin200,) (1-T1)//\/1-s4 (7.17)
+( )57 (Ty-5%17)/ (1-5™))
Z{ﬂ-d’((a a /0. 0. )+(3 a8 /0 00)-(a 0./0.a
=W (g0 0+ EAS ) - (2, 0, /072,0)
+I‘°’((a 0:/0%a )+ \, ((a, 3, /0,0,)+(a a_/0707)
g WAV 08T Ag a8 U900 a8 /99y
- (ag07/07a) - (g 05/ 033) )5 ((agay /01 03)
+(agag/0307) - (ag07 /033 ) - (ax 05/ 07 ag) )
<. o
1A (203 /05500 L5 s(2(ad, /070)

- (ag03/0y a) )}

PART 5. DISCUSSION

In chapter VII I have developed a method of working
the sigma electrons into the AMO method. The method has
~ involved using one variable parameter for the pi electrons,

and a second for the sigma electrons. The sigma electron



93

integrals required for a numerical calculation do not
seem ﬁo be available at the moment, so no attempt at
numerical calculation was made.

Certain hopeful features of the calculation stand
out., If one were to treat a molecule in a doublet or
triplet state, the alternant valence bonds would introduce
spin density on to the protons and other nuclei in a
natural way. The AVB approach may also be useful in

~understanding the proton-proton splittings of NMR.
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SUMMARY AND CONCLUSIONS

It has been shoWn'fairly conclusively that the
annulenes do not undergo bond length alternation. The
difficulty in calculating transition singlet cnergies
seems to be connected with the electron correlation energy.
The AMO method seems to make errors in the opposite direc-
tion by not giving sufficient elet¢tron correlation in the
excited singlets. A set of empirical integrals were
derived that should be superior to those of Pariser.

A method is developed to extend the AMO method

to cover sigma as well as pi electroms.
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ABSTRACTS OF PROPOSITIONS

The time correlation function for blackbody radiation

is calculated.
An lmprovement of the AMO theory is suggested.

A useful theorem for the calculacion of spin densities

1s derived, with applications.

A wave function for an electron in a noncoulombic
potential is derived. The problem is related to

the Mossbauer effect.

Spin densities for the lowest triplet state of

naphthalene are calculated by a C.I. method. It is
suggested that this state of napthalene is a prime
candidate for spin density calculations by the AMO

and other similar methods.
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PROPOSITION I

COHERENCE PROPERTIES OF BLACKBODY RADIATION

The correlation of the electromagnetic field for
blackbody radiation may be regarded as a model correlation
problem in that it depends only on the statistical prop-
erties of photons, and admits of an exact solution.

Time correlations are usually assumed to be of
exponential form, and are of greatest general interest.
It then seems worthwhile to find the time correlation of
the components of the electromagnetic field for blackbody
radiation, I define:

w =nkT/h
Ej5(t) = <E:'L(to) Ej (to+t)>

L(x) = cbtgh(x) - 1/x , the Langevin function
of statistical mechanics.

Then: _
Eqj(t) = - 885w L (wr)/9c3

The derivation of this calculation is given by
Bourret* with acknowledgment of my contribution, Eij(t)
does not decay even approximately exponentially, and has

a minimum at wt=2,36 .

*R.C. Bourret, Nouvo Cimento 18, 347-356 (1960)
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PROPOSITION II
A REFINEMENT OF THE AMO THEORY IS PROPOSED

The standard AMO wave function consists of the anti-
symmetrized product of a set of spatial orbitals, Ay,
multiplied by a projection of the spin function, 81.

In some systems a particular pair of electrons may
have much stronger mutual correlation than either electron
has with the rest of ths system. One example of this
would be the two 1ls electrons of the Lithium atom.

In such a system we would expect such an clectron
- pair to act almost as a subsystem, with the spin of the
electron pair being almost a good quantum number.

In the standard AMO method the projections of the
spin operator §; are in general not eigenfunctions of
the spin of a particular pair of electrons. We may
refine the standard AMO method by altering the expectation
value of the spin of a pair of strongly interacting
electrons. We accomplish this with a spatial permutation
operator.

Suppose the standard AMO method puts the strongly

interacting electrons into spatial orbitals a; and éi.

When the product aiéi appears in the AMO wave function,

we replace it by-ai5i+ciéiai. The value of the constant

Ci{ is chosen so as to minimize the electronic energy of
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the system. If C; = 1, the electron pair have pure singlet
character. If C; =-1, the electron pair have pure triplet
- character. Intermediate values of C; give intermediate

values for the expectation of ths spin of the electron pair.

I will first consider as an example of the method
an electronic wave function for the Lithium atom with
radial correlation.

In place of the 1s orbital I will use two orbitals,
ls' and 18', differing slightly from the best SCF ls
orbital. The 1ls' orbital will have a greater density
at the nucleus, and the 18' orbital will have a lesser
density at the nucleus than the 1ls orbital. The normal

waﬁe_function one would construct is:
= 1s5'1s'2s (xfB-fe)ex
big pp

This wave function is better than the standard AMO

wave function:
= 1s8'1ls'2s (2P4o-p{pHB))
‘Y, 2P act-wixpiB

The first function is superior because the density
at the nucleus of ls electrons is much greater than that
of 2s electrons.

The refined AMO wave functibn isg:

\I’; = (18'1s'4C; 1s"'18")2s (2P¢Q‘K(4P+$°‘))
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If C14=0, Sf; of course degenerates into Sf;.
If\ClS=1,Efg becomes identical after.antisymmetrization
and nofmalization to ffl, one Wpuld expect the optimum
value of'c18 to lie nearer one than zero, so Sf; would
be a much better wave function than‘ig. It should alse
be superior to \iy, since \ig allows some spin correlation

between the 1ls and 25 electrons.

As a second example, we consider the ground state
- of the allyl radical. Dearman and Lefebvre* made an AMO
calculation for the allyl radical, and compared it to

a C.I. calculation. They obtalned:
Ao = 0.66

One may work backward from the C.I. calculation
to find both the standard AMO and refined AMO wave
functions having the maximum overlap with the C.I.
wave anctiun.. For the standard AMO wave function one
'gets essentially the AMO wave function of Dearman and

Lefebvre; for the refined AMO wave function I obtaint

Ao = 0.638; ¢, = .061

There is an appreciable difference between the

7 *H. H, Dearman and R. Lefebvre, J. Chem. Phys. 34,
72 (1961).
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refined and standard wave functions for the allyl radical
that would show up in calculations of such qﬁantities as
spin density. |

| The acetylene molecule would be an ideal test case

for our refined AMO method. The .mx and 'ﬂ‘y orbitals each

contain an electron pair. The electrons in each electron
pair have a strong mutual correlation, but only a weak
correlation with the other electron pair.

I will call the bonding Yg, orbi.tal'[{'x, and the anti-

~ bonding T orbital Y[, . Then:

ju]
i

- "
5 = cos®@ T + sin6 1My

cos® T& - 5ing TT‘X

i)
#l

The TL} and a, are defined in the same way.
%MO = (aya,+ Caa )aa y(zmﬁu - pf-uppoc-

~poret ﬂ+zﬁaﬁo()

1t C=l,\ﬁAM0 reduces to a function for two indepen-

dent electron pair singlets.
The wave function is cylindrically symmetrical

despite 1its ~‘asymetric appearamnce.
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PROPOSITION III
A USEFUL THEOREM FOR THE CALCULATION OF

SPIN DENSITIES IN DOUBLET STATES

Consider the matrix element:
J = <A \snz] B>

S,,1s the spin operator that operates only on the

spin of the n'th electron. A and B are doublet spin

functions with spin "up."”

1

= 1a. =
S5, A= 7%’ S,B = »B

 We introduce a fictitious electrom P, and a

fictitious spin operator S; that operates only on p. The

spin of p is opposite to that of A,
sfz€= B ’12@

Then:
T

We now introduce the time inversion operator K.

3= - <?1+K)B '(1+K)Sﬁzsfzé;>
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Since K commutes with Snzsfz’ we may write:

5= - Carmospls sz, Jomosp

The spin functions (I+K)BP and (14+K)AB are singlets.

I define:

(1+K)Bp/4/'§'= IB; (1+K)AB//V§'= L

Then:
- 1 LS
d=- 2<B]Snzsfz, A>
lg . =1lp . 1
We may replace Snzsfz by §Sn Sf EPnf 17

The operator P_. permutes the spins of the n'th and f£'th

electrons.

Then:
(- 3l - Gl

‘The properties of the permutation operator are
usually better known than those of the spin operator.

As an example, we may apply this theorem to the
spin densities of a many-parameter AMO doublet wave
function. The doublet congists of 2n-1 electrons plus

one fictitious electron. For the convenience of notation,
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we consider the odd electron in the o m.o. to be paired
‘with the fictitious electron (A,=0).
I shall use the notation of Swalen and de Heer in

finding the matrix elements of the molecular orbital spin

density.

o
=
&

o

o

1
=i
|

-3 20007y
Poo = - 5+ 7w 2 ()7 st
?]_.___ (1~ Ai)l/ZZ(n l) 1k‘S'

T T,

The proof that the trace of this density matrix
is unity is straightforward,

McConnell*® etc., made an approximate spin demsity
calculation for the perinaphthyl and triphenylmethyl
radicals with a one-parameter AMO function. The
approximation used has been questioned by Lowdin,*% etc.
VI have found by the use of the above spin density matrix
that McConnell's results for the perinaphthyl radical

are entirely correct.

*R. Lefebvre, H. H. Dearman, and H. M, McConnell,
J. Chem. Phys. 32, 176 (1960).

_ *%R. Pauncz, J. de Heer, and P.O. Lowdln J. Chem.
Phys. 36, 2257 (1962).
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PROPOSITION IV
WAVE FUNCTIONS FOR A NONCOULOMBIC POTENTIAL

In the Mossbauer effect, a splitting occurs because
the nucleus changes size during emmission and absorption.
This change in nuclear size changes the binding energy of
the electrons, and leads to the observed splitting if
the chemical environment of the emmitting and absorbing
nuclei are different,

| The nuclear size effect is usually treated by a
simple minded first order perturbation technic, but it
might be worthwhile to calculate an exact schodinger
wave function for an atom with a finite nucleus. 1T will
regard the energy eigenvalues to be fixed by a boundary
condition near the nucleus. The problem will then be to
- calculate the wave function in the coulombic field outside
the boundary. One could equally well use the same method
to calculate the wave function of an outer electron with
‘the nucleus partially shielded by innmer electrons.

For orbitals other than the 8 orbitals, the density
near the nucleus is small, so a change in the potential
near the orig}n will have little effect. We will therefore

only treat s orbitals. We define:
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foo = (-2uE)L/2 ;= -zw/2E
X = 2wr ; N is the integer such that
u-1 <N £Lu
§ = u-N
- -x/2
Yo=rge

In order to obtain a convergent expression for Py
P, must be broken into two parts:
Py = Fy1 T Py
2 1
a1 “RT2-8 S (R(Plumn) Mu-nt) a7

n=0

g
i

xu~-n~1

o . .
_ u
a2 = RGN (&1 ﬁpe’“’f@)/r’(uﬂ)

o XN _
+:£: pn"u/(nffj(u-n+1)i}
n=0

o
i

P o will be proportional to § when & is small, because

of the factor ([”(Sul))'l. R is the normalization factor,

The integrand of P,, is well behaved for all values

of p, so there is no question of convergence. Both

Py exhibit singularities at the nucleus, but not essential

singularities. When u is an integer \f;'becomas the
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Ns orbital.

The simple perturbation theory makes & proportional
to the square of the nuclear radius. As the singularities
in both P, are proportional to 8, and no stronger than
1/r, the wave function at the surface of the nucleus will

not be greatly perturbed.
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PROPOSITION V
TRIPLET SPIN DENSITIES IN NAPHTHALENE

It is proposed that more work should be done in the
theoretical calculation of spin densities. To learn the
capabilities and limitations of each method, it 1s neces-
sary to calculate spin densities of doublet and triplet
states. by a variety of methods. The 3B§u state of naptha-
lene has certain advantages for this purpose. First, it
is accessible to experiment, being the lowest triplet.
Naphthalene is of sufficlently low symmetry to have
several different spin densities on experimentally access-
ible atoms, yet is of sufficiently high symmetry to ease
the labor of calculatiomns.

The BBEU state is also the state most accessible
to AMO calculations. The calculation one should do
first is a simple, standard configuration interaction
calculation. The calculation will be based on that of
Pariser (1), but I will include some of the more important
doubly excited states. The configurations I will use

are labeled as follows:

(1) R. Pariser, J. Chem. Phys. 24, 250 (1956).
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Label = - Configuration

55 55" Ao
I¥A A A X
33 33! o &
41 (L1THLL') AR NE
22 22! o &
11 11" L X
25 (255'5" Yaxaf~ 5T 2'xXX
34 55" (34'+43") L (x X (KBHB )
- (x BHBe) )
13 557 (13'31') v v o w "

The notation follows that of Pariser; paired bond-
ing orbitals are not explicitly represented.

The contributions of the first 6 configurations
have been worked out by Pariser., In the second part of
the seventh configuration, both electrons came from the
5 MO.

The 55'configuration is by far the most important,

"and will be defined to have the zero point- energy.

Gslufsy=1,,, + (25‘\1)-%(&[5? +(25)55%

Eys = Igige - LG5 1) -2|D- (2557
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* L; <2f‘lf2> - GrE|E5T)
%(5.'5155-'-)'-& (r2f2sD - (559
{5_5]}1]3@' = (54’[35) + (54]35")

By = Tyrgr - I3z + (4% 1) - (33[1) - (33[4 4
+ (Gslsaty + (543]351D
+ Zf:<3flf3> Grelesa?)

The equations for the 13 configurations are
similiar to the 34 cquations, and will be ommitted.

The molecular integrals were calculated from the
integrals tabulated by Pariser (1). For the wave function

of the SB;'U state 1 obtain:

Y; .90 [55) + .201 |asy + . 269 |33)

+ .0314l41> + .170|22) + .084[11)
+.079[13) - .139[34) - .115[25)

The spin densities on the o{,ﬁ , and ¥ carbon
atoms are!

= .160 ;
po(

] PB

= ,10L 3 Py = -.022
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This calculation includes all the symmetry allowed
singly excitéd configurations, and those doubly excited
configurations that have a connection to the dominant 55
configuration through the spin density matrix. By
including the doubly excited configurations I allow
for the possibility of negative spin densities, The
neglected doubly excited configurations should have little
influence on thé spin densities because they are of low
‘amplitude and do not couple through the spin deﬁsity

matrix with any high amplitude configurations.



