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ABSTRACT

The orthogonalized plane wave (OPW) method is used in the first step
towards determination of self-consistent solutions of the Hartree-Fock
eguations (with Slater's free-electron simplification of the exchange terms)
for electrons in a diamond-type crystal. For illustrative rurposes, the
techniques developed are applied to the determinatlon of energy elgen-
values of the valence and lowest conduction states with zero.wave vector
in silicon crystal. The initial crystal potential is computed from the
charge distribution obieined by placing the atoms forming the crystal on
the points of the appropriate space lattice. The atomlc charge distri-
buticns are determined from simple orthogonalized Slater functions, which
can be eagily constructed for all atoms, rather than from Hartree or Hartree-
Fock atomic functions. A procedure for determining sufficiently good
approximations to the wave functions and energy eigenvalues for the core
electrons in the Inltial crystal potential is given. The imporfance for
the convergence and accuracy of the OPW method of using core wave functions
which are elgenfunctions of the same cperator used to detefmine the
valence and excited states is emphasized. The secular determinant of the
OFW method is factored by using appropriate linear combinations of orthog-
onalized plane waves in the trial function for the valence and excited
states. In this connection a detailed exposition 1s given of a method for
obtaining expliclt representation matrices for the group of the wave vector,
which can then be used to construct basis functions for these representa-

tions from sets of orthogonalized plane waves.
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I. INTRODUCTION

In the first few years after the develomment of quantum
mechanice a close connectlon was shown to exist between many of the
most obvious and important properties of crystalline materials and
the problem of the interaction of one electron with a potential field
periodic in three dimensions. An account of this work with refer-
ences to the men who pioneered in it is included in the article by

Sommerfeld and Bethe in ‘the Handbuch der Physik (1). After 1t had

been established that a solubtion of the mathematical problem of an
electron in a perlodic potential would be useful in explaining the
physical properties of crystals, efforis were made to refine the
mathematical formulation so as to meke it a more accurate model of
the real @hysical situation in some specific kind of crystal, and +to
deyelqp methods which would yileld more accurate solutions of the
resultant mathematical problem. Some of the methods which have been
found useful in dealing with periodic potentials modelled-after real
crystals are the Wigner-Seitz cellular method (2), a modification of
the cellular method by Slater (3), Herring's orthogonalized plane
wave method (4), and the augmented plene wave method of Slater and
Saffren (5). These and other methods are discussed and compared by
G. V. Raynor in a review article (6), and by Frank Herman (7), (8).

One remarkable result of theee investigations was to make
possible the rise during the last fifteen years of a whole new
.branch of physics devoted to the study of semiconducting crystals.
The theoretical distinction between metals, semiconductors and

insulators is based on the idea of a band of energies for which no
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acceptable solution of the Schridinger edquation for an electron in
the crystal potential can exist, and the interpretatioﬁ_of a great
meny interesting and technically useful electronic phenomena in -
single crystals of semiconductors has been gimilarly based on other
detalls of approximate solutions of the periodic potential problem.
While the recent rapid growth of semiconductor physics would have
been very unlikely without this energy-band theory, it would have
been equally unlikely except for the development of techniques for
making and purifying large single crystals of germanium and silicon.
Single crystals of these materials with less than one part in_109
of impurities have been cbtained by present techniques. The avail-
ability of semiconducting crystals of such a high degree of perfec-
tion stimulated extensive calculations by Frank Herman of approxi-
mate solutions of the Schr8dinger equation for periodic potentials
modelled after the diamond (7), (8), (9), and germenium crystals
(8), (10), and in turn many experimental efforts have been made to
correlate observed electronic effects in these crystals with the
results of these predictions of the energy band theory (11), (12),
(13).

The present theoretical study is concerned with the orthog=-
onalized plane wave (OPW) method proposed by Herring (4) for the
calculation of approximate energy eigenvalues of the Schrédinger
equation for a periodic potential. Some preliminary results for
the silicon crystal are derived hers as an illustration of the use
of the method. Briefly, the OFW method is based on the idea that

the lowest states in the crystal potential (the core states) are
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well represented by Bloch sums of the isolated-atom core functions,
and that a trial function made up of a sum of terms, each labelled
by a wave vector k, consisting of a plane wave pikeX plus a function
chogen to make the term orthogonal to all of the core eigenfunctions
will lead to rapid convergence of the usual variational process for
determining the higher states (the valence and conduction states).

Herman was the first to apply this technique to valeﬁce-type
crystals and has carried out extensive calculations for the diamond
and germanium crystals. He based his work on estimates of crystal
potential and core-state wave functions derived from the published
solutions of the Hartree-Fock equations for the isolated carbon
atom (lh), in the case of dlamond, and of the Hartree equations for
the germanium atom (15), in the case of germenium. He included
approximate exchange terms in the diamond calculations, which con-
verged very well. IHis initial calculation for germanium, which
neglected all exchange terms, also converged well, but in his more
refined calculations for germanium, his effort to include éome of
the exchange contribution to this crystal potential resulted in
a much less convergent solution.

In this work cur principal objectives are: (a) to simplify
the application of the OFW method to dlemond-type crystale by replac-
ing many of the numerical procedures used by Herman by analytical
procedures; (b) to base the estimation of crystal potential and
core elgenfunctions on the approximate analytical wave funciions
which can be constructed for all atoms according to simple rules

given by Slater some years ago (16), thus making possible calcu-
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lations for crystals containing atoms for which the Hartree-Fock
equations have not yet been solved; (c) to include a more consig-
tent approximate treatment of the effects of exchange then has
previously appeared by basing the calculation of both core and ,
higher states in the crystal on Slater's Fform of the Hartree-Fock
equations with the free-electron approximation for the exchange
potential (17); (4) to provide a more complete exposition of the
use of group theory in factoring the secular determinant of the
0P method than any which we have been able to find in the.liter—
ature.

For purposes of experiment and illustration we have calcu-
lated the energy elgenvalues of the valence and lowest conduction
gtates of an electron with wave vector k = O in the silicon crystal.
Bilicon was chosen for this illustration, because as a result of the
veiy intensive investigation of the electronic properties of large
silicon crystals during the last few years there is now avallable a
considerable amount of information derived from experimenﬁs as to
their energy-band structure. Also, because of recent work on sill-
con-germanium alloys there is currently rmch interest in comparing
the energy band-structures of silicon and germanium crystals (18).
Finally, we are not aware of the sxistence of any sclutions of the
Hartree-Fock equations for the neutral silicon atom, so ﬁhat the
approximate solutions of Slater's form of these equations which
we have obtained in this work (see Section VII) mey be of use in
other connections.

Perhaps the most interesting general result of this study
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is the improvement in the rate of convergence of the energy
eigenvalues for the silicon crystal calculated by the methods
developed here as compared with those calculated by Herman for
the germenium and diamond crystals. We attribute this improved
convergence to the more consistent treatment of the exchange Tern
in the crystael potential and to the fact that we determined our
core functions and their associated energy parameters by approx-
imate solution of the Schrédinger equetion constructed with the
same potential which we used to describe the valence and excited
states.

Another general result vwhich is suggested, but not demon-
sfrated by the present work, is that the solution to the energy
band problem in a diamond-type crystal is not very sensitive to
the assumed crystal potential, providing both core and higher states
are determined in the same potential. These general results, and the
numerical results of the silicon crystal calculation are discussed
in Section IX.

Sectlon II contains a more mathematical formulation of the
crystal energy eigenvalue problem and the OFW method for attacking
it. In Sections III, IV, and V, we describe in some detall how to
make use of the symmetry of the crystal potential to factor the
secular determinants of the OFW method. The factored determinants
for approximations of several orders to the energy elgenvalues of
the wave functions wlth zero crystal momentum are given explicitly
in Section VI. In Sections VII and VIII we discuss procedures for

calculating the three different classes of numbers which must be



substituted into the factored secular determinants of Section VIt
the energy parameters E_,, the orthogonallty coefficients, Anlﬂk),
and the Fourier coefficients of the potential energy of an electron
in the crystal field, v(h). Tables of these numbers for use in our
application to sllicon are glven in these sections. The calculafion
of Enl’and Anl(k) requires knowledge of the core elgenfunctions, and
these are also determined in Sectlon VII. In the process of deter-
mining the core eigenfunctions a new method for obtaining_approximate
solutions in analytical form of Slater's simplified version of the
Hartree-Fock equations is described and applled. This method should
be useful in connection with many other problems where solutiéns‘of
these equations are needed, and particularly when an analytical
expression for these golutions is more convenient than the usual

numerical tabulation.



IT. FORMUIATION OF THE PROBLEM

According to current ideas, a real single crystal of a chem-
ical element of atomic number Z consists at room temperature of very
Toughly 1022 nmuclei of that element per cubic centimeter, most of__
them ogcillating about the points of a space lattice, embedded in a
cloud of electrons, Z electrons for each nucleus. There are always
impurlty atoms present in this system, and imperfections in .the array
of nuclei, such as vacant lattice sites, interstitial atoms and dis-
locations. We do not endeavor here to determine the quantﬁm states
of such a complicated system. Instead, we abstract from thie system
the regularity in the disposition of the nuclel and ask for ’cﬁe wave
function of all the electrons in the potential field arising from a
perfect, rigid array of N' nuclel of the element (where N'~1022) on
the points of the space lattice which we know from experiment to be
approéria.te for that element. Next we approximate the many—eléctron
wave function by an antisymmetric combination of products of one-elec-
tron wave functions, and for the one-electron wave function of the i-th
electron we take a solution of the approximate Schridinger equation: |
[-v2 + v o) = Bu&), (2.1)
where x represents the space coordinate r and spin coordinate s of the

electron, on which u dependz. In this egquation

V(x) = —2% + Wi glxt) e
* er—-—Rl Zf,r -r'
{ 3 Zu*(x) u (x)}

87 3



8-

where r is a variable of Integration ranging over the volume of the
crystal,uf... dT’ means integration over r and summation over s, R,
is the position vector of the nucleus at the ¥-th lattice point, ¥
rmns over all lattice points in the crystal, and j rune over all of
the electrons, including +the i-th electron. Whenever it.is con-
venient, we shall go to tﬁe limit in which our crystal is extended
over all space. Atomic units are used throughout this work: dis-
tances are measured in units of the firet Bohr radius 2.(a, =

9 cm. ) and ensrgies in terms of rydbergs ( one

5.2917 x 10~
rydberg = 13.6050 electron volts). TFor a derivation end excellent
discussion of Egs. (2.1) and (2.2), see Slater (17). The last term
in Eq. (2.2), |
-5 _-E-; 2:: v (x)u (x) 13
8T J J ’
o J

is called the exchange term in the electron's potential energy; it

is an approximation to the exchangs potential energy which appears in
the Hartree-Fock equations. At least for the case when the crystal is
extended over all space, it is clear that a set of solutions for the
functions u;(x) can be found which make the potential V(x) have the
same periodicity in r as the space lattice on which the nuclei are
disposed; 1t is these solutions which we seek. In Eq. (2.2) it has
been assumed that exactly half of the electrons have wave functions
corresponding to one spin orientation and the other half to the oppo-
site spin orientation. We look for a set of solutions of this sort,

since we lmow that in the valence bonds in the diamond-type struc-

tures the spins of the two electrons forming the bond are balanced;
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and hence in the lowest state of the crystal when all valence bonds are
perfect, the spins will all be balenced. When one or more electrons

are in conduction states, these electrons and their former partners in
valence bondage may not continue to have a zero resultant spin, bgt

even in this case, we expect any contributions from spin-dependent terms
to the energies of the eleétrons in these states to be small, inasmuch
as the exchange term in Eq. (2.2) is a small pert of the total v(x), and
a small unbalance in sping would have an extremely small effect on.ﬁhe
exchange term. In this study then, for the sake of simpliéity, we shall
neglect any splitting up of the degenerate states in our solutions for
zero crystal momentum which might be caused by the exchange term or the
apin-orbit interaction, though these effects should be included iﬁ a more
refined calculation. Thus, neglecting the dspendence of the solutions of

(2.1) on spin, and assuming balanced epins, we can replace Egs. (2.1) and

(2.2) by

[- v + v(;ﬂV/i(;_) = =y (@),
(2.3)

with

Y = — 2z Z 1l f‘ll (I‘)V(r i}

) [z - By |z -z
/3
- s{{? Zy}j@%m} ,
J

(2.4)

vhere \p&(;) is the gpace dependent part of the wave function ui(x).

Hote that whereas the u, were all different functions of x, as required
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by the Pauli principle, there will generally be two identical func-
tions of r in the sequence ‘,{/l(;'_), cesy Y/i(r), cee, WI/N,Z(_J_:'_) needed for
a complete solution of the problem of the N'Z electrons in the crystal;
that is, two electrons can be accommodated in each coordinate wave func-
tion, because their spins can be different. |

The fact that the equations for the N'Z functions Vi(g) are

coupled by the exchange term and the electronic Coulomb term

*
\/{1(;‘_')\//3(;_') '
° Z |z - z'| =

J

in v( _x_'_) complicates the problem of solving them. The most promising
method for obtaining approximate solutions seems to be the one sug-
(o)
gested by Hartree (19): guess a set of solutions ‘)[/:.L (r); wuse these
solutions for the computation of V(r) in Eq. (2.4); solve Eq. (2.3)
{
with this potential and obtain a gecond set of solutions y/i ')(r); if

) Ny @ . . ) (o)
A (r) =‘)0i (r), stop; if not, try by comparing Y/ (r) and }0 (x)

i i
to obtain a better approximate set of solutions to be used in comput-
ing V(r), and repeat the whole procedure. This study is devoted
entirely to the first stage in this self-consistent field approachs
guessing solutions Y/iw(g'_) » using them to compute V(r), and obtaining
approximate solutions, including the eigenvalues Ei’ of Eq. (2.3) by
the OPW method. .

For our guess as to the solutions \//i(g) which we shall use to
obtain an inltial estimate V(q’(_l_‘_) of the potential field V(r) for a
diamond-type structure, we follow Herman (8) in using the chemical

idea that a crystal of diamond or of one of the similar elements
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silicon and germanium which form diamond-type crystels can be formed
by bringing the atoms in their valence or combining state into proper
positions on the points of the appropriate space lattice, and that the
electron distributions about the atoms in these states will be little
changed by this process of crystal formation. The valence state of
carbon is (13)2(23)(2p)3 ,5$ ; by chemical analogy, the valence state of
silicon should be (1s}2(2s)2(2p)6(2s)(3p)3,58.

Let @ nﬂm(g be the wave function in the isolated atom for the

electron of total quantum number n, azimuthal quantum number L, and

magnetic quantum number m. Then,

Prpn™ = ¥, (0,9)A/mR (x),

(2.5)
where Y)em(e s @) is a spherical harmonic normalized so that
T amr
: *
f fymelmcose d¢d9 = 1,
0 0 . (2.6)
and Pnﬁ,(r) is the radial wave function multiplied by r and normalized so
that
o0 .
2
f [an(rﬂ dr = 1.
() (2.7}

We determine the radial wave functions B L(r) which go into our initial
estimate of V(r) by very simple methods proposed by Slater (16), (20)..
The radial wave functions for silicon atom are constructed and given
explicitly in Section VII. Using the wave functions ?nem(_:c_') the
potential energy function for each of the electrons in the isolated atom

can be written



- ST YOS
Vatamicl® = — H + 2[ [z -] dr!
Jj=
A
~ o j L gimpe .
J=1

(2.8)

where now (P J(_]_."_) means that one of the ?nﬂm(E) functions w‘gxich refers

to the j-th electron, or J can be thought of as an abbreviatioﬁ for +the
three quantum numbers n,,f, m, and summations over J are over those values
of n,-f, m which we use in specifying the state of the atom.

{o)
We obtain the crystal potential energy function V (r) by super-

(0)
posing the atomic potentials Vi nso(x):

) = ) v,
v (2.9)
(Here and everywhere in this study, the potential function is the
potential energy function of an electron; its sign is the negative of
that of the potential usually ueed in electrostatics.) Tﬁe assumption
on which Eq. (2.9) is based, that the crystal potential can be written
as the superposition of atomic potentials, is rigorously correct with
respect to the first two terms of V{(xr), as given in Eq. {2.4), but the
superpogition principle would nold for the exchange term only if the
atomic charge distributions did not overlap in the crystal. We know

that the charge distributions of the valence electrons certainly do over-

lap, but the error arising from this source, which is given by
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vel J=1

ghould be small compared ‘o the exchange term in the final crystal
potential at every point in the crystal, and over the major part of
the crystal's vdlume, it should be much smaller. Since the ex-
change “term itself is much smaller than the other terms in the crys-
tal potential for almost all points in the crystal, we feel that
this superposing of exchange potentials is not likely to introduce
a major error.

Now we follow Herring's formulation (4) of the orthog-
onalized plane wﬁve method for obtaining approximate solutions of
Eq. (2.3). Assume that our model of the crystal under considera-
tion consists of N identical unit cells, each of volume fl,. As
already menﬁioned, we let N become infinite on occasion.

The potential energy of an electron at r is Vazg), as given
in Eq. (2.9). V) has the full symetry of the crystal (the pro-
clse meaning of this statement wlll be explained in Section III).

If we imagine the crystal to be formed by bringing together
all of its constituent atoms simultaneously, as suggested above,
then it can be shown by means of the tight-binding approximation,
‘as discussed in Section 2.6 of the boock by Wilson (21), that the
electrons occupying closed shells below the valence electrons (the

1ls, 28, and 2p electrons in silicon) will be very little affected
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| by the crystal formation process, and the quantum states in the
crystal of these electrons, which we call the core electrons , can

all be well represented by

1 :
\# (£) = = E 1K Ry (r - R,)
nﬂ;}é - i nﬂ*k’_ = =V N
Vi ‘ | ’ (2.10)
vhere (Pn 1 lé( r) is the isolated atom wave function for the electron
]

of total guantum number n, azimuthal guantum number /E, and magnetic

guantum number m = O when the axis of magnetic quantization is

|

taken in the direction of ¥, and where ¥ is 2 times 2 wave vector k
associated with the crystal. (The definition and construction of the
wave vectors k associated with a crystal are given in Section IV .)
An expression like that on the right of Eq. (2.10) is ca.lied a Bioch
sun of atomiec wave functions. The energy eigenvalue Em(g) which is
gssociated with Pnl;ﬁ(z) by Eq. (2.4) is given to a good approxi-
mafioﬁ by Enl’ the energy eigenvalue associated with P nlmin the is§-

lated atom by the equation for an electron in the isolated atom:

2
[’—V ¥ vatomic(?'):l ?nﬂm(x) = I Pnlm(‘l:) (2.11)
The basis and validity of this approximation are discussed in the
gection of Wilson's book referred to above.
To obtain the wave functilons and energy eigenvalues of the
remaining electrons, which are called the valence and conduc'cion
electrons, we make use of the variational method with a trial func-~

“tion Y ,.Er_(g_) of the form
- >

Vi = ) Ty, |
A (2.12)
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where

T = = - —E—Z 1B Ry
‘ v

1=

Nno i N

*A (K r = Raj.
SN NCEE»
(2.13)
In Eq. (2.13), ¥ runs over all lattice sites, as usual, and

| : eig'lfl %
Aan) = fﬁ ?nl;}_g(?-) dr,
g (2.14)

where J; cerealdr meé.ns integration over the region of the crystal,

which may £ill all gpace. The nmumbers A nDSK) are called orthogonality

coefficlents; +they are calculated to make each TTK orthogonal to

all of ’ché P nlm( Q-B ) when one neglects the very s;an amomt of over-

lapping between core functions about different atoms. .
Varying the coefficilents aﬂ go as to minimize the expected

value of the energy associated witil y/i#(_lz) we are led in the usual

way (See Pauling and Wilson (22), Section 26d) to the secular equation

!
o

det [(7TK, HTTK) — = (T, 77

- {2.15)
for the energy eigenvalue E = Ei(g) , where

2
(2.16)
K=f+L K= ¥+1,andav(r)= v(o)(_r_), given in Eq. (2.9).

Our use of the tight-binding approximation for the core states in the
way described is equivalent to the assumption that the functions

] nIm(-r-"B") are true elgenfunctions in the crystal field V(z) such



that

his r = E r),

ni;}é(‘“) nd ?nl;ﬁ(“)
‘ (2.17)
With this assumption, and again neglecting any overlapping of core

Ffunctions of different atoms, it can be shown by straightforvfard

menipulation that

(7TK ' ,Hﬂgv) = KQJKK -+ V(I_{_' - I}:)

cell
- Z B (K12 (005 O 1) Z SE- )y
n, L ” |
(2.18)
W) = == [T () a,
o Lo | : (2.19)

if- K — K' is 27 times a reciprocal lattice vector,and = 0 other-
wise (re.ciprocal lattice vectors are defined in Section Iv). ‘I‘he s’ﬁma-
tion with réspect to V 1s over all lattice sites in a siﬁgle unit

cell, end the angle between K and K' is denoted by GK g 1n (2.18).
Similarly, R

MM =d . - ZAnz(K) L

L
coll i

-P'z(cos GK K’) Z ei(.lg.' - K) ‘R,
V
(2.20)
if X = K' is 27 times a reciprocal lattice vector, and = 0 other-

wise. From Egs. (2.18) and (2.20) it can be seen that the only
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7T L+ functions which need to be included in the sum %: }Z(_ L+
for a wave function \{3;352) with wave vector ¥/2m are those for
which K is 27 times a reciprocal lattice vector. The more orthog-
onalized plane waves 77£,-F %'which we include in (2.12), the better
value of B (K) we shall obtain. .
Ouxr problem, then, is to solve the secular equation (2.l5) for
tﬁe energy eigenvalues ag a function of K. The wave functions asso-
clated with these eigenvalues will be those which can be occupied by
- the valence and conduction electrons. .In the next three sections we
show how by making use of the crystal's symmetry the»secular deter-
minant of BEq. (2.15) can be factored into lower order secular deter-
minants, with a resultant enormous‘reduction in the labor of campﬁt-
ing the solutions Ei(x). We devote Section VII to showing how %o
obtain the core eigenfunctiong f;znlin.the geparated atonm potentials
from which we build up the approximate crystal potential V(;j,'and
from the core eigenfunctions we compute the orthogonalityvcoeffi-
cients AnlﬂK) and the energy parameters Enl’which enter info Eqg.
(248). The Fourier coefficients of potential, v(K), are determined
in Section VIII by means of Eq. (2.19) and the approximate crystal
Dotential of Egq. (2. 9) which we have described in this section.
We compute actual solutions of Eq. (2.15) for the ¥ = O wave

functions in silicon in Section IX.



x‘III. CRYSTAL SYMMETRY

For a careful and complete exposition of the basic concepts
arising from the study of crystals and thelr symmetry, which we
cannot include here, the reader 1s referred to Seitz (23) and
Zachariasen (24). For our purposes we need primarily the gea&et-;
rical concept of an infinite space lattice of points. This is an
unbounded set of points in a three-dimensional Euclidean spaée
which are to be identified with the position vectors obtaiged By
the following construction: chooge an origin point O in the aspacs,
three non-coplanar vectors Ei’ i=1, 2, 3, and m other vectors
gj, J=1,2, ... m, vhich can be written as linear combinations

of the a with fractional coefficients. Then the infinite space
i

lattice consists of all points r given by

i=1 (3
Here and throughout, ni is an integer. The a, are the basis vectors
and the d ; will be called the interior vectors of the lattice. An
1deal crystal of a pure element can be thought of 88 formed from the
condensation of atoms of that element on a finlte set of the péints
of a space lattice associated with that element consisting of ail of
the lattice points within some region completely bounded by planes.
The types of space lattices associated with crystals.of various sub-
stances are completely characterized by the vegtors ga'and gj.
For the lattices associated with crystals of diamon@, silicon,

and germanium (or diamond-type lattices), one possible choice for the
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a, and "lj iss
a; = (1/2)a(o, 1, 1)
2o (1/2)a(1, 0, 1)
a3 = (1/2)a(1, 1, 0) (3;2)
4 = (1/8)al1, 1, 1)
d = -(1/8)a(1, 1, 1),
(3.3)
where
a = 3.5597 Ang. for dlemond (U5)
a = 5.431 Ang. for silicon (37)
a = 5.657 Ang. for germanium (37). :
(3.4)

As an aid to discussion of the symmetry of a space lattice of
points, L, it is convenient to imagine a second identical space lat-
tice, -L', in the same space ag L and initially in coincidence with
it, but in which each point r is subject to an arbitrary translation-

rotation operation which carrles it into a point r' as followst

' = Xr + &, (3.5)
vhere X is a proper or improper rotation operator and t is a trans-
lation vector, t = nl?'—l -+ nag,_e <+ n3§,_3. In a gystem of recj:angular
cartesian coordinates & 1is represented by a real orthogonal matrix

O(ij’ and % has components &, (i, 3 = 1, 2, 3). If thex, y, z

components of r in this system are called r_,

Tps r3, respectively,

the components of Bg. (3.5), written out, are:
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r, =0y T F CX12 r, -+ Cll3 r3 + tl

Ty, = Oy Ty + o, T, --!-0(23 ry -+ t,
*g —_-o(3lx_‘l+o(32r2+o(33r3+ t3.
(3.5")

Following Seitz (25), we condense expressions like (3.5) or (3.5!) to

' = {dliﬁ.} r,

vhere { v'¢ , t } is an operator which acts upon a vector r as indicated
in (3.5); it is easy to see from (3.5) that the product of two such

operatorg is given by the rule

{«led [Ble}={aplaz + ]

The continuously infinite set of all such operators contains a

(3.7)

denumerably infinite subset which change the space lattice L' into an-
other gpace lattice which coincides with L. The operations of this set
are the symetry operaticns admitted by a space lattice of the type of
L; from what has been said of them it is clear that they form a group,
the infinite crystal lattice space group. Zachariasen (24) demonstrates
that the number of different space groups, and hence types of space lat-
tices, is limited to 230, and he shows how they can be enuﬁerated and
described. A complete specificetion of the symmetry of a given type of
lattice consists simply of a list of all the symmetry operations it
admits.

The periodilcity of space lattices is an evident consequence of

the definition in Eq. (3.1); i. e., a space lattice based on a; and d_:J
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admits the infinite set of symmetry operations { E ,B’n} , Where
By = may + ppa, + ngg,

and € is the identity operator.

(3.8)

These operations form a subgroup of the space group called the
infinite translation group. For our purposes 1t is convenient to.replace
the infinite space group dnd ite subgroup, the infinite translation group,
ﬁith groups of finite order, by means of the following convention (26):

those operations of the infinite space group which differ in their effect

on L' only by a translation of all of its points through nlngl -+

nNa, + nlNa., where N, N,, and N, are (usvally large) fixed mositive

3373 T2
integers and Ny, Dy, N

3

3 8re any integers, are considered to be the same
operations of the finite space group. We call the finite space gfoup Ef;
like the infinite one, 1t may be regarded as the direct product (in
Zachariasen's gense (24)) of an invariant subgroup congisting of the opera-
tibns'corresponding to pure translations, and a factor group. The elements
of %this factor group are the cosets of the translation group in the finite
space group. The order of the finlte space group is N1N2ﬁ3-g where g

is the order of the factor group. The factor group associated with each
one of the 230 space groups is abstractly idemtical with one of the 32
crystallographic point groups, although factor groups associated with some
space groups may include cogets containing other than purely point cpera-
tions (those of the form {CK,O} ) éombined with lattice translations,

e. g. , screw rotations or glide reflections. Seitz (23) showed that
operations of this more complicated sort can all be represented in the

form { E'B_n} { & 'I«} , where T is a fractional lattice translation

depending on X of the form
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Ty = 3 + fg, + fa; (3.9)
the fi are Tractional rational numbers which are functicons of ¢A.

To describe the symmetry of a diamond—type lattice, then, in
addition to specifying the primitive translation vectors in Bg. (3.1),
from which all of the operations of the translation subgroup can be
constructed, we enumerate a simple set of g operations fram,which all
of the cosets of the translation group belonging to the factor group
can be constructed. TFor brevity we call these g operations the fadtor—
group symmetry operations. In the Schoenflies gygtem the symbol for
the dlamond~type space group is Og. Because we shall need them later,
we glve in Table 1 (see pages 26 and 27) explicit descriﬁtions of all
of the symmetry operations of the factor group of Og. We describe these
operations by specifying for each one O and X, and r' = {o( l_‘t;“}_r_’
for a general vector r. It is of interest to consider two different
possible choices of origin for the position vector r, with respect to the
"center" of.the symetry operation. By the “center" of a symmetry opera-
tion we mean any lattice point on the axis of rotation 1f the operation
is a pure rotation, or the center of inversion if it includes an inversion.
The origin of r may be taken at the center of the symmetry operation, or
at a point midway between the center and one of the four nearest lattice
points; the latter choice will generally be made, and this origin will
be called the "standard origin”.

A set of rectangular cartesian coordinates at the standard origin

can be uniguely establisghed by assigning the center of the
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symmetry operation the coordinates (—a/8, —a/8, —a/8) and the three
nearest-neighbor lattice sites of the center which are farthest from
the standard origin the coordinates (<4a/8, —3a/8, —3a/8),

(=3a/8, 2/8, —3a/8), (—3a/8, =—3a/8, a/8). The other nearest geighé
bor site of the center will, of course, have coordinates (a/8, a/8, a/8).
In this éystem of coordinates a set of primitive\translation vectors is
given by (3.2). The symbols in the second column of Table 1 are those
commonly used to denote the corresponding point-group classes. Opera-
tions within a given class are such that any one operation.could bé
made to have the same effect on a general T as any other operation in
the class by a change in the choice of coordinste frame to whiéh r

is referred. Of the L8 6perations in the factor‘group, the first 24
listed are simple, being rotations or rotations followed by inversions
about the center. The last 24 operations are compound, involving a
fréctibnal lattice digplacement as well ag a rotation-reflectidn.

The compound. operations at a given lattice point are'orderad in
the tablé so that the n-th compound operation is derived ffam the n-th
simple operation at that point by left-multiplication with { 1 ] 'C'}; where
the inversion \ is about the same point, and |
T = M + 8 +2) = (/Ma,1,1).

The Seitz symbol for the operation is given in the third column
of the table; the notation for the rotation-inversion opefators is that

used. by Herring (27):

: -]
(fﬁ , J‘H (i = x,y,2 )¢ rotations through #90° about the

B

-, ¥-, and z- axes, respectively;

2
J;,i':—.— v, (1= x,5,2);
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Tan J;:(s = xyz; &%, xjz, &z): rotations through = 120°
about axes along the diagonals of cubes in the various
octants: |

Jab‘p = Xy, y2, 2zX, Xy, §z, Zx): rotations through 1800 a.boP.t
axes halfway between two coordinate axes;

1: the inversion; |

Oy; = Uy Chi G o= xy,0);

Pi = \d,;(i = x,3,2);

OZA= IJM.’ 0"6:: (s = xyz, ete.);

F’h 10&4,,(13 = xy, etc.);

T = (a/M)(1, 1, 1).

In the fourth colummn the vef:tor r' = {o( ' 'E“}-lz is glvén,
with r and r' referred to the center of the gymnetry operation. . From
this point on, the simple symbol I will be used to stand for a general
spé.cngroup symmetry operation, {0( ’ _’C_fu} , and L for 1ts imierse.
We use the symbol Ls to denote the s-th operation llsted in Ta"ble 1l;

the s-numbers labelling these operations run from 1 to 48 and are given
in the first column. Columm five gives r' = L l;c'_ when r and r' are
vectors fixed at the standard origin associated With the symmetry opera.-
tion. It is easy to see how to obtain the entry in column five from
the corresponding entry in column four. Iet vectors originating at the

center of the symmetry operation be r, rt

s 'y eee , and vectors orig-
nating at the associated standard origin be R, R', R", «¢. , Under the
rotation & of L = {o |Tu}, r is transformed into r' according to
the relation r' = O r. Then, since R' == r' =— (l/2)j_C'_,

R' = xr — (1/2)T;
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and since
r = R + (1/2)%,
B =R + 12XE — (/2T = oF + (1/2)&— € )T.
Hence '
R = IR + (1/2)x—€).

In colums four and five, L 'r i1s tabulated instead of Lr simply

for convenience Iin later work.
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- Table la: SIMPLE SYMMETRY OPERATIONS OF THE FACTOR GROUP

OF SPACE GROUP O]Z

* L-lr‘ ) L-l_t ,
s8{Class Operation L Center OFigin Stendard Origin
1| E {el0} X y z x y z,
2| c {d,l0} = 7 2 £-%2 -4 2
3 {szlo} x 7 z x - %a. Z - ta
I {Jaq.'oj £ ¥ z fF-tay =z ia
5| JC), {o—‘,;']o} y £ Z y -3 Z-ia
6 {0".,,,,'0} ¥ X Z F-1a x Z-1ia
T foy 1o} = 2 7 i-ia z j-ta
8 {oux |0} 2 z y £-ta 7-%a 7
9 {O‘Zf,;lo} 2 ¥ X Z-1ta § -ia X
10 {ouylo} - § £ 2 j-%a %-1%
11| Jc, {Px7|°j 7 £ z F-ta T -2a 2
12 { Peq 103 2 ¥ x Z-%a 3 x -3
13 {P,”,IO} x Z 7 X Z-ta § -1ia
1k | {ngl"j y x z y x |
15 {Peglo) = ¥ x z v x
16 {P,.“'oj x z y x z y
17 03 {JN'}}, } X v z f X y
18 {Jn | 03 y z X y z x
19 {Jaw;h} 2 % 7 z £-ta §
20 {J3>u; |0 s z x F-ta £-4a x
21 {dixgzlad  : £ . Z-%a f-ta 3
22| {ésx:g'l" 7 z z 7-%a 2 £ -t
23 { o }IOS z x 7 £ -2a x §-1ia
2k | {J_,x,”fo} ¥ 3 z ¥ Z-ta % -2ia




Table 1b:

COMPCUND SYMMETRY OFERATIONS

OF SPACE GROUP olz
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OF THE FACTOR GROUP

g | Class Operation L Cente% O%igin Stangargf Origin

25 flz} F-%a F-4a £-4a % 7 3

26 {P}’E} x-4a y-ta z-ta x-ia y-ia Z

| e} Fete ved ik 2 yede iode
28 {Ps]T} x-4a §-1a o x-fF z-ia
29 [dalt] -3 x -ia ta  § X -ia z-ia
30 {d43l8) v-%a F-da z-4a y-de E 0 z-ie
31 {J*;”'_l;} x-ta z-%ta y-%a x-ta z y - ia
32 {a‘,;,(lg} x-%a z-1a §-ta x-%a z -+a §

3| {d4glE} z-de vt 2-te ooy -da %

34 {34,}[?_ Z-4ta y - ia ta z y~-ta x -ta
351 {Ju‘}l_t_} -% X -3a Z-ia o x-1ia

36 {(daxz [T} z-%2 § -4 x-42 z2-4a 7 x - ta
37 {JagglT) 7-32 z2-42 y-3 % z -t 3 -ta
8| {daxglT} F-de z-de -t 5 oz 2

9] {dupl®) T-da F-de i-de 2 joooof

40 {Ja,’;)’g} f-%2a Z-%a F-1a X Z 7

i {02;”];3 7 -ia % -3%a 7 -32a % 7 s

h2 {o—‘fxly}lg 7-1ta z-%a x-1a e z X

43 {02;:/7,3,".5.} Z-4a x-4a y-3a £ ey -4

Ll {o—zx;}.&|§3 y-%4a z-3a X -ia ¥ - ta ta I

45 {O"G-)ia;l-t_'. z-%a x-382 F - 1a ia a7

46 {o'zx;é-i‘t} Yy-1a Z-42 x ~1ia a £ x - {2
47 {oexglT) 2-42 i-d2 v -t ta % y - ta
18 7-de z-de x-de b x-de
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N IV. SYMMETRY PROFERTIES OF THE CRYSTAL EIGENFUNCTIONS

This section consists of a brief review of the connection
between the theory of group representatlions and quantum inechanics_ P
as given in books by Wigner (28) and by Eyring, Walter, and Kimball
(29), and a discussion of the work by Seitz (25) and Bouckaert,

Smoluchowski, and Wigner (30) on space-group representations.

A. The Theory of Group Representations and Quantum Mechan.ics,

Let us examine the effect on the crystal eigenfunctiqns Y/i( _:g_)
of crystal gymmetry operations on the gpace containing the vec.'tor r.
To this end it is convenient to iﬁ’croduce the operator Py by the ~:E‘ol-
lowing definition: ’

pf(r) = £ 7p)
. . '(h'_-l)

where L. = { o } g,_} . The identity (4.l) means that the numbér asso-
clated with the position r by the function Pif is the same as the num-
Per assoclated w:@t.h the position r' = L'l;'_ by the function £ H :E‘(_:r_')

is an arbitrary scalar complex function of the vector r. In other
words ’ to find the value of the function f at the position into which

r is transformed by the symmetry operation L"l, we apply the operator
P, %o f and evaluate P f at the position r. The definition (1;;1) is
based on the inverse symmetry operation I.._l instead of the direct opera-
.fciori L in order to simplify some of the following results. In terms

of this operator the statement in Section II that V(;‘_) for the crystal

problem has the full symmetry of the crystal becomes: for all of the
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symetry operations L of the finite crystal lattice space group,
Pv(r) = V(z) | (4.2)

If \l/i(?.) is an eigenfunction of the Hamiltonisn H for one
electron in a grystal lattice potential V(r), then for any of the sym-
metry opérations L, PL ‘\{/i will be an eigenfunction of a physically

indistinguistable Hamiltonian. That is,

By, = Ei'\//i : (4.3)
implies

Bepy;) = E By, | (hiky)
and hence

PLH = HPL: (4.5)

or H commutes with the operator P,. If f(r) is an a.rbitra,ry func#ion of
r, then é.ccording to our definitions, Prf(r) = f(L-lg) s or if Ia and
Lb are any two particular symmetry operations of the set 66 s PLbf( r) =
2([15] 'x), end Pr,Ppf(n) = Prar([i) E) = o(fw] [y =
f([I.a-LbJ -l;'_) . But if we denote the product La-Lb by Lc, Pi,cf(r) =
£( [Lc] -l_x_') = £( [IaLTa -lg) = Pro-Prpf(r). Since £(r) ig an arbi-

trary function, the last equality implies

(k.6)

so that the group of algebraic operators PL is isomorphic to the group -

of geometrical operators L. Note that the isomorphy of these two groups
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is a consequence of our definition Pyf(r) = f(L-l;'_) 3 I.-:L rather
than L appears on the right-hand side of the definition in order to
insure ‘“chis isomorphy. The Py operators are obviously linear.

We now make various assumptions as to the degeneracy of E; in
Eq. (4.4) and discuss the \relation between PL\/’i and Yi. First,
agsume that E; is nonédegenerate. Then since PL\//i and \/fi are

eigenfunctions of H corresponding to the same energy, E

PLY/i‘ — &Yi, (4.7)

where a is a constant. PpV, 1s normalized if and only if |a] = 1.

i

Next, consider the possibilities when E 1 is v ~fold degenerate; It ie
then convenient to attach the number i to YI(_I_:) as a supefscript :Ln-
stead of a subscript, and to let the subscript label the various eigen-
functions agsociated with the V-fold degenerate energy E :.L.' Then any
eiéenfunction corresponding to Ei cen be expressed as a linear combina-

tion of the functions Y/i, sl/é 5 eee Yfi

. - 1,
o)+ Since by (k.k) PL\//n is

such an eigenfunction,
i i1
PLY’n = Z 8'mnY/m ’
| R m=1

where the a;n are consgstants.

(4.8)

Now consider the effect of two successive operations, Pl.a, and
%.b » corresponding to La and Lb, two different symmetry operations of

the space group. All gummations are from 1 to V.

1 11
Pp¥n = Z YonVa

m | | -~ (%.9)



" L i1
PLB.Y’; = Z agsVWy *
‘ L | (%.10)

Applying P]‘_a to both sides of Eq. (4.9) and making use of the

linearity and group property of the PL operator:

1 1 1 1
PLa'Lb#'n = ProPip¥Yn = Z bmnPLef\//x:n

o
, o, o
=) M) oY = ) Shmfh- o
n L L,m . (k1)

Now the product of Ia and Ib, Ia-Lb, is likewise a symmetry opera-
' i
tion of the crystal space group which may be called ILc, so that PLG'\l/n

is also an eigenfunction of H,and we have seen that

PLC.ll/jl = Z cin.}l’z ’
S £ | »‘ (h.12)

where

i i i
4n = 89 mPrn * |
Thus the product of the matrix al of the coefficients a}m and of the

i i i

matrix b~ of the coefficients bnm is equal to the matrix ct of the

coefficients c;n. In other words, the matrices obltained Afrom ‘the coef-
ficients in the expansion of PLa\//i, etc., form a representation of the
group i of the operations (the crystal lattice space-group symmetry opera -
.tions) which leave the Hamiltonian unchanged. The set of eigenfunctions
\//i s ewe ,\//_3 form a basls for the representation of ’cl;e’ group, since

the representation is generated by the applicatlon of the operations Pr
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to these functions. If the crystal‘eigenfunctians']ki are normalized,
the representation matrices are unitary. Usually the degenerate eigen-
functions of a given Hamiltonian assoclated with a particular energy
value E; form a basis for one irreducible representation; the case when
they can be chosen to form bases for several irreducible represenhations
is called accidental degeﬁeracy. In general discussions the possibility
of accidental degeneracy is not considered. Then we can saylthét the
dimengsion of the irreducible representation equals 7V, the degeneracy

of the corresponding eigenvalue. The n~th function in the.basis éet,
\Pi’ belongs to the n-th row of the i-th irreducible/representation of

Sf, ag does any function fn, with V-1 partners f

1’ see o f

n-1’

T

ael? "t T, such that

' 11
Prafn = amnfn
o m (L.1h)
for all la in Ji.
Wigner proves that functions belonging %o differentjraws of the
sanme representation, or to different representations, are orthogonal;

more than that, he shows that

: . 1 . s
(f;-l, gjiy) -_— -’e_ Jii' Jnnl Z (f;[;) g;;))
1 n (k.15)

where li'is the dimensionality of the i~th representation and

(f’ g) E f ﬁ(?_l, s s0y 51)' g(?_i, 200, In)c dtl, soey d.tn-
_ (k.16)
That is, given 2 sets of functions belonging to the i-th repre- -

sentation, the scalar products of functions belonging to the same row

are equal, independent of which row i considered. Using this result,
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and the fact that HPL = PLH, vhich implies that Hf; belongs to the

n~-th row of the i~th representation if f; does, we have that

i 4t i 1
ol = i Spted . .
This is the fundamsntal result which we shall use %o reduce the

order of the OPW secular equation, Eq. (2.15).
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'B. Representations of the Finite Crystal Lattice Space Group

We have seen that HEL = ELH, where H is the Hamiltonian
for one electron in a crystal lattice potential and L is any of the
space group symmetry operations of the lattice. In particular L can

be a translation,

{ € | Bn} ;R = Bnlnzns = may + ongy, + onag,
(+.18)
and hence any eigenfunction of H must belong to a set of functions‘
which form a basis for an irreducible representation of the fipité
translation group associated with the lattice. Since this group is

Abelian, its representations are one-dimensional,and since they are

also unitary, they can be chosen to be of the form (e-2ﬂi§‘5n)’ where

nl ]’.12 n3
k= —y + —b + —ug,
S Nl\ Ny N3
(4.19)
and the gj are solutions of
a:b. = di, 1,3 -- 1,2, 3.
e = (4.20)

Hence we can say that every crystal eigenfumction ]ﬁ can be
labeled with a "wave vector” k, and

| 2Tik-R,
(r + R) = (r).
Valz =n © %z (4.21)

The vectors pj introduced in (4.20) are called the vectors
reciprocal to the set a;. It is easy to see that the eguations in

(4.20) are satisfied by
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a2 x ag a3 x a1 a1 x g
by = ————, b3 =

2
(a1-apx23)

bl p s

‘(55-_1@2*93)’ (a3 -ap ¥ a3)

(4.22)
The three-dimensional gpace spanned by the '_D_j_vectors is the reciprocal
space; it contains k, according to Eq. (%.19). Shockley (31) calls thé
vector hk, where h is Planck's constant, the crystal momentumr vecior;
it playsva. large rolé in the quantum mechanical discussion of crystal
phenomena, . |

- The wave vector k of a given representation is uniguely deter-

mined only to within a vector h, of the reciprocal lattice, where

h, = }—3:111112113 = mb + by + n3bs.
(h.23)

For +this reason it is often convenient to restrict attention to
a symmetrical region around the origin in reciprocal space such that
no two points within it are separated by a distance greater than the
length of any reciprocal lattice vector. This region is palled the‘
(£irst) Brillouin Zone. In later work we shall need %o make use of
basgis functions for representations which have wave vectors k lying
outside the firet Brillouin Zone. These vectors ca.ﬁ alwajs be writ-
ten in the form |
k = k' + &
where h is a reciprocal lattice vector and k' is a wave vector lying
in the first Brillouin Zone; k' = k'(k) is called a reduced wave
vector of the basis function of wave vector ;c_.b

Now we examine the effect on the crystal wave function, and

particularly on its wave vector k, of the operation PL, where L is
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| any factor group symmetry operation.

For a diemond-type crystal potential, for example, Py, would
be one of the operations in Table 1. From Eq. (L4.4) we know that
PLWE(?‘) is a crystal eigenfunction with the same energy as ‘/fli_(z),'
We write "
Pryiln) = 1[/1((1--1;:) = Sb(z); |

= = (k.24)

and investigate the nature of the function ?(g) in the following steps:

PYle + R) = yYe@'r + B

(k.25)
since
L [Cf(;‘_).] = CPf(r)
for constant C,
2Tik-R, 2 1k-R,./, . -1 |
2 [ @] = ™).
ol S “Ye | Y (4.26)
Now, applying B to both sides of (4.21) and using (4.25), (L.26):
-1 2mwik-R -1
Lz + B) = o —Y(L 1.
From Eq. (3.7),
L—l = {(X—ll -— O(.lg“} )
(4.28)

s

L + Ry

= r

(4.29)



where

-1
R+ = XB, orR = & R..

Thus (4.27) becomes

- ! - -l -
VEE‘ l(.[l: -+ &1,.):,. - o2 7 ikt 1311'\/4&(1. l_:c_')
2mic kR, (L"l )
e =~ T
k L),
‘f’_ (4.30)
vhere the last step is justified by the observation that X is a real
: =
orthogonal matrix. Thus the behavior of ?(_I;) = '}l’k(L r) under

translation is given by

eni kR, ‘
?(2 + B.n) = e ?(?.): (1.31)
and hence ?(g) is a crystal wave function with wave vector ok
g YED = 90 = ). (4.32)

This very useful relation shows us that the effect 6f applying to
\//_l_c__(;z.') a symaetry operation Py, where L includes a rotation-reflection
ma.trix K is to produce another wave fumction of thé same degenerate set,
with wave vector (k. Note that &k may in some cases be egual to k or
may differ from k by a vector of the reciprocal lattice, in fwh.i’ch cé.se_ We
say that &k is equivalent to k. Crystal wave functions with equivalent
wave vectors have exactly the same behavior under 'bré.nsla’cions. To illus-
trate the possibility ok = Xk, we can choose k so that it lies along
the axis of a space group rotation o{. In thebnext gection further illus-

trations of O(k equal to or equivalent to k will appear.
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Having considered the effect on crystal wave functions of the
application of PL. when L is one of the pure translations and when L
is one of the factor group operations of the space group, we now al-
low L to run through all operations of the whole space group I . f.l.?he

set of crystal symmetry operations L such that P_ takes any cryS'bai

L
wave function Y/k into one with the same or an equivalent wave wvector
is a sub-group of Sﬁ which is called the group of the wave vector k,

~ and symbolized by G . Seitz showed (25) that all of the irreducible
representations of i can be obtained by finding for each wé,ve ‘vectxor
k in the first Brillouin Zone irreducible representations of Gl{‘ of
wave vector k. A representation of G— is said to be of wave vector k
if a pure translation R of Gk is represented by e 2mik. Bn times a
unlt matrix of the dimensionality of the representation. If w’c.hc-are
exlist any elements T, = { € ' B_n} of the translation sub-group of

& such that kR, is an integer, then for any L in GX, T, .L will De
represented by the same matrix as L. This means that once wé have
found representation matrices for all the elements of the fé.ctor group
G’lS’/TI"C‘, where 'I‘l'{' is the group of all translations T n Tor Which }5 ‘Bn is
an integer, it is easy to find all of the remaining fepresen’ca’cion ma -
trices of the group of the wave vector, G']g. In the next sec;bion, we
shall show how to obtain representation matrices for Gl"g/f{‘£ Prom The
character tables for the space group. Character tables for ‘the OZ, or
diamond-type space group, have been published by C. Herring ‘(27) ; these
tables can be used to obtain explicitly the representations of the

groups of some special wave vectors for the Og space group, and these

representation matrices can then be used to obtain linear combinations
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of plane waves belonging to the different rows of the representations.
These symmetrized sets are called (O;(l—type) crystal symmetry combi-
nations of plane waves, CSCPW; they are of great importaﬁée in the
setting up of appropriate trial functions for the variational deter-
mination of crystal energy eigenvalues and wave functions, as in ‘b%le

OFW method.
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N 'Y;'. CONSTRUCTION OF CRYSTAL SYMMETRY COMBINATIONS OF PLANE WAVES

AND REPRESENTATION MATRICES FOR THE GROUP OF THE WAVE VECTOR

Consider any point, (kq, ko, k3), in the reciprocé,l gpace of a

given lattice. We associate with this point a set of plane waves,_ con-
sisting of e2 TIK'L ang ’oh}ose members of the set PLJegﬂilg'EQ J =
1, 2, ..; , &(k'), which have a wave vector different from k. Here ~
LJ is one of the g(k') syrmetry operations of the factor group /Tk'
where GK' is the group of the reduced wave vector k'(k). Thus , for all

3, P e2TIE'L hag for its wave vector either k or a Teotor equ:Lvalent

L3 .
2Tik r
to k. Herman's (7) abbreviations [klk2k3] for e = = and ( klk2k3)
2 miker
Tfor the set Py se ~ will be adopted. For a genseral point k, g(k')

is unity, and the set (klk2k3> will consist of only one plane wave,
[klk2k3]‘ » but for certain special points in the reciprocal space,
called points of symmetry, g(k')>1, and the set <k1k2k3> may contain
several different plane waves with equivalent wave vectors. Let the
total mumber of such different vlane waves with wave vectors equivalent
to k be m(k). At a gemeral point, (kykpks), (k') = 1, m(k) == 1,
the crystal symmetry combination of plane waves reduces to one Ylane wave,
[klk2k3] » and the representation matrices for -bheA group of k, which in
this case is the translation sub-group of the crystal space. group, are
one-dimensional matrices of the form (e -earik- “13“") vhere R., is a lattice
translation. At a point of symmetry, (klkgk ), slk! )>l and the group
/’1"" has in general several, say c(k' ), irreducible represenbations
(1. r.), which will be denoted by oDi(g_-), 00'2(1_5'), coe s oy ().
Let the dimensionality of the J-th representation be 1 3 | As sl-;own on

page 123 of Wigner's book (28),
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Zl? = 8(2;").

J=1"

(5.1)

From the m(k) plane waves <klk2k3) we shall show how to form m(}_'s_)
linear combinations which can be grouped into sets of basis functions
for some'of the 053(_19). These functions, which are all mutually orthog-
onal, are the crystal symmetry combinations of plane waves (CSCIW) agso-
ciated with k; the set of them will be symbolized by { klk2k3}., ] 'ﬁ'e
denote the set of j~indices of those representations oo:j(gc_;) for which
{ klk2k3} provide basis sets by j{ _l_c_} ; this set may Include the same
index j' more than once, because the get { klk2k33 may providé several
gets of basis functions for 003,(_15'). But in any case, since the dimen-
sionality of the representation sub-space associated with k is unchanged
by the transformation from the basis set <klk2k3> to the basis set

{ ez} |

LA4s = =0

34 3] (5.2)

In this section we discuss:
(&) given the character table for &' /Tl-‘:-' , how to find »t‘he set of
indices j{ 5} » from which we learn the number of sets of bagis func-
tions for each i. r. on(_lg_') which can be obtained from the set { kykpkeo) 3
(B) how to obtain the set of CSCRW, { kykpks} , from the character
table for Gl{"'/‘l"lg when the explicit matrices of the represgntations

k', k!
oO,}(lc_') of G— /T~ are not known;
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(C) how to obtain the explicit representation matrices of all
of the representations ﬂj(l_t_') for which j is in j{g} (the oO'j(_l*_c_')
associated with k) when the CSCEW associated with k are known; and

(D) how to obtain the combinations in {klk2k3j from <k-lk2,k3>
with the ald of the sets of matrices of the 00;-(_13') asgociated with k.
As an illustration, and to prepare material necessaery for the OFW
calculations to follow, these procedures will be applied to a diamond-
type crystal lattice. The most important result of this section Will
be to establish an efficient, easily mechanized systeni for »obtainihg
the CSCPW for any symmetry point k in the reciprocal space of a crystal
lattice from the known matrices of the representations of GK'/Tk',

This system makes it easy to obtain a CSCPW belonging to a specified

row of a gpecified representation e j(l_g ') of the group ck' /Tl‘i'from any
sget <k1k2k3> (which spans a space in which a sub-space is transformed

irreducibly according to odj(l:_') under GK' /T&") once the matrices of
oO:j(g ') are known. These matrices will be determined and tabulated
for the point of highest symmetry, k' = (0, 0, 0), in thé Brillouin

Zone for a diamond-type lattice.
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"A. Character Analysis of (ieyiegles

Given the set of plane waves (klk‘éks): we determine how many
linearly independent sets §f basis functions for each of the represen=-
tations odj(g_') can be formed from them, or, in geometrical language,
how many sub-spaces of the‘ space of { klk2k3> transform irreducibiy
according to oO'j(l_g') u'nd.er" (}'}g /'I"I'{". Let this number be a(j), a
positive integer or zero. To find a(j) wo make use of a table 61’ the
characters for each operation in each irreducible representation
co:j(_lg_') of the group G}‘{"/Tlg". Let the character of operation Ls in
representation odj(k_') be XJ(LS) ; the character is by definition the
trace of the metrix in 003(_12') which represents Is. We rvecall' that
1 £s5 2g(k') and that 1 £ J Lc(x'). ‘

By virtue of the way in which the set (kjkpks) is formed, it
is clear that the plane waves belonging to it are basis functions for
a fepfesentation of the group GI'S“' /Tl{" . In general this représéntation
is reduciblé- 3 ‘the matrices of irreducible representation 00;(_]:5 ") oc‘cur
a(J) times in the i'educed matrices of this representation, ‘and because

of the invariance of the trace of a matrix under a similarity transfor-

mation,
e(k') .
Xza) = ) an) Xt
=1

(5.3)

where X(Ls) is the character of the operation Ls in the reducible
representation with basis set ( klk2k3> « Eq. (5.3) can be solved for

the a(Jj) by means of a theorem proved just below:
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*

)} X)) = ed,,,
8 (5.4)
where CJ;j is the usual Kronecker delta.

This relation ie true for the characters of the irreducible matrix
representations of any group of order g consisting of the elements

*

Is, 8 = 1, +e. , g Multiplying both sides of Eq. (5.3) by Xi(I.s)
and summing over s, we obtain:

glk') glk')  clk')

) XaX o) = ) e o Xy

8= 1 s=1 J=1

Z ga(.J)c{iJ
J

r\~f1

ga(i),

or

a(l) = -1-
g

)
X ()X (1)
1

1} r\~’1uw

(5.5)
The proof of Eq. (5.L4) depends on the very important and useful set

of orthogonality relations between the irreducible matrix representations

of any group of order g:

2 Z
Zn(m Lo | = dd

s=1 (5.6)

where DJ{Is)mn is the element in the m-th row and n-th colurm of the
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matrix representing the group operation Ls in the J-th irreducible
representation, which is of dimensionality 'ZJ' The proof of this
set of fundamental relations, which is too long to be included here,
is given in Chapter IX of Wigner's book (28). One of the conse-

gquences of Eq. (5.6) is

g

g
Z DJ(LS)ijx(LS);tml = :LT:]J.;J'JM';

g= 1

summing over m from 1 to ,ﬂ and over m' from 1 to )@ , We obtain

3 '

g /ﬁj /Ej'
L Xy = 59T L d

Se= 1 m=lmn'=1

8
= 'Z;Jsj'a =cd

33
which is Eq. (5.h)

In order to use Eq. (5.5) we must have a table of the characters
X(Ls) in the reducible representation for which <klk2k3> is a basis
gset. We indicate how to construct such & table. Let the m(k) plane
waves In the set <1{lk2k3> be represented by W, Wy, ... , wm(li)'
The order in which the plane waves are numbered ia not important. Then

1] ]
for any operations Lg in the group & [T,
m(k)

PLst = [ D(Ls)ijwi,

=1 (5.7)
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where D(Ls) 1s the matrix representing Ls in the m(k) dimensional
repregentatlion for which the W j are bagis functions. Decause of
the way in which the W 3 were determined, D(Ls), for fixed § will
vanish for all except one values of 1. To determine X(Ls) , write
(5.7) for each value of J from 1 to m(k) and sum all of the numbers
D(Ls) 330 OF diagonal metrix elements, which appear in the whole setb
of equations. (X(Ls) = Z D(Ls)jJ .) To obtain (5.7) for a
211‘ ik'er

particular plane wave W g = ¢© — and for group element Ls <=

{o |ZTa} , recall from (4.1) and (4.28) that

2wik' r eE-:rialg'-(.x_: - T ) _ 2T iec k' T

PLSWJ ——1 PLSe — 'Wi,,
(5.8)
2wic k' 1T
where Wiy = e = =, and hence D(Ls)iyj, the only non-vanishing

D T
matrix element in the jJ-th columm, is e 2Tl k" Tu

This whole proce-
dure for determining X(Ls) 18 easier to perform than it is to .describe,
and can be done mentally after one has made up a table giving stw,j for
each symnetr.;,r operation PLs in G-I-C-'/Tli-' and for each plane wave W in
( klk2k3>. The construction of this table, which we call an"operation
table" for the group GE'/TE' and the plane waves <k k k > is the first
thing to be done in the complete process of forming { k k k3 from
( klk2k3 ) In making such a table we have found it convenient to rep-
resent each plane wave WJ gimply by the integer j. We mmber the colurns
in the operation table from 1 up to m(k) and label the rows by the sym-
metry operations ILs, or simply by the integers s. Then, for the case
2Tixk"'+To

given in (5.8), P 3 = e = -Wi,, under column j and in row

s we enter the number i' of the plane wave Wi mltiplied by e 27 i k' To
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(which In our applications is usually =+ 1 or X V-1).
Tt should be noticed that the character is a functlion only of the class
of an operation Ls, and if the classes of operations in GE'/I&' have been
determined, it is sufficient to find X(Ls) Tor one Le in each class.
Also required in Eq. (5.5) are the characters Xi(Ls) in the
irreducible representation 00;(}5“ ); for the diamond-type space group
(0171}, we obtain these from the work of Herring (27) and Bouckaert,
Smoluchowski, and Wigner (30). In %the tables which follow we exhibit
the characters Xl(Ls) for each of the irreducible representations of

the group G(OOO ) / ""(OOO)

in Oh, and also, as typical examples, the opera-
tion table for the set (111) and the characters X(Is) in the reduc-
ible representation spamned by the set (lll} . Trom these tableé and
Eq. (5.5) we then find the numbers a(i) for the set {111V .

Table 2, giving the characters of the i. ». of the group
G(OOO)./T(OOO) (u.suallf called r ), is taken from Table 1 in the paper
by Bouckaert, Smoluchowski, and Wigner (30), except for sl:_Lght changes
in arrangement. ETach column is labelled by the symbol 003_(000) for
one of the representations of F and contains the characters of all of
the clesses of symmetry operations of the group r The 48 symmetry
operations of r and theilr clesses are given in Table 1. 'Ifhe row
degignation et the left gives the class, and in a parenthesis to the
left, the number of operations of [ in that class. Thus, in the colummn
under 00'6(000) = P 12 and in the row to the right of (3)C§ we find 2,
which is the character Xé(cﬁ), where in the last symbol Ci may be replaced
by any one of the (3) symbols I2= {Ja?IO}, L3={c{u’o} , or Ih= {JWIO},

2
which belong to class C). The character of the identity E in a
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particular representation 1s the dimensionaelity of the representation.
Note that we have labelled the various representations of F with the
standard symbols, as given in Wigner, of the type ’: 3 and also the
symbols oO;.L'(OOO).

Table 3 is the operation teble which we have described above for
the set (lll) . In it, the 48 operations are denoted by the numbers

given in Table 1. The plane waves Wr are labelled by r:

Wy = [111]
[1i1]

Wy = [f11

=
no
{

Wy, = [(i11]

=,
[02Y
|
—
4y
I._I
I..J
|

wg = (111l
(5.9)

Then for the set (111} , using the procedure described, we find:

X(®) = &

X(CE) = 0
X(acy,) = O
X(3g) = &
X{c3) = 2
X(a) = O
X(xh = o

X(cy)

il
(@]



X(Cg) = 0
X(c2)

t
o

(5.10)

Finally, substituting X(Ls) from (5.10) and Xi(Ls) from Table 2

in Eq. (5.5) we obtain:

a(l) - 1

a(2) = 1
a(3) = i
a(l) = 1
a(5) = O
a(6) = 0
a(7) = O
a(8) = 0
a(9) = ©
a{l0) = 0.

(5.11)
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Table 3: OFERATION TABIE FOR TEE GROUP G(000)/r(000) my of

AND THE PIANE WAVES (111)

@ 8a_/7667 6a_ﬁﬂ7cﬂ8 0 O \O -0 6s_/rﬂ788
t~— 7.-68=_J8=_z 4/6867% \O -0 \O O 7.78:_zq_z6
0 67:%8:_60 7.87.:_/66 :./78687 ;m/oororov.:_z
N IND\Q - -0 0 -0 W O N NV N I W\D =0\ -
= N I Fritnd | Ftr1r
=
k|
— ) F ™M AV I R e - A N oW e Ra\! o~ ot
& | I I
e} 32.4.,_.74.._._ .ﬂ2h23.._._ MM Mk 33‘4.._44_2
o 234_,4.._._‘4 3.43..~._22 .._._3.42&3 1_._\4223.‘_._
- N eI & O M VI I B B o Nt ol en
P I { P
3 _
w® | Aemso0 | rooggy | 93085% | QRIANDD
4
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h

OPERATION TABIE FOR THE GROUP @{000) /p(000) 1y

Table 3:

(cont.)

AWD THE PIANE WAVES {111)
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a _
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OPERATION TABIE FOR THE GROUP G(000) /p(000) 1y

Table b:

AND THE PIANE WAVES ¢200)

)

r (in W

6
-3
~2
-2
-1

5

—1
-1
-3

6
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2
1
—l
3
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3
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\ B Determination of Crystal Symmetry Combinations of Plane Waves
from the Character Table

- The results of the preceding sub-section will be used in the
process we now describe for assembling from a set of plane waves
(k k k3> linear combinations { 521:3} which transform under the
operatlons of G—- /‘I‘—- a.ccordmg to some of the irreducible represen-
tations J(k )y een oq(k,)(}g_ ). We know that we must be able to
find a(l) sets of basis functions for 00;(_1«_:_'), a(2) sets for 002(3;.),
etc., where the a(i) depend on k, of course. ILet Wr denoté one of the
original plane waves [klk2k3] (as 1n the last section) and S;m the
p-th symmetrized plane wave combination belonging to the m-th row of
OO:.L(E'), 1= 12c(k"), which can be made up out of (k k k3> Sincé
the symmetrized plane waves are to be obtained by a non-singular trang-
formation from (klk2k3) » any particular plane wave W, can be written

as a llnear combination of Spm’ i. e.,

c(k') a(1) A
=L Lo Lowth
T ipm pm

(5.12)
From Eg. (5.7) we obtain, for any operation Ls of the group & /‘1gts

olk') ali)  f, A |

1
Z Diom Z D (L8) ymSpme
i=1 P=l m=1 =1

Now multiply each side of this equation by XJ(LS) = i DJ(LS) 4t and

t= 1
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sum over s from 1 to g (k*)¢

g(k") c(k') a(i) A

Z XJ(LS)PLS r = Z Z Z bipm’

s=1 iz=l p=l1l m=1
glk').

i Z pI(s) ' (1s),, 5L,

Il==l t=1 8=

EE) fbspm o TAa f f dindusts

P=1 me=1 n=1 +t=1

a(J)

Z [ . Ptsgt'

p-—l o=l

(5.13)
The last two forms of this equality are obtained by meking use of the

orthogonality relations (5.6). The equality of the Tirst and last
terms means that the effect of the operation
glk')

Z X,j(LS)PLs

S=1

on Wr is to produce a symmetrized plane wave combination, SJ‘?J_ , if oa
J

is one-dimensional and a(j) is unity; the sum of several such combi-
nations, each belonging to different rows of oUJ R

J J
clsll -+ 02812 -+ ... = C}, Sllj

(5.14)
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if (£% has dimensionality 1% and a(J) is unity; and the sum of several

sums like (5.14%), each consisting of a sum of basis functions for 1¢G,

including one from each row, if odJ has dimensionality Jj and a(3) > 1.
In practice, after applying the operation

elk')

Z XJ(LS)PLS

s=1

to sew}eral different plane waves in the set (klk2k3) one 'sees which
of the resulting combinations are partners in a representation of oO:] ,
or can be linearly combined in some simple manner to form such partners,
although we can give no exact general rrescription for this procedure.
In the following typical example we use the set (111) to 1llustrate
how easily we can dlsentangle and clagsify these various combinations
of symetrized plane waves.

From the results of the sub-section A, we know that in the sot
(lll) consisting of eight plane waves it is possible to find one
linear combinatlon belonging to r]‘_ » one belonging to l-; : three belong-
ing to réé(one three-dimensional basis set), and three belonging to

rJ‘_5. To find the r;_ linear combination we apply the operatlion

48
Z X1(18)Prg

8= 1

toW = [111] :
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18

ZXl(Is)PLsz =

B= 1

1°(l =4 =2 e 3 =3 =2 =Lk =3 2 = -4 =3
—2 4+l lAl4+ldl =l —2=3—h—2—3
+5 =8 -6 ] =] = =8 —TT =6 =8 =8 —7 |
— 6 +54+54+5+5+5 =8 =67 =8 =06 —17
= 6l =~ 2 =3 =L 45 —=b -7 —=38),

(5.15)
where in a product like 64 the first number, 6, has its usual meaning,
but the second mumber, 4, stands for W, = [:iftg] . In writing (5.15),
we used the operation table, Table 3, and the character table, Taﬁle 2.

The application of

48
. Z X1 (Is)Prq

s=1

to any other plane wave in the set {111) gives the same result.

Normalized, the linear combination given by Eq. (5.15) becomes

8l = (/@)1 —2—3—h45=06—7—8).

: (5.16)
Proceeding in the same way, but replacing ;Ki(Ls) by )fg(Ls), we obtain

85, = ANB)(1 =2 ~3 =4 —5 46+ 7 + 8).
(5.17)
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Next, we find the [-;5 linear combinations. Using Eq. (5.13),

Table 2, and Table 3, we get:

48

g8 =1

Z X3(I8)Prgily = 21 + 62 —2:3 — 2k +25+66—27 —28

21 = 2:2 o4 63 = 2:4 4 2:5 = 26 + 67 — 2°8

~
wﬁ
H
o0
W
s
=
w
i

48

s=1

= 9

48
[XS(LS)PLSWJ.Fh = QJ., J = 1, 2, 3, L.

s=1
(5.18)

It is easy to see that Q’l = Q, =+ @, -+ Qh’ so that Q,, q.,, and Q‘l;

2 3 3’
must be linearly independent; however, they are not mutually orthogonal,
as our basis functions must be. After trying several simple combinations

of the Q,'s, we observe that (Ql — Q,_F), (Ql -_ Q3), and (Ql-— Qe) are
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mutually orthogonal. Normallzing these combinations we have, finally,

8. = QAL +2+3—L+5+6+7=8)

83 = (AL 4+2—34+L44+54+6—=7+8)

35, = QABYL —2+43+b4+5—6+7+8).
| (5.19)
For ':5, the procedure is similar:

L8
ZXh(Ls)PISWl = Gl 4 22 o 2:3 F 21t = 5 — 2-6 — 2.7 = 28
s= 1
= @
48
Z:Xh(LS)PLsWZ == 21 4 02 — 23 =~ 24 — 2:5 — G0 ¢ 27 4 2:8
Se= 1 .
= %
L8

Xh(lﬂ)PLSW = 2¢1 — 22 + 63 — 24 = 25 4+ 2:6 = 67 + 2-8
s=1
= Q3
48
ZX’—L(LS)PISWIL = 21 = 22 = 23 4 6% = 25 4 2:6 4 27T — 68
g -1

(5.20)
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the orthogonal combinations are (Qi -~ Qi), (Qi - Qé)’ and (Qi - Qé),

and the final results are:

s, = QMBI +2+3—4—5—6—17 +8)
SL = (LAB)1 +2 —3 44 —5—=6+7—8)
sis = {1/{5)(-1——2+3+h—-5+6-—7-—8).

(5.21)



-6 -

. Construction of ‘the Representation Matrices of oqj(_k_') from the
- Crystal Symmetry Com‘bina'bions of’ Plane Waves
- Once we have found a single set of }Zj C8CFW's which form a basis
set for the representation oO:j(]g') » We can easily determine all oé_f_' ‘the

matrices in the representation og(g‘) by means of the fundamental relation

A3
J — J J

Sl = [ D(ze) 87 (2).

n=1

(5.22)

(8ee Eq. (23), Ch. XI, in Wigner's book (28).)
Thus, to find the m-th columm of the matrix representing Ls in the
representation 00:3(,15‘) » We operate with Pr, on the known symmetry com-
bination ng(_x_'_) (the m~th combination in the set Sgn(_:g), ne=21, ...,

/e,j’ which is known to form a basis set for & 3(_]:;')), vsing the definition

P.8d (r) = 8) (Lt
Is pm pm

(5.23)
and Table 1 to simplify the left-hand side of Eq. (5.22). The resulting

combination of plane waves must be a linear combination of the set S:gn(g):

Pol® = 8 (e Z v,8) .
Ne l

| (5.24)
We determine the Yn by inspection, or if need be > by using the relation

-1
)’n = (ng(Ls r), Sgn(;_)),
(5.25)
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\u\w}ﬂlich is a consequence of Eq. (4.17) applied to the set of functions
Sgn(g). Comparing Egs. (5.22) and (5.24), we see that Xn = -Dj(Ls)nm
one of the desired elements of the m-th column of Dj(Ls).

Ag an illustration of this procedure we work out the matrices
representing several symmetry operaﬁions Is in oUé(OOO), uging SJ3.1;
S?_g, SE?_S , CBCEW constmctedu from (111) in B of this Section. In
this example alone, to simplify the notation, we write S; for Sj%_i, 8o

- for Sig, and Sy for Si?) , since we deal only with one representation.

Let us obtain the matrix representing I2 = {J IO} in Foj (OOO

P8y = AMBY (= b +3 4241 =8 47 46 +5) = 5

PpSy = (LB =4 43 —2=1=847=6=5) = =8
PrpS; = (MB)(—4 —342—-1=8—-7+4+6=5 = —s,.
(5.26)
Thus, the matrix representing I2 in 063 (000) is
1 0 o
pX2) = 0 -1 0
0 0 -1 .
(5.27)
As a second example, we find for Ih5: . |
P ] — 1/48)( = 6 8 — 2 I 1 = 8
55 (1B (=7 4+6+8+5—=34+2+14+41) ,
P 8 = (1/8)(— 6 =8 =5 — 2 =l =1) = =8
s (1/AB)Y(— 7 + 5 — 3 =+ -1 :
P 8 = (18)(=7 =5 8 5 @ 3 = 2 h-—lk=—s;
s (1W8) (= 7 + 5 e 3 + ) X

(5.28)



thus,
0 0 ~1
P(I45) = 1 0 O .
o =1 0

(5.29)
Proceeding in this way we have determined matrices representing all
48 of the elements in r Tor the representation 00'_3(000); these are
given in Table 5. Tae Trepresentation oa'h(ooo) = r;_5 can also be

obtained from Table 5 by means of the following relations:.

L 3
D(In) = D(In), n = 1,2, ... , 2k

Dh(In) -0°(In), n = 25, 26, ... , 4B.

i

(5.30)

In the representation oOEL(OOO) — rl, all of the symmetry
operations in r are represented by (1); in 90'2(000) — r 2', ‘the
first 24 operations are represented by (1), and the last 24k by (=1).
We have now given explicitly the matrices of the rejéresentations
ﬂ, re,' ‘25', and r;-‘i ; these are the representatlons which are needed
in determining the wave functions for the valence and conduction states

in a diamond-type crystal.
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!
MATRICES REPRESENTING E;;

Table 5

Hoo,

OO~

O~ 0O

| D(17)

1_1_00
O..ﬂ_nu

OO~

D(9)

OO
(i Ne

-~ O O

D(1)

oo
~ OO -

oo~

D(18)

OO
O.ﬂ_nu

001_,_

- D(10)

001_._
01.;0

~ O O

D(2)

E RoXe)

,001.._

D(19)

01_1.0
OOJL

-~ O O

D(11)

O
O.ﬂo

..m._oo

"

D(3)

.01_._0

1.._00

QO

D(20)

ﬂ_oo
OO

001.._

D(12)

0011
O~ O

..M—OO

D(L)

4.00

001_._

O~ O

D(21)

OO
1.:.00

040

D(13)

OO
OOJ_

- OO

D(5)

01.*0

" oO0O

00..“._

D(22)

O+ O
O O~

-~ OO

D(1k)

oo
OO

-~ OO

D(6)

1_*00
0O

oo

D(23)

~ OO

OO

QO

p(15)

OOJ_
- OO

OO

D(7)

O~ O
J_OO

OO.:.._

D(2k)

OO
- OO

e N

——

D(16)

00,1_._
J._OO

SO

D(8)

l, 2’ LR ’ 214'

D(n), n

D(n == 24)

In this table, D(n) means D3(In).

Note:
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7 ]3. Use. of the Representation Matrices in the Production of
Crystal Symmetry Combinations of Plane Waves
“With the aid of the representation matrices for odj(lc_'), which

we have shown how to construct in sub-section C, it is easy to obtain

a CSCPW belonging to a specified row of a specified representatioﬂ
?D:j(l‘é') of the group Gl{-' /T]-‘-' from any set <klk2k3) which spans a space
in which a subspace is transformed according to aaj(l«:”'). We leé;rn which
representations oo:j(ls_‘) describe the ways in which the subspacés of the
space spanned by ( klk2k3) transform under GX /Tl-g' from the chardcter
analysis of sub-section A. Then, to obtain a CSCPW belonging to the
n-th row of a particular representation oﬂj(.}g_') from the set (klk2k3) s
we choose any one of the plane waves in <klk2k3) , Bay WI;(_I;) a.nd‘use
the fact that

Z Dj(Ls)nnPLsWr = AI'SIJl
s | | (5.31)
where Ar is a proportionality constant which ma.yl be zero. (See Eq.

6 of Ch. XII in Wigner (28)). If Ar is zero for a particular choice
of W), then we choose other plane waves from the set (klk2k3 ) and use

them in Eq. (5.16) until we find one for which Ax,does not vanish. Then

by normalizing the plane wave combination

J
IE: D*(18)yrPraWy >
8 , (5.32)
we obtain a CECPW gi belonging to ‘the n-th row of the representation

odj(ls_'). The operations in (5.32) can be carried out easily and .



‘ éfficiently by making vse of the operating table for Pstr and a
long thin slip of paper on which the numbers D'j(Ls)m are entered
in a columm, for s ranging from 1 to 43, with the same spacing
between entries as between the rows in the operating table. When
this "colum slip" is placed beside the column in the operating ‘.
table which gives the results of applying the various operations

PLS to the particular plane wave Wr’ the sun

Z DJ(Ls)nnPLSWI_

8

can be read off very rapidly.
For example, let us build the CSCPW's which transform according
' ,

to r;5 from the set (200) ; the operation table for this set is given

in Teble k4, with

W, = [200]

W, = [o020])
ws = [oo2]
W, = [200]
Wy, = [oZo ]

Wg = [ooZ]. |
, (5-33)
The three columm slips are made up from Table 6. Using Tables U and 6,
we obtain:
18
3
D (LS) llPLS.Wl -

s=1
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141 ~ 1k — 11 4 Ik — 12 415 — 15 < 102

[

i
o
-

N
C’

Z D(Le)1 iy

8= 1
= 12 — 15 4 15~ 12 - 1o} =13 — 1-h 4+ 11 = O,

48
}: 333 (Le)11Preis

g =1

= 13 4+ 13 4+ 16+ 216416+ 16+ 1-3 4 13 =543 4+ L6 ;
(5.3k)
and

L8
Z D°(Ls) 1121 WL

g= 1

I
°

L8 ,
= 1
46
Z DB(LS)]_J_PLSW6 = L3 4 L6,

s= 1

(5.35)
Thus the CSCPW belonging to the first row of gO;(DOO) which can be made
~

up from (200) is of the form
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3 e .
s}, = N (1-3 4+ 1-6),

where N can be taken equal to 1/42 so that the combination is normelized:

sil = (LN2)(0'L 4+ 02 + 13 4+ Okt + 05 + 1:6).
(5.36)

Similarly, we obtain for the CSCPW belonging to the second row of %(OOO):

Sio = (ANZ)(0-1 + 1:2 4 0-3 + 0+ + 1:5 + 06),
(5.37)
and for the CSCPW belonging to the third row of oO_;)(ooo):
s% = (1A2)(11 + 02 + 0:3 -+ 1'4 -+ 0:5 + 0-6). (5.38)
5.3

By these methods, and with the ald of the representation matrices
given in sub-section C, all of the C8CPW's given in Table T can be deter-
mined. The OFW calculations for silicon which follow are based on those
symmetry combinations and those alone. As given in Table 7, the CSCIW's
are not normalized, but it requires only simple mental arithme‘ﬁic to

determine the normalization constant for each combination..
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: 1
‘Table 6: COLUMNS DERIVED FROM 1:5 . oO;(ooo)

s D(Ls)y; D(Ls),, D7(Ls) 35

1 1 . 1

2 1 -1

3 -1 —1

i =1 1

5 -1 0

6 -1 0

T 0 0

8 0 0

9 0 -1 0
10 0 -1 0
1 1 0 0
12 0 1 0
13 0 0 1
1h 1 0 0
15 0 1 0
16 0 0 1
17 0 0 0
18 0 0 -0
19 o} 0 0
20 -0 0 0
21 0 0 0
22 0 0 0
23 0 o O
2k 0 0 0

p3(Lfn +24]) = D3(m), n = 1, 2, ..., 24
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Table 7: SOME CRYSTAL SYMMETRY COMBINATIONS OF PIANE WAVES

ASSocTATED WITH G(000) /p(000) 1y o7
h

rJ’. = r;' = 65' = E5 =
| 01(000)  oIFo(000 o0’3(000) o, (000)-
' sil S32.1 Sil sia 523 Sil siz 823
000 1 '
111 1 1 1 1 1 1 1 1
111 ]| —-1 -1 1 1 -1 1 1 -1
ii11]— -1 1 -1 1 1 =1 1
il11 |- -1 —1 1 1 —1 1 1
N 1 -1 1 1 1 -1l =1 -1
Ii11{-—1 1 1 1 -1 -1 ~—1 1
111 | -1 1 1 -1 1 —1 1 -1
111} —1 1 —1 1 1 1 -1 -1
200 1 0 0 1
020 1 0 1 0
002 1 1 0 0
200 -1 0 0 1
02 0 ~1 0 1 0
003 -1 1 0 0
220 1 1 0 0 0 1 1
202 1 0 1 0 1 0 1
022 1 0 0 1 1 1 0
220 | —1 1 0 0 0 =1 1
502 —1 0 1 0 —1 0 1
0 g 2 | —1 0 0 1 -1 1 0
230 1 1 0 0 0 =1 =1
203 1 0 1 0 -1 0 -1
023 1 0 0 1 -1 =1 0
2530 —1 1 0 0 0 1 -1
202 | — 0 1 0 1 0 =1
022 | -1 0 0 1 1 -1 0
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VI. THE FACTORIZED SECULAR DETERMINANT
To make use of the results of the preceding three sections we
return to Eq. (2.12) and write for the trial function for a valence

or conduction state in the crystal:

Vi = Z Zaim(z + PeplE + W,

i,p,m ﬁ (6.1)

Whereksg)m(ﬂ—x - ﬁ) is our symbol for the p-th crystal symmetry com-
bination of planes waves belonging to the m-th row of the i-th irredu-
cible representation of GK' /Tli', but with the plane wave ei(‘ﬁ_ + ﬁ_)?.
replaced by the orthogonalized plane wave 77£ + ,KL(E) . The summation
over M is over reciprocal lattice vectors (multiplied by 27 ) which we
specify in a.dvanée for each trial function, and the summations over i,
P, -and m are over all the positive integers characterizing those CSCHW's

which can be built up from the set

PL:}ei(K +. i)"l:, J = 1,2, ..., glk).

For example, in silicon we use as a trial function for the crystal wave
function having ¥ = 0, Eq. (6.1) with § = (277/a)(0,0,0), (27r/a)(1,1,1),
(217/2)(2,0,0), and (217/a)(2,2,0). For § = (277/2)(0,0,0): |
(p=1,me=1); for f = (27/a)(1,1,1): i =1 (p =1, m -;:1), i=2
(=1, m==1l),1e3(p =1, mn=12,3), i 1.-.& (p = 1,
mow=1,2,3); for f = (27/2)(2,0,0): 1 =2 (p =1, m = 1), i =3

(r=1,m2=1,23),1 =5 (p =1, mn = 1,2); for = (27/a)(2,2,0):

i=1(p _.l,m-_-_-l),i-=3(p=l,m=l,2,3),i-_-=l+(p=l,
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m=123),1i=6(p=1,m=1,2),i="T7(p=1 n=1,23).
The linear transformation of the trial function in going from Eq.

(2.12) to Eq. (6.1) effects a similarity trensformation of the matrix

(77_1? 577g) = E(@_ 77_1@)

' (6.2)
appearing in Eq.(2.15), so that after rearrangement of rows and cplumhs,
this matrix consists entirely of zero elements except for blocks which
are sjmmetrical about the principal diagonal. This transformation 6:&'
the matrix (6.2) simplifies or factors the determinant in Eq. (2.15)
into a product of determinants of lower order; some of these deter-
minants may be ldentical. In fact, it is easy to see that the use of

the trial function (6.1) will lead to a secular equation

det[(s%m(ﬂl{_), HS%:m.(W:lg)) - E(S%m(ﬂg), s%!m.(ﬂg.))] = 0;

| - (6.3)
from Egs. (2.19), (2.20), and (4.28) we know that an element will vanish
unless K =— K' is 277 times a reciprocal lattice vector g/é,’and also
i1i=1i', and m = m'; if these conditions are satisfied, then élements
which differ only by having different m = m' will ﬁe the same,

Below we glve explicitly the four determinants appearing as fad-
tors in the determinant of (6.3) which lead to the four lowest energy
values for the valence and excited states of electrons iﬁ gilicon crystal.
These explicit forms have been obtained with the help of the table of
CSCPW's (Table 7) and Eqs. (2.18) and (2.20). EHach determinant is
labelled with the symbol for the irreducible representatidn character-

izing the functions S%m(7ﬁK) from which its elements are formed. These
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| symbols»are all different, so that each of the four determinants is
associated with a crystal wave function of different symmetry. For
the n X n determinant associated with a crystal wave function of vave

vector k = (0,0,0) and symmetry type F, we write

r r
An(ooo‘)' = det [Mij(ooo)], 1, § = 1,2, ... , n. 6

In the following four determinants for silicon crystal we have suppressed

the k label, which is k = (0,0,0) in each case:

r
AP

f .
My = —Pooo| + ¥ooo + (0,0)15,08 = E

r N
the = ¥ = 2‘5/"111‘ = 2(3,0)14,2¢

B
Mo = —|Vooo| = 3[Vopo| + ¥y + 4(3,3)18,26 — E
B n |
Mz = 'M3l_ = —-2|/§(-—IV220’ -+ (8,0)13,23)

h n E
Mz = Mzp = —V&(|vyy) 2,"311’ + IV331' ) + ”5(8,3)13,23
N ' o
Mgy = —[Vooo] = l*lvzzo, - vahool - ”Ivhzel

: 2
—lvuhol + Ky + 12(8’8)1s,2s" E

“’VOOO, - 3!"220’ + 11{211; - 1#(3,‘3)15,2s - E
I r |
My - My = 2/3(=|vy1| ~ IV3111 + Va(¥,3)15,06)

=
"



r;,
M22 =

.."{'5_

_,Voool - ”lvezof - !Vuool + ¥

-+ 6(1"’,4-)15,25 - B

il

E
n
i

S
!

=3
|

Mo

[
s

op =

Vool * |Vazo| + ¥ + _13*.(3,3)21) - E

"2|V11:Ll + 2fvs) + ]%-(h’3)29

. >

"’Vooo‘ + ’Vhool + fopo + 20,4, — E
r:

M3fs = —VE(|vi] + |V = 2|va])
fas

"lvoool - Ivhho‘ + 2lvhoo} + Mgao - E

."lvoool + Voo + Wy, + '§(3,3)2p - %

r
lels - —zlvlll‘ -+ zlvssl] + %(8{3)2p
"lvooo‘ - lezgo‘ + Ivmol + 2lV;22| +_]7€20+h(8,8)ap-E.

In writing the elements Mig‘we have used the following notations, in

addition {o those previously introduced:

‘(hz, h'g)n,&,n',ﬁ', _=. 2(E —Enﬂ)AZﬂ(mrh/a)Anﬂ(e-nh/a)

-+ 2(E

+ cse

—E_ g )An,z,(e ﬂh/a)An,L,(z‘lTh/a)

(6.5)



N
b, = (em/a)(n + 5 + h§)2. 6.6

The determinants given are all based on the trial function bullt
up from the sets of plane waves {000y , (111) , (200) , and {(220) .
If we had included in the trial function only the set {(000) ‘We should
have obtained only AF with M:g_ as given above; if we had used only

{000) and {111} , we should have obtained

r n
r v Mll MiQ
)
A 2 — r
) N
Moy My

with M{S ag given above, and
o Gs' l
B! uf], a7 < |ul

the addition of {200) to the trial function borders the determinant

r r R Ihe r! ne. [is'
as as 5
D, with M3 M?.2 , and My 5 and 8% with w3, My, My

Similarly, the addition of each set <kl + by, Kyt by, Ko+ h3)

to the trial function results in the addition of a border to some or
all of the four determinants. Thus, we obtain successive approXima?
tlong to the energy eigenvalues of the two valence s‘bates, and ﬁhe two
lowest conduction states in the silicon crystal by a.dding guccessive
_sefs of crystal symmetry combinations of orthogonalized plane waves
(CSCOPW) to the trial function. The lowest solution of the éecular

r
equation AM’——- 0 (" stands for any one of the four symbols r; s F
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' r
f"as ,,7; ) we call En; from the variational principle we know that

r EF‘

E ﬁ L] .
n-+1 n (6-7)

In Sections VII and VIII, which follow, we obtain explicit

formulas for the various functions which enter into the matrix ele-

ments Mij glven above, and apply them to the case of silicon crystal.
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\ VII. WAVE FUNCTIONS AND ASSOCIATED ENERGY PARAMETERS AND

ORTHOGONALITY COEFFICIENTS FOR THE CORE STATES

"In Section IT, the problem of finding wave functions for the core
electrons in the crystal was reduced by means of the tight-binding approx-
imation to the problem of finding wave functions @, g .(r) for the core
electrons in the isoclated é,toms forming the crystal.

The equation for the determination of @ g .(r) and the aésociated

energy eigenvalue E, L wes (2.11), or:

B tomic anlm(-r-) = B ?nlm(-‘?-)

(7.1)
with
atomic = V.t Voiomie(®)
(7.2)
and
: ()@ (')
Vart‘.omic(-z) = = Z ?j ¢j ar!
r - jr =z
z
1/3
—s{G/em) ) @D )
J=1 .
(7.3)

In this section we discuss methods for obtaining approximate solutions
of Eq. (7.1). When the wave functions @ nﬁ,m(?-) have‘beende‘cemined,
they can be used in Eq. (2.10) to give the wave functions of the core
electrons in the crystal, and in Eq. (2.14) to provide us with the values
of A nJZ(K) which are required in the secular equations of Sections VI for

the energy eigenvalues of valence and conduction electrons. Also required
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"in setting up these secular determinants are values of En y) from Eq.
(7.1) for the core states, and the Fourier coefficients v(K) of the
potential energy function of an electron in the crystal. From Eqs.
(2.19), (2.9), and (7.3) we see that v(K) can be determined from the
wave functions ?n lm( g) fo;’ the core and valence electrons in the :
isola.’ced atom in the valence state.

Our first step in this section (sub-section A) is to dete.rmine‘
very approximate wave functions ?n(;,)m for all the electfons in’the iso-
lated atom from Slater's empirical rules (16). Using these functions
Wwe compute the potential energy function in the free atom from Eq. (7.3),
the crystal potential from Eq. (2.9), and then the Fourier coefficients
of the crystal potential from Bq. (2.19). Once computed these fuﬁc—
tions are used without any alteration throughout the reminder of this
work. |

We could then use for the zero-order approximation to E, ) Enfz),

the quantumemechanical expectation value of H atomic For the state ?nlm‘

(0)
P = ?nlm Hza,tom:'.c:c?nﬂm(z)d£
o0

Also we could compute the required functions A (K) from the functions
? n! (r) and then proceed to the solution of the final secula.r equations
of Section VII for Ei(;:_) in the valence and conduction states. In a
previous effort to reproduce Herman's results for thé diamond crystal
(9), we did carry through jJust this program; however, our results for

E 1 (000) did not converge as well as Herman's and there was é. serious

disagreement between our results so calculated, and those of Herman, in
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that we found EG'(OOO) < Er'.s (000), as far as we carried the calcu-
lation. We observed that our results for diamond were very sensitive
to the values of [Anﬁ(K):] awhich we used, and A ¢(K) in turn was very
sensitive to the behavior of Pn L(r) , the radial part of the wave func-
tion q’n ) m(_z;_), in its taii region (the region r > r, , where r, is the
largest mumber such that dPnL(r)/dr = 0). Hence, we concluded,

% lm(r) and En;')are not sufficlently good solutions of the éigén-
function-eigenvalue problem of Eq. (7.1). We then dev1sed. a method for
obtaining elgenfunctlons P Lm(r) and elgenvalues E (L)which, are better

approximations to the solutions of (7.l) with V

ot Omic(;:) still given by

the substitution of @ f&)n(;_) in Eq. (7.3).

When we had applied this method in a rough way to carbon aﬁd Tro=-
peated the calculations of Ei(OOO) for diamond, using Exi?)« and values of
A L(K) computed from @ l(l) (r), we obtained agreement with Herma.n's values
of B i(OOO) to within the accuracy of our calculation at each of the
stages of the approximation which we attempted. The method for obtaining
(P nsz(z:') and E ( l) is described and applied to silicon in the second part
of this section (sub-section B).

In sub-section C, formulas are given for the computation of the

necessary values of A n’?’(K) .
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(o)
A. Orthogonalized and Normalized Slater Functions: (Pn 1 m(_r__)
By substituting Eq. (2.5) in Eq. (7.l) and separating in the

usual way we obtain the Ffollowing equation for P o(r), the radial part

of <Pn,lm(z):

a°p_ (r) | =
ng~ -+ [%u_ atomic(T) — &QEEL{l%ﬂﬂ'='%

dr 2 2
(7.4)

where 'vatomic(r) is the same as vatomic(—r—) (Bq. 7.3) in the‘ cases of

interest to us, for which V (g) is a spherically symmetric function

atomic
of r. The studies of Slater (17) and Pratt (32) have established the
fact that the solutions B L(r) of Eq. (7.4) represent the radial one-
electron atomic wave functions to é, very good approximation. Now by
means of Slater's empirical rules we construct radial one-electron atomic
wave functions P::}’(r); insofar as they are good. approximations, they
should satisfy Eq. (7.h).

For a neutral atom with Z electrons, the radial functions which we

construct according to Slater's simplest rules (16) are of the type

Pf},(r_) = Nn(Z)rn*e = (Z = g)r /¢

(7.5)
vhere n¥ depends on n, and & depends on n and 15, according to the rules
given by Slater (16), and Nn(Z) is a nomali‘zation constant, which is
chosen so that P L(r) satisfies Eq. (2.7). In general, ﬁhese functions
approximate only the tails of the one-electron atomic vrafré functions.
But if, using ideas developed in a later paper by Slater (20), we use
(7.5) to obtain the functions P p(r) for electronic states with n and

,2 such that n -,Z = 1, and orthogonalize the functions given by (7.5)
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,\ for the states with n and 4 such that n —l’ = 2,3,k, to all of the
functions (previously obtained) for the states with emaller n and
the same I, we obtain functions which everywhere resemble the Hartree
or Hartree-Fock one -eleétron radial atomic wave functions. For
example, in the case of ‘Che gilicon atom, Z = 1L, for all states
arising from the configura%:ion (ls)2(25)2(2p)63s(3p);’ using Eq.

(7.5) we get

(), -,
Pls(r) = Nl(lll-) re~ MY

(s)(r) = PS;(I') - N (lh) re” -Ax
(5) {S) " — =A3l
P = Bo(x) = w1 g%
where | ‘ - (7.6)
1% — 0.30
/\,' = = 13.70
1
b — 7% 0.35 — 2 X 0.85 9.85 .
Aa — = = L4.925
2 2
1 — 3 X0.35 — 8 X0.85 — 2 X1.00 k.15
/\3 = ) = 1.38333...
3 3 v
(©) (0) (s) (s) R
For our P ‘and P2p We use Pl and ng as given in (756)'
For sz, we take
p© _ (s) _ (S) (0)y (0)
P, = K, (11;)[ (Je2p Py )PlS], (7.7
Whlch is orthogonal to P{ ), for Pg’; we take
p)  _ I, L(a)[p (5) - (P(s) (o))P(o) - (@ (s (o))P(oJ
3e 3p’? 2s (7.8)

(0) (0) (

vhich is orthogonal to P15 and Pog 3 and for P3p’we take
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{s) (o)
oI ", (14) (5) @ )0
3? 3fp 2p 2p ’ (7 . 9)
' (0
whlch 1s orthogonal to P2p The constants N,g(1lt) are determined so that

j[ yi =T | 1(7.15)

In explicit form the functions Pnl(r) on which all of the

calculations for silicon are based are ag Tollows:

P(.'!‘.); = 101.41702 r o 13+ 70000r
(7.11)
(0) _
Pé; = 65.474552 re % . 925000 (
-— 33.578420 r 3'13-700001' e
Péf) = ©62.156271 r2e“4-925000r
p | | (7.13)
P;g) = 1.3304028 r3eL+383333r
—  10.769874 rPe™*-925000r © saoneap o o 13-TO000E
(7.14)
© 3 -1.383333r
—  9.7757812 e F-925000r
(7.15)

As can be seen from Egs. (7.6)-(7.10), the constants in»fhese
functions depend only on Aq, )2, and A ; they are given to seven signif-
icant figures (with a doubtful eighth figure carried; to avoid rounding
off) because that many significant figures are needed in some of the
work to follow. Our final results for the silicon crystalldo not depend

on what figures we write in these constants in the fourth through the
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' eighth places of each, but we must make gome choice for them and adhere
to tlriat choice thoughout the following calculations. We could have put
~zeros in all of these places, but we preferred to assume “that )\, ’ _/1,, s

)3 are given to seven figures, and carry the consequences of that assump-

tion in the computing. For the seven-figurs values of the /\'s we ‘used

‘A, = 13.70000

A, = 14.925000
/\3 = 1.38333.

(7.16)
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‘B. Determination of ?n(Zm(E) and Eﬁi, the Refined Atomic Wave
Functions and Energy Eilgenvalues
‘For the reasons indicated in sub-section A, the functions ?If‘fm(g'_)
can be expected to provide rough solutions of Eq. (7. h) with V 'tomio(r)
replaced by V (tgmlc(r) as given in Bq. (7.3) with q’nlm(r) substituted
fer (})3(2). If they were exact solutions of this equation, the energy

(o) (o) oo
eigenvalue E, ) associated with ?n ) m(}"_) would be given exactly by

w‘°’%$(r)] = fl’&*[—-dz/drg + Voromiol®) + L(L+ l)/r] '} ar;
| (7.37)

{o)
if Pny m(T) is not very different from the the exact solution of Eq. (7.k)

(o )should give a good estimate of the energy eigenvalue for the

then W
state labelled by n and L.

In any case , we know from the variational principle that

(1)
o] = » |
[ u’ (7.18)

where P (r) is any trial function and E L) is the lowest eigenvalue of

the radial part of the atomic Hamiltonian operator

7*“’ = —%a? 4 v () + L+ 1)/
(7.19)

Likewise, if P L(r) is a trial function which is orthogonal to all of the
true eigenfunctions of 74 (l) with smaller total quantum numbers n and

the same azimuthal quantum number ﬂ, then

(o)
W u) r)] >

where E/w £ is the energy eigenvalue associated with the true eigeni‘unction
(0)
of W (ﬁ) Obviously, we can meke use of these conseguences of the varia-
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‘tional principle to obtain approximate solutions of Eq. (7.4) with
(0) . . (o)
- r) which are betler than the funciions P
Vatomic(r) Vatomic( ) : b
given in (7.11)-(7.15). An appropriate form for the trial functions
P/f&(r) is suggested by the work of Lbwdin (33) who was able to fit

the numerical solutions 6f the Hartree-Fock equations for several

different atoms by expressions of the Form

r[Aear
J
st(r) - rZ Aje’ajr - @ZBebr
J J

Pls(r)‘

2 ~b .y

ng(r) s Z Bje J
5 -

Pas(r) =T Z Age @yt — r Z Bje'bjr -+ rSZ: Cse 3"

- J J

B ' (7.20)
—_ 2 -bjr —_ 3 —cjr
P3P(r) __rZ Bje rZCJe
J J

vevess, atc.,
where the exponents aj, bj’ ses , and the coefficients Aj’ BJ,"... , may
be different in each radial function. Our procedure for obtaining refined
(radial) atomic wave functions P('i(r) is to determine the coefficients

,j’ J’ «es , in trial functions of the form (7 20) with judlcioule chosen

exponents so as to minimize W [ (l)( ﬂ E } is the result:_ng minimum va.lue
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h of W‘”[PS}’(I')] . The function P;‘),_(r) is considered a better or more
refined solution of (7.h) with V(r) = ¥ (r) than pOr) 1r E:&(
W(O) [Pr(:i(r)] . There can be no unique choice for the expoﬁents in

| expressions like (7.20). The extent to which P::i(r) is a better
solution of Eq. (7.4) than Pﬁi(r) depends on the number of terms
included in the summation §ver J in the trial functions Péﬂ(r),and
the skill with which the exponents 2y bj’ e« , are chosen. The
choice of the exponents is discussed in connection with the illustfa-
tive calculations for silicon which follow.

It should be clear that the method outlined could be used to
cbtain atomic Qave functions 1n the analytical form of (7.20) ﬁhich
are (to any desired dégree) self—cbnsistent solutions of Eq. (7.&5.

Thus the (first-)refined functions Pézgr) could be used to

obtain a (first-)refined estimate of V (r), call 15 v? . (r);

atonic atomic
this (first-)refined potential could be used in place of v;,‘:(’mi’c(r)

in Eq. (7.4); and (second-)refined solutions could be obtained by ﬁhe
same methods used to determine Pliz in V(o)(r). The cycle could be
repeated until the desired degree of self-consistency had been attained.
We have not proved that this process is convergent,' but if thevfunc-
tions used for P;z(r) are well chosen it seems to us not unfeasona.ble

to expect it to converge. Since the study of this process for obtaining
solutions of Eq. (7.4) is not the object of this investigation, we have

not tried to improve our initial estimate of V (r) by using the

atomic
golutions P;jg(r) In Eq. (7.3). Instead, as already mentioned, we use
o . (0) :
our initial estimate, vatomic(r)’ of vatomic(r) in all that follows.

The important point is that we use the seme estimate of vat omic(r) in
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‘ucomputing the crystal potential V(r) (see Section VIII) and in
determining the atomic core functions ?n!m(_r_) and hence the crystal
core functions (see Eq. 2.10).

For the sake of convenience in computation we take for the trial

function P(z(r) :

Tt | :
n
Poglr) = Z Anl;jgnf.;,j(r)
je l -
(7.21)
where E..j(r) is normalized:

f[g nl ;j(r.)]zdr = 1,

and orthogonalized to all of the (previously determined) functions

nl.(r) W1th the same l quantum number and a smaller n quantum number:

. .7 1) —
fgnl;’j(r)PI:%(r)dr = 0
o

for n'«< n and all j.

The functions En L j(—r) aré given by

Els;ij(r) = N,(r; a;)

§ ooy (7)) = Ngs,j[nz(r; ) = (ny(xs bj>|1:;{g(r))1>;‘;(r>] |
§op; (T) = Mylxs ) |
E35") = W, J[’? (£ 0 = (nfrs e )|25o()ef2n)

(Y[s(r; cj)'PJi’;(r))Pi';(r)]

-
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ks 1ps T = N3p;j[v(3(r; °) = (’L;(l"; Cj)lPe‘;(r))ng’)(rﬂ

ves BLC,,
, (7.22)

where

m_-ar
Np(rsa) = N re

- (7.23)

and N is chosen so that
ma

Y I - :
N _,
j{}]m(r; aﬂ dr = 1, : :
A | | (7.24)

1. e,

N o= (@+1/(n+1))3.
ma

(7.25)

Note that the exponents b 32 G35 cee s which appear expliéitly in
(7.22) asi they are written may be different in different § ,functions.
Starting with the functions § 1g;j 811 of the functions ; n;Q; P (and Pr:‘l))
can be constructed in succession by means of (7.22). The expreésions

(7.22) can then be seen to be of the same form as those in (7.20), but

with the additional property

o0

) ' ‘
P oo(x)P . (r)dr = - :
f nt" " n'e o ‘ (7.26)

o
The equations determining the values of A p. 3 which minimize
“nl; ,

‘o) (‘)
W PnL(r) are (see Pauling and Wilson (22), Section 26(1)»:
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t
nk
(0)

Z Anl;i[(gnl;i’ﬂ u’_)lg nI;j) — B g nl;ilgnl;jﬂ = 0,

i=1
(7.27)

J o= 1, eeo, 'tnL.

These equations have a non-trivial solution if and only if

"”

detl:(gnl;iiw (£)|§ nj;j) - E(gnf;i'gnl;j)] = 0. . 7

(7.28)

' , (o) (1)
The lowest root of Eq. (7.27) isE = W P;l'}' r)l = E g+ When this

root hag been found and substituted into the equations (7.27) they can

be solved for Anl;E’ cee in terms of Anl;l’ which is then

Anl;tnl
()
adjusted so that PnL(r) is normalized.
From Egs. (7.22), we see that the evaluation of the matrix
(0). .
elements (f nZ;i,H' (X,), g nl; j) can be reduced 1o the evaluation of

matrlx elements:

(0)
(M (=5 0| D] (25 e,
j¢ : q ‘
- (7.29)
and we now work out explicit expressions for these matrix elements

(o)
in the case of silicon. The Ffirst step is to obtain ‘H (,e) and

hence V Sc)mic’ as given by Eq. (7.3), in a form with which we can compute.

We note that for the valence state of silicon

px) Z(P*(r = 2|g @)
=1

+ 2'?2,0,0(3),2 + 2’?2,1’_1(5)I2 + 2’?2’1’0(3)12
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+ 2l @ + o, @+ e, el

+l‘P3,1,o(£)'2 + I%,l,l(zﬁg

= (1/1;171-2)(2[913(1')]2 + 2[}?28(1-)] : + 6[P2p(r)] i

o 2
+ [938(1«9 -+ 3[P3p(rﬂ ),

(7.30)
where we have used Eq. (2.5) and
YO,O = (l/lmLT!')1
Y, (3/8 )< sin O P
2
1
L, = (3/47T)2cos @
2
x -
Y, 5 = (3/8MZ%siaf & 19
’ (7.31)

The electronic charge density in the isolated atom, called F(r) in
Eq. (7.30), is seen to be a function of r alone. TFor gilicon, sub-
s () : .
stituting ?nﬂm(—r—) for ?j(;_') in (7.30), we obtain
6
2 n, - r
f)(r) = (1/47r) Z fir le °<1 s

i=1

where



£ = . 7.0678003 ny

6
fp = =106.6020k n, = 5
f3 = 32156.934 ng 4
f), = 13.577128 o, = k
f5 = =890L.0375 n, = 3
fg =  22851.882 | n, = 2

K, = 2.766666
6.308333
9.850000

R Q
w
W

15.08333
18.62500

R
o U =
N |

27.40000.
o (7.33)

The electronic Coulomb term is

ifqﬁ;(z )P (") f PP, (x') -

=1 'r-—r' Ir—;-_'l

, o0
) ") .
2f-—-—£—£r—3— dr' = (2/r) f?(r')dr' -+ Elf;ﬁ(_i_ ar',
; r - —I-’-'l . !
°° ° n S (7.3h)

where in writing the last of the equalities in (7.34) use has been

made of well-known results from potential theory on the potential
function in a spherically symmetric medium of varying density. Thus,

the atomic potential energy function can be written
N

vatomic(r) = .....2.._ -+ f)o(r )dr?

o
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: ’3
- j_ﬂ_)_ o ofpto]

Y (7.35)

with }O(r) given by (7.30). The integrals in Eq. (7.35) are easily
evaluated when F(r) is replaced by the expression given in Ec. (7.32),

with the result (for s:.llcon

~

O
ﬁ—fe(r Ydr! f dr' = -2 }: T F(x; n 5 otJ.),
) J=1

where

(7.36)

-
F(r; ny, o) = (1/0(1) T20 - e 1r(720 + 600 r =+ 21:,o(o(lr)2

1

+ 60(,x)° + 10(°<lr>4 + <°‘f)5ﬂ

F(rs ny,a,) = (1/e«))[120 — o”%27(120 + 96 «r + 36(0(21«)2

+ 8o )3 + (cxgr)“)]
F(r; n, & ) = (1/0(2)[2& - e—“3r(21+ -+ 180(3r -+ 6(0(31')2

(°(r3):]

- 2
Frs oy, o) =(1/x Z)[eu — o ¥ (2n 4+ 18, r + 6(e, )+ (O(hr)?))]

‘ b - 2,
F(r; n5,0t5) = (1/0(5)[6 - 5r(6 -+ 2+<3(5r -+ (0(51') ;:]

F(r; ng, o) = (1/ox 2)[2 — o %2 + °<6r)] .
(7.37)



The exchange term in Bq. (7.2), which we call
) ~ 4y

-
Pratt (32), can now be written
/2
“
/2 2
711. B 3 , l/ 3 I, = 2 =0o 1 *
- Z = -5 F\r = - Lrioe i
r ST 20 el +
227
l=1
(..., 203
[=2%)

With the exchange verm in this form, ithe many integrations involving.
this term which must be performed to obtain the matrix elements (7.29)

and the Fourler coefficients of potential (see Section VIII) could only
be carried out numerically. To avoid these numerical integrations we

P

-

evaluted (7.38) at 65 appropriately-spaced points in the interval
V/r differ

[6]
[
@
e
by
.
o

antly from zero,and then by

6]

smpirical curve-itbing procedures we construched + following func-
as ) / 1ich ranro o e 11 =h R T R N )
tlon, z{x)/r, which reproduces very well the values of z(r)/r at all of

the 65 points and has the additional virtue of rendering eagy tlhe eval-

wation of the integrals involving z(r),; vnich are needed in ”omyutlng

he matrix elements (7.29) and the Fourier coefficlents of vobtentials
o
i( \ A ( \
ry zlr
-8 ~ )
= g, 0e J = —
r J r
J=1 {(7.39)
Nieos
with
] o .
log g, = 3.5051013 sign g = =+
aad e
. ) e oo
ljgggf = 0.891Lh1L78 elzn g, = <
o 7 /C.’:‘ L S
logeﬁo = G.0H95550 sign g, = <
2 b
. O e 2 e
lOL,J"’u, - (.‘D\uhZOOO S Ol;. — —
logeg5 = L2.300k00 gign g5 = =
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‘log_lag| = 61.999900 sign gz = =—
log, @ = 58545000 slen & = +

log _legl = 27.354900 sign gy = =

(7.k0)

Y1 = o0 A1 = 9.1333330

Vo = 1.3333330 Bo = 0.9222220

V3 = 3.8150000 /-33 = 9.2190000

V), = 8.7038000 By, = 9.8810000

Vs = 39.0000000 /d 5 = Lk.2150000
V¢ = 38. 0000000 Bs =  75.0000000
V7 = 27.0000000 B7 = 90.8700000
Vg = 9.0000000 Bs = 72.0000000 .

The expression for z(r)/r in (7.39) reproduces the values computed

from (7.38) with a maximm error of 0.005% for r > 3, 0.025% for

1.4 % r < 3, 0.6% for 0.22 £r £ 1.k, and 1% for 0 < r < 0.22.

Thus #(r)/r was designed to reproduce z(r)/r with considerabls pre-

cision for r > 2 beqause in this range z(r)/r is a large vpart of vatomic(r)
and 1isolated atom wave functions for silicon centered about points of

the silicon lattice would overlap in this region. (Half of the distance
between nearest neighbor nuclei in silicon crystal at room temperature

is about 2.2&0.)

o)
The final explicit expression for V ¢

atamic(r) is given by



() n o
Votomic ) = —(2z/z) + (&/7) ‘JEJ(" nJ’u )
Je= 1
) V. -
- i gr ‘o ’BJr,
J
J= 1

(7.51)
together with (7.33), (7.37), and (7.40). Using (7.41) we now evaluzte
(7.29); we make a slight simplification in the notation of (7.29)

by writing

npb Y]P(I‘; OF n ac

il
]

nqﬂr; c).

It is also convenient to introduce

+
O

m =

s a =

D=+a b
2

o

By simple analysis, including the use of formula (861.2) in

Dwight (34), we obtain

DI ) = (M ping)-

oo = 1)c® = 2pgbe — g(g = 1)b2 N

1 v - 22( — )

[ (0 +a)(p +q=-1) nmal M 1
5 8
O T ﬁ

~ el i v: - -

+2) rmul =) = ) aur e AN

J=1 =1

+ LL+ 1)(nm'%§'nmj,

where

(7.43)
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1 N ..
/ v v+ a ~(b+c)r, bige
\npb'nqc) = l‘{y I er € ar == -,p-_—-9w,

Mol = M) =

(2g)2m
(7.45)
(7.56.1

(703';‘6 C/



Mo =)

(24 4+ 18(m)

-~

8- jex )| el ——
e/ 3)[& (20.)2m

a

+ (%r)(zm..l.l)(m_kg)( 3 )J) ,

% . 6(2@(%“)(
X

X + 2a
(7.%56.3)
15 2 105 |y (o) [(em)
(Y]m"l N r,ma) (Nm/o(u)l% NS (0(,++2a)2m‘ .
2
L L
-(21+ ~+ 15(2m) ""‘(')'(’T‘ o+ S(om)(2m + 1) ——9-(-—1-)
,4-0- 2a O(l;,+ 2a
+ (m><m+1><m+e>(——°—<—”——>d) ,
0(1;4-2&
. (7.45.%)
|2 = e [(en) [em) |
o | E A e (& 5 + 2a)>2
5 2
(6 + u(ea) 2 (zmxam-u)( X5 ) )]
X .- + 2a X+ 2a
J J
. - e (7.46.5)
(N ] =2 = (5 o) 2 —Lem) (2a)
Moo 5 M=) (‘m/"“)[ (22)P% (X + 2a)

2 e eme 1
ﬂmr(zm 1) /(2a)

14

/e

a + /SJ)

(7.46.6)
&n‘*yj"fl

{7.48)
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From the preceding eduations it iz clear that the uratlion
(o)
7
o bt A e £\ .t N TR T R ey 2
of the matrix elements ( § le_«,l H’ \ ;’ §nl %) ; while perfectly stral
F EE o

Torward, is s rather lenglhy tasl, partlicularly since they must often

. PRI SN SRR TS RS Qs AR U IS L -
o many significant Tigures (8 or 9) in order to make

t

- . =
1

.. e BN L
e d@tiernanes

. 2 o -, . 2. ' £ ! 3
possible the determination of the Anﬂ . in Ba. (7.27) to

slgnificant figures. If many such matrix elements were
sable Lo call upon auvtomatic computing machinery for

asglistance. In the courge of our silico

B

computations we computed seven

-

mabrix elements of thls type with an ordinary 10- column.ma“c‘wat desk

computer in about eigh

)<

t days; to provide a check, these computations
were then repeated, also by hand, by the computing service department

of the Hughes Alrcraft Company, with the expenditure of about eight

o

nore man-days.
For our silicon calculation we worked out, by the techniques
described, refined wave functions and energy eigenvalues Tor the 2g

and 2p atomic core states. We did not go to the trouble of refining

the ls wave function, partly because we Telt that 1t would not be
gignificantly changed by the refinement procedure, bub mainly because

of the fact that In the zecular equations determining the enersgles
of valence and conduction states in the silicon crystal, the ls wave

function and energy elgenvalue enter only through combinations of the

type
a2
(Exls(z:)] + A, (Ix?])
(7.49)
and

(7.50)
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1t turns out, when the computatlons are performed, that

2 2
(a25(0)] " ~ 5O[A S(] ,

2 p 2
EESE‘ES(I{) ~ bElsE\‘ls(K)] ;

consequently we feel that errors arising from the unrefined functions
and energy elgenvalues Tor the ls state are likely to be no more sig-
nificant in the calculation than those coming from the (First-)refined

functions and energy eigenvalues for the 28 state.

=1
(r) = 2. 7 (r) = 101.41702 pe +3-70000T

Ag a trial funcltion for the 2p state we use

op = Aoy 18 0p;1(x) A+ Aoy 0¥ opo(x)

= Agp,ln?_(r; L.20) = Azp)ng(r; 7.96)

"V‘ 2 - .C_‘-
ree L .,20r - 7.96r

The choice of the exponents 4%.20 and 7.95 in this trial function

was suggested by substitubing

n ~y =g T -anY
ng (r) = lr2(e 1" <+ aze 27y, 2, < a,,

' (9
ror B, (r) in T long with E T and 1 tor L,
Tor P_,(r) in Eq. (7.4), along with 2 for E2p and 1 Tor £, and

trying by successive approximations to adjust 85 8y, and ag' g0

4 » . m . . 4!
that (7.4) is satisfied or very nearly satisfied for a number of values



T

jeal
o]
)
—

v

3

/

=
ot

LR B R 1 Nal 3 ] P o e e
indicated sarl noice of the amallend exponent a

1inly governs the belhavior of the tall of the function 2, (r),

1ly importent; it is convenlent bto fix a, first zo that

can be approximately satisfled Tor large values of r; o

re then adjusited so that the equation is satisfied for two

values. Admittedly, the procedure cutlined does not give
5 K P . 1= o i o - I
rescription for fixing "best" walnes of a, and a,. However,

it is perhaps more profitadle to add an extra term Lo the trial func-

to zet up

P AY
matrix elements by Ta. (7.43)

Vry
N
v
A
v}

. J SR S E - it A - . L LYy o e -~ T
Lo try o define "best” valuez Tor the sxponents and then
an exact orogram for the determination of thoze “"best”

Using trial function (7.52), and evalvating the necessary

&

A
=
@
ry
l_J'
]
Cu
o]
-
&
=
e
Loy
o~
-~
L]
)
<o
f —
[Sj
re]
o
[ ]
;__l
|
G
O
—3

= ) ”',\C*n =T Oy
(32,3950 7T 4 55,6008e 71 70T,
(7.53)
28 state we take as a trial function
A \ A { )
- A E r - A 5 i
25,15 28; 1) 25,2 225,20

i
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Here we used the same Y\E functions ag in Eg. (7.52) gimply to economize
the labor of evaluating the matrix elements in Eq. (7.28). By slightly

altering the exponents 4.20 and 7.96 in these functions it might be

)

2s

‘possible to obtain a better P ¢ function than the one which we f£ind by
using (7.55), but we would not expect the improvement to be large. With

trial function (7.54) we get E,, = =11.1237 and

! o)
Pv,_fa) =  U1.2920r% 20T
2 "70 61" 'l . OI‘
+ 12.9072r e | ? — 28.4408r & 137
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C. Orthogonality Coefficlents for the Core States
According to Eq. (2.1k), the orthogonality coefficient Anf,(K)

is given by

L JET
(i)t R

AnL(K) == 2 ng(r)d:{’

(7.

7)

\Nn

In carrying out the integration we choose the z axis in the direction

of K; then, by the definition of Sbn L-K(E)’
: K

1 1Krcos9 *
A oK) == ——— ar.
nL( ) (Nlg)k ﬂl,ﬂo r)dr

—~~

-3

\J
@]

(7.59)
and Trom Eq. (19.9) of Schiff (35),
= L
olkr cos® _ Z (2h+1) 1 jﬂ(Kr) lje(cose)
,& = O
o0
Z [lm(f>£+ Ja 1 (Er) ¥ (9 ?),
f=0
(7.60)

wiere ‘j,L<X> is the spherical Bessel function defined in Eq. (15.5)

of Schiff (35); substituting (7.59) and (7.60) in (7.58), we obtalin



1 1 *
AnL(K) = m— _-x- Pnl(l‘) YX,O'
o o O
(%]
S o
Z [LHT(2S + l):] aiSJS(KI') Yso(e,?). r“cos O d(P af ar
s=0
- h'ﬂ'(Ef"P l)J . \/I.r P l(r) J,K(Kr) dr,
| (7.61)
since
mar
X:Eem Yﬁ'm' cos@ ap af = J;E' Jm' .
o © (7.62)

We now make appropriate substitutlions for P, 2’(Jc'), L, and ; l(Kr)
in Bg. (7.61) in order to compute the values of AnL(K) needed in the
secular equations of Section VI. It is convenient to write the atomlc

1)
core functions P l(r) which we obtained in sub-section B as follows:

) “bar
P = B
ls(r) lsr ©
) 3
¢ ms =bar
Pgu(r) = [ BED,J J
J=1
2
) . My =D.r
2(x) = Z B, e
J=1
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with :
) |
B, = 2b13/d = 10l.hk1702 m o= 2

an— ]
Bgs’l = Ll.2929 m, 2
B, 5 = 12.9072 m, = 1
&Sy 2
BQS 3 = -28.4408
2
Bc_n,l = 32.3954
o2 —  55.6008
b, = 7.56
b, 13.70 :
(7.5k)
Thus
[ ]
Y S 0 sin Kr
Als(h) = (—_;)_—;-) I'?ls(r)( - )ar
[0}
L x Ble ” ~-bar
= ) - r ¢ “3'sin Kr dr
L] K S
/2
I
T A (124 x2)’
3
(7.65)




00
1
hor @ O sin Kr
AQS(K) — (—-n—:—-) fI’ PLS)( )( - )(3.1-
0
X 0 o
1%'71' < l ms "'b ey
( ) — B r Je ¢ gin Xr)dr
Lo K 28, 3
0 J=1
3 o0
v 5 1L -
= ('—Ll") -_— B f e bjrsin Kr dr
o - al
C‘SJ J
J=1 0
1 .2 2 e 2
= 2( ) 308,17 — + Bog o
Lo " (b2 + K2)3 (b2 + £2)3
1 2
+ bs
; . e (7.65)
12 z (1) sin Kr cos Kr
An (K) = i( ) r Po {r) —_ dr
? L1, P (Kr)2 Kr

i
i,..:
e
}_J
o
?'zc
\_/r‘_‘
i
2)
3
i
S L"ﬁ
]
(@)
(0]
L
i
[N
'.s
162}
a5
A
s
of B
|
[¢]
ol B
I |
o
R

o
y < . 2
Y 2o 1 (b5 = 3%°)
—_— -L( n ) BZJ j < > —— ——J-;—-——-?——
o 2d g (S +8%) (b2 +%%)3
J=1 J
1o . E Brp,1P1 S5,0%
= HF) | e+ =R
o (5 +£°)° (b5 + %)

(7.67)
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where we have used the integration formulas

o0
2bK
r e PT gin(Kr) dr = — -
('bc_ + Kc.)g
0 o
2 oy, 2K(3° - ¥°)
r“e sin(Kr) dr = =
(b2 + K°)3
P
o0

2b(v° - 3K°)
\JN r2e % cos(Er) dr == D(; — »
o D
) (b= + &%) (7.68)

vhich are easily derived by differentiation with respect to a parameter

from (577.1) and (577.2) of Dwight (34), and

. sin x

g = =

j (X) - 3 ILnr;X -— CcCos X ,
2 x X

(7.69)
from (15.6) of Schiff (35).

We recall that Jrlois the volume of the unit cell; for a dlamond-
ad
type crystal with our choice of unit cell, jﬁlo = T where a is the

lathice constant. The value of the lattlce constant for silicon given
in Bq. (3.4), which we use throughout this work is

o

— ~ o ~
a == 5.43100 x 10  cm. = 10.2032,84;

7.70)
we took this value Trom a paper dy Conwell (36) which is very cormonly
ueed as a source of numerical constants in semiconductor calculations.
The value as quoted by Conwell wos obtained by roundingz off the lattice

constant reported by Straumanis and Aka (37) for 99.97% pure silicon



4.

at 20°C; according to their data the rounded-off value iz equal o
the lattice consgtant in this impure material at about 27 C--a

common tempsrature in California laboratorieg. For our approximate
calculations 1t would be sufficient to know the lattice constant to
three figures, but at various stages In this work we Telt that it
might be useful to carry out the calculations asg 1f our input nubers
were more accurately known, and for this reason we used the lattice.
constant given in (7.70) throughout. We include this information for
the benefit of anyone who may wigh to repeat these calculations.

The values of A¢Lé33 needed In the gecular equations of Section
4

VI, computed from Egs. (7.65)-(7.57), are as follows:

n° Al(awuhj A&JEWhﬁJ -—f?JEthJ
0 0.0170094 0.171077 0.00C0000
3 0.01568075 0.138€15 0.07047hO
It 0.0167kh0G 0.129758k 0.0769325
& 0.0164783 0.100071 0.087912k



VIII. TOURIER COEFFICTENTS OF THE POTEINTIAL EINERGY FUNCTION.

The only quantities entering into the secular equations of
Section VI which remain to be computed are the Fourier coefficient
of the potential energy of an electron, v(X).

Our crystal potential energy function is given by

© '
T = ) Vetomolz - B

where
N
(9) . 27 2
had — - iama———s cpo— -y:! 1
atdmlc(‘) - r + r jp Jar

0

(r ) ) 1/3
f R ‘5%1’(” :
V.7

.

The Foarier coefficients of the contribution to the votential arizing
X 1S

(8.2)

Trom the first two terms (the Coulomb terms) can be easily computed by
obtaining the Fourler coefficients of the charge distribution, which
are related to the Coulomb terms through Polsson's equation. It is

convenient to write

M o0
(o) :
Coulomb 27, 2 £
V : . — — 27 + = (rl)dr‘ + 2 dl‘l
atomlic T r fo -
s Py , (8.3)
Vg%xchange = o -—2—- (r) H2
atomic - o P )
(8.14)
oulonmb

In atomic unite, and with V representing the Coulombic potential

tonic

energy of an electron in the field of the atom, Poisson's equation is
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V2V Coulomb = 8T Ftotal

2

atomic atonic
(8.5)
total |
where atomic o the total number of positive charges of the magnitude

of the charge on an electron per cm? Let

( () (o) -
vo)()oulomb(g) - Zv Coulomb(, gy ZV Coulomb_-2m1 her

atomlic h a ?
v a
(8.6)
where h/a is a reciprocal lattice vector and v, = v(gg—r-‘_lg),
nuclear(r —_ 7 Z of(r _ Z nuclear, 2"1 her
,Pcrystal - F ?
(8.7)
and
electronic electronic
Pcrystal (2) = - Z ]Oatomic (I_r_ - Bf)
electronlc -2l hey
= - ,o :
(8.8)
( Felectronic(r) is called {(r) in Section VII)
atomic jo *

Then



h r

2 (o), -
y2y covlamb _ _2T,2 Z v, n2e 2T 1
h

total
= BTTF atomic
— 817[ [ qumclear - ;lectronlcje-egi ]9_.-1:.
h
(8.9)
Thus
‘o)Coulomb 2a° nuclear electronic
Vh = T 9yn2 h —/n
) (8.10)
2
for h ;& 0.

We now determine Pﬁ“cle&r and Pglectmnic, meking use of the fact that
for a diamond-type crystal with our choice of unit cell, origin, and
reference frame (see Section III), and with appropriate numbering of the

lattice points,

R, = R + &, Y= 1,2, ..., N,

il “ndv)

(8.11)
and for the other half of the lattice points,
R, = 131_1(‘,) +4d,, V= N+1, N+2, ..., 2N,

(8.12)
where

fa) = K npeinge) = m®le +m,0, +0,000e

a(¥) = n@+N), and the gia.nd g‘,j
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vectors are given in Egs. (3.2), (3.3):

1 i he
zuclear = mfg;&hi‘[z[d‘(;-gvﬂdg
>
7 . 3 . -
= Gy Ze%"“g”i"e;”h‘z Bz - 8, ar

I
bl
(]
1

q[\)
°13

| ad
I
d_rz'a

ll
o' I

cos -7-,:7.- (hl +h, + h3). R

(8.13)

electronic __ 1 omi hex electronic ’ - R p
h = Ny Patomic = ="

1 2wl h*R 2i he(r - R,) pelectronic,
NIl Z =TT T T T Patomice (e B,,l)d_x_"
vV 00

!

2
1 . :
2771 h-d 271 he(r - R,) Aelectronic)..
. e == e~ o\ =4 r-R dr
o E 3 = }Oat fo (L R,|)ar

electronic
atomlc

-n_ cos[—-r(h + b, <+ h.) (r)axr

I

atomic 2N nhr/a

.fel cos[.’g (hl-l- 112 +h33f eleci.ronic( ) sin(2mhr/a) -
(8.1k)

Hence,
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‘lq&oulomb hal [
= - h )
v n R COSL’-!- (hl+ h2+ 3)

o0
2 __electronic sin(2Mmhr/a) J
.[Z —fll- Fauomic (I') Evhr/a dr|{ .
P

(6.15)
For the exchange term we have:
Vfc')e:zccha.nge - “exchange (l B‘UD excha.nge -27 i her
atomic = Vatomic = ?
Vv
(8.16)

where the equality of the first two terms is a consequence of the approx-

imation in Eq. (2.9). From Eqs. (7.38) and (8.4) we see that

é“%xchange(r) _ {' 3 f’(r{}l/3 1€ BPOR (€
g

atomic

r r
(8.17)
it follows that
() 1 Sl he 4]z = Ryl) _
y orehenee . _ e 2 Z =l gy
. L RV [£=B,1 -
, o0 >
= - = Zee;.ni:gv 921;1 he(z - Ry) _£(]xr = Rs}) a
HLde oo r =Ry
= — — I ‘ sin(2rhr/a)
= . c:os[lL (hy + 1y +h3jlrn'f Z(x) A rar.
° (6.18)
0
kg T .
= - hon OS[T(hl+ h2+h3j Z(r)sin(2mrhr/a)dr
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For h ¥ 0 then,

() Le? coa[(’f/‘f)(hl + ho + h3l [

v, =
b T,

o0 o0

_J‘uvrrgfelec?ronic(r) sin(ewhr/a) . -—-—whj‘,i(r)sin(zrrhr/a)dr]
atomic 2Thr/a a

0

o]

l/
-— '-7-;-;—;2— cosﬁ'ﬂ/‘f)(hl + h2 -+ h3ﬂ[z .

- n,-l =-0_,r
Z fjfr J " e Jsin(2Thr/fa)dr
,j.‘.'. l o

%]

8
+ l’}-Z J] Y+l -pdrsin(Z'lThr/a)dr]

J=1

il
I

cos[(ﬂ/sf)(hl +hy, + hﬂ{ z

&
21mh

£ (n
J r d sin n.'ban-l 2Th '
1\ a

ij F(;/,(J_:i 57 o [( , +2)tan iml:”’
e

MM v e

mh
a

J

3
vhere we have used ﬂ,,-_-_-_— a /b,

lectronic - .
ke F:timic () =[f.*rnje ?(Jr’

i=1 (8.20)
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£(r) &
—_ = }: gy YVie™ P,

J= 1
(8.21)
and the integration formils
o0 _
_ [0+ 1) 2y
frpe Yein (Yr)ar = - A RN sin[(p+l)tanl-q—-
p (¥ +a) o
(8.22)

which may be derived from Exercise 2, Ch. IX, page 227 of Copson (38).
The following values of I\Tﬁ’wl for the silicon crystal were computed

from Eq. (8.19):

(o)
n AA
(1,1,1) 0.50758
(2,2,0) 0.371968
(3,1,1) 0.212613
(4,0,0) 0.233666
(3,3,1) 0.147058
(4,2,2) 0.17707h
(l;.,).{.’()) O-lu@llé .
(8.23)
V}(lo) is obtained from tihis table by means of the relation
(0) COS[@T/ 4)(ny + hp + h3}] (0)
Vh — - . 'Vh ' .
b Joodfn/#) (g + 1+ 1|
(8.2k)}

In computing V(O)

000 7€ follow Herman (8) in using



]
(o)Coulomb o f
' 167 4 electronic
v = - T , (r)dr
000 - Joatomic ?
3 '“'s
el

(8.25)

withﬂs = ﬂ,/s, where s is the number of atoms in the unit cell of
volume ﬂo , to obtain the Coulomb contribution. This relation is derived
in the article by Sommerfeld and Bethe previouslj cited (1). From it

we obtalin for silicon

©)Goulomb

000 = = 1.00353 ryd.

(8.26)

(o) '
For the exchange contribution to Vppgy we use Eq. (8.18), which for the

limiting case h = O becomes

o0
V(o)excha.nge —_ - g Mg_ﬂ_ﬂ_ dr «
000 = 0, T
0 _ (8.27)

However, in deriving (8.18) we assumed that the exchange contribution
to the crystal votential could be written as the superposition of the

atomic exchange potentials:

exchange exchangs,
v @) = [Vatomic @-R).

(8.28)
While this approximation is useful in computing the higher Fourier
coefficients of the exchange potential which are sensitive mainly to
the behavior of the function #(r) near r = 0, it breaeks down com-
pletely for VOOO , where the integral is sensitive to the behavior of
.i(r) for larger r values. Although (8.28) is not true, Pamenter has

shown in Appendix A of his paper (39) that functions V' can be found



..ll"( -

such that

Vexchange(z) — [ V‘(g - B-y) .
v (8.29)

exchange

atamic (L) for values of

We expect these functions V'(xr) to resemble V
r less than half the smallest spacing of lattice points in the crystal,

but for larger values of r we expect V'(r) < vz:;gmiheuclge(g) , gince the

superposition of the functions Voo ge(_x_;) mokes the computed value

atomic
of vexchange(z) too large in the reglons of overlap. With these consid-

erations in mind we have replaced #(r)/r in Eq. (8.27) by a different
1
estimate of 6{%-3_’—'.-f)(r)} /3:

coXe
3 1/3 3 2 X )1/3

6{ == = 6 {m—e— )} 2024 1)P y 4
{ =1y (r)} {3211’21'2 2:1 ( nt gl }

(8.30.1)
for r £ Ty
G{E%F(r)} 13 = 0

(8.30.2)

for r > rg,
vheredl, = L), /s, with s the number of atoms in the unit cell of
volume {2p, T, is defined by ns = {4/ rg), X is the number of

ore
valence electrons per atom (those outside of closed shells) , and Z L
n)
means sumation over the values of n and L assocliated with the core
electrons in the atom (those in closed shells). This estimate is based

on the assumptions that the density distributions of core electrons on
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neighboring atoms do not overlap and that

core

Z 2(2f + 1)1?1212 = O0forr>r,

n, L

(both good assumptions for silicon), and that the valence electrons can
be thou.ght of as unifd:mly distributed inside a spherical box of volume
_n.s, centered on the nucleus, in computing the average potenfiai. The
last assumption is suggested by the feeling that for the va.lenc':e‘ elec-
trons the resu.]_.t of averaging the charge distribution over .'bhev ﬂs“
sphere and then computing its exchange potential should not greatly dif-
fer from the result of computing the exchange potential with the true
valence electron distribution and é.veraging that over the ﬂs-spﬁefe.
Replacing £(r)/r in Eq. (8.27) with expression (8.30) for 6 {-g%lo(r)} 1/3
and carrying out the integration numerically, we obtain for the silicon

crystal

vgggxchange = — 0.9955L ryd.
(8.31)
Thus
v — V(o) Coulomb v exchange — 1.9990L
000 = Vooo + Vooo . .
(8.32)

In all calculations for the silicon crystal we used a rounded-off value

ey (@,
of VOOO'

€0)
vOOO = — 1.99900 .
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IX. RESULTS FOR THE SILICON CRYSTAL AND DISCUSSION.
In Sections VIT and VIIT we have shown how to compute the

quantities

©, @rn
Vv, A and E
h’ nl( a ) n

L

-—

which are required in the secular determinants of Section VI. -‘To
establish the feasibility of the methods proposed, we have appliéd_

them to the cage of silicon crystal and have computed the core 'state

(o)

' (o 2m
energy parameters E_pand the values of V, and Anl( 2 h) which are

needed in constructing the determinants
P v he G R R s

!
2 {
Al ,AQ ;A3 :Al :AQ :Al ) Az ;A3 :AJ_ , and Ag
from which we can obtain the first few successive approximationé to the
energies of the valence and lowest conduction states with wave vector
k = (0,0,0) in that crystal.

The results obtained by solving these secular equa,tibns are as

follows:

n ]

E, = —1.3498 E{“ = =—0.3996
Eg' = —1.4624 Eg;s = —0.7312
133'7 = —1.4629 E?S = —0.7663
Elr; 0.0338 Elr’s = —0.3996
EEG = =—0.0310 Ezns = —0.5443

r (9.1)
where, as explained in Section VI, En’ the n-th approximation to the
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‘eﬁergy of the rltype state, is the lowest root of an n-th order equation.
A comparisoﬁ of these results with those given in Herman's con-
vergence dlagrem for his diamond calculations (9), taking into account
the differences in scale of the two sets of results, indicates that the
present calculations converge as well as or better than those for t
diamond at each stage. Also, it seems reasonable to expect that in
the higher approximations the energy elgenvalues for the rgé ahd [15
states should converge better than those for diamond, becaﬁse the sécular
equations for these states in silicon include orthogonality:terms coming
from the 2s and 2p atomic core functions which are not present in the
equations for these states in diamond. All previous calculations indi-
cate that such orthogonality terms‘improve the convergence.
.Everything,that we have learned in the calculations for silicon
described here and in other preliminary calculations which we carried
out for dlamond emphsizes the importance of the requirement that the
trial function (2.12) be orthogonal to the core states in the §§Q§,érys-
tal potential which is used in Eq. (2.16). If the states to which (2.12)

is orthogonalized are not eigenfunctions of

i = —V2+¢%ﬁ,

to a very good approximation, then the successive approximations to the
energy eigenvalues of the valence and conduction states will not con-
verge well, and these estimates of the energy eigenvalues may even be
wrong as to the order of the solutions of the four different symmetry
types. The sensitivity of the results of these calculations to the core

functions which are used appears directly in the calculations as a strong
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| ‘sensitivity to the values E,pand A nL(K) which enter into Egqs. (2.18) |
and (2.20). Herman in his paper delivered at Amsterdam (40) has empha-
gsized the necessity of using good estimates of E nl; we share his opinion
that the loss of convergence which he noted in his work on germanium in
going from a solution neglecting exchange to one including a.n excﬁé.nge
potential is connected with the difficulty of obtaining good estimates
of Epg--and the related quantities A g(K). While we were pre'pa.fing

the first draft of this work, Dr. Joseph Callaway of the Bell Telephone
Laboratories very kindly sent us a copy of his unpublished inanuscript

on Some Features of the Orthogonalized Plane Wave Method (41) in which

he tooemphasizes the Importance of using good approximations for the
core states in the crystal potential in OFW calculations.

In this connection it should be noticed that we used the approx-

(9 exchange ~
(z) in computing

o ‘ w
both the total crystal potential and the core eigenfunctions Tn!.m(;ll)

imation (7.39) for the exchange potential V

and elgenvalues Exg_'i. Thus the small error which the use of (7.39) intro-
duces does not a.fféc’c. the degree to which (Pgim(r) and El;z approximate
true eigenfunctions and eigenvalues of the assumed crystal poteéntial Vm(_:c:) .
From our best approximations for the energy éigenvaﬁ_ues of the
valence and conduction states as given in (9.1) we obtain a,é an estimate

!
of the difference between the highest valence state energy, EG-’ , and the

lowest conduction state energy, Ens:
1]
, s
B = I, = =0.5443 ryd. < 0.7312 ryd.

0.1869 ryd.

= 2.54 electron-volts. | (9.2)
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While the higher approximations will yield lower estimates

N

of both E'® and E *® , the close resemblance beltween the results

of our calculations, as far as we have carried them, and those of
Herman for diamond suggests that the higher approximations will also
agree with Herman's diamond results in not effecting a large change

in the energy difference computed in (9.2). It is interesting to
note that a value of about 2.5 electron-volts is consistent withlthe

~ energy band structure for silicon postulated by Herman (18) in his
recently proposed explanation of the variation of energy gaﬁ with
fraction of silicon in silicon-germanium alloys. Our value of about
2.5 electron-volts for the energy gap in silicon should be compéred
with the value 1.3 electron volts oﬁtained by Bell, Hensman, Jenkiﬁs,
an@APincherle (42) in their recent calculations for silicon based on
an adaptation of Kohn's variational formulation of the cellular method
(h3) Both of these calculations for silicon agree in fixing the 15
state at a lower energy than the [; state, in contrast to the results
of Yamaka and Sugita (hh) which make the lowest conduction state non-
degenerate.

- One of the most interesting aspects of the présent work is’that
the use of a very crude estimate of the crystal potential in silicon
based on the Slater-type functions introduced in Section VII; in our
formulation of the OPW method led us to the rather reasonable results
given in (9.1) and (9.2). The connection between assumed potential and
results is a complicated one, and it might depend on a fortuitous can-
cellation of errors. However, it seems to us more probable that it does

not, in which case this work suggests that the results of‘calculations
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of the energy band structure of silicon by the OFW method are not
very sensitive to the assumed crystal potential, providing the same
potential 1s used in computing the core states and the valence and

conduction states.
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