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ABSTRACT

A general algorithm is presented for the efficient computation of
feed-forward nets of general threshold gates which realize given bi-
valued switching functions. A simplified version of the algorithm is
presenied for the case of symmetric threshold nets which realize
symmetric switching functions,

These algorithms produce near-minimal gate nets, and the results
of a digital computer program for the general algorithm are presented to
illustrate the degree of efficiency and minimality obtained in practice.

Both algorithms are proved to give a minimal one-gate net if one
(»E:xists for a given switching function; a necessary criterion is given for
the symmetric algorithm to produce a minimal two-gate net if one exists;
and two-gate minimality is also demonstrated for the general algorithm,
for a certain class of two-gate switching functions.

The case of partially defined switching functions is also treated.
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I. INTRODUCTION

An algorithm will be developed for the computation of general
feed-forward nets of general threshold logic gates (fig. 1), which
realize given bivalued switching functions with a near-minimal number
of gates (2, 5, 6).

A threshold gate in such a net is defined by a weighted linear sum
of bivalued logic variables [either direct inputs, or outputs of other gates),
including a bias weight; i. e., for the E‘r1§E gate in the net of fig. (1}, the

sum is:
n g -~ 1
s 5§ h 8
> owp gt 2 Ve & (=)t wog
h=1l h=1

where n is the number of direct logic variables xp, which take on all

2P combinations of input states using {-1, +1) logical values. Grouping
the x; into a vecrtor, these input states are x = (x, X2, ***, Xp)

={=1, »+, -1, =1), {-L, =--, =0, 1), voe, {1, »++, 1, =1},{1, ===, 1, 1).
The wﬁ parameters in the sum are the weights associated with input of

the direct logic variables Xy to gate s, w is the bias weight, vhs are

85
n+1l
the weights associated with the inputs of the lower-level gate outputs

s-1 {x); and gh (x) = =1 are the logical outputs of each

gi(zc,}, g(x), - g
gate as a function of the input state vector {(we use x here for brevity,
in that if the lower-level gates are determined, the output of gate gh is
a function of x only}. These gate outputs are obtained by performing a
non-linear switching operation on the input sum for each gate; viz., set

g®(x) = +1 if its input sum attains or exceeds {+1), and set g%(x) = -1 if

its sum is less than or equal to (-1}, for each irput state (x). The sum
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is not allowed to take on any value in the range from (-1) to (+1); this
amounts to a threshold tolerance band.

We will require, in practice, all weights (wlsl, vfl) to be signed
integers; a negative weight will correspond to an inverted logic vari-
able. This requirement is computationally conveniert, and arises from
the physical properties of many actual threshold gate devices (5),

It can be seen that there are a large number of assignable para-
meters in threshold nets such as shown in fig. (1), as compared {say}
to Boolean AND/OR gates {which constitute a small subset of the class
of threshold gates), For this reason, it is believed that a general net
design algorithm which can be efficiently programmed on a digital com-
pﬁter is almost mandatory to permit effective use of threshold gate nets.

Computational efficiency is believed to be an important require-
ment for such an algorithm, and for this reason we will require the
algorithm to be a first order recursive procedure where each step de-
pends only on the one immediately preceding it, and also that the
algorithm shall be '"forward', in thc sense that no '""blind alleys' shall
be encountered in its application, These are not trivial restrictions for
nonlinear problems,

Naturally, the requirement of srogrammability will make inefficient
a large class of hand-feasible algorithms: viz., those that require
heuristic "inspection' in order to determine which computational path

to follow.



The algorithm to be presented below is believed to satisfy the above
constraints, and will be shown to produce near-minimal gate nets in
practice, at least in those cases where comparisons to the literature
exist; e. g., Minnick (5).

In two cases, algorithm criteria will be developed to produce
minimal two gate nets, if such a net exists for a given switching function.
These are the class of logic functions and gates- which are functionally
invariant fo permutations of their direct input variables (symmetric
functions}, and a certain class of general logic functions which is defined
below {section V).

A Fortran program for the algorithm has been written, and the
results will be discussed for the purpose of providing a practical ecstimato
of computational eifficiency and net minimality.

The case of partially defined switching functions will be separately

discussed (Appendix III) as a modification to the general algorithm.

"



II. PROBLEM STATEMENT

We will use a matric formulation of the linear threshold equations
for the weight vector (WS, vs) of the s—t—h— gate in the net of fig. (1}. Thus,
the input to the gate is the product of the weight vector and the logic
variable vector; viz., (WS, va) {x, g), where the vector g is composed
of the ordered outputs of gates g‘l, gz, e, gs-l for the input state x.
To avoid the confusion of row and column variants of a vector, we shall
interpreta premultiplying vectorasa row vector and a postmultiplying
vector as a column vector (some vectors may appear in both types).

The notation to be used is defined in Appendix I. Capital letters
are used to denote matrices (A), whose elements are lower case
létters with an ordered pair of subseript indices (aij), the first per-
taining to the row and the second to the column. Sets are also denated
by capital letters which may also be used for matrices, because the
intended interpretation will be clear. Furthermore, we will speak of
gate gs(g and switching function f(x), and thereby mean the switching
function {or a modified one) represented by gs(_:g) or f{x).

Lower case letters with either one subscript index or none refer
to vectors whose components are indexed by a single subscript,
whether exhibited or not (gsj, gs). Where necessary, row and column
vectors (which do not appear in a product for type identification) will be
distinguished by using h, i as row indices (eh), and j, k as column in-
dices {el), or by context. The unit vector e has all components equal to
unity, and its length and orientation {row or column) will be defined by

the context in which it appears.



Partitioned matrices will be frequently used, with the usual
straight lines denoting rthe partitions.

As stated above, we will successively compute each gate gs in
the net, allowing inputs to g% from the input variables xp, and from the

previously determined lower-level gates gh

, with h < s, This com-
putation has two phases: first we attempt to find a gate g® which
linearily separates (realizes) f(x), the given switching function. This

phase is defined to be an existence calculation, and if it succeeds we

have finished, and s = r.¥ A simple criterion will be exhibited which
demonstrates when no such g8 exists; i.e., the equation gs(_gc_) = {(x)
cannot be solved for all x. In this case, we proceed to a second com-~

putational phase, defined to be an adjoining calculation, where we at-

tempt to find a g® which is such that a minimal number of additional
gates will be required to realize f(x). This is the nonlinear part of the
probiem.

Our minimality criterion is therefore that we seek a net for f(x)
with a minimal number (r) of gates. It would also be of interest to
require that, subject to the above constraint, the sum of the absolute
values of the welghts for each gate be minimal. There are ways to
attempt to meet this requirement (such as ""polishing'’ each gate for
minimal weights after computing the net, using linear programming},
but the present algorithm turns out to be fairly minimal in this respect
also.

We express the threshold equations for gate g% in a form that is

suitable for the existence calculation; i.e., we assume that s = r.

* cf, fig. (1): g¥(x) = £(x).



Consequently, we seek a (row) weight vector (w8, v#&) such that this
weighted linear sum of logie variables attains or exceeds (+1) for the
true states of f(x) {f(x) = 1), and is less than or equal to (-1} for the
false states {f(x) = -1). We reverse the signs of the true state in-

equalities, and write the conditions on g% as

th\vS)[_é,_,]s~te), (1)
G

s-1

which gives m 8 2P inequalities in nts variables. The parameters are
defined as follows: the nt+l by m (rows, cclumns) matrix A ig formed
from an input state matrix B by first adjoining a unit row vector (e},
and then setting column a.j = —bj, j€T; a,j = bj, jeF; forj=0, 1, 2, ***,
m = 1, The index sets T, F are defined to contain those indices j such
that the jE-}—l— input state of the truth table for f(x) is a true or false state,
respectively; the unit vector will correspond to an identically (+1)} input
logic variable for the bias {(threshold} component wrs1+1; and the above
also accounts for the sign reversal of the true state inequalities. 'Lhe
input state matrix B represents the truth table of n variables, and is
obtained by writing the binary numbers zero to m -1 (corresponding to
a binary expansion of j} as ordered columns, with the exception that a

binary coefficient zero is replaced by {-1}:




Note that the most significant digit is at the top, sothat we have ordered
the components of w¥ guch that w? corresponds to the most significant
digit (slowest varying) of the truth table.

If we permute the columns of A so that the true columns {f{x} = 1)
areattheleft, andthe false columns (f(x) = ~1) are at the right, then we

may write A in terms of the true (T) and false {F) state matirices of B:

A = ["T ¥ ] (3)
-e e

which exhibits the sign reversal operation more clearly. We shall not

actually make this permutation in practice.
The matrix Gs—l in inequality 1 provides the modified ocutputs of

the lower level gates to g¥, and has these modified gate state vectors

as rows, viz.:

111 1]
Bp B1 By "t By
2
go L] L -
Gs-—l 3 . (4)
s-1 s~-1
_gO ' gm-lJ ,
where the rows are determined by
h h A
g = sgnl{w |vh)[t;—--] , (5)
h-1




and the '"sgn'' operator replaces each component of the resultant row
veclor within Lhe brackets by (+1) or (-1), according to whether that
component attains or exceeds (t+1), or is less than or equal to {-1),
respectively; i.e., it is a sign-taking operator which represents the
switching function performed by a threshold gate with this weight vector.
GO’ oi course, is the null matrix.

It is important tc note that the sign reversal of the ''true' in-
equalities in 1 is carried throughout the entire analysis: e.g., the vector
components g? represent the actual output of gate gh for jeF, but repre-
sent the inverted (negative) output if j€T; this is what is meant by a
modified gate function.

The sgn operator is commutative for (-1, +1) logic states in the
sense that the sign reversal of the true state inequalities may be carried
past the sgn operator and into the linear inequalities for each gate, and
this is why these particular logic states are used. Further note that the
quantity in brackets in ineguality 5 cannocl satisfy inequality 1 for h < r,

We will define an allowable weight vector as one which satisfies
inequality 1 if the negative of the absolute value of the left hand side is
taken; i.e., the corresponding gate may not realize f(x), but the threshold
tolerance constraint mentioned above is satisfied (this is a conatraint on
the adjoining calculatio?).

Thus, if no soluft/ion exists to inequality 1, we replace the inequality

by woA + vsC'rS_1 >e, perform an adjoining calculation according to
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rules developed below, compute the madified state vector of the gate
to be adjoined to the nct, adjoin it as a new bottom row to Gs-}.’ and
s . . s+l
initiate an existence calculation for g .

We digress to give an example. For n = 2, the Input state

matrix B is:

-1 -1 41 +1
B = (6}
-1 +1 -1 +1

»
and for the two-variable AND function (x] x3), the only true state is
i=3, i.e., x=(1, 1). Thus we adjoin the unit row vector to B and

then reverse the sign of the last column, obtaining

A= | -1 +#1 -1 -1 (7)
+1  +1  +1 -1].

Since this is a one-gate function, the s = 1 existence calculation will
succeed.

For switching functions #{x) which are symmetric in their vari-
ables; i.e., functionally invariant to variable permutations, it has been
shown (1) that if a one-gate realization exists for a symmetric f(x), then
an equal weight (w% = wi = eee = wé) one-gate realization also exists.
While this has apparently not been cxtended to symmetric functions
requiring feeca-forward nets of more than one gate, there is interest {2)
in threshold gate nets whose gates are symmetric {defined as above),

In this case, we set the direct input weights equal to each other (but not

w;-i-l or V}Sl), which is equivalent to adding the corresponding rows of B
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together, replacing them by a single sum vector. It is then apparent
that there are only nt+l distinct constraints in inequality 1, ore for each
permutation set 0f 0, 1, 2, *++, n variables true (x}, = 1}. Thus we

may define a special case for such symmetric nets, using an s+1 vari-

8

1 : 8
ahle w‘elght vector (wx, Wy

s 8 & . f
» V] Vi 0t Vs-l)* and using
B = [—n, -nt+2, nt4d, -+, n-2, n], (8)

where w§ is the common weight for all direct inputs, and wg is the bias
value.

Agide [romn ihis change, the inequalities and definitions are as
before.

For an example of the symmetric case, note that the AND func-
tion which gave equation 7 is symmetric, and has a symmetric.A matrix

giver by

A = (9)



iz

III. EXISTENCE CALCULATION

Since we will compute the net gates heginning with gl, we first
consider a linear programming method for solving inequality 1, assum-
ing that r = s = 1, This method will alsc suffice for any existence cal~
culation (s 2 1}, Familiarity with linear programming in general, and
the Simplex method in particular, will be assumed (3, 4). However,
the complete algorithm rules will be found summarized in Appendix II
in a manner which does not reculre this knowledge,

Now, it is computationally quite inefficient to attempt to solve
inequality i directly using the Simplex method. Instead, we begin with
a method of Gale (3, p 121), which reduces the number of arithmetic
. operations required, by a factor which empirically has the ordexr of
Zz‘n/n (over a direct solution to 1).

A theorem of linear inequalities (3, p 46) states that wA < -e has
no solution if and anly if there exists a semipositive (non zero) vector y
such that Ay = 0, ey = 1. We choose the latier set of equations to be
the primal in a Simplex calculation, and then show that a simple cri-
terion exists which indicates when no feasible y exists and which then
exhibits a feasible solution (w) as the dual variables in the Simplex
tableau.

For the single gate case, this method is merely a more efficient
way for applying Simplex to inequality 1 than that first proposed by
Minnick (3); a measure of this gair in efficlency is implicitly given by
the fact that the method is feasible for hand calculation for up to four

logic variables.
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In order to obtain a first feasible solution to initiate Simplex, we
adioin one artificial vector (4, p &1), and define the following to be the
primal problem:

Findy, = (y | y}20

such that y, is minimal, and

__EL.../_YQ_

HRYRYI

Note that min (y,} will be zero if Ay = 0 has a semipositive solution,

ooln—
[ T . I

(10)

y

“and urity if it does not; the initial artificial vector solution being y, = 1,
y =0,

The dual problem to equation 10 is:

Find (w, | w)

such that w, is maximal, and

(wo | w) [ e | <(100-++ 0)

colu

A (11)

0

L -

We know that max (wg) = min (yg), so that if Ay = 0 hag no semipositive
solution, then wA < -w, (e) = -e has 2 solution w, which is inequality 1,

Refer to Gass (4, p 71} for a discussion of duality in linear programming.
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Expressing equation 10 in a Simplex tableau (3, Ch. 4), and ad-
joining a unit matrix (in order to carry along the dual problem), we
obtain the tableau in fig. (2a). Here, #\ is the n+2 by m primal tableau
matrix, y, is the solution column, and I' is the n+2 by nt+l dual tableau
matrix {inverse basis). Note, however, that we have explicitly exhibited
the top tableau row (A°, v°}, and these are to be considered as part of
A and I'. The bottom row c is the relative cost vector (3, pp 107-110).
Some of the vectors explicitly shown In fig. (2a) are omitted from the
working tableau (fig. 2b), since they will never be altered in the com-
putation. Note that we have numbered the top tableau row zero so that
the row numbering of A (in A) wiil not change (cf, equalion 10).

Now, the left hand unit vector in fig. (2a) will not be altered, so
that the first column of A (which multiplies yo) will always be in the
primal basis {(defined to be those columns of A which correspond to
unit vectors in ). Since the cost function is y, = minimum, this means
that the relative cost row c is equal to the top row of the tableau (except
for the omitted vectors), by applying the usual Simplex rule for adjoining
the cost row in relative (basic) form (3, pps 109-110). Consequently,
we also omit ¢ from the working tableau of fig., (2b). It is consistent in
terms of Simplex to consider the top primal row of the tableau as a cost
row {it will not be pivoted on}.

The dual portion of ¢ contalns the dual variables in our case, and
we thus observe that the top dual row (y?) may be considered to be a

weight vector (w) (4, p 72).
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Simplex Tableau Format—(a), unmodified; (b), working tableau
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We will henceforth assume that fig. {2b) is meant when referring
to a tableau, unless specifically noted.

If we index the tableau matrices with an iteration number q=0, 1,
2, +++, then the first tableau is A (0) = A, I'(0) = U, where U is the nt+2
unit matrix with its first column omitted, and is carried along in the
tableau to generate the inverse basis, for reasons quite analogous to
the Gauss-Jordan reduction for matrix inversion. The first column of
A is also omitted from the tableau.

For an example, the AND function, whose A matrix is given by

equation 7, has a first tableau of

(12)

In the symmetric case, the top primal row is as before, and the two-row
A matrix obtained from equation 8 is used as the bottom two primal rows.
The dual matrix is a 3 by 3 unit matrix with the first column omitted.

This gives, for the symmetric AND matrix of equation $:

-2 0 -2 1 o (13)

There are two parts in the computational process for applying

Simplex to the tableau, both involving a sequence of iterations, cach of
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which is performed by adding multiples of a given pivot row ()ti, Yi) to
all other rows (?\.h, yh}, h#1i, i4 0, in order to generate a unit vector

in a glven pivot column in the primal tableau (the pivot row is normalized
so that the pivot element becomes unity, by dividing all tableau elements
in the pivot row by the pivot element).

First, we must generate a basic tableau, which is defined to be
any tableau which contains all of the n+l unit column vectors ez, e3,

e, en+2‘ {(in any order and position) in the primal portion of the tab-
leau. Note that the first unit vector, el, is already in the tableau
(fig. 2a).

After once cobtaining a baslc tableau, the second part of the com-
putation will invelve successively pivoting irom one basic tableau to
another, in a sequence defined helow.

The first computational part is equivalent, in our case, to select-
ing any sequence of ntl non-zero pivot elements )‘ij’ one from each row
of the primal (except the top row), such that the unit vectors mentioned
above will be generated by performing the indicated iterations. Note
that by choosing one pivot from each row, each iteration will leave the
previously generated unit vectors undisturbed.

Because the top row need not be pivoted on, we see that the solu-
tion column y_ remains as in fig. (2a), thus allowing the use of negative
pivots if desired. This relaxation of the normal Simplex rule that only
positive pivots are allowable results from the degeneracy of our problem,
and we will use this fact later (although we will normally use only posi-

tive plvots}.
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Briefly, this Simplex rule arises from the requirement that y, be
semipositive; it can be seen by inspection of fig. (2a) that if the solution
column Y, contained a positive number in the pivot row, then a negative
pivot would generate negative solution vector components. This cannot
happen in our case because the only non-zero y, component in fig. (2a)
is Yo (+1), in the top tahleau row.

We now require that the top tableau row never be pivoted on at any
stage of the computation (including the adjoining calculation), thus proving
that the use of the workirig tableau of fig. (2a}is legitimate, as stated
above.

In order to guarantee that such a basic tableau exists for all A
matrices, we need
Theorem 1:

The rank of A is p = nt+l, for any single valued logic function I{x).

proof: Since A is ntl by m = Zn, its rank cannot be greater than

ntl for n 2 1. Ta show that its rank cannot be less than n+l, we exhibit
n+l independent columns of A, It is sufficient for this te consider the
matrix B with the unit row vector e adjoined, since A is obtained from
this matrix by the reversal of column signs only, Take the n+tl columns
numbered zero and Zh, forh=0,1, 2, «++, n-1, and group them into a

matrix C, viz.:
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C = (14)

gso that C contains each column of B with a single (+1) component, and
column zero. We need only prove that C is nonsingular, and an easy
way to do this is to make a nonsingular transformation on C by sub-
tracting column zero from each of the others in turn, cobtaining a

matrix _(:J_:

c = ' (15)

L_1 i o 0 0_,

which is clearly nonsingular since its columns are independent.

Because the Simplex procedure for obtaining n+l uait vectors in
a primal (basic) tableau succeeds if there are nt+l independent primal
columns in A, we are thus assured that this part of the calculation will

succeed for zll logic functions.
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Furthermore, if we solve the equations wC = -e by hand, then we
can obtain a basic tableau for B (representing f(x} £ -1}, as shown in
fig. (3). Observe that A can be easily constructed by writing a skew~
trangposed binary matrix (truth table) in (0, 1) state format, then
writlag a row above it such that the sum of all elementis in each primal
column is unity, and then adjoining a zero top row., This tableau may be
easily converted into a first basic tableau for any A matrix by reversing
the sign of each primal column corresponding to a true state of f{x),
then setting the top element in these columns equal to two and restoring
any modified unit vectors by pivoting (this is proved in theorem 5 helow).
This allows us to completely bypass the first part of the computation,
and fig. (3} will also be used below in discussing the pivot constraint
necessary to maintain integral and allowable weight vectors in the y°
row of the tableau.

The second part of the existence calculation, after attaining a
basic tableau, is a normal Simplex process, and is described by
Theorem 2:

A sequence of primal pivot elements Aj; > 0, 1 # 0, such that

}
)‘oj > 0, starting with a basic lableau, will either lead to a basic Lablean
with }‘oj <0, ‘j =90, I, 2, **+, m-1, or to a basic tableau where at
least one primal column satisfies )‘oj >0, h'lj €0, i=1, 2, +++, ntl,
In the former case, row v© is a feasible weight vector w, and in the
latter case no feasible w exists.

proof: We have already noted that the primal portion of the top

tableau row is the relative cost vector. and that the dual portion of this
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row contains the dual variables. Since we have a minimization problem
{y, = minimum), the Simplex pivot rules require that we pivot on any
positive element {not in the top row) in any primal column with a posi-
tive relative cost coefficient “\oj > 0), noting that the zero solution
column (y_ in fig. (22}, except for its top clement) removes any distinc-
tion between all such positive pivot elements in any pivot column {4,

p. 59). OQOur problem is degenerate, so that we cannot use the normal
Simplex convergence proof, and we must invoke the nsunal empirical
observation that the algorithm will converge in practice, if not in theory
(3, pps. 127-128}. If, for any basic tableau, all the cost coefficlents
(top primal row) are seminegative, then by the Simplex optimality con-
dition (3, p. 109), we have reached an optimum solution to the primal
problem, and the dual portion of the cost row will constitute a feasihle
solution w to the dual problem, viz., a weight vector which realizes

f(x) in one gate. If, at any stage, we select a column with Koj > 0, such
that M £ 0, i# 0, then the Simplex rules require us to pivot on Noj (3,
p. 108). This will clearly generate a feasible solution y, to the primal
problem (with y, = 0), and the dual variables will vanish, thus implying
that no feasible w exists. Finally, it is clear that each pivot operation
merely moves one unit primal column vector to another primal column,

thus leaving the tableau basic.
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It is a property cof the Simplex algorithm that the total number of
iterations required to reach an optimal solution will be reduced if we
select pivot columns which satisfy theorem 2, and also have the largest
top element {largest relative cost), %

The above process constitutes the first existence calculation, and
it will also be used for subsequent existence calculations (s > 1) by merely
increasing the size of the tableau. Incidentally, this is a fairly simple
method for determining if a given switching function can be realized with
a single gate {ref, B presents an alternative method for comparison), It
is practical for hand computation up to about n = 4, as mentioned above.

We define a primal column with Xoj ~ 0, Aij 50, i 0, to be a

terminal column {implying the existence of at least one basic feasible

solution y}, and we will normally search the non-terminal primal
columns for pivots in an existence calculation, Furthermore, we will
attempt to use pivot elements equal to unity, for reasons given below,
Ultimately, if all possible pivot columns are terminal, we cannot
proceed further without pivoting on the top primal row. We define such a

tableau to be a terminal tableau, and instead of continuing the existence

calculation, we will initiate an adjoining calculation {to be described
below), The attaining of a terminal tableau, if an existence calculation
fails, is related to convergence of the Simplex algorithm itself, since the
only alternative is cycling, In any case, we theoretically require only one

terminal column to initiate an adjoining calculation; continuing

* Computational details and alternatives are discussed in Appendix IL.



24

the existence calculation until a terminal tabhlean ie reached marelyv i

desirable in practice, since it simplifies the adjoining calculation

{cf. theorem 8 below).

We digress in order to illustrate the above pcints.

variable basic tableaa for B is:

The two-

V1 w2 w3
0 0 0 0 -1
1 -1 -1/2 -1/z2 0
0 1 0 /2 1/2
0 I 1/2 0 1/2

For the AND function, we modify the last primal column by the rule

mentioned above (thecorem 5), and cbtain a basic tableau for A:

0 2 0 0 -1
] @) “1/2  -1/z 0
0 ~1 0 /2 1/2
0 -1 /2 0 1/2

(16)

(17}

We initiate an existence calculation by taking the circled pivot, obtaining:

w1 w2 W3
=2 0 1 1 -1
1 1 -1/2  -1/z 0
1 0 -1/2 0 1/2
1 0 0 -1/2  1/2

Note that the sum of all hasic tableau elements in each primal

column is unity, and is zero in each dual column,

{thearem 4), and is naeful in checking the work.

{18)

This is proved below
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Since row A° < 0 in tableauy 18, we have found a feasible w; viz.,
w = (1, 1, -1}, so that the linear inpu! to the gale is x] + xp -1, which
gives the two-~variable AND function in (-1, +1) notation. To convert
this to (0, 1) notation, leave all weights unaltered except the bias weight
(wn+1), which is modified by adding unity to it, subtracting the alge-
braic sum of the other weights, and dividing the result by two. Thus,
the above weight vector is also valid for (0, 1) notation.

For an example of a terminal tabieau, the first basic tableau ob-
tained for the two variable exclusive OR furnction (by the process above)

is terminal:

¢ 0 0 4 1 1 1
1 0 0 -1 -1/2  -1/2 0
{(19)
0 1 0 -1 0 -1/2  -1f2
0 0 1 -1 -1/2 0 ~1/2

In obtaining tableau 19, two modified unit vectors were restored to their

former positions hy one pivot operation each {on the -1 element in each

modified unit vector).
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IV. TABLEAU RELATIONSHIPS

If the existence calculation for gs (s > 1) fails, we must find and
adjoin a proper gate gs to the tableau. Before discussing this, it is
necessary to develop some relationships among the tableau elements of
fig. {2}, We reemphasize that the top tableau row is never used as a
pivot row.

First we prove:!
Theorem 3:

For any basic tableau, 7\.0-e = YOA and ki = \(iA, i# 0, where hi, Yi
are the rows of the primal and dual tableaus, respectively, A is the logic
state matrix, and e is the unit vector of length m,
proof: We know that the I' matrix is the inverse of the current primal

basis (as identified by the urit vectors in A), viz:

1 T 1 177t 11 . . . 17

0 0 0

0 0 0

. A=, r . A (z0)
L 0 _ 0 1l Lo _

We have used the complete tableau of fig. {2a) for this; a discussion

of the inverse basis may be found in Gass (4, p.27, p.75).
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Expressing equation 20 by rows, we obtain

&)

I

N yOA + e,

i i (21)
A YA i # 0,

which give the desired relations.

Note that the first of equations 21 implies that subtracting unity
from each element of the top row of the primal working tableau will give
the linear input (for each state x} for the threshold gate whose weight
vector is given hy the top row of the dual tableau, in modified form where
the actual input has been multiplied by (-1} for the true states of f(x).

We shall define the gate function given by \;o {g(x) = sgn (ko - ¢)) as the

tableau gate, even though g(x) has been modified as described above.

Using theorem 3, we can prove another useful result:
Theorem 4:

For any basic tableau, the sum of all elements in each column is
unity for the primal matrix, and zero for the dual matrix,

i ylA, 1# 0. Consequently, if we add all

proof: Froum theorem 3, \
other rows to the top row, obtaining a new top row _}\_0, 3_0, then Lo - a=
X_OA. Now, there are n + 1 unit column vectors Kj, jeE, ir A, where we
define the column index set E guch that l.j is a unit vector for j¢E. Hence,
)‘-oj = 1, jeE. Furthermore, these n + 1 columns must correspond to

a—— 4

nt+l independent columns of A, by the pivoting process. Let these col-

umns of A be grouped into a square matrix Am., Then the tableau weight
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veclor _2«0 satisfies ZoArn = 0, since the components of the linear sum
vector on the right are precisely Aoj -1=0, €K, by theorem 3. But

—_—

Am is nonsingular, and hence 'yo = 0 is the only solution. Therefore

ZOA = 0 and thus the primal top row must be _4\_0 = e, again by theorem 3.

Consequently, by the way that (AO, '}’O) was constructed, and for all i, j,

A = =
2 j = Aoy 5L (22)

and

n+l

2 Vi = Ve = O (23)
i=0 T

which is the statement of the theorem.

This result allows us to take a basic tableau for B {or for some A)
with the same number of variables, and easily modify it so that it is a
basic tablecau for a giver A matrix:
Theorem 5

Given a basic tableau for the B matrixz of n variables, a basic tableau
for any A matrix of n variables may be obtained bymodifying each column

AJ, j€T, corresponding to a true column of A, by the following reversal rule:

replace '\oj by 2 - Auj’ and )\ij by ‘-)Lij, i £ 0, for each j€T, and perform

any pivot operations required to restore the previous primal unit vectors.
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proof: The state matrix A is obtained by adjoining the unit row vector
te B and reversing the sign of each column which corresponds to a true
state of the switching function. Since we never pivot on the top tableau
row, this is precisely equivalent to reversing the signs of the corre-
sponding elements )"ij’ i# 0, in any tableau obtained from A. This ia
valid because pivot multiples are functions only of the ratios of elements
in the pivot column, and hence are invariant to the reversal of the signs
of all elements in a column. Some pivots may have changed sign, but
this is allowable In our case. However, we do not reverae the sign of
any element In the top row of A (equation 10}, and consequently we must
find the new top row by other means. If we first assume that the unit
- vectors in the basic tableau for B do not correspond to true states of
f{x}, then the above sign reversala leave the tableau in basic form, so
that the proocf of theorem 4 remains valid. Thus, for the primal col-
umna M, J€F, A5 (A) = Aoy (B), and for M, jeT, Aoy (A) =1 'ii'o Nj (A) =
14 ii.'okij (B) = 2 = Ay; (B}, Finally, since yi(a)=vi(B), 140, thea-
rem 4 implies that ¥° (A} = ¥ (B),

The proof of theorem 4 remains valid with minor modifications
even if some unit vectora correspond to true gtates in applylng the pres-
ent theorem, and consequently we need only pivot on these modified unit

vectors to restore the tableau to basic form (with the same basis).
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Clearly, we can use a basic tableau for a different A matrix in
using theorem 5 by applying the reversal rule to the columns corre-
sponding to the conflicting logic states of the two switching functions
(both functions must have the same number of variables). Tableau 17
is an example of this thecrem {page 24).

Theorem 5 can be easily extended to any s for the multiple gate
case,

We will discuss below the selection of pivot rules which {(after an
unsuccessful existence calculation) will generate the gate to be adjoined
(to the net being computed) as the tableau gate. In order to adjoin this
gate to the tableau, we need:

Theorem 6:

The tableau gate gs is adjoined to its basic tableau in proper form
to be pivoted into the basis by the following rule: the primal portion of
the new bottom row is given by g; =2 - Aoj’ P __A__{ J Ikoj >0}, and g; =
'Roj’ JeN + Zg{j |?toj<.1. 0} . The dual portion of the row is g; =-'}‘Oj. A
unit column vector is adjoined on the right of the dual tableau to augment

the inverse basis, with the unit element being in the new bottom row.

Before proving thisg theorem, we digress to more fully clarify its
meaning., First, we define the index sets N, P, and Z as those sets of
column indices j such that, for a given basic tableau, koj <0, Aoj >0

and Auj = 0, respectively., Note that we have used a plus sign for the
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Figure 4, Adjoining Tableau Format

(st) Vs
e
- \T/‘\
2° v° 0
A r
0
0
5 8
Bo B1 ¢« - "'}’0 1
N\ J
- N,
2-k0j, jeP Unit Vector
B8
Sj =
-\ ., jeN+ 2
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set-theoretic union operation, since no confusion will arise here. Also

note that Z contains E as a subset.
Application of theorem 6 gives the adjoined tableau shown in fig. (4),

where the upper right hand corner element will contain the output

wratahta ~Af .-.S ol o
WCJ.EJ.J.&-E L 5 Ly L

P - fexr vl ig meas
€5, 4l (W, Vj 15 prcd

1 1 1
w1 w2 W3
0 0 0 4 1 1 1 0
1 0 0 =-11|-=-1/2 -1/2 0 0
(24)
0o 1 0o -1 0 ~1/2  -1/2 | 0
0o o0 1 -1 | -1/2 0 -1/2 | 0
g'lo o o0 -2 |-1 -1 -1 1

After we adjein the gate to the tableau, we must select some non-
zero pivot element in the primal portion of the new row (-2 in the above
example) in order to pivot out the new dual unit vector, generating one
more unit vector in the primal, and thus restoring the tableau to basic
form.

proof of theorem 6: If we had adjoined glto A at the beginning of

the computation and had obtained the first basic tableau by the longer
procedure (bypassing the use of the B tableau), we would have merely
written the modified gate function gl(E) = &1 as an additional primal tab~
leau row, and we would have augmented the dual unit matrix with a bottom
row of zeros and with the new unit vector shown in fig, {(4)., In fact, if

LI ]

we wished to adjeoin rows g7, g, s gs to A and repeat the entire
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computation, we could treat them as rows of A, as long as the rank of
A‘was then n+ 5 + 1, sincc the above theorems do not distinguish be-
tween rows of A arising from direct logic variables and those arising
from gate functions, except for theorem 1. We replace theorem 1 (for
s » 1) by the requirement that the rank of the adjoined tableau be

n+ s+ 1, and we show below that this requirement is a necessary con-
dition for net minimality, Consequently, with this restriction, the
above theorems are valid for any s 2 1.

Hence, if we so adjein gs at the begirning, and repeat precisely
the pivot operations that led to the adjoining tableau, the gs row would
be in the desired adjoining form, and we need only prove that the above
rule gives this row form directly, without actually repeating the compu~
tations. Note that row gs is not pivoted upon in this conceptual process,
as is consistent with the fact that its unit vector is still in the dual tab-
leau in fig. (4).

Now, the primal portion of the gs row we scek is therefore clearly
equal to the modified gate function gs(ic_) = %= ], plus some linear combi~-
nation of all other rows (except the top rows) of all previous tableaus,
which were chosen (after ohtaining the first hasic tahleau) such that
gjs = 0, jeE(q) at each stage q. By the nature of the pivot operation, the
rank of the primal tableau does not change, and only a nonsingular trans-
formation has been made on the equations Ay = 0, ey = 1, such that they
have been replaced by an equivalent set Ay = 0, Kay = 1 (this fact will be

useful below),
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Consequently, the primal rows of the adjoining tableau have the
same rank as all previous primal tableaus, and also span the same
subspace. Thus, if there exists a unique linear combination of the
primal adjoining tableau rows which restores the primal unit vectors
when added to gs(zgﬁ) = =1, then this must give the proper gB row to be
adjoined to the tableau {including the dual portion). For this tableau,
theorem 3 implies that gs(_:gj) = -1, jeE. We seek a set of scalars e
such that gs(zj) + anik:‘j = 0, jeE., Obviously, the solution is that all
a, equal unity, ancll it is clearly unique. Applying theorem 4 (omitting
the gs row from the sums), we see that the result of adding all primal

and dual rows (excepl the tup row) to the vector (gs, 0}, gives the fol-

. . . s
lowing relative g~ row:

Primal:
' .:',: 5 _ 2 _ _
For jeP: gj = {+1} + 40 Xij = 2 oj’
s
F ieN + Z: g, = (-1) + A, = =\ ., 25
or je RS AR (25)
Dual:
. 5
g: = (0)+ X Y T ~Y.o
J i#0 Y °J

which is the statement of the theorem. Note that the new dual unit col-

umn vector in fig. (4) remains unaltered by this process, as required.

* allowability of the tableau weight vector implies that ’\oj =22, €P.
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Agide from other conditions on the tableau gate to be adjoined, we
must aiso insure that its weight vector is allowable. From theorem 3,
this is equivalent to requiring that )\oj 2 2, jeP, for our threshold tol-
erance band of (-1) to (+1). We now show that the plvot constraint
Xij = 21, for all phases of the computation, is sufficient for this:
Theorem 7:

The tableau gate weight vector will always be integral and allowable

if the primal basic tableau pivot constraint )”ij = =1 is always obeyed in
all pivot operations. If, further, the adjoining tableau has at least one
koj = -2 and/or loj = 4, the tableau gate can be adjoined and the tableau
restored to basic form without invalidating the above statement.

proof: We will prove that if any tableau exists for a given A such
that A, 2T, and Y° are integral, and 2% is even-integral, then the pivot
constraint above will maintain these tableau characteristics, Clearly
the {irst basic tableau obtained by using fig. {3), as modified by theo-
rem 5, does possess these characteristics.

Now, if we pivoet on Kij = 21, then 2T"and A will remain integral
since all pivot multiples are integral. Furthermore, the pivot multiple
for the top row must be even-integral, and hence \° must remain even-
integral, and YO must remain integral, If Az is even-integral, then
0« Koj < 2 is impossible, and hence the tableau weight vector must be
allowable. Given this, theorem 6 implies that the adjoined gate row
will be even-integral in the primal, and integral in the dual portion of

the adjoined tableau. Thus, we can pivot on any g; = 42 in the primal

to restore the basic character to the tableau, without destroying any of
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the above tableau characteristica. Since these pivots arise from
Roj = -2 or }\oj = 4 in the adjoinirng tableau, this completes the prooif of

the theorem.

It has not been possible to fird conditions such that pivot elements
with absolute value unity exist in the primal tableau, and which also
satisfy the other pivot requirements.”* In fact, a few cases have occurred
in actual existence calculations where none of the pivot columns satis-
ifying theorem 2 had a unity element. In these cases, It has proven suf-~

‘ficient to take one (-1) pivot to continue the existence calculation,
preferably in a column with a negative top element (this stems from a
reversal of the Simplex sclection rules for negative pivots}.

Conversely, theorem 7 implies that there is a relationship, in
this algorithm, between allowable weight vectors and integral weight
vectors. In practice, violating this pivot constraint nearly always leads
to unailowable weight vectors.

Finally, this pivot constraint serves to significantly ease the
search for suitable pivots in the adjoining calculation to be described
below.

For these reasons, we will terminate a computational phase
rather than select a suitable pivot which does not also have an absolute

magnitude of unity.

* These '"non-integral'' cases are treated in Appendix II,
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We close this section by giving another interpretation of the rule
Xoj 2 2, jeP, for tableau weight vector allowability. If we apply the
sense-reversal rule of theorem 5 to the P columns of a tableau satis-
fying this constraint, then these elerments become 2 - koj < 0, and thus
the entire top primal row is non positive. Theorem 2 then implies that

Y® is a feasible weight vector for this altered logic function, and conse-

quently it must be allowable.
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V. ADJOINING CALCULATION

There remains the problem of finding pivot rules which {after an
unsuccessful existence calculation for gs} will generate a tableau gate
having the property that a near minimal total number of gates will be
required to realize { (x).

The computational criterion that will be adopted is to remove the
maximum number of basic feasible solutions (bfs)y that is possible for
each gate adjoined; i.e., the adjoined gate gives us a new constraint on
y of the form gsy = 0, and we wish to choose gs such that gsy # 0 fora
maximum number of bfs y in the adjoining tableau. This is clearly a
necessary condition for the two~-gate case, ai least, since the existence
of any feasible y implies the existence of a bfs y (3, thm 2. 11, p.50).

The following theorem clarifies this, and illustrates a further use
of a terminal tableau:

Thecrem 8:

Each terminal column 7\3, jeP, in an adjoining tableau, implies the
existence of a basic feasible solution y which is removed by adjoining
the tableau gate if and only if }\oj > 2. Furthermore, the removal of at
least one such solution is a sufficient condition that the tableau rank in=-
crease by unity if the tableau gate is adjoined, and is also a sufficient
condition that the algorithm converge to a finite net which realizes f(x).

proel: There are clearly a {finite number of distinct bases in A,
so that the last statement of the theorem follows from the preceding
discussion. For the first part of the theorem, we shall define a unit

vector solution y to be a bfa containing the tableau unit vectors and one
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terminal P column M. The compenents of this vector y are zero, ex-

cept that yj = 1, Yo © “)‘-ij > 0, where ins the (i | I)Stunitvector (z\k'— et *+1

It can easily be seen that this vector satisfies Ay = 0, y 20, and can be

).

normalized to ey = 1. This solution is equivalent to the bfs y obtained
by pivoting on )\oj {ir. the normal Simplex process).

Now, if we adjoin the tableau gate gs in relative form, gls( = 0,
keE, and gjs =2 - hoj' Thus, if ?\oj > 2, the unit vector solution as-
sociated with A is removed by adjoining gs, and if Roj = 2, then gjs = 0,
so that the associated unit vector solution is not removed by gs.

If any feasible solution y is removed by gs, then it is clear that
row gs cannot be linearly dependent on the rows of A, because gsy =0
would then follow, contrary to the requirement that gsy # 0. Thus the

tableau rank will increase by unity for each gate adjoined, as is required

for the subsequent existence calculations, if at least one bfs y is removed.

Note that a top primal row element equaling two is impossible in
an integral terminal tableau, since there must be then exactly one other
element equal to {-1) with the rest zero (by theorem 4). Applying theo-
rem 5 to this column turns it into a unit vector, implying that two primal
columns are dependent, and thus that two columns of A are dependent,
This is not possible, due to the presence of the bizasg vector in A, Con-
sequently, adjoining the tableau gate to an integral, terminal tableau

removes all exhibited bis y.

* e.g., lor tableau 19 (page 25), y = (1,1,1,1).
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Theorem 8 does not tell us whether possible bfs y containing N
vectors are removed by gs, and furthermore, the requirement of tab-
leau terminality for the adjoining calculation is cumbersome in practice
even though we begin an adjoining calculation with a terminal tableau
reached by the preceding cxistence calculation. The insufficiency of
theorem 8, in general, is due to the fact that we are requiring the al-
gorithm to be iterative, in the sense that each tableau is completely
determined by the one immediately preceding it. For example, if we
search for a terminal tableau with a maximal number of P columns
whose top elements are greater than two, then adjoining the tableau
gate removes the maximum number of bfs y which can be exhibited by
. a single iteration on the adjoining tableau (viz., by pivoting on the top
primal row). The theorem gives us a theoreticallynecessary method
for finding a two-gate net for f(x) (if one exists), in that we can concep-
tually search the tableau by an exhaustive sequence of iterations to find

=11 S r

all »fs y, and all

£

gets in order to determine whether any of the gates removes all bis.
This process is obviously a computationally poor one, and we shall in-
stead require that the adjoined gate remove a maximal number of pos-
sibly feasible bases.

If we define /N/ to be the number of indices in the set N, we have
Theorem §:

The adjoining tableau requirement that /N/ be minimal, and that
)\'oj > 2, jeP, is such thai adjoining lhe tableau gate removes a maximal

number of possibly feasible bases.
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proof: If we adjoin such a gate gs by theorem 6, and then pivot on

a primal element g; < 0, chosen so that -Roj/gjs is a maximum, then

the \° row is altered to a form where hoj >0s JeNi Ao, <0, jeP + Z.
Since the A\° row expresses the constraint koy = 1, and since y >0, there
are cansequently no feasible bases cortaining vectors from P + Z col-
umns only. This set has a maximal number of vectors, and therefore
amaximal number of possaibly ieasible bases have been removed, ircluding

any that may be represented by terminal P columns,

This minimal /N/ criterion can be proved to give minimal two-gate
nets for a certain class of switching functions:

Theorem 10:

If an adjoining tableau exists for gl with /N/ = 0, and koj >, jeP,
then a two-~gate net realizing f(x) can be found in one more iteratiorn.

procf: Having such a tableau, adjoin the tableau gate gl and pivot
it into the basis in the manner used in the proof of theorem 9. Then the
entire top primal row becomes non-positive, and thus, by theorem 2,

the new tableau gate realizes f(x).

Examination of the above pivot operation reveals that this is the

2
class of two-gate nets with parallel direct input weight vectorsw , W

(including the bias weight). The existence of such realizations seems to
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be neither rare nor commen, in practice, for two-gate switching functions,
particularly if we note that theorem 10 also applies to the last two gates in
any net. Tableau 24 (p. 32} is an example of a /N/ = 0 case.

We may give another interpretation of the minimal /N/ criterion by
considering the system ofinequalities 1 that we were attemping to satisfy inthe

existence calculationfor g~. Sinceit was proved impossible to satisfy

Wlak £ -1 forzll k, it might be feltthat the requirements on gz; viz. wzak

+ v? g i £-1, would be relaxed if the weight vector wl was such that
wlaﬂ £ -1 foramaximal number of indices k. Theminimal /N/ criterion indi-
catesthatitis equally advantageousto attempt to satisfy eithe:rw.r1 ak <-1or

wlak = +1, Thisallows somewhat greater freedomto g]' in relaxing the re-

quirements on gz. The informationused to obtainthis improvementis that
obtainableinoneiteratiorn after adjoining a gate;i. e., inthe singleiteration
used to restorethetableautobasic form. Notethat thisisagain consistent
with our first-order iterative procedure.

Before discussing pivot rules for the adjoining calculation, we shall
introduce a flagging process by which we can discover {and flag) cer-
tain primal columns which cannot be contained in any bfs y. This
arises [rum the following simple ubservation: as mentioned above, the
primal rows Ai, i £ 0, represent the equations /\-iy = 0. &Since y must be
semipositive, it is clear that if any row A becomes semipositive, or
seminegative, in any tableau, then all Y; components corresponding to
non-zerc elements in that row must be identically zero; i.e., cannot
appear in any bife. Thus we can flag the primal columns )‘_j correspond-

ing to these Yj = 0, and ignore them in counting /N/ in all tableaus.* We

* This 18 the only cumulative (non-iterative) part of the algorithm.
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also ignore previously flagged columns in inspecting the primal rows
for subsequent column flagging. Consequently, theorems 9 and 10 may
be improved by this process.

This concept can be carried further. If any semipositive or nega-
tive row can be found ir any tableau at stage s, then it can be found by
some linear combination of the primal rows }\i, i# 0, in any single tab-
leau of stage s. The determination of such a linear combination is a
linear programming problem which could be added to the computation
if desired, {say}, as part of the adjoining calculation {the method con-
sists of changing some of the components of the e vector in equation 10
to zero). However, in practice, it turns out that such possible seminega-
tive or positive rows are usually generated automatically by the previous
existence calculations; e. g., as a by-product of attempting to attain a
seminegative {(optimal} top primal row, semipositive primal rows are
generated if possible. A theoretical proof of this seems impossible
without modifying the algorithm (e.g., by dropping the integral require-
ment}, but we can interpret the meaning of a terminal tableau in the
present context. Assuming that no columns have been previously
flagged, let us attempt to construct a semipositive linear combination
of the terminal tableau primal rows (omitting the top row). The pres-
ence of the unit column vectors in the primal clearly implies that the
row multiples of such a linear combination must be semipositive. The
presence of the terminal P columns then requires that the row multiple
be zero for any row containing one or more Kij <0, jeP. Thus, if we
define a span-terminal tableau to be a terminal tableau with at least one

hij < 0, for every i# 0, and where j¢P, then we have shown that a
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span-terminal tableau, which is unflagged, cannot be fiagged, in that

no semipositive row can be formed from it (and, similarly, no semi-
negative row)}. In practice, all unflagged tableaus have been unflaggable,
usually because the termiral tableaus are span-terminal (except for
rare cases constituting less than 1% of the total number of cases tried).

Let us ciose this subject by noting the symmetry between the ex-
istence, adjoining, and flagging calculations. For an existence calcu-
lation we seek a seminegative top row, for an adjoining calculation we
seek a semipositive top row {with, however, all positive elements
greater than two), and for flagging we seek either semipositive or semi-
negative primal rows {excepting the top row).

We must now discuss pivot rules for an adjoining calculation. In
view of the above, we first consider reversing the existence calculation
pivot rules; viz., pivot on Xij = 1, such that loj < 0. Just as the exigt-
ence calculation pivot rules will give us a seminegative top row, if one
exists, these rules will give us a semipositive top row, if one exists.
However, we must also avoid generating twos in the top row, both to
satisfy theorem 9, and to avoid generating unadjoinable tableau gates
where the top primal row consists of twos and zeros only. The first
tableau for A, as obtained from the basic tableau for B by theorem 5, is
such a ''null" gate, and these null gates are characterized by the fact
that they are not actually threshold gates at all. Namely, applying the
sgn operator to the linear inputs of rull gates has no effect; i.e., no
nonlinear operation is performed. In order not to unduly complicate

the algorithm, we shall aveoid such null gates by not allowing any pivot
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operation to be made which generates twos in any unflagged elements of
the top row.

Thus, a suitable pivot has Aij =1, Aoj <0, and generates no un-
flagged twos. As in the existence calculation, we reduce the number of
iterations required by selecting suitable pivots with minimal values of

)L;j . We terminate the adjoining calculation either if there are no un-
flagged columns in N, at some point, or if there are no suitable pivots.
The tableau gate is then adjoined by theorem 6, pivoted into the basis,
and an existence calculation undertaken,

Another possible set of adjoining calculation pivol rules would be
the following: select a k‘ij = %1 pivot which eifects a minimal (zlgebraic)
change in /N/ (i.e., negative if possible}, and does not generate twos in
the top primal row. Again, flagged columns are ignored, and the com-
putation terminates as before. This is a more complex method than the
former one, and moreover, gives poorer results in practice (more gates
per net), Therefore, it will not be further developed here,

Several different adjoining calculation pivot rules have becn tried,
the main value of which is to give one a choice of different threshold nets
for the required switcking function. Of these, one should be briefly men-
tioned, since it is an obvious extension of the flagging process developed
above. Specifically, one could attempt to find a gate which would allow a
maximal number of primal columns to be subsequently flagged, instead of
seeking a gate which removes a maximal number of bfs. In view of the
flagging discussion above, it would be particularly advantageous to try to

flag columns which have appeared in span-terminal sets of columns; viz. ,

sets of terminal columns which cause a tableau to be

*Appendix I contains another iteration reduction method,
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span-terminal. A complex procedure was developed and programmed
for this method, but the resultant nets were quite unsatisfactory
(non.-minirnal).

The best set of algorithm ruies found are summarized in Appendix II,
together with some programming suggestions.

Now, these algorithm rules may also be used for the symmetric
case by using the B matrix given by equation 8, and making two pivot
operations to obtain a first basic tableau. The existence and adjoining
calculations can proceed as before with this smaller tableau, However,
for this symmetric net case, we can prove the theoretical necessity
of a different adjoining tableau criterion in obtaining minimal two-gate
symmetric nets:

Theorem 11

For the symmetric net algorithm, a necessary condition that a two
gate net be found for a givern f{x) is that the adjoining tableau for g1
satisfy the following conditions: {for all triads of primal indices
J < k<1, such that je T {F), keF (T), 1eT (F), either gl (Ej) = gi(_:ik)

andé/or gl {Ek) = gl{il).

We digress first to clarify this. The primal tableau for gl con-
tains three rows, and we tentatively adjoin the (modified) tableau gate
gl as a fourth row by setting gl = sgn (0O - e) = 21; i.e., glg_{J) is the

jth primal component of this new row. The rule requires that we
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examine each ordered set of three primal columns where the first ard
last have the same logic state sense (corresponding to f(x)), and the
middle has the opposite. If, for any such triad, gl(gg) also has an
alternating sense {x1, F1, *1), then a two-gate net will not be found
using this gl.

proof of theorem 11:

Let us investigate basic solutions y (not necessarily semipositive)
to By = 0, ey = 0, where B is given by equation 8, viz., the j@ ele-
ment bj is -n+2j, j=06, 1, 2, *-*, n. It is easily seen that all sets of

less than three vectors (bj, 1) are independent., All sets of three such

vectors are dependent, giving basic solutions y with nonzero components

y, = l-k>0 ,

J

e = 3 -1<o0 (26)
y, = k-j>0 ,

where, without loss of generality, we take j <k <1. Clearly, rela-

tions 26 will imply the existence of a bfs y > 0 using any triad corre-
sponding to a triad of alternating logic states as described in the

theoremn statement, and which can be normalized to ey = 1. Further-
more, corresponding gl(i) secuences (1, 1, 1) or (-1, -1, -1) will re-
move these solutions, so that the only interesting cases are sequences
such as (-1, -1, 1), (-1, 1, 1), (-1, 1, -1} and their negatives. Assume,
without loss of generality, that j, leF, keT. Then we obtain a normaliz-
able bis y = 0 such that yj = -k, yp = 1-j, ¥; = k~j, where we have
reversed yj because its corresponding column in A is reversed. Now

compute gly for the above three sequences:
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2(k-j)#o0

RETRS RS (27)
-Y; ty, -y, =0

Hence, the only possibility for non-removal of this bis y is that these
componeants of gl(i) duplicate the bias vector constraint in Ay = 0; i.e.,
no new constraint is added to thesc bfs, This fact is necessary for the
general algorithm, but it is not sufficient to insure removal of a bfs.
Consequently, the allowablc gl(;_c_) sequences for remowval of all bis y are
those stated in the theorem. If all bfs y are not removed, we know that

the next existence calculation will not succeed and a two-gate net will not

he {found for f(.’i)' Hence, the theorem is a necessary criterion,

Theorem 11 can be used in an adjoining calculation as an addition
to the previous rules (as with theorem 10}, or it can form a basis for
selection of pivot rules (as with theorem %), since it gives us a direct
means of computing all unremoved bisina gl symrmetric net tableau
without pivoting., However, no reasonably simple such set of adjoining
caleulation rules have been found whick, in practice, gave more nearly
minimal nets than the previous rules. Consequently, theorem 11 seems
to be best used in conjunction with the previous rules in the manner of

theorem 10 (i. e., for a criterion as to whether to adjoin the present

tableau gate).
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Concerning the general question of adjoining calculation pivot
rules, we must consider cycling; viz., a closed, repeating sequence of
tableau gates. The rules chosen (Appendix II) are Simplex-derived, and
the restriction against generating unflagged twos in the top primal row
serves to further decrease the probability of cycling. In practice,
cycling has never occurred in the general algorithm, but it is sometimes
possible in the symmetric net algorithm, This occurred in the adjoining
calculation for the first few gates in symmetric nets containing a rela-
tively large number of gates, where several different sets of lower-level
gates all lead to the same total number of net gates; e.g., nets for the
symmetric parity functions. The probability of cycling decreases as
gates are adjoined to the tableau. In practice, the following additional
adjoining calculation rules prevent adjoining calculation cycling: before
making a pivot operation, mark the unity element of the primal unit vec-
tor leaving the basis (being destroyed) as a non-allowable pivot for the
next iteration, and allow no more than four times the numhber of tableau
rows as the maximum number of iterations which do not decrease /N/,
in each adjoining calculation,

We now give two multiple-gate sample calculations in order to
clarify all the algorithm rules. First, let us realize the three-variable
switching function f{x) = x, x, + X, X3 + Xy X, X3 (in Boolean AND/OR
notation), using the general algorithm. Using fig. {3}, applying tHeo—
rem 5 to the "true' primal columns (0, 1, 5, 6), and restoring two unit

vectors, we obtain:
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t ot t ot
o 0 0 0 0 2 4 -2 | -1 -1 0 -1

1 Q 8] 1 o -1 -1 2 1/2 1/2 1/2 1/2

o 1 o0 -1 o @O o -1 0 0 -1/2 -1/2 |(28)
o ¢ 1 1 o0 0 -1 1 0 1/2 0 1/2

o 6 0 0 1 -1 -1 1 1/2 0 0 1/2

We initiate an existence calculation, beginning with the circled pivot in
tableau 28 {even though there already is a terminal column which indi-
cates that no one gate solution exists), using theorem 4 to check the
work,

After two iterations, we reach a terminal tableau which has a

span terminal collimn and is therefore unflaggable:

1 1 1 I vs

Wi Wp Wq Ya V)

0 -2 -2 0 0o 0 46 -2 -1 -2 1 -1 0
1 i 0 0 0 0 -1 1 1/2 1/2 0 0 0

{(29)

o
o
—
o
o
o
]

ot
y—
o
—
S~
N
o
)
b
I

(=] L] >

0 I 1 G 1 0 -2 1 /2 1/2 -1/z2 1/2

glo @ 2 o o0 o0 -4 2| 1 2 -1 1|1

We have adjoined the tableau gate by thearem 6 because there are no
suitable pivots in tableau 29 for the adjoining calculation; viz., there
is no unity primal pivot element in any column with a negative top ele-

ment which does not generate twos in the top primal row.
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This adjoined gate is now pivoted into the basis using the circled
pivot element in tableau 29, and another existence calculation under-
taken as before. After four iterations {including the above one), we
reach an optimal tableau (top primal row seminegative), and hence

have finished:

w2 Wl 2 2 2
1 2 W3 Yy V1
-2 00 -2 ¢ -2 0 0 1 1 -1 1 3

1 0 0 1 qQ 1 1 0 -1/2 =-1f2 1/2 -1/2 -1

001 10 Lt 00 j-1/2 0 0 0 -1/2

(30)
1 00 10 001 0 0o 1/2 0 ~I/2
000 01 000 o -1/2 0 o -1/2
l1 10 00 100 0 0 0 -1f2 -1/2

Note also that all the primal columns in tableau 30 are flaggable. This

minimal two-gate net, in the notation used by Minnick (5) is

Xq % Xy, Xy, 3(xl, Zxa, 1 % xs}, 1, (31)

where the asterisk represents a gate with zero threshold whose input
is obtained by summing the indicated terms, with minus signs attached
to terms on the left of the asterisk,

For a symmetric-net example that we can apply theorem 11 to,
we choose the five variable symmetric switching function which is true
for either zero, two, or three input variables true.

First, we write down the non-basic tableau for the A matrix

obtained by using the B matrix of equation 8:
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(32)

We make one pivot operation each on the bottom two primal rows in
order'to obtain a basic tableau, choosing pivots with value £1 or +2

(to satisfy theorem 7), resulting in:

1 1 5
t t t Wx wb vl
4 0 0 -2 6 8 1 2 0
-1 o 1 2 -3 -4 -1/2 -3/2 0

(33)
-2 1 0 1 -2 -3 |-1/2 -1/2| 0

€ o0 0 2 -4 -6 | -1 -2 1

We have adjoined the tableau gate to tableau 33 both because it sat-
isfies theorem 11, and because there are no suitable pivots for an
adjoining calculation. Specifically, the only triads of ordered, alter-
nating gl (x) = sgn (AP - e) elements are in column zero, any one of
columns one, two, or three, and either column four or five. None of
these triads of columns have an alternating logic state sense (t, f,t or
i, t, f} and therefore even though possible bfs among these triads would
not be further constrained by the gly = 0 equation, no bfs will remain
since there are, in fact, no bfs among these triads of primal columns,

by theorem 11.
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Having adjoined gl to tableau 33, we pivot it into the basis using
the circled element as the pivot, and undertake arother existerce

calculation. Ar optimal tableau results after one more iteration:

2 wl 2
W b V]
c 0 -2 0 o0 -2 -1 -1 3
0o 0o 1 1 -1 -1 0 -1/2  -1/2
(34}
0 1 1 0 1 2 1/2 i -3/2
1 ¢ 1 ¢ 1 2 1/2 1/2 -1

Note that all the primal columns in tableau 34 are flaggable; the bottom
two primal rows will flag all primal columns except column three,
then the element of the second row which is in the unflagged column is

semipositive, and this results in flagging column three alsc. The

resultant net for this function is
x, 1L¥3(*%x, 2) , {35)

where we define x Lo be the sum of the Xi, 1=1, 2, =+, 5.



VI. EXPERIMENTAL RESULTS

A Fortran program for the general algorithm rules in Appendix II
was written, and run on an IBM 7090 computer. The program accepts
switching functions with up to nine logic variables. Among the switch-
Ing functions realized were 122 four variable functions selected from
Minnick's Table I (5}, so as to provide a partial test of the degree of
minimality of the algorithm. The nets listed in this table were as-
sumed minimal, this assumption being based on the fact that several
workers have improved or tested the minimality of the table by
heuristic, hand applied methods {3), {7). Not all functions were
selacted because the intert of the present wark is to produace an
algorithm, not a table.

These 122 functions were selected from the 237 listed functions
by an arbitrary process by which, it was hoped, the most ''difficult"
functions {those with a minimal number of distinct minimal-gate nets)
would be selected, e.g., by selecting a two-gate function sandwiched
in the table between a number of three-gate functions. The results
bore this assumption out; viz., the results obtained are a conservative
measure of the results that would have been obtained if all 237 functious
had been selected.

Now, Minnicks table of nets contains two level nets only, and thus
is not precisely comparable to general feed-forward nets. However,
armnong the 122 functions selected, a majority (70) were two-gate nets,

and thus are feed-forward nets. The forty three-gate functions are
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not precisely comparable, and this should be kept in mind in judging
the results.

Assuming the nets in the table to be minimal, the present
algorithm produced minimal nets for 65.5% of the functions realized,
31% of the nets required one gate more than the minimal number, and
3.5% of the nets were two gates over mirimal. The nets produced were
not identical to the table nets in most cases.

One of the most severe practical (eircnit) constraints on thresh-
‘old gate nets is a limitation on the maximum value allowed for the sum
of the absolute values of the input weights for each gate in the net;
viz., a fan-in constraint. A comparison of the 122 computed nets to
‘the corresponding table nets showed that the maximum number of
welghts per net gate in the computed nets was 10% lower {averaged)
than that of the table nets, these table nets requiring an average of
ten weights {maximum sum in net}; an average of nine being required
for the computed nets. The bias weight was not counted.

There seems to be little similarity between the present algorithm
and the algorithm developed by Minnick {5) for two-level nets, beyond
the fact that they are both based on the Simplex algorithm (as mentioned
previously), and experimental comparisons of the two algorithms are
also difficult. Minnick does not give results for his algorithm directly
{(without heuristic hand reduction of his computed nets), and theoretical
cornparisons are alsc not very instructive, except for the fact of com-

putational efficiency, as previously mentioned {section Iil). This latter



56

statemenrnt stems from the fact that Minnick attempts to solve equation 1
directly, a procedure which is less efficient {requires more iterations
on a larger tablean for salution).

As a measure of the computational efficiency of the present
algorithm, the 7090 object program required an average of about 3/4
second to compute each net for the 122 four variable functions realized
{with an average net containing between two and three gates). Nine
variable nets appear to require from cone-hali to five minutes of com-
putation time per gate,

There were three cases among the 122 functions realized where
a (-1) pivot clement had to be selected once in the process of one of
the existence calculations, viz., when a tableau was neither optimal
nor terminal, and no )‘ij = 1 pivot existed such that )\‘oj 2 0. The only
apparent effect of this was to increase the tatal required camputation
time in some of these cases.

Finaily, the symmetric algorithm was tested by hand on the sym-
metric odd parity functions {2) of 2, 3, 4, 7, 8, and 10 variables, result-
ing in symmetric nets with 2, 2, 3, 4, 4, and 5 gates, respectively.
These are minimal symmetric nets, according to Kautz (2), except for
the 7 and 10 variable nets which are each one gate over minimal. For an
estimate of computational efficiency, about ten minutes were required to

computc the five gate net for the ten variable parity function.
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VIiI, CONCLUSIONS

An efficient algorithm has been preseﬁted which produces near-
minimal threshold gate nets for given switching functions. It is of interest
to consider possible modifications and extensions of this algorithm to ac-
count for further net constraints, such as gate fan in/out limits; thresh-
old tolerance (reliability} requirements; net level restrictions; net to-
pology constraints; nets where a cost is attached to the use of an inverted
switching variable; nets with restricted types of threshold gates, such as
allowing only p “n+s switching variables as inputs to a gate, cor nets of
majority gatcs; and multiple output nets,

We shall briefly discuss these new algorithm constraints with the
following quzlification: the outlines given below of proposed methods are
i'ntended to be suggestive of research areas, and are not necessarily com-
plete descriptions. Further study will be required to determine the best
methods.

Many of these new constraints may be included by restating the
original threshold inequalities | in a more conventional {but computation-
ally inefficient) format:

Find z = (WS‘ESIVS|XSEXS) 20
such that the cost
cz

is minimal, and such that
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(wSlli?S‘vSIy-leS) [— A ; —
-A
e ds
Gyt E|O (36)
-G olE
g-1
E 0
1
= (-al |a] a¥e?|o)

Here, c is the program cost vector; the underlined weight vector com-
ponents correspond to inverted switching variables given by -A and
-Gs_l; x° is a required slack vector; e, E are respectively the unit vector
and unit matrix of suitable size; vector d1 is a threshold tolerance vector;
parameter g is a fan in limit; vectors dz, g_z are residual fan out limit
vectors for the normal and inverted gate outputs, respectively; and vector
d” is a weight nulling vector whose components are one or zero.

The proposed algorithm modifications and extensions will now be
treated in order, using the L. P. (linear program 36}, and other methods
applied directly to the original algerithm. We shall not develop the de-
tails of applying the Simplex method to the L, P., nor of the required
adjoining calculation if the L. P, has no solution.

Fan In Limit

The e vector column in the L., P. matrix expresses the constraint
that the sum of the weight vector components be less than or equal to q,
the maximum allowahle fan in for gate gs. Note that this fan in constraint

cannot be added to the original algorithm in this manner because the

'
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original weight vector is not semipositive. However, an altered fan in
constraint can be added to the original algorithm by restricting the maxi-
mum absolute value of the modified input sum to the gate,

Fan Qut Limit

If u is the fan out limit on the sum of the output weights of each gate,

s-1
then we set d;z =u - z vk 20, forh =1, 2,.., s-1, and similarly for
& k=h+l

df’l. v}}: (assuming that u applies individually to the normal and inverted

gate outputs in the L. P.). This amounts to subtracting the previously
fixed output weights from the fan out limit for each gate, to obtain residual

fan out limits.

Threshold Tolerances

Reliability analysis of some types of threshold gate circuits, such
as transistor circuits, leads to a required threshold tolerance band for
each input state. In this case, we merely rcplace the e vector in inequal-
ity 1 by the actual threshold tolerance vector dl, so that this is casily
included either in the original algorithrﬁ or in the L. P. For an undefined
input state of the switching function, set the corresponding d1 componeant
equal to minus infinity. Note that this latter case is treated in detail for
the original algorithm in appendix III.

Net Level Restrictions

The level of an r gate feed forward net will be less than r if some
gates g}1 have vh_l = y_]l:_l = U. With the L. P. formulation, we can thus
at least tend to restrict the net level by attaching high cost vector ¢ com-

8 ] . 4 , . . .
ponents to Vel and Vo1’ then decreasing these costs if required in order
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‘a give the L. P. a solution, Such L, P. parameter variations are the
subject of the theory of parametric linear programming (4, p. 109 ff), and
this theory ig of significant potential use in generally extending the original
algorithm.

For multiple gate nets, the maximum possible level restriction is
to allow two level nets only, and we might briefly discuss this in terms of
the original algorithim. One general method of obtaining two level nets is
to pivot out all the tableau rows corresponding to previously adjoined
gates after an unsuccessful existence calculation, by selecting one (*1/2)
pivot element in each adjoined gate coclumn cf the cual tableau, thus
causing Lhe v® tableau veclor to identically vanish. The resultant non-
basic primal rows could be used as cost rows for a flagging calculation.
Alternatively, the adjoining calculation could consist of searching for a
terminal tableau with 2 maximal number of bis v in the basic portion of
the primal which also satisfy the non-basic primal row constraints, since
Ay = 0 whether or notAis basic, This process amounts to a'.ttempting to
adjoin tableau gates which rernove a maximal number of remaining bfs,
and requires further study; e,g., the number of possible primal columns
in a bfs increases by one Ilor cach adjoined gate, even though the adjoined
gate rows are non-basic. Ifis conceivable that research in this area
could lead to a method for realizing theoretically minimal two level

threshold gate nets,



61l

Net Topology Constraints

It is possible for gate connection {wiring) constraints to exist which
do not allow certain gates to be connected to certain higher level gates,
One such example would be an etched circuit board construction of the
net in fig, (1) which does not allow crossings of the gate output lines:; i. e.,
a planar output net constraint, Another example would be a limit on the
maximum physical distance between gates (wire length limit). The effect
of these types of topological constraints is to require that certain weights
v]i = E}Sm = 0, in a determinable manner due to the successive way that the
gates are calculaled. We include this in the L. P. formulation by setting
a component of vector d3 equal to unity if the corresponding weight is to
vanish, and zero otherwise, In the original algorithm, one can make a
pivot operation on a (*1/2) dual pivot in cach dual column which cor-
responds to a vanishing weight, and then ignore the resultant non-basic

primal rows in the calculation,

Inversion Restrictions

Certain types of threshold gates, such as transistor circuits, often
require the addition of inverter circuits if the inverse of a net switching
variable is required, and the cost of such an inverter can approach the
cost of a gate itself. In the L. P, formulation, the normal and inverted
forms of switching variables have separate weights. Consequently, we
could account for inversion cost by attaching higher cost vector compon-

s 5 5 .
ents to the w ', v~ vectors than those attached to w", VS. However, it
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would be more accurate to impose a fixed step increase in cost for each

s < . : . . .
w,orv, which becomes non-zero, implying the use of parametric linear
programming methods.

Restricted Threshold Gates

If any set of at most p “nts switching variables are allowed as in-
puts to gate gs, then we could require that the d3 vector in the L., P, have
at most p zero elements. Parametric linear programming may be useful
in selecting the proper d3 components,

A majority gate in {-1, +1) logic state notation may be defined as a
gate with a zero bias weight., This is easily imposed on either the L., P,
or the original algorithm by removing the bias weight({s) and the bias unit
vector row(s) from the set of constraints.

Mualtiple Output Nets

In terms of the L. P., a multiple cutput net which realizes switch-
ing functions fi (5} would lead to a constraint matrix having a block
diagonal of constraint matricies for each fi {x). The off-diagonal blocks
would correspond to intercoupling of the gate state vectors ir the diaponal
blocks,

For the original algorithm, we may propose the following type of
method: starting with i = 1, apply the reversal rule of thecrem 5 to the
primal columns corresponding to conflicting logic states of fi (x) and
fi-l (i‘.)’ using the last tableau reached in the calculation for fi-l (_J_g).
Define fo (3) = -1; i, e., use the B tableau, Carrying a separate {lag

vector for each 'fi (5), undertake an existence calculation, If an optimal
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tableau results, adjoin the optimal tableau gate, pivot it into the basis,
remaove :Ei (}_c_) from the set of functions tc be realized, and repeat the
method for fi+1 (x). If & termiral tableau results, repeat with fi+l {x)
without adjoining a gate. After all functions have been considered, under-
take an adjoining calculation for the last unrealized function, but modify
the IN| count as follows: add unity to the conventional | N| count for each
primal column in N which corresponds to an input state for which one of
the other unrealized fi (_:_;;) agrees with the tableau (last) switching function,
once for each such agreement, Similarly, add unity for each disagreement
corresponding to a P column, This process is an attempt to remove the
maximwmn total number of possibly feasible bases for the fi (x) set, and
will probably require modification after more detailed analysis. After
completing the adjoining calculation, zdjoin and pivot in the tableau gate,
and undertake another series of existence calculations as before, The
resultant net will have the form of fig. (1) where, for each i, there exists
some h £ r such that :Ei (f) = gh (E) ; i.e., the unmodified output of the ht—}}—

gate is the iE-}-l- function.
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APPENDIX I

List of Symbols

A

£(x)

Logic state matrix,

Simmplex primal nprogram matrix,

Input state matrix {truth table).

Primal program cost vector,

Arbitrary vector,

The unit vector (1, 1,.., 1).

Unit row vector with unit for i-i-:-}-1~ component, zercs elsewhere,
Unit column vector with unity for jt—h- camponent, zeros elsewhere,
Set of primal tableau column indices identifying basis:

E é{_) I)\j = 2 unit column vector }

Given bivalued switching function of n variables. A vector

£y = (+1, jer; -1, jer).

False state matrix containing all columns of B corresponding to

false states of f (x). Set of primal tableau column indices such
that indexed column corresponds to a false state of f (x):

Fﬁ{nf(g) = -1}.
Matrix of modified logical output vectors of gates gl to gs—l.

Gate s in net. Modified output vector of gate s; gS‘ = =] corre-

sponding to the logical output of g% for input state” xJ,reversed in
gign for jeT. -

Row indicies. Denotes row vector as superscript, unless noted.

Column indices. Denotes column vector as superscript, unless
noted.

Number of columns in A or B.
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sgn

U

Wow oot

1w
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Number of logic variables %, in { (x}.

Set of primal tableau column indices such that first component of
column is negative: N.e{jtkoj <0}.

Number of indices in set N,

Set of primal tableau column indices such that first component of
column is positive: Pg{jhoj >0}.

Number of gates in computed net realizing f {x).

Sign taking operator; sgn {x) = (+1, x >+1;-1, x =-1}.

True state matrix containing all true columns of B, Set of indices
such thal indexed primal column corresponds to a true state of

 (x): T_é_{j{f (x) = 1}.
Unit matrix with first column omitted.

Vector of input weights to gs from lower level gates; o

h is weight

associated with input to St—h— gate from output of hi}-l— gate,
Vector of input weights to gate gs from direct input logic variables;

wfl is weight associated with input to gg from X, (w:+1 is bhias
weight).

Symmetric algorithm bias weight.

Symmetric algorithm common input weight for all direct inputs x, .
Direct input state vector. State Ej-l is jEE vector in ordering

(-1, -1..,-1, -1), (-1, -1,.., -1, +1),.., (1, 1,.., 1, -1},

{1, 1,.., 1, 1).

Vector of primal program variables.

Artificial form of y; v, T (1, v).

Set of primal tableau column indices such that indexed column has

zero first component; Zg{jh\oj = O}.



67

A Primal tableau matrix with elements \ij,

I' Dual tableau matrix with elements Y ij,
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APPENDIX II

Summary of Algorithm Rules

1. Given a switching function f(x) of n variables, construct the basic B
tableau of fig. (3) for this value of n. Begin phase 2.

2. Apply the reversal rule cf theorem 5 to all primal columns with
indices j such that (icj) = 1 {true state columms). If any primal unit
column vectors are modified, make a pivot operation on the {-1) element
in each such coclumr to restore its unit vector. Set 2 gate counter s
equal to unity. Make a first flagging inspection by flagging each primal
column which has a non-zero elemernt in any semipositive primal row
(except the top row). Begin phase 3.

3. Undertake an existence calculation by making a sequence of pivot
operations on unity primal elements which are not in the top row, and
which have maximally positive top elements ir the pivot columns. After
each such iteration make a flagging inspection: kowever, search for
either semipositive or seminegative primal rows, and ignore primal row
elements which are in previously flagged columns. This generalized
flagging inspection is to be made after all subsequent pivot operations,
inclucing those in phases 4 and 5. Repeat phase 3 until no primal
column has a positive top element and another element equal ta unity.
When this occurs, inspect the top primal row to see if it is seminegative.
If so, the caiculation is finished, and the top dual row will contain the
weight vector (w, v) of the last {(output) gate in an s-gate net realizing

f(x). If the top primal row is not seminegative, inspect the primal
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columns with positive top elements to determine whether all other
elements are seminegative in these columns. If so, the tableau is
terminal, and phase 4 is begun. If not, make a special pivot operation
with any (-1) primal element in a column with a negative top element, and
repeat phase 3. If none exist, select a (x1) primal pivot, preferably in a
pivot column with a non-zero top element, make this specizal pivot oper -
ation, and repeat phase 3.

4. Urdertake an adjoining calculation by first determining whether
regative elements exist in the top primal row, and which are in unflagged
columns. If none exist, begin phase 5. Otherwise, select a (+1) primal
pivot in a column with the maximally (absolute) negative top element
possible, such that the indicated pivot operation will not generate twos in
top primal row elements which are in unflagged columns. Make a
generalized flagging inspection after performing the pivot opcration.
Repeat phase 4 until no suitable pivot exists, at which point phase 5 isg
begun.

5. Adjoin the tableau gate by first writing down the top dual row as the
weight vector (w, v) for gate gs in the net. Adjoin a new bottom row and
a new dual column to the tableau by theorem 6. Select a pivot element in
the primal portion of the new bottom row which is equal to (+2) if possible
(for empirical reasons); otherwise select a (-2) pivot. If no such {£2)
pivol exists, perform a special pivot operation on any (x1) primal pivot
which will generate at least one {+2) element in the new bottom row (see
below}. Having a (+2) pivot in the new primal row, divide the entire row

by the selected pivet, including the new unit vectar unity element, and
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perform the indicated pivot operation. Increase gate counter s by unity
and begin phase 3.

Remarks: For azutomatic computation using a digital computer which
irternally carries integers in right-normalized binary, the skew-trans -
posed binary matrix in fig. (3} may be easily constructed by successively
extracting the bits of the binary representation ofj = 0, 1, 2, ... , m-1,
and inserting them into the elements of primal column j. The entire
computation may be carried out with integers if twice the dual tableau is
used {the gate weight vectors are then equal to the top dual row divided by
twa).

If & mecdium or large computer is available, an empirical improve-
ment in average net minimality and a reduction in the average total
number of iterations required per net may be obtained by programming a
somewhat more complex set of pivot rules. If the computer command
structure and memory size are adequate, the following modifications are
recommended: ir place of the requirement than an existence calculation
pivot satisfy (Aij = l;hoj = max. > 0, substitute: ( Adj o= 15 xoj >0
A/N+Z/ = max.), where A is to be read as ""algebraic change in''. In the
adjoining calculation, replacing the requirement ( Aii = 1; Aoj = min. <U;
Nok F2, for all k), substitute: { Aij = 1,A oj <0; rok ¥ 2, for all k;
A/N/ = min.). These rules require trial partial pivot operations to be
made, similar to those previously required in the adjoining calculation to
insure that twos will not be generated in the top primal row. Specifically,
that allowable existence calculation pivot { Aij = 1; Aoj >0) is chosen

which generates a maximal number of zero or negative top primal row
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elements, and that allowable adjoining calculaticn pivot ( Aij = 1;

Aoj; <0; A ok ;!‘ 2,for all k) is chosen which generates a minimal
number of negative top primal row elements. Note, however, that
/N+Z} or /N/ could actually decrease or increase in a given iteration of
the existence or adjoining calculations, respectively, since we a;.‘e
measuring the algebraic change in the size of these sets.

Finally, if the algorithm is programmed on 2 large computer, it is
possible to realize switching functions with a relatively large number of
variables; e.g., n = 9. If such a function requires more than a few
gates; e. g., six or more, it has been found in practice that the computer
pPrograrm can, in rare cases¥, generate a tableau gate which cannot bhe
pivoted into the basis without violating theorem 7; viz ., no (22) pivot
element exists in the new primal row. In these cases, it was always
found possible to adjoin the tableau gate and make a special pivot cperation
before pivoting the gate into the basis. Namely, make trial partial pivot
operations on {*1) primal pivots until one is found which will generate a
(£2) element in the new primal row. This generated (+2) element can then
be used as a pivot to generate the new primal unit column vector, and the

next existence calculation then proceeds as usual.

*Excessive computation time would have been requircd to empirically

determine how rare these cases are; consequently, no measure of this

will be given.
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APPENDIX IIT

Partially Defined Switching Functions

Theorem 5 allows us to obtain a first basic tahleau for A trom the
hasic B tableau in fig. {3) only if each input state is defined by f(x) to be
either true or false. If some input states are undefined, replace theorem
B by:

Theorem 12

A lirst basic tableau for A may be obtained by applying the following
procedure to the basic B tableau: 1if f(i(j) =1, apply the reversal rule of
theorem 5 to?\j. I f(xj) = -1, leave)\j undisturbed. If f(xj) is undefined,

remove cclumn A from the tableau. After forming this reduced tableau,

restore the modified uni:t vectors as in theorem 5, and inspect the
remaining primal columns for possible missing (removed) unit vectors
ek+1. Perform a sequence of pivot uperations, using pivot elements
Akj#0, until the reduced primal tableau is restored to basic form; ie.,
contains one unit column vector for each row (except the top row}). If a
reduced primal row vanishes at any stage, make a pivot operation on this
row with any non-zero pivot in the dual tableau, and then remove the pivot
row and the {duaal} pivot column from the tableau.

proof: An undefined input state produces no corresponding con-
siraint in the set of inequalities 1, anrd thus no corresponding primal
columr in the tableau. Consequently, we may merely remove primal

columns from the basic B tableau which correspond to undefined states of

f{x). However, the reduced tableau so obtained should be made basic in
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order to apply the algorithm rules to it. As discussed in section III, a
tableau may be made basic by performing a sequence of pivot operations
which generate one unit primal column vector for each tableau row except
the top row. This process will fail only if there are no non-zero pivots in
one or more primal rows at some stage; ie., if some primal rows
vanish. If a reduced primal row vanishes, then there must exist a linear
dependence among the rows of the corresponding reduced A matrix,
because the pivoting process can only fail if the primal tableau rank is
less thar n+l.

Now, the existence of such a linear dependence implies that one or
more of the weights W, are superflucus, in that they can be identically set
to zero without decreasing the number of threshold gates attainable from
the reduced A matrix. Specifically, for every linear input sum d = wAr,
where Ar ts the reduced A matrix, there exists a weight vector w  with
the superfluous w, = 0, such that d= wAr. Consequently, we can account
for a vanishing primal row by removing a row .aL‘1 from Ar, thus setting
w, = 0, without loss of generality. In terms of the tableau, this may be
performed by making a pivot operation in the dual portion of a zero
primal row, and then removing both the pivot row and {dual) pivot column
from the tableau (this is a reversal of the procedure originally used to
obtain the B tableau}. Furthermore, at least one such non-zero dual
pivot element must exist, since all dual matrices are non-singular.

After each reduced primal row has been either pivoted in or out of
the primal basis, it can be seen that the resultant reduced tableau will

satis{y all former theorems relating to full tableaus, with the exception
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that theorem 1 has been modified to state that the reduced primal

tableau has a rank equal to its number of rows (excepting the top row).

Now, if we also impose the (+1) pivot constraint of theorem 7 in
order to maintain integral and allowable* weight vectors, we may he
sometimes forced to make special pivot cperations in corder to obtain a
first basic tableau; viz. when a primal row is non-zero, but contains no
(1) pivot, or where a primal row vanishes and no {+1/2) pivot exists in
its dual portion. This (+1/2) dual pivot choice comes from a simple ex-
tension of theorem 7, and it might also he nnted that it is permissihle to
leave a zero primal row in the tableau if desired (no dual pivot operation),
since the algorithm will automatically ignoreit, However, if no (1)
pivot exists in a non-zero primal row, we must attempt to generate one by
searching for any (1) reduced primal pivot which will generate a (1)
element in the desired row, then using this generated pivot to form the
required unit vector.

It must be stated that the use of theorem 7 can theoretically re-
strict the number of distinct gates attainable in a reduced tableau. The
practical consequences of using both theorems 7 and 12 together are tot

precisely known. However, the method was experimentally tested on

*Note that if this pivot constraint is imposed, the weight vectors will also
be allowable for the undefined states, since the proof of theorem 7 is not

invalidated by the procedure of theorem 12.
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about one-hundred four-variable switching func;tions, with zero to about
eight arbitrarily chosen undefined states, and no failﬁres of the method
occurred. No special iterations were required to generate (£1) pivots in
order to obtain basic tableaus®, and no reduced primal rows vanished.

Alternate methods can be used for partially defined switching
functions. For example,we could arbitrarily group the undefined states into
F to begin the calculation, and then allow unrestricted application of the
reversal rule of theorem 5 to the undefined columns as required; e. g.,
we can convert undefined P columns to N columns, and vice-versa, in
order to facilitate the existence and adjoinirng calculations on the full
tableau. However, this does not take advantage of the increase in com-
put ational efficiency made possible by reducing the size of the tableau,
and the method of theorem 12 seems to be adequate in practice.

To illustrate theorem 12, consider the basic B tableau for n=3:

0 0 0 0 0 0 0 0 0 0 0 -1

1 0 0 -1 0 -1 -1 -2 -1/2 -1/2 -1/2 -1/2
0 1 0 1 0 1 0 1 0 0 1/2  1/2 |(37)

0 0 1 1 0 0 1 1 0 1/2 0 1/2

1 i 1 1 @ 0 0 1/2

First assume that only the first four primal columns are defined.

0 0 0 0

Then the reduced primal tableau will have a zero bottom row, and we can

pivot on the civeled dual element, remove the bottom tableau row and

*However, it is simple to deliberately construct artificial cases where

such iterations are required.
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first dual column, and thus obtain a basic reduced tableau with w',L =0. We
shall not actually specify the defined states of f(x} here, because the intent
is to illustrate the procedure followed when a reduced primal row
vanishes.

Now let us consider another case in detail. Assume that primal
columns zero to seven in tableau 37 are to correspond, respectiv.ely, to
i(x) states (+1, +1, =1, -1, *1, 1, +1, -1), where a {£]) state is unde-
fined. Group the delined columns (0, 1, 3, 6, 7} iulo 4 first reduced

tableau, apply the reversal rule to the true state columns, and restore

the two modified unit vectors:

3] 0 0] 4 -2 -1 =1 0 -1

1 0 1 -1 2 /2 1/z 1/2 1/z2

o 1 -1 0o 1| o o -1/2 -1/2 (38]
o o 1 -1 1| 0o 12 o 1/2

o o o -1 (| vz o o 12

We note that one primal unit vector is missing from tableau 38, and

we generate it by using the circled pivet element.

This gives:

0 0 0 2 0 0 -1 0 0

1 0 1 (:) o | -1/2 1/2 1/2 -1/2

0 1 -1 -1 0 1/2 0 -1/2 0 (39)
0 0 1 0 0 -1/2 1/2 o0 0

0 0 0 -1 1 1/12 0 0 1/2

Tableau 39 is basic, and a single existence calculation pivot
operation (using the circled pivot) will give an optimal tableau. The

weight vector of the resultant single gate net will be wl =({1, -2, -1, 1}.



