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ABSTRACT

Analytical and expe rimental investigations are made of the
response of linear systems subject to magnitude-limited Gaussian
broadband random excitation. A mathematical analysis for deter mining
the statistical properties of this excitation is developed, Experimental
studies on the probabilistic response of linear systems with magnitude-
limited input are also presented.

Secondly the peak characteristics of the response of linear
systems subject to Gaussian broadband random excitation are
investigated. It is shown that the number of peaks per unit time of
the response of a single degree of freedom system increases as the
frequency bandwidth of the excitation increases. Analytical and
experimental techniques are developed to study the peak distribution
characteristics of multi-degree of freedom systems and continuous
systems. It is found that the normal mode random variables are
statistically independent if the system damping is small, and the
modal frequencies are sufficiently separated.

Finally the method of Fokker-Planck is used to obtain the
statistical properties of the response of a first order Coulomb damped
system. The first order probability density function of displacement
of this nonlinear system is determined. | A simplified method for
developing the autocorrelation function, and the power spectral density
is discussed and applied to the above prbblem. The results are further

substantiated by experiment. Experimental investigations are also
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carried out to determine the power spectral density of the response
of a second order nonlinear system with Coulomb restoring force to
white noise input. The results are compared with those given by

Wolaver.
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CHAPTER I

GENERAL THEORY OF RANDOM PROCESSES

1. 1. Imntroduction

Studies of random processes, or stochastic processes, are
relatively old, yet it is only in recent years that the application of
the theory of random processes to engineering problems has been
exploited. The theory of random processes is generally defined as the
dynamic part of probability theory. Therefore it is especially useful
in the cases where one desires to know the dynamic behavior of the
response of a system to random excitation.

The theory of the random process was first advanced by
Einstein, who studied the Brownian motion of a free particle and
obtained the mean square value of the displacement of the free

(1)

particle. Further investigations in the field of Brownian motion by
Smoluchowski, Ornstein, Kramers, Chandrasekhar, Uhlenbeck and
Wang have resulted in a general theory of random processes. In the
field of electrical engineering, scientists have studied the statistical
properties of noise through receivers and the theory of information,
where an unique method based on the theory of Fourier integrals was
developed. The principle contributions made in these areas are due
to Wiener, Rice, Kolmogoroff and Khintchine. The endeavors of these
scientists have proved to be fundamental to the theory of random

processes. Some of the basic techniques involved in the studies of

random processes are contained in the papers given by Uhlenbeck and



(2) (3)

Wang, and Rice.
: Moré recently the concept of random processes has been intro-
duced in mechanical engineering, particularly in the field of vibration
and dynamics. The engineering problems which arise in these areas
are centered around the response of a mechanical system to random
excitation. For example, buildings subject to ground motion during
earthquakes, missiles and jets in a turbulent environment, etc., are
all examples involving systems, whether linear or nonlinear, subject

to random excitation. The dynamic behavior of such systems

subject to random excitation have been studied extensively by
(4-9) (10-13) (14-15)

Caughey, Crandall and others.

All the problems treated in this thesis involve discrete dynamic
systems whose input is Gaussian distributed, or sometimes derived
from a Gaussian random process. Frequently the input spectrum is
uniform over a frequency range extending from zero to infinity.
These assumptions have proved to be important, and resulted in a
great deal of simplification in the mathematical analysis of random
vibration.

The objective of the present study is to extend and further the
work in the area of random vibrai:ion. In the following sections, a
general theory of random processes that are of interest in random
vibration aPplications is developed and techniques indicated. A
specific problem involving systems subjected to magnitude-limited

random excitation is treated in Chapter II.. The peak characteristics

of linear systems with broadband random inputs are analyzed in



Chapter III. In Chapter IV the method of Fokker-Planck in solving a
first order nonlinear system is demonstrated. In all phases of work
analytical results are supported by experiments. Finally, the
Summary and Conclusions drawn from the analytical and experimental
investigations are presented in Chapter V. It is hoped that the results
of these studies will help to further future researches in the area of

random vibration.

1. 2. Probability Theory and the Classification of Random Processes

Many physical phenomena in nature are characterized by
unpredictable changes in time and cannot be prescribed a priori
cxcept in a statistical sense. They are in general, known as random,
or stochastic processes. These statistical processes often show
regularities, or stabilized properties as the time or the humber of
observation increases. In other words, the random processes can be
described (or defined) by a set of probability functions.

The theory of probability is closely related to the concept of an
ensemble, which is a collection of many physical systems. Let the
members of the ensemble be denoted by xl(t), Xz(t)’ e e xn(t), which
are different time dependent functions. However, they are completely
described (or defined) by the following set of probability distributions:

pl(_x, t)dx = probability of finding x in the amplitude range
{x, %tdx) at time t.

pz(xlxz;tltz) dxldxz = joint probability of finding X in the range

(Xl’ X +dx1) at time t

1 : and x, in the range (XZ’ X

K > 2+ dxz) at time 1:2.



p3(xlxzx3;tlt2t3)dxldx2dx3 = joint probability of finding x, in the

range (xl, Xt Xm) at time t)s and x, in the range (XZ, x5+ dxz) at time

and x_ in the range (x

tZ.’ 3 x +dx3) at time t

373 3
and etc., the nth order probability density function pn(X1X2X3. i
tltz. . e tn) can be defined in the same fashion.

The aforementioned set of probability functions must satisfy

the following conditions:
s eeX ves = 0,
Lo e x5 ity 8) 2 0

2. Pn(XIXZ' CeX tltZ' . tn) is a symmetric function of its

arguments (x,.t, ),

3. pk(XIXZ' Xy tltz. .. tk) =/ . / dxk+l' .. dxnpn(xl. .o Xn;

1ty
4, /.../dxl...dxnpn(xlxz...xn; fo..t) =L

So far we have described the time dependent probability
distribution function across the ensemble. In the cases where the
random process is stationary in time (to be defined in next section),
the probability functions will not change with a shift of time origin.

Uhlenbeck and Wang(z) attempted to classify the random
processes by the order n of the probability distribution functions for
a complete description.

1. Purely random process or independent process.

A random process is called a purely random process when the
joint probability density functions can be defined in terms of the

products of the first probability density functions, namely:



pn(XIXZ' N tts - tn) = P(Xl’ tl)p(XZ’ tz). . .p(xn, tn) (1. 1)

In other words a small difference in time will make successive values
of x completely independent. All information is then completely

contained in the first probability density function.

2. Markoff process.

The concept of Markoff process has important physical appli-
cation since it is a process with no memory extending before the
previous instant. A simple Markoif process is defined by the following
equation

T (x .t

n n’tnl Xl’XZ' e X

n—ltn-l) (1. 2)

n-1’ t1’ tyr n—l) - TZ(Xntnl ®
where T(a/b) means the conditional probability (known also as the
transition probability) of a given b. As the consequences of the
definition given above for the simple Markoff process, the joint
probability density function can be written in terms of the conditional
probabilities: (16)
pn(xl, Xy xn;tl, t2' .. tn) = p(xltl)T(XZtZ ] :{11:1)T(:>{31:3 ]Xltl, XZtZ)' ..
:p(xltl)T(XZtZ] xltl) T(x3t3l xztz). e
n
=plxh) I Tl |3 gty (1. 3)
k=2
Thus it is immediately clear that a simple Markoff process is
completély defined by the second probability distribution function.

Many physical phenomena are found to possess Markoff properties

even though very severe restrictions have been imposed on the



transition probabilities. For example, in the case of a single degree
of freedom oscillator when subjected to a Gaussian distributed random
external force, the response of the system is found to be a projection
of the Markoff process or a vector characterization of the process.
Random processes can also be classified according to the type

of their distribution functions, i.e., the probability laws involved.

Some frequently encountered probability laws are the Normal
(Gaussian), Poisson, Rayleigh Distributions. Nevertheless, a great
number of random phenomena observed in nature possess Gaussian
properties. For example, the distribution of a random variable
resulting from the sum of a large number of independent random
variables -- satis{ying certain general conditions -- approaches

(30

asymptotically normal. This is known as the Central limit theorem,

one of the most important theorems in mathematical statistics.

1. 3. Stationarity and Ergodicity

To introduce the concept of stationarity and ergodicity, an
ensemble of random variable Xl(t)’ xz(t), ... xn(t) of a random process
is considered. Let Xi(t) be a typical member of the ensemble, and let
h be an arbitrary measure of time. Each function xi(t+h) may be
taken as the member of a new random process with a translation of
time h from the original random process. A random process is said
to be stationary if the probability function of the original process is
invariant under a shift of time origin. A random process, possessing

this property, is sometimes called stationary in the strict sense to




distinguish it from stationary in the wide sense to be defined later.
As a result of the definition given above it is not difficult to see that
for a strictly stationary random process that probability distribution
function (or demsity function) and other statistical parameters do not
change for all translations in time, and depend on time instants only
through their differences.

Some random processes are not stationary in the strict sense.

However they are weakly stationary (or ''stationary in the wide sense!,

"covariance stationary', and "second order stationary'' used by some
other authors). If the random process is weakly stationary then its
second moment exists and is a function only of the absolute value of
the time differcnce (sce Eq. 1. 8 and 1. 9), i.e.,

E [x(t) x(t+T )} = Rx(t) (1. 4)

Obviously, any random process, which is stationary in the strict
sense, is also stationary in the wide sense but not vice versa. Random

processes are known as nonstationary, if the properties mentioned

above are not satisfied.

In many phy-sical applications one is often required to measure,
from the observation of a random process, certain statistical
quantities from a single record. It is natural to ask the question:
Under what conditions is one able to estimate the ensemble average
from the temporal average. The condition or the property, which is
often assumed in the analysis of stationary random process, is called
the Ergodic property. Before entering into the formal definition for

an ergodic process, let the temporal average for a random process be



T

<V [x(t)] > =lim _% v (o) at (1. 5)
T—=00 0

where x(t) is a random process, V [X(t)] represents a function (with
zero memory) of the random process, and T is the averaging time.
Likewise, the ensemble average can be defined as

(9 0)

E ( v [X(t)] ) =/ v [X(t)] p(x)dx (1. 6)

-0
A stationary random process is said to be ergodic if the
temporal average from a single record can ultimately be identified
with the average computed across the ensemble. The following

equality must exist:

E|V [x(t)] ) =<V [x(t)} > | (1. 7)

The ergodicity condition, in effect, shows that, each sample function
must eventually take on all modes of behavior of each other sample
functions in order to be ergodic. Imagine a sample record of an
ergodic process be cut into a sequence of strips each of length T,
where T is large. Then this éequence of samples drawn from a
single record can be considered as an ensemble. This new ensemble,

according to the Ergodic Hypothesis, possesses the same probabilistic

characteristics as the original ensemble. In general the ergodic
property is not a consequence of the fact that the random process is
stationary. Also it is not necessary for the random process to be

‘~ictly stationary in order to satisfy the ergodic theorem.



1. 4. Autocorrelation, and Power Spectral Density

A more important concept in the studies of random vibration is
the autocorrelation function which points out the dependence relation-
ships of the two random variables x,; and Xy They are referred to
as the possible values which can be assumed by the sample random
variable x(t) at the time instants ty and t,. The ensemble average

E(xl, xz) relating X and x, may be defined as

2
@ 00
E [Xl, Xz] = / / XX, p(Xl, £y 3%, ’v:Z)dxldx2 (1. 8)
-0 -

The above equation reveals the specific correlation properties of x(t)
with itself at the time ty and tse It is generally known as the auto-
correlation function to distinguish it from the crosscorrelation
functions between two different random variables x(t) and y(t). The

time autocorrelation function for the sample random function x(t) is

given by

T—

T
R (T)= lm —,},-/ x(t)x(t+ T )dt (1.9)
0

The autocorrelation function E [Xl’ Xz] may depend on both time

instants if the random process is nonstationary. In the event that

the random process is weakly stationary or covariance stationary,

the autocorrelation function depends only on the absolute value of the

difference of two time instants. The e(juality given by Eq. (1. 4) exists.
In the analysis of a signal, the harmonic components are often

determined through a simple Fourier analysis. In the case of a
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periodic function of period T the energy over a period is finite, then
by Parsval's theorem the time average of its energy, or the power,

is equal to the sum of the squares of the coefficients in its Fourier
series expansion. If the signal is not periodic it cannot, of course, be
decomposed into discrete harmonic components as in the case of a
periodic wave; however if it has a Fourier transform or is square

(31)

integrable, then it will have a continuous spectrum which can be
treated in very much the same way as that for a periodic signal. The
technique of Fourier analysis can also be applicd to a stationary
random process. The study of spectral density, the autocorrelation
and their relations are known as the Generalized Harmonic

{17)

analysis. The term '"Generalized' implies obviously a larger
class of functions including those not possessing a Fourier transform,
in other words the class of random variables which are not square
integrable.

Under the condition that the autocorrelation function is

absolutely integrable and{finite, the power spectral density and the

autocorrelation function will form a Fourier transform pair

[0 0]
S(f) = 4/ R(z) cos 2nfTc dT
0 (1. 10)
o)
R{(T) :/ S(f) cos 2nfT df
0

where S(f) is the power spectral density and R(T ) is the auto-

correlation function. These equations are known as the Wiener-
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Khintchine relations.

For the most part one will be primarily concerned with the
power spectral density of a stationary (not necessarily strictly
stationary) random process. For a stationary random process the
autocorrelation defined by Eq. (l.8) does not change with a shift of
time origin, and the results derived from it, namely the power spectral
density, will not be expected to be dependent on an arbitrary
translation of time origin. Therefore the concept of the power spectral
density constitutes an important step toward a complete description of
a stationary random process.

For stationary processes having ergodic properties, the power
spectral densities defined by Eq. (1. 10) for .the sample function are
identical to the power spectral densities for the ensemble random

process with probability one.

1. 5. Linear and Nonlinear Transformations of the Random Processes

With the knowledge of the basic concepts and properties of a
random process, the effect of a linear or nonlinear transformation
on these properties will now be investigated.

There are in general three classes of physical systems, which
are most frequently encountered in nature, namely a time invariant
stable linear system, a nonlinear (zero memory) device whose output
is expressible in terms of the input, and a nonlinear system whose
output cannot be expressed in terms of the input. We are

considering a system with input and output as shown in Fig. (1. 1).
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Input Output

System

Fig. 1.1

For the first two types of systems, the method of Rice or the Fourier
series method is directly applicable. For nonlinear systems, how-
ever, the method of Fokker-Planck is more appropriate. In the
tollowing, both methods will be demonstrated in obtaining the auto-
correlation functions, the power spectral densities, and the
probability functions.

(a) Rice's method.

The method of Rice is essentially a Fourier series method,
where the attention is focused on the actual time variation of the
random variable. ~ Ome is usually able to develop this random variable
in a Fourier series; its coefficients are likewise random variables.
From the Fourier integral theorem, the power spectral density and
the autocorrelation function for the random variable can be calculated.
With the knowledge of these quantities, a score of other statistical
properties of the random variable are easily obtained.

Consider now, for example, a time invariant stable linear

system, having a system transfer function with poles located in the



-13-

left half plane, the output y(t) may be expressed in terms of the
input x(t) through the convolution integral

QO

y(t) =/ x(t- ) h(z)dz (1. 11)
0

where h(T) is the unit-impulse-response of the system. If the input
is stationary the output will also be stationary, since the output mean
and the autocorrelation function are given by

a (o0}

E{y(t)] = E[f x(t- z)h(r)dz:] =f WT )E[x(t~ z:)] dz
0 0
o o)
= mX/ h(T)dT
0

o0 0o
E[y(t)ymz )| = E[// x(t-x(t+ T-p) h(a) h(p) dadp]
0 70

OO0 0O
-/ | i@ wp) R (T ra-praacs
0 O

=R _(T) (1. 12)

which depends only on the time differences = . The interchanging of
the order of integration and statistical averaging is allowed since the
system response function h(T ) does not vary within tolerance over the
ensemble. The output autocorrelation function is seen to be dependent
on the time difference T , hence the random variable is stationary.

From Eq. (1.10) and (1. 12) the output power spectral density

Sy(f) is given by
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2
5,8 = [(gan | 5,60 (1. 13)

where

H(j2mf) = Laplace transform of h(7")

Sx(f) = Power spectral density of the input.

A similar procedure can be applied to a nonlinear device,
whose output is expressible in terms of the input. Therefore if

y(t) = £ [x() (L. 14)

the autocorrelation function for y(t) is given by

0
E|y(t)y(tt T) | = f(x,) f(x,) plx,, x, )dx dx (1. 15)
17 72 7202
-0 -00

In principle, other statistical properties can be derived from the known
autocorrelation function given above.

Sometimes it is desired to know the probability distribution
functions of the output. This is usually not a difficult problem for
linear systems since it is well known from the theory of random
processes that if the input random process is Gaussian distributed,
the output random process is also Gaussian.

In the case of a nonlinear device such as that given by Eq. (1. 14)
the output probability density function can usually be written in terms

of the input probability density function p(x), hence(lg)

p(y) = p(x) .%I (1. 16)

if %(t) is a single-value function of y(t).
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It is seen from the above discussion that the statistical
properties of the output of the systems are completely characterized

by using Rice's method.

(b) The method of Fokker-Planck.

In the cases of nonlinear systems, whose output is not expressible
in terms of the input, Rice's method is no longer applicable, though
approximation techniques have been developed to extend this method to

(4, 3) The method of Fokker-

include systems with small nonlinearity.
Planck seems to be more appropriate to solve problems of this kind.
The behavior of many physical systems, in particular that of
discrete dynamic systems, subjected to Gaussian white random
excitation, are examples of continuous multidimensional Markoff
processes. As it was shown earlier (Eq. 1. 3), such processes are
completely defined by the transition probability T(X,t [Eo, to), where
x, and SEO are the position vectors of a point in n dimensional space
whose components are Xps Xy oo o X and X100 X200 Koo respectively,

and n is the order of the system. The transition probability, in turn,

is the fundamental solution to the appropriate Fokker-Planck equation.

n

_ non 2
IR LI N Yy CHL I L
i=1 k=1 £=1

where the coefficients A, and Bkﬁ are obtained from the following

limiting conditions
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Axi
A, = lim < >
at—0 At
(1. 18)
AX. AX
. k=71
B = lim { ——— >

KL A0 at

The required solution of Eq. (1.17) must satisfy the initial

condition n

lim T(x,t IEO, to) = Hé(xi-xio)
t-t .
o i=l

as t—>00, the dependence of the transition probability on the initial
condition will disappear as the system becomes stationary, hence

tin;o T(x, t Ixo, t) = P(X) = plxps X0 o v %) (1. 19)

which is the stationary joint probability density function of the system.
Since p(xl, Hose e xn) docs not depend on time, it must satisfy the

Fokker-Planck equation in the stationary form. Therefore

n n n
0 = 2 (A)+—1 Z_"?E'—'(B ) (1. 20)
Tl e, i T2 b, 6x, ki '
i=1 k=1 £=1

In addition to the stated properties for T(;c-, t |§0, to) and p(§), they
must also satisfy the basic properties for the probability density
function discussed earlier. The derivation and justification of the
Fokker-Planck equation, and the uniqueness of the stationary

(2) (6)

solutions are given by Uhlenbeck and Wang, and Caughey.
After obtaining the transition probability and the stationary
probability functions for the Fokker-Planck equation, various other

statistical properties of the system can be determined. The detail
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procedures involved will be demonstrated in Chapter IV where the
statistical properties of a nonlinear system subjected to white random

excitation are completely solved.
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CHAPTER II

RESPONSE OF LINEAR SYSTEMS TO MAGNITUDE-
LIMITED RANDOM EXCITATION

2. 1. Introduction

In many situations, encountered both in the field and in the
laboratory, the excitation produced by a broadband random source
has many of the characteristics of a signal having a Gaussian distri-
bution of instantaneous values except that the higher values predicted
by the theory do not appear. Therefore, in all cases, physical
systems are really excited by a magnitude-limited Gaussian random
vibration rather than a strictly Gaussian random vibration. For
example, the most commonly used equipment in the laboratory to
generate various types of vibration conditions is the shaker, whose
major components are: the vibration table, amplifier, and the servo-
control unit. In the event of random wave testing or complex waves of
various types, a magnitude limiting amplifier is customly provided to
prevent the shaker armature from exceeding the maximum specified
limit. Obviously the random wave is no longer Gaussian distributed
after magnitude limiting. The clipped signal is then converted and
transmitted to the vibration table. Consequently, the test specimen is,
in reality, excited by a magnitude-limited Gaussian random signal
rather than a true Gaussian random signal. In many other situations,
such as during an earthquake, acoustic noise in the jet, etc., the

vibration follows many of the properties of Gaussian distributions
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with the exception that the higher values are absent. From the
preceeding discussion it is not difficult to see the necessity of looking
further into the response characteristics of the system when excited
by a magnitude-limited broadband random vibration.

In order to investigate the statistical behavior of a physical
system subject to magnitude-limited random vibration, the problem
must be formulated mathematically. To simplify the problem
further, only linear systems are considered. It is well known from
the theory of probability that the output probability distribution of
linear systems is Gaussian if the input is Gaussian. This is of course
not the case for the problem we are considering. The statistical
response characteristics of a linear system, when subjected to a
magnitude-limited Gaussian random excitation, is not gener ally“ known.
It becomes a very difficult problem analytically, since the instantaneous
values of the input are magnitude-limited, and do not extend to infinity.

There are no previous works recorded in the area of magnitude-
limited random vibration. However,the technique is well known in
communication theories, where the problem is one of determining the
statistical properties of the output of a nonlinear device and a filter,

e. g., a detector. Problems of this kind have been studied by Rice, (3)
Middleton, (18) Lanning and Battin, (1) Price(zz) and others. (23-27)
Their prj.mary interest is directed toward the properties of corre-
lation and the power spectral density of the response. Kac and

(23)

Siegert have also studied the probability distribution of the output

of a square-law detector. There are few other papers available
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concerning the output probability distribution of a nonlinear
detector. (24-27)

In the following, an attempt will be made to set up a simple
mathematical model, i.e., a single degree of freedom system, which
represents an idealized mechanical structure. It is desired to know
the response statistical characteristics of the system subject to a
magnitude-limited external force.

In order to clarify the exact nature of the magnitude-limited
Gaussian forcing function, its statistical properties are first
analyzed. From there, the response characteristics of the single

degree of freedom system can be easily determined. Experiments

are conducted to check the correctness of the analytical results.

2.2. A Simple Model and Assumptions

The starting point for nearly all existing theoretical investi-
gations in random vibration has been associated with a single degree
of freedom system.

.. . 2
x+2;wnx+ wnx—N(t) (2. 1)

where % is the critical damping ratio, wn is the undamped natural
frequency, x(t) is the displacement of the mass with respect to the
ground (Fig. 2.1), and finally the magnitude-limited Gaussian random
function N(t), which has the units of acceleration.

The original source of excitation prior to the magnitude

limiting operation is assumed to have the following propertics.
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F(t)

K l_:jc

/17777777

/)77

Fig. 2.1. Single Degree of Freedom System.
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1. It is Gaussian distributed in probability.

2. It is stationary.

3. It possesses ergodic properties.

4. It is band limited. The nominal frequency bandwidth extends
from d.c. to 10,000 cps.

This broadband random signal is then magnitude-limited through

a nonlinear device, the transfer function of which is given by

a Xz a
f(x) = X a>x>-a (2. 20
-a X & -a

where a is the magnitude limiting level. The nonlinear operation is
assumed to be symmetrical as shown in Fig. (2. 2).

As it was shown in Chapter I, nonlinear magnitude limiting
operation will not alter the statistical properties of stationarity and
ergodicity of the random signal (see Eq. 1. 7). However, the output
random signal is no longer Gaussian distributed.

Various statistical properties of the magnitude-limited random

function N(t) are discussed in the ensuing sections.

2.3. Statistical Properties of the Magnitude-limited Gaussian

Random Process

This section is primarily concerned with the statistical properties
of the magnitude-limited Gaussian random function N(t) {Eq. 2.1). The
effects of magnitude limiting on the probability distribution, the auto-
correlation, and the power spectral density of the broadband random

signal are presented.
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f(x)

ST —

0

Fig. 2.2. Magnitude limiter.
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2.3. 1. Probability Density Function of the Magnitude-limited

Gaussian Random Process

It is assumed from the beginning that the source of excitation
prior to the magnitude limiting operation is Gaussian distributed with

the probability density function given by

1

p.(x) e (2. 3)

NG = o
where the mean is assumed to be zero in most vibration problems,
3 is the rms value and is constant when the random process is
stationary. The output probability density function p (%) after the
nonlinear magnitude limiting operation can be defined in terms of the
input probability density function pi(X) through

-a
( 5(x+aJ p ()t  x<-a

- 00

P (x) =9 p;(x) —a<x<a (2. 4)

[ d (X'afoo Pi(t)dt x>a
a

where a is the magnitude limiting level and is assumed to be
symmetrical with respect to the d. c. level, J&(x+a) and J(x-a) are
Dirac Delta Functions at a and -a respectively. The output probability
density function po(x), as shown in {Fig. 2.3), satisfies the basic

requirements for a probability distribution, namely

pO(X) 20

(e 0]
/ po(x) dx =1

-00
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p,(x)

Gaussian probability density

Po(x)

-q o
J[’ P(t)dt JZ: Py(1)dt

! | }

~q a
Magnitude-limitcd Gaussian probability density

Fig. 2.3
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2. 3.2. Autocorrelation and Power Spectral Density of the Magnitude-

Limited Gaussian Random Process

The problem now is to determine the statistical characteristics
of the output of the nonlinear device (Eq. 2.4) when the statistical
characteristics of its input are known. Generally, this is simply a
nonlinear transformation of the random variables. Let the input to
the nonlinear device be x(t), and the output be { [x(t)] . Then it follows
from the theory of statistical averaging that the averages with respect
to the output can always be obtained by averaging with respect to the

input. Hence

00
E [f(x)] =/ £(x) p(x)dx

-0

the nth moment of the output is given by

QO
E[ () —/ £(3) pla)dx

-0
From the known output probability density function po(x) obtained
earlier, the output ensemble moments are easily obtained. The first

two moments are given by

: ©
E (%) =/ xp (x)dx = 0

- Q0

| .
E_(x%) = / x’p_(x)dx

-Q

-a -a ~a
=/' x2 (5(x+ a)/ pi(t)dt] dx/ szi(x)d.x
-a

-0 -
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QO

QO
+/ xz[g(x-a)/ pi(t)dt]dx
a

a

22f(1r 2] g [op ()
20 (= e ]

where O is the rms value of the input Gaussian random process,

and P(a/ U‘i) is given by

a 1 T t2/2
P ( )= e dt (2.5)
O_i N 2T o

The expression given above for the second moment can alternately

be written in the normalized form
2 . 2

2z -z /2

i
with the normalized parameter z0=a/(7‘i. The output over input rms
ratio U'o/ T is plotted against z in Fig. (2. 8) along with the
experimental data.

Similarly, the autocorrelation function of the output of the

nonlinear device is given by

_ QO 00
Ro(tl—tz) =/ / f(xtl) f(xtz) p(xtlxtg)dxtldxtz (2. 7)
-0/ o

where the nonlinear function f(x) is defined in Eq. (2. 2).
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The autocorrelation function of the output of a nonlinear device
can, in principle, be solved for by the direct method indicated above.
Analytical difficulties may often arisc in some cases in the evaluation
of the integral. Indirect methods, involving Fourier transform of the
nonlinear transfer functions, are often employed instead; the solutions
are then presented in the transform space. The transform method of
analysis will not, however, be discussed here. Following the
assumptions made in Section 2. 2, the output autocorrelation function
given by Eq. (2. 7) can be simplified.

o0 - 2 2
1 X1 +x2 —Z/_Jxlxz
R (tl—t y = f(x,) f(x,) —  exp- dx. dx
o 2 1 2 > 2 2 172
- 7-00 ZTrU‘i'\J 1-p ZU; (1-p7)

where /O is the autocorrelation coefficient,
E(xx,)
o
J.

i
in which it is assumed that the random variable x(t) has zero mean.
In order to simplify the calculation, the following normalizations

are made. Let

| ) a
——— = Z]_ — = ZZ = ZO
U Ui Ui
R (T)
Q( —C) = ? where T = tl—tz

' @~ © 1 zlz+ 222—2/0z1z2
f:)(t) = / f(zl) f(zz) —_— exp- > dzldz2
212 2(1- )
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Using Price's theorem (Appendix E), the integral can be further

simplified by repeated differentiation of . f;('C) with respect to /O(YZ)

2
d (T) z. tz_ -2p% @

[o // ) (2, — L exp- 1722 /‘; 122 dzdz,
df’( mn—f 2=/

where f''(z) = dzf(z)/dzz. From the definition for f(z), (Eq. 2.2), we

have
2~ (o8] [0 0]
d”["(T)
_—EQFZ— // [5(Zl+zo)- g(zluzo)] [3(z2+z0)— (S(ZZ_ZO)]
-00 - -0
1 z12+ ZZZ-Z/DZIZZ
—————— eXP- ) dzldzz
an\ﬁ‘?/b'z 2(- £
z 2 z 2
=“——1‘“—[QXP'# 'eXP'l—_O/B“]
“’T:PZ

where the symbol ) represents the Dirac delta function. It does not
seem to be possible to recover the autocorrelation function ro( T)
from the repeated integration due to the singularities appearing in the
exponential functions. However, ro( T) could be recovered from the
first derivative d FO( 'C)/d/(’ (T) by integrating term by term the

series expansion of the joint probability density function. Since
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al vy [*/°
W = [U(zl+zo)—-U(z1-zo)] [U(z2+zo)~U(zz—zo)]
-0~ -

P(Zl’ zz) dzldz.2

ZO ZO z 2+ 2-2 Z
B 1 1 T2y "2fEE, dp d
= ——-——————2— EXP - 2(1 2) Zl Z2
-zo zO 2N l—/D /)

where the symbol U represents the unit step function. The integrand

can be expanded in terms of Hermite polynomial. Since(30)
® H (xH_(y) . P22, p22 ;
Z _n___n_'_n__.__ no_ exp - X+ p V _jaXY (2. 8)
n=0 N l--/DZ 2¢- /0

where

n 2
Hn(x) = (- 1)n x /Z(dx) X /2

Hence the series expansion for the joint probability density function is

given by
2 .
1 exp- X2'+ y ZPXL Z "(Tz_i)ne-'zl /Z]
'\/l-IO& P) n=0
d )n —zZZ/Z
@, ©

Substituting this into the integral, thus
2
-2, /2 ]
e

% Z ‘
d[‘o(t)~l ° °i°(on a|®
d/o(z) T 27 Y dz,
~Z —Zo n
2

[ a | "z /2
dz,

e

dzleZ
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r 0('D) could be recovered by integrating the first derivative
d ro(_[_' )/df)(’lf) with respect to /0 (Z), and by exchanging the role of
integration and summation on the right hand side. This is

permissible since the power series

(') Pn
Y
n=0

is uniformly convergent for |/0 I < 1, hence

) o) o 0 /Ol’l‘i’]. 4
[o(T) =55 / Z o) [('CEI
-z -7 n=0
PR —ZZZ/Z
{(az—a-) e ]dzldzz

The above expression is further simplified by termwise integration

e

n —z12/2 \

of the orthogonal series with respect to z. This is due to the fact
that Hermite polynomial (Eq. 2. 8) forms a complete set and

(31)

possesses the properties of mean convergence. Finally

3

[(T) =[2P(z)-1]° +-§[P (o) +’05 (D)% + ’D7(D) .

(2. 9)
where P(zo) is defined as in Eq. (2. 5)

1 Zo -t2/2
P(zo) = e dt
V2w -co

and the differential operator
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Four terms are used in the calculation toward the sum of the series.
Selective results are shown in Fig. (2.4), where the output auto-
correlation functions are plotted against the input autocorrelation
coefficients with magnitude limiting levels as the parameter.

With the knowledge of the output autocorrelation function of the
nonlinear magnitude limiter, it is not difficult to calculate the power
spectral density of the same. From Eq. (l.10), autocorrelation
function and power spectral density are shown to be Fourier transform

pairs, in other words one can be obtained if the other is known. Hence

©
So(f) = 4/ Ro('C)cos 2w fT dT (2.10)
0

where So(f) and RO('C) are the output power spectral density and
autocorrelation function, respectively, of the magnitude-limited

random function, and since

2 R,(T)
R (T) =0 [L(T) and /0(3):_(7__2__
i
Eq. (2.9) can be rewritten as
3
R.Y(T)
R(T) = q," [L(T) = [Pz -1 )2 Ry T + 2[5 —4— @2
J3
(2nt1)
R, (T) ]
1 2n-1, 2
to T z T D ] (2. 11)

i
where giz and Ri(-f) are the mean square value and the auto-
correlation function,respectively,before the magnitude limiting

operation.
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As it was indicated previously that the series expansion for
d r‘o( T)/d P(’C ) is uniformly convergent with respect to the auto-
correlation coefficient (T), term by term integration is then
permissible. This property can also be applied to the series
expansion for R(’C) and Ro( C). Therefore the power spectral
density So(f) could be calculated if the input spectrum is known.

Suppose now the input random process is band limited, and has
constant power spectral densities within the frequency band and zero

elsewhere, e.i.,

S{f) =S o=sfsof
i o o
(2. 12)
=0 Elsewhere
Hence,
0 £ S sin 2w T
Ri(f) :f Si(f)cos 2nf T df =f Socos 2nf T df = >—r {2.13)
0 0

The assumed spectrum is practical and can be approximated very
closely by experiment.
Substituting Eq. (2.13) into Eq. (2.11), then together with Eq.
(2. 10) the output power spectral density could be calculated. The
following integrals will be involved in the calculation. They are listed
here for reference.
@

sin x

2
x

™ k
cos kxdx:-z(l——z-} k<2
=0 k=2
© 3

f s:‘ibicoskxdlegf(3-k2) 0=k < 1
0 x
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iy

-1—6—(3k) ls k< 3
=0 3=k <

00

sin5x 2 4
f 5 coskxdx——Z[HS 30k+3k:' 0<<k<1
0 X
- [55+10k 30Kk% 10K° k4] lek< 3

T 2

If three terms from Eq. (2.1l) are used, the power spectral density of
the magnitude limiter output is approximated by
2 2 2 4 }
_ ) 1, f 1,2 1 f £ 3.2
So(f) = so{ [ZP(ZO) 1] s [3 _f--z| (D) + Ex TN (115-30 }-—2 +3 F)(D )
o} o o

0<f<f{
o

2
_ 1, f 1 2 3 4 32
= so{ i 3 T ) (Dh% >ggg (55t 10k-30K"+10k™ -k ') (D)}(Z. 14)

f < f<3f

o} (o]

P S (5———f )4 p3)? 3f < f<5f
“Yo] 11520 fO (D7) o o

Because of the rapid convergence of the series, the error is only of
the order of 3% when a four-term approximation of the series is used.
The results are shown in Table (2.1) where the power spectral
densities are tabulated against the frequency and the magnitude limiting
level. It is interesting to note that the power spectral densities remain
es sentiaily constant in the frequency range 0<<f< fo, and extend further
beyond when the input to the limiter is heavily clipped.

A less tedious way to calculate the output power spectral density
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of the limiter is to assume the shape of the input spectrum to be the

following 2
_ -af
5.(f) =5 ¢ £=0 (2. 15)
and
(oS
Ri('C) =[ Si(f)cos 2w fT df
0
% —a.fz
:f Soe cos 2nfT df
0
S 2.2
-2 AR T e
2.2
2 -
_ T C /a (2. 16)

Equation (2. 9) can be rewritten as

Ro(’C) 1,2

RoT) ={[2p(z0)-1}2 T e, 2[0)

\E]

—31r2'Cz/a
e

3,2 2.2
fD) 5Ty ]} (2. 17)

The corresponding power spectral density is obtained from Fourier
cosine transform, hence
S (f) =8 {[ZP(Z b)—l] . e_af2+ E|:(—D}lz—e—af2/3 + —(23—)—2— e—af2/5+ . ]}
© ° © TLan 3 51N5
(2.18)
The results are shown in Table (2. 2), where the output power spectral
densities are tabulated against the frequency and the magnitude

limiting level. It again demonstrates the fact that the spectrum shapes

remain essentially constant in the lower frequency range. A slight
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increase in the magnitude of the power spectral densities at the high

frequency end is noted.

2.4. Response of a Single Degree of Freedom System to Magnitude -

Limited Random Excitation__

It has been mentioned previously that the primary objective of
the investigation is to find out the effect of magnitude-limited random
input on a structure, or a test specimen, etc. A single degree of free-
dom oscillator will be the most representative model (Fig. 2.1) in
this respect. We will study the response of this model subject to
magnitude-limited Gaussian random excitation. The differential
equation has already been given previously,

%25 w K+ x = N(b) (2. 1)

where N(t) is the magnitude-limited Gaussian random forcing
function, the statistical characteristics of which have already been
investigated in the preceding sections.

Now it is desired to study the statistical behavior of the dis-
placement variable x(t). Since this involves only linear system with
constant coefficients, the techniques introduced in Section (1. 5) will
apply. If the steady state situations alone are considered, the output
random process x(t) will be stationary and ergodic if the forcing term
N(t) is stationary and ergodic. Some of the results, which could be
obtained é.nalytically, are presented here. These include the power
spectral density function, mean square response, and the auto-

correlation function.
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For a single degree of freedom system, the motion of the mass

is governed by the convolution integral
o)
x(t) =[ h(T ) N(t-T)dT
0

where h(T ) is the impulse response of the system

-sw. T
h('C)=—-1——-—— e >%n sinw_ N 1- "52
wnr\/l-sz n

and its Laplace transform (or the frequency response) is given by

1

H(jw) = 73 )
(wn—w)+325w%1

(2. 19)

From Eq. (1.13) the power spectral density of the oscillator is given by
5_()

4 w 2 : w 2
w {1 J +(z52) }

2
s ) =80 [HGw)| = (2. 20)

where So(f) is the power spectral density of the magnitude-limited
broadband random signal (Table 2.1 or 2. 2), and Sx(f) is the power
spectral density of the oscillator. Since the bandwidth of the input
power spectral density So(f) is usually wide compared to the natural
frequency w, of the system, So(f) is approximately uniform in the
neighborhood of the natural {requency Wy The shape of the curve for
SX(f) at small damping follows essentially that of ] H(j w) lz with its
magnitude modified by the magnitude of the input power spectral

density So(f) along the entire frequency range.

From Eq. (1.10), the mean square response is simply given by
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o 2
2 .
Ty =f 5_(f) ,H(_]Z'n'f)l daf

0
-foo So(f)df . So(fn) (2. 21)
= > = .

2 2 8‘5w
0 4 w w n

where So(f) is considered to be constant (see Table 2.1, 2.2 and the
experimental data in Fig. 2.1l) over a frequency range which is wide
in comparison with the natural frequency uJ o The quantity So(f)

can be taken outside the integral. This can be further justified from
the fact that the integral is not sensitive to the upper limit in the in-
tegration, i.e., the upper limit can be replaced by some frequency fc.
The error introduced will be less than 2% at fc: 10fn. This is
estimated from the fact that the integral can be easily changed to the
standard form and evaluated according to the following indefinite

(51}

integral

2
x -+ qucos%Jr q2

2

dx = 1 {sin 2 4n
= et
ax.4+ bXZ+ C 4aq sin a 2

X —qucos—g—+ q

2 2
+ 2 cos % tan—l( —i:'g'——a—'—-)}
2gx sin >

where

q = 4/ %, cos%=— b s and b2—4ac<0
' 2N ac

The ratio of the rms value output of the single degree of freedom

system to the rms value of the magnitude-limited input vs the amplitude

limiting levels are shown in Fig. (2.9) along with some experimental
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data.
The autocorrelation function output of the single degree of
freedom system can be obtained from the Fourier transform of the

power spectral density
oo
R('E)=4f S (f) cos 2wiT df
x x

0
00

2
- 4[ So(f)lH(jZTrf)l cos 2nf T df

A ey

n

0
["0 4 _(f) cos 2nfT df
0

This integral is similar to that given by Eq. (2.19), and can be

evaluated in the same fashion as it was indicated earlier. Hence

[0 0}
R (_C)_4So cos 2mfT df
X T4 2

W 2 2 2
n 0 {[1_(—3—5) ]+(2§f—)}

n n

= 4 0x 26—211' fnsT [cos 2nf '\/1_-—32 + 2 gin 2wf '\/_1-—’5_2_5]
n \/1-_’52 n

A schematic diagram for the power spectral density and the
autocorrelation function of the single degree of freedom system is
shown in Fig. (2. 5).

One of the very important statistical quantities in random
vibration pr 6b1ems is the probability function. Unfortunately,the
problem, concerning the probability function of the output of the

single degree of freedom system subject to magnitude-limited
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A schematic diagram for the power spectral density
of a single degree of freedom system
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N

A schematic diagram for the autocorrelation function
of a single degree of freedom system

Fig. 2.5
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Gaussian random excitation, has not been solved. The probability
function is unknown even under stationary conditions. Experimental
techniques are further explored. The results are presented in the

following sections.

2. 5. Experimental Investigations

This section is primarily concerned with the experimental
verification of the analytic results obtained in Section (2. 3). Experi-
ments performed on the system described in the preceding sections,
and the results of these investigations are presented. An analog
system is used to simulate the equation of motion for the single degree
of freedom system subject to magnitude-limited random excitation
(Eq. 2.1).

The experimental results are divided into three groups: the
mean square value measurements, the power spectral density
measurements and the probability distribution measurements. The
basic theory involved in obtaining these measurements are presented
in Appendices A, B and C.

Comparisons are also made between the experimental and the

analytical results whenever they are available.

2.5.1. Analog System

The complete analog system for a single degree of freedom
system subjected to magnitude-limited broadband random excitation

is shown in Fig. (2. 6). The type of instruments used are listed in

Table (2. 3).
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TABLE 2.3

Analog instruments used in the study of the response of a single degree

of freedom system to magnitude-limited random excitation.

Item Type Manufacturer Model Number
1 Random Noise General Radio 1390B
Generator Corp
2 Variable Filter Krohn-Hite Corp 335
3 Sine Wave Generator Hewlett & 202B
Packard
4 Analog Manifold Philbrick K7-Al10
5 Random Noise B &K 2417
Voltmeter Instruments
6 Frequency Counter Beckman 7350
Instruments
7 Magnitude Limiting C.I1.T. Vibration
Circuit Laboratory
8 D. C. Power Supplies Hewlett & 721A
Packard
9 *Probability Distribution
Analyzer
10 *Power Spectral Density
Analyzer
11 Visicoder Honeywell 1508
12 Capacitors Southern
: Electronics
13 Resistors Welwyn
14 Oscilloscope Tektronix 502

* Refer to Appendix {B) (C) for construction details.
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To provide the analog model for the single degree of freedom
system with an input, an analog voltage must be supplied to simulate
the type of excitation experienced by the mechanical system. A
General Radio Type 1390B Random Noise Generator is used as the
source of excitation. The output voltage signal of the Noise Generator
is further modified at the high frequency end by the Krohn-Hite Model
335 Variable Electronic Filter. The bandwidth of the filter can be
varied in such a way as to match the frequency spectrum encountered
in real situations. The filter is made up in principle by cascading 4
stages of RC filter, each of which has a é6db/octave, or a total of 24
db/octave attenuation slope at the cutoff frequency. The transfer
function (the ratio of output over input) for the filter, when it is
operating in low pass mode, is given by

! (2. 22)

(r2iaww - wle )
when W, is the nominal cutoff frequency. A is the peaking factor so
that the required attenuation at the cutoff frequency can be obtained.
Experimental calibration (using sinusoidal input) indicates that the
formula given above is correct when the peaking factor is taken to be
0. 6.

Magnitude limiting of the broadband réndom signal obtained
above is achieved by using the circuit configuration shown in Fig. (2. 7).
The functional relationship between the input and output of the limiter
is shown in Fig. (2. 2). Operational amplifiers are not included in the

magnitude limiting circuit since it is found that the frequency response
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characteristics are considerably improved if Zener diodes alone are
used. The components involved in the magnitude limiting circuit
shown in Fig. (2. 7) are two Zener diodes, a fixed input resistor and
two variable d. c. power supplies. The Zener diodes are the G. E.
Type (0439), having a very sharp Zener knee at -10 volts. The fixed
input resistance is used to prevent loading on the preceding circuit.
Two regulated variable d. c. power supplies (HP model 721A) are used
primarily to allow the limiting voltage level to be set to any pre-
determined magnitude.

The magnitude limiting circuit is not an ideal nonlinear device.
The limitations are observed to be the following.

1. An ideal sharp corner as shown in Fig. (2. 7) is impossible
to achieve in practice, and it becomes worse when the signal is
heavily limited.

2. The limiting level a is not in general constant, and possesses
a finite but small slope.

3. Phase shifts become noticeable at higher frequencies (at about
5kc). (See the hysteretic loop shown in Fig. 2. 7.)

Even though there are some limitations in the circuitry, results
obtained, as it will be shown later, have indicated that these imper-
fections are relatively insignificant.

The Réndom Noise Generator along with the Variable Filter and
the magnitude limiting circuit, when connected in series, will provide
the analog system with an analog voltage input which has the specified

properties (see Eq. 2.2). The analog set-up for the single degree of
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freedom system is discussed in Appendix A. Other specialized
measuring equipment, such as the Power Spectral Density Analyzer,
the Probability Distribution Analyzer, and etc., are discussed in

Appendices B and C.

2.5.2. Experimental Procedures

The experiments are primarily designed to obtain three groups
of data, namely the rms measurement, the power spectral density
measurements, and finally the probability distribution measurements.
With the necessary instrumentation and the calibration data, various
analytical results obtained earlier can be verified. The instrument
should be connected as shown in Fig. (2. 6). The operating procedures

for the respective measurements are given in Appendices A, B, and C.

1. RMS value measurements.

To provide various random signals with a reference voltage, rms
value measurements are made for the following types of signal:

a. The rms value (7 of the broadband Gaussian random signal
before magnitude limiting.

b. The rms value T, of the magnitude-limited broadband
Gaussian random signal,

c. The response rms value T, of the single degree of freedom
system (natural frequency set at 200 cps) when subjected to

magnitude-limited random excitation.
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2. The power spectral density measurements.

The power spectral density measurements are taken for the
following types of vibration signals:
a. The Gaussian broadband random signal from the Random
Noise Generator and the Variable Filter.

b. The magnitude-limited broadband random vibration signals.

3. The probability distribution measurements.

The experiments are set up to measure the probability
distribution functions of

a. The broadband random signal before magnitude limiting.

b. The magnitude-limited broadband random signal.

c. The response of the single degree of freedom system subject

to magnitude-limited Gaussian random excitation.

The operating mode for the Noise Generator is set at 20kc; in
other words the instrument has a noise spectrum approximately
uniform over a frequency range from less than 50cps to over 20kc.
The signal output of the Noise Generator is not, however, symmetri—
cally Gaussian distributed. The Krohn-Hite Variable Filter is used
to reduce to effect of skewness present in the signal, and furthermore,
to limit the noise signal to the desired frequency bandwidth. During
the experiment, the filtered random noise signal has a nominal
freque ncy.band extending from d. c. to 10kec.

The natural frequency of the single degree of freedom system

is fixed at 200cps thr oughout the experiment. The critical damping
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ratios are set at 2%, 5%, 10%, and 20%, respectively.

2.5.3. Observations and Results

1. The quantity Q"O/ T;» which denotes the relationship between
the input and output of the nonlinear magnitude limiting circuit, is
plotted against the normalized amplitude limiting level in Fig. (2. 8).
The agreement between the theoretical (Eq. 2. 6) and the experimental
results is excellent.

2. The response characteristics of the single degree of freedom
system, when subjected to magnitude-limited Gaussian random
excitation are shown in Fig.(2.9), where the ratio (.TX/ 0‘0 is plotted
against the normalized amplitude level a/ T

It has beén indicated in Section (2. 4) that the response of the
single degree of freedom system is closely related to the frequency
spectrum of the input. The method of calculation for the response of
the system was shown in Eq. (2. 21). The computed results are
illustrated in Fig. (2.9).

Excellent agreement between the computed and experimental
data is obtained over the amplitude limiting range extending from
1 G‘i to 3 q; and beyond. The computed results show a significant
departure from the experimental data when the signal is heavily
limited. This is due to the fact that the series given by Eq. (2.14) is
only mean convergent rather than uniformly convergent. The experi-
mental data have shown that the ratio (TX/ Cl'o is independent of the

magnitude limiting level.



-53-

3. The power spectral density data for the Gaussian broadband
random signal are shown in Fig. (2.10), in which the power spectral
densities are normalized with respect to the value So’ where the
spectrum is approximately uniform. The hump appearing at the
cutoff frequency is due to the characteristics of the Variable Filter
(see Eq. 2.22).

4. The power spectral density analysis for the magnitude~
limited broadband Gaussian random signal is presented in Fig. (2. 11),
where several power spectral density curves, representing different
magnitude limiting levels, are illustrated. The actual power spectral
densities are normalized with respect to the value So’ which has
already been defined in (3).

Although there are no theoretical calculations to back up the
experimental data shown in Fig. (2.11) (due to the difference in the
assumed theoretical and experimental spectra shapes near the cutoff
frequency), the agreements between the computed results shown in
Table (2.1), (2. 2) and the experimental data are excellent in places
where the spectrum is flat. These results are presented in Fig.
(2.12), where the experimental data are compared with the theoretical
power spectra having sharp cutoffs (Eq. 2.12), and Fig. (2.13), where
the experimental data are compared with the exponential power spectra
(Eq. 2.15). |

5. No attempt has been made to analyze the spectrum of the
response of a single degree of freedom system, since the power

spectral densities in the vicinity of the system resonant frequency are
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found to change so rapidly that it is usually impossible to measure
the output of an analog filter accurately.

6. The probability distribution data for the broadband random
signal are presented in Fig. (2.14) on a probability paper. The
ordinates have been normalized with respect to their own rms value
T;e It is essentially a straight line; in other words the broadband
random signal is indeed Gaussian distributed in probability.

7. The probability distribution data for the magnitude-limited
broadband random signal is shown in Fig. (2.15), where the results
are presented for several magnitude limiting levels. The ordinates
have been normalized with respect to the rms value T, of the broad-
band random signal.

8. The effects on the probability distribution of the response of
the single degree of freedom system subject to magnitude-limited
Gaussian broadband excitation are illustrated in Figs. (2.16) and (2.17),
where the ordinates have been normalized with respect to its own rms
value G < It is found, within experimental capability, that magnitude
limiting on the input broadband random signal has little effect on the
probability distribution of the instantaneous values of the response of
a single degree of freedom system if the damping present in the system
is small. Experiments were carried out for the cases where the
critical damping ratios of the system are 2% and 5%, respectively.
The response of the system is found to be Gaussian up to 3 G’X level
even though the input to the system is heavily magnitude-limited (down

to 0.2 (Ti). For systems with more damping, the situation is quite
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different. The probability distributions of system response have
the characteristics of Gaussian distribution only at the lower
amplitude levels. These results are illustrated in Figs. (2.16) and
(2.17) where the system critical damping ratios are fixed at 10% and

20%, respectively.

2. 5.4, Estimation of Errors

There are no appreciable statistical errors involved in the
estimation of the rms values of a broadband signal. The actual errors
in estimating the rms values Q‘i and q, for the broadband random
signal before and after the nonlinear magnitude limiting operation are
believed to be less than 1%. In essence, this is based on the concept of
(53, 54, 55)

the variance of the error estimator

2 1
" BT

where T is the total time involved in the measurement, and B is the

€

frequency bandwidth, which has been assumed earlier to cover a range
of 10kc. The product value BT in this case is 10, 000 if T equals one
second. The corresponding error € is therefore 1%. The validity of
this estimate is based on the assumption that the measured spectrum
is relatively flat within the frequency band.

For a narrow band signal on the other hand, the situation is more
complicated due to the fact that the total time T involved in the measure-
ment must be long in order that the product value BT be large. For
example, if the natural frequency fn of a single degree of freedom

system is 200cps, and the critical damping ratio c/cc of the system is



2%, the nominal frequency bandwidth B (the distance between the half
(37)

power points) is given by

B =2c/c_f = 8cps
¢ n

in order for the estimated error to be less than 3%, the total measure-
ment time must be more than two minutes.

The single degree of freedom system involved in the experiment
has a natural frequency fixed at 200cps, and the critical damping ratio
c/cC ranging from 2%, 5%, 10%, to 20%. Their respective measure-
ment time periods are set according to the &€ = 3% error estimate
criterion.

In measuring the power spectral density of a random signal the
error estimate criterion is identical to that discussed above. Here
again, a narrow band filter is involved. The error estimate depends
on the product value BT in places where the power spectrum is
changing slowly within the narrow frequency band B.

The narrowband filters used in measuring the power spectral densi-
ies have equivalent bandwidths Beq ranging from 4. 53 cps, 12. 43cps
to 31. 64cps. Their respective measurement timme periods T are set
according to the € =3% error estimate criterion. In addition to this,
ther e are other sources of error in measuring the power spectral
density, such as those involved in the data interpolation through
external monitoring (see Appendix B), and those involved in the
determination of the equivalent bandwidth, Beq’ and etc. The total
accumulative errors are estimated to be around 5%.

The only uncertainty factor in measuring the probability
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distribution function of a random signalis the total time T involved
in the measurement (see Appendix C). In the course of the experi-
ment, the total time T required for an accurate measurement is
specified according to the repeatability of the successive data
readings. Itis found that the time T depends critically on the
magnitude of the amplitude level, at which the measurements are
taken. More time is required if the measurements are taken at a
higher amplitude level, since the signal makes only infrequent passes
at this level. Therefore, the data points taken in excess of the 3qx
level are not accurate unless one is willing to wait for many hours or
even days. In general, the uncertainty errors in the probability
distribution measurement are found to be less than 2% within the

amplitude range |A| < 3 Ty
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CHAPTER III

PEAK CHARACTERISTICS OF THE RESPONSE OF LINEAR
SYSTEMS TO BROADBAND RANDOM EXCITATION

3. 1. Introduction

The theory of random vibration has been developed in the
preceding chapters. In particular, the way in which statistical
properties of a linear vibratory system depend on the source of
excitation has been discussed. The response of the system may
represent stresses or strains in a structure. It would be highly
desirable then to know the reliability of such a structure in the
randomly excited environment. In other words, a statistical quantity
must be found to provide a satisfactory description of the failure
mechanism. This is the primary motivation for the studies of the
peak characteristics in -a linear system.

There are several failure criterions commonly usedvby a design
engineer. First of all,the well-known first passage time problem,
which is mainly concerned with the probability that the random variable
x(t) starting from the value X=Xg reaches the value x=x) for the first
time in a given time T. Many types of equipment fail the first time
that x(t) reaches the fixed amplitude level % The mathematical
difficulties associated with this problem have been indicated by Wang
and Uhlenbeck. () Secondly, the failure may also occur when the
equipment involved stays above a certain fixed amplitude level over a
prespecified fraction of the total time. Mathematically,it is a simple

matter to relate the failure condition to the probability distribution of
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instantaneous values. Lastly,but most important of all is the concept

35-38
( ) It assumes

of’ cumulative damage proposed by Miner and others.
that the damage accumulates linearly, so that if a structure is sub-
jected to n, stress reversals at the level 8. the partial damage is
Si/N(Si)’ where N(si) is the total number of stress reversals

necessary for the equipment to fail at the stress level 5 The

cumulative damage D is given by

n,
D = z—-_-yNi(;i (3. 1)

with equipment failure occurring at D=1

Miner's hypothesis of fatigue damage could be directly applied
to the cases where random stress ﬁatterns are involved, since it does
not require a knowledge of the temporal sequence of loading. In the
application of Miner's rule to fatigue problems in random vibration,
the knowledge of peak distribution is required in the estimate of
fatigue failure in a structure. Past studies of fatigue life are
restricted to a stress time history, whose peaks are distributed
according to the Rayleigh distribution, and recent efforts(37’ 38) have
been made to study the fatigue failure for the structure with stress
time histories which are more complicated. Miner's criterion can no
longer be applied in such a case since some stress peaks do not
experience éomplete stress reversals. However, it is usually found
that the stress time histories can be disintegrated into several modal
components in the frequency domain. It has been suggested by

Schjelderup and Galef(38) that the total stress be resolved into its
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mean and alternating components; the former tends to be Gaussian
distributed and the latter approaches a Rayleigh distribution. By
taking into account the effect of modal participation it is hop’ed that the
fatigue life could be estimated through the alternating component of
the complex stress time histories by Miner's Rule. Much experi-
mental and theoretical work needs to be done to substantiate this
hypothesis.

From the brief discussion on fatigue failure due to random
loading it is not difficult to sec that knowledge of peak characteristics
in a randomly excited structure with complex time histories is
required. This is the subject of this chapter and it is hoped that the
additional studies in the probability distribution of peaks will help to
rationalize the developments in the area of fatigue.

The mathematical theoreis of the distribution of peaks have been

(3)

developed by Rice in his classical paper. The results can be adapted
directly for engineering use, since the underlying assumptions made by
Rice in the studies of distribution of peaks are that the noise or the
vibration signal involved be stationary and Gaussian. These, of
course, have been assumed all along in the course of investigation.

In the following sections, the attention will be first focused on
the analytical treatment of the distribution of peaks, peak character-
istics in a 1ihear structure as éfunction of input frequency bandwidth,
and the peak distribution characteristics of the combination of two

narrow band vibration signals in the simulation of systems with

complex time histories. Experimental studies of the peak character-
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istics are performed by an analog computer. Analytical and experi-

mental results are presented in the ensuing sections.

3. 2. Analytical Investigations

We shall consider first the general theories, which are
concerned with the probability distribution of peaks or maximas of a
stationary Gaussian random process. The second problem is
associated with the effect on the characteristics of peaks of a linear
structure when subjected to a broadband random input with variable
frequency bandwidth. The third problem is concerned with the peak
distribution characteristics of the combination of two narrow band

random vibration signals.

3.2.1. General Theory

It has béen pointed out that Rice has given a general formula for
the probability distribution of peaks. His general equation was
obtained by considering the joint probability distribution function for
the displacement x(t), velocity X(t), and the acceleration variables %(t).
The random vibration signal is assumed to be stationary and Gaussian.

The number of peaks N(a) above a certain level a is given by
0 0
N(a) :[ dx f -x P,(X’ X, -}.{)5;:0 dx (3. 2)
a -00

where p(x, %, X) is the joint probability density function mentioned
above. Since the maximas occur when the first derivative k(t) = 0,

and % (t) is negative, the meaning of Eq. (3. 2) is clear. Also from
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the fact that the variables x(t) and x(t); X(t) and %(t) are linearly
independent {correlation coefficients identically zero), the three

dimensional Gaussian probability density function is then given by

3 1
. T2 T2 1 -1 2 22 4 .. 2 _ 2.
p(x,0,%) = (2m) ]1\/1| exp [- > fMl ((J'2 03 x + ZGZ xx+ql T, X %]
(3. 3)
where
2 2 2 4
M| = @700y ay )
and
oo
2 2, _
J; = E(x") —[ Sx(f)df
0
00
xTzz= E(x%) = -4w2f fZSX(f)df (3. 4)
0
[oo)
q~32= E(%%) = 16#[ s (fat
X
0
S_(f) = the power spectral density of the random
x signal

Substitute Eq. (3. 3) into Eq. (3. 2) and then integrate:

2 2
T3 ; J32 7> -a /Z(T1
N(a)=4n0_erc +4-'1'rc]' ©
2 2_ 2 4 1
2(q -3, )
2
U, 2
[1 + ert — J (3. 5)
e 4
U3 2((1'1 G; -0, )
In referrihg to Rice's paper, (3) the expected number of zero crossings

per second with positive slope is given by
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© , 1/2 1/2
f £° s(f)df 2
1o 1| T2 36
N, =1 =% =5 |—2 - (3. 6)
fS(f)df Ty
0

The expected number of peaks per second can also be obtained by

letting the amplitude level a in Eq. (3. 2) approach -oco, hence

@ , 1/2
f 4 s(gar 2 11/2
N =2 L1 (3. 7)
P © , T 2w Q‘Z )
[ % S(f)df 2
0

where Np denotes the expected number of peaks per second. The

complicated expression given by Eq. (3. 5) can be simplified and put

in terms of the quantities N , NP and the normalized displacement
o}

z=a/ crl. Hence

1 z 1 —ZZ/Z Noz
N{z) = 5 N_ erfc + 5N e [1 + erf ———— ] (3. 8)
2'p kW2 2 © Npk'\/ Z-

where

k = N 1-(N07Np)2

x 2
eerb=w—2-—f e—t dt

N'm 0
erfcx = l-erfx
" N(z) = Normalized peak distribution.
The ratio Ncr)/Np merits special attention in the analysis of peak

distribution. Since if NO/Np approaches unity, Eq. (3. 8) becomes
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N z= 0

N(z)z{ 2
N e 2 /2 z =0
P

which can be easily recognized as the peak distribution of the Rayleigh
type. This result ié not surprising in the sense that if the zero
crossings per unit time are approximately equal to the total number

of peaks per unit time, it is a narrow band process. On the other
hand if No/Np approaches zero, the second term in Eq. (3. 8) vanishes
and the first term becomes:

N{z) = —; NP erfc%

Qo

2
=N [—i——— j e_t /2 dt] -0 < Z <= 00
p 2T

This is clearly a probability distribution of the Gaussian type.

From these limiting cases the expression given by Eq. (3. 8)
can, in effect, be divided into two terms the first of which is Gaussian
like and the second of which is Rayleigh like. The ‘curves for all
other possible combinations of the ratio No/Np’ where 0< NO/NP< 1,
will always lie between a Gaussian distribution and a Rayleigh

distribution (Fig. 3.1).

3.2.2. Peak Characteristics of a Single Degree of Freedom System

A single degree of freedom system is employed here as the
structural model in the studies of peak characteristics. This is a

particularly illustrative example in that the peak characteristics of
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Fig. 3.1. Peak distribution of a Gaussian
random signal X(t).
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the single degree of freedom system show a marked change when the
frequency bandwidth of the input spectrum is increased.
From Eq. (3. 7) the expected number of peaks per second for

the single degree of freedom system is given by

oo
[ 5 () #* |H(j2nn) | 2 at
= Ooo 3 (3.7)
f s_(f) £ |H(j2nf) | af
0 X

where H(j2nwf) is the transfer function for the single degree of freedom
system (see Eq. (2.19) ), and SX(f) is the input power spectral density,
which is assumed to be constant in the frequency range extending from
zero to some frequencies fo. The integral appearing in the numerator
of Eq. (3. 7) is divergent if fo goes to infinity. On the other hand,
however, the integral appearing in the denominator of Eq. (3. 7) is
well behaved and convergent.

In order to study the divergent behavior of the integral appearing
in Eq. (3.7), several types of input spectrums to the single degree of
freedom system are considered. First of all, let the input power
spectral density be constant over the frequency range extending from
zero to fo cps and zero elsewhere, Eq. (2.12). Equation (3. 7) can be

reduced to s

t*s_ [H(zne)|® at 1/2

N, = [
f °s, lH(ijf)IZ ar
0



-77-

f /f 1/2
(e}

f n X4d.X
x4-2 cos Oxz +1 1/2

= fn[—— (3. 8)
f o' n XZdX ‘
0 X4—2 cos OX& + 1

|
N

i

L2}
B
iy
~
[~
-

[\¥)

where

-y
li

the natural frequency of the system

b
i

the ratio f/f
n
cos 6 =1-2 %;2

= critical damping ratio = sin 6/2

f/f
- o n XkdX
k 0 x7-2 cos 0 x1
The integral 14 can be expressed in terms of the lower order integrals
fO
14 =q + ZI‘2 cos @ - I

Hence Np is changed to
1/2

f /fn+ 212 cos 0- I0
} (3. 9)

_ o)
Np N fn[ I2
where IZ and IO are well behaved integrals, i.e., they are convergent

when the ratio fo/fn becomes very large, and are given respectively by

£ /f 2 0
. :f o' 'n dx 1 o (fo/fn) + 2cos > (fo/fn) +1
° xt 2cos0x%41  8cos % (£ /£ )"~ 2cos SE /5 ) +1
.0
X 1 tan"l Z(fo/fn) sin -
4sin 2 1- (£ /1)
2 on



-78-

f/f 2
o/ a deX 3 (fo/fn) -2 cos-%(fo/fn)'l'l
IZ:I F rcos0x1 8 0 4» £ /£ )% 2oos O (£ /£ pt1
0 X cos 0x cos~ (0 n cos (£ /1
2(f /£ ) sin 2
+ 1 tan_l o n 2
0 2
43111_2- 1- (fo/fn)
2
> x4dx fo H2cos 0 (fo/fn) -2 cos % (fo/fn)+1
B = + Zn
14_[ x4—2cos 9x2+1 _f1_1 8 cos—g- (f /£ )2+ 2 cos 9 (f /£ M1
0 . o n 270 n
9 . . O
X (2 cosé--l) i} 1 Z(fo/fn)snl—z-
4 sin 3 = 1-(f_/f )2
ma o n

Theoretical calculations on the expected number of peaks per second
(Eq. (3.9) ) with respect to the input frequency cutoff fo are plotted
in Fig. (3.6) ‘along with some experimental data. It is readily known
that the total number of peaks goes beyond bound when the ratio fo/fn
becomes very large.

Another type of input spectrum, which is often used to
approximate the power spectral density in many real situations, is

given by 2
s(f) = soe‘a“'E (2. 15)

where SO is the power spectral density at d. c., and is assumed to

be a constant. Equation (3.7) can be reduced to
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/ 75 e |H(j2nf)| af
0 o]

P co _ 2 2
j fZSOe af |H(j2nf)| af
0

: 2
[oo e-bX X4dX
0

- f X4—2 cos O X2+ 1 _f J4 (3. 10)
n [m e"bXZ X?dX n| J )
0

x4-2 cos @ X2+ 1

where cos @ =1-2 52

_ 2
b = afn
(o's] 2
P B e'bX XkdX
k=

0 x4—2 cos O 'x2+ 1

‘Other notations are similar to those defined earlier. The integrals
appearing in Eq. (3.10) can be solved by the following method. ILet

(oo} 2

-bx
_ e dx
To(P) ‘f % 2

0 x -2cos9x +1

Differentiating the integral Jo(b) with respect to the variable b, we

have
[0} 2
dJ o (P) _ _f x% ¢ DX dx
db 0 X4—2COS 9X2+1
2 o's) 2
. d Jo(b) -_—f X4e-bX dx
db‘2 0 X4—Zcos ze+1

Hence the integral Jo(b) satisfies the following differential equation
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2

7(b) a7, (b) by?
———-—-2——-1- 2 cos O ———— —a5 + Jo(b) -‘-/ e dx
0
or
2
d Jo(b) dJo(b)

_1
——-2—+ 2 cos 0 & +J0(b)—?'\/n‘/b

The initial conditions are
(6’0}

Jo‘o):/ g = g
0 x -2cos 0 x +1 4sinz

(00]

1 - =T
Jo'(0) = / T T TS
0

x -2 cos 8 x"+1 45111—2—

Equation (3. 10) can be solved completely in terms of the initial

conditions and the convolution integral. Hence
JO'(O)+ JO(O)cos 0

- ~_-acos® . -acos 0O . .
Jo(b) = JO(O) e cos [a31n 9] + =50 sin(a sin0)
a
I\’ - _nt
t 5 S'EO/ ! e (a-af)cos 0 sin [(a—a')sin O} da!
i A Mo

With the initial conditions, the following cxpressions arc derived

—bx ~bcos @
J (b) / dzx =1r2e —5 cos[bsin9+~%]
x¥-2c0s 0x%r1 sin
+ T e-acos g/ % €08 0 sin[(b-zz)sin 4] }dz
sin 0

0
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fo's) | 2

-——dJO(b);/ e—bX deX - me 2 °°F ° cos[a sin 6 - ° ]
db 0 x4-—2cos 0 x2+ 1 < ein 0 2
No 5
ey g e 208 Q/ e? ©O° 0 sin [(b—zz)sin O—Q] dz
0
2 © 2
d Jo(b) ) X4e—bx dx } _‘Te—bcosg - sino 30
2 ’ =T Z2sin@ cosPE® "2_]
db 0o X -2cos @ x +1
,\/n_e-bcosg v zzoO 2 1
+ 50 / e? “°°%gin [(b—z )sinQ—ZO}dz + > N /b

0

If the above equations are substituted into Eq. (3.10) the expected
number of peaks per second for the single degree of freedom system
with input spectrum given by Eq. (2.15) can be computed. The results
are illustrated in Fig. (3. 2), where the total number of peaks is
plotted against the independent variable b, which is directly related to
the bandwidth of the input power spectral density. As the given
quantity b decreases, the frequency bandwidth will increase correspond-
ingly.

From the discussions made above, it is easy to see that the
expected number of peaks per second is very sensitive to the bandwidth
of the input épe ctrum. In manﬁr engineering vibration pr obléms,
however, it is often assumed that the peak distribution of a single
degree of freedom system is of Rayleigh type without reference to the

frequency characteristics of the input. This assumption works well
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as long as the bandwidth of the input spectrum is not large in
comparison with the natural frequency of the system. A significant
departure from the assumed Rayleigh distribution of peaks has been

observed in the experiment to be described later.

3,2.3. Peak Characteristics for the Combination of Two Narrow Band

Signals

The number of natural frequencies of vibration of a system is
equal to the ﬁumber of degrees of freedom. As the number of degrees
of freedom increases without limit the concept of system with
distributed parameter s must be formed. Types of systems with
infinite degrees of freedom include rods, beams, plates, and other
basic structural elements. It is also common to find systems with
only a finite number of degrees of freedom, for example a multi-story
building where the number of structure modes equals the number of
stories in the building. In any event, there are numerous examples
involving system with several degrees of freedom.

In theory, a system with distributed parameter s must vibrate in
an infinite number of natural frequencies when subjected to a broad-
band random excitation. However, this is not usually found in
practice. Systems with distributed mass and elasticity usually
vibrate with appreciable magnitude at only a limited number of
frequencies, often at only one. For example, a simply supported
beam may be found to vibrate at its lowest natural frequency (First

mode}, and to behave much like a single degree of freedom system.
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Many other continuous systems may have two or three modal
frequencies whose amplitudes at any given time are significant.

The fundamental method of solving any vibration problems for a
linear system with distributed or lumped parameters is to determine
the normal modes or the natural frequencies of the system. All
possible vibrations of the linear system are made up of superposed
vibrations in the normal modes at the respective natural frequencies.
The total motion at any point of the system is the sum of the motions
resulting from the vibration at each mode.

Let, for example, a two-mass system be considered as an
idealized analogy of a device mounted on a chassis (Fig. 3. 3).
Excitation is the broadband random vibration of the support. With
regard to the failure of the device and the chassis, the relative dis-

placements Z=X X and z,=x,~x. are assumed to be significant. The

1 27%27%

differential equations of motion for the relative displacement variables

z.=x.-X and z_,=X,~-X are
171 7o 2 o

3
m, 0 'zl N C1+CZ -c, z1 . k1+k2 —kz zq . m1 Xo
0 m, | |23 -Cy <, Zg| —k2 kZ Z3 mZXo

or in a more generalized form
Pﬂ yz}+-[c]{z}-+[K]{z}: {Quﬂ (3. 11)

where [M] y [C] s [KJ are the symmetrical mass matrix, damping
matrix, and spring matrix, respectively, for the two degrees of

freedom system. { Q(t) } is the ground excitation applied to the

(41, 42)

system. Caughey and O'Kelly have shown the conditions under
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Fig. 3.3
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which the classical normal mode solutions to Eq. (3.11) can be found.

In other words, the solution is in the form

{ZJ=[AH7(} | (3. 12)

where {Q] is the independent normal mode coordinate , and l:AJ

is a transformation matrix. Substituting the assumed solution into

Eq. (3.11), we have

) [a] )« [e][a]{)+ [x] a]{] =[a] {ew)]
Premultiply it by the transposed matrix [AJT, and the following

equation is obtained

a diagonal matrix

I
[ s T aaa——
>
H ]
I
a g
| UNNS §
[ | puamasens |
.
H 1l

a diagonal matrix

H
e
]
2
5>
1!

a diagonal matrix
thus, for the two degrees of freedom system the equations of motion

in normal modes are given by

Mt Byt Ty =y
. . (3. 13)
Mo+ By Nat k15 =9,

where ﬁl and BZ’ kl and k2 are the damping and spring constants in

the normal mode coordinates. The quantities ql(t), qz(t) are the
random for civvng functions. Hence from Eq. (3.12)

£ Ay Ay T

Z3 Ay Ay 0\ 2
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Since the relative displacement z, is given by the displacement

differences Xy=Xy = z3—z1, the relative displacement variables z; and

z, can be expressed in terms of the independent normal mode

coordinates )?l(t) and fzz(t)

zl(t)‘ =) N4lt) + ¢, N,(1)

(3. 14)
zz(t) =cn l(t) + <, qz(t)

where Cye e c4 are constants depending on system parameters.

In most cases, it is difficult to find a transformation matrix [A],
which will diagonalize simultaneously the symmetrical mass, spring,
(40, 41, 42)

and damping matrices. Nevertheless, if the damping in the

system is small, the solutions to the damped system can be well
approximated by the solutions to the undamped system. It is clear
from Eq. (3.1l1) that the normal mode solutions always exist if the
damping matrix [C} is identically zero. Therefore Eq. (3.13) is
valid for a large class of physical systems.

Similar treatments may be applied to a continuous system.

Consider now an idealized beam equation

2 2
0 u[Ela

2

2
(x, t) ou (x,t) 9 u (x,t) _
— e o o R AT

ox at®
where
u(x, t) = the displacement of the beam.

x = the distance measured along the beam.

EI

B

elastic properties of the beam.

amount damping present in the beam.

=
1l

mass per unit length,
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The partial differential equation is solvable by separation of variables

o0
wet) =) X0 (0
i=1

where Xi(x) satisfies

2
2 d“X (%)
dZ[EI : ]-FX.(x)w.Z:o
dX L dX 1 1

and )7 i(t) is the normal coordinate. Substituting the assumed

solution into the beam equation, we have

l09) 2

z [Zf X, (=) () + 1B X0 7, (6) + ()

i=l

dx?

with the orthogonality conditions given by

L
/ b’xi(x) X;(x)ax = 0 ifi#j

0
L
/ O"Xiz(x)dx =1
0

Multiplying both sides of the equation by Xj(x) and integrate along the
entire length of the beam from 0 to L, the following equations are

obtained 1

i?i(t) + ﬁ)?i(t) + wizf]i(t) = Qi(t)=/ X, (x) F(x, t)dx i=1,2,... 00
.0 ‘

Here again, the displacement variable u(x,t) is expressed in terms of
an infinite number of normal coordinates qi(t), each of which is a
solution of the single degree of freedom system.

The examples given above suggest that many complicated
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physical systems, with lumped or distributed parameters, may be
simulated by the combinations of a number of independent one degree
of freedom systems, each of which is modified by its respective modal
participation factors. The simulated approximations are good in many
cases even with large damping.

Now, the response characteristics for the combination of
several independent single degree of freedom systems subject to the
same broadband random excitation, must be investigated. To
simplify the analysis, a two degree of freedom system having two
normal mode coordinates as given by Eq. (3.14) is taken as the
example. The method of analysis for multi-degree of freedom systems
will be essentially the same.

Let us now add S rzl(t) and <, n 2(t) thereby obtaining a result
corresponding to zl(t) in Eq. (3.14). Although the normal mode
coordinates ﬂl(t) and qz(t) are independent variables, they are not
statistically independent in the strict sense. To study the peak
characteristics of the resulting random variable zl(t), certain of its
statistical properties must be investigated, namely (a) the mean square
values of zl(t), (b) the autocorrelation and the power spectral densities
of zl(t), (c) the probability functions and other statistical properties

of zl(t).

(2) The mean square value of zl(t)

Since the relative displacement zl(t) is given by

zl(t) =q l?l(t) + <, )’12(’5)
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The mean square value for the relative displacement variable is

[qlz(t)}-i- 2¢)c,E [ (1) N,0]+ c,°E {)722&)]

E{zi(t)] - chE

(3. 13)

QO
Ol(t) =f q(t-u)h;(u)du
0

0o
Qz(t) 2/ qZ(t-u)hZ(u)du

0

where from Eq.

Hence
oo 0

)71 (t) / / h (u) h(v)E [ql(t u)ql(t V)Jdudv
0 0

-~ oo
=/ / hl(u)h(v) Rll(u—v)dudv
0 0

and
() Q&(t) // by (u)h, (V)E ql(t u)q,(t- v)]dudv
0
@ o
=/ / hl(u) hZ(v) Rlz(u—v)dudv
0
where
hl(t) = exp—(—é ﬁlt) sin (A_Jlt/ (T)l, Q—Jl = wlz- %_i
Z(t) = exp—(é— ﬁzt) sin LT)Zt/ (I)Z, (DZ = wzz- ?’—4?-
Rlz(t) = 2DA,, 5(7)

R,(T) = 2DA,; 6(T),
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and the input power spectral density is assumed to be ''white' and

is equal to 4D per cps. Hence

[0 0]
E Elez(t)] = 2DAy; hlz(u)du = 4DA,, /(4 &31‘5+ ﬁlz)ﬁl
_ e o)
E _’?Zz(t)} = ZDAZZ/ hzz(u)du = 4DA22/(4 J)ZZ+ (322);32
0
-~ QO
E [y 7,0 ]= 204, [ nwibwds
] 0
i 2DA,, Bl t B, ) B+ B,
W, (BB M- w,)° (BB, M 0,)
S PAL Y
oD o -2
2 W0y Wy wy)

The last apprbxima‘cion is made if the damping terms ﬁl and BZ are
small. The cross coupling term E[er(t) fzz(t)] is found to be
relatively small, since
[ 1,00 7,0 ] Da,(BtB,) wy wN BB,
B e )
2 w. w -
/ [0 E[n, m] 2P W) PN Ay,

A Wy W,

12 |
= —————— (B,+B,N BB
5 (BFBIN BiB,
INAph,, W wylwp- @)
B,B
:07:1—%)—2- | (3. 15)
Y%

Thus the cross coupling terms can be neglected in the estimate of the
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mean square value for the relative displacement zl(t), if the system

dampings are small and the modal frequencies are well separated.

Therefore

E[zlz(t)} - clz E [r]lz(t)]+ CZZE[OZZ(t)] (3. 16)

(b) The autocorrelation and the power spectral density functions
of Zl(t)'

The autocorrelation function for zl(t) is given by
E[zl(t) 2 (t+ T )] - clEml(t) e+ T )]+ CICZE['ZI(I:) G )]

2 (3.17)
tepe, E[,(6) Nyt T) |+ ¢, "B 1,(0) /7, (8 )]

where the autocorrelation function for zl(t) is made up by the auto-

correlation functions and cross correlation functions of the normal

mode variables I? 1(t) and 1? 2(t)

E[l?l(t) 771(1:+Z' )]=// E{ql(t-u)ql(ﬁt—v)] hl(u)hl(v)dudv
0 0

o Q@

=/ / Rll( T +u-V)hl(U.) hl(v)dudv

0 0

o0
= ZDAH/ hl(,qu T )hl(u)du
5 :

DA}, -plt/ 2 _ ! B
= e [cosw Tt sinw‘c]

By b2 “1 '
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and
a0 0O

E [Ql(t) N e r)]=// E[ql(t—u)qz(tth —v)] by (@)h,(v)dudy
070
o OO

/ RlZ(’C +u—v)h1(u)h2(v)dudv
0

0
co
= ZDAl2 hl(u)hZ( T+u)du
DAy, -pr2| [ Hw g+ w,)
=—— e sin 0, T > >
Wy w2 (B;+8,) 4w wz)
N 4 (Tfl- E)Z) ]
(ﬁl'l' ﬁz)z“' 4‘( (D_l— (:)2)2'
3(51+ 52)

_ 2B+ By)
+ cos wzt ) — — - ya — — 2}
(Bt By) F+4(w0g- w,) (Bt By) +4(wyt «))

For stationary random processes the following inequality exists
1
E[1,0) 7, )< B[N0 7,0 ]

From this inequality and Eq. (3.16), the autocorrelation coefficient

PlZ between the normal mode random variables /'Zl(t) and }72“:) is
given by

_E ['?1(") Tl ) ] _ E (’Mt) f?z(t)]

12~

BB
< : -0 ( _1 .2~ 2)
J E [712‘” ] E {722“)] \/ E[)le(t)] EE’?zd(t)] w1y

(3. 18)
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The magnitude of the cross correlation coefficient (012 is found
to be very small if the system damping is small. In other words the
stationary random variables )? 1(1:) and /] Z(t) are only weakly
correlated. For all practical purposes the cross correlation terms
appearing in Eq. (3. '17) can be neglected without introducing much

error. Equation (3.17) is then changed to
B[22t 2) ] = o B[ )0 Py )]+ e, "B [ 7,00 746 T)] (3.19)

A very important consequence resulting from neglecting the
cross correlation terms is that the corresponding power spectral
density function Szl(f) for the relative displacement variable zl(t) can
be obtained by simply adding the power spectral density functions S’Zl(f)
and S,Zz(f) for the random variables /?1(1:) and )Tz(t), respectively.

From Eq. (3.19) and the Wiener-Khintchine relationship, we have

2 2
S (f)=c, S, (fl+ c, 5, (£ (3. 20)
z 157 .% 25N

1 1 2

(c) Probability function and statistical properties of zl(t).

If the input, applied to the systems shown in Fig. (3. 3), is
Gaussian distributed the system output must also be Gaussian
distributed. Henceforth the quantities ql(t), qz(t), )zl(t)’ )22(13),
zl(t), and zz(t) as appeared in Eq. (3.13) and Eq. (3.14) are all
Gaussian disfributed since they are merely linear transformations of
the input random process. The probability density function for the

stationary random variable zl(t) is given by
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2
1 &1 )
plz,) = exp- (3. 21)
V' Vi ¢ 20 °
z1 1

where
2 2 2 2 2

a. = ¢ O‘“rzl +c, 0‘;‘,2
Since the random variables 72 1(1:) and f( Z(t) are weakly
correlated (see Eq. (3.18) ), for all practical purposes they can be
taken as two linearly independent random variables. Linearly
independent random variables are not necessarily statistically
-independent. However if two Gaussian random variables are
lincarly indcpendent, they are also statistically independent. Following
this assumption, many simplified statistical properties for the random
variables can be obtained.
Peak characteristics of the relative displacement variable Zl(t)’
resulting from the addition of two narrow band random variables
IZl(t) and /Z 2(1:), are similar to those applicable to Gaussian random

variables (Section 3. 2.1). This assertion is proved by experiments,

the results of which will be presented in the ensuing sections.

3. 3. Experimental Investigation

This section is primarily concerned with the experimental
verification of the analytical results presented in the foregoing sections
of this chapter. An analog computer is employed to simulate the
system transfer function of the single degree of freedom system.
Experimental techniques are also developed to measure the probability

distribution of peaks of a random signal. The detailed construction of
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a Peak Distribution Analyzer is presented in Appendix D.

3.3. 1. Experimental Procedures

The main objectives of the experiments are to investigate:

1. The peak characteristics of the response of a single degree
of freedom system subject to a variable band Gaussian random
excitation.

2. The statistical properties of a random signal resulting from
the superposition of two or more narrow band random vibration signals.
To obtain these results, a special measuring ar rangement,
including a General Radio Type 1390B Random Noise Generator, a

Krohn-Hite Model 335 Variable Filter, a Philbrick Type K7-Al0
Analog Computer, and a Peak Distribution Analyzer, is developed.

The block diagram for the test set-up is shown in Figs. (3. 4) and (3. 5).
The first experiment involves the investigation of the peak
characteristics of the response of a single degree of freedom system,

subject to a variable band Gaussian random excitation. This is
accomplished by connecting the instruments as shown in Fig. (3. 4).
The natural frequency of the system is fixed at 20cps, and the critical
damping ratios of the system are set at 2% and 5%, respectively. The
upper cutoff frequency fo of the random noise input can be adjusted
continuously from 20cps to ZOké through the Variable Filter. This
provides a convenient way to study the peak characteristics of the
system as a function of the upper cutoff frequency fo.

The second experiment involves the investigation of the
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statistical properties, in particular the peak distribution character-
istics, for the combination of two narrow band random signals. The
test set-up is almost identical to the previous experiment except that
an additional oscillator is provided (Fig. 3.5). If the response of one
oscillator is assumed to be Q 1(‘c) and the other one to be /? Z(t),

the mathematical operations similar to that given by Eq. (3.14) can be
performed through an operational amplifier (summer). In order to
satisfy the condition in Eq. (3.18), only lightly damped systems, with
natural frequencies sufficiently separated, are considered. The
system natural frequencies used in the experiments are 80cps, 200cps,
355cps, and 500cps, respectively. The critical damping ratios for

the systems are fixed at 2% and 5%.

3. 3. 2. Observations and Results

1. It is found, from the first experiment, that the total number
of peaks per unit time Np for the response of a single degree of
freedom system depends largely on the frequency bandwidth of the
input. The results are illustrated in Fig. (3. 6) where the total number
of peaks per second Np, which has been normalized with respect to
the system natural frequency fncps, is plotted against the ratio fo/fn.
The frequency fo denotes the upper cutoff frequency of the Variable
Filter, operating in the low pass mode.

Exc.ellent agreement is obtained between the analytical and the
experimental results, in places where the ratio fo/fn is less than 100.

The deviation occurs at higher values of fo/fn. This is because of the
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following reasons:
(@) The assumed theoretical spectrum (Eq. 2.12) is different
from the experimental spectrum (Fig. 2. 10) near the cutoff frequency fo.
(b) The capability of the Peak Distribution Analyzer (Appendix

D) in detecting the presence of small peaks is limited.

The frequency response characteristics of the differentiator (Fig. C.1)
used in.the Analyzer are good only for a limited range. In addition,
the zero crossing detector is not sensitive to a voltage signal whose
amplitude is less than 10mv. All these factors have contributed to

the deviations and errors in detecting the presence of small peaks,
whose number becomes increasingly large as the input frequency
bandwidth increases.

Although the total number of peaks per unit time becomes a very
large number when the ratio fo/fn increases, the response of the
single degree of freedom system retains the appearance of a narrow
band random signal. The excessive peaks are very small and
difficult to detect. The small peaks can, however, be removed by a
high pass filter. In other words thec signal :, in effect, consists of a
mean cémponent and an alternating compoﬁent; the former is a broad-
band Gaus sian distributed signal and the latter is a narrow band
Rayleigh distributed signal.

2. In the second experiment, the statisticé,l characteristics of
signal resulting from the superposition of two narrow band random

vibration signals are investigated. The following results are obtained.
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(a) It is found that the mean square values </212(t)> , and
</’[22(t)> are additive for all possible values of the constants
bl’ b2’ s €y appearing in Fig. (3. 5), if the damping present in the
respective system is small and their natural frequencies are well
separated (from 50cps to 100cps). Under these circumstances,
Eq. (3. 20) is identically satisfied.

(b) Probability distributionsof peaks of the combined narrow
band signals are found to lie in between the curves of Gaussian
distribution and Rayleigh distribution. Selective results are shown in
Figs. (3.7), (3.8) and (3. 9), where the probability distribution of peaks
of the combined signal is plotted against the normalized amplitude.
The combined signal is obtained by adding the properly weighted sum
of the response of the respective single degree of freedom system,
one of which has a natural frequency fn=200cps, and the other
fn=355cps. The critical damping ratios are fixed at 2% and 5%. If
these data are substituted into Eqs (3. 8) and (3. 20), theoretical curves
can be plotted.

The agreement between the theoretical and experimental results
is good within the 3 J7 range, outside of which it is difficult to detect
the presence of peaks unless one is willing to wait for a long period of

time.
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CHAPTER IV

STATISTICAL PROPERTIES OF NONLINEAR SYSTEMS
SUBJECT TO RANDOM EXCITATION

4. 1. Introduction

In the preceding chapters, we have considered the output
statistical properties of a linear system subject to random excitation.
It is not difficult to generalize the basic concepts a little further to
include certain nonlinear systems as well,

For many engineering applications, especially in the field of
vibl;ation and dynamics, the probability distribution and the power
spectral density function are of particular interest. In order to
determine these quantities for a nonlinear system the method of
Fokker-Planck or the diffusion equation method can be used, since
the transition probability of a Markoff process is found to satisfy
macroscopically the diffusion equation. For a nonlinear system
subject to white noise excitation, the output statistical properties are
completely characterized by the solutions to the Fokker-Planck partial
differential equation.

A major portion of the work done in the past has been closely
related to the characteristics of the stationary probability distribution
functions of a nonlinear system subject to white noise excitation. This
requires the solution of the Fokker-Planck equation in the stationary
form. Different methods of obtaining the seolution have been given by

(4-9)

Uhlenbeck, (2) Caughey, Crandall, (10-13) and many others. The

solutions obtained are usually presented in terms of the first order
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probability density function. This is, of course, no help if one is
interested in the autocorrelation function and the power spectral
density of the nonlinear system as well.

(44)

Caughey and Dienes have derived a new method for the
determination of the autocorrelation function and the power spectral
density of a nonlinear system. With very little complication, they
defined a generalized autocorrelation function in terms of the transition
probability, which in turn is a solution of the appropriate Fokker-Planck
partial differential equation. The power spectral density can then be
found by means of the Wiener-Khintchine relation. This method has
been demonstrated by solving a simple first order n;)nlinear system
subject to a Gaussian white external force.

(46)

Wolaver has also attempted to obtain the autocorrelation
function and the power spectral density of a second order nonlinear
system subject to a Gaussian white noise excitation. However, his
method of analysis involves questionable boundary conditions assigned
to the Fokker-Planck equation. Heretofore, the only correct solution
available up to this stage remains that given by Caughey and
Dienes. |

A slightly different approach will be adopted in this thesis to
solve the first order nonlinear system considered by Caughey and
Dienes. This method is found to be very simple and can be extended
to include the second order nonlinear systems as well, although the

solutions are yet to be determined.

In the following sections, the analytic method of approach will



-107-

be described first. This requires the determination of the auto-
correlation and the power spectral density by solving the corresponding
Fokker-Planck equation for the first order nonlinear system.

Experimental verifications of these results are also included.

4. 2. Relationship Between the Transition Probability and the

Autocorrelation Function

It has been shown in Section (1. 4) that the autocorrelation
function for a stationary random variable x(t) is given by

W -~
RX(tl-tZ) :/ / %X, p(xl, xz)d:»cld.xZ (4. 1)

-00 7 -00

where

x = 1(tl) and x,= xz(t

2 2)

Now, if the random process x(t) is Markoffian, the joint
probability density function can be expressed in terms of the transition

probability T(Xz, tZ} X, t (see Eq. 1. 3). Thus

7

p(xi, XZ) = p(xl) T(XZ, tZ[ X tl) (4. 2)

In physical applications there are many examples involving Markoff
process. Very often if a physical process is not Markoffian, itis
still possible to consider it to be a Markoff process in a higher
dimensional space. In any event Eq. (4. 2) is valid for most of the
physical éxamples of interest.

Substituting Eq. (4. 2) into the expression for the autocorrelation

function, we have
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RX(tZ—tl) :/ / X%, p(xl) T(XZ, tzl Xy tl)dxld.xz (4. 3)

-0 -0

where T(xz, tzl X tl) is a solution to the appropriate Fokker-Planck
equation, and p(xl) is the first order probability density function,
which is a solution to the same Fokker-Planck equation in the
stationary form.

In principle, the autocorrelation function can be deter mined
from Eq. (4. 3) once the transition probability function is known.
However, to obtain the transition probability one must solve the exact
Fokker-Planck equation. This is usually difficult and sometimes
almost impossible for systems with nonlinearity. A generally
applicable technique will now be demonstrated for a simple first

order nonlinear system.

4.3, A First Order Nonlinear System

The problem to be considered here is related to the motion of a
mass with idealized Coulomb damping. The differential equation
involved is given by

x + k sgn x = N(t) (4. 4)

where x(t) is the displacement of the mass, k sgn x is the idealized
Coulomb damping, and N(t) is a Gaussian white external force,
which is assumed to be stationary and ergodic, and its power
spectral density is equal to 4D per cps.
The Fokker-Planck equation governing the transition probability

T(x, t letl) of the displacement random variable x(t) is
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g_;f - - a_i_ [A(X)T} + -552- (B(x)T] (4. 5)

Nll-—'

where A(x) and B(x) can be determined from Eq. (1.18), and by inte-

grating the system differential equation with respect to the time t,

hence
tH AL
Ax=—[ksgnx]At+/ N(ﬂ)dq
t
therefore
Ay
Alx) = lim _L_ZZ/C_@_Y = -ksgn x
At =0
Since
(N(D) ) 5, =0
furthermore:
2 t+ At

<AX2> = [k sgn =] At? 4 f/ dg dn <N(§)N(7()>AV

the double integral appearing above is 2DAt, since the external force

N(t) is assumed to be white noise. Hence

<Ax2 >Av

B(x) = lim X

At —0

= 2D

Substituting the expressions for A(x) and B(x) into Eq. (4.5), we have

3T _ 8 | 8T
5 © 5;(1{ sgnx)T+ D —Z—ax (4. 6)

The initial and boundary conditions are the following.
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t——tl

lim T(x,t] X5 tl) =0
X —= 00

and the normalization condition

-0
/ T{(x,t |x1, tl)dx =1

- 00
The first order probability density p;(x) is the solution of the

stationary Fokker-Planck equation

0 =2 | (i sgn x)pl(x)] +D—g

It has been shown by Caughey that the unique solution to this equation
is given by

k e-klxl /D

Pl(x) = 5h (4. 7)

The corresponding probability distribution function is given by

o o)
p,(x =X) =f p(x)dx
X
Q0
=/ S5 TR Dgy (4. Ta)
X

The calculated and the experimental results for the first order

probability distribution function p,(x >X) are illustrated in Fig. (4. 6).
The autocorrelation funcfion for the random variable x(t) of

the nonlinear system can be determined from Eq. (4. 3)

[0 0] [ o .
RX(t-tl) = / / xlxpl(xl)T(X, t ’xl, tl)dxldx
-0 -0
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(43,46, 24)

Now assume

o)
v(x,t) = / xlpl(xl)’I‘éc, t] Xltl)dxl (4. 8)
-0
Hence ©
Rx(t) = J/ xv(x, t)dx, where T =t-t, (4. 9)
-0

The probability variable v(x, t) satisfies the same Fokker-Planck
equation as the transition probability T(x, t| xltl), since the term
xlp(xl) appearingin Eq. (4. 8) does not depend on the time variable t.

Hence from Eq. (4. 6)

2

=2 (k sgnx)v+ D2Y (4. 10)
9%

dv
at

with the initial and boundary conditions given by

o0
v(x,0) = / xlpl(xl)S(x—xl)dxlf- Xpl(X)
-00
(o, T) =0 (4. 11)

vix, T) = -v(-x, )

Since the function v(x, ¢ ) is skew symmetric with respect to x for
all time T , we have the following condition at x=0.
vib,Tz) =20
From the known initial and boundary conditions, Eq. (4. 10)
may be solved. There are two methods of approach to obtain the
solution to the Fokker-Planck equation. Each of them has its own
merit. The detailed mathematics involved will now be demonstrated.

The first approach is to take the Laplace transform of Eq. (4. 10) with
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respect to T . Using the initial condition (Eq. 4.10) two ordinary

differential equations are obtained

DVXX+ kVX- sV = —Xpl(x) for x >0
DVXX—kVX—sV = -Xpl(X) for x <0
where
o)
V(x, s) :/ vix, T )e-SZ dz
0

and the subscript denotes the order of differentiations. The method
of obtaining the solutions to the ordinary differential equations is

standard. Thus

X
V(x, s) = Aexp(a,x) + Bexp(-alx)f h(x-n ) pp(77)dn
0
for x >0
X
V(ix, s) = Cexp(—azx) + Eexp(aIX);/ hz(x"? ) Pl( nldn
0
“for x <0
where
:(7\2+ 5)1/2'+7\ o (7\Z+s)1/2_/\ _ &
1 No) .2 ND ’ 2N'D

the unknown constants can be determined from the fact that

V{0,s) =0 and Vi{too,s) =0

therefore
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Kk
g - =X -a;x
V(x, s) :-—-21]; [}—S{ ekX/D-—l-tz(e D . L )} x >0
S
' a. X
Vix,s) = o [E /D K (/D )] =<0
S

Substituting these equations into Eq. (4.9), we obtain the Laplace
transform of the autocorrelation function

(0.0]

Rie) = [ xVix, s)ax
-0
2 _ 2
- D DL AAD G(a%el?] (4. 12)
2N s 5 -

which agrees with the solution obtained by Caughey and Dienes.
The second method of obtaining the autocorrelation function is
to apply the two-sided Fourier transform(47) to the Fokker-Planck

equation (Eq. 4.10) with respect to the displacement variable x(t).

The transforms are given by

0
1 ixw
F (w) = / f(x) e dw
+
T (4. 13)
0
F (w) = 1 / f(x) ¥ dw
B N 2T Zo

where w= atib.

The inverse transform is given by

iat oo ibt co )
-1 ' -ixw
i(x)= 1 / F+‘(w)e XY G+ 1 / F_(w)e dw
2 ia-oo /2T ib-oo
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where a is a sufficiently large positive number, andb is a sufficiently
large negative number. Hence from Eq. (4.10), Eq. (4.13) and the
fact that v(x,t) must vanish at x=0 for all time T , we obtain a first

order ordinary differential equation

v, (w, z) 2 D
--—d—t-————+(ikw+Dcu )V+(w,”c):-‘ () x>0
N 2T
where .
V+(w, T)= ! / vix, T )elwxdx
2T 0
and
)
=)= Vc(;;’ = x=0

The initial condition for x >0 is given by

QO

v (w,0) =— j[ v(x, 0)er* Fax
'\IZWO

Qo

=1 /xpl(x)elwxdx
N 2T 0

-k

k 2
2DN 27 (w+ 1'—]'5)

Thus, the solution to the ordinary differential equation is

. 2 z . 2
V+(w, )= V+(w, O)e_(lkw+Dw )T _ ___'L/ f( L)e (ikw+Dw )(t—'i)dé
N 2T 0
Taking a Laplace transform of V+(w , T ) with respect to the time 7 ,
we have
D 1
Vi lw,s) = - K £(s)

2DN 27 (Dwz-l—ikw +s)(w+i% )2 N 2w Dw*tikw+ s
(4. 14)
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where ©
Viw,s) =) Ve, e e
0
and 00
£(s) =/ f(r)e °Far
0

To recover the original probability variable v(x,t) from the transform
variable V+(w , 8}, we first take the inverse one-sided Fourier
transform with respect to w =atib, where b is a sufficiently large

positive number.
ibt oo
_ 1 -ixw
Ve == [ v (w,0e7 dw

N 2w
ib~co

Substitute Eq. (4. 14) into the above expression, and evaluate the
integral by residue calculus. The integral closed contour C in this
case consists of an imaginary line ib and a semi-circle, which

encloses all the singular poles located below the line ib. Hence

V+(X: S) = /V+(w:s)e-lxwdw
N 2w
C
k
= -N 2T iz R
n=
¢ x ~a.x ki ks
_k { e 2 e 1 xe D + k e D
- 2 2 B 2 - D 2 2
2D a (a1+a2) @, (a1+a2) @192 a, ay
eaZX . a;x
a1+ ct2

where R_ denotes the residues at the respective poles, and the
n
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negative sign is to account for the fact that the closed contour C
transverses in the clockwise direction. Since the function V+(X, s)
must vanish at infinity

V+(oo,s) =0

the unknown function f(s) can be determined.
k

f(s) = —5
2D«
1
Substituting this back into the expression for V+(x, s), we have
- Tk)X kx -a.x
4 - k  =xe k D 1
v, (% 8) =55 s "l T e )

Likewise, the same procedure can be applied to the transform solution

of v(x,t) for the negative value of x(t). Thus

kx k

D =x axX

R I L
S

The Laplace transform of the autocorrelation function is then given by

0 (o'}
I_{X(s) = V_(x, s)dx/ V+(x, s)dx
-Q0 0

2 2
D D, 42D 2. \1/2
= - 2L I (A %) (4.12)
2)\2s sz s4 [ ]

This is the same as that arrived at from the first method.

The relative advantages of the two methods are not difficult to
see. The former method is considered to be simple and direct, and
the solutions can be obtained easily if only ordinary differential

equations in the transform space are involved. The second method is
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more useful in cases where the Laplace transformecd (with respect
to time) differential equation is not ordinary.

From the known Laplace transform version of the autocorrelation
function _RX( s), various limiting values of the time autocorrelation

function can be determined. Since
To's)
2
0) = =
RX( ) / SX(f)df E(x")
0

and from Eq. (4. 7)

[0’}
E(xz) = / x pl(x)dx
-0
00 _ k| x| 2
:/ XZ _ZISI_)_ e D dx :—-——212) (4 ].5)
k

-Q0

From the Tauberian theorem, the following relation must be true

2
E(Xz) =R (0) = lim sR (s) =2—]—)—2-—
x e
8 —O k

then with the definition of )\ , the above expression can be easily
verified.

From the general theory of autocorrelation functions, it must
vanish for large time. In other words the following limiting
condition must be truc

lim R_(T) = lim sR(s) = 0

- o s —=0
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It can be verified by carrying out the limiting condition for the function

R(s) given by Eq. (4.12). Thus

2 2
lim sR{(s) = lim —P—Z - Dy 47\3D [A-(%2+s)1/2}
g —0 s——012A S s
D D 47\2D 2 2 \1/2
= lim — - =1 3 [27\ +5-22(" +5) ]
s—=0] 22 s s
I D D 4)\2'D 2 2 8 1 s2
= lim — - —+ 3 [27\ +5-272 (l+ 2" 8 53
s—=0| 22 S s 22 A

3
+—1—16—%+o(s4))J

lim ofs) =0
s-=0

By carrying out the inverse Laplace transformation, the time

autocorrelation function can be recovered.

ctioo
1 ST =
RX(Z_) —'Z-TF-i— € RX(S)dS
c-ico

The final expression for the autocorrelation function is given below

2
R b’)_ (8r% 12r*-61% 3) Zfe_r£52+3)(2r2—1)
yANE 3 erfc( ¥)- —
<x > 3N
(4. 16)
where
2
k 2\ D 2D
r: B '\/? X = I —————
2N'D < 4 2% K%

the results are plotted in Fig. (4.1).
By means of the Wiener -Khintchine relationship, the power

spectral density can be determined from the autocorrelation function.
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Then
S(W):%Rel:ﬁ(iw)] 0<<w <wmw
1/2
__2D 7\4 g 2 [ (1+(1+w /7\4)1/2 ] (4. 17)
1r7\4 wz wt L 2

where Re means the "real part of"!, and S(w) has a unit of quantity
square per radian per second.
The power spectral density given above can be normalized. To

accomplish this a non-dimensional frequency is defined as

N =w) A% =42%

kZ
since ©
/ S(w)dw =<x2>
0
Therefore if
s(17) = ”S‘”’ 0 < <o
< x
then it follows that
o
0

The non-dimensional power spectral density is then

21/2 M2
I+ (17 °7) ) ] (4. 18)

4) 1 8
s(n) == ~-r_(_2_+—,?z[1

The value of S{( n ) at )7 =0 is finite, and it can be obtained from

the following limiting condition
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2
. 2 [ = .
50) = Lim S(7) - <7\2>;Re§hR(1w)1w=0
— X
24/ —
=D lim R(s)
s—=0
4 2
=42 1im %—1—2— - 424 [27\2+s-22(7\2+s)1/2}
S——"O"\Z?\ s s S
4 2 2
4 A . 1 1 4 A 2 2 s s
= lim -+ 2A +s-2A (1+- -
T g -0)2A% 82 st [ 222 gat
3 - 4
+ sb_bs 8+o(s5))J
1I6A 1282
-2
" 4

The normalized power spectral density is plotted in Fig. (4. 5) along

with the experimental results.

4,4, Experimental Investigation

The experiments performed on the first order nonlinear system
described in the preceding section and the results of these investi-
gation are reported in this section. In addition to this, the response
characteristics of a second order nonlinear system are investigated.
The objective is to check the analytical results given by Wolaver.(46)

The resuits are divided into two parts: the power spectral
density measurements of the résponse of the first and second order

nonlinear systems, the probability distribution measurements of the

first order system.
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4. 4.1, Experimental Procedure

To study the response of the first order system with Coulomb
damping, an analog computer is used to simulate the system
differential equation given by Eq. (4.4). The analog setup is shown
in Fig. (4. 2) with operational amplifiers as the basic building blocks,

A very important assumption made in the theoretical investi-
gation is that the system be driven by a Gaussian white noise. This
is naturally impossible to achieve in practice. The experiment is
set up such that the nonlinear system is driven instead by a broadband
Gaussian random noise. The General Radio Random Noise Generator
along with the Krohn-Hite Variable Filter are used to generate the
broadband random noise, the nominal bandwidth of which is set at
10 kec.

The circuit parameters for the analog setup shown in Fig. (4. 2)
are adjusted according to the following criterion:

l. The time constant RC of the integrator must be large so that
the input frequency bandwidth appears '‘white" in comparison with
respect to the system frequency bandwidth.

2. The time constant must not be too large so that the output
voltage is operating near the amplifier noise region.

The RC constant used in the experiment to satisfy these
conditions is fixed at 0. 004.

The nonlinear function generator ksgnx shown in Fig. (4. 4) is
made up of a USA-3 operational amplifier, two IN271 diodes, a 24

volt battery, and a 50 k{L potentiometer. The magnification factor k
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can be adjusted by turning the potentiometer dial. In the course of
experiment the k values are set at 1 volts, 2 volts, and 3 volts,
respectively.

The basic data recorded were the power spectral density and
the probability distribution function of the displacement variable x(t)
of the system with Coulomb damping.

To investigate the response characteristics of a second order
nonlinear system, an analog circuit is set up according to the
following differ ential equation.

x + 2ck + sgn x = N(t) (4. 19)

where c is the velocity dependent damping constant, and N{t) is a
Gaussian white external force. The circuit diagram is illustrated in
Fig. (4. 4).

The specification for the external force N(t) is similar to that
given earlier for the first order system. The system parameters
are fixed at R,C,=. 001 for the first integrator, and RZCZ:O' 0004 for
the éecond integrator. The potentiometer is used to provide fine
adjustment on the damping parameter ¢. The primary objective of
this experiment is to check the power spectral density of the output
displacement variable x(t) against the theoretical results given by

(46)

Wolaver.

4, 4, 2. Observations and Results

The following results are obtained on the basis of the experi-

mental observations and measurements. Comparisons are made
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between these results and those based on the theoretical calculation.

1. It is found that the mean square value output of the
displacement variable x(t) of the first order nonlinear system agrees
very well with that predicted by Eq. (4.15) even though the frequency
spectrum of the random noise input is not white.

2. The measured power spectral density for the first order
nonlinear system agrees very well with that obtained from theoretical
analysis (Eq. 4.18). The results are plotted against the frequency in
Fig. (4.5). In the lower frequency range, however, the experimental
values are found to be slightly less than the theoretical results, since
the actual input power spectral densities are attenuated in the lower
fi'equency range (see Fig. 2.16).

3. The experimental and theoretical probability distribution
curves for the displacement variable x(t) of the first order system with
Coulomb damping are presented in Fig. (4. 6). It is found that the
experimental values follow closely the exponential distribution
curves predicted by Eq. (4. 7a) up to 3 0 level. The agreement is
poorer at the higher amplitude levels; this is because of the magnitude
limiting effect of fhe input.

4. For the second order system with Coulomb restoring force,
(Eq. 4.19), the measured power spectral density of the output dis-
placement \z;ariable x(t) is illuétrated in Fig. (4. 7), where the
normalized power spectral density (total area is unity) is plotted
against the frequency. The experimental results do not agree with

the analytic results given by Wolaver, who theorized that the power
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spectral density of the displacement variable x(t) of the second order
nonlinear system (Eq. 4.19) is always monotonically decreasing
regardless of the amount of damping present in the system.

5. In simulating the nonlinear function k sgn x on an operational
amplifier, the phasé shift present at the high frequencies (around 5kc)
can be minimized, but cannot be removed completely (see Fig. 4. 4).
However, this exerts only a minor influence on the final experi-

mental result.
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CHAPTER V

SUMMARY AND CONCLUSION

The following conclusions are reached on the basis of the
analytical and experimental results obtained during the course of
investigation.

Chapter II describes the results of linear systems subjected to
magnitude-limited random excitation; the major points of interest are:
1. If the power SPectral density of the Gaussian broadband

random signal is uniform in the frequency' range from 0 to focps, the
magnitude-limited signals are found to be approximately uniform over
the same frequency range. This provides a great deal of simplification
in the computation of mean square values of the response of thé

single degree of freedom system to magnitude-limited random
excitation. |

2. The ratio of the rms value response (displacement) of the
single degree of freedom system to the rms value input of the
magnitude-limited broadband Gaussian random signal depends only on
the critical damping ratio and the natural frequency of the system, and
is essentially constant regardless of the magnitude-limiting level.

3. The responses (displacement) of single degree of freedom
systems to magnitude-limited Gaussian random excitation are
approximately Gaussian, the agreement being very good out to the

3077, level, if the critical damping ratio of the system is less than 10%.

Within experimental capability these are found to be true even though
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the input signal is heavily limited. For systems having critical damp-
ing ratio greater than 10%, the response of the system is no longer
Gaussian distributed at higher amplitude levels.

4. The power spectral densities of the response (displacement)
of the single degree of freedom systems to magnitude-limited random

2, the square of the system transfer

excitation are similar to IH(jZ.ﬂ'f)
function, since the power spectral densities of the magnitude-limited
signal are approximately uniform over a wide frequency range.

5. Experimental studies point to the fact that many analytical
results can be checked experimentally if the input spectrum is
assumed to have the shape given by Eq. (2.12) or Eq. (2.15).

Chapter IIl describes the peak characteristics of linear systems
subjected to broadband Gaussian random excitation. The main
results are the following:

1. The total number of peaks per unit time in the response of a
single degree of freedom system depends largely on the frequency
bandwidth of the input broadband signal. The peak distribution of the
response is no longer Rayleigh, if the input frequency bandwidth is
wide compared to the natural frequency of the system.

2. For a multi-degree of freedom or a continuous system, it
is frequently possible to obtain normal mode solutions for the system
if the damping is small. Theréfore the motion of the system consists
essentially of a linear combination of the normal mode solutions. At
a given time, such a system usually vibrates with appreciable

amplitudes at only a limited number of modes. During the course of the
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investigation, the statistical properties of the sum of two single
degree of freedom systems are investigated. It is found that the
responses of the respective system to the same source of excitation
are essentially uncorrelated if the system dampings are small and
the natural frequencies are sufficiently separated. Therefore the
resulting signal essentially consists of the sum of two uncorrelated
random variables. The peak distributions of the resulting sum lie in
between the curves of Gaussian distribution and Rayleigh distribution.

Chapter IV is concerned with the statistical properties of the
response of a simple first order nonlinear system to white noise
excitation. The major results are:

1. The power spectral density of the response (displacement)
of the first order nonlinear system with Coulomb damping is found
to be monotonically decreasing with respect to frequency.

2. The autocorrelation function of the response (displacement)
of the first order nonlinear system with Coulomb damping is found to
be monotonically decreasing with respect to the time difference.

3. The probability distribution of the response (displacement)
of the first order nonlinear system with Coulomb damping follows
the exponential law.

4. Excellent agreement between the analytical and experi-
mental results are obtained, even though the actual input spectrum is
not white as it was assumed theoretically. Therefore it is justified
to assume the input spectrum to be white whenever possible in the

mathematical analysis of random vibration.
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5. Experimental investigations have been made to check against
the theoretical results given by Wolaver., It is found that the power
spectral densities of the response of a second order nonlinear system
with Coulomb restoring force to white noise excitation are not mono-
tonically decreasing with respect to frequency. Therefore, the results

given by Wolaver are questionable.
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APPENDIX A

ANALOG TECHNIQUES IN RANDOM VIBRATION

It is often the case in the studies of random vibration that
analytical methods are not readily available, or they are too burden-
some to carry through in practice. For example, the probability
density function of the output of a single degree of freedom oscillator,
subjected to mégnitudedimited random excitation, is not yet known
analytically. The output power spectral densities of many nonlinear
systems are not usually easy to find, where the calculations are

(12,44)

lengthy and difficult even in the most simple case.
information concerning the probability functions and the power spectral
densities are, however, often needed in the analysis of random
vibration. Analog methods are eXtremely useful in providing the
solutions to many difficult problems of this kind. In particular we
shall discuss the electronic differential analyzer, an analog device
which consists of a collection of electronic operational amplifiers
interconnected in such a way that they are governed by the same set
of equations as those describing the system to be analyzed.

The basic building block of an electronic analog computer is the
d-c operational amplifier, which is the basis for adding, integrating
and differentiating. Transfer lunclions of a linear system can be
simulatea féithfully by synthesizing the basic components given above.
A high degree of precision could be well maintained if the system to

be simulated is simple. For more complicated systems the analog
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computer can only be depended upon qualitatively rather than
quantitatively. Nevertheless, electronic analog computers are
preferred over many other analog devices representing a given
physical system. This is because:

1. It is easy to handle. The components are readily
synthesized to become an electronic model for the given physical
system, the parameters of which can be easily controlled.

2. The operational amplifier has such a high gain that the
errors involved in the basic mathematical operations (summing,
integrating, etc.) can be minimized.

3. Many system transfer functions, linear or nonlinear,
caﬁ be simulated through analog circuitry.

4. Total drift--long, or short term--is very small.

5. Accuracy is well maintained over a wide frequency range.

6. The output and input of the operational amplifier are in
the forms of analog voltage which can be easily monitored,
measured and recorded through a variety of electronic instruments
available.

The analog c-omputer used throughout the entire experiment is
the K7-Al0 operational manifold made by G. A. Philbrick Researches,
Inc. The function of the manifold is to provide 10 Philbrick Model
USA-3 operafidnal amplifiers, which are chopper-stabilized; high
gain (10 million dc gain), wide-band dc amplifiers. Distortion, drift
(less than 100 microvolts) and noise are negligible in most appli-

cations. These features are particularly important in the studies of
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random vibration where stationary solutions are often needed. Since:

l. Averaging of various statistical quantities usually extends
over a long period of time. The data are reliable only if the
operational amplifier itself is stable, drift and noise free (at their
respective minimum) during the entire period of measurement.

2. The frequency spectrum involved in many random vibration
experiments are usually wide. This requires that the accuracy of
the operational amplifier be well maintained over a broad frequency
band.

It is not difficult to see the advantages of using the operational
amplifier as a tool of research in random vibration. An example
will now be illustrated in setting up the analog model for the single
degree of freedom system subject to random excitation.

From the schematic diagram of the single degree of freedom
system shown in Fig. (2.1), an equivalent analog model describing
the motion of the mass is shown in Fig. (A.1l} with operational
amplifier as the basic building block, Fig. (A.2). The relationships

among the voltages are

1
eZ = - _R?.— /eldt (A. l)
L e (A. 2)
e, = - - e .
e e
e, = aez—be3 + e, (A. 3)

where Rlcl are the values of resistance and capacitance associated
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Fig. A.l. Analog circuit diagram for a single
degree of freedom system.
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with the first integrator, and RZCZ are corresponding values for the
second integrator. The coefficients a, b are determined by the dial

settings on the potentiometers. Combining Eqs. (A.l) and (A. 2):
e ez //el(dt)z
17177272

Equation (A. 3) can be rewritten in terms of the voltage ey

a b -
el + —ﬁ—l—cz— eldt + WZ /\eldt - eO (A' 4)

The similarity between Egs. (2.1) and (A. 4) is clearly evident. The
corresponding quantities of the mechanical system and the electronic
analog system is shown in Table A. 1l

The analog voltages, representing displacement, velocity of the
mechanical system, can be obtained easily from the measurable
quantities e, and ey Scale factors involving thé time constants will
have to be taken into account while converting the corresponding
quantities from the ‘elect’ronic ‘analog system to the actual mechanical
system. For instance, from Eq. (2.19) the mean square displacement
output of the analog system, subject to broadband Gaussian random

excitation, is given by

<%é:> :__ﬁhiei__m (2.19)
8 Eu)n

Using Table A.1 and Eq. (2.19) the mean square dis‘placement output

of the cofresponding analog system is given by
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TABLE A. 1

Relation Between Corresponding Quantities of the Mechanical

System and the Electrical System

Item Mechanical system Electrical
system
Acceleration % (t) el(t)
Velocity » x(t) /el(t)dt
. ' 2
Displacement x(t) //el(t){dt)
Forced Acceleration N(t) eo(t)
Natural frequency Nk/m = w_ N b/RlclRZCZ
Damping parameter c/m = 2 5 w_ N a/leC1
Fraction of Critical cle = T 5 aN'R,C,/bR,C,
. c 2 2 2
damping

S
> o
< RlclRZCZ. 8% wf

Typical values of the resistances used in the experiment are

those of 500k {2 and 1meg (), the values of capacitances are adjusted

according to the desired natural frequency and the ratio of critical

damping. The potentiometers are provided to achieve a finer control

on these quantities. All the resistors and capacitors are precision

made within 1% tolerance limit.
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APPENDIX B

A POWER SPECTRAL DENSITY ANALYZER

This section is primarily concerned with the theory and the
operating principles of a power spectral density analyzer. Various
calibration data which are important in the measurement of the power
spectral density, are also included. Finally a brief dis;:ussion on the

errors involved in the measurement is presented.

B-1. Theory

The definition for the power spectral density is commonly

written as

|2
o 2ls
) = lim T (B. 1)

T— o

which is also known as the periodgram method and gives a frequency
decomposition over the time interval O<t<T. The limit is found to
exist always, however,the variance of S(f) does not approach zero for a

large class of examples, in particular for Gaussian random pro-

(19)

cesses. Therefore it is not experimentally justifiable in using this

method to determine the power spectral density.
The most practical method is based on the following formulation.

Let the mean square value for a single sample record be
, T
< L2()>=  lim -,lf/ x2(t)dt (B. 2)
T—> 00 0
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where T is the length of the record of the sample. Since only the
power spectral densities of a stationary ergodic random process are
considered, Eg. (B. 2) can be written as
T
2 2 .
E[xz(t)]zcr :<x (t)>= lim -3-/ <(t)dt
X T
T — 00
0
From the Wiener-Khintchine relationship, the autocorrelation

function for the random sample function x(t) is given by

0
R_(T) =/ S (f) cos 2mic df
0

If T=0, then RX(O) = O'Xz. Hence

0“7‘:/ S (f)df (B. 3)

Assume that the signal is sharply limited between two
frequencies fl cps and fz cps which are nearby. The ideal bandwidth
is given by B:fz—fl. The mean square output within this narrow band

is given by £

2

(TBZ(X) :/ s (f)df = 8 _(f )B (B. 4)
f
1

where fo is the center frequency within the narrow band B. The power

spectral density at the center ffequency is then given by
' 2 T
(=)
S (f,) = lim = lim  lim

B—0 B B—0 T—o

1 2
70

Of course, it is impossible for the record to be infinitely long,



-149-

and the bandwidth of the filter to be infinitely small in a practical
sense. Invariably, there will be error in the power spectral density
measurement if the limiting condition appearing in Eq. (B. 5) is not
carried out. The statistical uncertainty associated with this error is
conveniently written in terms of a dimensionless variance € 2 with
the assumption that the slope of the power spectrum is changing
slowly within the bandwidth B.

2 1

6 :-——T— (Bo 6)

The above expression has been derived and discussed by Blackman

and Turkey, (55) Bendat, (53) and Crandall. (54)

Additional terms
must be added to Eq. (B.6) if the slope of the power spectrum being
measured is changing more rapidly within the narrow frequency band
B. It is not difficult to see that the estimation uncertainty can be
reduced if the product value BT increases. The meaning of the
symbol € is best illustrated by an example. If BT = 10, 000, the
resulting estimate of Sx(f) at the frequency fo will have a standard
deviation of 1% of the true power spectral density.

In real situations, it is impossible to construct a2 narrow band
filter with very sharp cutoffs at the cutoff frequencies. An equivalent
bandwidth must be calculated from the transfer characteristics of the
actual filter. From Eq. (l.13) the mean square output after filtering -
is given by

@ 2
g2 :/ s (0 |H(jzn)| at
0

X
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where|H(j2wf)|is the transfer function (the ratio of output over input)
of the narrow band filter. Assuming that the Sx(f) is changing slowly

within the band, the mean square value could be approximated by

[0 6]
0.’ = sx(fo)/ |n(j2ns) | %as
0

or q- 2 (B.7)
S (f)= =z
X O

* 2
/- uzm|

where fo is the center frequency within the band. Equations {B. 4) and

(B. 7) are similar. It follows immediately that the equivalent bandwidth

can be conveniently defined by the following relation
les)

B =/ [H(jZﬂf),zdf (B. 8)
0

In general,the procedures involved in obtaining the power
spectral densities are the following:

1. Select a narrow band filter having a nominal narrow band-
width B {between half power points where it is 3 dbs down). Obtain
the filter transfer function]H(jZTrf)f, and then calculate the equivalent
bandwidth Beq according to Eq. (B. 8).

2. Square the instantaneous values of the filtered signal and
then average the squared signal over a time period T.

3. . Divide the averaged signal by the equivalent frequency
bandwidth Beq' The resulting value will be the power spectral density

of the signal at the center frequency fo of the narrow band filter.
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B-2. Instrumentation and Procedure

A schematic diagram for the instrumentation setup is shown in
Fig. (B.1l). The types of instruments used are cataloged in the

following table.

TABLE B. 1
Item Type ' Manufacturer Model Number
1 Wave Analyzer Radiometer FRAZ2
Denmark
2 Random Noise ' B &K Instruments 2417
Voltmeter
3 Sine Wave Generator Hewlett & Packard 202B
4 Frequency Counter Beckman Instruments 7350
5 Visicoder Honeywell 1508

The combination of these five instruments makes up what is known

as the power spectral density analyzer. Basically it consists of a

narrow band filter, a calibration unit, and a number of recording
instruments. The functional relationships among them are explained

as the following.

B-Za. Wave Analyzer

The type FRAZ wave analyzer is essentially a sensitive and
selective VI'VM which can be tuned to any frequency between 5cps and
1l6kc with the sensitivity from 100 mv to 1, 000 volts. This is
accomplished through filters with selective nominal bandwidth i'anging
from 2 cps, 8 cps to 25 cp.s. The filter transfer functions (the ratio

of output over input) lH(jZ'n'f)lare plotted in Figs. (B.2), (B. 3), (B. 4).
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The equivalent filter bandwidths Beq are calculated according to
Eqg. (B. 8); the actual values Beq for the respective filters are given
in Table B. 2.

TABLE B. 2

Nominal Bandwidth B 2cps 8cps 25cps

Equivalent Bandwidth Beq 4. 53cps 12. 43cps 31. 64cps

The output of the filters is displayed on a built-in voltmeter
which can be monitored through an analog voltage appearing at the
output terminal. This analog voltage has a fixed frequency of
1500 cps. Its magnitude is directly proportional to the meter de-
flection of the voltmeter. The functional relationships between them
are shown in Fig. (B.5) and (B. 6). These curves are proven to be
useful since it is usually impossible to get a voltmeter reading of the
filter output if the input is random. The procedure is to find an
average reading of the output voltage first. The actual output of the
filter is then obtained through interpolations from the curves shown
in Figs. (B. 5)and (B. 6) with proper placing of the decimal points in
accordance with the range switch settings of the wave analyzer.

In addition to the features already mentioned, the center
frequency fo.cps of the narrow band filter can be accurately located
through another output terminal which has a fixed 3 volts output and
a frequency varied according to 60kc—fons. This provides a
convenient way to obtain the power spectral density at any desired

center frequencies fg..
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B-2b. Calibration Setups

The general calibration procedures are well written in‘the
instruction manual for the wave analyzer. Improved accuracy could,
however, be obtained if external calibration procedures are followed.
The calibration instruments consist of a sine wave generator, a
frequency counter and a VI VM.

As it was pointed out earlier, the filters within the wave analyzer
need to be calibrated so that a correct value for the equivalent band-
width Beq can be determined (a unity gain at the center frequency of
the narrow band filter), In addition, the curves shown in Figs. (B. 5)
and (B. 6) are determined through calibration. From these curves it
is possible to interpret the true output voltage values of the narrow
band filter from the voltages appearing at the output terminal.
External averaging is often required in the harmonic analysis of a

random signal.

B-2c. Recording Instruments

The basic recording item used in measuring the power spectral
densities is the B & K type 2417 random noise voltmeter, which is
developed mainly to measure the rms value of the nafrow band
random noise or vibration signals. The built-in time averaging
integrator allows a time constant up to 100 seconds. These long inte-
gration times are necessary in narrow band vibration work in order
to obtain a good estimate of the mean square value of the signal. An
additional D. C. output is provided for the vol;cmeter so that it is

possible to record the mean square value on a recorder. This
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recorded signal can be further processed so as to reduce the

estimated error.
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APPENDIX C

A PROBABILITY DISTRIBUTION ANALYZER

C-1. Theory

The basic properties of a probability function have already been
discusscd (Section 1. 2). For a stationary continuous random signal
x(t) the probability that x(t) will assume a value between the amplitude
level x and xtdx at time t is p(x)dx where p(x) is the probability density
function. A probability density function p(x) could also be defined as

the derivative of the probability distribution function

(C. 1)

The probability distribution function P(x <X) is defined as the
probability that the random variable x(t) has a value less than a
predetermined amplitude level X in the time interval 0 <t < oco.

To determine the probability functions experimentally, itis
necessary to take measurements along the time axis. This is due to
the following equivalent definitions given to the probability functions.

The probability density of a random variable x(t), which has a

value falling in the interval (X, X+A X) during a time interval 0< t< oo,

may be defined by

CO
p(X) = lim TZ e Z t;(X, aX) (C. 2)
T— o i1

AX—0 B
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where ti(X’ AX) is the time interval during which the random variable
x(t) falls within the amplitude window (X, X+AX), and is dep endent on
the level X as well as the width of the amplitude window AX. In real
situations, the rigorous probability density defined by Eq. (C. 2) is
clearly not accessible to direct measurement. This is because:

1. It is impossible to have measurements taken over a time
interval which is infinite.

2. The amplitude window AX should not become too small in
practice.

3. The measurements can only be taken over a limited range
of amplitudes, and it is impossible to obtain data when the instantaneous
amplitude value is very large.

The probability density function is then estimated from

n

P(X) =i ) £,(X AX) (C. 3)
i=1
where T and AX are finite and n is a large but fixed number. A
schematic diagram for the relation given by Eq. (C. 3) is shown in
Fig. (C.1).
In many engineering applications it is often convenient to know
the probability of a continuous random variable x(t) which has a value

larger than the preset amplitude level X. In this case the probability

distribution function may be defined as the following:

[0 0]
P(x=X) = lim -Tl— Z T,(%)
T—>00 i=1
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where T i(X) is the time interval within which the random variable
x(t) exceeds the level X. In real situations, the measurement time
cannot be infinitely long. The probability distribution function in this

case may be estimated from

n
P(x >X) :7[1,_ Z T, (C. 4)
i=1

where T is a finite time interval and n is a large fixed integer. A
schematic illustration for the probability distribution function given
by Egq. (C. 4) is shown in Fig. (C.1). Note the absence of an amplitude
window in the diagram.

The experimental effort is directed toward the analysis of the
pfobability distribution function rather than the probability density
function. This is because:

1. Probability density analysis requires the setting up of a
narrow amplitude window which is difficult to construct in practice
(the commercial probability density analyzer made by B & K
Instruments has a narrow amplitude window in the order of 0.1 volts).
Probability distribution analysis, on the other hand, does not require
such a setup. |

2. There are two parameters, namely the total time interval T
and the narrow amplitude Windqw AX, involved in the statistical error
estimate for the probability density function. On the other hand, in
me asul;ing the probability distribution function, only one parameter,
the time interval T, need bé considered in the estimation of error.

3. Probability distribution data can be readily interpreted by
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an engineer who does the design work.

The relative ease in obtaining, by experiment, the probability
distribution function does not mean to play down the role of the
probability density analysis. The probability density function, which
is very important in the analytical work of probability, can always be
determincd from the distribution function by simple differen‘tiation

(some pathalogical cases are excluded).

C-2. Instrumentation and Procedures

The probability distribution analyzer used in the experiment is
made up of the following components:

1. Amplitude distribution analyzer.

2. Frequency counter and timer.

3. Bistable multivibrator.

4. Ope‘rational amplifiers.

5. Rectifier.

A schematic diagram for the probability distribution analyzer is
presented in Fig. (C. 2). The types of instruments used are listed
in Table {C.1). Their respective performance characteristics are
described in the following paragraphs.

‘The amplitude distribution analyzer (Quan-Tech Model 317) is
used primarily to measure the amplitude distribution of a non-
repetitivé or random signal. It is essentially a variable amplitude
Schmitt trigger which emits pulses when the input voltage éignal

crosses a preset amplitude level. In other words, there will be a
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TABLE C. 1

Instruments Used for the Probability Distribution Analyzer

Item Type Manufacturer Model Number
1 Universal EPUT & Beckman Instruments 7350ACU
Timer : 7350
2 Sine Wave Generator Hewlett & Packard 202B
3 True RMS Voltmeter B&K Instruments 24117
4 Operational Philbrick K7-A10
Manifold
5 Amplitude Distri- Quan-Tech 317
bution Analyzer Laboratory
6 *Bistable CIT Vibration
Multivibrator Laboratory
7 Variable D. C. Hewlett & Packard T21A
Power Supply
8 Battery Eveready
9 Rectifier CIT Vibration
Liaboratory
10 Oscilloscope Tektronix 502
11 Stop Watch Galco 80-803

* See the circuit diagram in Fig. (C. 3).
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positive or negative pulse depending on whether the crossing slope of
the incoming signal is positive or negative. A built-in averaging
integrator accumulates the time elapsed from positive to negative
pulses; fhe resulting sums are averaged continuously. Thus, the
meter reads: the percentage of time the preset amplitude level is
exceeded. This is precisely the definition given by Eq. (C. 4), Under
laboratory conditions, this instrument is never used alone, since:

1. The resbolution of the meter reading is poor.

2. The meter performs well only at the amplitude levecl where
the crossings are frequent.

3. It is usually impossible to obtain a meter reading when the
signals being analyzed have narrO\x} frequency band. The meter
fluctuates widely in most’of these cases.

External circuits are hooked up to overcome these difficulties
mentioned above. These include a bistable multi-vibrator, a timer,
an EPUT counter, operational amplifiers, and a rectifier. The
bistable multivibrator (Fig. C. 3) is designed to operate as a gate
which can be opened by a posifive pulse and closed by a negative pulse.
When a timer is connected to this gate, the time T i(X)’ (Fig. C.1),
during which the gate is open, can be accumulated on an EPUT counter.
The accumulated sum is denoted by f Z‘i(X). If this sum is divided
by the total time T elapsed dur‘ing thel—tlime of measurement, the
resulting quantity will represent the percentage of time the amplitude

level X is exceeded. This constitutes an estimate to the probability

distribution function of the given signal at this amplitude level.
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The operating principle of the ?robability distribution analyzer
is presented in Fig. (C. 2). The procedures involved are suramarized
as the following:

1. Set up the probability distribution analyzer as illustrated in
Fig. (C. 2).

2. Connect the vibration signal to be analyzed to the amplitude
distribution analyzer.

3. Select discrete amplitude levels X by adjusting the controls
on the amplitude distribution analyzer so that sufficient data can be
gathered for the probability distribution curves of the given signal.

4, Record the total _time ‘an ‘Ci(X) during which the gate is
open and the total time T duringlx;hich the measurements are taken.
The resulting quantity —,lf Zn Z’i(X) represents an estimate of the

i=1
probability distribution function of the signal at the amplitude level X.
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APPENDIX D

A PEAK DISTRIBUTION ANALYZER

To measure the probability distribution of peaks, several
instruments are employed. The system consists of a variable
amplitude rectifier, a simple differentiator, a zero crossing detector,
and a frequency counter. A complete schematic diagram for the peak
distribution analyzer is presented in Fig. (D.1l). The instruments used
are listed in Table (D.1).

The variable amplitude rectifier is used to eliminate the peaks
located outside the amplitude range of interest. This is accomplished
by connecting the circuit as that shown in Fig. (D.1), where two diodes
and a variable d. c. power’ supply are employed. The rectifying level
is controlled by the variable d. c. power supply. The polarity of the
d. c. power supply must be reversed if the rectifying level is to be
extended to include the negative values as well. The circuit con-
figuration shown in Fig. (D.1) gives very sharp corners at the
rectifying level.

Following the variable amplitude rectifier, a simple differentiator
is used to convert the peaks to zero crossings, which can be easily
detected by a zero crossing detector. However, the signal output of
the differentiator is sometimes small, and requires further amplifi-
cation in brder for the signal to be detected.

The amplitude distribution analyzer is used here primarily as a

zero crossing detector. A pulse, in the order of 0.5 volts, will be
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emitted whenever the input voltage crosses the d. c. level. By
counting the total number of pulses, it is possible to accumulate the

total number of peaks on a frequency counter.
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TABLE D. 1

Instruments Used for the Peak Distribution Analyzer

Item - Type Manufacturer Model Number
1 Variable Amplitude CIT Vibration
Rectifier Laboratory
2 Differentiator CIT Vibration
Laboratory
3 Amplifier Alinco 51-1
4 Amplitude Distribution Quan-Tech 317
Analyzer lL.aboratory
5 Frequency Counter Beckman Inst. 7350
6 D.C. Power Supply Hewlett & Packard T21A
7 Diodes Hughes IN 270
8 D. C. Voltmeter Greibach 500
9 Stop Watch Galco 80-803
10 Random Noise B &K 2417

Voltmeter

Instruments
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APPENDIX E
(22)

PRICE'S THEOREM
In the study of the behavior of the autocorrelation function
resulting from the passage of Gaussian distributed noise through a
zero-memory nonlinear device, Price's theorem appears to be very
useful. Let x(t) be a Gaussian distributed random variable, and y(t)
be the output random variable of a nonlinear device f(x). The auto-
correlation function RV(’Z.') for the random variable y(t) is now

desired. Hence

O Q0
R (T) = E[tbe)tle,) |= [ [ x)xy) plxy x,)dxyax,
’ -0 ~00

where x1=x(t1) and X,= X(tz).

Assume that each f(xj) can be represented by the sum of two

Laplace transforms(45)
1 sxj 1 sxj
f(Xj) =5 Fj"' (s)e “‘ds + -Z—Tr—l—/ Fj_(s)e ds
Cj+ Cj_
where
‘ 00 "ij
F. = f(x.)e dx.
i (5) { (e Jax,
j=1, 2
0
-sx,
| Fj_(s)z/ fx)e Jax,

-0

Thus the autocorrelation function can be written as
1 2 |
VI ) / / Fli(sl)FZi(SZ)Mx < (sl, sz)dlsldsz
C C

R ()=
y( ) x5
2t
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whe re

- 2
XIXZ(Sl’Sz) = exp [mX(SI+SZ)+ (T (s +Zps1s + s )]

where m_ and Q‘Xz denote the mean and the variance of the random

variable x(t). Let us now take derivatives of M < (sl, SZ) with
2
respect to the autocorrelation coefficient, we have -

k
d "M
%2 k_ k__ 2k, )
—— % =8 8, 0, M, . (s;8,
d@ 172

therefore

&R (t)
L (znl ) // F 1 (870 F 5 (s,)M lxz(srsz)dsldsz

d
e liZ:I:

Since

then

Finally we arrive at Price's theorem

k K
dkRy('C) 21, [d f(x)  d f(XZ)J |

_G K]
dpk X k ka

dxl 2





