DEVELOPMENT AND APPLICATIONS OF THE PALLADIUM-CATALYZED
ENANTIOSELECTIVE OXIDATION OF SECONDARY ALCOHOLS

Thesis by
David Christopher Ebner

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
2009
(Defended September 11, 2008)
To my family
ACKNOWLEDGEMENTS

First, I need to thank Professor Brian Stoltz, who has been a great advisor, mentor, and friend. His enthusiasm and passion for chemistry is contagious. At the end of our discussions, I have always had new ideas and felt more excitement and motivation for research. I appreciate that he has given me a fairly long leash to explore but has been there for guidance when research is not going as well. Brian has also created an amazing training environment within the lab, as his attention to detail and drive for excellence have prepared me for my future career.

I have also had an outstanding thesis committee: Professor Bob Grubbs, Professor John Bercaw, and Professor Peter Dervan. Professor Grubbs, the chair of my committee, has always had insightful questions, comments, and suggestions, and he has never complained when I run to him with last-minute recommendation letter requests. After taking two courses with Professor Bercaw, I was delighted to have him on my committee. His feedback on my research and proposals has been invaluable, and I have enjoyed our interactions during my time here. While Professor Dervan is the newest member of my committee, he has already provided beneficial guidance and support.

I am deeply indebted to Professor J. Thomas Ippoliti, my undergraduate research advisor. I probably would not be in organic chemistry if he had not taken a chance and allowed a freshman with no organic experience to join his labs. I have always been amazed at his ability to maintain a well-balanced life while supporting a thriving undergraduate research lab and committing so much to his courses, and I consider him a great role model and friend.
Thanks to Lynne Martinez, Dian Buchness, Laura Howe, and Anne Penney for keeping our lab and the department going with a smile. Tom Dunn and Scott Ross have kept the instruments running for me, and Rick Gerhart has been nice enough not to scold me too much when I show up with yet another stuck joint or broken flash column.

I have had the immense pleasure of working with a talented and creative group of coworkers in the Stoltz lab. First, I would like to acknowledge my baymates over the years: Professor Govindasamy Sekar, Mike Meyer, Kristin Finch, Dr. Kousuke Tani, Professor Andy Harned, TC Scotton, Dr. Xiaoqing Han, Allen Hong, and even the Symyx PPR machine. There have been many, and in some cases our time together has been brief, but I have had positive experiences with every one of them. Finally, I can leave the bay in Allen’s capable hands.

I really appreciate the support of the older students in the lab, particularly when I was just a naïve first year. Dr. Doug Behenna was instrumental in getting those first few reactions going, and he was always so tolerant of me stopping by to pester him with all kinds of chemistry questions. Professor Neil Garg was also great for chemistry questions and just chatting about life in general. Dr. Raissa Trend is a good friend and was a vital resource for all things organometallic, especially when I was struggling to make palladium complexes or had to use a special technique.

My fellow classmates, Dr. Ryan McFadden and Dr. Dan Caspi, were a great pair of guys with which to learn the ropes in the Stoltz lab. We all started on the same project, and conversations with them my first year really helped get my chemistry working.
I also have to express my gratitude for my other project mates over the years. Professor Eric Ferreira is one of the most amazing, hardworking chemists I have known. He had a hand in getting most of the palladium oxidation projects going in the lab. Dr. Jeff Bagdanoff and Raissa were also instrumental in the oxidative kinetic resolution project, as many of their studies led to my successes in the lab. Dr. Shyam Krishnan was also indirectly on the alcohol oxidation project. He had many helpful chemistry suggestions and put an incredible amount of work to get the big paper on our syntheses of alkaloids out the door. Collaborating with Dr. Zoltán Novák, a postdoctoral scholar in the Stoltz lab, on the kinetic resolution / Claisen chemistry was a very rewarding experience, both personally and scientifically. Our collaborator at the University of York, Professor Peter O’Brien, has been very generous in sending along the latest diamine ligand from his group for us to test in the resolution, and I am happy that our combined efforts were ultimately very fruitful. Dr. Uttam Tambar was a great project mate for the amurensinine research. He taught me a lot about total synthesis and dealing with frustration with a project, and chatting with him my first year was really what convinced me that the Stoltz lab was the place to be.

JT Mohr has been a good friend and an excellent resource for information in topics ranging from pKₐ’s to rubik’s cubes. He has also been a key player in both the weekly racquetball games and the group poker games, which have been a good distraction from the daily grind of chemistry. Thanks to everyone else involved with those too!

Thank you also to those who proofread portions of my thesis: Dr. Jan Streuff, Jenn Stockdill, Dr. Amanda Jones, and Pam Tadross. I especially owe Jan, who read
through all the chapters of my thesis and had some good comments. I also appreciate the
efforts of those who read through my proposals and papers over the years. I don’t
remember too many specific names, but hopefully you know who you are! Nat Sherden
and Hosea Nelson were also very willing to listen to my complaining and provide
welcome distractions during long nights spent typing in the computer room, for which I
am very grateful.

I look forward to Monday night burgers with Jenny Roizen, Jenn, Andre, and the
rest of the BC folk every week. Thanks to Narae Park and Sandy Ma for getting together
with me for a few beers at the end of the day once in awhile. Thomas Jensen was only
here for 9 months, but I feel like I have known him much longer, and I have valued his
friendship.

In addition to where she is mentioned above, Jenn Stockdill at least deserves her
own paragraph (but I will try to keep it brief). She joined the lab not too long after I did,
and she has been a fellow member of Crellin 264 and a dear friend ever since. I can
always count on her for a chat about chemistry or life in general, lunch or late night ice
cream runs, and even a few too many margaritas at Amigo’s. She is one of the few
people who consistently understands my strange sense of humor, for which I am ever
grateful. Jenn also was kind enough to play her music loud over and over, so that I might
learn the words. She is so thoughtful.

I am very privileged to have gotten to know Professor Jen Dionne more recently.
She has been a good support for me while writing my thesis, spending many a day at
Broad typing away. She has also been an outstanding host, and I have had many lunches
and dinners at her apartment (sometimes she is even there too!).
John Keith has been a great friend over the years. Starting in first year when we fought our way through the organometallic problem sets together, chemistry discussions with him have always been enlightening. He was also a good gym buddy, keeping me motivated to do something athletic on occasion.

Dr. Gavin Murphy, Adam Dennis, Dr. Cristal Gama, and Tammy Campbell have all been close friends throughout my time at Caltech. I enjoyed spending many a night at Amigo’s with them. Gavin and Adam were also always ready and willing to join an impromptu poker game.

Even though we are different in some ways, Erik Rodriguez and I have somehow gotten along really well. Wednesday night drinking (yes, it is exactly what it sounds like) was definitely a high point of the week for years. Erik has always been good for a trip to Amigo’s too, and he epitomizes the ‘work hard, play hard’ mentality that I have yet to successfully emulate. There is never a dull moment when Erik is around, but he has also been a great listener when I have needed to do some venting.

Dr. Heather Murrey has also been a very close friend during my time at Caltech. She is an outstanding cook and could drink almost anyone under the table, especially if tequila was involved. She has really been the leader of the gang, getting everyone together and organizing the parties. I have also had many stimulating scientific discussions with her, as her talents in the lab are matched only by her intellectual brilliance.

Chad Vecitis was my roommate for most of my graduate career. I have played more games of Rikiki with him than I can count. From day I arrived in our apartment
first year, he has been a solid and dependable friend. I guess we Midwesterners just stick together.

None of this work would have been possible without the strong support of my mom, dad, and sister. I can’t imagine a better environment in which to grow up. My parents have made so many sacrifices to get me where I am today, and I can’t thank them enough for that. Apparently, I tried to show my appreciation by taking off halfway across the country, hardly ever visiting, and calling far too infrequently, but they have taken it all and loved me anyway.

There are so many other people to thank, but this has already gotten way too long, and I know you are anxious to get to the actual chemistry that these people made possible, so I will end here. Okay, one more: thanks for reading!
ABSTRACT

The development of new methods for the preparation of chiral alcohols is vital due to the presence of alcohols in natural products, pharmaceuticals, and a variety of synthetic materials, as well as their versatility as synthetic intermediates. Until recently, oxidative kinetic resolution has been a relatively underdeveloped strategy for obtaining enantioenriched alcohols.

The development of a palladium-catalyzed aerobic system for the enantioselective oxidation of secondary alcohols is described. This mild method utilizes (–)-sparteine as a chiral ligand to resolve a wide range of benzylic, allylic, and cyclopropylcarbinyl alcohols to high enantiomeric excesses with excellent selectivity. The resolution of pharmaceutical intermediates and the Claisen rearrangement of resolved allylic alcohols demonstrate the utility of the method.

Mechanistic insights have driven further catalyst development. Anionic ligand modification has provided more efficient catalysts for the resolution of a broader array of substrates. Neutral ligand studies have led to an enantioselective alcohol oxidation system with a diamine pseudo-enantiomeric to (–)-sparteine, allowing access to enantioenriched alcohols in either enantiomeric series.

This methodology has been applied to the enantioselective total synthesis of (–)-amurensinine via a selective C–H insertion, an aryne C–C insertion, and an oxidative kinetic resolution with (–)-sparteine. Use of an alternative diamine in the resolution results in a formal synthesis of (+)-amurensinine.
TABLE OF CONTENTS

Dedication ... iii

Acknowledgements .. iv

Abstract .. x

Table of Contents ... xi

List of Figures .. xvi

List of Schemes ... xxx

List of Tables ... xxxiv

List of Abbreviations .. xxxix

CHAPTER 1: Introduction to Enantioselective Oxidation Chemistry 1

1.1 Oxidation in Biological Systems ... 1

1.2 Enantioselective Oxidations in Synthetic Chemistry 2

 1.2.1 Oxygenase-Type Reactions ... 2

 1.2.2 Oxidase-Type Reactions ... 3

1.3 Oxidative Kinetic Resolution of Alcohols ... 4

 1.3.1 Kinetic Resolutions .. 4

 1.3.2 Previous Catalytic Enantioselective Alcohol Oxidations 5

 1.3.3 Subsequent Enantioselective Alcohol Oxidations 10

1.4 Conclusion ... 15
CHAPTER 2: The Development of the Palladium-Catalyzed Oxidative Kinetic Resolution of Secondary Alcohols

2.1 Background and Introduction ... 22

2.2 Reaction Development .. 24
 2.2.1 Original Conditions ... 24
 2.2.2 Rate Acceleration with Exogenous Base and a Non-Oxidizing Alcohol
 ... 26
 2.2.3 Chloroform as Solvent in the Resolution .. 31

2.3 Conclusion .. 36

2.4 Experimental Section ... 37
 2.4.1 Materials and Methods ... 37
 2.4.2 General Oxidative Kinetic Resolution Conditions 38
 2.4.3 Screening and Optimization Studies .. 41
 2.4.4 Methods for Determination of Conversion 44
 2.4.5 Methods for Determination of Enantiomeric Excess 44

2.5 Notes and References ... 45

CHAPTER 3: Scope and Applications of the Oxidative Kinetic Resolution of
3.1 Background and Introduction ... 54

3.2 Substrate Scope of the Palladium-Catalyzed Enantioselective Oxidation 55
 3.2.1 Benzylic Alcohols .. 55
 3.2.2 Allylic Alcohols .. 59
 3.2.3 Cyclopropylcarbinyl Alcohols ... 64
 3.2.4 General Trends and Limitations ... 66
 3.2.5 Selectivity Model .. 67

3.3 Applications .. 68
 3.3.1 meso-Diol Desymmetrizations ... 68
 3.3.2 Kinetic Resolution / Claisen Sequence ... 70
 3.3.3 Resolution of Pharmaceutical Intermediates .. 72
 3.3.4 Resolution of Intermediates in Natural Product Syntheses 73

3.4 Conclusion ... 75

3.5 Experimental Section .. 77
 3.5.1 Materials and Methods .. 77
 3.5.2 General Oxidative Kinetic Resolution Conditions 79
 3.5.3 Preparative Procedures ... 82
 3.5.4 Methods for Determination of Conversion ... 121
 3.5.5 Methods for Determination of Enantiomeric Excess 124

3.6 Notes and References ... 128
APPENDIX 1: Spectra Relevant to Chapter 3 ... 136

CHAPTER 4: Advanced Catalyst Design in the Oxidative Kinetic Resolution 225

4.1 Background and Introduction ... 225

4.2 Counterion Studies in the Kinetic Resolution .. 232
 4.2.1 Phenoxides .. 232
 4.2.2 Bromide as Counterion in the Resolution 241

4.3 Neutral Ligand Studies ... 249
 4.3.1 Background and Early Results .. 249
 4.3.2 (−)-Cytisine-Based Diamines in the Oxidative Kinetic
 Resolution with PdCl₂ .. 253
 4.3.3 Alternative Diamine with PdBr₂ in the Oxidative Kinetic
 Resolution .. 261

4.4 Conclusion ... 265

4.5 Experimental Section .. 266
 4.5.1 Materials and Methods .. 266
 4.5.2 Preparation of Palladium Complexes and Diamines 267
 4.5.3 General Procedures .. 274
 4.5.4 Preparative Resolution of Alcohols .. 283
 4.5.5 Methods for Determination of Conversion .. 287
4.5.6 Methods for Determination of Enantiomeric Excess 288

4.6 Notes and References ... 289

APPENDIX 2: Spectra Relevant to Chapter 4 ... 293

APPENDIX 3: X-Ray Crystallographic Data Relevant to Chapter 4 306

A3.1 Pd(N-Me Diamine)Cl₂ (269) ... 306

A3.2 Pd(N-Et Diamine)Cl₂ (270) ... 314

A3.3 Pd(N-Me Diamine)Br₃ (274) ... 323

CHAPTER 5: A Convergent Total Synthesis of (+)-Amurensinine and Formal

Synthesis of (–)-Amurensinine via Oxidative Kinetic Resolution 329

5.1 Background and Introduction .. 329

5.1.1 Isopavine Natural Products ... 329

5.1.2 Previous Isopavine Syntheses ... 330

5.1.3 Retrosynthetic Analysis of Amurensinine 331

5.2 Total Synthesis of (+)-Amurensinine .. 332

5.2.1 Initial Route ... 332

5.2.2 Alternate End Sequence ... 338
5.2.3 Final Route to (+)-Amuresinine .. 339

5.3 Formal Synthesis of (−)-Amuresinine .. 343

5.3.1 Enantioenriched Ketosilane Reduction 343

5.3.2 Preparation of Enantioenriched Hydroxysilane by Resolution 344

5.4 Conclusion ... 345

5.5 Experimental Section .. 347

5.5.1 Materials and Methods ... 347

5.5.2 Preparative Procedures ... 348

5.6 Notes and References ... 379

APPENDIX 4: Synthetic Summary for (+)-Amuresinine 383

APPENDIX 5: Spectra Relevant to Chapter 5 ... 386

APPENDIX 6: The Development of a Scaleable Acyl-Alkylation of Arynes and
Application to the Construction of 1,3-Dihydroxynaphthalenes 419

A6.1 Background and Introduction ... 419

A6.2 The Development of a Scaleable Aryne Insertion into β-Ketoesters 421

A6.3 Application to the Construction of 1,3-Dihydroxynaphthalenes 422
A6.4 Conclusion .. 423

A6.5 Experimental Section ... 424
 A6.5.1 Materials and Methods .. 424
 A6.5.2 Preparative Procedures .. 425

A6.6 Notes and References .. 428

APPENDIX 7: Spectra Relevant to Appendix 6 ... 429

APPENDIX 8: Notebook Cross-Reference ... 436

Comprehensive Bibliography .. 441

About the Author .. 463
LIST OF FIGURES

CHAPTER 1

Figure 1.1.1 Oxygenase and oxidase enzymes .. 1
Figure 1.2.1 Synthetic asymmetric oxygenase-type chemistry 3
Figure 1.2.2 Proposed synthetic asymmetric oxidase-type chemistry 4
Figure 1.3.1 Kinetic resolution overview .. 5

CHAPTER 2

Figure 2.2.1 Structures of ligands in Table 2.2.1 ... 25

CHAPTER 3

Figure 3.2.1 Enantioenriched ketones obtained from the resolution.............. 65
Figure 3.2.2 Alcohols of low reactivity in the oxidation............................... 66
Figure 3.2.3 Alcohols oxidized with low selectivity 67

APPENDIX 1

Figure A1.1 1H NMR (300 MHz, CDCl$_3$) of compound (–)-74.................... 137
Figure A1.2 Infrared spectrum (thin film/NaCl) of compound (–)-74............. 138
Figure A1.3 13C NMR (75 MHz, CDCl$_3$) of compound (–)-74.................... 138
Figure A1.4 1H NMR (300 MHz, CDCl$_3$) of compound (–)-76.................... 139
Figure A1.5 Infrared spectrum (thin film/NaCl) of compound (–)-76............. 140
Figure A1.6 13C NMR (75 MHz, CDCl$_3$) of compound (–)-76.................... 140
Figure A1.7 1H NMR (300 MHz, CDCl$_3$) of compound (–)-96 141

Figure A1.8 Infrared spectrum (thin film/NaCl) of compound (–)-96 142

Figure A1.9 13C NMR (75 MHz, CDCl$_3$) of compound (–)-96 142

Figure A1.10 1H NMR (300 MHz, CDCl$_3$) of compound (S)-102 143

Figure A1.11 Infrared spectrum (thin film/NaCl) of compound (S)-102 144

Figure A1.12 13C NMR (75 MHz, CDCl$_3$) of compound (S)-102 144

Figure A1.13 1H NMR (300 MHz, CDCl$_3$) of compound (+)-111 145

Figure A1.14 Infrared spectrum (thin film/NaCl) of compound (+)-111 146

Figure A1.15 13C NMR (75 MHz, CDCl$_3$) of compound (+)-111 146

Figure A1.16 1H NMR (300 MHz, CDCl$_3$) of compound (+)-112 147

Figure A1.17 Infrared spectrum (thin film/NaCl) of compound (+)-112 148

Figure A1.18 13C NMR (75 MHz, CDCl$_3$) of compound (+)-112 148

Figure A1.19 1H NMR (300 MHz, CDCl$_3$) of compound (+)-113 149

Figure A1.20 Infrared spectrum (thin film/NaCl) of compound (+)-113 150

Figure A1.21 13C NMR (75 MHz, CDCl$_3$) of compound (+)-113 150

Figure A1.22 1H NMR (300 MHz, C$_6$D$_6$) of compound 202 151

Figure A1.23 Infrared spectrum (thin film/NaCl) of compound 202 152

Figure A1.24 13C NMR (75 MHz, C$_6$D$_6$) of compound 202 152

Figure A1.25 1H NMR (300 MHz, CDCl$_3$) of compound 203 153

Figure A1.26 Infrared spectrum (thin film/NaCl) of compound 203 154

Figure A1.27 13C NMR (75 MHz, CDCl$_3$) of compound 203 154

Figure A1.28 1H NMR (300 MHz, CDCl$_3$) of compound (+)-114 155

Figure A1.29 Infrared spectrum (thin film/NaCl) of compound (+)-114 156
Figure A1.30 13C NMR (75 MHz, CDCl$_3$) of compound (+)-114

Figure A1.31 1H NMR (300 MHz, CDCl$_3$) of compound 205

Figure A1.32 Infrared spectrum (thin film/NaCl) of compound 205

Figure A1.33 13C NMR (75 MHz, CDCl$_3$) of compound 205

Figure A1.34 1H NMR (300 MHz, CDCl$_3$) of compound (+)-115

Figure A1.35 Infrared spectrum (thin film/NaCl) of compound (+)-115

Figure A1.36 13C NMR (75 MHz, CDCl$_3$) of compound (+)-115

Figure A1.37 1H NMR (300 MHz, CDCl$_3$) of compound 207

Figure A1.38 Infrared spectrum (thin film/NaCl) of compound 207

Figure A1.39 13C NMR (75 MHz, CDCl$_3$) of compound 207

Figure A1.40 1H NMR (300 MHz, CDCl$_3$) of compound (+)-116

Figure A1.41 Infrared spectrum (thin film/NaCl) of compound (+)-116

Figure A1.42 13C NMR (75 MHz, CDCl$_3$) of compound (+)-116

Figure A1.43 1H NMR (300 MHz, CDCl$_3$) of compound 209

Figure A1.44 Infrared spectrum (thin film/NaCl) of compound 209

Figure A1.45 13C NMR (75 MHz, CDCl$_3$) of compound 209

Figure A1.46 1H NMR (300 MHz, CDCl$_3$) of compound (+)-117

Figure A1.47 Infrared spectrum (thin film/NaCl) of compound (+)-117

Figure A1.48 13C NMR (75 MHz, CDCl$_3$) of compound (+)-117

Figure A1.49 1H NMR (300 MHz, CDCl$_3$) of compound 212

Figure A1.50 Infrared spectrum (thin film/NaCl) of compound 212

Figure A1.51 13C NMR (75 MHz, CDCl$_3$) of compound 212

Figure A1.52 1H NMR (300 MHz, CDCl$_3$) of compound (+)-118
Figure A1.53 Infrared spectrum (thin film/NaCl) of compound (+) \(118\) 172
Figure A1.54 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound (+) \(118\) 172
Figure A1.55 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound (–) \(120\) 173
Figure A1.56 Infrared spectrum (thin film/NaCl) of compound (–) \(120\) 174
Figure A1.57 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound (–) \(120\) 174
Figure A1.58 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound \(216\) 175
Figure A1.59 Infrared spectrum (thin film/NaCl) of compound \(216\) 176
Figure A1.60 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound \(216\) 176
Figure A1.61 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound (–) \(122\) 177
Figure A1.62 Infrared spectrum (thin film/NaCl) of compound (–) \(122\) 178
Figure A1.63 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound (–) \(122\) 178
Figure A1.64 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound \(217\) 179
Figure A1.65 Infrared spectrum (thin film/NaCl) of compound \(217\) 180
Figure A1.66 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound \(217\) 180
Figure A1.67 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound (–) \(123\) 181
Figure A1.68 Infrared spectrum (thin film/NaCl) of compound (–) \(123\) 182
Figure A1.69 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound (–) \(123\) 182
Figure A1.70 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound \(221\) 183
Figure A1.71 Infrared spectrum (thin film/NaCl) of compound \(221\) 184
Figure A1.72 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound \(221\) 184
Figure A1.73 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound (–) \(124\) 185
Figure A1.74 Infrared spectrum (thin film/NaCl) of compound (–) \(124\) 186
Figure A1.75 \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) of compound (–) \(124\) 186
Figure A1.76 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 152.......................... 187
Figure A1.77 Infrared spectrum (thin film/NaCl) of compound 152 188
Figure A1.78 \(^1\)C NMR (75 MHz, CDCl\(_3\)) of compound 152.......................... 188
Figure A1.79 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 153......................... 189
Figure A1.80 Infrared spectrum (thin film/NaCl) of compound 153 190
Figure A1.81 \(^1\)C NMR (75 MHz, CDCl\(_3\)) of compound 153.......................... 190
Figure A1.82 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 154......................... 191
Figure A1.83 Infrared spectrum (thin film/NaCl) of compound 154 192
Figure A1.84 \(^1\)C NMR (75 MHz, CDCl\(_3\)) of compound 154......................... 192
Figure A1.85 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 155......................... 193
Figure A1.86 Infrared spectrum (thin film/NaCl) of compound 155 194
Figure A1.87 \(^1\)C NMR (75 MHz, CDCl\(_3\)) of compound 155......................... 194
Figure A1.88 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 156......................... 195
Figure A1.89 Infrared spectrum (thin film/NaCl) of compound 156 196
Figure A1.90 \(^1\)C NMR (75 MHz, CDCl\(_3\)) of compound 156......................... 196
Figure A1.91 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 157......................... 197
Figure A1.92 Infrared spectrum (thin film/NaCl) of compound 157 198
Figure A1.93 \(^1\)C NMR (75 MHz, CDCl\(_3\)) of compound 157......................... 198
Figure A1.94 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 158......................... 199
Figure A1.95 Infrared spectrum (thin film/NaCl) of compound 158 200
Figure A1.96 \(^1\)C NMR (75 MHz, CDCl\(_3\)) of compound 158......................... 200
Figure A1.97 \(^1\)H NMR (300 MHz, CDCl\(_3\)) of compound 159......................... 201
Figure A1.98 Infrared spectrum (thin film/NaCl) of compound 159 202
Figure A1.99 13C NMR (75 MHz, CDCl$_3$) of compound 159 .. 202
Figure A1.100 1H NMR (300 MHz, CDCl$_3$) of compound 160 203
Figure A1.101 Infrared spectrum (thin film/NaCl) of compound 160. 204
Figure A1.102 13C NMR (75 MHz, CDCl$_3$) of compound 160 204
Figure A1.103 1H NMR (300 MHz, CDCl$_3$) of compound 161 205
Figure A1.104 Infrared spectrum (thin film/NaCl) of compound 161. 206
Figure A1.105 13C NMR (75 MHz, CDCl$_3$) of compound 161 206
Figure A1.106 1H NMR (300 MHz, CDCl$_3$) of compound 162 207
Figure A1.107 Infrared spectrum (thin film/NaCl) of compound 162. 208
Figure A1.108 13C NMR (75 MHz, CDCl$_3$) of compound 162 208
Figure A1.109 1H NMR (300 MHz, CDCl$_3$) of compound 163 209
Figure A1.110 Infrared spectrum (thin film/NaCl) of compound 163. 210
Figure A1.111 13C NMR (75 MHz, CDCl$_3$) of compound 163 210
Figure A1.112 1H NMR (300 MHz, CDCl$_3$) of compound 164 211
Figure A1.113 Infrared spectrum (thin film/NaCl) of compound 164. 212
Figure A1.114 13C NMR (75 MHz, CDCl$_3$) of compound 164 212
Figure A1.115 1H NMR (300 MHz, CDCl$_3$) of compound 165 213
Figure A1.116 Infrared spectrum (thin film/NaCl) of compound 165. 214
Figure A1.117 13C NMR (75 MHz, CDCl$_3$) of compound 165 214
Figure A1.118 1H NMR (300 MHz, CDCl$_3$) of compound 166 215
Figure A1.119 Infrared spectrum (thin film/NaCl) of compound 166. 216
Figure A1.120 13C NMR (75 MHz, CDCl$_3$) of compound 166 216
Figure A1.121 1H NMR (300 MHz, CDCl$_3$) of compound 167 217
CHAPTER 4

Figure 4.1.1 Theoretical calculations on the enantioselective oxidation........ 228
Figure 4.1.2 Structure of Pd(sparteine)Cl₂.. 229
Figure 4.1.3 Structure of Pd(sparteine)(OAc)₂ ... 230
Figure 4.1.4 Structure of palladium alkoxide 232.. 231
Figure 4.2.1 Structure of Pd(sparteine)(OC₆F₅)₂... 234
Figure 4.2.2 Structure of Pd(sparteine)Br₂ ... 242
Figure 4.3.1 Previously examined unsuccessful ligands............................... 250
Figure 4.3.2 Ligands not promoting oxidative kinetic resolution............... 251
Figure 4.3.3 Structure of N-methyl complex 269 256
Figure 4.3.4 Structure of N-ethyl complex 270 .. 257

Figure A1.122 Infrared spectrum (thin film/NaCl) of compound 167........... 218
Figure A1.123 ¹³C NMR (75 MHz, CDCl₃) of compound 167....................... 218
Figure A1.124 ¹H NMR (300 MHz, CDCl₃) of compound 168....................... 219
Figure A1.125 Infrared spectrum (thin film/NaCl) of compound 168........... 220
Figure A1.126 ¹³C NMR (75 MHz, CDCl₃) of compound 168....................... 220
Figure A1.127 ¹H NMR (300 MHz, CDCl₃) of compound 169....................... 221
Figure A1.128 Infrared spectrum (thin film/NaCl) of compound 169........... 222
Figure A1.129 ¹³C NMR (75 MHz, CDCl₃) of compound 169....................... 222
Figure A1.130 ¹H NMR (300 MHz, CDCl₃) of compound 170....................... 223
Figure A1.131 Infrared spectrum (thin film/NaCl) of compound 170........... 224
Figure A1.132 ¹³C NMR (75 MHz, CDCl₃) of compound 170....................... 224
APPENDIX 2

Figure A2.1 1H NMR (500 MHz, CDCl$_3$) of compound 243. .. 294
Figure A2.2 Infrared spectrum (thin film/NaCl) of compound 243. 295
Figure A2.3 13C NMR (126 MHz, CDCl$_3$) of compound 243. 295
Figure A2.4 1H NMR (300 MHz, CDCl$_3$) of compound 269. 296
Figure A2.5 Infrared spectrum (thin film/NaCl) of compound 269. 297
Figure A2.6 13C NMR (75 MHz, CDCl$_3$) of compound 269 297
Figure A2.7 1H NMR (300 MHz, CDCl$_3$) of compound 270. 298
Figure A2.8 Infrared spectrum (thin film/NaCl) of compound 270. 299
Figure A2.9 13C NMR (75 MHz, CDCl$_3$) of compound 270 299
Figure A2.10 1H NMR (300 MHz, CDCl$_3$) of compound 274 300
Figure A2.11 Infrared spectrum (thin film/NaCl) of compound 274. 301
Figure A2.12 13C NMR (75 MHz, CDCl$_3$) of compound 274 301
Figure A2.13 1H NMR (500 MHz, CDCl$_3$) of compound 267 302
Figure A2.14 Infrared spectrum (thin film/NaCl) of compound 267. 303
Figure A2.15 13C NMR (126 MHz, CDCl$_3$) of compound 267 303
Figure A2.16 1H NMR (500 MHz, CDCl$_3$) of compound 268 304
Figure A2.17 Infrared spectrum (thin film/NaCl) of compound 268. 305
Figure A2.18 13C NMR (126 MHz, CDCl$_3$) of compound 268 305

APPENDIX 3
APPENDIX 5

Figure A3.1.1 Pd(N-Me Diamine)Cl₂ (269) ... 306
Figure A3.1.2 Pd(N-Me Diamine)Cl₂ (269) ... 308
Figure A3.1.3 Unit cell of Pd(N-Me Diamine)Cl₂ (269) .. 309
Figure A3.1.4 Stereo view of unit cell of Pd(N-Me Diamine)Cl₂ (269) 309
Figure A3.2.1 Pd(N-Et Diamine)Cl₂ (270) ... 314
Figure A3.2.2 Pd(N-Et Diamine)Cl₂ (270) ... 316
Figure A3.2.3 Unit cell of Pd(N-Et Diamine)Cl₂ (270) .. 317
Figure A3.2.4 Stereo view of unit cell of Pd(N-Et Diamine)Cl₂ (270) 317
Figure A3.3.1 Pd(N-Me Diamine)Br₂ (274) ... 323
Figure A3.3.2 Pd(N-Me Diamine)Br₂ (274) ... 325

CHAPTER 5

Figure 5.1.1 Representative isopavine natural products ... 329

APPENDIX 5

Figure A5.1 ¹H NMR (300 MHz, CDCl₃) of compound 301. 387
Figure A5.2 Infrared spectrum (thin film/NaCl) of compound 301 388
Figure A5.3 ¹³C NMR (75 MHz, CDCl₃) of compound 301 388
Figure A5.4 ¹H NMR (500 MHz, CDCl₃) of compound 296 389
Figure A5.5 Infrared spectrum (thin film/NaCl) of compound 296 390
Figure A5.6 ¹³C NMR (125 MHz, CDCl₃) of compound 296 390
Figure A5.7 ¹H NMR (300 MHz, C₆D₆) of compound 303 391
Figure A5.8 Infrared spectrum (thin film/NaCl) of compound 303 392
Figure A5.9 13C NMR (75 MHz, C$_6$D$_6$) of compound 303. ... 392
Figure A5.10 1H NMR (300 MHz, CDCl$_3$) of compound 304.............................. 393
Figure A5.11 Infrared spectrum (thin film/NaCl) of compound 304. 394
Figure A5.12 13C NMR (75 MHz, CDCl$_3$) of compound 304.............................. 394
Figure A5.13 1H NMR (300 MHz, C$_6$D$_6$) of compound (+)-308. 395
Figure A5.14 Infrared spectrum (thin film/NaCl) of compound (+)-308. 396
Figure A5.15 13C NMR (75 MHz, C$_6$D$_6$) of compound (+)-308. 396
Figure A5.16 1H NMR (500 MHz, CDCl$_3$) of compound (–)-309. 397
Figure A5.17 Infrared spectrum (thin film/NaCl) of compound (–)-309. 398
Figure A5.18 13C NMR (125 MHz, CDCl$_3$) of compound (–)-309. 398
Figure A5.19 1H NMR (500 MHz, CDCl$_3$) of compound (+)-293. 399
Figure A5.20 Infrared spectrum (thin film/NaCl) of compound (+)-293. 400
Figure A5.21 13C NMR (125 MHz, CDCl$_3$) of compound (+)-293. 400
Figure A5.22 1H NMR (300 MHz, CDCl$_3$) of compound (+)-282. 401
Figure A5.23 Infrared spectrum (thin film/NaCl) of compound (+)-282. 402
Figure A5.24 13C NMR (75 MHz, CDCl$_3$) of compound (+)-282. 402
Figure A5.25 1H NMR (300 MHz, CDCl$_3$) of compound (±)-314. 403
Figure A5.26 Infrared spectrum (thin film/NaCl) of compound (±)-314. 404
Figure A5.27 13C NMR (126 MHz, CDCl$_3$) of compound (±)-314.......... 404
Figure A5.28 1H NMR (300 MHz, C$_6$D$_6$) of compound (+)-321. 405
Figure A5.29 Infrared spectrum (thin film/NaCl) of compound (+)-321. 406
Figure A5.30 13C NMR (75 MHz, C$_6$D$_6$) of compound (+)-321. 406
Figure A5.31 1H NMR (300 MHz, C$_6$D$_6$) of compound (–)-315. 407
APPENDIX 7

Figure A7.1 1H NMR (300 MHz, CDCl$_3$) of compound 327. 430
Figure A7.2 Infrared spectrum (thin film/NaCl) of compound 327. 431
Figure A7.3 13C NMR (75 MHz, CDCl$_3$) of compound 327 431
Figure A7.4 1H NMR (300 MHz, CDCl$_3$) of compound 330. 432
Figure A7.5 Infrared spectrum (thin film/NaCl) of compound 330.................... 433

Figure A7.6 13C NMR (75 MHz, CDCl$_3$) of compound 330.......................... 433

Figure A7.7 1H NMR (300 MHz, CDCl$_3$) of compound 334......................... 434

Figure A7.8 Infrared spectrum (thin film/NaCl) of compound 334.................... 435

Figure A7.9 13C NMR (75 MHz, CDCl$_3$) of compound 334.......................... 435
LIST OF SCHEMES

CHAPTER 1

Scheme 1.3.1 Rychnovský’s chiral TEMPO-based oxidation.........................6
Scheme 1.3.2 Chiral nitroxyl oxidation under electrolysis.............................6
Scheme 1.3.3 Nitroxyl oxidation with a chiral base..................................7
Scheme 1.3.4 Ohkuba ruthenium-catalyzed transfer hydrogenation...............8
Scheme 1.3.5 Noyori ruthenium-catalyzed transfer hydrogenation...............8
Scheme 1.3.6 Uemura ruthenium-catalyzed transfer hydrogenation...............9
Scheme 1.3.7 Katsuki aerobic enantioselective alcohol oxidation...............10
Scheme 1.3.8 Manganese-catalyzed oxidation with PhI(OAc)₂........................11
Scheme 1.3.9 Gao iridium-catalyzed transfer hydrogenation.....................11
Scheme 1.3.10 Ikariya iridium-catalyzed aerobic oxidation........................12
Scheme 1.3.11 Toste vanadium-catalyzed aerobic oxidation......................13
Scheme 1.3.12 Chen vanadium-catalyzed aerobic oxidations......................14
Scheme 1.3.13 Onomura copper-catalyzed enantioselective oxidations...........15

CHAPTER 2

Scheme 2.1.1 Uemura oxidation conditions...23
Scheme 2.1.2 Uemura oxidation proposed mechanism..............................23
Scheme 2.2.1 Original resolution conditions..26
Scheme 2.2.2 Potential role of excess (–)-sparteine...................................29
Scheme 2.2.3 Synthesis of palladium carbonate 69.................................30
Scheme 2.2.4 Possible racemization mechanism with tert-butoxide 31

CHAPTER 3

Scheme 3.2.1 Synthesis of 2-arylcyloalkenols .. 62
Scheme 3.2.2 Model for selectivity of the resolution 68
Scheme 3.3.1 Desymmetrization of meso-diol 146 69
Scheme 3.3.2 Desymmetrization of polyether meso-diols 69
Scheme 3.3.3 Oxidative cyclization of a Claisen product 72
Scheme 3.3.4 Resolved alcohols as pharmaceutical intermediates 73
Scheme 3.3.5 Enantioselective oxidations for natural product synthesis 74

CHAPTER 4

Scheme 4.1.1 Resolution with (−)-sparteine and Pd(OAc)₂ 225
Scheme 4.1.2 Proposed mechanistic role of counterion 226
Scheme 4.1.3 Model for selectivity of the resolution 232
Scheme 4.3.1 Diamine 248 in asymmetric transformations 253
Scheme 4.3.2 Known syntheses of (−)-cytisine-based diamines 254
Scheme 4.3.3 Syntheses of novel diamines ... 255
Scheme 4.3.4 Synthesis of dichloride complexes of diamines 255
Scheme 4.3.5 Comparison of selectivity with different diamine ligands 261
Scheme 4.3.6 Synthesis of dibromide complex 274 262

CHAPTER 5
<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>Classical approach to isopavine synthesis</td>
<td>330</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Auxiliary-based synthesis of (−)-amurensinine</td>
<td>330</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Retrosynthesis of (+)-amurensinine</td>
<td>331</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Synthesis of aryne precursor 296</td>
<td>332</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Synthesis of β-ketoester 304</td>
<td>333</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Aryne insertion</td>
<td>333</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Diastereoselective ketone reduction of hydroxyester (±)-308</td>
<td>334</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Resolution of hydroxyester (±)-309</td>
<td>335</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Initial route to complete (+)-amurensinine</td>
<td>336</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Possible racemization mechanism</td>
<td>337</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Lactonization by epimerization of hydroxyester (±)-309</td>
<td>337</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Long route to complete (+)-amurensinine</td>
<td>338</td>
</tr>
<tr>
<td>5.2.10</td>
<td>Hydroxysilane (±)-317 oxidative kinetic resolution</td>
<td>340</td>
</tr>
<tr>
<td>5.2.11</td>
<td>Non-enantioselective oxidations of hydroxysilane (±)-317</td>
<td>341</td>
</tr>
<tr>
<td>5.2.12</td>
<td>Rate enhancement with Pd(sparteine)Br₂</td>
<td>342</td>
</tr>
<tr>
<td>5.2.13</td>
<td>Final route to complete (+)-amurensinine</td>
<td>342</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Diastereoselective ketosilane reduction</td>
<td>344</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Resolution with diamine 248 under O₂</td>
<td>345</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Resolution with diamine 248 under ambient air</td>
<td>345</td>
</tr>
</tbody>
</table>

APPENDIX 4

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4.1</td>
<td>Synthesis of silyl triflate 296</td>
<td>384</td>
</tr>
<tr>
<td>A4.2</td>
<td>Synthesis of β-ketoester 304</td>
<td>384</td>
</tr>
</tbody>
</table>
APPENDIX 6

- **Scheme A4.3** Synthesis of (+)-amurensinine ((+)-282) .. 385

<table>
<thead>
<tr>
<th>Scheme A6.1.1</th>
<th>Kobayashi’s aryne preparation ... 419</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme A6.1.2</td>
<td>Aryne insertion and possible mechanism 420</td>
</tr>
<tr>
<td>Scheme A6.1.3</td>
<td>Ring expansion by aryne insertion ... 420</td>
</tr>
<tr>
<td>Scheme A6.2.1</td>
<td>Initial procedure with byproduct ... 421</td>
</tr>
<tr>
<td>Scheme A6.2.2</td>
<td>Final large scale aryne insertion .. 422</td>
</tr>
<tr>
<td>Scheme A6.3.1</td>
<td>Base-promoted dihydroxynaphthalene formation 423</td>
</tr>
</tbody>
</table>
LIST OF TABLES

CHAPTER 2

Table 2.2.1 Initial ligand screen for the oxidative kinetic resolution24
Table 2.2.2 Catalyst activity versus (−)-sparteine loading26
Table 2.2.3 Base screening studies with amines and carbonates27
Table 2.2.4 Catalyst activity with (−)-sparteine and other amines28
Table 2.2.5 Comparison of various conditions in toluene29
Table 2.2.6 Evaluation of tert-butoxide additives31
Table 2.2.7 Solvent screen with Pd(sparteine)Cl₂ ..33
Table 2.2.8 IR data supporting hydrogen-bond donation34
Table 2.2.9 Chloroform:toluene ratio variation ...35
Table 2.2.10 Chloroform conditions with O₂ or ambient air35
Table 2.4.1 Methods for determination of conversion44
Table 2.4.2 Methods for determination of enantiomeric excess44

CHAPTER 3

Table 3.1.1 Various conditions for enantioselective alcohol oxidation55
Table 3.2.1 Resolution of 1-arylethanols ..57
Table 3.2.2 Resolution of other benzylic alcohols ..59
Table 3.2.3 Resolution of cyclic allylic alcohols ...61
Table 3.2.4 Resolution of 2-arylcycloalkenols ..63
Table 3.2.5 Resolution of 3-substituted allylic alcohols64
Table 3.2.6 Resolution of cyclopropylcarbinyl alcohols................................. 65
Table 3.3.1 Claisen rearrangement of allylic alcohols................................. 71
Table 3.5.1 Methods for determination of conversion................................. 121
Table 3.5.2 Methods for determination of enantiomeric excess............... 124

CHAPTER 4
Table 4.1.1 Palladium source screen in toluene ... 227
Table 4.2.1 Phenoxide screen with (±)-1-phenylpropanol........................... 235
Table 4.2.2 Phenoxide screen with (±)-1-phenylethanol.............................. 236
Table 4.2.3 Phenoxide screen with secondary alcohol (±)-73....................... 238
Table 4.2.4 BINOL-derived phenoxides as additives................................. 240
Table 4.2.5 Counterion variation with phenoxides...................................... 241
Table 4.2.6 Rate of oxidation of various palladium precatalysts 243
Table 4.2.7 Various dibromide precursors in the resolution....................... 243
Table 4.2.8 Solvent screen with Pd(sparteine)Br₂... 245
Table 4.2.9 Pd(sparteine)Br₂ conditions in toluene .. 246
Table 4.2.10 Slow substrates with Pd(sparteine)Cl₂....................................... 247
Table 4.2.11 Substrate scope with Pd(sparteine)Br₂...................................... 249
Table 4.3.1 Oxidation rates with various diamines....................................... 252
Table 4.3.2 Diamine substituent screen in the resolution............................. 258
Table 4.3.3 N-Ethyl diamine resolution in toluene with Pd(nbd)Cl₂........... 259
Table 4.3.4 N-Methyl diamine resolution in chloroform with Pd(nbd)Cl₂..... 260
Table 4.3.5 Optimization of with N-methyl diamine and PdBr₂ sources...... 263
APPENDIX 3

Table A3.1.1 Crystal data and structure refinement for DCE03
(CCDC 274539).. 307

Table A3.1.2 Atomic coordinates (x 10^4) and equivalent isotropic
displacement parameters (Å^2 x 10^3) for DCE03 (CCDC 274539). U(eq) is defined as the trace of the orthogonalized
U^ii tensor.. 310

Table A3.1.3 Selected bond lengths [Å] and angles [°] for DCE03
(CCDC 274539).. 310

Table A3.1.4 Bond lengths [Å] and angles [°] for DCE03 (CCDC 274539).... 311

Table A3.1.5 Anisotropic displacement parameters (Å^2 x 10^4) for DCE03
(CCDC 274539). The anisotropic displacement factor exponent
takes the form: -2π^2 [h^2*a^2*U_11 + ... + 2h*k*a*b*U_12]................. 312

Table A3.1.6 Hydrogen coordinates (x 10^4) and isotropic displacement
parameters (Å^2 x 10^3) for DCE03 (CCDC 274539)......................... 313

Table A3.2.1 Crystal data and structure refinement for DCE02 (CCDC
274867) ... 315

Table A3.2.2 Atomic coordinates (x 10^4) and equivalent isotropic
displacement parameters (Å^2 x 10^3) for DCE02 (CCDC
274867). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.. 318

Table A3.2.3 Selected bond lengths [Å] and angles [°] for DCE02
(CCDC 274867).. 318

Table A3.2.4 Bond lengths [Å] and angles [°] for DCE02 (CCDC 274867).... 319

Table A3.2.5 Anisotropic displacement parameters ($\AA^2 \times 10^4$) for DCE02
(CCDC 274867). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2+a^2*U^{11} + ... + 2h*k*a*b*U^{12}]$ 321

Table A3.2.6 Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($\AA^2 \times 10^3$) for DCE02 (CCDC 274867) 322

Table A3.3.1 Crystal data and structure refinement for DCE04 (CCDC 639648) .. 324

Table A3.3.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for DCE04 (CCDC 639648). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.. 326

Table A3.3.3 Selected bond lengths [Å] and angles [°] for DCE04
(CCDC 639648).. 326

Table A3.3.4 Bond lengths [Å] and angles [°] for DCE04 (CCDC 639648).... 327

Table A3.3.5 Anisotropic displacement parameters ($\AA^2 \times 10^4$) for DCE04
(CCDC 639648). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2+a^2*U^{11} + ... + 2h*k*a*b*U^{12}]$ 328
CHAPTER 5

Table 5.5.1 Radical inhibitor screening .. 370

APPENDIX 6

Table A6.2.1 Screen of reagent ratios in the aryne insertion 422

APPENDIX 8

Table A8.1 Compounds appearing in Chapter 3: scope and applications of the oxidative kinetic resolution of secondary alcohols 437

Table A8.2 Compounds appearing in Chapter 4: advanced catalyst design in the oxidative kinetic resolution ... 439

Table A8.3 Compounds appearing in Chapter 5: a convergent total synthesis of (+)-amurensinine and formal synthesis of (–)-amurensinine via oxidative kinetic resolution 439

Table A8.4 Compounds appearing in Appendix 6: the development of a scaleable acyl-alkylation of arynes and application to the construction of 1,3-dihydroxynaphthalenes 440
LIST OF ABBREVIATIONS

\[\alpha \] \text{D} \quad \text{specific rotation at wavelength of sodium D line}

\text{Å} \quad \text{angstrom(s)}

\text{abs.} \quad \text{absolute}

\text{Ac} \quad \text{acetyl}

\text{app.} \quad \text{apparent}

\text{aq} \quad \text{aqueous}

\text{Ar} \quad \text{aryl, argon}

\text{atm} \quad \text{atmosphere(s)}

\text{B3LYP} \quad \text{Becke, three-parameter, Lee-Yang-Parr functional}

\text{BHT} \quad 2,6-di-\text{tert}-\text{butyl}-4-\text{methylphenol}

\text{BINAP} \quad 2,2'-\text{bis(diphenylphosphino)}-1,1'-\text{binaphthalene}

\text{BINOL} \quad 1,1'-\text{bi}(2-naphthol)

\text{Bn} \quad \text{benzyl}

\text{Boc} \quad \text{tert-butoxycarbonyl}

\text{br.} \quad \text{broad}

\text{Bu} \quad 1-\text{butyl}

\text{i-Bu} \quad 2-\text{methyl-1-propyl}

\text{s-Bu} \quad 2-\text{butyl}

\text{(S,S)-t-Bu-BOX} \quad 2,2'-\text{isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline]}

\text{c} \quad \text{concentration for optical rotation}

\text{calcd} \quad \text{calculated}

\text{CCDC} \quad \text{Cambridge Crystallographic Data Centre}

\text{cf.} \quad \text{compare}

\text{cm} \quad \text{centimeter(s)}

\text{COD} \quad \text{cis,cis-1,5-cyclooctadiene}

\text{comp.} \quad \text{complex}

\text{conc.} \quad \text{concentrated}

\text{conv} \quad \text{conversion}

\text{d} \quad \text{doublet}

\text{DABCO} \quad 1,4-diazabicyclo[2.2.2]octane

\text{dba} \quad \text{dibenzylideneacetone}

\text{DBU} \quad 1,8-diazabicyclo[5.4.0]undec-7-ene
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE</td>
<td>1,2-dichloroethane</td>
</tr>
<tr>
<td>dec.</td>
<td>decomposition</td>
</tr>
<tr>
<td>°</td>
<td>degrees</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory</td>
</tr>
<tr>
<td>(DHQ)$_2$PHAL</td>
<td>hydroquinine 1,4-phthalazinediyl diether</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>(−)-DIOP</td>
<td>(−)-(4R,5R)-2,2-dimethyl-4,5-bis[(diphenylphosphino)-methyl]-1,3-dioxolane</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin periodinane</td>
</tr>
<tr>
<td>DPPA</td>
<td>diphenylphosphoryl azide</td>
</tr>
<tr>
<td>e</td>
<td>electron</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalent(s)</td>
</tr>
<tr>
<td>ES</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>FID</td>
<td>flame ionization detector</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>$h\nu$</td>
<td>light</td>
</tr>
<tr>
<td>hNK-1</td>
<td>human neurokinin-1</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IR</td>
<td>infrared (spectroscopy)</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>k</td>
<td>reaction rate constant</td>
</tr>
<tr>
<td>L</td>
<td>L-type ligand</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>lit.</td>
<td>literature</td>
</tr>
<tr>
<td>M</td>
<td>molar, metal, or molecular ion</td>
</tr>
</tbody>
</table>
m meter(s), multiplet
m/z mass to charge ratio
Me methyl
mg milligram(s)
MHz megahertz
µL microliter(s)
µm micrometer(s)
min minute(s)
mL milliliter(s)
mm millimeter(s)
mmol millimole(s)
mol mole(s)
mp melting point
Ms methanesulfonyl
MS molecular sieves
MTBE tert-butyl methyl ether
N normal
nbd norbornadiene
NBS N-bromosuccinimide
p-Nbz para-nitrobenzoyl
nm nanometer(s)
NMR nuclear magnetic resonance (spectroscopy)
[O] oxidation
p para
p-ABSA para-acetamidobenzenesulfonyl azide
Ph phenyl
pH hydrogen ion concentration
PhH benzene
(S,S)-Ph-PYBOX 2,6-bis[(S)-4-tert-butyl-2-oxazolinyl]pyridine
Piv pivaloyl
pKₐ acid dissociation constant
ppm parts per million
i-Pr 2-propyl
n-Pr n-propyl
psi pounds per square inch
Py pyridine
q quartet
ref reference
R_f retention factor
s selectivity factor
s singlet
S_N1 nucleophilic substitution, unimolecular
S_N2 nucleophilic substitution, bimolecular
Sub substrate
t triplet
TBAF tetrabutylammonium fluoride
TBS tert-butyldimethylsilyl
TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
Tf trifluoromethanesulfonate
TFA trifluoroacetate
THF tetrahydrofuran
TIPS triisopropylsilyl
TLC thin-layer chromatography
TMS trimethylsilyl
Ts para-toluenesulfonyl
UV ultraviolet light
Vis visible light
w/v weight to volume ratio
w/w weight to weight ratio
X halide, anionic ligand