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Abstract

In the first part of this thesis, a method for computing one-dimensional, un-
steady compressible flows, with and without chemical reactions, is presented. This
work has focused on accurate computation of the discontinuous waves that arise in
such flows. The main feature of the method is the use of an adaptive Lagrangian
grid. This allows the computation of discontinuous waves and their interactions with
the accuracy of front-tracking algorithms. This is done without the use of additional
grid points representing shocks, in contrast to conventional, front-tracking schemes.
The Lagrangian character of the present scheme also allows contact discontinuities
to be captured easily. The algorithm avoids interpolation across discontinuities in
a natural and efficient way. The method has been used on a variety of reacting
and non-reacting flows in order to test its ability to compute complicated wave

interactions accurately and in a robust way.

In the second part of this thesis, a new approach is presented for computing
multidimensional flows of an inviscid gas. The goal is to use the knowledge of
the one-dimensional, characteristic problem for gas dynamics to compute genuinely
multidimensional flows in a mathematically consistent way. A family of spacetime
manifolds is found on which an equivalent 1-D problem holds. These manifolds
are referred to as Riemann Invariant Manifolds. Their geometry depends on the
local, spatial gradients of the flow, and they provide locally a convenient system of
coordinate surfaces for spacetime. In the case of zero entropy gradients, functions
analogous to the Riemann invariants of 1-D gas dynamics can be introduced. These
generalized Riemann Invariants are constant on the Riemann Invariant Manifolds.
The equations of motion are integrable on these manifolds, and the problem of
computing the solution becomes that of determining the geometry of these manifolds

locally in spacetime.

The geometry of these manifolds is examined, and in particular, their relation
to the characteristic surfaces. It turns out that they can be space-like or time-like,
depending on the flow gradients. An important parameter is introduced, which
plays the role of a Mach number for the wave fronts that these manifolds represent.
Finally, the issue of determining the solution at points in spacetime, using informa-

tion that propagates along space-like surfaces is discussed. The question of whether
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it is possible to use information outside the domain of dependence of a point in
spacetime to determine the solution is discussed in relation to the existence and

uniqueness theorems, which introduce the concept of domain of dependence.

This theory can be viewed as an extension of the method of characteristics
to multidimensional, unsteady flows. There are many ways of using the theory to
develop practical, numerical schemes. It is shown how it is possible to correct a
conventional, second-order Godunov scheme for multidimensional effects, using this
theory. A family of second-order, conservative Godunov schemes is derived, using
the theory of Riemann Invariant Manifolds, for the case of two-dimensional flow.
The extension to three dimensions is straightforward. One of these schemes is used

to compute two standard test cases and a two-dimensional, inviscid, shear layer.
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CHAPTER 1

One-Dimensional Reacting and Non-Reacting Flows

Several methods for computing unsteady, inviscid, compressible flows have ap-
peared in the literature in recent years. The emphasis has been on the ability
of these numerical schemes to compute developing, discontinuity waves and their

interactions accurately.

High-resolution, shock-capturing methods for hyperbolic conservation laws are
one category of such methods that have been used successfully in recent years.
A basic feature of these methods is that a conservative formulation is used that
allows for shocks and their interactions to be captured automatically without special
effort. This is characteristic of all older shock-capturing methods such as the Lax-
* Wendroff scheme (1960), the MacCormack scheme (1969) and the original Godunov
scheme (1959). In all such methods, waves of discontinuity of the solution are
represented as steep fronts, i.e., smeared over a finite number of computational
cells. A second and more important feature of recent, high-resolution schemes is the
special effort that is made to achieve higher-order, spatial and temporal accuracy so
as to represent discontinuities as accurately as possible, i.e., to reduce the smearing
effect that is typical of all shock-capturing methods. Such schemes are the TVD
schemes, described by Harten (1983,1984), the various MUSCL-type schemes, such
as the one introduced by van Leer (1979) and the PPM scheme (Piecewise Parabolic
Method) by Colella and Woodward (1984). A comparative study of some of these
schemes for real gases is given in a review article by Montagné, et al. (1989). The
basic, high-resolution, shock-capturing methods have been developed for nonlinear,
scalar, hyperbolic conservation laws. It is for this case that there exists a sound
mathematical theory. For nonlinear, hyperbolic systems of equations in one space
variable, the theory is not as clear and the numerical methods used for these systems
apply the same techniques formally as in the scalar case, but with the additional use
of exact or approximate Riemann solvers. A classical Riemann problem is solved
locally at each computational cell boundary in order to compute the various flux

terms required. This is the essential ingredient of the original Godunov scheme, and
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it is present in most successful, high-resolution schemes. The various flux-vector,
splitting techniques, described by Steger and Warming (1981) and van Leer (1982),
have essentially incorporated in them an approximate Riemann solver. Finally, their
extension to more than one space dimension is usually done by treating each spatial

dimension separately.

Another category of numerical schemes that have been used is that of the shock-
fitting or front-tracking methods. Although they have not been used as extensively
as the shock-capturing methods, they have been quite successful in one-dimensional
problems. A good review of these methods, as well as of many shock-capturing
methods, is given by Moretti (1987). These schemes are éypically based on a non-
conservative formulation and an effort is made to detect and identify the various
discontinuities and to compute their interactions explicitly. This is usually accom-
plished by introducing additional computational elements representing such waves
and using the Rankine-Hugoniot jump conditions. This technique leads to com-
plex programming logic. Identifying the waves and computing their interactions
accurately is crucial for obtaining a meaningful and stable solution. For flows with
complicated wave interactions, such schemes may not be as robust as the shock-

capturing schemes, even in one space dimension.

The research presented in this paper is part of a greater effort which aims to
combine the characteristics of the above two categories of numerical schemes and to
develop a method that will share the advantages and eliminate most of the disad-
vantages of both. This has been accomplished in the case of one-dimensional flow
by the scheme presented in this paper. The increased accuracy, which is provided
in the computation of complicated wave interactions, has made this scheme espe-
cially valuable for the computation of reacting gas flows where detonation waves

are present.

The scheme 1s based on a conservative, shock-capturing Godunov-type scheme,
very much like van Leer’s MUSCL scheme (1979). The new feature, introduced here,
is an adaptive Lagrangian grid that increases the accuracy with which discontinuities
and their interactions are computed. Without introducing additional computational
elements, 1.¢., refining the grid, or special computational elements to represent these
waves, the shocks and contact discontinuities are computed as true discontinuities,
without the smearing effect typical of shock-capturing methods. This makes the

scheme different from adaptive mesh-refinement schemes (e.g., see Berger and Oliger
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1984), which smear discontinuities, although on a much finer local grid. The basic,
conservative, shock-capturing capabilities of the scheme are not diminished. The
scheme is endowed with the capability of tracking various fronts and, thus, the
shock-capturing and the front-tracking ideas are combined properly. It is important
to note that the adaptive grid strategy, to a certain degree, is independent of the
particular solver. Any Godunov-type scheme may be used. The Riemann solver is
the link that provides the information about local wave interactions needed for the

adaptive procedure.

It was deemed interesting to try this scheme on 1-D flows of reacting gases in
light of the increased accuracy and robustness with which detonation waves and
their interactions could be computed. The interest in such flows is evident by
the number of papers appearing in the literature. For example, numerical calcula-
tions, with increased accuracy, of the one-dimensional instability of plane-detonation
waves may be of great interest in confirming existing theories that are based on
linear-stability analysis (e.g., see Lee and Stewart, 1990). The present scheme is
able to reduce the error caused by the numerical smearing of the leading shock
of the detonation wave. This error may be very important in the development of

detonation instability.

The computer code developed is also able to compute one-dimensional, cylin-
drically and spherically symmetric flows, as well as plane flows with area change.
It is thus possible to compute explosions and implosions and to study the effect of
curvature on detonation wave speed and stability. Most of the results presented are
basically validation runs and calculations demonstrating the abilities of the method
and the potential use for specific 1-D problems of interest. All results shown are for
a perfect gas. The difficulty of incorporating a general equation of state is the same
as in most schemes and independent of the main feature of the present scheme, 1.e.,

the adaptive Lagrangian-grid strategy.



1.1 Numerical Method

1.1.1 Mathematical formulation

The inviscid flow of a reacting mixture of calorically perfect gases is considered.
The assumption of a simplified reacting mixture is made, according to which there
are two species present at any time, the reactant and the product. The reactant is
converted to the product by a one-step, irreversible, exothermic chemical reaction.
This assumption is made in order to compare with the many theoretical and numer-
ical results that are available in the literature for this case. The chemical-reaction

rate is given by the standard Arrhenius law
2 = —KzT%exp(—E/R,T) , (1.1a)

where z is the mass fraction of unburnt gas, K is a positive constant, which es-
sentially gives a time scale, E is the activation energy of the chemical reaction, R,
is the gas constant, T' is the absolute temperature and « is also a constant. The
simplified Arrhenius model, where the reaction rate is a step function depending on

the temperature, has also been used. For the simplified model the rate is given by
z = —KzH(T-T,), (1.1b)

where
1

H(z) = {0

and T, is a given critical temperature.

. ’ (1.2)

> 0

<0,

The problem under consideration is a special case of the general problem of
solving numerically the nonlinear hyperbolic system of the form

ou , OF(U) _

at dxr

where U is the appropriate solution vector. As usual,  denotes the Eulerian space

GU), (1.3)

variable. If the Lagrangian formulation is used, a system of exactly the same form is
obtained. The space variable z, then, is replaced by a Lagrangian space variable and
the flux vector F(U) is changed appropriately. For non-reacting flow, G(U) = 0.
Most numerical methods use Eq. (1.3) as their starting point, and using a finite

volume discretization, obtain the scheme of the following general form

) N : :
Ut = U = = (B = Fjoge) + 02 G5 (1:4)
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giving the solution, in an average sense, in the j** cell at the time level n + 1. The
numerical flux terms £ are computed at the boundaries of each cell. An important
feature of every numerical method is the calculation of these flux terms in a way

that guarantees stability and high-order accuracy.

A slightly different approach will be taken in deriving the present scheme.
Eventually, it will be of the general form given in Eq. (1.4). It is useful to formulate
the problem by writing the conservation laws in integral form for an arbitrary control
volume V(t), whose bounding surface S(t) moves with a velocity u;, (Reynolds’
Transport Theorem). These equations will be applied to each computational volume
of the discrete numerical scheme. This is done so that the conservation equations
and their discrete counterparts are written in a way that is independent of the
Eulerian or Lagrangian formulation that will be adopted eventually. Moreover, it is
easier to see from these equations how the idea for the adaptive nature of the grid

is motivated. The conservation equations in integral form are

d
— pdV+/ p(u—u)-dS = 0, (1.5)
dt Jv(y S(t)
d
— pudV+/ pu(u—-ub)-dS+/ pdS =0, (1.6)
dt Jy 5(0) S(t)
d
— pet dV+/ pet (u—ub)-dS+/ pu-dS = 0, (1.7)
dt Jv 5(t) S(1)
d
— pde+/ pz (u—ub)-dS—/ zpdV =0. (1.8)
dt Sy S(¢) V(1)

These are written for an arbitrary control volume V(t), whose bounding surface
S(t) has a velocity uy, . In the above equations, e, is the total specific energy, which
includes the chemical energy; i.e.,

et :e+%u2+qoz, (1.9)
where ¢ is the specific internal energy, go is the heat release of the chemical reaction,
and u = |u| is the magnitude of the fluid velocity. The perfect gas assumption is
also made; 1.¢., ;
p=(y—1)pe. (1.10)
Since the boundaries of the computational cells will be moving, it is useful to con-

sider the flow map

x =X (&1), (1.11)
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which gives the position of the fluid particle that was initially (¢ = 0) at the position
&. Thus, € is a convenient Lagrangian marker for the fluid particles in the flow. If
the Lagrangian approach is taken, the local boundary velocity is equal to the local

fluid velocity; z.e., up = u in Egs. (1.5)—(1.8).

1.1.2 Spatial and temporal discretization

Consider now the case of one-dimensional flow. A finite volume formulation is
used; i.e., space is discretized by a set of computational cells as shown in Fig. 1.1.
The conservation equations are now written for the j*® cell of the computational

grid
dﬂ@j

dt

+ (PAub)j+1/2 - (PAub)j—1/2 =0, (1.12)
d
= (myug) + (pulu) gy = (Pubue);_yjp +Pis1/2 = Pi-1/2 = 0, (1.13)
d
a (mje) + (PetAub)j+1/z - (PetAub)j_1/2 + (Up)j+1/2 - (UP)]'~1/2 =0, (1.14)

d .
5 (mjzj) + (pzAU) 4y g — (P2AUL); g — 25my; = 0, (1.15)

where
£&ub = U — Up,

Tit+1/2
m; = / pdz |
Ti—1/2

Tit1/2
mju; = / pudx (1.16)

Ti-1/2

Titif2 1,
mjey; = / P <e + Su + qoz) dz |

j—1/2

Tj+1/2
mizj = / pzdz .

Tj—1/2

Average values of all quantities in the j*" cell are denoted by the subscript j,
and values of various quantities at the two boundaries of the cell are denoted by the

subscripts j &= 1/2. Note that average values are mass-averaged values. By defining

F% = pAub,
fﬂz = pul&ub +p,
(1.17)
F. = petAup + pu
F, = pzAuy ,



space

i :
jtheell variable

F1c.1.1 Finite-volume discretization in one space dimension. The space variable
can be the Eulerian z or the Lagrangian £. The boundaries of the Jth cell
are denoted by the subscripts j + 1/2.

the equations of motion can be written in the more familiar form

dm 7
dt

d
a(mjuj)’f'(Fu)jH/z_(Fu)j—l/z = 0,

+(Fm)j+1/2 _(Fm)j——l/2 =0,

! (1.18)
dt (mjes;) + (Fe)j+1/2 - (Fe)j—1/2 =0,

d .
'Cﬁ(mjzj)‘F(FZ)Hl/z "(FZ)]'—1/2 = mjzj .

Note the extra degree of freedom provided in the flux terms by the as yet unspecified

term Auy. The motion of the cell boundaries is determined by

dzx j+1/2
—a = W (1.19)

and the average density in each cell is given by

m;
pi = . 1.20
! Tjt1/2 — Tj—1/2 ( )

The equation of state (1.10) provides the means for computing the average pressure

in the jth cell,
1
i = (5= 0y (e~ e~ 3ud) (1.21)

The exact integral conservation laws have been written for each computational
cell. Eqgs. (1.18) will now be integrated explicitly in time. The basis for the method
is a conservative, Godunov-type scheme similar to the MUSCL scheme introduced
by van Leer (1979). The procedure followed in solving these equations is similar

to that used in most methods, which are higher-order extensions of the original
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Godunov scheme. At every time instant, average values of the solution are known
in each computational cell. Linear variations of the primitive variables, i.e., density
p, pressure p and velocity u, are assumed in each cell. A Riemann problem is then
set up locally at each cell interface. The solution to this problem gives the velocity,
pressure and density needed to compute the flux terms (1.17). The different feature
in the present scheme is that the Lagrangian formulation is used instead of the

Eulerian and that an adaptive grid is used.

So far, the fact that the Lagrangian formulation is being used has not appeared
explicitly in the description of the method. It is now that this choice is made
and all quantities are considered as functions of time ¢ and the Lagrangian space
coordinate £. The interpolation procedure is carried out in £-space, and assuming

linear variation, the generic quantity ¢ varies as

q(&) = q; +(ge); (€—¢&5) 5 (1.22)

in the j** cell, where q; is the mass-averaged value in the cell, £; is the center of the
cell (in Lagrangian space), and (gg); is the slope of ¢ in this cell, which is assumed
to be constant. Note that discontinuities of these quantities are allowed at the cell

interfaces, as shown in Fig. 1.2.

4

J-3/2 J- 12 J+12 space
el variable

F1G.1.2 Linear variation of the generic quantity ¢ in the j*® cell. In general, ¢ is
discontinuous at the cell interfaces.
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The slopes are chosen using the slope limiter given by van Leer (1984), but the
adaptive nature of the grid, which will be described next, makes the choice of limiter
less important than in the typical higher-order, Godunov-type schemes. In fact, the
adaptive grid allows more freedom in choosing the interpolation scheme, because
additional information on the location of the various waves is always available at

each time instant. The slope (g¢); is computed, following van Leer (1984), by

(g¢); = ave (q{ ; q;*) : (1.23)
where
_ q; — 951 + dj+1 — 9;
¢q = L=t 4 T 1.24
: £ — &5 ¢ £jv1 —&; (1.24)
_ 4y (z —y)°
ave(a:,y) = 2 — m ; (125)

and c? is a small constant (¢? < 1).

At each cell interface, two constant states ¢~ and g7 are required to be used
as the initial condition for the Riemann problem. There are many ways of doing

this. One way is to specify for the 7 + 1/2 interface

q;+1/2 = ¢j + (‘Jt‘)j (fj+1/2 - 5;‘) y

(1.26)
Grage = G+ +(26) 540 Gz — &41)

i.e., the values of ¢ on either side of the interface, as given by Eq. (1.22). Using
these states does not ensure second-order accuracy in time. The method used in
the present scheme is shown in Fig. 1.3. The domain of dependence of { = &;11/2
over the time interval At is estimated by the characteristics at the time level ¢. In

the Lagrangian formulation of the problem the characteristic speeds are given by

ex = +2a, (1.27)

Po
where pg is the initial density (f = 0) and a is the speed of sound. The constant
states ¢% are then determined as the averages of Eq. (1.22) over the domains A¢* .
See Fig. 1.3. These domains correspond to the full timestep At. This is equivalent
to tracing the characteristics back from the time ¢+ At/2 and using the linear profile

(1.22). This ensures second-order accuracy in time.
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F1G.1.3 The constant states ¢* , which are to be used as the initial condition for the
Riemann problem at the interface j + 1/2 , are obtained by averaging the
linear interpolant over the domains of dependence A¢* . These domains
correspond to the full timestep At.

The discrete scheme, giving the solution at the time level n+1 from the solution

at the previous time level n, can now be written as

ma™* = ) =8¢ (F) = (B) L]
(mju)"™ = (myu;)" — At [(Fu)j+1/2 - (F“)j—l/J ’
(mje;)™ = (mje;)" — At [(Fe)an - (Fe)j—l/z} ’

(ijj)n+1 = ()" = A [(Fz>j+1/2 B (FZ>]‘—1/2] Arms3)”

+1 —
itz = Tiwrga T AW 40

(1.28)

z

where the numerical fluxes F,,, F,, F. and F, are given by Egs. (1.17), using
the solution of the Riemann problem. The average boundary velocity u; for each
interface is still unspecified, but for the majority of interfaces uy = u, and the last
of Egs. (1.28) is second-order accurate in time. The source term in the species
equation is shown in Eqs. (1.28) as being evaluated at time level n. It is better to
integrate the source term in a “split” manner, i.e., integrate the first four equations

in (1.28) without the source term and use this intermediate state to estimate the



11
term m;z;. This splitting has been implemented in the present scheme.

The stability requirement on the timestep is that of a MUSCL scheme in the
Lagrangian formulation. No additional stability problems arise because of the adap-

tive grid strategy presented in the next section.

1.1.3 Adaptive Grid

The motivation for the adaptive grid comes from the definition of the flux
terms, as given by Eqgs. (1.17). The term Aug, or equivalently, the velocity of the
cell boundary u;, is unspecified. The idea is to specify it at each cell interface, so that
all important discontinuity waves coincide with cell boundaries, at every discrete
time level. The solution of the Riemann problem at a given interface provides
all the information needed to identify all the important waves emanating from this
interface, as well as their strengths and speeds. This information is enough to specify
Auy. Since all important waves coincide with cell boundaries, it is guaranteed that
at subsequent time instants, the evolution of these waves will be determined properly
by the solution of the local Riemann problems. In the numerical experiments carried
out, shock-waves computed by the local Riemann solvers were considered important
enough to track if the shock Mach number was greater than 1.01, and contact
discontinuities were considered important if the ratio of the densities on either side
was greater than 1.05. These parameters are quite conservative. One may want to

track only the very strong shock-waves in the flow.

The grid is, basically, Lagrangian; i.e., most cell boundaries move with the
local fluid velocity, and hence Auy = 0. It is easy to see that the same ideas on the
adaptivity of the grid can be used on a grid that is primarily Eulerian. The same

equations can be applied directly.

An example of this adaptive procedure is shown in Fig. 1.4. A strong shock-
wave moving to the right is computed by the Riemann solver at the interface : —1/2
at time ¢t. The decision is made to assign a velocity to the adjacent cell boundary
i+1/2, so that at time £+ At the shock coincides with the interface i+ 1/2. Another
possibility would be to have the interface i —1/2 move with the shock. The decision
is made depending on which interface would be required to move a shorter distance

in Lagrangian space. The shock speeds are assumed constant over the time interval
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At. It is obvious that the local expansion waves can be tracked in the same way.
This was not implemented in the present scheme, simply to reduce the complexity

of the programming.

t+At

i-1/2 i+1/2
ithcell 5

F1G.1.4 The appropriate velocity is assigned to the cell interface ¢ 4+ 1/2 in order to
intercept the shock at the subsequent, discrete time level.

It is evident from this example that a relation between the velocities in real
space and the velocities in Lagrangian space is needed to update the Lagrangian
grid. Consider the motion of a cell boundary given by the trajectory z = zp(1).
This boundary is moving with a velocity up = #4(¢), which, in general, is different
from that of the fluid . This motion corresponds to a motion in ¢-space given by
the trajectory & = £(¢) with velocity v, = fb(t). The relation between the two

velocities is found with the use of the flow map
z = X(§1), (1.29)

which is essentially Eq. (1.11), written here for one-dimensional flow. The cell

boundary motion is given by

zp(t) = X (&(1),1) (1.30)

up = (%—f)ﬁéb(t) <%§—)t , (1.31a)

and hence,
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or

up = u+vp <%£€(->t . (1.31b)

The derivative of the flow map is numerically approximated and assumed constant

in each cell; z.e.,

0X Tjt1/2 = Tj-1/2
-— ~ . 1.32
<3€),~ Eiv172 — Ei-172 (1.32)

The velocities of the various waves, which are computed by the Riemann problems,
can be translated into velocities in ¢-space by using Eq. (1.31b). The Lagrangian

position of each interface is updated by

6;;;11/2 = ?ﬂ:l/2+At(Ub)j_—j;1/2 . (1.33)

The solution to the Riemann problem at each interface provides sufficient infor-
mation for the adaptive strategy. Using the exact Riemann solver at every interface
is very costly. To reduce the cost, various criteria were found to identify the cell
interfaces where a strong discontinuity is suspected to be present, before solving
the Riemann problem. These interfaces are flagged as critical interfaces. The ratio
AE™/AET has proven useful in detecting developing shocks in the flow. Where the

flow is smooth, without steep gradients, the above ratio is
—— ~1. (1.34)

The regions, where this ratio deviates from unity by more than 10%, are considered
critical regions. The full, nonlinear Riemann solver is used only in these regions.
Everywhere else the simple acoustic approximation to the Riemann problem so-
lution is used. It was found in all the numerical experiments performed that in
addition to the above criterion, finding local extrema of the slopes in pressure, den-
sity and velocity was very useful in determining these regions. Other criteria may
also be used. It is important that the criteria be conservative enough, so that no
critical regions are missed, but they are not crucial in detecting discontinuities. The
detection of important discontinuities is ultimately done by examining the solutions

to the local Riemann problems.
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No more than two adjacent critical interfaces are allowed at any given time.
In the smooth compression regions, the interfaces at the maxima of the pressure
gradients are considered critical. The pressure gradients are estimated, using simple,
finite differences. If the Riemann solver at these locations computes sufficiently
strong discontinuities, then they are tracked. The critical interfaces, which carry
these waves, are treated the same way at the next time level, along with other
possible critical interfaces that may be detected. When there are two adjacent
critical interfaces, the two Riemann problems are solved simultaneously. At this
point it is decided if collisions will occur within the timestep At. There are six
waves resulting from the two Riemann problems, and there are four cell interfaces
available to do the tracking. The strongest waves are tracked and the others are
ignored. This procedure has proven to be very robust in handling all possible wave

interactions.

time

t+2At |i-3/2 \1—1/2 i+1/2 i+3/2

t+At

i-32 | i-1/2 i+1/2 i+3/2

FIG.1.5 The typical collision of two shocks is shown. The timestep is adjusted
locally so that the collision point coincides with the cell interface 7 4 1/2
at the intermediate timestep.
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Collisions and reflections from walls can be treated in a straightforward way
using this adaptive grid. A typical collision case is shown in Fig. 1.5. At time ¢, two
strong shock-waves at the interfaces ¢ — 1/2 and ¢ + 1/2, are moving at each other
with speeds that allow for a collision before time ¢ + At. The Riemann problems at
the interfaces s —1/2 and ¢ 4+ 1/2 are solved at time ¢, simultaneously. The solution
indicates that there will be a collision within the time interval At. The timestep
is adjusted locally, i.e., only for the three cells i — 1, ¢ and ¢ + 1 , so that at
the intermediate time instant, the collision point coincides with the cell boundary
¢ + 1/2. The Riemann solver at this interface, at the intermediate time instant,
will compute the two shock-waves emerging from the collision, and the adjacent
cell boundaries will be able to track them in the same way at subsequent times.
The fluxes at the interfaces 7 — 3/2 and ¢ + 3/2 are held constant for the whole
timestep At. This leads to a robust way of handling wave interactions, without loss

of accuracy.

1.2 Riemann Solver

The Riemann solver is an important ingredient of the numerical scheme. It pro-
vides the means for computing the velocity and the pressure at the cell interfaces
and thus, the various flux terms required. It also gives valuable information about
the local waves emanating from each cell interface. As explained in the previous
section, the Lagrangian grid adapts in such a way that important discontinuities
and collision points coincide with cell boundaries at each time instant. It is, there-
fore, necessary to be able to identify the waves emanating from these critical cell
boundaries at subsequent times. This is what the Riemann solver accomplishes. A
variety of exact and approximate Riemann solvers have appeared in the literature
in recent years. In all these solvers the focus is on computing the velocity and
pressure of the contact discontinuity, which appears after the breakup of the initial
discontinuity of the Riemann problem. In the present scheme it is crucial to identify
the exact wave pattern as well. This information is used to assign the appropriate
velocities to adjacent cell boundaries so that all important waves are tracked, and
to adjust the timestep locally so that collisions are computed accurately. Moreover,
the fluxes at an interface need to be computed along the ray f(t) = v. See Eq.

(1.31b). Most interfaces are Lagrangian and hence, v, = 0.
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1.2.1 Non-reacting, perfect gas

Consider the case of the Riemann problem for inviscid flow of a perfect gas
without chemical reactions. The initial condition at time ¢ = 0 consists of two
constant states denoted by the subscripts r and [. Note that it is possible to have
two different perfect gases on either side of the £ = 0 location, as indicated by the
different specific heat ratios, i.e., 7, and +,. See Fig. 1.6. The space variable ¢ is
the Lagrangian space coordinate. At time ¢ = 07 the general wave pattern shown

in Fig. 1.7 will develop.

pl ’p19u1"Yl
pr’pr’ur"Yr

F1G.1.6 Initial condition for the Riemann problem. The variable £ is the Lagrangian
space coordinate.

There is a wave moving to the right (positive ¢) denoted by R, a wave moving
to the left(negative ¢) denoted by L and a contact discontinuity C, which remains
at £ = 0 for all time, i.e., moves with the local fluid velocity. The waves R and
L are either shocks or expansion waves, depending on the initial condition. Across
the contact discontinuity C, the pressure py and velocity u s are continuous, but the
density has a jump discontinuity at £ = 0 for all time. The density is ps; for £ < 0
and pys, for £ > 0. It is known that the solution to this initial value problem exists
and is unique for arbitrary initial conditions. Moreover, the solution is self-similar,
and the shock-waves propagate with a constant velocity and strength. That is why

they are represented by straight lines in the (¢,t) diagram.
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Y

FIG.1.7 General wave pattern resulting from the breakup of the original disconti-
nuity of the Riemann problem. C is a contact discontinuity. L and R can
be either shocks or expansion waves.

There are four wave patterns possible for this problem. The solution will be

found for each of these wave patterns for the special case of a perfect gas.
(i) L-shock, R-shock

Across the shock R the following relationship holds:

Up — Up 2 1
= = M,— — ) . 1.
" Qr ¥r+1 ( Mr) ( 35)

M, is the shock Mach number defined by

Ur_ r
M, = el (1.36)

ar

where U, is the shock velocity and a, = /9,p,/pr is the speed of sound in the
undisturbed region r. Similarly, for the shock L,

UI—Uf 2 1 )
= My —— ), 1.37
a 7 +1 < M, (1.37)

where M is the shock Mach number for L. Equations (1.35) and (1.37) can be

solved for the shock Mach numbers to give

Pt 1)
M, = 7: 7~+\/<7: ) r2 1, (1.38)
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1w — N2 _ 2
M, = i+ 1luy—uy + \/(71 + ) (ul uf) +1. (1.39)
4 ar 4 ap

The pressure ratios across the two shocks are given by the following equations:

Py 27r 2
- =14 —- Mr -1), 1.40
Py 2y 2
= =14+— (M7 -1) . 1.41

From Egs. (1.38)—(1.41) one obtains a single equation for the unknown r,

| 1\2
Gr) = 1- 2Ly, 2t 7'2"‘7"7"\/(%: > r

Pr 4
Pl ’)’l‘*‘l (ul"”ur Ay )2
- -
Pr 4 a a
U — U a +1 2 U — U a 2
(GO
Pr a; ay 4 ay ap

(1.42)
This equation is solved numerically using a Newton-Raphson method. Once r is ob-
tained, all other quantities of interest follow from Eqs. (1.35)~(1.41). The densities

are determined by

pri _ _(vi+1)M?
pi 2+ (vi —1)MZ’

i = rl. (1.43)

It is important to be able to determine whether this wave pattern will develop
for a given initial condition. For this solution to be possible, certain compatibility
conditions must hold. These are easily found by noticing that in Egs. (1.35) and
(1.87), the shock Mach numbers M, and M; must be greater than 1. It then follows
that the following compatibility condition must hold:

ur < up < oy, (1.44)
or equivalently,
ur —u; < 0,
— 1.45
0<r < Up — Uy ) ( )
aT

(ii) L-expansion wave, R-shock
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In this case, Eqs. (1.35),(1.36),(1.38) and (1.40), derived previously, still hold
for the shock-wave R. In addition to these equations, the following equation gives

the pressure ratio across the isentropic expansion wave,

p_f — <1+'71—1u1—uf
P 2 a;

)2’71/(71—1)

(1.46)

— (1+71~1u1——ur_71—1&r

2% /(n—1)
2 a 2 q ) ’

where r is defined in Eq.(1.35). Combining Eqs. (1.38),(1.40) and (1.46), a single

equation in r is obtained, as in the previous case,

2
F(r) = 1—}—%%:17’2—{—%7'\/(%:1) r?+1

)2‘/1/(71—1)

(1.47)

=0,

-—7T

___Zil. 1+7l—1ul~ur__7l__1ar
2 aj 2 q

T

which is solved numerically. The densities are determined by Eq. (1.43) across the

shock and by the isentropic relation
1
Pit _ (2&) &
P pi ’

The compatibility conditions are found by noticing that across the expansion
wave L, 0 < ps/p; <1, and across the shock R, ps/pr 2 1. Using Egs. (1.40)
and (1.46), the following relations are found, after some algebra,

across the expansion wave.

pr/pt <1,
( 2 ) (1.48)
Ur — U < a,
-1
and

U] — Uy U — Uy ( 2 )al

<r < + —
ar ar Y- 1 ar (149)

0 < r.

(iii) Z-shock, R-expansion wave

This case is exactly the same as case (ii) with the transformation ¢ — —£.
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(iv) L-expansion wave, R-expansion wave

In this case, there are two expansion waves, and the pressure ratios across them

are given by

P _ (1+,yl_1ul_uf)2’n/('n—1),

2 a

" I 29 /(v»—1) (150)

pr (1 %—luf—ur)

Lo S + .

Dr 2 ar

From Egs. (1.50) the following single equation in r is obtained:
. — 1 29/ (vr 1)
S(r) = (1-}—7 5 r)

(1.51)

—lu —u, ~1
_ﬂ(lﬂ’ At Moo, =0,

27 /(n-1)
2 ap 2 aj )

DPr
which is solved numerically with the Newton-Raphson method. The compatibility

conditions are once again found by noticing that across the expansion waves 0 <

pr/pi <1and 0 < pys/p, < 1, which, using Eqgs. (1.50), give

ar a;
0 < up—u; < 2 + ) 1.52
l (%—1 yi—1 ( )

and
2

Yr—1

U — U Uy —u 2 a
{ r ST< ! r+< _l
ar ar =1/ a,

< r <0,

(1.53)

1.2.2 Acoustic approximation

The solution to the Riemann problem becomes easier to obtain when the initial
conditions are such that the waves R and L shown in F ig. 1.7 are so weak that
linear-acoustic theory can be used. This happens when the distance, in some sense,
between the two constant states r and [ is small. The waves R and L can then be
treated as acoustic waves with the pressure ratios across them given by the simple

relations,

Py = pr + V' VrPrPr (uf - ur) > (1548,)
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pr = pi—~/npipi(ug —up) . (1.54b)

Combining Eqs. (1.54a) and (1.54b), one finds

us = (Pt = Pr + \¥rPrortr + vpipiur) | (\/rPrpr + D1071) - (1.55)
The densities behind these waves are given by
pri = pi(pr+uipi) / (pi + 12ps) (1.56)

where

W= (i-1)/(r+1), i=nl. (157)

1.2.3 Reacting mixture of calorically perfect gases

So far, the classical Riemann problem for non-reacting, inviscid flow has been
considered. The solution to this problem, as mentioned before, is a self-similar
solution, i.¢., depending on /¢ only. For the case of a simple reacting mixture, the

nonlinear system of equations that needs to be solved is of the form

oU OF(U) .
En + 9 = GU), (1.58)
where
p pu
_ pu _ pu® +p
pz pZU
and
0
0
GU) = 0 (1.60)
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expansion
wave

Y

F1c.1.8 This is a typical wave pattern resulting from the breakup of the initial
discontinuity of the Riemann problem for the case of a simple reacting
mixture. The solution is no longer self-similar.

This is written using the Eulerian formulation, but one obtains a system of
exactly the same form, if the Lagrangian formulation is used. The Riemann problem
solution, described so far, is for the non-reacting case; 1.e., G(U) = 0. For the
reacting case, jumps in the concentration of unburnt gas z are allowed only across
contact discontinuities, but not across shocks. The solution to this problem is
more complicated and no longer self-similar. In Fig. 1.8, a typical wave pattern is
shown. The shock and expansion waves are curved in the (£,%) plane; i.e., they are
accelerating. The solution to this generalized Riemann problem has been worked
out by Matania Ben-Artzi (1989). It is shown that the solution approaches the
solution of the classical Riemann problem for the non-reacting case in the limit
¢ — 0 and t — 0. The more complicated, generalized Riemann solver given by Ben-
Artzi provides higher-order accuracy over the usual non-reacting solver. Numerical
experiments were performed using the present, adaptive Lagrangian scheme with
both Riemann solvers. It was found that the simpler solver gave results that were
just as good. The acceleration of the various waves was captured numerically quite

accurately.
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1.3 Numerical Results

A number of test cases were run using this numerical scheme. The cases were
chosen primarily to validate the code and to demonstrate its potential for solv-
ing 1-D problems with complicated wave interactions. The scheme is particularly
useful for computing unsteady reacting flows involving detonation waves and their

interactions.

1.3.1 Sod’s shock-tube problem

The first case is the classical shock-tube problem. It is an important validation
run for the code. The initial conditions used are those proposed by Sod (1978). At

time t = 0 a diaphragm at the location = = 0.5 separates the two constant states

pt =10 p=1.0 uyy = 00, z < 0.5

(1.61)
pr =01 p,=0125u, = 00, z > 0.5,

for a perfect gas with v = 1.40. N = 150 computational cells are used in this
calculation. In all the results presented, the solutions are given as functions of the
Eulerian space variable z, even though the calculation is done in Lagrangian space.
The Lagrangian aspect of the scheme is evident by the increased density of com-
putational points in compression regions. The comparison between the numerical
solution and the exact solution shown in Fig. 1.9 is excellent. Note that the ex-
pansion wave is computed with the accuracy of typical shock-capturing schemes,
since no effort is made to track expansion waves. The shock-wave and the contact

discontinuity are computed with no smearing.

In order to demonstrate the ability of the scheme to compute complicated wave
interactions accurately, the shock-tube problem is carried a step further. Reflecting
walls are assumed present at the locations z = 0 and z = 1. The computation is
continued, to see how the multiple reflections of the shock from the walls and its
collisions with the contact discontinuity are calculated. In Fig. 1.10, the solution
is shown after the first reflection of the shock-wave from the wall at z = 1, which
occurs at ¢t = 0.285. In Fig. 1.11, the reflected shock has collided with the contact
discontinuity and a new shock-wave has been generated. The solution at a later time

1s shown in Figs. 1.12. The computation was carried out until time ¢ = 7.88. Many



24

1.0
.8
5 .6
>N
.
o
Q
[o]
—
2 4
.2
.0 e
.0 2 4 B 8 1.0

X

F1G.1.9a Velocity profile at time ¢ = 0.20 for Sod’s shock-tube problem with N =
150 computational cells. The solid line represents the exact solution and
the boxes represent the numerical solution.
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F1G.1.9b Pressure profile at time ¢ = 0.20 for Sod’s shock-tube problem with N =
150 computational cells. The solid line represents the exact solution and
the boxes represent the numerical solution.
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F1G.1.9¢ Density profile at time ¢ = 0.20 for Sod’s shock-tube problem with N =
150 computational cells. The solid line represents the exact solution and
the boxes represent the numerical solution.

reflections of the original shock have occured by this time. In a real experiment
viscous effects would have made the process die down much sooner. In Fig. 1.13,

the entropy of the system is shown as a function of time. The entropy is defined by

s = In(p/p™) . (1.62)

As t — oo, the system approaches the state predicted by thermodynamics, since
the scheme is fully conservative. Any scheme that conserves total mass and energy
will give the correct final entropy. In this case it is s = 0.1168 in the appropriate
dimensionless units. This is an important point worth repeating here. The con-
servative character of the scheme is not compromised by use of the adaptive grid

technique.
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F1G.1.10a Pressure profile at time ¢ = 0.40. The shock has reflected from the wall
at z = 1.
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F1G.1.10b Density profile at time ¢ = 0.40. The shock has reflected from the wall
at ¢ = 1.
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F1G.1.11a Pressure profile at time ¢t = 0.45. The reflected shock has collided with
the contact discontinuity. A secondary shock has been generated.
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F1G.1.11b Density profile at time # = 0.45. The reflected shock has collided with
the contact discontinuity. A secondary shock has been generated.
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F1G.1.12a Pressure profile at time ¢ = 0.61. An acoustic wave has been generated
from the collision of the secondary shock with the contact discontinuity.
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F1G.1.12b Density profile at time ¢t = 0.61. An acoustic wave has been generated
from the collision of the secondary shock with the contact discontinuity.
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F1G.1.13 Entropy s = In(p/p?) of the system as a function of time for the shock-
tube problem with multiple reflections.

1.3.2 Strong shock-wave problem

The strong shock-wave problem used by Woodward and Colella (1984) is com-
puted with the present scheme. This problem is a good test case, because of the
strong interacting discontinuities. The initial condition is that of a gas with specific
heat ratio v = 1.4 at rest in the tube 0 < z < 1. The initial density is p = 1 and

the pressure is

p = 1000, z < 0.1,
p=001, 01<z<09, (1.63)
p=10, 09 <z<l1.

The results are shown in Figs. 1.14 and Figs. 1.15 for the times ¢ = 0.030 and

t = 0.038, respectively. 800 computational cells were used for this calculation.
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F1G.1.14a Velocity profile at time ¢ = 0.030 for the strong shock-wave problem.
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F1G.1.14b Density profile at time ¢ = 0.030 for the strong shock-wave problem.
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F1G.1.15a Velocity profile at time ¢t = 0.038 for the strong shock-wave problem.
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F1G.1.15b Density profile at time ¢t = 0.038 for the strong shock-wave problem.
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1.3.3 ZND detonation waves

Another test case is that of a steady detonation wave. The well-known ZND
theory (Zel’dovich-VonNeumann-Doering) for a steady detonation is used to com-
pare with the numerical solution obtained using this scheme. As a first check, the
profile of a steady detonation wave, computed using the ZND theory, is given as
the initial condition to the unsteady code. The solution after time ¢ = 10 (10,000
timesteps) is then superimposed on the ZND solution and compared. The compar-
ison, shown in Fig. 1.16, is excellent. The standard Arrhenius law, given by Eq.

(1.1a), is used for the chemical reaction rate with a = 0; i.e.,
z = ~KzT%exp(—E/R,T) .
The parameters used for this test run are
v =12, g /RyTo = 50, E/R,Ty = 40,

where the subscript zero denotes the undisturbed region into which the detonation
propagates. This steady detonation wave corresponds to an overdrive factor of
f = 1.6. The overdrive factor is defined by

f = D?/D¢y,

where D is the detonation wave speed and D¢ is the detonation speed correspond-
ing to the Chapman-Jouguet point. For details on the ZND theory, see the book
by Fickett and Davis (1979).

The case of unsteady detonation waves will now be considered. For the follow-

ing cases the simplified Arrhenius chemical-rate law is used ( Eq. (1.1b)); s.e.,
z = —KzH(T-T,.),

where T is a critical temperature above which the chemical reaction begins. Fig.
1.17 shows the evolution of an unsteady detonation propagating in an undisturbed
region. It is the well-known piston problem. The motion of the piston, starting at
z = 0, generates a shock that raises the temperature of the gas above the critical
value T;. The chemical reaction begins and the detonation wave accelerates into

the undisturbed region. The numerical values used in this run are

v =14, go = 20, T. = 1.3,
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F1G.1.16a Velocity profile at ¢ = 10. The solid line is the solution given by the
ZND theory. The boxes are the numerical solution.
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F1G.1.16b Pressure profile at ¢ = 10. The solid line is the solution given by the
ZND theory. The boxes are the numerical solution.
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F1G.1.16c Density profile at t = 10. The solid line is the solution given by the ZND
theory. The boxes are the numerical solution.
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F1G.1.16d Temperature profile at ¢ = 10. The solid line is the solution given by the
ZND theory. The boxes are the numerical solution.
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F1G.1.17a Pressure profiles for the piston problem. The detonation wave gener-
ated accelerates into the undisturbed region. In this case the critical
temperature is 7, = 1.3. Times ¢t = 0.1, 0.2, 0.3, 0.4.

where all quantities are normalized with the corresponding values in the undisturbed

region. The piston velocity is taken to be u, = 1.

A more interesting case is shown in Fig. 1.18. The initial condition is a smooth
pressure distribution with zero initial velocity, which leads to isentropic compression
and eventually to shock formation. If in this compression the temperature of the
gas becomes larger than T, then the chemical reaction starts, and a detonation
wave is generated. The formation of the shock from a smooth flow is captured very
well by this scheme. N = 200 computational cells were used. The numerical values

used in this run are
v =14, g = 20, T. = 1.2, K =1,

where all quantities are normalized appropriately. The normalization is such that
the initial temperature of the gas at rest is Ty = 1, or equivalently, py = pp in

dimensionless units. The initial pressure distribution is given by

po(z) = 0.10 + 3.0 exp(—25z?) .
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F1G.1.17b Temperature profiles for the piston problem. The detonation wave gen-
erated accelerates into the undisturbed region. In this case the critical
temperature is T, = 1.3. Times ¢ = 0.1, 0.2, 0.3, 0.4.
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F1G.1.18a Velocity profiles for a smooth compression. When the compression raises
the temperature above the critical value T, = 1.2, the reaction begins
and a detonation wave 1s formed. Times t = 0.075, 0.150, 0.225, 0.300.
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F1G.1.18b Pressure profiles for a smooth compression. When the compression raises
the temperature above the critical value T, = 1.2, the reaction begins

and a detonation wave is formed. Times ¢ = 0.075, 0.150, 0.225, 0.300.
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F1G.1.18c Temperature profiles for a smooth compression. When the compression
raises the temperature above the critical value T, = 1.2, the reaction be-
gins and a detonation wave is formed. Times ¢ = 0.075, 0.15, 0.225, 0.3.
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1.4 Conclusions

An adaptive numerical scheme has been presented for the computation of flows
with complicated interactions of discontinuity waves. Its accuracy and robustness,
as demonstrated by numerical experiments make it a valuable tool, especially for the
study of unsteady reacting flows with detonation waves. The conservative formula-
tion gives the method all the advantages of higher-order shock-capturing schemes
and its adaptive characteristic allows for good accuracy near shocks with no smear-
ing effect. The advantages of the conservative shock-capturing schemes are com-
bined with the advantages of the front-tracking methods very well to give a useful

computational scheme.

The drawback is that the extension of this scheme to multidimensional flows is
not straightforward. The main idea of the scheme is the conservative front-tracking
of shocks and contact discontinuities on a Lagrangian grid. The Lagrangian aspect
of the method is the most difficult to extend. The conservative front-tracking aspect

can be extended and work in this area is in progress.
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CHAPTER 2

Riemann Invariant Manifolds

Progress has been made in recent years in the development of numerical schemes
for computing hyperbolic systems of equations. This has been motivated by the
need to perform reliable numerical simulations of compressible flows. The presence
of shocks in these flows complicates matters. Older shock-capturing schemes, which
are more than first-order accurate, produced spurious oscillations in the vicinity of
discontinuities. A new generation of methods was developed to overcome the prob-
lems of the simple, conservative, finite-difference schemes. These high-resolution
schemes, such as the ENO and TVD schemes, described by Harten et al. (1987)
and Harten (1983,1984), the MUSCL scheme introduced by van Leer (1979), PPM
by Colella and Woodward (1984) and Roe’s Approximate Riemann Solver given by
Roe (1981), take advantage of the extensive theory on hyperbolic systems of equa-
tions in two independent variables. The two variables are, usually, time and one
spatial variable. The primary application is the one-dimensional flow of a gas. Most
of these schemes are based on the original Godunov scheme (1959). The main idea
is to use the knowledge from the theory of characteristics, locally in each computa-
tional cell, to compute the various flux terms. By doing this, the local characteristic
wave patterns are accurately accounted for. Since discontinuities are likely to be
present, the characteristic problem is generalized to allow for their presence. This
constitutes the well-known Riemann problem. Two arbitrary, constant states, sep-
arated by a discontinuity in space, are given as the initial condition. For 1-D gas
dynamics, it can be shown that the Riemann problem has a unique solution and that
the general, initial value problem has a unique weak solution. See Glimm (1965)
and Smoller (1983). The Riemann problem reduces to the known characteristic
problem in the absence of discontinuities. The solution to the Riemann problem
is used as the building block for numerical methods of this type. It provides the
information needed to compute the fluxes at the interfaces of the computational

cells.
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Although the application of this idea is straightforward for the one-dimensional
case, the extension to multidimensional flows is not. Practically, these schemes are
extended to more dimensions by treating the additional spatial dimensions sepa-
rately. The computation is not truly multidimensional, but rather a number of
separate, one-dimensional computations in each spatial direction. Even schemes
that appear to be multidimensional (unsplit), actually use the local directions of
the grid to set up and solve a 1-D Riemann problem, thus taking advantage of
the 1-D results. The only real effort to create a multidimensional scheme is that
by Roe (1986); Hirsch & Lacor (1989), and Deconinck et al. (1986). These efforts
are within the context of conservative, shock-capturing schemes of the Godunov
type. Butler (1960) has shown a possible extension of the method of characteris-
tics for computing unsteady, two-dimensional flows. This scheme is also genuinely

multidimensional.

In what follows, the multidimensional flow of a gas is examined. A brief sum-
mary of the theory of characteristic surfaces for hyperbolic systems in several in-
dependent variables is given as background. It is then shown how it is possible to
find surfaces in spacetime, that are convenient for computational purposes. The
solution along any curve on these surfaces satisfies relations completely analogous
to the 1-D characteristic relations. In the special case of zero-entropy gradients,
it is possible to define functions analogous to the Riemann invariants in 1-D. If
N is the number of spatial dimensions, there is, in general, an (N — 1)-parameter
family of such N-dimensional manifolds in spacetime on which these generalized
Riemann Invariants are constant. These manifolds are referred to as Riemann In-
variant Manifolds. They can be constructed locally by an appropriate set of curves.
These curves are the integral curves of a vector field in spacetime, which depends on
the local spatial gradients of the solution. The local geometry of these manifolds is
examined, and in particular, their location with respect to the characteristic mani-
folds. It is the characteristic manifolds that determine the domains of dependence
and domains of influence of the solution in regions of spacetime. The concepts of
domains of dependence and influence are closely related to the important existence
and uniqueness theorems for solutions of such systems. See Courant and Hilbert
(1963); Friedrichs (1954); Friedrichs and Lax (1965), and Kato (1975). It turns out
that the Riemann Invariant Manifolds may be space-like or time-like with respect to
the bicharacteristic cone. A parameter p,, is introduced, which plays the role of an

algebraic Mach number for these manifolds. It depends on the local flow gradients



41

and gives an indication of how close the particular Riemann Invariant Manifold is

to the bicharacteristic cone.

Weak solutions are not examined in this analysis. Although the solution is
assumed to be continuous with possible discontinuities only in the derivatives, it
is hoped that it will be clear as to how the results can be used in the cases where
shocks, i.e., jump discontinuities, are present. The examination of these special
manifolds in spacetime provides a means of determining spatial directions in the
flow, which are special in some sense. There are directions that provide obvious
computational advantages, but there are also directions that are optimal when a
shock is present. Finding the appropriate directions may actually allow the general

1-D Riemann problem to be used consistently in multidimensional flows.

This theory of Riemann Invariant Manifolds can best be viewed as an extension
of the method of characteristics to multidimensional flows. It can be viewed as the
the theoretical framework for developing numerical schemes in the spirit of Butler

(1960).
2.1 Hyperbolic Systems

2.1.1 Characteristic Surfaces

The basic ideas of the theory of hyperbolic equations in many independent
variables and the theory of characteristic surfaces are presented in this section to
serve as background for what follows. For a more detailed exposition, see Courant
and Hilbert (1963). The practical problem of interest is the unsteady flow of a
compressible fluid in more than one space dimension. This is a specific case of the
general hyperbolic system of equations in several independent variables of the form

%Jr———ag”;:]) =0 m=1,...,N, (2.1)
where U € RM is the M-dimensional solution vector, N is the spatial dimension
of the problem and (Fy,) is the flux vector. Time has been chosen as a special
independent variable, and the summation convention is assumed. Eq. (2.1) describes
a conservation law and is equivalent to the following quasi-linear form

ou A ou

—_— _— = =1,... .
En + ™ 0 m ooy N (2.2)
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where the A,, are the Jacobian matrices, given by

_ 9Fa(U)

An = 5o (2.3)

A linear system is one for which the matrices A,, are independent of the solution U.
The solution is also assumed to be sufficiently smooth for all operations performed

to have meaning.

It is sometimes useful not to single out the time variable ¢. The advantage of
this is that the conservation law, Eq (2.1), takes the particularly simple form of a
divergence in spacetime,
OF, (U) oUu ou oUu
— = A, = Ay—+An7— =0 =0,1,...,N, (24
Oz, * oz, ot +Am # (2.4)
where zo = t. Greek subscripts will be used when time is not singled out as a
special variable. In what follows, Ay is usually taken to be the identity matrix I.

It is also useful sometimes to write (2.1) and (2.2) using absolute notation,

ou +V.FU) =0
ot
- (2.5)
S +AVU =0,
where
_ 0
V= ( (,hm)
F = (F,) (2:6)
A=(A,) .

In order for this system of equations to be hyperbolic, the matrices A,, must
satisfy certain conditions. The concept of hyperbolicity is related to the existence of
special surfaces in spacetime, which are called characteristic surfaces. The quest for
such surfaces is motivated by the Cauchy Initial Value Problem (IVP) for Eq. (2.2).
Consider a surface ¢ (¢,x) = 0, x € ", in spacetime. The Cauchy IVP consists
in specifying initial data U on this surface and using Eq. (2.2) to find the solution
U = U (t,x) off the surface. The natural question to ask is whether this is possible
for any surface ¢ (£,x) = 0.
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o(t,x,y)=0

F1G.2.1 The surface ¢ (t,x) =0 in three-dimensional spacetime.

For visualization purposes, it is convenient to consider the special case N = 2.

Spacetime is now a three-dimensional space. See Fig. 2.1.

Consider the general coordinate transformation

¢ = p(t,x)
Y = i (t,%) k=1,...,N,

where the given surface ¢ (¢,x) = 0 is used as one of the new coordinate surfaces.

(2.7)

The transformation is assumed to be smooth, with a non-vanishing Jacobian at the
points of interest. It is easy to see that

oU _ 000U , o 0U

ot Ot Oy Ot Oy

ou d¢ OU + Oy OU

O m Ozm Op  Ozm Oty
where U is now considered a function of the new variables; i.e., U = U(p, ).
Substituting Eqgs. (2.8) in (2.2), one finds

(2.8)

&p Bgo ou 3¢k 87,/)k oU
— I+ —A, | — —— I+ —A,|7— = 0. .
<8t * Ban ) o0 T ( ot Yo, ™) g =0 (2.9)
Assume that initial data are given on ¢ = 0. Then all the tangential derivatives
ou k=1,...,N,

e
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are known from the initial data, and only the derivative in the normal direction,

€.,

ou

dp ’
is unknown. This normal derivative can be found by solving for it in Eq. (2.9). By
differentiating (2.9), similar algebraic equations can be found for the higher-order
derivatives of U in the normal direction. One can, then, use these derivatives to

construct the solution off the ¢ = 0 surface with the aid of a Taylor series expansion.

It can be seen from Eq. (2.9) that it is not possible to solve for the unknown

derivative when

_ e, 9 _ O ) _
Q = det(atI—l— (%mAm) = det(aqu” =0. (2.10)

A surface for which (2.10) holds, is called a characteristic surface. @ is a function
of the first derivatives of ¢ and is called the characteristic function. Q = 0 is a
first-order, differential equation for the function ¢ = ¢ (¢,x). Although Eq. (2.10)
must hold only for ¢ = 0, one can embed this surface in the family of ¢ = const
surfaces. This family is the solution of the first-order, partial-differential equation
(2.10). Note that all these relations are local. This is particularly important for
nonlinear problems for which the matrices A, and thus the characteristic surfaces,

depend on the solution U.

From the previous discussion it follows that the derivative of the solution nor-
mal to a characteristic surface cannot be determined by the differential equation
and therefore, a discontinuity in this derivative is possible. The same holds for all
higher-order, normal derivatives. Thus, one can define the characteristic surfaces as
the surfaces across which discontinuities in the derivatives of the solution are pos-
sible. This definition is a little restrictive, because it implies that the characteristic

surfaces are significant only when discontinuities are present, which is not the case.

A more useful definition is that characteristic surfaces are the surfaces on which
the differential operator in (2.2) may become an “internal” operator. What is meant

by this is seen from the transformed system (2.9). If

Op Oy ou
<8tI+ axmA’”) 5 =0 (2.11)
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for a particular vector , then the system of equations contains only derivatives

dp
on the surface, i.e., no normal derivatives. For Eq. (2.11) to hold for a non-trivial
value of the normal derivative, the surface ¢ = 0 must satisfy the condition given

by (2.10); i.e., it must be characteristic.

The differential operator

.8 .9 )
D = Augm = Iz +Ang—, (2.12)

is hyperbolic if real characteristic surfaces exist. This requirement can be made

more specific by defining

n = Ve/|Vy
_ Y (2.13)
where Vi is the spatial gradient of . Substituting in (2.10) one finds

which is the characteristic equation for the eigenvalue problem associated with the
matrix n-A = n,, Ap;,. Given a spatial unit vector n, if the eigenvalues \,, , m =
1,...,M , of n-A are real, then the operator D is hyperbolic. This must hold for
any unit vector n. The right eigenvectors of this matrix will be denoted by r,, and

the left egenvectors by [,,. Thus,

(n-A)rp, = Aprm

T m=1,...,M (No summationonm) .  (2.15)
(n-A) I, = Anln

The characteristic function @ (or Q) is of the form
Q=0Q1'Q>--QF,  kjezt, j=1,...,p. (2.16)

This is because the characteristic function is a polynomial in the derivatives of .
The j** factor in (2.16) corresponds to a particular type of characteristic manifold
for the differential operator and to a particular eigenvalue A; in (2.14). k; is the
degeneracy of A; and the corresponding characteristic manifold. The j* factor can

be written, in general, as

0
Qi = SF+H(x,VesU) = 0. (2.17)
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The characteristic equation (2.17) is a first-order, partial-differential equation of the

general form

F(a:a,go,aaw—i> =0, aBf=01,. N (2.18)

for the function ¢ = ¢(z4). An extensive theory exists for such equations; e.g.,
see Courant and Hilbert (1963). The solution of (2.18) is a surface in the (N + 2)-

dimensional space (¢, Zq).

It is important to note that this integral surface can be generated by a family
of characteristic curves. An important special case of (2.18) is the Hamilton-Jacobi
equation, which arises in many applications in physics, the best known being the
Hamiltonian formulation of classical mechanics. This differential equation has a
variational problem associated with it. The general form of the Hamilton-Jacobi
equation is

Oy

where H is the corresponding Hamiltonian function and p is defined as
p = Vop. (2.20)

The variable zo = ¢ is singled out as a special independent variable, usually time.
Eq. (2.17) for the ;' characteristic manifold is of this form, with no explicit de-
pendence of the Hamiltonian on time. The action in the Hamiltonian formulation
of classical mechanics also satisfies an equation of this form. The space dimension
N corresponds to the degrees of freedom of the mechanical system and p, which is
the spatial gradient of ¢, corresponds to the generalized momentum. The following

canonical system of ordinary differential equations,

I

X = op (2.21)
) OH

p(t) = T

can then be used to generate the integral manifold ¢ = ¢(¢,x) from some initial
N-dimensional manifold in the space (¢,x,¢). Eqgs. (2.21) are used to find the
trajectory x = x(t) and p = p(t) of the mechanical system in the phase space (x, p).
They define the characteristic strips for the Hamilton-Jacobi Equation (2.19). From
Eqs. (2.19) and (2.21), we see that along these paths in phase space,

¢(t) = x(t)-p(t) — H[t,x(t),p(t)] . (2.22)
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The right-hand side of Eq. (2.22) is equal to the Lagrangian of classical mechanics.
For the special Hamilton-Jacobi Equation (2.17), which arises from the study of
the characteristic surfaces of (2.1), it can be shown that ¢(¢) = 0. Hence, the
trajectories x = x(t) in N-dimensional space lie on ¢(t,x) = const surfaces, i.e., on
the characteristic surfaces. These trajectories are called the rays of the characteristic

surfaces and the bicharacteristics of the original sytem of differential equations.

Any surface ¢(¢,x) = 0 in spacetime, e.g., the one shown in Fig. 2.1, can
be interpreted as a wave front. Fig. 2.2 shows a two-dimensional front, which
is equivalent to a surface ¢ = 0 in three-dimensional spacetime. Given the front
location at time ¢, the motion can be described using the position vector x = X(s,t),
where s is a convenient parameter, say, the arclength of the front at the initial
time £. The unit normal n is the one defined in (2.13). This description of a
surface in spacetime is equivalent to the function ¢(¢,x) = 0, but is sometimes
more convenient. It shows how such a surface can be interpreted as a wave front,
and in the case of characteristic surfaces, it makes more clear their interpretation as
waves of discontinuities of the derivatives of the solution. The velocity of the front

is defined by
X
Vs, t) = aa—t(s,t) . (2.23)

It is interesting to note that the motion of the front is specified by the normal
front velocity n-V only. A tangential velocity component can be added without
changing the location of the front at some later time t + At. See Fig. 2.2. This is

equivalent to redefining the parameter s of the front at the initial time ¢.

For the case of characteristic fronts, there is a special local direction that can
be used to assign a tangential velocity component. That is the direction of the
characteristic rays of the surface ¢(¢,x) = 0 corresponding to this front. The
characteristic rays are given by the first of the canonical set of Equations (2.21).
This is possible only because the characteristic rays lie on the surface ¢ = 0; i.e.,
@ [t,x(t)] = 0. It is important to note that from a computational point of view,
generating the surface ¢ = 0 locally should be done using the most convenient set

of curves. These do not always coincide with the characteristic rays.

The first of Eqgs. (2.21) defines a vector field in spacetime given by

(1) = 3 (x,p)



48

F1G.2.2 A two-dimensional front at times ¢ and ¢ + At¢. This front is described by
the position vector X(s,t) and is equivalent to the surface ¢ (¢,x) =0 in
three-dimensional spacetime.

Actually, at every point in spacetime there is a family of vectors, since there is a
dependence on the generalized momentum p = V. It is easy to visualize this in the
special case of three-dimensional spacetime. It can be seen that for every possible
orientation of the unit normal n in Fig. 2.2, which is related to p through (2.13),
there is a different bicharacteristic direction. These directions form the so-called ray
cone at every point. By integrating in time, the bicharacteristic curves emanating
from a point form the ray conoid, which is essentially the conical solution of the
characteristic Hamilton-Jacobi equation. See Fig. 2.3. The ray cone is tangent to

the ray conoid.

Insofar as a characteristic surface can be interpreted as a wave, the character-
istic conoid emanating from a point can be considered a wave front generated by a
disturbance at this point. This characteristic conoid is tangent to all characteristic
surfaces that pass through the given point. Moreover, the intersection of this conoid
with the hyperplanes ¢t = const determines the domain of dependence D and the

domain of influence I of the solution at the given point. See Fig. 2.3.

One can prove the existence and uniqueness of solutions of the hyperbolic
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t=const <

spacelike
surface element

X

F1G.2.3 The ray conoid through the point P determines the domain of dependence
D and the domain of influence I of the solution at P.

systems under consideration. These theorems show that given initial data on the
hyperplane ¢t = 0, the solution at the point P cannot depend on initial data outside
the domain of dependence D. Furthermore, the solution at P cannot possibly
influence the solution outside the forward-facing conoid, which cuts out the domain
of influence I at some later time ¢. The details of the proof of these theorems can be
found in Courant and Hilbert (1963); Friedrichs (1954); Friedrichs and Lax (1965),
and Kato (1975).

The domains D and I in Fig. 2.3 are shown as simply connected. This is not
necessarily the case for an arbitrary, hyperbolic system. One can define a space-
like or time-like surface element passing through the point P with respect to the
characteristic conoid. A surface element is space-like if its normal direction is inside
the conoid, and time-like if it is not. The hyperplanes ¢ = const, on which initial
data are usually specified, are space-like. The Cauchy IVP has a unique solution
provided initial data are specified on any space-like surface, not necessarily the

hyperplanes ¢t = const.
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2.1.2 Application to Gas Dynamics

To illustrate these concepts consider the example of interest here, namely, the
3-D inviscid flow of a compressible fluid. The equations of motion can be written

in the non-conservative form

gtp-l-V(pu) =0
Ju 1
2t +u-Vu+ - Vp =0 (2.24)
Op P o w-Vp+pa®Veu = 0
at p p - ?

where p is the density, p is the pressure, u = (u,v,w)T is the velocity vector and a

is the speed of sound. Eqs. (2.24) can be written in the general form

oUu oUu oUu oUu

En + A, — e +A,— 6 + A, 5% = 0, (2.25)
where
p u p 0 0 O
u 0 » 0 0 1/p
U = v |, A, =10 0 « 0 0 |,
w 0 0 0 =» O
p 0 pa’> 0 0 wu (2.26)
v 0 p 0 O w 0 0 p 0 '
0O » 0 0 O 0 w 0 O 0
Ay =100 v 0 1/p}, A, =110 0 w O 0
0 0 0 oo O 0 0 0 w 1/p
0 0 pa2 0 v 0 0 0 pa? w

There are five unknown functions; z.e., M = 5, defined on 4-dimensional spacetime,
t.e., N = 3. One can easily specialize the following results to the case N = 2, or

N = 1. Tt is a straightforward calculation to substitute (2.26) in Eq. (2.10) to find

Q = a—+v38i+-v+]V[ a+uV—IV|
~ \ ot gt T YPTAIVe o L

(2.27)

The convective characteristic manifold is defined by the Hamilton-Jacobi equation

dp
o tuVe = 0. (2.28)
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It has a 3-fold degeneracy. The acoustic characteristic manifold is defined by the
equations

Op

T +u-VotalVe| = 0. (2.29)
Let’s examine the acoustic manifold given by (2.29) with just the plus sign. Refer-

ring to the general Hamilton-Jacobi notation, the Hamiltonian is seen to be
H(x,p) = up+alp|, (2.30)

where p = V. From the canonical ODEs (2.21), it is seen that the rays of the

acoustic characteristic manifold are given by

. OH P
t) = — = uta—, 2.31
x(t) op ™Y (2:31)

or by (2.13),
x(t) = u+an. (2.32)

These rays are the bicharacteristics for the equations of gas dynamics. They are
the generators of the ray conoid. See Fig. 2.3. The eigenvalues \,, , m=1,...,5,

of the matrix n-A, are given by the second expression in (2.13); i.e.,

3= —32/1V6| = H(x,p)/lpl (2.33)

For the particular example of the acoustic manifold, the Hamiltonian is given by

(2.30) and, hence the corresponding eigenvalue is
A = (up+alpl)/lp| = un+a. (2.34)

It is interesting that the eigenvalue A coincides with the normal velocity component
of the characteristic front. See Fig. 2.2. It is also easy to show that along the

bicharacteristics,
¢(t) = x(t)-p(t) — H[x(t),p(t)] = wp+alp|-H = 0. (2.35)

Therefore, the bicharacteristics lie on the characteristic surfaces, as expected. Sim-
ilarly, one finds that the rays of the convective manifold (2.28) are the flow stream-

lines

x(t) = u. (2.36)
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2.2 Riemann Invariant Manifolds

The differential equations that hold on the characteristic manifolds will be
derived for the Euler equations of gas dynamics. It will be shown that the equa-
tions along characteristic directions are greatly simplified, only in the special case
of one-dimensional flow. In this case, it is possible to introduce the well known
Riemann invariants and the theory of characteristics can be used for computational
purposes. For multidimensional flows, there appears to be no advantage in using
the characteristic surfaces to integrate the equations. It will be shown that other
spacetime manifolds exist that provide the same computational advantage as the
characteristics in 1-D flow. These manifolds are referred to as Riemann Invariant
Manifolds.

A straightforward calculation yields the left and right eigenvectors of the matrix
n-A for the example of gas dynamics. The differential equation that holds along
a characteristic ray can be found by multiplying from the left by the appropriate

eigenvector; i.e.,

oU oUu
(e 57 ) H o Amg—) =0, k=1...,M, (2.37)

where (-,-) is the usual inner product in Y. By multiplying from the left with
the left eigenvectors l; corresponding to the acoustic manifold (2.29) of the Euler

equations, one finds the differential equation, which holds along the bicharacteristic,

x(t) =u+an,

Op Ou
[at + (u+ an)- Vp] + pan- [c’% +(u+an)- Vu]

(2.38)
+ pa® [V-u —n-(Vu)n] =
Using index notation and dividing through by pa,
Op Ou
[8t + (u; -I—an])a ] +ny [875 +(u]+an])a ]
(2.39)

Ou;
+a(5i-j —n,'nj) (3.’1:] = 0,
where 6;; is the Kronecker delta. Since the tensor é;; — n;n; is symmetric,

Ou;
Grn = (6 —niny) (g) = (8ij — ninj) Sij (2.40)
J
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- 1 6u,~ auJ'
Si; = 3 <-37]+8_x,-)

is the rate of strain tensor. Only the symmetric part of the velocity-gradient tensor

where

enters in the term G,,.

The significance of Eq. (2.38) can be seen by deriving it in a way that is not
related to the concept of characteristic manifolds. Consider an arbitrary, spatial,
unit vector n. The last two equations in (2.24) can be combined to give Eq. (2.38).
The momentum equation can be written as follows, by taking its inner product with

the vector pan and adding and subtracting the term pa’n-(Vu)n; i.e.,

Ou 1
— Vu+4+~-Vp =0
ot + u-vu -+ p f2
Ju 9
= pan-|—- + (u+an)-Vu| — pa®n-(Vu)n+an-Vp = 0.

The energy equation can be written

—a£+u-Vp+pa2V-u =0
ot
9p 2 _
= e +(u+an)-Vp+ pa*V-u—an-Vp = 0.

Adding the two equations gives Eq. (2.38).

It is clear from this derivation that this equation holds for an arbitrary vector
n. It gives the relation between velocity changes and pressure changes along the
direction X = u + an. It is the previous discussion of characteristic surfaces, which
allows us to identify these directions as the generating rays of the acoustic charac-
teristic manifold, i.e., the bicharacteristics. It is also important to notice that it is
really a family of equations. By fixing n to be a unit vector, it is easy to see that
Eq. (2.38) or (2.39) is actually an (N — 1)-parameter family of equations. Indeed,
for two-diménsional flow (N = 2), the vector n is constrained to the unit circle
and for three-dimensional flow it is constrained to the surface of the unit sphere.
This is important because, although they are all dependent equations and consis-
tent with the original system (2.24), a particular choice of n may be optimal for

computational purposes.
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Consider the special case of one-dimensional flow (N = 1) in the z-direction.
The characteristic surfaces are now characteristic curves in two-dimensional space-
time (¢, ), given by

Ct : c(ll_:;c =uzta. (2.41)
The only possible choices for the unit vector are n = +é,, where é, is the unit
vector in the direction of the flow. The family of Equations (2.39) consists of just

the two equations in the direction of the two characteristics,

1 [Op Op Ou Oul|
;zl-['(a—t-l-(uia)aw}:t[at—i—(uia)ax = 0. (2.42)
These two equations are written in the more conventional form as
1dp  du
"p“a'&'{ﬂ:a =0, (2.43)

where the time derivatives are derivatives along the appropriate characteristic di-
rections. Egs. (2.43) form the basis for the well-known theory of characteristics in
1-D gas dynamics. Moreover, when supplemented with the jump conditions, they
form the basis for the solution of the 1-D Riemann problem. This is important from
a computational perspective, since most numerical codes use this one-dimensional

problem as the basis for multidimensional computations as well.

If there are no entropy gradients, then (2.43) can be further simplified. Define
the thermodynamic state variable W by
d
W o= L. (2.44)
ds=0 PQ ‘
where the integral is performed in thermodynamic state space along a path of

constant entropy s. For a perfect gas this function is simply

2a
W = 2.4
g (2.45)

where + is the specific heat ratio. When there are no entropy gradients in the flow,

(2.43) can be integrated to give

%(W:i:u) =0 =Ry = W+u = const . (2.46)

The variables R4 are the well-known Riemann invariants. They remain constant
along the characteristic directions. It is this simple relation that makes the method

of characteristics a useful computational tool.
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Returning to the multidimensional case and motivated by the one-dimensional
results, one can also simplify Eq. (2.38) for the case of no entropy gradients by again

introducing the thermodynamic variable W given by (2.44). Then,

ow O(un)
-, Tt an)-VW] + [—'ét_ +(u+an) V(u-n) (2.47)

+a[V-u—n-(Vu)n] = 0.

The vector n is assumed to be constant. Motivated by the one-dimensional case,

one is led to define the family of Riemann Invariants
R, = W+un, (2.48)

which are analogous to the Riemann invariants R4 in 1-D flow. Eq. (2.47) can now

be written OR
Btn +(u+an)- VR, +a[V-u—n-(Vu)n] = 0, (2.49a)
or
OR,
T +(u+an)- VR, +aG, = 0. (2.49b)

Unfortunately, the presence of the term aG, = a(é;; — nn;) Sij in Eq. (2.49) acts

as a source term and complicates matters in multidimensional flows.

If a unit vector n exists, such that G,, = 0, then along the direction x = u+an,
Eq. (2.49) is integrable and R,, = const. By examining the form of G, one can see
that it is not always possible to find such a direction n. G, is the two-dimensional
divergence of the velocity field in the plane normal to the vector n. For the case of
2-D flow, z.e., N = 2, it can be shown that a direction n, such that GG,, = 0, can be

found only when the eigenvalues of the rate of strain tensor S are such that
AminAmax < 0. (2.50)

This condition is not always satisfied in an arbitrary flow. The generalization of
the simple, one-dimensional results does not appear to be straightforward, and this
has thwarted many efforts to extend the method of characteristics to higher dimen-
sions. There appears to be no advantage whatsoever in integrating the equations
of motion along the bicharacteristic directions, which are the multidimensional ex-
tensions of the characteristics in 1-D. The characteristic surfaces are significant for

the reasons explained in the previous discussion and primarily for the role they play
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in proving the existence and uniqueness of solutions. The existence and uniqueness
theorems are closely related to the concepts of domain of dependence and domain of
influence. Integrating along paths on the characteristic surfaces gives no advantage
over integrating along, say, x = const paths, which is what is usually done on a

computer.

It would be very useful to know along which curves in spacetime it is possible
to have R,, = const. The equations of motion would be integrable along these paths
in a way completely analogous to the 1-D case. Obviously, these paths are not the
bicharacteristics. The paths of interest will have to lie on the surfaces R,(¢,x) =

const.

It is easy to see what paths lie on the surfaces R, = const in spacetime by

adding and subtracting the following term in Eq. (2.49),

v-VR,, (2.51)
where v is a velocity. Eq. (2.49) is now written
8:;” +(u+an+v)-VR, +aG, —v-VR, = 0. (2.52)
If the velocity v is chosen so that
v-VR, = aG, = a[V-u—-n-(Vu)n], (2.53)
then :
OR,
T +(u+an+v)-VR, = 0. (2.54)

Eq. (2.54) says that along the paths
x(t)=V = utan+v, (2.55)

the Riemann Invariant R, is constant. Eq. (2.53) is simply a compatibility condi-
tion, which must be satisfied by the integral curve of (2.55), in order for it to lie
on the surface R, = const. The velocity v depends on the local, spatial gradients
of the flow, as can be seen from Eq. (2.53). Given a point in the flow where VR,
and G, have a specified value, this relation is linear in the velocity components
of v. The reason is that there is an infinity of curves passing through this given
point, which lie on the surface R, = const. See Fig. 2.4. All possible choices of v
correspond to all possible directions of motion on this surface. Moreover, it is well
known from differential geometry that there are an infinity of curves for every such
direction. In what follows, some interesting and useful choices of directions will be

examined.
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R, (1, x, y)=const

F1G.2.4 The surface R, (¢,x) = const in three-dimensional spacetime. There are an
infinity of curves passing through a given point, which lie on this surface.

The assumption of zero entropy gradients allowed the introduction of the Rie-
mann Invariants R,, which simplified the analysis by making the equations inte-
grable. Let’s abandon this assumption and repeat the previous analysis. Eq. (2.38)
will be the starting point:

Ou
Bt
+pa [V-u—n-(Vu)n] = 0.

Op

oy + (u-{-an)-Vu}

+ (u+ an)-Vp] + pan-[

By adding and subtracting the term
v-[Vp+ paV(u-n)] = v- [Vp + pa (Vu)Tn] , (2.56)

and for a v chosen so that

v-[Vp + paV(u-n)] = pa®[V-u—-n-(Vu)n] , (2.57)
one finds
% 4 (utan +v)-vp] + pa [a(‘;j’) +(utan+ v)-wu-n)] —0. (259)

Again n is assumed to be a constant vector. Eq. (2.58) can be written in a more

conventional form as

1 dp du,
——+
pa dt dt

=0, (2.59)
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along the paths
x(t) = V= u+an+v, (2.60)

where u, = u-n, .e., the velocity component in the direction of the fixed n vector.
Eq. (2.59) is of the same form as the first of Egs. (2.43), which holds along the
C4 characteristic in the 1-D case. The previous discussion for the R, = const
surfaces holds for these manifolds as well, but their interpretation is different and
more general. The solutions at any two points on such a manifold, connected by a
trajectory given by (2.60), are related in exactly the same way that solutions are
related along characteristics in the 1-D case. Knowledge of the integral curves of
the vector field (2.60) allows one to use the simple results of the one-dimensional
theory in multidimensional flows. In what follows, the notation R, = const will be
used for these manifolds even when entropy gradients are present and the Riemann

Invariants R, = W + u-n cannot be used.

There is a computational advantage of knowing the integral curves of these
vector fields. The solution of the gas-dynamic equations at points along these curves
are related in a certain, simple way. It is interesting to see what the geometry
of these manifolds is, in relation to the characteristic manifolds. A few ways of

describing their geometry are presented in what follows.

One way of visualizing the relative position of the characteristic manifolds and
the Riemann Invariant Manifolds is by examining the motion of the equivalent
(N — 1)-dimensional fronts. Recall that any surface ¢(t,x) = 0 in spacetime, is
equivalent to a wave front. For simplicity consider the case of a two-dimensional
flow; i.e., N = 2. Fig. 2.5, shows the local geometry and motion of the wave front

R,, = const for a finite time At. The local unit normal of this front is

v Vu)®
N = Yptea “)Tn . (2.61)
Vp+ pa(Vu) ' n
For the case of zero-entropy gradients, this is seen to be
VR,
(2.62)

" |VRa|
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y R, =const

F1G.2.5 Local geometry of the Riemann Invariant front R, = const. The outer
normal is N and its velocity is V.

‘At this point, it is important to note that the unit normal n serves as a label for
the particular manifold. It determines the fluid velocity component that is used for
the equivalent, one-dimensional problem. The vector n should be considered as the
parameter of the one-parameter family of Riemann Invariant wave fronts. From Eq.
(2.61), it is apparent that IN depends on n. Moreover, the mapping is not bijective;
i.e., 1t i1s not always possible to find a wave front R,, = const for an arbitrary N. The
spatial gradients of the flow determine a range of allowed propagation directions N

for these fronts.

It 1s also useful to define the vector n™, which determines the front propagating

in the —N direction; :.e.,

\V4 v T _
N = Ypteal u)Tn , (2.63)
'Vp + pa (Vu) n—’
if it exists. One can also define N~ by
Vp — pa(Vu)'n
N~ = (2.64)

- ‘Vp—-pa(Vu)Tn' .

It is important to keep in mind that in general, n™ # —n and N~ # —N.
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The velocity of the front R, = const is given by
V=u+an+v, (2.65)
where v has to satisfy Eq. (2.57); v.e.,
v-[Vp+ paV(u-n)] = pa®[V-u—n-(Vu)n] . (2.66)

The geometry of the front at time t 4+ At is completely determined by the normal
front velocity. One can add an arbitrary, tangential velocity component without
changing the front geometry. This freedom is seen in choosing the velocity com-
ponent v, which need only satisfy Eq. (2.66). This equation represents a straight
line in velocity space. It is possible to find the front velocity that corresponds to

minimum |v|. This is the case when v // N. The corresponding front velocity is

2
‘u—n-(V
Vi = utan4 PV um0 Tu)n]N. (2.67)
Vp+pa(Vu) n

The integral curves of this vector field are the curves on the manifold R, = const,
which are closest to the bicharacteristics X(¢) = u+ an. The normal front velocity
can be found by combining Eqs. (2.61), (2.65) and (2.66),

Vy = (V.N)N = (wN)N + gpaN | (2.68)

where i, is a dimensionless number defined by

n-Vp+ paV-u
fy = P —, (2.69)
Vp+ pa(Vu) n

and plays the role of an algebraic Mach number. The front velocity can also be
chosen so that the integral curve of this vector field is as close to the fluid streamline
as possible. This is done by minimizing |an + v|in Eq. (2.65). It is possible to show
that this is minimized when (an + v) // N. The front velocity in this case is given

by
Vs = u+4pyalN. (2.70)
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This particular choice of front velocity is very useful because it resembles the bichar-
acteristic velocities that generate the characteristic manifolds. It is clear that the
parameter p, is an indication of how much the manifold R,, = const deviates from
the local characteristic surfaces. In Fig. 2.6, a normal slice of these surfaces is shown.
A normal slice is the intersection of the surface with the plane defined by the direc-
tion N and the time axis. The surface R,, = const is characteristic when u, = +1.
Furthermore, it is time-like when —1 < u, < 1 and space-like when |u,| > 1. The
following useful relation can be found by combining Eqs. (2.61),(2.66) and (2.69),

Gn
pn o= nN4 —E2n (2.71)
Vp+pa(Vu) ' n
Xv=u-N-a t Av=u N :
) XN:u.N+a
% E Xnv=u N+l ,a
- Ry =const

— N X

F1G6.2.6 Normal slice of the Riemann Invariant Manifold R,, = const and the char-
acteristic manifolds. Their relative position is determined by the parameter
Pn. When [p,| <1, the surface element is time-like. This is an example
of a space-like surface.

Most of the geometrical information of the Riemann Invariant Manifolds is
contained in the two quantities N and p,. They show the allowed direction of
propagation of the corresponding fronts and how much they deviate from the char-

acteristic surfaces. They both depend on the unit vector n, i.e., on the particular
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choice of Riemann Invariant Manifold. Using the definition of y, (2.69) and the

equations of motion (2.24), one can show that

1Dp
v v. n-Vp — ——
n p + pa u a Dt (2.72)

Vp + pa (Vu)Tnl IVp + pa (Vu)Tn v

Bn =

where D /Dt denotes the Lagrangian derivative. It is interesting that the magnitude
of pu, depends directly on the difference between the pressure gradient in the n
direction and the pressure change along the fluid-particle streamline. For the case

of zero-entropy gradient, it is easy to show that

n-VW +V-u 1 DR,

fn = = ———— 2.73
VW + (Vu)'n a|VRy| Dt (273)
The starting point of this discussion has been Eq. (2.49); i.e.,
OR,
Ty +(u+an)- VR, +a[V-u—n-(Vu)n] = 0. (2.74)

This equation is a first-order differential equation for the function R, = R,(¢,x) of
the form (2.18). It resembles a Hamilton-Jacobi equation similar to the one satisfied

by the characteristic manifolds. The Hamiltonian in this case is seen to be
H(x,p) = (u+an)p+aG,, (2.75)

where

p = VR, . (2.76)

The only complication here is that this equation is not independent of the others
in the system. Nevertheless, conclusions can be drawn about the geometry of the
integral manifold in (N 4 2)-dimensional space (¢,%, R, ) or more importantly, about
the geometry of the slices R, = const in spacetime (¢, x), using the insight gained
from the study of 1°* order PDEs and in particular, the Hamilton-Jacobi equation.
If one applies the results obtained for the Hamilton-Jacobi equation to Eq. (2.74),
formally, then Eqgs. (2.21) and (2.22) give

X(t) = ——8 = u-an
x = o u-+an,
. OH 2.77
p(t) = Ok ( )

Ra(t) = —aG, = —a [V-u—n-(Vu)n] .
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The integral manifold of (2.74) can be conveniently visualized, locally, as a network
of surfaces R, = const. See Fig. 2.7. Egs. (2.77) describe how R,, changes along
the bicharacteristic directions x(¢) = u+ an. The bicharacteristic curves do not lie
on the surfaces R, = const. Recall that the vector n is a constant, which labels the
particular network of Riemann Invariant Manifolds. If it is possible to find a vector
n such that G,, = 0, then the bicharacteristics lie on the surfaces R, = const. It is
important to keep in mind that the integral curves of the vector field x(¢) = u+an,
with n a constant vector, are not the bicharacteristics. They are very close to the
bicharacteristics for a short time. In order to remain on a bicharacteristic, the

vector n must change according to Egs. (2.21).

In general, integrating Eqgs. (2.77) to find the solution at a point P (see Fig.
2.7), provides no computational advantage. It is apparent from the figure that there
are an infinity of paths C' on the surfaces R,, = const that can be used instead. The
problem of finding the solution at P reduces to computing the geometry of the

curves accurately, by integrating
x(t)=V = u+an+v. (2.78)

All such paths C are not equivalent numerically. The local curvature of these
surfaces is also an important consideration in choosing the most convenient path
for numerical integration. One can try to minimize the numerical error by varying
the direction of approach to the point P. It is also possible to estimate the curvature
of a particular path and to use this information to achieve higher-order accuracy
in the integration of (2.78). Moreover, by varying the vector n, i.e., varying the
network of Riemann Invariant Manifolds, it is possible to optimize the scheme even
further. The algebraic parameter p,, shows whether the surface R,, = const is space-
like or time-like. Surfaces with p, >> 1 should be avoided, because the timestep

required to integrate Eq. (2.78) accurately would be too restrictive.

It is possible to find the projection of an arbitrary path x(¢#) = W on the
surface R, = const. The projection is defined to be the path x(t) = V,, on R, =

const, such that IVJ'I is minimum, where
1
v = V- W, (2.79)
Since the projection is on the Riemann Invariant Manifold,

Ve = u+an+v,, (2.80)
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X(t)=u+an

Ri=c;

Rn=C2
Ra=c;

F1G.2.7 The integral manifold of Eq. (2.74) is shown as a network of Riemann
Invariant Manifolds R, = const in three-dimensional spacetime. It is more
convenient to integrate along paths C on these surfaces rather than along
the bicharacteristic paths x(¢) = u+ an.

where v,, satisfies the compatibility condition (2.66). It is straightforward to show
that

viN = N+ ppa— N-W. (2.81)

It is seen from Eq. (2.81) that IV‘LI is minimum when v+ // N. The projection is
then

Vo = (uN+ ga) N+ W — (N-W)N. (2.82)

Now, one can find the projection of an arbitrary bicharacteristic direction u + aifi,
where 1 is a unit vector. Substituting W = u+an in Eq. (2.82) gives the projection
of the bicharacteristic,

V, = u+paN+an—(0-N)NJ . (2.83)
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Fig. 2.8 shows the projection of the characteristic conoid on a particular surface
R, = const, which is space-like; i.e., [un| > 1. It is reasonable to try to use paths
contained in the projected conoid for computational purposes. The paths given by
Egs. (2.67) and (2.70) are in this projection.

Using Eq. (2.83), it is easy to examine the intersection of the manifold R, =

const and the local characteristic ray cone. This is done by requiring
V, =u+ah. (2.84)

In other words, the projection vector V,, tangent to the Riemann Invariant Mani-
fold, is required to be a bicharacteristic vector. From Eq. (2.83) it is seen that one

must have

AN = p,. (2.85)

Since fi and N are unit vectors, this equation has a solution only when —1 < p,, <1,
i.e., when the Riemann Invariant Manifold is time-like or characteristic. This is to
be expected because, by definition, a space-like surface element cannot intersect the
local characteristic ray cone. It is interesting that when the surface element is not
space-like, it is possible to find bicharacteristic directions along which an equivalent,
one-dimensional problem holds. This situation would be the direct extension of the
method of characteristics to multidimensional flows, as it has been attempted in
the past. A special solution is the one discussed earlier for the case fi = n. In this
case Eq. (2.85) reduces to

n-N = py,. (2.86)

Using Eq. (2.71),

nN =y, = G, =[Viu—-n(Vu)n] = 0. (2.87)

Yet another way to visualize the relative position of the Riemann Invariant
surfaces and the characteristic manifolds is to examine the cone generated by the
vector field (2.78) in relation to the characteristic ray cone generated by the bichar-
acteristic vector field. The Riemann Invariant cone is generated by varying the unit
vector n. It will be different for the different possible choices of V on each surface
R, = const. Examples are shown for the case of two-dimensional flow in Figs.
(2.9)—(2.12). The direction chosen for these examples is that given by Eq. (2.67).
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X(t)=u+an

F1G.2.8 The projection of the characteristic conoid at P, on the manifold R, = ¢;,
is shown for the particular case |pu,| > 1. It is contained between the curves

C_ and C,.

Moreover, the point of interest is located at (z,y) = (0,0), the pressure is p = 1,
the density is p = 1 and the velocity is (u,v) = (0.5,0.5). The plots shown are

slices t = 1 of the two cones, i.e., the so-called ray surfaces. The bicharacteristic

ray surface is a circle.

2.3 Riemann Invariant Manifolds and Domain of Dependence

It is important, at this point, to make some remarks about the information that
is provided by the local geometry of these Riemann Invariant Manifolds. The fluid
velocity u and the speed of sound a provide information about the local geometry of
the characteristic surfaces. In particular, they give the local, bicharacteristic cone.
The significance of the characteristic surfaces has been discussed previously. Their

interpretation as waves of derivative discontinuities is important. What is more
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F1G.2.9 The bicharacteristic ray surface in relation to the Riemann Invariant ray
surface for the case Vu = (1,0) ,Vv = (-1,0) and Vp=(1,2).

-1.0
-1.0 -.5 .0 .5 1.0 1.5 2.0

X
F1G.2.10 The bicharacteristic ray surface in relation to the Riemann Invariant ray
surface for the case Vu = (5,2) ,Vv = (1,-6) and Vp = (1,-2).
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-4 -2 0 2 4
X
F1G.2.11 The bicharacteristic ray surface in relation to the Riemann Invariant ray

surface for the case Vu =(2,3) ,Vv = (-2,4) and Vp = (0,0).

-3 -2 -1 0 1 2 3
X
F1G.2.12 The bicharacteristic ray surface in relation to the Riemann Invariant ray
surface for the case Vu = (7,-5) , Vv = (-6,-7) and Vp = (5,-7).
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significant is the role they play in proving the existence and uniqueness of solutions.
The characteristic surfaces determine the domains of dependence and influence of
the solution. The concepts of domains of dependence and influence are a direct

result of the assumptions and results of these theorems.

Knowledge of the local, spatial gradients in the flow provides additional in-
formation. They provide all the information required for the Riemann Invariant
Manifolds and in particular, the parameter p,. It is important to note that the
solution at points on these manifolds are related in a simple way. Moreover, these
relations can be used to determine the solution at a given point. What may ap-
pear disturbing at first sight is that these manifolds may be space-like. In other
words, the solution at some point may be computed from the solution at points
outside its domain of dependence. See, for example, Fig. 2.11. Actually, in the case
of zero-entropy gradients, there is a simple, explicit algebraic expression relating
points connected by space-like paths in spacetime given by the Riemann Invariant
R, = W + u-n. It then becomes trivial to compute the solution at a given point
from the solution at points on these Riemann Invariant Manifolds. The difficulty
is transferred to the task of finding the exact location of the relevant points by
integrating %(t) = V. In any case, no matter what their exact location is, these
points are going to be outside the domain of dependence, if the Riemann Invariant
Surface is space-like. At first sight, there appears to be a disturbing inconsistency
with the concept of domain of dependence as described in the uniqueness theorems.
Fig. 2.13 is a simplified, one-dimensional picture illustrating this situation. The
solution at point P is computed by using the known solution at points @1 and Q)2

outside the domain of dependence D.

Careful examination of the existence and uniqueness theorems for these hyper-
bolic systems of equations shows that there is really no such inconsistency. It is
true that if the data in D are different, then the solution at P will change. But
so will the paths @1 P and )2 P. What seems odd at first is that even though the
data in D are sufficient to determine the solution at P, there are points outside
D where the data are “related” to the solution at P. The uniqueness statement is
that points outside D cannot affect the solution at P. This is usually interpreted
as meaning that any relation between the data outside D and at P must be com-
pletely random, depending on the data on the surface ¢ = 0. This is not true.

The local, spatial gradients determine a local relation of this form along space-like
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F1G.2.13 The solution at point P is related trivially through the Riemann Invariant
functions to the solution at points Q; and ()2, which are outside the
domain of dependence D.

paths. The data in D are sufficient to determine the solution at P, and if the data
in D are altered, the solution at P will change. N evertheless, the solution at P is
not completely unrelated to the data outside D. This has to do with the fact that
knowledge of the local spatial gradients and their smoothness constitutes additional
information about how the initial data on t = 0 are related. The uniqueness proofs
are based on requiring the absolute minimum in terms of smoothness restrictions
on the data. The data are simply required to be continuous. Discontinuities in the
derivatives are allowed, and it was shown that these discontinuities are propagated
by the characteristic surfaces. Other singularities in the derivatives also propagate
along the characteristic surfaces. If the data are allowed to have Jjump discontinu-
ities, then these jumps will propagate along the shock manifolds. The characteristic
surfaces separate the regions of spacetime, where the derivatives of the solution are
continuous. It is in these regions that knowledge of the gradients provides addi-
tional information about the solution. This additional information is conveniently
visualized through the geometry of the Riemann Invariant Manifolds and can be

used for computational purposes.
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2.4 Conclusions

The theory of Riemann Invariant Manifolds extends the method of character-
istics to multidimensional flows. It provides the theoretical framework for develop-
ing numerical schemes that are genuinely multidimensional. The one-dimensional
characteristic problem is the basic building block for most high-resolution, shock-
capturing schemes in use today. This theory allows one to use the 1-D problem
for multidimensional calculations in a mathematically consistent way. There is no
unique, numerical implementation of these ideas. The theory suggests that the 1-D
characteristic problem may be used along trajectories that lie on the Riemann In-
variant Manifolds. This is a necessary constraint, but additional degrees of freedom

are available for picking a numerical scheme.
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CHAPTER 3

A Multidimensional Godunov Scheme

The theory of Riemann Invariant Manifolds will now be used to construct a
conservative, shock-capturing scheme for unsteady, two-dimensional flow. The basis
for the scheme is a second-order Godunov scheme (MUSCL scheme, van Leer, 1979),
which is modified to take into account the multidimensional character of the flow.
The numerical fluxes are computed by tracing the appropriate Riemann Invariant
Manifolds back in time, in order to find the states that are related with an equiva-
lent, one-dimensional Riemann problem. This results in a multidimensional scheme
without flux-splitting, i.e., a truly unsplit scheme. The application of the theory
is demonstrated for two-dimensional flow, but the extension to three-dimensional
flow is straightforward. It is important to note that the theory of Riemann Invari-
ant Manifolds can be used to construct a variety of multidimensional, numerical
schemes. What follows is simply one example of how a Godunov-type scheme can

be corrected for multidimensional effects.

3.1 Second-Order Godunov Scheme

A description of the MUSCL scheme will be given, since this is the basis for
the proposed multidimensional scheme. Most high-order, shock-capturing schemes
have been developed using the theory of hyperbolic systems in one space dimension
and time. It is therefore convenient to describe the scheme for this special 1-D case

and then to show a conventional extension to many spatial dimensions.

The goal is to solve numerically the general, nonlinear system of equations

U oF(w) _

T 0. (3.1)
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This is a general conservation law, where ¢ is the time variable, = is the space
variable and U = U(t,z) € R is the conserved unknown vector. For the case of

1-D gasdynamics,

p pu
U= 1|pu], FU) = pul+p |, (3.2)
pet pues + pu

where p is the density, p the pressure, u the velocity of the gas and e, = (e + % u2)

is the total energy. The internal energy e is related to the pressure p by
p=(y—1)pe, (3.3)
for the case of a perfect gas with constant, specific heat ratio 5.

A finite-volume formulation is used. The spatial domain is discretized, and the
average value of the conserved vector U in the j* cell is denoted by U;. Quantities
associated with the two interfaces of the j*™ cell are denoted by the subscripts

J £1/2. A general conservative scheme is of the form

n VAN ™ ~
U] +1 _ U] —E (Fj+1/2 _Fj—l/Z) . (34)

This is really an application of the integral-conservation form of Eq. (3.1) to the
J*™ cell. It gives the cell-averaged, conserved vector U at the time level n + 1 from
the previous time level n. Az is the size of the cell and At is the timestep. The

quantities F j+1/2 are the time-averaged fluxes at the two cell interfaces; i.e.,

5 1 tn+At
Fj:i:l/2 = Z—{/ F(Uj:izl/2) dt, (35)

in
where F' = F(U) is given by Eq. (3.2). It is important to notice that Eq. (3.4) is
ezact. In a numerical scheme it is not possible to calculate the integrals given in

Eq. (3.5) exactly. The integrals are therefore approximated, and the final numerical

scheme is of the form

. N -
Ut = 0= i (B = Bias) 9
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where the quantities Fj:i:l /2 are the numerical approximations of the F j+1/2 - Every
conservative scheme reduces to calculating the numerical fluxes Fj:i:l /2 at the cell
interfaces. All Godunov schemes attempt to compute these fluxes by using the
knowledge from the theory of characteristics, locally, at each cell interface. By
doing this, the local characteristic wave patterns are accounted for, accurately. Since
discontinuities are likely to be present, the characteristic problem is generalized to
allow for their presence. This constitutes the well-known Riemann problem. How

this is done for the case of a second-order Godunov scheme (MUSCL) will now be
described.

At any given time %,, one has only the average values of U in each computa-
tional cell, as given by the discrete scheme (3.6). The first step in calculating the
numerical fluxes ¥ j+1/2 is to reconstruct the solution at time ¢, by some kind of
spatial interpolation. This is a very important step, because the presence of discon-
tinuities in these flows may cause problems. This constitutes the most important
step for a variety of high-order, conservative schemes. The second step, then, is to
use the knowledge of the solution at this time level to solve a local, characteristic
problem in order to calculate the numerical fluxes. These two steps will be given

for the MUSCL scheme.

A linear variation of the primitive variables p, p and u is assumed in each cell.

The generic quantity ¢ is given by

g(z) = ¢ +(g2); (2 —2;), (3.7

in the j*% cell, where g; is the average value in the cell, = ; is the center of the
cell and (g¢;); is the slope of ¢ in this cell, which is assumed to be constant. Note
that discontinuities of these quantities are allowed at the cell interfaces, as shown
in Fig. 3.1.

The slope (g;); is computed, following van Leer (1984), by

(Q:c)j = ave (QI_ 3 Q;;l-) ) (38)
where
- q; —4d;-1 qij+1 — 45
a: = ] ]. ) Qj = ] ]‘ ) (3.9)
Tj —Tj—1 Tj+1 — T

, (3.10)

ave(z,y) =

P (z —y)”
92 $2+y2+c2
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F1G.3.1 Linear variation of the generic quantity ¢ in the j** cell. In general, g is
discontinuous at the cell interfaces.
and ¢? is a small constant (¢? <« 1). This slope-limiting procedure ensures the

preservation of monotonicity in the interpolant in regions of discontinuities.

The numerical fluxes F j+1/2 are calculated by Eq. (3.5), using the midpoint
rule, s.e., |

Fiprys = F(U;’If/;) , (3.11)

where the superscript n + 1/2 denotes the half-time level ¢, + At/2. The problem

of finding the numerical fluxes becomes that of estimating the solution vector U

at the cell interfaces at the time ¢, + At/2. This procedure ensures second-order

accuracy in time.

The domain of dependence of z = z;,;/, over the time interval At/2 is esti-
mated by the characteristics at the time level ¢. The characteristic speeds are given
by

cy = uta, co = u, (3.12)

where a is the speed of sound. In the example shown in Fig. 3.2, the flow is subsonic;

t.e., ¢4 > 0 and c_ < 0. It is known that along the characteristics Cy the following

differential equations hold:

dp Op Ou Ou|
[E +(uia)$] +* pa [E—I-(u:lza)a] =0. (3.13)
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These two equations are written in the more conventional form as
— *pa— = 0, (3.14)

where the time derivatives are derivatives along the appropriate characteristic di-

rections. Along the streamline Cy,

9 , 0| _ [0 O] _
[at +“axJ —a [at o] =0 (3.15)
or d d

ap _ 28P

i 0, (3.16)

which is equivalent to the statement that the entropy remains constant along the

streamline.

t+At/2

'/

12

FI1G.3.2 The constant states, which are to be used as the initial condition for the
Riemann problem at the interface j + 1 /2 , are obtained by tracing the
characteristics back in time from the half-time level t + At/2. In this
example the flow is subsonic; i.e., ¢y > 0 and c_ < 0.

Eqgs. (3.14) and (3.16) form the basis for the well-known theory of characteristics
in 1-D gas dynamics. Moreover, when supplemented with the jump conditions, they
form the basis for the solution of the 1-D Riemann problem. It is the states at the
points Py in Fig. 3.2 that are used as the two initial states for the 1-D Riemann
problem. The solution of this Riemann problem is the state used in Eq. (3.11) to

compute the numerical fluxes.



78

There are many variations of the MUSCL scheme that arise from changing
the spatial interpolation scheme or changing the way the states for the Riemann
problem are chosen. A different way of picking the two states is by using a Taylor
series expansion on either side of the interface j + 1/2. The left state of the initial
condition for the Riemann problem is given by the following expansion about the

center of the j* cell,

oU  AtoU

U = Uitlo s, +75t‘

= U; +(z — z.) (—> - '—A (gg) (3.17)

vy e et 8] (gg)

where z. is the center of the cell, I is the unit matrix and

OF(U)
U

The spatial derivatives are constant in each cell, since a linear interpolant is used.

A= (3.18)

Similarly, one finds the right state Uy by expanding in the (j + 1)** cell. The two
states found by the Taylor series expansion are not really related by a 1-D Riemann
problem, even in the case of smooth flow without any shock waves. It does not take
into account accurately the local, characteristic wave patterns. Nevertheless, this
procedure works in practice, and it is mentioned because it can be extended to the
multidimensional case in a straightforward way. One can also introduce corrections

to the states obtained in this way to account for the local wave patterns.

The process of tracing the characteristics back in time is the best way to find
the initial condition for the Riemann problem for the 1-D case, but this procedure
cannot be extended to the multidimensional case. This is a general problem of all
similar methods that use knowledge of the theory of hyperbolic systems in one space
dimension to compute numerical fluxes. It is at this point where one can use the
theory of Riemann Invariant Manifolds to find the states that are connected with

an equivalent 1-D characteristic problem.

The conventional way of extending these 1-D schemes to more space dimensions
is through Strang-type, dimensional splitting, given in Strang (1968). Each spatial
dimension is treated separately, and the result is the “sum” of one-dimensional
problems in the grid directions. Unsplit schemes like that of Colella (1990) use the
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grid direction to set up a 1-D problem, but the states used as the initial condition
for the Riemann problem are not clearly related via a 1-D problem, even though
they are corrected for multidimensional effects. The only real effort to create a
multidimensional scheme is that by Roe (1986); Hirsch & Lacor (1989), and De-
coninck et al. (1986). It is also easy to extend the Taylor-series expansion method,
mentioned earlier, to multidimensional flows. The states computed in that way are
not clearly related via the 1-D characteristic equations, but the resulting scheme
works in practice. Moreover, this scheme is a good reference point for the multi-
dimensional schemes that are proposed, using the theory of the Riemann Invariant
Manifolds.

Consider now the case of two-dimensional flow of a perfect gas. The second-
order Godunov scheme will be described and used as the starting point for the
proposed multidimensional corrections. The local geometry of a 2-D computational
cell is shown in Fig. 3.3. An orthogonal grid in the z and y-directions is used. As will
be seen later, this restriction on the grid can be dropped when the multidimensional

corrections are introduced.

The equations of motion for the two-dimensional case are

oUu  OF,(U oF,(U
L OB(U) | 9R,(U)

g 5, =0 (3.19)
where
p pu pv
v=|"| RO = p;’uiu RO = |, (3.20)
pet puer + pu pUrEL + pU

u = (u,v)T is the two-dimensional, velocity vector, and e; = e + 2|ul? is the total
energy. The internal energy e is related to the pressure p by the perfect gas equation
of state (3.3).

The spatial-interpolation scheme is the one-dimensional scheme given by Egs.
(8.7)-(3.10) and is implemented in the two orthogonal grid directions. As mentioned
earlier, the spatial-interpolation scheme is a very important step, but is independent
of the efforts to correct for multidimensional effects in the time integration. One
can devise higher-order interpolation schemes, which take into account the presence

of discontinuities, such as the interpolation used in ENO schemes. See Harten et
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F1G.3.3 The geometry of the 2-D computational cell (7,7). The interface between
the cells (7,7) and (7 + 1, 5) is denoted by (i +1/2, ). N, is the unit vector
normal to this interface. For an orthogonal grid this corresponds to the
unit vector in the z-direction.

al. (1987). It is also possible to devise schemes that work on unstructured grids.
At any given time, knowledge of the spatial gradients of the flow will be assumed

in using the theory of Riemann Invariant Manifolds to develop a multidimensional

scheme.

The two states that are used as the initial condition for the Riemann problem
at the interface (: + 1/2,j) are given by the Taylor series expansions on either side
of the interface. The left state is given by expanding about the center of the (i,5)
cell to the center of the interface, x,, at the later time ¢ + At/2. It is easy to see

that the extension of Eq. (3.17) to the two-dimensional case is

U, = Uy, + [(x,, —x)I— -A-QEA] VU, (3.21)

where x. is the center of the cell, I is the unit matrix and

0F,(U) BFy(U)>T

A = (A;,4)" = ( U T (3.22)




81

It is more convenient to expand the primitive variables p, p and u instead of

the conserved vector U. The left state is, then, given by

pr = p+(xp —x.) —ubt]-Vp - 6tpV-u, (3.23)

pr = p+[(xp — Xc) — uét]-Vp — §tpa®V-u, (3.24)

u, = u+[(x, — %) —ubt]-Vu - 6t%Vp , (3.25)

where 6t = At/2 and all quantities are evaluated at the center of the (z,7)* cell.

Similarly, one can find the right state by Taylor expanding about the center of the
(i4+1,5)™ cell. The velocity component normal to the interface, i.¢., u,-N, is used
as the left scalar velocity for the 1-D Riemann problem. In other words, a one-
dimensional Riemann problem is solved in the direction of the grid line, using the
above left and right states. As mentioned earlier, these states are not truly related
by the 1-D characteristic equations even in smooth, shock-free flow. The tangential
velocity component used to compute the numerical fluxes at the interface, is u,-NZ

if u;-N,y > 0; otherwise it is uR~N;L. The notation

at = (6;x¢,)xa, (3.26)

for an arbitrary, two-dimensional vector a, will be used throughout. a' is just a,

rotated by 90°.

3.2 Multidimensional, Second-Order Godunov Scheme

In order to correct this scheme for multidimensional effects, it is proposed to
use the Riemann Invariant Manifolds that pass through the interface to find the
states that are truly related through an equivalent one-dimensional, characteristic

problem.

As a first step, the geometry of the Riemann Invariant Manifold R, = const,
corresponding to the arbitrary unit vector n, will be examined in the vicinity of
the computational cell (¢,7). The spatial gradients are assumed known from the
spatial-interpolation scheme. Moreover, the spatial gradients are constant in each
cell, since a linear interpolation is used. The unit normal N and the algebraic
normal Mach number p,, of the 2-D front R, = const are given by

N — Vp + pa(Vu)'n

B |Vp + pa(Vu)'n|’ (3:27)
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_ n-Vp+4paV-u
" |Vp+pa(Vu)n|’

7 (3.28)

Both quantities are assumed constant in each computational cell. An arbitrary

direction on the manifold R, = const is given by
xn(t) = u+av, (3.29)

where

v = poN+ p, Nt . (3.30)

¢ is unspecified and it reflects the infinity of paths on this particular manifold.

The Mach number of a particular trajectory %,(t) is

p = = pt+p? > 0. (3.31)

This positive number u contains the information about the relative position of the
corresponding trajectory and the bicharacteristic conoid. When p = 1, the path is
tangent to the bicharacteristic cone. When p < 1, it is time-like and when p > 1,

it is space-like.

The solution is known at time ¢. From the knowledge of the spatial gradients of
the flow it is possible to find, approximately, all paths on the manifold R,, = const,
which pass through the center of the interface (i + 1/2,7) at time t + 6t. These
paths must be such that

t+61
X, = Xp(t+6t) = xn(t)—i—/ [u(7, %n(7)) + a(7, xn(7))(7, Xp(7))] d7 . (3.32)
¢
By approximating these paths by straight lines in time, one finds
Xp R Xy + 0t [u(t,xy) + at, x,)v(t, X)), (3.33)

where X, = Xn(t). Using the linear interpolants for the velocity u and the speed of

sound a at time ¢ and the fact that v is constant in each cell,
Xp = Xy = 6t{u+ (X4 —X.)-Vu+[a+(xy —x.)-Va]v} , (3.34)

where all quantities are now evaluated at the center of the cell. Eq. (3.34) can be

used to solve for x,, as a function of u;. It can be written as

I+ 6t (Vu+vVa)](xy —Xc) = Xp — X — 8t (u+av) . (3.35)
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Eq. (3.35) is a linear system in the unknown vector x,, — x.. The determinant of

this system is easily found to be

D = 1+6t(V-u)+ 6t det (Vu) + 6t v- [I n 5t(ﬂ)] Va
o (3.36)
= 1+6t(V-u+wv-Va) + 62 [det (Vu) + V-(Vu)Va} .
For small enough timestep 6¢, D ~ 1. Eq. (3.35) can be solved to give
ot e ot
X, —xu = (1-1/D) A%, + 3 [u ~ (Vu) (Ax, — étu)} +5alv,  (3.37)

where Ax, = X, — X,, a7 is the tensor

o = oI +(Va)* (Ax,)" + 6t [a(ﬁ)—(va)l wt] (3.38)
and v v _ dv u
o 9y 0 o0 o oy

(Vu) = 85 BZ , (Vu) = (?9?{) gg : (3.39)
dy e Toz Oz

Eq. (3.37) gives x,, as a function of p;, which is contained in v. In other words, it
is the locus of all points, at time ¢, that are connected with point (t 4+ ét,x,) by the
1-D characteristic differential equation

dp duy,

— — =0 3.40

& TP ’ (340)

where u, = u-n, for the particular choice of n.

For the point x,, to be inside the cell (3, ), the following relations must hold
0 < (xp, —xy)'N, < 6z
? . (3.41)
,(xp — Xy ) N3 I < 0.56y ,

where (dz, 6y) is the size of the cell. If the point x,, is restricted to the half of the
cell closest to the interface (i 4+ 1/2,5), then

0 < (xp —xu)'N, < 0.56z

3.42
,(xp — xw)-Nj‘l < 0.56y , ( )

Eq. (3.37) can be used to find the range of the parameter p; for which the inequal-
ities (3.41) or (3.42) hold. This range can be found explicitly if the simplifying
assumption D ~ 1 is made. In that case, Eq. (3.37) becomes

Xp — Xy

=~ V.+alv, (3.43)
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F1G.3.4 The locus of all points x,, in the cell (1,7) at time ¢, which are connected
with point (¢+6%,x,) by the 1-D characteristic differential Equation (3.40).

where
V. = u—(Vu)(Ax, — étu) .

The inequalities (3.42) can now be written

oz
0 < uy < 057 = 0.5y
oy
|vs] <0.5§ = 0.5v, ,
where < —x
Ug = —pWﬂ-NS = VC-N3+GV-(TTN3>
= Xp mXw o1 L A TagL
ve = L—U.NL = VoN{ tav (T Ns) .

Using Eq. (3.30), the inequalities (3.45) become

0 <« Vc'Ns-f—a,LLnN'ks—-a/LtN‘ksl < 0.5uy,

—0.5v; < VoNy +apnN-k, — apN-k} < 0.5v, ,

where
ks = TN, , Ky, = TTN;L.

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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This can be written as
VN, + au,N-k, — 0.5y, < apN-ky < V. N, +au,N-k,
VC-N;}L +ap,N-ks —0.5v, < autN-I%l < VC-N;L +ap,N-kg 4+ 0.5v, .

(3.49)
This is equivalent to
Mt € (a—aa-l-)n(ﬂ—)ﬂ-l—) ’ ‘ (350)
where
ay = max Vc'Ns + a/lnN'ks - 05ug Vc’Ns + (Z/J,nN-ks
~mm aN-k ’ aN-k
By = max V. -N3 +ausN-k, — 0.5v, V.-N&+apu,N-ks + 0.5v4
* = min aN-n;L ’ aN-K,;}
(3.51)
Define
pf = DI (g, By) (3.52)

If u; > uf, then there is no solution to these inequalities. Otherwise, the inequal-

ities are satisfied for
pe € (g 0d) - (3.53)

This range of values can be restricted further, if one requires that

o= /‘121 +N% < Hmax - (3"54)

This restricts the locus of points to those within a certain distance from the domain
of dependence of the point (¢ + 6t,x,).

It is now a straightforward calculation to find the pressure, density and velocity
at the point X, using the linear interpolants in the (7,5)" cell. We denote this
state with the superscript W. The pressure at point (t,x,,) is given by

p¥ = p+ (Xw —%:)-Vp. (3.55)
By substituting x,, from Eq. (3.37), one finds
p¥ =p°—aly-Vp— paV-u]ét — (1 —-1/D)Ax,-Vp (3.56)
' 3.5
—8t[E — (1 —1/D)(u+ av)]-Vp — §t* E?.Vp ,

where p© is the pressure given by the conventional Godunov scheme in Eq. (3.24);
i€,

p¢ = p+I(xp —Xc) — 6tu]-Vp — 6tpa’V-u . (3.57)
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All quantities are evaluated at the center of the cell, and the two vectors E{" and

E{» are given by

EY = %[(V.Ax;) (Va)* - (Vu)ax,] | (3.58)
E? = %[(%)(u+au)~(y.ul) (Va)l] . (3.59)

Similarly, for the component of the velocity vector in the n direction, one can show

that

u”n =un+ [%n-Vp - au-(Vu)Tn] —(1-1/D)Ax,-(Vu)'n

(3.60)
—8t[EY — (1 —1/D)(u+ av)]-(Vu)"'n — 6t EP-(Vu)'n .

By the definition of the Riemann Invariant Manifold,

v- [Vp + pa(Vu)Tn] = n-Vp+ paV-u. (3.61)
Therefore, Eq. (3.60) can be written

1

u”’n =un+=w-Vp—paV-uét — (1 —-1/D)Ax,-(Vu)'n
p[ p—paV-ulét — (1 —1/D)Ax,-(Vu) (3.62)

— 6t [ED — (1 —-1/D)(u+ av)]-(Vu)'n - 6t* E-(Vu)'n.

It is seen from these equations that the leading order difference between the state
given by the Godunov scheme and the state given by the Riemann Invariant Man-
ifold is the term

v-Vp— paV-u, (3.63)

for both the pressure and the velocity. The density is given by a similar equation,

p” = p° —[av-Vp —pV-u]ét — (1 - 1/D)Ax,-Vp
P

(3.64)

The state computed this way, i.e., by tracing the Riemann Invariant Manifold
R, = const, serves as the left state for a 1-D characteristic problem. To find the
right state, one needs to trace the R_, = const manifold, which corresponds to the
unit vector —n. A locus of points (¢,x,,) can be found, which are connected with

the point (¢t + 6¢,x,) by
dp du,

at Pdr

=0. (3.65)
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These points may lie in the (3, 7)" cell or the (¢ +1,7)*" cell or both, depending on
the local flow gradients. The solution to this 1-D characteristic problem will give
the pressure, density and velocity component u-n at the point (¢t + 6t,x,). It is

4

obvious that the velocity component u-n— is also needed. There are two ways to

find this.

One way is to examine the geometry of the Riemann Invariant Manifolds that
correspond to the unit vectors £n' and to set up another 1-D characteristic prob-
lem. The solution to this will give the velocity component required, along with
a new value for the pressure and density. One can, then, take the average of the

pressures and densities of the two 1-D problems.

There is a different way of calculating the velocity component u-nt, which is

now described. The momentum equation is

Jdu 1
N +u-Vu+ ;Vp =0. (3.66)

By taking the inner product of this equation with the constant unit vector nt, one
finds

ot

It can be seen that along any path %(t) = u + av, in spacetime such that

e} 1
= (u-nt) + u-(Vu)"n* + ;nL-Vp = 0. (3.67)

1
v, (Vu)'nt = —nt.Vp, (3.68)
pa

one has

2 () +(at o)V () = 0, (3.6)

which means that the velocity component u-n+

is constant along this path. In
effect, a manifold is defined in a way completely analogous to the Riemann Invariant
Manifolds. It is straightforward to show that Eq. (3.68) implies that

vy = (Ny + NE (3.70)
rwhere ( )T N
Vu) n

N, = ———, 3.71
1 nt-Vp

(n = “p—am (3.72)
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The equations for this manifold are the same as those for the Riemann Invariant

Manifolds with the following substitutions,
N - N,, ptnp—C and pg— (. (3.73)

One can find a locus of points in a given cell by tracing this manifold back in time,

exactly the way the Riemann Invariant Manifolds were traced. It can be seen, then,

that the velocity component u-nt is given by

u”-nt =u®nt —(1-1/D,)Ax, (Vu)'nt — 6t E®.(Vu)'nt

~ 6t [EX — (1 = 1/Dy) (u+ avy)]-(Vu)*nt (3.74)
where
Dy, = 14 6t(V-u4v,-Va) + 6t2 [det (Vu) + Vu-(ﬂ)Va} , (3.75)
BY = — (v ) (Vo) - (Vu)ax,| | (3.76)
EO = —Dl; (V) (u+ av) = (varut) (Voy'] (3.77)

The theory of Riemann Invariant Manifolds has given us a way of finding a
1-D characteristic problem near the interface (i 4+ 1/2,5). The solution of the 1-
D problem gives us the state at (t 4 ét,x,) and hence the numerical fluxes. In
the procedure described, the unit vector n was arbitrary. Therefore, the derived
equations give us a two-parameter family of schemes for computing the fluxes. One
degree of freedom comes from n and the other from the freedom to choose iy,
although the latter is restricted by relations like (3.53). This family of schemes is
consistent with the multidimensional theory and provides a way for correcting the
conventional Godunov scheme. The conventional scheme assumes n = Ny; e, 1t
sets up a 1-D problem in the grid direction. If this choice is made, then one is left
with choosing p; in each case. The conventional scheme described here always takes
the left state from the cell (7,7) and the right state from the cell ( + 1,7). The
proposed, multidimensional scheme examines the geometry of the manifolds R, =
const and R_, = const to determine the left and right states. It was seen in Egs.
(3.52) and (3.53) that p; < pf must hold if the (¢, 7)™ cell can be used to compute
the left state. It is possible for both states to be taken from one cell, depending on

the local flow gradients. A possible choice for p¢, which works well in practice, is

o= (p7 + /2. (3.78)
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So far, the tacit assumption of smooth, shock-free flow was made. The theory
of Riemann Invariant Manifolds has been developed with the assumption that the
flow gradients exist and are smooth. It is known that in gas-dynamical flows,
discontinuities in the flow variables and their gradients may be present. The theory,
nevertheless, can still be used for flows with such discontinuities. In the 1-D case,
although the characteristics cannot propagate information across shocks, they can
still be used on either side of shocks to determine the states that are related via
the jump conditions. It is the generalization of the 1-D characteristic equations
that leads to the concept of the Riemann problem. In the context of a Godunov
scheme, discontinuities are assumed at every cell interface. In the smooth regions of
the flow, these discontinuities are infinitesimally weak, and the characteristics are
used to compute the numerical fluxes as shown in Fig. 3.2. To take care of the flow
regions containing shocks, the characteristic problem is generalized to the Riemann

problem.

In the multidimensional case the situation is similar. The Riemann Invariant
Manifolds cannot propagate information through shocks or characteristic surfaces
that contain derivative discontinuities. Nevertheless, they can be used on either side
of these discontinuities to determine the states that are connected with the appro-
priate jump conditions. The easiest way of implementing this, although possibly not
the most accurate, is to use the left and right states, determined by the Riemann
Invariant Manifolds, as the initial condition for a 1-D Riemann problem. In this
case, care must be taken so that the left and right states are not both taken from
the unshocked region, because then, the information carried by the manifolds will
not propagate through the approaching shock and will never reach the appropriate
interface. This geometric picture also suggests the possibility of changing the unit
vector n locally, so that it coincides with the unit normal of the discontinuity fronts.
For example, consider a shock with unit normal n, locally. The Riemann Invariant
Manifolds R4, = const on either side of the shock can be used to determine the

states that are related with the jump conditions.

This procedure is reminiscent of the attempts to fit shocks in flows when the
method of characteristics is used. The analogy is not surprising, since the theory
of Riemann Invariant Manifolds can be looked at as an extension of the method of

characteristics to the general, multidimensional case.

It is also interesting to determine when the conventional MUSCL scheme, at
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least the version used here as a reference point, will give the same results as the
multidimensional scheme. It is seen from Equations (3.56), (3.62), (3.74) and (3.64)
that the two schemes will coincide to leading order, if the left state can be taken
from the left cell, the right state from the right cell and in addition,
v-Vp—paV-u = 0,
(3.79)
av-Vp—pV-u = 0,
for both manifolds Ry, = const. This cannot always be satisfied, but it now
becomes clear why the conventional schemes give reasonable results in multidimen-
sional flows. The terms in Eq. (3.79) can be taken to be very small and sometimes

zero. This depends on the local flow conditions.

3.3 Conclusions

A new way of looking at multidimensional gas dynamics has been presented.
Examining the local geometry of the Riemann Invariant Manifolds it is possible
to develop effective, numerical methods for computing such flows. The theory al-
lows one to develop numerical schemes that take into account the multidimensional
character of these flows in a mathematically consistent way. This theory can be
considered an extension of the method of characteristics to multidimensional flows.
Although the theory was developed for smooth flows, it is possible to use the geo-
metrical information of these manifolds to determine the appropriate 1-D problem

that needs to be solved across a flow discontinuity.

There are many ways of implementing these ideas numerically. As an exam-
ple, it was shown how a second-order Godunov scheme can be modified to give a

conservative, multidimensional, shock-capturing scheme for two-dimensional flows.
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CHAPTER 4

Numerical Applications

The new multidimensional Godunov scheme developed in the previous chap-
ter, is used to compute three gas-dynamical flows on rectangular grids. The first
case is the steady-state, regular shock reflection off a wall at low resolution. The
second flow is a double Mach reflection of a planar-shock incident on an oblique
surface. These two problems have been used extensively as test cases for a variety
of numerical methods, and there are detailed comparisons of existing methods in
the literature; e.g., see Woodward and Colella (1984) and Colella (1990). The third
flow is an example of an inviscid, shear layer bounded by reflecting walls. There
is no roll-up of the layer, so in effect we compute the interaction of the generated
waves with a slip surface. In all the calculations, a perfect gas is assumed, with

constant, specific heat ratio equal to v = 1.4.

4.1 Regular shock reflection

This case is a simple shock reflection, which has been used as a test case by
many investigators. Colella (1990), among others, describes the initial and bound-

ary conditions for this problem.

The computational domain is the rectangular domain 0 < z < 4and 0 < y < 1.
The lower boundary y = 0 is a reflecting wall, and at the right boundary z = 4,
outflow conditions are imposed. The following inflow conditions are specified at the

left boundary z = 0,
p=10/14 p=10 uwu=29 v=020, (4.1)

and at the top boundary y = 1, the following Dirichlet boundary condition is

imposed:

p = 152819 p = 1.69997 u = 2.6193¢ v = —0.50632. (4.2)
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The initial condition in the entire domain is that of the inflow condition.

The computation is carried out with a CFL number of 0.40 until a steady state
is achieved. Pressure contours at time ¢ = 5 are shown in Fig. 4.1. The pressure
profile at the location y = 0.525 is shown in Fig. 4.2. Some oscillations can be seen in
the postshock region. The present scheme employs no explicit, artificial dissipation
as does the PPM scheme described by Colella and Woodward (1984). According to

these authors this additional dissipation is needed to suppress oscillations behind

shocks that don’t move with respect to the grid.

0 1 2 3 4

F1G.4.1 Regular shock reflection. Pressure contour levels at time ¢t = 5. There are
30 contour levels in the range 0.5 < p < 3.5. The resolution is 60 x 20 cells.

4.2 Double Mach reflection

This flow has been used by Woodward and Colella (1984) as a test problem
for the comparison of existing numerical methods. The initial condition is that of
a strong planar-shock incident on an oblique surface at a 30° angle. The shock
Mach number is M, = 10. The computational domain is the rectangular domain
0 <z <4and 0 <y < 1. The incident shock at time ¢ = 0 is an oblique shock
starting at the location (z,y) = (1/6,0) and forming a 60° angle with the positive
z-axis. The lower boundary is a reflecting wall for 1/6 < z < 4. At the small
portion 0 < z < 1/6 of the lower wall, a Dirichlet boundary condition is imposed,
which corresponds to the initial post-shock flow. This artificial boundary condition
ensures that the reflected shock is always attached to the point (z,y) = (1/6,0).
The right boundary @ = 4 is an outflow boundary, and the left boundary = = 0 is

an inflow boundary with inflow conditions those of the initial post-shock flow. The
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F1G.4.2 Regular shock reflection at time ¢ = 5. Pressure profile along the line
y = 0.525.

conditions at the top boundary y = 1 are specified to be those corresponding to the

motion of the initial planar shock wave.

Results of this unsteady calculation are shown at time ¢ = 0.20. The solution
is shown in Figs. 4.3, for a low-resolution computation corresponding to a 120 x 30
grid. In Figs. 4.4, the higher-resolution computation is shown. This corresponds to
a 240 x 60 grid.

4.3 Inviscid shear layer

The splitter plate is located at y = 0 and = < 0. The left boundary = = 0 is

an inflow boundary with specified inflow conditions

p=10 p=10 M= 1414, y <0

(4.3)
p=15 p=20 M=1633, y>0,
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.0 .5 1.0 1.5 2.0 2.5 3.0

F1G.4.3a Double Mach reflection. Density contour levels at time ¢t = 0.20. There
are 30 contour levels in the range 1.7 < p < 18.5. The resolution is
120 x 30 cells.

o™NM N O ® o

F1G.4.3b Double Mach reflection. Density contour levels at time ¢ = 0.20. There
are 30 contour levels in the range 1.73 < u < 21.0. The resolution is

240 x 60 cells.

where p is the pressure, p is the density and M is the Mach number. These condi-
tions are chosen so that the two free-stream velocities are equal, U; = Uy = 1.673.
Reflecting walls are assumed at the locations y = +1, and the right boundary z = 3
is an outflow boundary. The initial condition is taken to be p = 1 everywhere and

=1for y < 0 and p =2 for y > 0. The velocity is everywhere constant and equal
to the two free-stream velocities. The computation was carried out until time ¢ = 5,
using a timestep that corresponds to a CFL number of 0.40. The results are shown
in Figs. 4.5-4.9.
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Fic.4.4a Double Mach reflection. Pressure contour levels at time ¢ = 0.20. There
are 30 contour levels in the range 2 < p < 450. The resolution is 120 x 30
cells.

o N MO ® O

.0 .5 1.0 1.5 2.0 2.5 3.0

Ficg.4.4b Double Mach reflection. Pressure contour levels at time ¢ = 0.20. There
are 30 contour levels in the range 2 < u < 480. The resolution is 240 x 60
cells.
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F1G.4.5a Inviscid shear layer. Pressure contour levels at time ¢ = 1.0. There are 20
contour levels in the range 1.00 < p < 1.50. The resolution is 200 x 100
cells.

-1.0
.0 .5 1.0 1.5 2.0 2.5 3.0

F1G.4.5b Inviscid shear layer. U-velocity contour levels at time ¢ = 1.0. There are
20 contour levels in the range 1.54 < u < 1.87. The resolution is 200 x 100
cells.
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3.0

2.5

2.0

1.5

1.0

F1G.4.5¢ Inviscid shear layer. Density contour levels at time ¢ = 1.0. There are 20

contour levels in the range 0.97 < p < 2.34. The resolution 1s 200 x 100

cells.

V-velocity contour levels at time ¢ = 1.0. There

F1G.4.5d Inviscid shear layer.

0.17 < v < 0.017. The resolution is

are 20 contour levels in the range —

200 x 100 cells.
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1.0 1.5 2.0 2.5 3.0

F1G.4.6a Inviscid shear layer. Pressure contour levels at time ¢ = 2.0. There are 20
contour levels in the range 0.86 < p < 1.50. The resolution is 200 x 100
cells.

1.0

1.5 2.0 2.5 3.0

F1G.4.6b Inviscid shear layer. U-velocity contour levels at time ¢ = 2.0. There are
20 contour levels in the range 1.42 < u < 1.93. The resolution is 200 x 100
cells.
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contour levels in the range 1.00 < p < 2.00. The resolution is 200 x 100

cells.

Fi1G.4.6¢c Inviscid shear layer. Density contour levels at time ¢ = 2.0. There are 20
0
5
0
5
0

1
-1.

1.5 2.0 2.5 3.0

.0

1

V-velocity contour levels at time ¢ = 2.0. There

are 20 contour levels in the range —0.15 < v < 0.00. The resolution is

200 x 100 cells.

Fi1G.4.6d Inviscid shear layer.
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Fi1G.4.7a Inviscid shear layer. Pressure contour levels at time ¢ = 3.0. There are 20
contour levels in the range 0.81 < p < 1.52. The resolution is 200 x 100
cells.

1.0

2.0 2.5 3.0

F1G.4.7b Inviscid shear layer. U-velocity contour levels at time ¢t = 3.0. There are
20 contour levels in the range 1.38 < u < 1.96. The resolution is 200 x 100
cells.
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1.0

FIG.4.7c Inviscid shear layer. Density contour levels at time ¢ = 3.0. There are 20

contour levels in the range 1.00 < p < 2.00. The resolution is 200 x 100

cells.
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3.0. There

V-velocity contour levels at time ¢

are 20 contour levels in the range —0.14 < v < 0.063. The resolut

200 x 100 cells.

F16.4.7d Inviscid shear layer.

ion is

.
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1.0 1.5 2.0 2.5 3.0

F1G.4.8a Inviscid shear layer. Pressure contour levels at time ¢ = 4.0. There are 20
contour levels in the range 0.95 < p < 1.55. The resolution is 200 x 100
cells.

1.0

2.0 2.5 3.0

F1G.4.8b Inviscid shear layer. U-velocity contour levels at time ¢ = 4.0. There are
20 contour levels in the range 1.38 < u < 1.87. The resolution is 200 x 100
cells.
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F1G.4.8¢ Inviscid shear layer. Density contour levels at time ¢t = 4.0. There are 20

contour levels in the range 1.00 < p < 2.00. The resolution is 200 x 100

cells.

V-velocity contour levels at time ¢ = 4.0. There

are 20 contour levels in the range —0.12 < v < 0.06. The resolution is

F1Gc.4.8d Inviscid shear layer.
200 x 100 cells.
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F1G.4.9a Inviscid shear layer. Pressure contour levels at time ¢ = 5.0. There are 20
contour levels in the range 0.98 < p < 1.52. The resolution is 200 x 100
cells.

.0 .5 1.0 1.5 2.0 2.5 3.0

F1G.4.9b Inviscid shear layer. U-velocity contour levels at time ¢t = 5.0. There are
20 contour levels in the range 1.38 < u < 1.85. The resolution is 200 x 100
cells.
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1.5 2.0 2.5 3.0

F1G.4.9¢ Inviscid shear layer. Density contour levels at time ¢ = 5.0. There are 20
contour levels in the range 1.00 < p < 2.00. The resolution is 200 x 100
cells.

3.0

F1G.4.9d Inviscid shear layer. V-velocity contour levels at time ¢ = 5.0. There
are 20 contour levels in the range —0.13 < v < 0.094. The resolution is
200 x 100 cells.
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