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Abstract
The nonperturbative theory for the nonlinear optical interaction of quantum well
intersubband transitions is developed. The nonlinear optical response of intersubband
transitions in quantum wells is rigorously derived and the implications of their
resonantly-enhanced nature are examined. Limitations on the use of the standard
expansion of the induced polarization in terms of perturbative nonlinear coefficients are
presented and it is shown that an alternative nonperturbative formalism is necessary for
analyzing intersubband device applications. Upper limits are derived on the magnitudes of
several key intersubband transition-induced nonlinear processes. It is shown that for both
electrooptic and all-optic modulation, resonantly-enhanced absorption modulation is
inherently preferable to phase modulation. A limit on the second-harmonic intensity that
may be generated in a given propagation length and modified design criteria for optimizing
second-harmonic generation in quantum wells are also obtained from the nonperturbative

formalism.

The large and highly dispersive refractive index contribution of intersubband transitions
was observed for the first time through the birefringence induced in a GaAs/AlGaAs
multi-quantum well stack. It is shown that this index, rather than the absorption induced
by intersubband transitions, may become the dominant limitation on frequency

conversion efficiencies. Potential applications of this controllable refractive index for a
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novel phase-matching technique of second-harmonic generation and for improved

waveguiding in semiconductors is suggested and analyzed.

Removal of charge integration limitations upon the performance of thermal imagers
through the ‘ac’-coupling of infrared focal-plane arrays is suggested. This is achieved by
the monolithic integration of an intersubband infrared absorption modulator and detector

leading to a modulation depth of 45% at a wavelength of 10.6um. The uniquely accurate

design of the coupled quantum well infrared modulator was based on a self-consistent
computer model of the Schrédinger and Poisson equations in quantum wells, taking into
account many body effects, band nonparabolicity and flat band boundary conditions.
Monolithic integration of the modulator and detector also turns out to be a simple and
accurate method of studying the optical properties of quantum wells under bias. This
technique led to the first observation of the exchange-interaction’s contribution to the

charge transfer between coupled quantum wells.
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Part 1

Intersubband Transitions in Quantum
Wells



Chapter 1

Introduction and Review

1.1 Heterostructures

Low-dimensional structures exhibit what is perhaps the most straightforward
manifestation of quantum mechanical principles in a man-made device: restriction of a
particle’s motion in one or more dimensions leads to quantization of its allowed states.
Being a manifestation of the particle’s wave nature, quantum size phenomena are
observable only when the particle maintains coherence over the quantization dimension,
i.e, when the influence of the quantization dominates that of random and temporal
fluctuations. Semiconductor layers therefore have to be less than several hundred
Angstroms thick, a size regime beyond the tolerances of standard mechanical processing
techniques, for these quantum size phenomena to become observable. Due to this
difficulty, nearly half a century passed between the development of quantum mechanics
[1] and the realization of controllable quantum size phenomena in semiconductor

heterostructures.



The first suggestion of using alternating semiconductor compositions which would lead to
the quantization of electronic motion in semiconductors was made by Esaki and Tsu in
the early seventies [2,3]. A periodic variation of semiconductor layers, where the
composition of each layer itself constitutes a periodic lattice, would impose a superlattice
upon the material properties. As the lattice periodicity splits the atomic states into
energy bands, the imposed super-period would split each energy band into subbands. The
ability to grow epitaxial semiconductor layers with alternating material composition and
near-atomic layer thickness control [4], or heterostructures, led to the demonstration of
negative differential resistance in the current-voltage characteristics [5,6] of semiconductor
superlattices. This was the first artificial quantum size effect to be measured. Research
into the effects of heterostructure quantization on the optical properties of bulk
semiconductors soon followed [7]. Confinement of excitons in one dimension led to
observations of increased binding energy, modified selection rules, and enhanced optical
nonlinearities [8] which are currently being used to develop ultrafast electrooptic
modulators [9]. By far the dominant application of heterostructures, however, are
quantum well lasers [10], in which one or several quantum wells are grown in the intrinsic
region of a p-i-n laser diode. These wells serve on the one hand for “classical” purposes:
confinement of the charge carriers and reduction of the volume that requires population
inversion, but also for the reduction in the density of states which is quantum-mechanical

in nature.



1.2 Subbands

When layers of wide and narrow bandgap materials are sequentially deposited, carriers
with an energy which is between that of the low and high bands will be trapped in
potential wells. These are termed quantum wells (QWs) when they are narrow enough to
significantly quantitize the energy of the confined charge. As a convention, the term
multiquantum wells (MQWs) is used to distinguish structures in which the trapped
carriers are essentially isolated within each period, from the term superlattice used when
the wave states extend over several periods of the structure. Whereas quantization only
modifies the optical response associated with the interband transitions, it leads to optical
intersubband transitions which have no analog in bulk media. These transitions, termed
quantum well intersubband transitions (QW-ISBTs), were first observed by West and

Eglash [11] in 1985 and have been the focus of a growing research effort ever since.

A feature that is unique to intersubband transitions in quantum wells is the almost total
control available over their optical characteristics by bandgap engineering, i.e., by the
control of material thickness and composition. Essentially any required optical property
can be designed within the limitations of the materials which can be epitaxially grown on

each other. This has led to the suggestion [12], demonstration [13] and development [14]



of quantum well infrared photodetectors (QWIPs) which are currently nearing
commercialization [15]. It has also led to the demonstration of greatly enhanced nonlinear
optical properties [16], and more recently to the development of the extremely promising
quantum cascade (QC) unipolar semiconductor laser operating at infrared wavelengths

[17,18].

A L=10nm |

Energy | |

f 1 E
o 1

Eg(AIGaAs) <1.9eV T
Eg(GaAs) =1.4eV

Y

v N

Figure 1.1 A schematic of a quantum well. The material composition is shown on top. The

wells in the conduction and valence band and the resultant envelope states are also shown.
For completeness it should be noted that intersubband transitions where first observed in
the inversion layers created at Silicon/Silicon-Oxide interfaces [19] more than a decade
before their observation in heterostructures. These layers, however, led to relatively small

subband separations (AE=20meV), and the resultant intersubband transitions were



difficult to observe at room temperature. The inability to grow multiple periods and the
generally limited design capability made inversion layers impractical for the applications
for which heterostructure quantum wells are currently being developed. Although interest
in these layers had faded, they served as a testing ground for many of the concepts that

later played a major role in intersubband transitions [8].

1.3 Quantum Well Models

In the simplest model, quantum well subbands are the solutions of the basic “particle in a
box” problem. Assuming that all subbands involved in the optical processes are composed
of the same bulk Bloch states, the envelope function formalism [20] leads to an effective

mass Hamiltonian given as:
K
s st W@ (@) = e v (n)w(2) (1.1)

where m* is the effective mass of electrons in the relevant band, V,(z) is the band’s
potential profile, y(z) and y(r,) are the envelope functions along the axis of quantization
and perpendicular to it respectively, and we have used the single band approximation and

multiplied by the conjugate Bloch state on both sides. In order to derive an explicit

analytical solution that may be used for an intuitive understanding of intersubband



process we assume that the particle is confined between infinite potential barriers. The

boundary conditions at the potential barriers (at £L/2) are thus:

-L L

—)=y(—)=0 12
v( 5 )=y 2) (1.2)

and using separation of variables, the components of the eigenstates along the z (growth)

direction are found as:

2 nnz L
= /_ —1: ld<=; n=13,5,... 1.3
v, (2) LCOS[ L] I2] > n (1.3a)
and:
2 . nnz L
= [—=sin[—]; < =; n=2,4,6,... 1.3b
v, (2) w/Lsm[L] I2] > n (1.3b)

for the odd and even states, respectively. The in-plane components of these states are

merely the plane waves of the unperturbed bulk crystal given as:

ikyry

y(r)=e (1.4)
and the allowed energies are thus given as:

222 2y 2
E()=T7m Ik 103 (1.5)

2m' 2m



Figure 1.2: A schematic of the one-dimensional quantization induced by a thin layer with
infinite potential barriers. The electrons motion is confined in the direction perpendicular
fo the plane, but they remain free to move within it.

It can be seen from Equation 1.5 that in quantum wells the subbands do not represent
discrete energy levels as the momentum is only quantitized in one dimension. Only zero-
dimensional structures, i.e., quantum dots, will have a true energy gap between subbands.
The lattice itself is of course a 0-dimensional array whose discrete states are split by the
strong coupling into wide bands. It is only the fact that the dispersion relations for

subbands of the conduction band are nearly parallel that makes them behave as optically

discrete transitions due to the negligible photon momentum. This is schematically shown



in Figure 1.3 where the vertical arrows represent the direct optical interband and

intersubband transitions.

N

Id Y
Figure 1.3 Schematic conduction and valence band dispersion relations of a quantum well.
Both the pseudo-discrete intersubband states (drawn with a perfectly parabolic effective
mass) and the broadened interband transitions are shown. The hashed area shows the
extent of the occupied conduction band states.

The infinite barrier approximation used in the above derivation (Equations 1.1-1.5) leads
to a picture of intersubband transitions which is qualitatively correct but overestimates
the subband energies by neglecting the leakage of the wavefunctions into the barriers.

Although transcendental solutions taking the finite barrier height into account may be
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obtained for simple structures [20], they will not be presented here as they too are
incapable of predicting intersubband transition energies with sufficient accuracy.
Extension to arbitrary structures and arbitrary electric fields, and inclusion of band-mixing
and many-body effects, require a more extensive numerical solution which is presented in

chapter 2.

1.4 Optical Transitions

To understand the difference between interband and intersubband transitions we examine

the optical dipole matrix element between two subbands which is given as:

(1.6)

(f.(Nu,()|p

£ ) = [ Erarpus ) [ i £+ [ d () &rf(Npf i}
%

where u;(r) and fi(r) denote the initial Bloch and envelope functions, and ug(r) and f{(r) the
final Bloch and envelope functions, respectively. In writing Equation 1.6 the single band
approximation was made, 1.e., it was assumed that each subband is composed of one bulk
Bloch state, and its rapid oscillaion was used to separate the integral. Using

orthogonality this expression is re-written as:

(1.7)

£1)8,}

u, (M) drf. O+ (£.0p

(Ou0lel 5 0500) =l
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The first term on the right-hand-side (RHS) of equation 1.7 corresponds to transitions
between subbands with different Bloch functions - or interband transitions. These
transitions are only allowed between envelope states of the same parity, and, for infinite
barrier heights, only between envelope states with the same quantum number. Since the
initial and final Bloch states belong to bands with opposite signs for their effective masses
(the conduction and valence bands), inclusion of in-plane momentum (Equation 1.5) will

lead to broadened transitions as can be seen in Figure 1.3.

The second term on the right-hand-side of Equation 1.7 is responsible for the
intersubband transitions. Replacement of the envelope functions with those derived in

Equation 1.3 leads to:

(1.8)

ik ry

(v, (e |p.é, +p, ¢, W, ()e ™" )> =hk8, 5,8, , +6, . &, [d'ry,@pw, ()

where we have split the momentum operator into its in-plane (p; ) and perpendicular (p,)
components. The first term on the right-hand side, the optical intraband term, may not
simultaneously satisfy both energy and momentum conditions and is therefore forbidden.
The second term corresponds to transitions between subbands with the same Bloch
functions - or intersubband transitions. These transitions are only allowed between states
of opposite parity, and, as can be shown from Equation 1.5, are strongest between a

subband and the following one (from quantum number m to m+1). Unlike the interband

transitions, the intersubband ones will remain optically discrete, despite the in-plane
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dispersion (Equation 1.5), as they are composed of the same Bloch state and hence have
the same effective mass and parallel dispersion curves within the single band model.
Equation 1.8 also shows the geometrical selection rule: intersubband transitions may only

be induced by radiation polarized perpendicular to the planes of the quantum wells.

1.5 Design and Applications of Intersubband Transitions

The ability to design conduction bands with almost arbitrarily band profiles through
bandgap engineering leads to a much higher level of control than just the obvious
determination of subband separation. The intersubband transition energies, optical dipole
matrix elements, population distribution between coupled wells, and even the relaxation
times to some extent are directly controlled by growth parameters. The quantum wells
can thus be optimized for almost any electrooptical application: intersubband detectors,

nonlinear optics, intersubband lasers, and infrared modulators.

The first of these applications to be suggested [12] and demonstrated [13] was the
quantum well infrared photodetector (QWIP). Transitions from a bound to quasi-bound
or continuum states may be used for detection of arbitrary wavelength radiation. Next to
be studied were the nonlinear characteristics of intersubband transitions [21], where the
resonant enhancement and controllable symmetry lead to nonlinearities of unprecedented

magnitude [16,22]. Much of this thesis deals with the difficulty of converting the
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extremely large nonlinear coefficients typical of intersubband transitions into practical
devices. An application which I believe is closer to maturity is the use of intersubband
transitions for infrared modulation which will be discussed in chapter 10. Perhaps the
most promising application of intersubband transitions is the recently demonstrated
intersubband laser [17,18]. This has the potential to become a semiconductor laser source
for the whole infrared through sub-millimeter wavelength range. If that turns out to be the
case, many of the issues discussed in this thesis: intersubband modulators, the influence
of many-body effects on intersubband transitions, the refractive index contribution of
intersubband transitions, and the nonperturbative formalism for the nonlinear optical
interaction with intersubband transitions may have a larger technological impact than at

the present.

1 .6 Practical Limitations of Intersubband Transitions.

Despite their great promise, intersubband transitions have found a mere fraction of the
applications interband transitions have. The cause of this lies in fundamental differences
between these two types of transitions. The available conduction band offset between
lattice matched semiconductors is, in most cases, much smaller than the bandgaps
themselves (Figure 1.1) - limiting intersubband transitions to longer wavelengths. Other

limits are the short intersubband relaxation time and the polarization selection rule, both
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of which are due to the one-dimensional quantization. When comparing interband to
intersubband transitions at a given wavelength all these limitations may be viewed as the
consequence of using a wide gap instead of a narrow gap material. On the other hand this
also leads to some of the advantages of intersubband transitions: the mature technology,

high uniformity, and radiation hardness of wide- versus narrow-gap materials.

The wavelength of intersubband transitions is limited by the conduction band offsets
between lattice matched materials. For the GaAs/Al,Ga, ,As material system used in our
experiments the maximum offset of roughly 320 millivolt (mV) is reached at the crossover

point of the direct and indirect conduction band valleys in Al,Ga;.cAs (x=0.4). This limits
intersubband transitions to the mid-infrared region (A>6pm). For lattice matched

AlInAs/GalnAs compositions the offset is somewhat larger - roughly 500mV, but this is

still too small to obtain intersubband transitions in the near infrared region (A=1.55um).

One method of extending intersubband transitions to this wavelength range relies on strain
relaxing layers introduced between the substrate and the quantum wells to allow growth
of non-lattice-matched material compositions [23]. Attempts are currently being pursued
to develop the growth of InGaAs/AlAs quantum wells on a GaAs substrate thus
obtaining conduction band offsets of over a Volt [24]. However, even if growth quality
limitations are overcome, the subbands will no longer be envelope functions constructed

of the same Bloch function because the intersubband separation is on the order of the
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interband one. Therefore the subbands will no longer have parallel dispersion curves and
the optical dipole matrix elements between subband will not remain as large. A more
promising alternative for near infrared intersubband transitions may emerge in the near
future from the Nitride based materials (GaN/AIN) which are currently being developed
mainly for blue-green interband light emission [25]. Due to the very large interband
separation, the large conduction band offset may lead to highly energetic transitions
between subbands retaining their single-band nature. It should be noted, however, that the
larger bandgaps are accompanied by larger effective masses necessitating narrower
quantum wells and correspondingly smaller optical dipole matrix elements for a given
transition energy. Still, the potential of utilizing the design flexibility and resonant-
enhancement of intersubband transitions at near-infrared and visible wavelengths may be

significant.

Another limitation on intersubband transitions is due to the geometrical selection rule
allowing interaction only with optical fields polarized along the growth direction. This,
combined with the relatively narrow layers (<10pm) available from epitaxial growth,
dictates the use of limiting experimental schemes and hinders the development of device
applications. Relaxation of the selection rules requires coupling of the quantitized growth
direction to the in-plane direction, i.e., electrons with an effective mass tensor which is

not diagonal in the growth direction coordinates. For electrons in the I'-valley of the GaAs

conduction band, which have a scalar effective mass, the selection rules may be relaxed by
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band-mixing. This, however, only becomes significant for extremely narrow wells.
Alternatively, the selection rules are relaxed for subbands of states that have an effective
mass which is a non-diagonal tensor to begin with. This is the case either for valence band
states, or for states in the X-valley of the conduction band for certain crystal growth
orientations [26]. The electrons may be confined to the X-valley for aluminum

concentrations of over 40%, where the Al,Ga;_,As alloy becomes indirect.

A third fundamental limitation of intersubband transitions is the extremely short excited-
state life time, on the order of one picosecond, which is 3 to 6 orders of magnitude shorter
than the interband lifetime. Although the exact value of the life time may vary somewhat,
the fast relaxation is a direct consequence of the lack of an energy gap. Optical phonons
are the main cause of intersubband relaxation, which is then followed by an extremely fast
intrasubband thermalization. The short life times impose limitations on the performance
of quantum well infrared photodetectors, influence the nonlinear optical properties of
intersubband transitions, and have been the cause of the difficulty in obtaining population

inversion and hence an intersubband laser.
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1 .7 Outline of the Thesis

This thesis is based on the work of the author in the field of optical intersubband
transitions in quantum wells carried out at the California Institute of Technology from
July 1992 through April 1995. It does not include the work on vertical cavity surface
emitting lasers carried out in a collaboration between the groups of Dr. Amnon Yariv and
Dr. Axel Scherer at Caltech [27,28], nor the results of work on infrared focal-plane arrays

carried out in the Submicron Center at the Weizmann Institute of Science.

The thesis follows the path of our research into the optical properties and applications of
intersubband transitions, with some rearrangements made for clarity. After measuring the
refractive index induced by the intersubband transitions we intended to pursue the
electrooptic modulation of infrared radiation in asymmetric quantum wells. However,
while realizing that there may be other important applications for this controllable
refractive index, we came to the conclusion that phase-modulation is inherently inferior to
absorption modulation when using resonantly-enhanced transitions. This conclusion
resulted from our derivation of a nonperturbative formalism for the nonlinear interaction
of intersubband transitions, replacing the standard one that fails at the intensities required
for practical device applications. This formalism also led to radically different conclusions
concerning the optimization of second-harmonic generation in quantum wells and the

feasibility of obtaining a high frequency conversion efficiency. The thesis ends with a
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presentation of the monolithic integration of a quantum well infrared photodetector and

modulator, and of some of the phenomena observed in this experiment.

Chapter 2 will present a self-consistent solution for the electronic states in quantum
wells. The computer program used solves the Schrodinger and Poisson equations
iteratively, while taking into account: many body corrections, band nonparabolicity,
temperature dependence of the semiconductor parameters and flat band boundary
conditions. This program turned out to be a powerful tool for the design of quantum wells
and for the analysis of observed intersubband phenomena. It led to the uniquely accurate
design capability used in the growth of the monolithicly integrated quantum well

intersubband detector and modulator presented in Chapter 10.

In Chapter 3 we report the first observation of the large, highly dispersive, and
temperature dependent refractive index contribution of intersubband transitions through
the birefringence induced in a GaAs/AlGaAs multi-quantum well stack [29]. The
refractive index change we observed in an unoptimized structure: An=20.07 at a 45 degree
incidence, suggests that an intersubband transition-induced refractive index change as high

as An=10.4 can be obtained in an optimized structure for an optical polarization

perpendicular to the plane of the quantum wells.
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In chapter 4, we suggest and analyze a potential application of the controllable
intersubband transition-induced refractive index for the phase-matching of second-
harmonic generation in semiconductors [30]. We specifically analyze the feasibility of
phase-matching GaAs by the growth of quantum wells with an intersubband transition-
induced refractive index contribution which will offset the bulk’s dispersion. The
analysis, however, is general to any bulk media which may be embedded with a material
with a controllable optical transition. It will hopefully find applications in other méterial
systems in the future. On the other hand, it is also shown in this chapter, that the
intersubband transition induced refractive index may shorten the coherence length to the
point where it, rather than the absorption induced by the intersubband transitions, will
limit the conversion efficiency in resonantly-enhanced second-harmonic generation

Processes.

In part II of the thesis (Chapters 5-9) we rigorously derive the optical response of
intersubband transitions in quantum wells [31] which are unique in being a completely
designable system of resonantly-enhanced discrete level transitions. Limitations of the
Rotating-Wave Approximation (RWA), the Slowly-Varying Envelope Approximation
(SVA), and the dipole approximation are discussed. The phenomena expected once these
assumptions break down are examined in Chapters 5 and 6 [32]. Particular emphasis is
placed on the divergence of the standard perturbative expansion of the susceptibility in

terms of a power series of nonlinear coefficients. We show that the perturbative approach
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is incapable of describing the nonlinear response of intersubband transitions at the
intensities required for practical applications, and present an alternative formalism. We
3)

explicitly solve for the ‘ac’ Kerr coefficient (¥, , o) (Chapter 7), the electrooptic

)
(0,0,0)

coefficient (y ) (Chapter 8), and the second-harmonic generation coefficient

(X0 0.0 (Chapter 9), which are the standard tools for analyzing electrooptic modulation

(EOM), all-optical modulation (AOM), and second-harmonic generation (SHG),
respectively. It is shown that, despite the extremely large electrooptic and all-optic
coefficients measured, resonantly-enhanced absorption modulation is inherently
preferable over phase-modulation [33] (Chapters 7 and 8). A limit on the second-
harmonic intensity that may be generated in a given propagation length and modified
quantum well design criteria for optimizing intersubband transition-induced second-

harmonic generation are also presented in Chapter 9 [34,35].

In the final part of the thesis (Chapter 10) the monolithic integration of an intersubband
infrared absorption modulator and detector, designed for the ‘ac’-coupling of infrared
focal-plane arrays, is presented [36]. Charge transfer between 50 periods of asymmetric

coupled quantum wells led to a 45% modulation depth at a wavelength of 10.6um. The

monolithic integration of the modulator and detector also turned out to be a simple and

accurate method of studying the optical properties of quantum wells under bias, leading
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to the first observation of the exchange-interaction’s contribution to the charge transfer

between coupled quantum wells.
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Chapter 2
A Self-Consistent Solution for Quantum wells

2 .1 Introduction

An essential tool in any attempt to fully utilize the potential of intersubband transition is
a computer program able to accurately find the eigenstates and eigenvalues of the
electrons in the quantum well. With this in mind, Andrew Tong, a Freshman SURF
student working with our group, wrote a self-consistent solution for electrons in arbitrary
profile quantum wells. This program, originally solving the Schrodinger and Poisson
equations iteratively, was modified and expanded over the course of the next two years.
Not only did it prove to be an effective design tool saving time consuming and expansive
growth iterations, it also enhanced our fundamental understanding of observed
intersubband phenomena. It has directly led to the discovery of the effect of the exchange
interaction on population distribution between coupled quantum wells (Chapter 10) and
has helped us in obtaining a better understanding of the blue-shift of intersubband

transitions.

In discussing the self-consistent solution for quantum wells it should be kept in mind,

however, that the quantitative prediction of intersubband transition energies has some



27
limits on its accuracy. The material parameters, particularly the alignment of the band

offsets and the temperature dependent effective masses are only known to a finite
accuracy. Furthermore, the molecular beam epitaxy (MBE) growth has a thickness
variation of about one monolayer, the Aluminum concentration is known to within several
percent [1], the doping concentration is often not accurately calibrated, and dopants may
segregate during growth [2]. The many-body models used to consider the mutual electron
interactions are also by necessity simplifications. Nevertheless, especially if one uses an
interactive calibration process for the MBE and the numerical calculation, the ability to
design new quantum well structures with minimal iteration and high accuracy is obtained.
This capability of the self-consistent program culminated in the design used for the
growth of a monolithic infrared detector and modulator (chapter 10), for which a one

milli-electronvolt (meV) accuracy in the separation of the resonant energies was obtained.

2 .2 The Effective Mass Schrédinger Equation

The first stage in the calculation of quantum well subbands is the solution of the effective

mass single-electron Schrodinger equation which is given as:

a, 1 0 _
[—?;(mg)+qu,(Z)+q2Edc]Wi(Z) =£Y,(z) 2D

where z is the growth direction, m*(z) the composition dependent (scalar) effective mass,

V(z) the composition dependent conduction band potential, and E4, the applied external
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field. Using the shooting method [3], the second order differential equation is reduced to

first order by the definitions:

WEV(2) (2.22)
and:

_ 1 oy(2)
»=E PR, @ (——'*-az ) (2.2b)

which lead to the equations:

yl' = m*(z) Y, (233)
and:

, 2
y, = ;;;[V,,(z)--s,~]-y1 (2.3b)

To solve these coupled linear differential equations initial guesses for the eigenvalues (g;)

are made and a fifth-order Runge-Kutta numerical routine [3] is used to propagate the
variables across the defined interval z;<z<z, Boundary conditions are set as
Yi(z))=ya(z2)=0, with the boundaries chosen far enough so the amplitude of the
wavefunctions reaching them is negligible. This is insured by verifying a negligible
dependence of the eigenvalues on changes in the boundary location. The obtained value at
the far side of the propagation is compared to the boundary condition and a Newton-
Raphson algorithm [3] is used to improve upon the initial eigenvalue guess until
convergence is obtained. Notice that a finite value of the derivative (y,), has to be chosen
for a non-trivial solution to be obtained. The arbitrary value amounts to a normalization

constant that is corrected by later imposing the normalization condition given as:
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2 .3 The Hartree/Poisson Potential

Since a high doping density is required for practical device applications of intersubband
transitions, the charge distribution may lead to a substantial modification of the
conduction band profile and hence of the eigenvalues and states. Using the two-

dimensional density of states in each subband (o=m*/mh?), and the Fermi-Dirac

distribution function fle)=1/(1+e®%/*)  the total surface charge density of a given
subband is given as:

m. kT E, - E,
n, = ———.1n[1+ exp(———
N 5 L P kT

) (2:5)

where we have defined the average effective mass for a given subband by:

B 26)
m; o, m (2)

The Fermi level (Ey) is found by imposing the neutrality condition:

Ny =dn, (2.7)

where the summation is over all populated subbands and N}; is the total surface doping

density. The volumetric charge density is hence given by:
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n(z) = qny,(2) 2:8)

Whereas Fermi-Dirac statistics have a negligible influence on band profiles in simple

quantum wells (AE=100meV) at or below room temperature (kT<26meV), they may play

a significant role for coupled structures. For these, the ground state energies of the

coupled wells may be within a fraction of the thermal energy of each other.

Since the charge distribution is uniform in the plane of the quantum wells, the Poisson

equation is reduced to the one-dimensional equation:

———[() ”]—q{N+(z) n(z)] (2.9)

where € is the bulk material’s static dielectric function, and Ng(z) is the volumetric donor
doping density. Solving this equation will give the Poisson potential (Vy) induced by
charge distribution, also known as the Hartree potential, i.e., the lowest order term in the

Hartree-Fock expansion. The differential equation is solved by making the definitions:

W=V (2.10a)

and:

y, = E(Z)% (2.10b)
dz

with which we obtain two coupled first order differential equations given as:

1
o= 2.11a
Y= E(Z)y2 ( )

and:
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¥, = gi[NB(z) - n(2)] (2.11b)
0
These are solved using the Runge-Kutta propagation method used for the solution of the

Schrodinger equation in the last section.

2 .4 Self-Consistent Iterations

The Hartree potential induced by the charge distribution (V) is now added to the
conduction band potential and the Schrodinger equation is solved again. The two steps:
Schrodinger and Poisson are iterated until the solutions converge to the required accuracy.
For symmetric quantum wells the process usually converges within 4 to 5 iterations to an

accuracy of 10 meV as shown in Figure 2.1b.

For coupled quantum wells, however, the population may oscillate back and forth when
the spread in energy space of the population is larger than the energy separation between
the ground states of the individual wells (Figure 2.2). The rigorous solution of this
problem involves treating the Poisson potential as a.perturbation, i.e., giving the electron
population a weight factor and gradually increasing it to unity. We have found that a user
controlled manual population distribution leads to faster convergence if some common
sense and experience are used. The closer the subbands are to degeneracy, or to the cross

over point, the more sensitive the convergence process becomes.
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Figure 2.1 a: The single-electron (dashed curves) and self-consistent (solid curves) band
profile and calculated subband envelope functions. An artificially high doping level is
chosen to emphasize the many-body effects (all the population is kept in the ground
subband although at this density the Fermi-level would be higher than the second
subband)).
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Figure 2.1b: The variation of the band profile with the iterations of the self-consistent
program. The (rectangular) solid curve is the single-electron solution (0), the narrow-
dashed curve includes the correction due to the Coloumbic interaction of the single
electron wave-functions (1). The next iterations (2-5) are too close to tell apart.
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Figure 2.2a: The band profile of the coupled quantum wells at two consecutive iterations.
The population oscillates back and forth and the self-consistent program does not
converge unless steps are taken to dampen it. The parameters used are of the quantum
well modulator described in Chapter 10.

(b)

9.83% 90.17%

Figure 2.2b: The convergent solution of the coupled quantum well. The Fermi Level is just
over the ground state of the narrow (left) quantum well containing only 9.83% of the

population at 30K.
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2 .5 Many-Body Effects

Accumulated experimental data has shown that the use of the Hartree approximation
consistently leads to an under-estimation of the intersubband transition frequencies.
Furthermore, identical quantum wells displayed a large increase of the transition
frequency with doping concentration [4]. This increase was attributed by several authors
to the influence of the electron-electron interactions [5,6]. Since no scheme for fully
calculating the influence of the electronic many-body effects is available, we initially
chose the least computationally intensive approximation available. This is an
interpolation formula for the one particle exchange-correlation potential energy given by

Hedin and Lundqvist [7] as:

£3

S 2ANTE 2Ry
V.(r,) =—(-—4~) {1+0.7734(r,/21)In[1+21/r,]} (2.12)
Tr.

xc

5

where the Rydberg energy is defined as: R;Eq2/87t£s£0ao, ag is the semiconductor Bohr

173

radius, and the density parameter is given as: r,=[3/4na;n(z)]"*. The exchange-correlation
p g

potential for a symmetric well calculated using this local density approximation is shown
in Figure 2.3. While this approximation has been shown to give accurate results over a
wide range of r; in bulk, its application to heterostructures by Bloss [5] and Ando [8]
stands without a rigorous justification. Its applicability to excited states is also

questionable. While it brings the numerical calculation closer to the experimental results, it
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cannot explain some of the phenomena that we have observed and are discussed in

chapter 10.
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Figure 2.3: The band-profile of a 1004° Al GaAs/GaAs/Aly GaAs quantum well
uniformly n-doped to 4x10*°cm™. The narrow-dashed line is the undoped potential profile,
the dashed-line includes only the direct Coloumbic potential and the solid line includes the
Lundqvist model for the exchange-correlation energy as well. The dashed-dotted line is the

square of the ground state’s wavefunction and the solid line shows the contribution of the
exchange-energy alone (the right-hand axis).

2 .6 Nonparabolicity Corrections

Whereas the single band effective mass model leads to results which are quite accurate for

the ground states in wide quantum wells (L=10nm), it begins to break down as the

separation between the bottom of the conduction band and the subband increases. To
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accurately treat narrower quantum wells or excited states one needs to adopt a more

rigorous solution: either a k-p [9,10], a tight-binding [11], or a pseudo-potential [12]
method. In practice, for confined and shallow continuum states in GaAs/AlGaAs
systems, an energy dependent effective mass can take the band coupling effects into
account [13,14] with sufficient accuracy [15]. Following the results of Ekenberg [13] for
[011] orientated GaAs the perpendicular effective mass becomes:

m’(0)
20 FE

m, (E) = [1-(1-4a E)'?] (2.13a)

where m"(0) is the effective mass at the bottom of the conduction band’s I'-valley. Using

a 14-band k-p calculation, Braun and Réssler [16] determined o to be 0.642eV™! and

0.724eV! for GaAs and Aly;GagAs, respectively. This is the effective mass relevant for
the confinement energy calculations. The in-plane momentum, on the other hand, has a
different dispersion relation given approximately by:

m,(E) = m* (0)[1+ Qa' +f )E] (2.13b)
Again, using a 14-band k-p calculation [16] B' was determined to be 0.697eV! and

0985eV™! for GaAs and Aly;Ga,-As, respectively. This mass is the one relevant for
density of state calculations, and also for the nonparabolicity contribution to the

broadening of intersubband transitions discussed in chapter 10.

The nonparabolicity was introduced into our numerical program as a secondary self-
consistent loop. Once a subband’s energy is found with a given effective mass, that mass

is corrected using Equation 2.13a and the energy is recalculated. The iterations of the



Schrodinger and Poisson equations are continued only after the effective mass has
converged. Figure 2.4 shows the effect of nonparabolicity: whereas the correction for the
ground subbands is negligible, it is quite significant for typical excited state energies

(>150meV). The effect of nonparabolicity is thus to red-shift the intersubband transitions
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- an opposite contribution from that of the many-body interactions.
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Figure 2.4: The effective mass as function of energy over the bottom of the conduction
band for (011)-grown Gads and Aly;Gay 74s. The perpendicular mass (m ) is the one
determining subband energies at k=0. The parallel mass (m) determines the in-plane
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2 .7 Temperature Dependence

2 .7.1 Band Offsets

The conduction band offset between two alloys depends not only on the respective
bandgaps, but also on how these bands align. Whereas the former are well known and
quite easy to measure, an accurate determination of the latter represents a much greater
problem. The crudest approximation is Harrison’s [17] common anion rule, stating that
two lattice matched semiconductors with a common anion and the same crystallographic
structure will have aligned valence bands. This assumption, however, is clearly inadequate
for GaAs/AlGaAs quantum wells. Although more extensive studies have differed on the
exact value [18,19], the ratio of the division of the energy gap between the conduction and
valence bands at a GaAs/AlGaAs interface is somewhere between 60/40 and 67/33
(conduction band offset/valence band offset) and may actually change with alloy
concentration. There is little information on how this ratio varies with temperature, but
the fact that the blue-shift of the intersubband transitions is strongly population

dependent suggests that band alignment variations are not its main cause.

2 .7.2 Bandgap

The temperature dependent bandgap parameters used in our self-consistent program were
taken from a recent study by Allali et al., [20] in which they were fitted with the Varshni
formula given by [21]:

E,(1) = E,(0) - al(x)T* /(T + B(x)) (2.14)

where o(x) and B(x) are a found experimentally for different aluminum concentrations. A
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summary of their data which we have used throughout our calculations is given in Table

2.1. The dependence of the bandgap on aluminum concentration may thus be given by the

linear fit:

E (x) = E,(GaAs)+ a(T)x (2.15)

with o(0)=1.415eV and o(300)=1.395eV. Figure 2.5 plots the bandgap for several

aluminum concentrations.

Mole Fraction
X 0 0.10 0.18 0.27 0.38
Ey(0), [eV] 1.519 1.658 1.773 1.895 2.053
o, [meVK] [ 0.895 0.644 0.806 0.90 0.782
B, K] 538 304 451 507 383

1able 2.1: The Varshni parameters for alloys with various aluminum concentration (after
ref.20).
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Figure 2.5: The temperature and aluminum concentration of the bandgap used in the self-
consistent program (after reference 20).
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An important comment at this stage is that the temperature dependence of the bandgaps
as given above may not by itself explain the observed blue-shift of intersubband
transitions with reduced temperatures. Although the band-shifts are substantial, they are
almost identical for the various aluminum concentrations. Therefore well and barrier
energies move in the same direction and the confinement energy is hardly affected by
temperature. Since the temperature dependence of the barriers was wrongly neglected by
early studies, the intersubband blue shift was attributed to the same bandgap variations
responsible for the interband blue shift. The strong dependence of the Blue-shift’s
magnitude on the quantum well doping [22] suggests that it is, at least in part, due to

many-body effects.

2 .7.3 Effective Mass

A more significant but often neglected effect of the temperature induced bandgap
variations is the resultant change of the effective mass. Accurate measurements of the
effective mass across a wide temperature range are difficult to find [23], but a good

estimate may be obtained from the first order k-p expansion [24]:

m (x,T)= 1

i (2.16)

+
E (x,T) E,(x,T)+0.343

1+ ¢( )

where ¢=7.57-3.13x. The increase in the bandgap for lower temperatures should lead to a

reduction in effective mass and hence a red-shift of the intersubband transitions as shown
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in Figure 2.6. The effects inducing the observed blue shift thus have to overcome this

effective mass induced red shift as well.
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Figure 2.6: The intersubband spacing between the ground to the first and second excited
subbands as a function of the temperature (taking only the variation in the bandgaps and
effective mass into account).

2 .8 Voltage Boundary Conditions

2 .8.1 Unbiased Quantum Wells

As a result of charge trapping in quantum wells spatially separated from the donors, or of
quantum mechanical size effects separating the donor and charge within the same well, a

dipole may be induced in heterostructures. This has an effect equivalent to carrer
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diffusion in p-n junctions. Observing the band-profile in Figure 2.7a, we see that the

electric field between the spatially separated electrons and donors leads to a voltage drop
across asymmetric quantum wells which is on the order of a few tens of millivolts. It is
34mV for the step well in Figure 2.7 and may be as high as 100mV for some coupled
quantum wells. The establishment of a Fermi level in equilibrium has to prevent this
voltage drop, however, as it would otherwise accumulate to several volts over a typical
structure with 30 to 100 periods. Rigorously, the multi-quantum well structure needs to
be solved numerically with the contacts also taken into account. This computationally
intractable problem may be greatly simplified by realizing that the magnitude of the
charge that has to be moved between periods, or to the contacts, to offset the intra-period

voltage drop is small.

Neglecting density of states limitations, and assuming charge transfer from one end of the

stack to the other, we find that transfer of a surface charge density given by:

o (L
0, =0,() (2.17)

P

will impose flat band conditions, where o, is defined as the surface doping density per

period, L as the period length, and L., as the spatial separation between the doping and

the electronic wavefunctions. This separation is given as:

L= [dz- iy, i) - N2} (2.18)

period
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In practice the finite density of states will cause spreading of the excess charge amongst

several periods if it is not accommodated at the contacts. For a surface density of
1x10'%cm™, a 3nm spatial separation (L,,) between donors and free carriers, and 30nm
inter-period spacing, the charge transfer required to offset the intra-period voltage drops
is roughly 1x10"'cm™. Imposing a condition of no voltage drop across each period (flat
band) is thus a significant improvement over treating each period individually (leading to
zero electric fields between periods). This condition is imposed self-consistently by
adding the external field term required to offset the inter-period voltage drop. This, in
turn, modifies the wavefunctions, modifying the voltage drop, and so on until the
imposed external field converges. Figure 2.7 shows a step quantum well solved without
(a) and with (b) imposing the flat band condition. Although the contribution of the flat
band condition to the energy levels is on the order of other calculation and growth
inaccuracies, its plays an important role in charge transfer between coupled quantum

wells (see chapter 10).

(a) (b) E =9.21kV/cm
L i

N, =10"%cm N, =10"%m>

Figure 2.7: The band profile and subband states of a step quantum well without (a) and
with (b) imposing flat-band boundary-conditions. The asymmetry will generate a charge
transfer between periods which will induce an internal electric field of 9.2 1kV/cm.
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2 .8.2 Biased Quantum Wells

Under extemnal bias, the problem of determining the band profile becomes significantly
more complex and a rigorous treatment requires a solution of the transport and
Schrodinger equations self-consistently. For strongly coupled periods the band-profile
may be determined by the dominant current mechanism and even by the formation of
high-field domains at low temperatures [25]. For weakly coupled periods and moderate
fields, however, we can assume that the first order solution is merely a “tilting” of the
unbiased solution. The total voltage drop across the structure is thus determined by the
applied voltage which is the equivalent of the flat band condition in unbiased quantum
wells. Since the screening in asymmetric structures cancels some of the applied bias, it
must be compensated for by an increased electric field elsewhere - which in tumn leads to a
further increase of the screening voltage. Figure 2.8 shows a typical example of an
asymmetric quantum well under negative (a) and positive (b) applied bias with the initial

field boundary conditions and with the correct voltage boundary conditions respectively.

(b) Edcz49.95kVIcm

Nd=10‘ Scm? N,=10" ¢ m?

Figure 2.8: The same quantum well as in Figure 2.7 at a negative (a) and positive (b)
applied field of 40kV/cm. Using the correct boundary conditions (the solid curves) we see
that the charge asymmetry will correct the applied fields to -31.68kV/cm and + 49.95kV/cm
Jor the negative and positive applied bias, respectively.
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Part 11

Intersubband-Transition-Induced
Refractive Index
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Chapter 3

Contribution of Intersubband Transitions in Quantum
Wells to the Refractive Index

3 .1 Introduction

The Kramers-Kronig relations [1] lead us to expect that along with the intersubband
transition induced absorption, first observed by West and Eglash in 1985 [2], there should
also be an intersubband transition induced refractive index correction. Due to the selection
rules in quantum wells, only radiation polarized perpendicular to the plane of the wells
[3] interacts with the intersubband transitions, whose refractive index correction should
therefore make the material birefringent. The large and controllable absorption of
intersubband transitions should hence be accompanied by a large birefringence at selected
wavelengths. Since this birefringence is controllable both by bandgap engineering and by
electric fields it may find applications in optical switching, phase matching, or even as
electrically controlled Bragg mirrors. The index change also has a significant effect on
phase-matching in parametric frequency conversion processes where it may significantly

shorten or increase the coherence length depending upon the relative detuning (Chapter 4).

The refractive index contribution of intersubband transitions was predicted [4,5] soon

after the first experimental observation of the absorption induced by intersubband
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transitions [2], but was not measured due to a host of experimental difficulties described

in this chapter and to the lack of full understanding regarding its implications as described
in chapters 4 and 9. In this chapter we report on the first experimental observation of the
intersubband transition induced birefringence [6]. The refractive index change we observed

in an unoptimized structure: An= £0.07 at a 45 degree incidence, suggests that a refractive
index change as high as An =1+0.4 can be obtained in an optimized structure and for an

optical polarization perpendicular to the plane of the quantum wells. The observed

refractive index was also, as expected, highly dispersive (An=0.14 over a half micron range
between A=9.75um and A=1022pum) and highly temperature dependent

(dn/dT=3.1x107[1/K]).

Our initial motivation in measuring the intersubband transition induced refractive index
was for it to lead up to the electrooptic modulation of infrared radiation using the control
over the intersubband transition frequency in asymmetric quantum wells [7]. This effort
was delayed while we were waiting for a modification in the MBE which would reduce
oval defects and hence allow application of sufficient electric fields over the required
stripe area. During the course of this delay we had the opportunity to re-examine the
validity of applying the standard formalism of nonlinear optics to intersubband
transitions and develop an altemative approach (Chapters 5 - 9). The clear conclusion
from this nonperturbative approach (Chapter 8) was that phase-modulation is inherently

inferior to absorption modulation when using resonantly-enhanced transitions - leading us
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to pursue absorption modulation instead (Chapter 10). Nevertheless, the refractive index

contribution of intersubband transitions is an important phenomena by itself and may
find several other applications. In the next chapter we describe the effect the intersubband
transition induced refractive index will have on phase-matching in frequency conversion
processes and suggest its utilization for a novel phase-matching technique. We also show

that this refractive index may be used for wavelength sensitive waveguiding.

Another conclusion from the nonperturbative formalism for the nonlinear optical
interaction of resonantly-enhanced transitions developed in Chapters 5 through 9 is that
the nonparametric optical nonlinearities, being merely changes in the linear response, are
limited by the magnitude of that linear response. The previously observed imaginary
component of the linear susceptibility (absorption) [2] and the real component (refractive
index change) observed by us [6], are therefore upper limits on the magnitudes of the
obtainable absorption and phase nonlinearities, respectively. We will show in Chapters 7
through 9 that the magnitude of the linear optical response is the key to analyzing device

applications of intersubband transitions.

3 .2 Interaction Schemes

The main difficulty in observing the refractive index induced by intersubband transitions
is due to the available interaction schemes. Because of the one-dimensional quantization,

subbands with scalar effective masses interact only with optical polarization
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perpendicular to the plane of the quantum wells. These polarization-dependent

transitions, and the accompanying changes of the index of refraction, make the quantum
well stack behave as a uniaxial crystal. Unfortunately, the selection rule combined with

the relatively narrow layers (<10um) available from epitaxial growth dictate the use of

certain limiting experimental schemes.

The most common of these schemes are shown in Figure 3.1. To measure the
birefringence, that is the index of refraction difference between the polarization interacting
with the intersubband transitions (perpendicular to the plane of the quantum wells) and
the polarization not interacting with the intersubband transitions (in the plane of the
quantum wells), we used the scheme shown in Figure 3.1a. A beam is propagated at a 45°
angle relative to the plane of the quantum wells and a polarizer is used to determine its
components at an angle of 45° with the plane of the quantum wells (and normal to the
propagation direction) and in the direction parallel to the plane of the quantum wells. This
configuration offers a large interaction with the intersubband transitions, but leads to a
structural phase shift due to the polarization dependence of the phase delay in the total

internal reflections at the GaAs/Air interface.
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Figure 3.1: Schematic of four of the more common interaction schemes for overcoming the
selection rules of intersubband transitions. Lapping of 45° crystal facets (a), a phase or
intensity grating (b), interaction at the Brewster angle (c), and incorporation of
waveguiding layers into the crystal growth (d). The latter may be combined with grating

coupling (b).
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Despite the structural phase factor, propagation at 45° still lends itself more readily to
birefringence measurements than the other standard schemes for interaction with the
intersubband transitions. The structural phase shift, which is a function of the nearly
wavelength-independent refractive index of the bulk material, may be isolated from the
strongly wavelength-dependent intersubband contribution. For the other schemes on the
other hand (Figure 3.1b-d), the two polarization components are not degenerate at the
incident facet. Furthermore, Brewster angle incidence (Figure 3.1c), leads to a very small
interaction not only because of the single pass through the quantum wells, but also

because of the quadratic dependence of the interaction strength on the projection of the
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optical polarization on the normal to the quantum well planes. In both waveguide and

grating coupling schemes (Figure 3.1d and b respectively) the phase velocity is highly
wavelength dependent. This makes it difficult to isolate the intersubband transition
induced component unless it is modulated. Modulation of the population between
coupled quantum wells was indeed used by Dupont et al. [8] to measure the modulation
of the phase delay in a Brewster angle propagation scheme (Figure 3.1c). The
interferometric technique they used, however, is only capable of measuring changes in the

intersubband transition induced phase-delay and not its total magnitude.

3 .3 Linear Optical Response of the Intersubband Transitions

The linear response of the intersubband transitions, including its phase and absorption
components, is calculated using the standard model for a two-level system interacting
with a monochromatic electromagnetic field [1,9]. This leads to a real (¥') and an
imaginary component (") of the susceptibility (for an incident polarization normal to the

quantum well planes) given by:

_ NGIAT, Ao,

3.1
X="eh 1+QaLy (3.12)
and:
2,,2
x'= Ng“u,T, 1 (3.1b)

g 1+(AoL)

respectively, where o is the optical frequency, N is the electron density (assumed
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initially in the ground state), €, is the vacuum permitivity, the detuning is defined by:

Aw=(E,-E)/h , T, is the dephasing time, and u,, is the intersubband dipole matrix

element.

The imaginary component of the susceptibility leads to an absorption coefficient given

by:
o(Aw) = % ¥"(A®)cos(8) (3.22)
n

where n is the bulk’s index of refraction, and 6 the angle between the polarization and the

normal to the plane of the quantum wells. Similarly, the real component of the

susceptibility leads to a refractive index correction given by:

An(Aw) = Z(ZA—a))cosz(G) (3.2b)
n

The normal to the plane of the quantum wells thus becomes the principal axis of the
crystal that is now uniaxial, i.e., the intersubband transitions have induced a birefringence.
By introducing a field linearly polarized at an intermediate angle it becomes possible,
using a cross-polarizer experiment and ellipsometric techniques, to deduce the phase
delay and hence the refractive index difference between the polarization components.
This, however, is complicated by the directional absorption coefficient of the
intersubband transitions (Equation 3.2a) as well as by the structural phase delay.

For the experimental configuration shown in Figure 3.2, the field E;,(0) will be split by the

input polarizer to components along the major (§) and minor axes (%), Ey,(0)cos¢¢ and
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E;;(0)singX, respectively. The former will undergo half the maximal interaction with the

intersubband transitions (cos?45°) while the latter will not interact with the intersubband
transitions at all. As they propagate through the structure, the two experience the same
bulk refractive index and absorption, but a different phase shift at the total internal
reflection (45°) bounces at the GaAs/Air interface. This difference, deduced from the

complex values of the Bragg coefficients, is given by [10]:

= 2mn,l(c:os(é?)\/sinz(e) -1/n? ) (33)

sin*(6)

'

From the value of the refractive index in GaAs, which is n=3.27 at A=10um [11], we
expect a difference in the phase delay between the two polarization components of ¢=83°

for the total internal reflections at a 45° incidence angle. This phase delay is roughly an
order of magnitude larger than that expected from the intersubband transitions, but
because its variation is negligible over the wavelength range of our experiment (9.2-

10.75um), we were able to isolate and subtract its contribution. The field after

propagation through the sample but before the output cross-polarizer, is thus given by:
34

T
—={ 2" (Aw)+iy (Aw)lcos>(O)L, iy " . R
ni T.e"% cosg- Y +sing- %)

E,,(2) = E,(0)- & ™05 e
where N, is the number of bounces in the sample, L, the propagation length through the

bulk and L, the propagation length in the quantum well stacks. The total phase difference

between the two components hence becomes:
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T, .
Pr=5 % (A@)L, +iN,p, (3.5)

A detector placed after the cross-polarizer at an angle of ¢ with respect to the normal to

the plane of the quantum wells (Figure 3.2) will measure an optical power proportional
to:

P(0) o< cos’ 0+ b’sin’ 0 +2bcososin o cos @, (3.6)
where b is defined as the ratio of the amplitudes of the two components and is related to
the intersubband transition-induced absorption by:

T
—2"(A0)L
mx( o)L,

E
b=—<=tan¢- 37
z G-e (3.7

y

Knowledge of this ratio thus allows us to deduce the phase delay despite the unequal
absorption of the two components. It may be simply measured by aligning the cross-
polarizer along the directions of the major and minor axis. When b is known, measurement

of the power for other output polarizer angles allows us to deduce the total phase delay,

to within a factor of a sign and an integer multiple of 27, by using Equation 3.6.
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Figure 3.2: The 45 ° bounce cross-polarizer experimental setup. The inset displays the
input (linear) and output polarization (elliptical) of the optical field. Also shown are the
Jour output polarizer settings at which measurements are taken (x, y, min, max).

3 .4 Observation of the Intersubband Transition Induced Birefringence

To enable separation of the intersubband transition-induced phase delay from the
structural one we wish to maximize the wavelength dependence of the former. This is
obtained for samples whose resonance peak wavelength is near 10 microns - in the middle
of the CO, laser's spectral range, and whose broadening is minimal. The sample used in
the experiment, MBE growth 1331, was grown by Ali Shakouri a year earlier for different
purposes. It contained thirty periods of 7nm GaAs quantum well, nominally silicon
doped to 2x10"%cm™, with 44nm GaAl,;As barriers. The quantum wells were grown by

molecular beam epitaxy on a semi-insulating 400um - thick GaAs substrate, and a 2.6mm
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long sample was cleaved and lapped to 45° angled facets on both ends. The sample was

mounted in an MMR N,-flow Joule-Thompson cooler equipped with ZnSe windows to
allow measurements in 77-400K temperature range. Figure 3.3 shows its absorption
spectrum at 77K and 300K taken in a Mattson Fourier Transform Infrared (FTIR) by
subtracting the transmission of the in-plane from the interacting polarization. The
excellent Lorentzian curve fits show that the broadening is mainly homogeneous, as was
assumed in the derivation of equation 3.1.

FTIR Absorption
11um 10um 9um

_ o8 [ N |
—£07 L / \ |
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S 0.5 |- 9 \’\,\ \ -
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Figure 3.3: The FTIR absorption spectrum of MBE growth 1331. The sample used for the
observation of intersubband transition induced birefringence is shown at room
temperature and at 77K. The dashed lines are Lorentzian curve fits.

The intersubband transition induced refractive index correction was measured in a basic

cross-polarizer experiment shown in Figure 3.2. The output from an air cooled, grating

tunable CO, laser (roughly 3 Watts) is passed through the input Brewster angle polarizer.
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The linearly polarized beam is focused on the sample with a 254 mm ZnSe lens. A

circular input aperture with 100um diameter is placed adjacent to the sample to insure a

constant propagation length within it despite slight beam shifts as the laser wavelength is
tuned. Since the beam enters the sample at normal incidence, both polarization

components have equal transmission coefficients (=30% reflection). In the sample,

however, the beam propagates at a 45° angle with respect to the plane of the wells and
undergoes several total internal reflections which induce different phase delays for the
two polarization components. The output beam is then passed through a wire grid
polarizer and focused on either a room temperature pyroelectric detector or a LN, cooled
Mercury-Cadmium Telluride (MCT) photovoltaic detector. The detector’s signal is fed to
a Lock-in amplifier triggered by a mechanical chopper placed in front of the sample. The
chopping frequency was around 200Hz, and a low duty cycle was used to prevent
heating of the sample by the incident radiation. The optical intensity in the sample never
exceeded 1/200 of the saturation intensity (roughly S00kW/cm? for a polarization normal

to the planes of the quantum wells) to avoid heating and saturation effects.

The experiment was carried out at room temperature, and repeated at 100K. The laser is
tuned in intervals across its full spectral range (it was impossible to stabilize the air
cooled laser in the range of 9.75 to 10.15um). At every wavelength the output power is
measured for at least four output polarization settings: along the two principal axes: £ and

¥, and at the angles of minimal and maximal intensity. Increased accuracy was obtained by
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measuring the power for a scan of the output polarizer angles and fitting the results to

Equation 3.6. First the intersubband absorption is found by comparing the transmission
of the interacting (§) and non-interacting (X) polarization and shown as the empty circles
in Figure 3.4 (Equation 3.7). The phase delay is now calculated using Equation 3.6 with
the ratio of the principal axes output amplitude components (b) taken as a parameter.

Since the measured output power is proportional to (2rmz@r) which includes the

geometrical phase delay, an arbitrary constant leading to zero phase delay at line center is
added to the results presented in Figure 3.4 as is justified below. The intersubband
transition-induced phase delay reaches a maximal value of £40° half a line width on either

side of line center,



62

(a)
50 T T T 1.2
it o, > ]
-+
= 25 o
- -4 0.8
)
o D 0
N o - 0-4
= (]
o -25
o 0.2
3
_50 1 1 ++ ] 0
900 950 1000 1_950 1100
Wavenumber [cm ]
(b)
50 Y Y Y 1.5
3+
< + 4 + 9O
= 25
ol o + o ———>
> -1
— [«]
8 ol
Qo (o]
§ o 4 0.5
a -25 | °
o
_50 1 I 1 0
900 950 1000 1050 1100

Wavenumber [cm™']

)’ Bo-

u ino
uondiosqy

1/

1)’ Bo-

u ino

1/
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The absorption and phase delay data shown in Figure 3.4 is used to deduce the real and

imaginary components of the susceptibility through equations 3.2b and 3.2a,
respectively. This requires knowledge of the propagation length which can be estimated
from the sample’s length and hence the number of passes (or bounces - N;). This number,
however, tumns out to be extremely sensitive to the location and angle at which the input
beam enters the sample (hence the input aperture preventing variation when tuning the
CO, laser) but may essentially be taken as an arbitrary factor at this stage and deduced

later on.

The real (circles) and imaginary (crosses) components of the susceptibility at 290K and
100K are shown in Figure 3.5a and Figure 3.5b, respectively. Lorentzian fits to the

imaginary component of the susceptibility are shown as the dashed curves. The best fits
are given by a resonance at 976 cm-! (10.25 microns), with 54 cm’! broadening (half

width at half maximum) at room temp, and resonance at 1002 cm-1 (9.98 microns), with
48 cm’! broadening at 100K. Equation 3.2a, or the trivial case of the Kramers-Kronig
relations, is now used to deduce the prediction for the real components of the
susceptibility from the curve fit of the imaginary part. Notice that this result, shown as
the dotted curves in Figure 3.5, is not a fit to the real components of the susceptibility.
Only a constant offset (the arbitrary zero of Figure 3.4 in retrospect) is used as a single
parameter fit for the geometrical phase delay by fitting the real susceptibility data to the

Kramers-Kronig transform of the imaginary susceptibility data. An excellent fit was
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obtained after a subtraction of the structural phase delay of 2mm-97° at room

temperature, and 2rm-93° at 100K. Since the number of bounces can be roughly
estimated from the sample’s height to length ratio, this is consistent with a total structural
phase delay of @g=623° and ¢g=627°, respectively (m=2), i.e., approximately 7.5 passes
(Np=7.5) within the sample (Equation 3.3 - ¢,=83°). This corresponds to a propagation
length of 16.2um in the region of the multiquantum stack (including barriers). The fact

that the number of bounces (Ny,) is not an integer shows that it is not uniform across the
beam, however, it is in the range expected from the sample's height to length ratio. The
excellent fit between the real susceptibility data to the transform of the imaginary

susceptibility data is a demonstration of the Kramers-Kronig relations.

To validate our assumption of a nearly frequency-independent structural phase factor the
experiment was repeated for a sample with a peak outside the laser's spectral range (8.6
microns), and for bulk GaAs. The clearest verification however comes from the

temperature dependence of the phase delay discussed in section 3.4.
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Figure 3.5: The measured real (+) and imaginary (-) polarization dependent components
of the susceptibility. The dashed line is a Lorentzian fit to the imaginary part of the
susceptibility corresponding to the intersubband absorption. The dotted line is a Kramers-
Kronig transform of the dashed line, i.e., the expected real part of the susceptibility.
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Figure 3.6 is essentially a repetition of Figure 3.5b but with the results presented in terms
of the refractive index correction and the absorption coefficient, manifesting the Kramers-
Kronig relations for a two-level system. Following the standard convention for the
absorption coefficient of intersubband transitions we also average the refractive index
contribution over both the wells and the barriers. The maximal index change is thus

An=%0.07 half a line width on either side of the resonance. The sample thus demonstrates

an extremely large dispersion leading to a refractive index difference of 0.14 between the

wavelengths of 9.75um and 10.22um.
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Figure 3.6: The measured absorption coefficient and refractive index correction induced
by the intersubband transitions at 100K.
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Interaction at a right angle, rather than at a 45° angle with the plane of the wells, will

double the birefringence just as it does the absorption. Both could be further enhanced by
increasing the fill factor of the quantum wells, i.e., by using narrower barriers. Assuming
the 44nm barriers used in our sample may be replaced with 10nm ones without a

significant increase in broadening, a refractive index correction as high as An=0.4 should be

obtainable. Thus the intersubband transitions can lead to a refractive index change of a

magnitude unprecedented in semiconductors.

3 .5 Temperature Dependence of the Refractive Index

The absorption spectrum of the intersubband transitions undergoes a blue shift with
reduced temperature. This phenomena, attributed to the contribution of many body
effects [12], should also lead to a similar shift of the dispersion curve. Since the structural
phase contribution (Figure 3.2) is nearly temperature independent (the temperature
variation only caused a 4° change), the shift of the intersubband contribution should allow
its isolation. At the same time the blue shift also compensates for the limited tuning range
of the CO, laser by allowing for the acquisition of more data points along the dispersion

curve.

Beyond the contnbution of the blue shift to the experimental accuracy it is also

interesting to observe the temperature dependence of the intersubband transition induced
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refractive index. The comparison of the intersubband transition induced phase delay at

100K and 290K is shown in Figure 3.7. The intersubband induced phase contribution
changes by 35° at a wavelength of 983cm™ (A=10.17um) as the temperature is varied
from 100K to 290K. Linearizing this temperature induced refractive index change we
obtain the derivative of the refractive index with temperature as dn/dT=3.1x10K"!,
Although a smaller index change in Silicon (1.86x10*K™ at A=1.5um) has actually been

used to fabricate modulators operating on resistance heating [13], the significance of this

large coefficient is probably limited to phase matching issues.

I f
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300K
100K-300K
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Phase delay [degrees]

950 1000 1050
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Figure 3.7: The intersubband transition-induced phase delay at 300K (+), at 100K (-) and
the temperature induced shift (o). The solid line is obtained by including only the influence
of the resonance frequency shift in Equation 3.9.
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To estimate the temperature dependence of the refractive index we insert the empirical

temperature dependence of the transition parameters into Equation 3.1a. The difference
between the real component of the susceptibility at the temperatures T and T' will be

given by:

_ Ty, No-0)  N@'-0)
gh UL +(0, -0y UL+, -o)

Ay } (3.8)

The primed terms denote the resonance frequency ('), the line width (1/T,"), and the

total population (N') at the temperature T'. If we consider only the contribution of the
shift of the resonance. we find that the change is maximized at the half way point between
the low and high temperature line centers. The solid curve in Figure 3.7, obtained by
introducing only the observed blue-shift of the resonance frequency in Equation 3.8, gives

an excellent fit to the experimental dispersion data.
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Chapter 4

Phase-Matching Induced by Intersubband
Transitions

4 .1 Introduction

The second-harmonic generation (SHG) conversion efficiency in nonlinear materials is
typically limited by their coherence lengths - making phase-matching necessary for high
efficiencies to be obtained [1,2]. In this chapter we suggest the use of the controllable
refractive index contributions associated with the intersubband transitions in quantum
wells [3], whose measurement was reported in the previous chapter, to obtain phase-
matching at selected wavelengths [4]. The real component of the susceptibility generated
by an intersubband transition may be tailored to offset the bulk's dispersion and lead to
equal refractive indexes at the first and second-harmonic wavelengths. Unlike phase-
matching by angle tuning which requires sensitive alignment, and quasi-phase-matching
which requires accurate processing, the phase-matching suggested here is intrinsic. We
specifically examine the increase in the conversion efficiency that may be obtained for a
SHG process in bulk GaAs by growth of GaAs/AlGaAs n-doped quantum wells with a

transition frequency half way between the first (A=10um) and second-harmonics. It is

shown that phase-matching obtained in this manner will replace the coherence length



73
limits on conversion efficiency in a phase-mismatched bulk with absorption limits which

are much less severe for typical intersubband transitions parameters. Both the ideal case
of a bulk material embedded with quantum wells and the more practical case of the TM

mode in a narrow dielectric wave guide [5] are considered.

We consider both index contributions originating from intersubband transitions in
symmetric (2-level) quantum wells designed for phase-matching only, and in asymmetric
(3-level) quantum wells designed for resonant-enhancement of the SHG as well. First we
examine the former, where the source of the SHG nonlinearity is the bulk material. A
transition with the real part of its optical susceptibility offsetting the bulk's dispersion
will lead to phase matching. Doped quantum wells are optimal for this purpose [3] as the
intersubband transitions are virtually discrete, their separation is controllable, and they
have large optical dipole elements. In the following treatment we shall limit ourselves to
electron intersubband transitions in quantum wells, but the treatment is valid for any two-
level system that may be distributed uniformly (on a wavelength scale) in a dispersive
host material. The analysis in this chapter, although focusing on quantum wells, should
provide the tools to analyze the feasibility of transition-induced phase-matching in other

material systems.

Just as the intersubband transition-induced refractive index may lead to an increase of the
coherence length, it may if not properly designed, lead to a greatly increased dispersion.

In the extreme case the refractive index contribution of the intersubband transitions may
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reduce the coherence length between the wavelengths of Sum and 10um in GaAs to a

distance of under 10um - an order of magnitude shorter than the bulk’s coherence length

which is about 80uum. Therefore, the intersubband transition induced refractive index must
be taken into account in any intersubband transition based frequency conversion scheme.
We elaborate further on the shortening of the coherence length in chapter 9 where we

address the issue of resonantly-enhanced second-harmonic generation in general.

4 .2 Phase-Matching Second-Harmonic Generation

4 .2.1 Propagation Equations

The refractive index contribution of intersubband transitions designed to offset the bulk's
dispersion will be unavoidably [6] accompanied by absorption which must therefore be
taken into account in the solution of the propagation equations for second-harmonic

generation [7]. These are now written for a field of w and 2w frequency components (E

and E, respectively) using the slowly varying envelope approximation [8] as:

Ey o o8 -2 g Eei (4.12)
dz 2gn,c

and:

E o o B, ——D gz (4.1b)
dz EM,,C

where n, and n, are the first and second-harmonic bulk refractive indices respectively, d
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the bulk's SHG coefficient, and Ak is defined as the phase-mismatch vector:

Ak =k, —2k

»- The real and imaginary components of the intersubband linear
susceptibilities: '(®) and " (), respectively, are given for a two level system as [8]:

Ny’ . (Ao, —i)
gh (AGL) +1

x(@) =y (@) -iy"(w)= 42)

where N is the average electron volume density, [ the intersubband dipole element, T, the
dephasing time, and A® and w+A® are the detuning of the first and second harmonics,

respectively, from the intersubband transition. The wave-vectors are thus modified by the

real components of the intersubband transition and become:

=20+ 7 (@) (4.32)
C
and:
2
ks, = (20;) (n3, + ' 2)) (4.3b)
C

for the first and second harmonic, respectively, while the absorption, neglecting the bulk's
contribution, is given by:

[0)]
2n ¢

o

o, = X" (w) (4.4a)

for the first harmonic, and:

@

0 = x'Cw) (4.4b)

Mot

for the second harmonic. Normalizing the fundamental frequency and its detuning in units
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of half the line width (@ = @T, and A® = AwT,), we obtain the phase-matching condition

from equations 4.1, 4.2, and 4.3 as:

2 2
na) - n2(o

—n, sM:Z’”{ A (Ao - @)
2n

° 2, AD*+1 (A@-@Y+1

=n, 4.5)

(0]

where y,,, is the absolute value of the line center (imaginary) susceptibility (Aw=0 in

Equation 4.2). When phase-matching (Ak=0) is maintained, Equations 4.1a and b are

solved as:;

E,(2)=~i—2 d___ (s _ ooy (o) (4.6)
£ttt (0, —201,)

where, as discussed in section 4.2.3, we have neglected the second term on the RHS of
Equation 4.1a which accounts for the depletion of the first harmonic due to the second-

harmonic generation. From Equation 4.6 we find the optimal conversion distance as:

=l (%o
o,, —20, 2

) “.7)

(4]
This distance represents a tradeoff between the accumulating second harmonic generation
and the absorption of both harmonics. It yields a maximal (intensity) conversion

efficiency of:

2a,

Ly (Zaae) _ moloa, @°d® 1 200, 7 Sa s
= 2o tmaxs A0 @ V420" %2 T (() 48
T Zpmax) L) (—~£0 nm”i{%m(%m) Y'1,(0) (4.8)

where I (0) is the incident first-harmonic intensity defined as:
1, =2n,(8,/ ) "*|Ef (4.9)

By substituting equations 4.2, 4.4 and relation 4.5 into equation 4.8 we find a maximum
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of the conversion efficiency for Aw=w/2. Thus when the resonant transition is halfway

between the fundamental and second harmonic the conversion efficiency is given by:

3/2 (d/f )

Moae = — (11, /£, 0500 (———) 4.10)
2e

O 20
while the optimal propagation length for obtaining this maximal efficiency is:

1

Zmax = = (4.11)
20,(A0 = w/2)

It is now limited by the absorption of the intersubband transition (which is half way
between the first and second harmonics) rather than by the coherence length. Inserting the
refractive index correction (Aw=w/2 in Equation 4.5) into Equation 4.11, while using

Equations 4.2 and 4 4, will hence lead to:

T A
g =L _0r 0 (4.12)
24n & 4An T

where (Ic=A/4An) is defined as the bulk's coherence length [8]. The propagation length
may thus be increased by a factor of @/m which is proportional to the transition

frequency to half line width ratio. The phase matching condition may now be related to

the transition parameters and it is given as:

_ 2 Ny’ 12 N
T n, hoe, 1+4/&*  n, hae,

(4.13)

This expression sets the limits on the magnitude of the phase mismatch that may be

corrected via intersubband transitions.
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4 .2.2 Conversion Efficiency

The index mismatch between the wavelengths of 10.6um and 5.3um in GaAs is
Ang, 4s=0.03 [9], leading to a coherence length limit of /=83um for the second-harmonic

generation process. From Equation 4.12 we see that the intersubband transitions will
remove this limit on the useful propagation distance and replace it by an extinction length
limit of between 0.6mm to 2.6mm. From Equation 4.10 we see that the phase-matching
improves the maximal conversion efficiency by a factor of (@/2e)®. The transition
frequency to half line width ratio (@) is thus the single parameter determining the increase
in the conversion efficiency. Since AlGaAs/GaAs quantum wells have typical @'s of
25-100 [10], using their refractive index contribution for phase-matching will lead to an
improvement of between one to almost three orders of magnitude in the conversion

efficiency for a given pump intensity when compared to a non phase-matched bulk GaAs.

To avoid refractive index variations along the propagation path, the incident pump (first-
harmonic) intensity for which this phase-matching technique may be used is limited to
sub-saturation values [7] (see Chapter 9). For a large enough detuning ( ®/2), however, the
limit on the pump-intensity will not be set by saturation but by GaAs surface breakdown
phenomena to below 10MW/cm? [11]. With the second-harmonic generation coefficient of
GaAs given as d=3.4*10%'m/v [12], taking I=SMW/cm?, and @=62 (transition half line
width of 2meV), we obtain a maximal conversion efficiency of approximately 22 percent
for a propagation distance of 1.6mm. The maximal refractive index dispersion that may be

compensated for using this technique is given by Equation 4.13 and is a function of the
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average electron density and of the intersubband transition’s optical dipole matrix

elements. For AlGaAs/GaAs quantum wells with optical dipole matrix elements of

p=2nm, a volume density of N=8.4x10'®cm™ is needed to offset the phase-mismatch in

bulk GaAs. A confinement factor of under 5% in quantum wells with a volumetric doping

density of N=2x10"¥cm™ is thus sufficient to induce phase-matching in GaAs.

The refractive index correction obtained via a single intersubband transition half-way
between the first and second harmonics is insensitive to the transition's frequency to the
first order, making this phase matching technique tolerant of quantum well growth
inaccuracies. An accuracy in the transition’s interaction strength of at least 7#/® is
required, however, to increase the coherence length above the extinction length - leading to
the full conversion efficiency improvement available with this technique. The interaction
strength is correctable via electron injection mechanisms [13,14], which are thus also the
way tuning may be achieved. The phase-matching is relatively broad-band, and can be

tailored to cover most of the CO7 laser's spectral range as shown in Figure 4.1.
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Figure 4.1: The refractive index dispersion of GaAs: n(A)-n(10.6um) with a single
correcting intersubband transition half way between the first and second harmonics
versus frequency (the solid curve). Also shown are the refractive index dispersion of bulk
Gads (the dashed-dotted curve), and the extinction length (the dotted curve - right hand
axis).

4 .2.3 Depletion

Since, as we have just shown, the intersubband transition-induced phase-matching may
lead to significant conversion efficiencies, we must examine the neglect of the depletion

term in Equation 4.1a. When phase-matching is obtained this equation may be re-written

as:
E, 9 o w)E, ~i(dE,, /€,) E.} (4.14)
dz 2n ¢

@
where we have used the definition of the absorption in Equation 4.4a. The contribution of

the depletion will thus be smaller than that of the absorption when:
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)(”(0))

4.15
dle, (4.13)

|E,,| <

For a transition half way between the two harmonics (A® = @/2), and assuming @ >>1,

Equation 4.5 leads to:

An= P (4.16)
wn

(A

Inserting this into the previous equation and using Equation 4.9 leads to a limit on the
second-harmonic intensity for which the depletion may be neglected given by:

< 8(80/;10)”2112 n’(An)*

{o9)]

2w C—bz(d/E )2 (417)
0

For the above given GaAs parameters, this limit is between I, =45MW/cm? and

700MW/cm? for values of @ between 100 and 25, respectively. Neglecting the depletion
in Equation 4.1a is thus completely justifiable in this material system. Depletion does,
however, set a limit on the improvement that can be gained by the use of narrower

transitions (larger values of @).

4 .2.4 Phase Matching in Waveguides

Since current technology limits the growth of high quality epitaxial layers to about 10um,
waveguiding is necessary to obtain longer interactions [5, also see Figure 3.1]. In this case
one has to overcome not only the intrinsic bulk dispersion but also that induced by the
waveguiding. The refractive index contribution of intersubband transitions located in the

core of a dielectric waveguide must be tailored to equalize the phase velocities of the
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waveguide modes of the first and second harmonics. Using a numerical solution of the

TM modes in arbitrary shaped dielectric wave guides [15, see Appendix A] we find that
phase-matching should be achievable using intersubband transitions provided that
sufficient confinement is obtained. Figure 4.2 shows a possible example of a phase-
matched wave guide. The crossing of the first and second harmonic modes is due to the

reversal of the dispersion relations caused by the intersubband transitions.

n(10.6) (n(5.3))
3270 (3.297) GaAs __ _ __ _ MQW average +

ISBT contribution (+0.061)

3.266 (3.134)
3111 (3.143) 40%-A  (AMKRGI— —-—— — — = - =

2.81(2.85) AlAs

Tum

Figure 4.2: Awaveguide phase-matched by the intersubband transition-induced refractive
index. The structure consists of the following layers: 1um AlAs, 5um Al, sGaAs cladding, a
multiquantum well stack of 150 periods of 624° GaAs wells with 1134° Al, ,GaAs

barriers n-doped to 6* 10" 1/cm’, and a second 3um Al, sGaAs cladding. The refractive
index at 10.6um (5.3um) is given for the various material compositions.
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4 .3 Phase-Matching in Three-Level Systems

4 .3.1 Intersubband Transition-Induced Second-Harmonic Generation and

Phase-Matching

Having calculated the potential improvement in conversion efficiencies that may be gained
from intersubband transitions designed for phase-matching, we now consider the effect of
the refractive index contributions accompanying intersubband transitions designed for
resonant enhancement of second-harmonic generation. Such asymmetric three-level

quantum wells have recently [16,17] led to the observation of second-harmonic generation

)
Q20,0,0)

coefficients as high as ¥, =9.107"m/v. The assumption that was made in most of

the reported studies was that since the propagation distances are much shorter than the
bulk's coherence length, phase matching is unnecessary. This assumption neglects the
index changes accompanying the intersubband transitions that could be tailored to offset
the bulk's dispersion on one hand, but could on the other hand significantly increase the
phase mismatch. In Figure 43 we give an example of the former case: intersubband
transitions in a three-level asymmetric quantum well are used both to enhance the second-
harmonic generation and to offset the bulk's dispersibn. This is obtained by designing the
subbands so that the detuning of the first harmonic from the ground to first state
transition is opposite that of the second harmonic from the ground to second state
transition. The magnitude of the detuning and the transition strength (dipole element and
population) are determined to accurately offset the bulk dispersion. As can be seen in

Figure 4.3 this scheme represents an inherent compromise between maximal second-
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harmonic generation (double resonance) and phase-matching. The applicability of this

(three-level system) phase-matching technique is also limited by its high sensitivity to

well parameters, and by the saturation of the near-resonant intersubband transitions

[7,11].
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Figure 4.3: The refractive index dispersion of GaAs: n(A)-n(10.6um) with intersubband
transitions used for resonant enhancement of the SHG as well as phase-matching versus
Jrequency (solid curve). Also shown are the refractive index dispersion of bulk GaAs (the
dashed-dotted curve), and the resultant double-peaked SHG coefficient (short dashed
curve). The transitions in the asymmetric well are depicted in the inset. A confinement
Jactor of ~1/30 in the quantum wells is needed for phase matching in the case of ®=40

and A@=3.

4 .3.2 Intersubband Transition-Induced Phase-Mismaitch

The index contribution of the intersubband transitions, shown to lead to phase-matching
in Figure 4.3, could on the other hand, greatly increase the phase-mismatch if not

correctly designed. The magnitude of this intersubband transition induced dispersion is
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easily estimated from the simple case of equal dipole elements and opposite detuning

(Uy, = Uy, and (@, — @) = —(@,, — 2w) - see inset of Figure 4.3) for which:

A
A@* +1

1
Anyspr = n(@) —n(20) = X (4.18)

The accumulated phase difference at a distance of one over the absorption coefficient is
therefore 2A@. Thus when the normalized detuning (A®@) is not significantly smaller

than m/2, the intersubband-induced phase mismatch may limit the maximal conversion

efficiency even for propagation distances shorter than the bulk's coherence length. The
intersubband transition-induced dispersion, rather than absorption, may thus become the
limiting factor on resonantly-enhanced second-harmonic generation [11,10]. Only on-
resonant or equally detuned transitions of equal strength will not induce such a phase-
mismatch. This issue is re-visited in Chapter 9 after the full derivation of resonantly-

enhanced second-harmonic generation is presented.

4 .4 Summary

In summary we have considered the implications of the intersubband transitions-induced
refractive index contribution on second-harmonic generation and suggested a novel phase-
matching technique based upon it. This technique replaces the limit on the second-
harmonic generation conversion efficiency set by the coherence length, with one set by

the absorption of the intersubband transitions correcting the bulk’s phase-mismatch. The
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potential increase in the conversion efficiency is proportional to the transition's frequency

to line width ratio squared. With current technology, the use of intersubband transition-
induced phase-matching may lead to an improvement of almost three orders of magnitude

in the conversion efficiency of a 10um to Spum wavelength in GaAs. This technique may

be applied to any material in which a desired wavelength transition with a sufficient
refractive index correction can be introduced. Further improvement depends on the

availability of transitions with narrower line widths.

Appendix A: Numerical Solution of One-Dimensional
Waveguides

Maxwell’s equations for a TM polarization lead to the wave equation:

n(z)’ d( Lo y) +kH, =0 (4.A1)
7 n(z)
where:
k; =kln(z)* - /32—( )(n( Y —nl,) (4.A2)

) ) . . . 2r
which with the normalized units z = 72 becomes:

( e az —( (fﬂ‘)) 1H,=0 (4.A3)

As in chapter 2, we reduce this to two coupled linear differential equations by defining:

y=H (4.A4)

y

and:
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1 JH,
= 4. A5
2EE7 & (443
finally obtaining:
% =n(Z)y, (4.A6)
and:
DM
y, =l(—=)" -1y (4.A7)
n(z)

These equations are solved by guessing an initial value of the effective refractive index
(n.s) and using the same shooting method discussed in Chapter 2. For confined modes
boundaries are chosen far enough so that the mode amplitude may be taken as zero (with
a finite derivative which merely affects the normalization). A Runge-Kutta method is used
to propagate the differential equations and a Newton-Raphson method is used to correct
the eigenvalue guesses. In practice this solution was implemented by two methods: a
slight modification of the C code used for the self-consistent solution of quantum well
states (chapter 2), or alternatively by several lines of Mathematica® code [18] which are

quite sufficient if run times are not an issue.
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Chapter 5

Introduction to the Nonlinear Optical Properties of
Intersubband Transitions

5.1 Introduction

In many respects intersubband transitions (ISBTs) in quantum wells [1] are the material
system that nonlinear optics has been waiting for: a system where the transition energies,
optical dipole matrix elements, populations, and even the relaxation times to some extent,
are directly controlled by growth parameters. The resultant pseudo-discrete energy levels
and the one-dimensional nature of the envelope functions allow an accurate derivation of
the nonlinearities from straightforward quantum mechanical calculations, and the resonant
enhancement and controllable symmetry lead to nonlinearities of unprecedented
magnitude. These nonlinearities, which have attracted recent interest to the nonlinear
optics of quantum well intersubband transitions, also call for caution to be exercised, as
the appropriateness of some commonly used assumptions of nonlinear optics becomes
questionable. We have therefore rigorously re-derived the nonlinear optical response of
intersubband transitions, examining the validity of the various approximations used and

the implications of their breakdown. While the accuracy of the single-band model, which
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has been examined in detail before [2,3], is briefly mentioned, we mainly addressed the

basic nature of the nonlinear optical interaction. The limitations of the Rotating-Wave
Approximation (RWA), the Slowly-Varying Envelope Approximation (SVA), and the
dipole approximation are discussed. The phenomena expected once these assumptions
break down are examined. Particular emphasis is placed on the divergence of the standard
perturbative expansion of the susceptibility in terms of a power series of nonlinear
coefficients. We show that the perturbative approach is incapable of describing the
nonlinear response of intersubband transitions at the intensities required for practical
applications, and present an altemative formalism. We explicitly solve for the ‘ac’ Kerr

coefficient ( (3, _o.,) (Chapter 7), the electrooptic coefficient ( 2, ,.) (Chapter 8), and

(0,0, (@,@,0)

the second-harmonic generation coefficient ( ¥ _ ,,) (Chapter 9), which are the standard

20.0,0)
tools for analyzing electrooptic modulation (EOM), all-optical modulation (AOM), and
second-harmonic generation (SHG), respectively. The latter is specifically addressed as a
representative, and perhaps the most important, parametric nonlinearity. The tools
derived for second-harmonic generation may be applied in a straightforward fashion to

sum-frequency generation and any other frequency conversion process.

Before beginning with the formal nonperturbative derivation we emphasize the
uniqueness of the optical response of intersubband transitions in quantum wells
necessitating it (section 5.2), and review some of the more important experimental results

in the field (section 5.3). We also consider the limitations of the single-band model
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(section 5.4), and briefly mention the influence of many-body interactions (section 5.5).

We examine the validity of the dipole approximation and the slowly-varying envelope

approximation (SVA) in section 5.6 and 5.7, respectively.

5.2 Uniqueness of the Intersubband Transitions

When the standard formalism of nonlinear optics [4,5,6] is applied to a substantially
different material system, the validity of its underlying assumptions needs to be
questioned. This is especially true when the standard treatment predicts extremely large
nonlinearities, as is the case for quantum well intersubband transitions. These, due to the
almost total control over intersubband transition characteristics available through bandgap
engineering [7], are unique in being a completely designable system of resonantly-
enhanced transitions. Within certain material limitations, both the eigenenergies and
eigenstates (and hence optical dipole matrix elements) of electrons (or holes) in quantum
wells may be arbitrarily designed. Furthermore the subband population may be easily
controlled by doping or by interband excitation and even the intersubband lifetime is
controllable to some extent [8]. This almost total control of intersubband transition
parameters has led to the observation of optical nonlinearities of unprecedented
magnitude (see references of section 5.3), but has yet to lead to effective nonlinear

devices.
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While the nonlinear optics of other resonantly-enhanced transitions has been studied since

the early days of nonlinear optics [9], the level of control over transition energies, dipole
elements and symmetries has been minimal. The multiple resonance required for higher-
order resonantly-enhanced nonlinear phenomena are particularly difficult to obtain at
optical wavelengths. Furthermore, in contrast with most materials where the derivation of
the linear and nonlinear optical response from first principles is often impractical, it is
quite straightforward for quantum well intersubband transitions. As the potential profiles
of quantum wells are controlled, subband wavefunctions and eigenenergies may be quite
accurately calculated. Although the one-dimensional quantization of epitaxial growth does
not generate a true band-gap because of the in-plane momentum, the near-zero photon
momentum leads, within the single-band effective mass approximation, to optically
discrete transitions (Figure 1.3). Due to resonant enhancement and the dipole sum rule, no
more than a few of these transitions significantly contribute to any given process.

Furthermore, when the effective mass is scalar, as in the case for the I'-valley electrons

used in most of the optical experiments involving intersubband transitions, the interaction
becomes one-dimensional. The cumbersome tensorial expressions of the general nonlinear
formalism are thus typically reduced to a single scalar term. As we have shown [10] the
same resonant enhancement which simplifies the expressions for the nonlinear coefficients
also limits their applicability to moderate power regimes, fortunately, it also simplifies
other alternative nonperturbative solutions. This simple model remains accurate as long as

the nonparabolicity over the extent of the electronic population is negligible compared to
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the homogeneous broadening mechanisms. For the rest of our treatment we consider this

limit which emphasizes the fundamental differences between intersubband and interband
optical phenomena. A further discussion of the accuracy of this model and the influence

of nonhomogeneous broadening and nonparabolicity is included in section 5.4.

Intersubband optical transitions in quantum wells are also fundamentally different from
interband ones [11] despite the fact that the latter are also controllable via bandgap
engineering. The interband transitions have several major limitations - the foremost being
the opposite signs of the conduction and valence bands effective masses. Except for the
easily saturable excitonic processes, interband transitions are nondiscrete and have no
sharp resonance. Furthermore the limitations of the available bandgap and band offsets
make resonantly-enhanced harmonic generation difficult [12]. Another implication of the
interband energy gap is that the lifetimes, typically between 10°s and 10”s, are many
orders of magnitude larger than the dephasing time which is roughly 10""s. Subbands,
which are not separated by a forbidden gap, have roughly the same dephasing times but

much shorter lifetimes [13] (2107'%s), making higher-order coherent phenomena more
p

accessible before the onset of saturation.

Another characteristic of intersubband transitions which is typically cited as one of their
fundamental advantages over interband transitions is their large dipole matrix elements -

proportional to the spatial extent of the envelope functions rather than the extent of the
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Bloch functions. In fact, as noted by Khurgin et al. [14], the ratio of the dipole matrix

element to the optical transition wavelength is not inherently larger for intersubband
transitions than it is for interband ones. This ratio is the fundamental quantity
determining the geometrical limitations of the standard treatment, such as the validity of
the dipole approximation (section 5.6), and is also a useful measure for comparing
intensity regimes. Furthermore, intersubband transitions bear no advantage over interband
ones in terms of the total population or of the transition’s broadening. It is therefore the
resonant enhancement and the control over the dipole elements and their symmetry that

makes intersubband transitions so unique.

5.3 Experimental Observation of Optical Nonlinearities

The potential of quantum well intersubband transition induced nonlinear optical
phenomena was discussed by Gurnick and DeTemple [15] in 1983, two years before
intersubband transitions were first observed by West and Eglash [1]. The resonantly-
enhanced nonlinearities were first demonstrated by Fejer et al. [16] in 1989. By breaking
the symmetry of an initially symmetric stack of GaAs/AlGaAs quantum wells with a 'dc'-

electric field (Figure 5.1a), second-harmonic generation (SHG) was obtained for a 10.6um

pump CO; laser. The second-harmonic susceptibility measured: ¥y  =2.8-10"m/v,

Qom,0) =

was 73 times larger than that of bulk GaAs at the same wavelength. Soon after, Rosencher

et al. [17] reported a nonlinear optical rectification coefficient of ¥ =7.2.-10"m/v

0,~0,0) —
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in compositionally asymmetric quantum wells. The structure was composed of 3nm

GaAs wells adjacent to 6.5nm Al ,Gag sAs steps, and 50nm Al 4GagsAs barriers (Figure
5.1b). The same structure [18] was also used for second-harmonic generation and a

second-order susceptibility of x() ., =7.6:107m/v was measured, 3 orders of

magnitude larger than that of bulk GaAs. The quadratic behavior of the conversion
efficiency up to pump intensities of 4.5kW/cm? was later verified [19] in a slightly
modified structure. Higher conversion efficiencies (77 = 3-10™) were obtained by Chen et

al. [20] who used a multipass 45° interaction scheme to measure x ', =910 m/v.

Qa,0,0)
Sirtori et al. [21] later demonstrated second-harmonic generation in an asymmetric
coupled AlInAs/GalnAs quantum well structure (Figure 5.1c), measuring

Xom oo =4.8:10°m/v. This structure offers several advantages: the lower effective

mass of GalnAs leads to larger optical dipole matrix elements for the same transition
energy, the larger band offsets offer access to shorter wavelength, the use of a single well
composition is less demanding on material growth, and the coupled structure is more
favorable to tuning of the resonance. Stark tuning was indeed demonstrated [22] in these
structures, where a 'dc'-electric field of 38kV/em led to an increase from

X oo =3-107°m/v to x3) .0 =7.5-10°m/v. A similar structure was later used [23]

Qo.0.0) =
for generation of far-infrared (A=60um) radiation by doubly-resonant difference
frequency mixing of two mid-infrared (A=10um) sources. A second-order susceptibility

@

of Xio,-0,-0,.0,) = 10°m/v was measured. Recently, Martinet et al. [24], demonstrated

second-harmonic generation of 2.1 um radiation using intersubband transitions in deep
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Iny ¢GaAs/AlAs coupled wells grown with a strain relaxing layer on a GaAs substrate

[25,26]. While the extension of intersubband capabilities to the near-infrared wavelengths
[24-27] is one of the more promising new development in the field, careful attention must
be paid, as discussed in section 5.4, to just how much of the "intersubband nature" of the

transitions is maintained as the energy separation is increased.

We should note that although most of the experimental work has focused on optical
transitions between subbands of the conduction band, the optical nonlinearities of valence
band transitions have also been thoroughly analyzed [28,29,30]. Tsang and Chuang [28]

predicted large second-order susceptibilities which are almost comparable to the

2)

XZX

conduction band ones. Li and Khurgin [29] calculate the off diagonal ( y,.)) susceptibility
between heavy and light hole states. They find that this term, which is not subject to the
regular selection rules and thus compatible with a surface emitting configuration [31], is
comparable in magnitude to the conduction band’s scalar ( ¥2)) susceptibility. Although
these transitions may not be treated within the single band model which we use in

following treatment, the limits derived within it may serve as crude upper limits for the

valence band nonlinearities.
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Figure 5.1 Some of the structures used for resonantly-enhanced harmonic generation via
intersubband transitions in quantum wells. Figures a-c show structures used for second-
harmonic generation: a GaAs quantum well with its symmetry broken by a ‘dc’ electric
field (after reference 16), a step GaAs/AlGaAs quantum well (after reference 17), and
coupled asymmetric quantum wells (after reference 21). The triple asymmetric coupled
wells (d) were used for resonantly-enhanced third-harmonic generation (after reference
33).

Quantum well design was also used to lead to resonant enhancement of higher-order
nonlinear phenomena. Walrod et al. [32] used nearly-degenerate four-wave mixing to

observe resonant enhancement of third-order nonlinearities in AlGaAs/GaAs superlattices

and measure }.) =5.6-10""(m/v)*. Sirtori et al. [33] extended the coupled well

(0,0~0,0) —

concept to  third harmonic generation (Figure 5.1d) and measured
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X oo =1-1074(m/v)*. This was later improved [34], at low temperatures (30K), to
X voe =4:107(m/v)* - the highest reported third-order susceptibility of any

material to date. This result is due to the unique control over the energy levels and optical
dipole matrix elements of quantum well subbands. A similar coupled-well structure was
also used to demonstrate a large multi-photon ionization [35]. Overcoming growth
complexity, resonantly-enhanced harmonic generation via intersubband transitions should
be extendible to even higher orders. The limits on this will be the ratio of the finite barrier
height to the transition's width, the breakdown of the single band model, and as we later

show, saturation.

5.4 The Single Band Model

The limitations of the various semiconductor material models for the description of
electronic states in semiconductors is an issue of great complexity that is beyond the
scope of this chapter. We will therefore only highlight the relevance of some of the
limitations of the single band model to the nonlinear optical response of intersubband
transitions. As we go on to discuss the limitations of the optical treatment it will be

important to remember the finite accuracy of the material's description itself.

The standard method for derivation of electronic states in quantum wells is the k-p

approach [2] which is an expansion of the quantum well states over a finite base of the
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bulk material’s states. Unlike the tight-binding [36,37] and the pseudo-potential methods

[38], the k-p approach, at least in its standard form, is limited to the vicinity of the
crystal’s high symmetry points (I, X, L). Nevertheless, it gives an intuitive description
of states near the bottom of the energy bands that is sufficiently accurate for most
purposes. It is valid for almost all heterostructures of current interest and may need to be
questioned only for high energy states in systems with very large conduction band offsets

[24-27]. For low lying states in the conduction band of large bandgap materials, the

analysis may be further simplified by reducing the k-p approach to a single band model. A
single parabolic band model was indeed shown to be effective in analyzing the most

common intersubband processes - those in the conduction band of GaAs/AlxGaj-xAs

quantum wells with a maximum conduction band offset of roughly 0.3V (x<40%). For
narrower wells with sufficiently high barriers or for materials with smaller bandgaps, band
coupling begins to play a more significant role and deviations from the parabolic model are

expected.

One possibility of somewhat extending the single band model without a great increase in
complexity is by the use of an energy dependent effective mass [39,40] accounting for the
nonparabolicity of the energy-momentum dispersion relation [41] discussed in Chapter
2.6. Sirtori et al. [42] recently showed that for energies up to 0.5V above the conduction
band edge the single-band model with a nonparabolic effective mass is still a reasonable

approximation. At higher energies profound modifications of the nature of the
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intersubband transitions are expected due to band coupling. Most markedly, there will be

a breakdown of the polarization selection rules as the conduction and valence band states
mix [27]. Since different subbands no longer have identical effective masses the optical
transitions are no longer discrete. Furthermore, the dipole element to wavelength ratio is
roughly constant [14]. Hence as the energies of intersubband transitions approach those

of interband ones so does the magnitude of their dipole elements. For such transitions

[24-27], not only the single-band model, but the k-p treatment itself may become invalid
due to inter-valley coupling. In that case the high-energy intersubband transitions

essentially lose most of their distinction from interband ones.

Besides the approximations involved in the k-p and single band models some other
material issues, such as: strain [43], surface roughness [44], growth asymmetry of the
interfaces [45] and donor segregation [46] need to be considered. The latter two effects
induce some asymmetry which should be considered when analyzing the significance of
symmetry breaking effects induced by the optical interaction itself [47,48]. For the
remainder of this thesis we will use the single band model to highlight the fundamental
issues of the resonantly-enhanced intersubband transitions without masking them in
undue mathematical complexity. The limitations derived here are not only directly
applicable to the vast majority of intersubband transitions under study, but are also easily
extended to situations where a more complex band structure needs to be taken into

account.
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5.5 Many-Body Effects

At the high doping levels typically used (6=10"2cm™) for optical studies of intersubband

transitions, [16-24] many body effects may become significant. Several different methods
have been used to estimate the contribution of these effects leading to varying conclusions
[49,50,51,52,53]. It is clear, however, that many-body effects shift the subbands on the
order of 10 meV to 20meV and may play a significant role in the linear and nonlinear
optical interactions of intersubband devices. Khurgin and Li have shown [54] that at the
typical doping levels used for intersubband transitions there is a large Coulombic
enhancement of intersubband nonlinearities in asymmetric quantum wells. Zaluzny [55]
later showed that even for symmetric wells the indirect many-body effects will lead to a
large coulombic enhancement. A self consistent calculation of intersubband transition
energies in doped quantum wells [56] shows that saturation in asymmetric quantum
wells, redistributing the population between the subbands, may shift the transition
energies by more than a linewidth. Thus, it should be included in detuning considerations.
This large shift may also lead to bistability as was pointed out by Newson and Kurobe

[57].

Whereas for nonsaturating optical interactions many-body effects may be regarded as a
constant correction to the resonance frequency, they become important at high optical
intensities. A nonuniform optical intensity along the optical path will lead to a varying

amount of saturation, i.e. of subband populations. This will, in tumn, lead to varying
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subband energies and hence, in a simplistic picture, to a varying detuning of the optical

frequency from resonance along its propagation path. The varying detuning will, for
example, make it difficult to compensate for the transition induced phase-mismatch, and
hence limit harmonic generation processes (Chapter 9). Many-body effects also limit the
accuracy of intersubband lifetime estimates based on pump-only saturation experiments
[58,59]. Although many-body effects are only indirectly included in our treatment via the
phenomenological relaxation times, they must be taken into account in any experiment
involving a combination of high electron densities and optical fields that saturate the

transitions.

It is also important to notice that the absorption frequencies observed in optical
experiments are not directly determined by the intersubband separation energy. They
may be significantly shifted by the effects of screening in accordance with the coupling
scheme used. The screening correction within the Hartree approximation is termed the
depolarization effect and the correction due to the exchange-correlation terms is called
exciton-like or the final-state interaction. Both these shifts have been estimated for
intersubband transitions by Bloss [52] using the formalism of Ando [44]. For 85A°
quantum wells n-doped 1x10'%cm™, the depolarization shift was found to increase the
transition energy by 8meV and the exciton correction was found to offset this by 2meV.
Somewhat larger shifts were measured by Pinczuk et al. [49] using inelastic-light-

scattering measurements.
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5.6 The Dipole Approximation

The interaction Hamiltonian of a single electron with an electromagnetic field is given

within the single band effective mass model as [2]:

P—gA D +V(z)-—L—5. B(z, .
2m*(z)[ gA(z. D]+ V(2) m*(Z)S (z,1) (1)

H(z,t)=
where m*(z) is the effective mass, V(z) the unperturbed quantum well potential assumed
to vary only along the growth direction z, and the vector potential of a plane
monochromatic wave is given as:

A1) = Age 5™ + Aje e (5.2)

The electric and magnetic fields are:

E(r,t)= —%A(r,t) (5.3)
and:

B(r,t) =V x A(r,t) (5.4)
respectively.

With intersubband magnetic transitions forbidden by selection rules, the Hamiltonian may

be divided into the unperturbed quantum well Hamiltonian:

2

H@=2 50

+V(z) (5.5)

and the interaction Hamiltonian:
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_ 4 5 9 .
H (r,t)= m*(z)P A(r,t)+2m*(z)A(r,t) (5.6)

The two approximations necessary to reduce this interaction Hamiltonian to the dipole
interaction: the neglect of the second-order term in A(r,t) and the dipole approximation

are examined below.

5.6.1 The A’ Interaction

The matrix element of the A’ term between an initial state y; and a final state v is

obtained from Equation 5.2 as:

242
94" (14 cos(Rk -1, — 201)] wi> (5.7)
m (z)

VVAz E<‘/’f

Expanding in orders of k-1 this becomes:

242

A
W, = Z;(;) {1+ cosanly, )+ (v |2k n) -sinanfw,) +...) (5.8)

The first term on the R.H.S, which is the zero’th order in k-1, leads to a constant energy
shift of all levels and therefore induces no transitions. Only the next-order term,
essentially the quadrapole term of the A* interaction, may lead to transitions. These will
be characterized by two distinct features: they will be two-photon transitions between
odd parity states, and the selection rule will be modified to optical waves propagating in
the growth direction rather than polarized along it. The magnitude of these potentially

novel effects is however too small to make them of any practical interest.

5.6.2 The Linear Interaction

The linear term in the interaction Hamiltonian (Equation 5.6) is:
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—1_ AgP, cos(k -1~ wt)l%) (5.9)

K e

For k-rj <<1 the cosine may be expended as a power series, with the zero'th order term

leading to the dipole interaction:

q
() AP, cos(ar)

Woe = "(‘//f ‘Vi) (5.10)

and the first-order term leading to the quadrapole interaction:

Wor = —<‘Vf

kon—t— AP, S‘n(“”)l”"> (5.11)

With simple manipulations, making use of the momentum-space commutation relations,

the dipole term may be rewritten as:
NOPN
Wor = un(Wfl’ll‘//i)(l ?)Sln(wt) (5.12)

identical to the standard dipole term to within a choice of gauge [60]. The quadrapole term
similarly becomes:

E ®
W, = _q—zglq'@/fllﬁ . ﬂl‘l’i)(i“g)ﬁ‘)cos(wt) (5.13)

Within the single band model both final and initial states are given by an envelope
function with a z dependence only, multiplied by the same Bloch state (S>). We thus see
that the only non-zero terms for radiation propagating at an angle ¢ with the growth
direction will be:

Wpe o< (W, (2w (2)) - sin(o) (5.14)

for the dipole interaction, and:
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Woe =< (v, ()’ |w,(2)) - sin(20) (5.15)

for the quadrapole interaction. The ratio of the quadrapole to the dipole interaction

strengths is hence:

2
{WQE{_E(WZ)IZ vi@) o) 516

Woel 4 (v, @dw, (@)
The contribution of the quadrapole term relative to that of the dipole term is thus roughly
proportional to the dipole matrix element to wavelength ratio; a ratio that was shown by
Khurgin [14] not to be inherently greater for intersubband transitions than for interband
ones. Therefore the quadrapole contribution to intersubband transition is not inherently
large. It may nevertheless be of some interest because of the resonant enhancement and
the selection rules. The dipole element between even parity states is identically zero,
forbidding the ground to second state transition (0—2) in symmetric structures. The
quadrapole term on the other hand, is maximized between even parity states, allowing for
second-harmonic generation [48] despite the symmetry. For the one-dimensional
envelope functions of subbands in direct gap quantum wells the quadrapole interaction
term also has a different geometrical selection rule. The requirement for components of
both the propagation and of the polarization vector along the quantization direction
(Equation 5.13) maximizes the interaction for propagation at an angle of 45° with respect
to the quantum well planes. For such a propagation scheme (Figure 3.1a) the quadrapole
interaction may lead to second-harmonic generation via intersubband transitions in

symmetric quantum wells.
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Quadrapole induced second-harmonic generation in centrosymmetric materials has indeed
been observed [61] as early as 1962, and analyzed more recently for intersubband
transitions [47]. It is of limited importance for intersubband transitions because the
quadrapole contribution is not particularly large and because the quantum wells may be
designed to be asymmetric, making all dipole transitions allowed. Actually, growth
asymmetry [62] in quantum wells is difficult to avoid. In reference [16] the second-
harmonic generation coefficient in nominally symmetric structures was found to have a
minimum for an applied ‘dc’-bias of 3V - indicating a large built-in asymmetry. As a
footnote it is worth noting that since the wavefunctions in quantum wells are quite
accurately known, the full interaction Hamiltonian (Equation 5.9) may be evaluated in a
straightforward fashion and there is no real need for either the dipole or the quadrapole

approximation.

5.7 The Slowly Varying Envelope Approximation

Due to the resonant-enhancement and high density of states the extinction length induced
by intersubband transitions in quantum wells often becomes comparable to the optical
wavelength. This calls into question both the slowly varying envelope approximation
(SVA), and the standard relations between the susceptibility and the absorption and
dispersion coefficients (Equations 3.2a and 3.2b). The simplest means of examining these

approximations is by considering the propagation of an infinite plane wave in a linear and
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homogenous media. Although both approximations may be trivially avoided for this case,

it clarifies the limitations upon their use for situations involving nonlinear processes as

well. The latter, however, would require more complex solutions.

Beginning with Maxwell’s equations for an infinite plane wave in a linear and homogenous

media, the second-order wave equation is derived without approximation as:

2

V’E(z) = ,uogt—;;'D(Z) (5.17)

with the displacement vector given by:

D=gE-[n"+ ' +ix"] (5.18)
Defining the solution in the form of:

E(z) = E(z)- ™ (5.19)

and inserting it into Equation 5.17 we obtain:
~ ~ ~ w? ~
E"(2)+2KE'(2) — K’E(z) = ——{n’ + 1’ + iy "}E2) (5.20)
c

Since we have assumed a linear and homogeneous media, a simple solution can be found
by assuming; E(z) = E(0) which directly leads to the expression:

—i(%’—ﬂ,n2+x’+ix")z ‘i(a—”w/"2+l'+il")l

E(z)=E(0)-¢ =E0)-e (5.21)
derived without any approximation. If, on the other hand, we define k as the bulk value of

the propagation vector (k=wn/c) we obtain:
E@+=—E"(@)=-=—{iy - 1" }E@) (5.22)
2ion 2nc '

Making the slowly varying envelope approximation:
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then leads to:

an
2z

E(z)=E(0)-e ™ 2

. L v am)z

=E0)-e% ¢ (5.24)
Although the SVA could have easily been avoided in this case, the difference between the
solution obtained with (Equation 5.24) and without (Equation 5.21) the approximation
allows us to estimate the magnitude of the correction required in situations where it is

more difficult to avoid. Treating the intersubband contribution to the induced polarization

(x'+ix") as a perturbation upon the bulk’s response (n), the square root in the exponential

of the accurate solution (Equation 5.21) may be expanded as the power series:

LIy
(z)z‘

E(z)=E)-e "™

LI S PR ()= +2ix 11z

et W e i (5.25)

The first two exponential terms of this series are:

o=ny"/nA (5.26a)
and:
n'=n+y'/2n=n+An (5.26b)

the familiar (approximate) definitions [63] for the absorption and the refractive index
induced by the transitions respectively. Keeping only these first two terms in the
expansion, Equation 5.25 corresponds exactly to Equation 5.24. Solving the wave
equation with the SVA thus amounts to an equivalent approximation to those made in the
definitions of the linear coefficients in Equation 5.26, i.e., keeping only first-order terms

in the expansion in powers of y/n”.
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The next-order terms in Equation 5.25 give us the magnitude of the correction to the SVA.
Treating a line center frequency for simplicity ()'=0), the power of the third term in the

exponential reduces to:

iz
an’A

-

() - () + 20 7127 (o)) (527)

Since the interaction length in nonlinear devices is on the order of the extinction-length

(z=1/), and since absorption coefficients as high as one over the wavelength (0tA=1) are

easily obtained in quantum well intersubband transitions, the correction can be quite
significant - on the order of a few percent. Although not negligible, this correction is
difficult to observe in linear interactions due to the finite accuracy with which the
transition parameters are known. On the other hand if the theoretically predicted [64]
intersubband absorption coefficients are approached, the SVA will become completely

invalid (0h = tn => %"= n?). An accurate treatment of intersubband transitions in highly
doped quantum wells thus falls neither in the dielectric (0A<<mn) nor in the metallic [65]

(0A>>71n) regimes.

Avoiding the SVA and obtaining accurate expressions for the absorption and dispersion in
terms of the susceptibility is trivial for linear interactions - the square root in the
exponential of Equation 521 may be directly divided into its real and complex
components, corresponding to the phase delay and absorption, respectively. The problem

is not straightforward however for nonlinear interactions and a coupled-mode analysis
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may be in order. The large index change on a wavelength scale distance may cause the

generation of a back-propagating beam. An altenative way of viewing this phenomena is
that when significant frequency conversion takes place on a wavelength-scale distance, the
phase-matching conditions are sufficiently relaxed so they may be met by the backward
propagating wave as well. Although the shortcomings of the slowly-varying envelope
approximation and the standard expressions for the absorption and refractive index
corrections (Equation 5.26) have not played significant roles in our experimental results to
date, they may do so as volumetric densities of the doping are further raised to increase

the interaction strength.
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Chapter 6
Resonantly - Enhanced Optical Interaction

6.1 Introduction

In this chapter we develop a formalism for the nonlinear response of resonantly-enhanced
optical interactions. After presenting the general density matrix formalism in section 6.1,
we limit it to a single optical frequency and its multiples in section 6.2. This results in a
treatment which is valid for optical self-modulation and all orders of harmonic generation.
Attempts to write a more general formalism which includes all other nonlinear processes
as well, equivalent to the perturbative one, lead to extremely cumbersome results which
are best avoided with a rederivation of the formalism for each specific case of interest. In
sections 6.3 and 6.4, respectively, we examine the limitations of the rotating-wave
approximation and use it to reduce the optical Bloch equations to their algebraic form.
This formalism is then used in Chapter 7 to study all-optical modulation and in Chapter 9

to study second-harmonic generation.
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6.2 Density Matrix Formulation

Within the single band model (Chapter 5.4) and the dipole approximation (Chapter 5.6),
the semi-classical Hamiltonian for a single electron in a quantum well interacting with a

monochromatic electric field is reduced to:

H=H,(z)+Hy(z,tH)+ H, 6.1)
where:

pZ
H,(z) = o @) +V(2) (6.2)

is the unperturbed quantum well's effective mass Hamiltonian, and Hpz=-qzE is the
dipole interaction Hamiltonian. At this stage we consider many body effects (Chapter
5.5) only through their average contribution to the relaxation, which we denote by the
phenomenological relaxation Hamiltonian Hy. The Heisenberg equation of motion:
p=[H,p]/in (6.3)
is used to find the temporal behavior of the density matrix, which in turn will be used to
derive the induced polarization:

P = gNTr(pp). (6.4)
where N is the total subband population. The expectation values of the density matrix
elements are defined over the base of the unperturbed quantum well's wavefunctions (y;)
as:

p; =(wilolv;) (6.5)

and the optical dipole matrix elements as:
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wy =(wlulw,). (6.6)

Writing Equation 6.3 for the complete set of eigenstates, we obtain an infinite set of
coupled first-order differential equations for the density matrix elements as:

Py —P3)
T

jk

Py = :hi{(E, ~E)P g — qE(U Py = pty) — iR } (6.7)

where E; is the eigenenergy of the j'th state, p;° the equilibrium value of p;; (identically

zero for the off-diagonal elements), and T; and Tj; are taken as the phenomenological
lifetimes and dephasing times, respectively. The interaction term contains an implicit

summation of over all states (/).

The infinite set of equations given above (Equation 6.7) may be solved by considering
only the finite number of states contributing to the optical interaction and than reducing
them to algebraic form via the rotating-wave approximation [1]. Although such a
derivation may be followed in general, it is difficult to achieve a compact formulation valid
for all optical nonlinearities (similar to the general perturbative expansio.ns). We thus limit
our derivation to multi-harmonic generation when all of the optical frequencies present are

multiples of a fundamental frequency ®. All-optical modulation (Chapter 7) is also

included in this formalism as the trivial case. The same approach may be followed for
nondegenerate processes such as sum- or difference-frequency generation and any other
resonantly-enhanced nonlinear phenomena. Although the details will vary, basic
limitations on the use of the nonlinear coefficients and on the magnitudes of the obtainable

nonlinear effects remain similar.
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6.3 Multi-Harmonic Generation Formalism

The local electric field in the presence of multiple harmonics of a fundamental frequency

() is expressed as:

E@®) = —Z(E ma 4 E ey (6.8)

The density matrix components are accordingly defined to filter out the dominant

temporal variation as:

— 5 pitk=i
P =Pye " (6.9)
and the Rabi frequencies are defined as:

Q, Eq“f'f y q“!" n oo = 3 (6.10)

m——-mf m==mg

where ., is the Rabi frequency of the m’th field component’s interaction with the j’th
and k’th states (E_, = E,). This leads to a set of equations for the off-diagonal terms

given as:

\- i ~ i(j-l+m)or
Py = —i{A@; Py + E(sz.bﬂel(l_km)w ~Q;, P’}
i (6.11)

with an implicit summation on / and where the complex detuning is defined as:

Aw, =(E,—E)/h-(j-ko-i/T, (6.12)

and a similar set of equations for the diagonal terms given as:
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(6.13)

< i ~ i(k=l+m)awt
P = =il=i(Py = P Ty + D ( QP ™™™ = QP4 %))

m=—mg
Using the hermiticity of the density matrix these equations may be converted to a set of

d? coupled real differential equations for a process involving d states.

6.4 Beyond the Rotating-Wave Approximation

The first approximation required to solve the infinite set of coupled density matrix
equations (Equations 6.11-6.13) involves reducing them to a finite set. In a quantum well
with an infinite binding potential, 96% of the ground state’s transition strength
(proportional to the dipole matrix element squared) is with the following subband [2].
Even when finite barriers or more complex structures are taken into account, only a few
subbands have significant dipole matrix elements with the ground state. The dominance of
a given transition is further enhanced when it is nearly resonant with the optical
frequency. It should be noticed however, that at high intensities, resonantly-enhanced
transitions may become saturated to the point where other transitions or even the non-
synchronous terms may no longer be neglected. In the presence of a single optical
frequency, the contribution of a given transition is inversely proportional to the square of

its generalized Rabi frequency [1], defined as:

Q'=4Q* + (Aw)Aw)’ (6.14)

where € is the transition’s Rabi frequency (Equation 6.10) and Aw=(w,-@y)-w—i/T,, is its
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(complex) detuning. The definition of the generalized Rabi frequency thus emphasizes the

similar reduction in the interaction strength brought on by saturation and detuning. The
same general principal but with somewhat more complicated expressions is valid when

more optical frequencies and more energy levels are involved.

Making no other approximations, beyond the consideration of only a finite number of
states, the resultant set of coupled differential equations requires a numerical solution and
a Fourier transform to the frequency domain. The full solution displays not only the
obvious saturation effects, but also a host of other phenomena at high intensities such as
frequency shifts, higher-order frequency generation, and even probe-gain for pump-probe
interactions [1,3,4]. In the following sections we briefly review the possibility of even-
harmonic generation in symmetric quantum wells and mention some novel pump-probe

phenomena.

6.4.1 Symmetry Breaking by Intense Laser Fields

Coupling of two symmetric wells may lead to an isolated two-level system if the coupling
energy is small with respect to the intersubband spacing. Such a structure was considered
by Bavli et al. [5] in studying the effects of intense optical fields. Besides a numerical
treatment, an analytic solution was obtained in the high field limit by using an inverted
perturbative expansion. In this limit the potential of the quantum well is considered a
perturbation on the potential induced by the optical field. They found that either an

intense radiation field interacting with a system prepared in certain non-equilibrium states
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or pulses with specific rise profiles interacting with a system in initial thermal

equilibrium, will lead to localization and even-harmonic generation. We added relaxation to
their treatment and showed that the even-harmonics may be generated by pulses with
quite general profiles even for systems in initial thermal equilibrium, but that the effects
will decay within the system's dephasing time [6]. Essentially, the initial field direction of
an optical field which is sufficiently strong to coherently drive the system removes the
symmetry until it is regained through relaxation. From the point of view of standard
nonlinear optics [7] these phenomena are not allowed in centrosymmetric systems, and
are hence termed symmetry-breaking. They become significant roughly when the Rabi
frequency becomes comparable to the transition frequency, i.e. when the influence of the
binding potential and the ‘ac'-fields become comparable. The Rabi frequency of a
transition’s saturation amplitude is equal to its half line width times the square root of the
lifetime over the dephasing time. Since the frequency to half line width ratio in typical
mid-infrared intersubband transitions is between 10 and 100 [13] and the ratio of the
lifetime to the dephasing time roughly 10, these novel phenomena are expected to become
significant only for intensities at least 3 to 5 orders of magnitude larger than the saturation
intensity. Hence they are of limited experimental accessibility due to the short dephasing
times, the limited surface breakdown intensity [8], the many body effects and the limited

available band offsets (limiting the coupled well scheme to long wavelengths - A~100pum).
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6.4.2 Pump-Probe Interactions

An interaction with both a strong pump beam and a variable probe beam leads to a
modification of the transition’s absorption lineshape. The arising phenomena for a two-
level system include the ‘ac’-stark shift, the Raleigh resonance and the three-photon
resonance, where the two latter ones may lead to probe gain. A thorough review of the
resonant nonlinear response of a two-level atomic system in presence of more than one
optical wave was recently presented by Boyd and Sargent [9]. Figure 6.1, following their
treatment, shows the absorption spectra of a probe wave as a function of its detuning
from resonance in the presence of a strong pump wave. The probe absorption is plotted
for a given dephasing time with three different lifetimes (T,/T,=0.5, 4, 40). The spectrum
for all three displays the absorption peak shifted by the ‘ac’-Stark effect, the Raleigh
resonance, and the three-photon resonance which leads to gain for a probe at a detuning of

AwT,=—Q'. Larger lifetimes are seen to lead to greater saturation but at the same feature

separation - making it much harder to effectively utilize the gain features. This treatment
was later used by Zhao et al. [10] to analyze pump-probe phenomena induced by
quantum well intersubband transitions. The short relaxation times characterizing
semiconductors require strong pump intensities for observation of significant pump-
probe effects in intersubband transitions. As a result they have not been demonstrated to

date.
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Figure 6.1 Absorption spectrum of a probe wave as a function of its detuning in presence
of a pump wave detuned by AwxT2=-3 with an amplitude of QxT2=8, and three different
values of the life over dephasing time ratio: T)/T=0.5, 4, 40. The spectrum displays the
absorption peak shifted by the ‘ac-Stark effect, the Raleigh resonance, and the three-
photon resonance which leads to gain for a probe at a detuning of Aw'=-Q. Larger
lifetimes are seen to lead to much greater saturation but with the same feature separation.

6.5 The Rotating-Wave Approximation (RWA)

In the remainder of our treatment we shall be concened with the intensity regime where
the perturbative power series expansion of the susceptibilities breaks down but the
optical interaction is still weaker than the confining potential. Within this limit we can

assume that the system reacts only at sums and differences of the driving frequencies.

Hence, assuming a steady-state response ( ﬁjk =0), the set of coupled differential

equations (Equation 6.13) is reduced to:
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- i(j ~ i(l-k+m)on
Awy - py = z(gﬂmlszkel(]‘“mmt _Qlkmpjlel(l Frmary (6.15a)

m=—mg
for the off-diagonal terms, and:

(6.15b)

< i ~ —i(l-k-m)ar . & ~ _i(l-k+m)w
(pkk _p:k)/ Tldc - Z(len,-j’del(l-k+m)w —.lemplke (I-k—m) Y/ i=21Im[ zgjkmpkle (I~k+m) 1
m=—mg m=—mg
for the diagonal ones. Transient phenomena, such as the Rabi flopping [11], are neglected
g
as they will decay within the system’s relaxation time which is extremely short for

intersubband transitions (0.1~1ps). Making the Rotating-Wave Approximation (RWA),

we thus only keep terms close to resonance with one of the optical frequencies to obtain:

i
ijk 'lsjk = Z[lemﬁlka(j —l+m)- Ql]anijjla(l —k+m)] (6.16a)
m=—mg
and:
My
(P — P Ty =2Im[ Y Q. 5,6 —k+m)] (6.16b)
m==—mg

Where 8 is the Kronecker delta function - ensuring that only contributions due to the

resonantly-enhanced terms in the summations over energy levels (/) and field harmonics
(m) are kept. This set of coupled linear algebraic equations is general for all orders of
resonantly-enhanced harmonic generation processes. In the following chapters we will
show that the usefulness of such a formalism is not limited to novel high intensity
phenomena, but that it must be used for proper design and analysis of intersubband-

transition-based nonlinear devices.
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Chapter 7
The Intensity-Dependent Refractive Index

7.1 Introduction

The large optical nonlinearities of intersubband transitions have naturally drawn attention
to the possibility of their application for all-optical modulation in a wavelength region (3-

20pm) where there are currently no viable alternatives. The large ‘ac’-Kerr term led to the

assumption that efficient all optical phase-modulation may be achieved despite the
resonantly-enhanced absorption accompanying the resonantly-enhanced nonlinearities. In
this chapter we use a private case of the nonlinear formalism derived in the previous
chapter to rigorously analyze this issue. Our conclusions show that the propagation
length and optical intensity demands for all-optical phase modulation using intersubband
transitions are beyond current technological capabilities. In almost all situations,
resonantly-enhanced phase-modulation is shown to be an extremely problematic
approach which is inherently inferior to absorption modulation. It also becomes clear that
the standard perturbative nonlinear formalism [1], particularly the 'ac’-Kerr effect, is not

applicable to device applications of intersubband transitions.
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7.2 Optical Interaction with a Two-Level System

The formalism derived in Chapter 6.3 allows for a calculation of the resonantly-enhanced
interaction of a multi-level system with a field composed of arbitrary orders of a
fundamental frequency. In this chapter we shall be concerned with the trivial case of that
formalism - that of a single harmonic interacting with a two-level system. Essentially, we
rederive the well-known results for the saturation of a two-level system, and relate them
to the perturbative nonlinear formalism, particularly to the 'ac'-Kerr effect. The
nonperturbative treatment is shown not only to be more generally valid but also to be
necessary for the analysis of nonlinear applications of quantum well intersubband

transitions, in particular of all optical switching.

For a monochromatic field interacting with a two-level system the general formalism of

Equation 6.16 is reduced to:

Awy, - Py = Qyy (P, — P1y) (7.1a)
for the off-diagonal term, and:

(P1 =P) I T, = (P = p3) | Ty +4ImI[Qy 0, ] (7.1b)
for the diagonal one. Solving for the former we find:

(plel - P§2 )QIZIA(O;Z
Aw,Aw, +4T,Q,,, Im[Aw,,] (7.2)

ﬁlz =

Defining the polarization to factor out the dominant temporal variation:
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m

'nf . * .
P(t) = %Z(Pme""“” + Plemm)
m=0

(7.3)
and recalling the definition of the susceptibility:
Pa) Nqﬁ] 2/“1’12 t . "

= = = +i X we 7.4
eE, e E, Xwo) =X wao X @ (7.4)
we obtain the well known saturation equation [2]:

_ N - pR)a T, AT, +i
X(w,m) - 2 2 (753)

&R 1+ (AwT)” +4Q,TT,

where in the last equation we have returned to the standard (non-complex) definition of

the detuning (A®w = @, — w,), the standard definition of the Rabi frequency in a two-level

system (L, =gqu,E/h), and where T,=T,;; and T,=T,, are defined as the life- and

dephasing-times respectively. Defining I, as the line center saturation intensity, this

may be re-written as:

P N(p! = p5)q 1Ty Aal, +i
(@ g,h 1+(A@T)* + 1/ 17

(7.5b)

Although we have used the general formalism of Chapter 6, the nonperturbative solution
of the optical Bloch equations for the case of a single frequency interaction with a two-
level system could be derived directly. Within the assumptions of a dipole interaction and

the rotating wave approximation this is the full expression of the susceptibility.

To relate the nonperturbative expression of Equation 7.5b to the standard nonlinear

perturbative susceptibilities we may express it as a series in powers of the field defined

by:
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X(a),a)) = X(a),m) +3- x(w,a),a),a;)Ea) +5: Z(m,w,m,m.m,w)Ew_'- """"" (76)

The first term of this series is given as:

40 =Ny — P LT, AGT, +i (7.72)
(@) g,h 1+ (AaT,)’

and is merely the standard linear susceptibility. The next term is given as:

x(a) — _i_ N(p; — pgz)qz‘.ui“szz]; 1 (7.7b)
@00 =773 £’ [(A@T,) - i) - [(A®T,) +i] ‘

and is the ‘ac’-Kerr term, identical to the one obtained by keeping only the resonant terms
in the standard nonlinear formalism (e.g. one out of the general 24 third-order
susceptibility components [1] for ). Figure 7.1 compares the perturbative predictions
(Equation 7.7) to the accurate ones (Equation 7.5) for the imaginary (a) and real (b)
components of the susceptibility. It is apparent that the ‘ac’-Kerr term becomes

inadequate long before the onset of saturation (I =1I,), and its use at higher intensities

leads to clearly unphysical predictions.
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Figure 7.1: The imaginary (") and real (%) components of the susceptibility versus

normalized detuning for several values of the optical intensity (in units of the line center

saturation intensity). The solid curves are the full solution (Equation 7.5) and the dashed

curves are the result of considering only the first two perturbative terms - the linear term

(Equation 7.7a) and the ‘ac’-Kerr term (Equation 7.7b).
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For most materials it is difficult to accurately derive the wavefunctions and energies of the
states causing the optical nonlinearities. The perturbative nonlinear coefficients are thus
experimentally found and used to give a fit which is typically quite satisfactory. The
situation, however, is quite different for resonant nonlinearities, particularly of quantum
well intersubband transitions, where the basic parameters are highly controlled by the
structure design. For these, the nonperturbative expressions can be analytically derived,
often at no greater effort than the perturbative coefficients. Furthermore, the magnitude of
resonantly enhanced nonlinearities leads to the divergence of the perturbative expansion at
even moderate intensities. We go on to show that these saturating intensities are not only
experimentally accessible, but are required for most practical device applications of

resonantly-enhanced nonlinearities.

7.2.1 Limits on the Perturbative Regime

Examination of Equation 7.5 shows that the susceptibility may only be expressed as a
power series in increasing orders of the field for:

4Q,T T, <1+(AaT,)’ (18)

The upper limit to a perturbative approach is thus simply the saturation amplitude:

h

2

1+ (AT T, (7.92)

sat

or the saturation intensity:
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ne,ch® 1+ (AaT,)?
_ D& 2

(7.9b)
2g9 2#122 1T,

sat

This intensity was measured for quantum well intersubband transitions by Julien et al. [3]

who found L=340kW/cm? in 85A° GaAs quantum wells with 290A° Gag ;Aly3As barriers,
n-doped in the center 240A” to 5.5x1017 ¢cm-3. This saturation intensity corresponds to an

excited state's lifetime of over 10ps. Similar results were deduced in two other
experiments [4,5]. As suggested by the results of Plodereder et al. [6] and by our self-
consistent calculations [7], the observed relaxation times may be influenced by the
coupling of electrons from the excited states to the triangular potential outside the wells
which will be created by charge migration from the barriers to the wells. Another
contribution which is indistinguishable from the saturation in a pump-only experiment is
the many-body induced transition energy shift [8,9] leading to reduced absorption at the
original line center [10,11]. Experiments in which these effects were eliminated [12]
observe an excited state's lifetime of under 10'?ps, smaller by roughly an order of
magnitude than previous estimates. This result suggests, assuming that the relaxation
mechanisms are independent of the optical intensity, that the saturation intensities may
also be higher by an order of magnitude from what was originally believed. In all cases it is
important to remember that the measured saturation intensity in a given system sets an
upper limit on the perturbative approach - even if that intensity is not simply given by

Equation 7.9b.
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7.3 All-Optical Switching

Self-phase modulation [13,14] in typical non-resonant optical media is described by the

‘ac’-Kerr term (Y0, _») - quadratically proportional to the field amplitude. Since

subsaturation intensities are typically used, the nonlinearity may be treated
perturbatively. For resonantly-enhanced interactions on the other hand, the
nonperturbative treatment must be used at the field amplitudes required for all optical
modulation. Furthermore, the phase contribution near resonance [15] is unavoidably
accompanied by absorption. Before retuming to these points we briefly recall the

perturbative treatment of phase-modulation.

7.3.1 Perturbative Phase-Modulation

The nonlinear phase shift (Ad) accumulated in a propagation length /is given as [16] :

2n
Ay, = R Any,l (7.10)

where a phase shift of © is required for all optical switching. Within the standard
perturbative approach the nonlinear index change (Any;) due to the third-order (Kerr)

term is given by:

= 3Re[x((2)),~a),w)

Any, = An, o ]Ej, (7.11)

where n is the material’s unperturbed refractive index. The necessary optical intensity and
propagation length are determined by setting Adn;=n. The naive conclusion from these

equations (Equations 7.10-7.11) would be that all optical modulation should be possible

for any propagation distance (/) for sufficiently high intensities, but this, it turns out, is
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not the case. As we have shown above (Equation 7.8) the power series expansion of the

susceptibility is limited to subsaturation optical intensities. Use of the first term only: the

3

quadratic nonlinear phase delay proportional to ¥*” (Figure 7.1), is even more limited.

Furthermore, since the nonlinear terms are merely a power series expression of the linear
term’s saturation (Equation 7.5), the total induced refractive index is limited to the

transition’s linear refractive index contribution [15].

7.3.2 Phase Modulation in Absorptive Media

Optical phase modulation near-resonance will differ from that in nearly-transparent
materials in several aspects: 1) the transmission efficiency will be directly reduced by the

absorption loss; 2) due to the absorption loss the n-phase delay will be accompanied by a

less than 90° polarization rotation - further reducing the transmission efficiency as shown
in the inset of Figure 7.3a; 3) the decaying optical field will lead to a decaying refractive
index change along the propagation path; 4) a nonperturbative approach is required for the
calculation of the refractive index change. We thus begin the treatment by re-examining the
solution of the wave equation for an infinite plane wave propagating in an homogeneous

media with a discrete transition and a nondipersive bulk refractive index n:

£ = B0y T

(7.12)
where ' and ", respectively, are the real and imaginary components of the transition’s

susceptibility. Directly from Equation 7.5, the intensity absorption coefficient is given

by: [17]
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2r 2r X
a(Aw, Y z— y"(Aw,]) = —- e 7.13
(Ao D)= XA ) = T Ae + 11T (7.132)

where we have defined the detuning in units of half the line width as: Aw = Aw-T,, and
Yres @s the line center, nonsaturated value of the susceptibility (Aw=I=0). The induced

change per unit length in the optical phase will similarly be:

AAP)y, 7 :
—_——t= A Aw,I 7.13

where AY’(, ,(Aw,]I) is defined as the change in the real component of the susceptibility

as a function of intensity and detuning, given by:
(7.14)

A®- g, -(I1T7)

sat

A+A&Y) - (1+AG* +1/I7)

sat

AX 0.0y AT = X g 1) (AD,0) = ¥y ) (A, T) =

For practical modulation purposes it is important that the phase shift be generated with
the minimal absorption loss, with 3dB transmission being an accepted figure of merit [18].
It thus becomes favorable to have the high-intensity state, leading to a saturated
absorption, as the on-state. Demanding zero transmission in the off-state, and using
simple geometrical considerations (inset of Figure 7.3a) the cross-polarizer transmission

efficiency in the on-state is:

(t, + 1,0 )

T(Aw,I)=
( ) 2(1+1,)

(7.15)

where t,, and t. are respectively defined as the amplitude transmission efficiencies of the
interacting polarization in the on- and off-states before the output cross-polarizer

(t,=E,/E,, t,;=E;/E,) Considering only the direct absorption loss without
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saturation we find from Equations 7.12 through 7.14 that a minimal detuning from

resonance of AwT,>2n*10log;,(e)/3=9.1 is required. As shown in the next section,

saturation of the absorption somewhat relaxes this condition.

7.4 Nonperturbative Analysis of All-Optical Switching
Using the nonperturbative expression for the intensity-dependent change in the real
component of the susceptibility (Equation 7.14), the demand for a m-phase delay

becomes:
s .

(AP)yy = — f dz-AY ooy (ADI(2)) =T (7.16a)
ni 5

where the intensity will be given by the solution of the differential equation:

diz) __2m 1)

S P gy re

(7.16b)

For high initial intensities the absorption is almost completely saturated so that the
intensity, and hence the refractive index, are almost constant along the propagation path.

In this case the required propagation distance (L,) is given in units of the line center
nonsaturated extinction length [1/a,(0,0)] as:

2n(1+ A1+ AG* + 1(0)/ I’%)
AG-(I(0)/ 1)

sat

a(0,0)L, = (7.17)

And the amplitude transmission before the cross-polarizer becomes (Equation 7.13):
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T (1+Ad%)
Ad (10)/ 1)

sat

t,, = Expl-a(Aw, 1(0))- L_/ 2] = Exp[- ] (7.18a)

in the on-state, and:

b1 (1+A5)2+I(0)/1m)
t,.=E —aAa),O-L/Z—_- —— sat
o = Expl—o( )-L./2]= Exp| GO

] (7.18b)

in the off-state. Figure 7.2 shows the cross-polarizer transmission efficiency as a function
of both detuning and intensity using this constant intensity approximation (Equation
7.18). Figure 7.3a, on the other hand, plots the transmission efficiency versus intensity
for several values of the detuning obtained by numerically solving Equations 7.16a and b.
It can be seen that for a given detuning there is a critical intensity below which a 50%
transmission efficiency will not be obtained at any propagation length because of the
decay of the intensity and hence the decay of the refractive index-correction along the
propagation path. Larger values of the detuning lead to a lower transmission efficiency at
low to moderate optical intensities, but cross over to a higher transmission efficiency at
larger intensities, asymptotically approaching the transparent result in the large detuning
limit. Since the saturation intensity is quadratically proportional to the detuning, phase
modulation may be obtained at intensities that are lower than the saturation intensity of a
detuned frequency. Still, these intensities must be many times the line center saturation
intensity of the transition inducing the nonlinearity. The propagation distance required to

obtain m-phase modulation is plotted versus intensity in Figure 7.3b for several values of

the detuning. For the minimal intensity leading to a 50% transmission efficiency:

I/1;, =51 at Aw=3, a propagation length of roughly 26 times the line center

sat —
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nonsaturated extinction length is required. For a detuning of half the width (A@ =1) the

high intensity limit of the required propagation length asymptotically approaches 4w
times the line center extinction length. Again, phase-modulation may be obtained far-off
resonance at distances which are shorter than the extinction length for that frequency, but

not shorter than the line center extinction length.

0] 100
Figure 7.2 The transmission efficiency in a cross-polarizer experiment as a function of the
optical intensity and of the normalized detuning assuming a constant optical intensity
throughout the propagation path . The plane denotes 50% transmission efficiency.
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Figure 7.3: The numerically derived (Equations 7.13-17) transmission efficiency (a) and
propagation length (in units of the line center nonsaturated extinction length) required to
obtain a m-phase modulation (b) plotted versus the optical intensity (in units of the line
center saturation intensity) for several values of the normalized detuning. The inset (a)
depicts the polarization rotation induced by a m-phase delayed when accompanied by

absorption.
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For typical quantum well intersubband transitions the required intensity (I/I =51) is

somewhere between 25-250MW/cm? (of internal intensity with polarization parallel to

the growth direction). The required interaction length (0(0,0)L,=41) may be translated to

a demand for a propagation through a total subband surface charge density. For typical

parameters of intersubband transitions (A=10um, p=2nm, T,=125fs, 45° coupling) this

density becomes 6.8x10"*cm™, i.e. close to 700 individual quantum wells each doped to
10"2cm™. Such an interaction length is beyond current growth capabilities for single-pass
configurations (Figures 3.1a-c) and requires waveguiding (Figures 3.1d). The latter is
incompatible with the two-dimensional arrays required for many applications. We
therefore conclude that previous observations of extremely large nonlinear coefficients
bear little relevance on the feasibility of all-optical phase-modulation using intersubband
transitions in particular, and resonantly-enhanced transitions in general. The
nonperturbative analysis, on the other hand, provides a straightforward and accurate tool
for analyzing both phase and amplitude modulation processes, clearly suggesting the

superiority of amplitude modulation.
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Chapter 8
Interaction of Quantum Wells with ‘dc’-Electric Fields

8.1 Electrooptic Phase Modulation

The original goal of our work on quantum well intersubband transitions was to use the
extremely large electrooptic coefficients of asymmetric quantum wells to obtain ultrafast

electrooptic modulation in the mid-infrared range (A=10um). The first step towards

achieving that goal, the observation of the refractive index contribution of the
intersubband transitions, was described in Chapter 3. The shortcoming of the standard
perturbative formalism, became apparent however, when the use of the standard
electrooptic coefficient [1] led to predictions of unrealistically large refractive index

changes (as high as An=5). Such predictions are clearly beyond the applicability regime of

several approximations: the perturbative derivation of nonlinear coefficients, the slowly
varying envelope approximation, and the neglect of local field corrections. We therefore
derived an adiabatic nonperturbative formalism for the nonlinear optical response of
intersubband transitions induced by ‘dc’-electric fields. Interactions with ‘dc’- electric

fields may be treated within the standard approach based on time-dependent perturbation
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theory [2,3], 1.e, with the electrooptic and the ‘dc’-Kerr coefficients. Static fields,

however, do not lead to transitions and are hence more naturally described with the time-
independent approach derived in this chapter. We show that the expansion of the
susceptibility using the standard nonlinear coefficients diverges at moderate ‘dc’ fields
and therefore cannot be used to analyze electrooptic modulation in systems with
resonantly-enhanced transitions. The conclusion of the analysis using the adiabatic
approach contradicts our initial intuitive assumptions. It shows that using intersubband
transitions absorption modulation rather than phase modulation is much more easily
obtained. This was later applied in our demonstration of a mid-infrared modulator

described in Chapter 10 [4].

8.2 Adiabatic Approach

We begin our treatment by examining the dipole interaction Hamiltonian of a quantum

well with a ‘dc’-electric field (E4) and an ‘ac’ near-resonant optical field (E,) given as:
H,,(z,0) = —qzE(z,t) = -"—';-15{ (E e + E e ') +(E, e + E,e"™)) (8.1)

where 0y, is the modulation frequency and  is the ‘ac’ frequency which is close to the

intersubband transition frequency. As long as the modulation frequency is much smaller

than the system’s relaxation times ((4,<<1/T;,1/T,) the material response adiabatically

follows the modulation field, which may hence be considered ‘dc’. Since the relaxation
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times are extremely short for intersubband transitions in quantum wells (T;=10""*ps and

T,=10""ps) all practical modulation frequencies fall into the adiabatic regime inducing no
transitions. Rather than treat all of the electric field in Equation 8.1 as a perturbation to
the quantum well Hamiltonian (H,), we may divide it into its fast (optical) and slow
(modulation) components: H, and Hy, respectively. The slowly varying component may

be added to the unperturbed quantum well to give the biased quantum well’s Hamiltonian

as:

2

H,(z0)=> nf*(z) +V(2)— qzE,, cos( ,t) (8.2)

As this Hamiltonian changes adiabatically on a much longer time scale than the optical

interaction, the problem of a quantum well (H,) interacting with two field components

(Eq4. , E,) is now reduced [5] to that of a biased quantum well Hyz,t") interacting with a

single (optical) field component (E ).

The solution of the Schrodinger equation for a biased quantum well is similar to that of an
unbiased well, but with the wavefunctions given as combinations of Airy functions rather
than sinusoids [6]. Since subbands in a finite depth well under bias are only quasi-
confined, infinite potential barriers have to be artificially defined to obtain eigenstates
(Chapter 2). This problem, however, is easily overcome and we find that the application
of ‘dc’-electric fields leads not only the variation of the transition energy, but to a change

in the dipole element size, a change in the population distribution at a finite temperature
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(Fermi statistics), and a change in the transition width. In principle, the quantum well

problem should thus be solved for all the relevant values of the ‘dc’ field, and the
resultant field-dependent parameters considered for the interaction with an ‘ac’ field
component only. This nonperturbative adiabatic approach allows treatment of larger ‘dc’

fields but sacrifices the simplicity of the standard perturbative one.

To regain the simplicity of the perturbative approach but with relaxed limitations on the
magnitudes of the ‘dc’-fields, we may treat the slow component of the interaction
[Hzt')] with a time-independent perturbative approach. As we go on to show, this
extends the regime in which the perturbative regime may be applied by the ratio of the
transition frequency to its detuning from the optical field (on-resonance this simply
becomes the ratio of the transition’s frequency to its half-line width). This extension is
equivalent to the one made in replacing the perturbative treatment by the full algebraic
solution within the rotating-wave approximation for ‘ac’ nonlinearities described in

Chapter 7.

8.3 Time-Independent Perturbative Expansion

From first-order time-independent perturbation theory the intersubband transition
frequency in the presence of a ‘dc’ electric-field becomes:
w,(E,) = 0,(0)+q8,E, I h (8.3)

where:
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512 EU, Uy = (W]ld‘/ll) - (l[/2[2|1//2> (84)

is the spatial separation between the subbands. The first-order correction to the

wavefunctions also results in a correction of the off-diagonal dipole matrix element (1,,),

which becomes:

Dt _ oLy, ®5)

Hy = 1, {1+ ) o,
Another effect of the electric field is an increase in the transition width caused by the field
induced tunneling and scattering [7]. It also modifies the intersubband population
difference by changing the subband spacing and hence the Fermi distribution at finite
temperatures. Taking all these effects into account, the modified optical susceptibility

(Equation 7.5) becomes:

N(p§y = pi)d’ 1, T, (AGT, +8,E, T | hy+i
£, 1+ (AT, +8,E,T [h) +4Q,'TT

X oy (i) = (8.6)

where the primes (T;', T, Q,, K,,, p') denote the modified values of the parameters

under the influence of the ‘dc’-electric field. For practical quantum well designs and
applicable ‘dc’ fields the correction to the susceptibility is dominated by the ‘dc’-Stark-
shift. Therefore only the shift in the transition frequency was written explicitly in
Equation 8.6. For symmetric media, where the linear stark shift is identically zero, this
shift becomes second-order in the applied field. The latter case is not treated here because
the obtainable ‘dc’-modulation (the ‘dc’-Kerr effect) is inherently smaller and its

applications limited.



155

For simplicity we consider the case of a weak (and hence linear) optical interaction but
the treatment may be easily extended to include strong ‘dc’ and ‘ac’ fields simultaneously .
Expanding Equation 8.6 as a series in powers of the ‘dc’ field we obtain the first-order

(linear) term of the susceptibility:

N( e _ A€ ) 2 2T2
fo,),o,m __ oy Zzzhzq Ky 1, 5, (8.7)
0

which is identical to the standard electrooptic coefficient [1] for a two-level system.
Further expansion would generate the higher-order perturbative terms. This power series

expansion has a region of convergence limited by:

Q, <UUT) +(Aw)* . (8.8)
where Q. is the ‘dc’ equivalent of the Rabi frequency defined as:
Q. =q0,E, /h (8.9)

The time-independent perturbation theory, used to derive Equation 8.6, is valid on the

other hand for:

q6,,E, < ho,,, (8.10a)
or:

Q, <o, (8.10b)

Hence the upper limit on the amplitude for which the adiabatic approach may be used
(Equation 8.10b) is larger than the limit on the standard perturbative approach (Equation
8.8) by the ratio of the transition energy to its half-width (25-100 for intersubband

transitions). Furthermore, a few important limitations become obvious from the adiabatic
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approach. Figure 8.1 shows the change in the real component of the susceptibility at line

center calculated via the electrooptic coefficient from standard time-dependent
perturbation theory (Equation 8.7), by the time-independent perturbation theory
(Equation 8.6 with the primed parameters taken to be constants), and by the
nonperturbative adiabatic solution (Equation 8.6 - explicitly calculating the primed
parameters). It is clear that the use of the electrooptic coefficient is only valid over a very
limited amplitude range. A summation of all orders of the time-dependent perturbative
expressions will converge to the first-order term of the time-independent perturbative
expansion [5], but only when the dc-Rabi frequency is smaller than half a line width

(€24:<1/T). Beyond this point the time-dependent perturbative expansion diverges - i.e.

the contribution of the perturbative terms increases with their order. An important
conclusion is that the induced index change will not only saturate (as expected from higher
order terms in the perturbative expansion), but actually diminish for fields beyond the
divergence point (Equation 8.8). This is the point where the ‘dc’-Stark effect has swept

the transition’s half width point across the optical frequency.
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Figure 8.1 The change in the real component of the susceptibility versus the ‘dc’ Rabi
Jrequency in units of the half line width (§2,.T>) at line center. The upper axis gives the
corresponding ‘dc -field for a typical step well shown in the inset (with a transition half
width of 4 meV). The narrow-dashed line is based on the electrooptic coefficient (Equation
8.7); the solid curve is the result of first-order time-independent perturbation theory
(Equation 8.6 - with all parameters but the transition frequency taken to be constants);
and the dots are derived from the full adiabatic calculation (Equation 8.6 - explicitly
calculating all parameters using the self-consistent solution of Chapter 2). The wide
dashed curve is the ratio of the effective susceptibility derived from the time-independent
perturbative expansion to that predicted from the use of the electrooptic coefficient - the
inaccuracy of the latter even at moderate amplitudes is apparent.

The amplitudes at which the perturbative expression diverges for near resonance
frequencies are moderate in comparison with those commonly applied to multiquantum
well stacks [8]. Whereas, as described in Chapter 7, the ‘ac’ perturbative coefficients
(‘ac’-Kerr,...) amount to a series expansion of the saturation, the ‘dc’ perturbative
coefficients (electrooptic, ‘dc’-Kerr,...) amount to a series expansion of the transition

frequency shift, i.e. the ‘dc’-Stark effect. This is shown in Figure 8.2. As in the ‘ac’ case

analyzed in section 7.4, the linear susceptibility’s maximum is the upper limit on the total
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contribution of all the nonlinear terms (with a potential factor of two obtained by a

transition shift of one line width - moving the optical frequency from the lower to higher
half line width point). In both cases the time-dependent perturbative approach breaks

down at the amplitudes required for effective phase-modulation.

Ed =-100kV/cm 0 100
0.6 < I

A

res

Ax'l x

-20 -10 0 10 20
Detuning ( A(oTz)

Figure 8.2 The real component of the susceptibility versus normalized detuning from line
center. The solid curve is for no applied bias whereas the dashed curves are for positive
(2 ,.T,=15) and negative biases (2 ;. 1,=9). These are the minimal required biases for
electrooptic modulation with under 3dB loss for a frequency detuned by a half width from
the unbiased line center. The electric field (top horizontal axis) is given for the quantum
well shown in the inset of Figure 8. 1.
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8.4 Electrooptic Modulation

The change in the real part of the susceptibility obtained by shifting the transition
frequency and hence changing the optical detuning from: Aw, to: AW(E4)=Aw,+Qy. is
given by:

(8.11)

AwoﬂdcT23(Awo +Q,)-Q,T,
[1+(Aw, + Q, )’ T,*]1- [1+ (Aw,T,)*]

AZ‘(a),w)(Qdc) = x'(w,m)(o) - x;w.m)(gdc) = Zres :

where, as defined before, ). is the line center nonsaturated value of the susceptibility.

The modified absorption is given as a function of bias as:

2r 2r X
c(Aw,Q, ) =— " (A0,Q, )=—- e 8.12
( W= H « =2 1+ (Aw, + Q) T} (8.12)

and the extinction (/) accompanying the n-phase delay becomes:

2
a(Aw,Q,) -1 _| 21+ (A0, )] | (8.13a)
IAondcTz (A, +8,.) - QdcTZI
in the on-state, and;
22
oz(Aw,O)-l:l 271+ (Aw, +Q, VT | (8.13b)

A0, QT (Aw, +Q,) - QT
in the off-state. The propagation distance required to obtain a m-phase delay is given as a

function of the ‘dc’ amplitude in units of the on-resonant, nonsaturated extinction length

as:

_|2all+ A0 B0+ (Ao, + 2, 1| (8.14)

a(0,0)L, =
0L I A0 Q, T (A0, +Q,)-Q,T,

By inserting Equations 8.13a and b into Equation 7.15 we find the transmission
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efficiency. It depends on the normalized detuning of the optical frequency from the line

center of the unbiased well, and on the shift of that line center induced by the applied ‘dc’
field. We see from Figure 8.3 that the detuning requiring the smallest ‘dc’-field to obtain a
n-phase shift with over 50% transmission efficiency in the on-state is roughly 10 times
the transition’s half-width. For this detuning the ‘dc’-field must shift the transition

frequency by at least 5.33 times its half-width (Q4.>5.33/T,). This is slightly more than

the largest intersubband transition ‘dc’-Stark shift obtained to date [9].

e[ | 10

Figure 8.3 The cross-polarizer transmission efficiency in the on-state as a function of the
applied ‘dc’ field and of the normalized detuning. The plane denotes 50% transmission

efficiency.
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Figure 8.4a plots the transmission efficiency and the required interaction length versus the

applied field for an optical frequency detuned by a half-width from the unbiased well’s

line center. This detuning leads to the possibility of a m-phase shift in the smallest
possible distance (o/=2m), but with a very low (T=3%) transition efficiency due to the

large absorption in both the on- and off-states. The 50% transmission efficiency

requirement leads to a demand for a minimal ‘dc’-stark shift of Q4. T,=15.1 when the
resonance is shifted towards the optical frequency, and Q4 T,=-8.8 when the resonance is

shifted away from it. A smaller propagation length, roughly 10 times the line center
nonsaturated extinction length, is required in the latter case. This is still beyond current
experimental capabilities. It also suggests that amplitude modulation, rather than phase
modulation, would be preferable for near-resonant transitions. One of the main advantages
of the latter in non-resonant medium, the possibility of zero transmission in the off-state,

becomes irrelevant when the required propagation length (o/=10) allows for absorption-

modulation with a negligible line center transmission in the off- (nonsaturated) state:

Toer=5%107>,

The feasibility of absorption modulation using the Stark effect is examined in Figure 8.4b.
The optimal case is for the optical frequency to be at line center of the transition
frequency in the off-state. The propagation length requirement is hence set directly by the
maximal transmission allowed in the off-state. The three curves in Figure 8.4b correspond

to three such demands: 10%, 1%, and 0.1% transmission in the off-state, which
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correspond to a propagation length of 2.3, 4.6, and 6.9 times the extinction length,

respectively. From the data presented in Chapter 10 we can deduce that the minimal
requirement of 10% off-state transmission may be met in a single pass through a quantum
well stack roughly 10um thick. We can also see that the applied fields required to obtain
transmission in the on-state are within experimental capabilities. Even with a demand for
under 1% transmission in the off-state, the 3dB on-state transmission requirement may be
met by as little as 20kV/cm, and 90% on-state transmission should be achievable with an

applied field of approximately 60kV/cm.
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Figure 8.4a: The transmission efficiency and the required interaction length for a n—phase
delay versus the applied ‘dc’ field for an optical frequency a half-width away from the
unbiased line center. The ‘dc’ field amplitudes on the top axis are for the step well shown
in the inset of Figure 8.1.
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Figure 8.4b: The transmission efficiency in the on-state as a function of the applied ‘dc’

field for an opftical frequency on the unbiased line center. The three curves are for different
values of the allowed off-state transmission (T,z) with the corresponding propagation
length demand (in units of the extinction length) given in parentheses. The ‘dc’ field
amplitudes on the top axis are for the step well shown in the inset of Figure 8.1

We have therefore shown, just as for the case of all optical phase modulation, that the
observation of an extremely large electrooptic coefficient [1] bears little relevance on the
feasibility of electrooptic phase modulation using intersubband transitions. The
nonperturbative analysis, on the other hand, provides a straightforward and accurate tool
for analyzing both phase and amplitude modulation processes. The conclusion of the
analysis using the adiabatic approach, contradicting our initial intuitive assumptions, is
that absorption rather than phase modulation is preferable for intersubband transitions.

This was later applied in our demonstration of a mid-infrared intersubband transition

based modulator described in Chapter 10.
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8.5 Alternative Modulation Schemes

Besides the ‘dc’-Stark shift, the control over quantum well parameters makes other
options for amplitude or phase modulation via intersubband transitions feasible. These
include inducing a change in either the populations of the different subbands or in the
intersubband optical dipole matrix elements between them. The former may be achieved
by transfer of electrons between quantum wells with different transition wavelengths as
demonstrated by Vodjdani et al. [10] or by transfer of electrons from a Schottky gate as
demonstrated by Kane et al. [11] Suggestions have also been made [12] for electron

transfer between the L and I'-valley states in material systems where they are relatively

close and can be made to cross by an applied electric field. Recently, we demonstrated a

bias induced shift of 40% of the total population (6=10"%cm™) between adjacent and

lightly coupled quantum wells, leading to absorption of 40% of the optical field in a single

pass (0/=0.5) [4]. Another method for modulation of the intersubband transmission is by

interband excitation. This scheme was used by Julien et al. [13] to obtain a 20dB on/off
ratio in propagation through quantum wells grown between waveguiding layers. The
second modulation scheme, which is control of the dipole matrix element by coherent
interference of the wavefunction components in two coupled wells, was recently
demonstrated by Faist et al. [ 14]. The dipole interaction between energy levels separated
by even integers becomes forbidden when the coupled structure becomes symmetric. The
total absorption of that transition, quadratically proportional to the dipole matrix

element, may be modified by a ‘dc’ field controlling the symmetry of the structure. This
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scheme relies on the existence of a coherent state across both coupled wells and is hence

limited to narrow barriers and high quality material. A similar concept was used earlier by
Dupont et al. [ 15] to obtain both amplitude and phase modulation in asymmetric coupled

quantum wells. The total phase-delay obtained, however, was limited to 60mrad.

An accurate comparison of the relative advantages of the alternative modulation schemes:
the ‘dc’-stark shift, population transfer, and the modification of the dipole elements,
requires a better understanding of the broadening mechanisms of intersubband transitions
than is presently available. In general the requirement for both a large absorption and the
ability to modulate it impose contradictory demands on the volume doping density [9]. In
all cases, the maximal linear transition strength is the upper limit on the total obtainable

nonlinearities.
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Chapter 9

Resonantly-Enhanced Second-Harmonic

Generation in Quantum Wells

9.1 Introduction

Most of the research into the nonlinear optical properties of intersubband transitions in
quantum wells has focused on resonantly-enhanced frequency conversion. Control over
both the quantum well dimensions and composition has led to multi-resonant systems
with optimized dipole matrix elements, which in turn have led to the extremely large
nonlinear coefficients observed (references 17-33 of Chapter 5). Despite these
observations, expectations for high conversion efficiencies have, as yet, failed to
materialize. This, at least in part, is due to the fundamental differences between
resonantly-enhanced second-harmonic generation and second-harmonic generation in

transparent materials. First, as resonance is approached, there is the obvious trade-off
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between increased generation of the second-harmonic and increased absorption of both

harmonics. This trade-off led most studies of second-harmonic generation in quantum
wells to assume that some detuning is preferable. Our rigorous derivation showed the
contrary [1], i.e, that full resonance is the optimal conversion condition within the

second-order perturbative approach.

The issue of resonantly-enhanced second-harmonic generation is greatly complicated,
however, by the breakdown of the perturbative approach even at moderate pump
intensities. We approached it by examining the Bloch equations for a two-frequency-
three-level system interaction within the rotating-wave-approximation both analytically
and numerically [2]. Our derivation begins by showing that for high conversion
efficiencies to be obtained using resonantly-enhanced transitions, pump intensities which
lead to saturation are required (section 9.2). The analysis of this problem thus has to take
into account the coupled issues of absorption, saturation, phase-matching, and many
body effects (sections 9.4-9.5). Due to the host of parameters involved in the two-
frequency-three-level system interaction, no simple or intuitive scheme for optimizing the
quantum well structure can be given and individual optimization must be carried out for
each specific propagation length and pump intensity. The results we obtained differ on
several principal issues from those previously obtained by De-Temple et al., [3], who in
1981 presented the first general treatment of the subject, and from those of Boucaud and
Julien [4] who specifically examined second-harmonic generation in quantum wells. We

also derive a general limit on the second-harmonic intensity that may be generated in a
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given propagation length. Although of little practical importance except for resonantly-

enhanced transitions, this limit applies to all materials. Along with the rest of the
derivation, this limit goes beyond our direct goal of optimizing the design of quantum
wells for resonantly-enhanced second-harmonic generation, and sheds some light on the

basic nature of the second-harmonic generation process.

9.2 The Perturbative Regime

Our treatment of resonantly-enhanced second-harmonic generation begins with the
standard perturbative approach. The conclusions derived using second-order perturbation
theory will serve as a starting point from which the modifications brought about by
saturation at higher intensities will be examined. The induced second-harmonic

polarization in a three-level system interacting with a first (E,) and second-harmonic (E,,)
optical fields is thus given as [5]:

P, =&l (I’l;w + XSL,M))EM + Zgi,,m,mEf)} (9.1a)
where the right-hand side includes the bulk’s linear (and real) susceptibility n,, , the

resonantly-enhanced linear susceptibility ;) ., and the resonantly-enhanced second-

2)
QQo,0,0)"

harmonic susceptibility Similarly the induced first-harmonic polarization is

given as:

*

Pw = 80{(’12) + Z(%),m))Em + Z((az)).2w.—m)E2mEm} (9 lb)

Where the right hand side includes the bulk’s linear susceptibility n,, the resonantly-
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enhanced linear susceptibility x, ,,, and the depletion coefficient ¥, _, . The relevant

nonlinear coefficients for a nearly-resonant three-level system are given from second-order

time dependent perturbation theory as [5]:

Ng’u,,’T, 1
14— 10 710 92a
Koo = e T (A 1) (©-23)
Nq*w.,,’T 1
X = — o (9.2b)
g, (Ad, —i)
I (R TANTITING W ) 1
Ay = —ebrbn T (9.2¢)
2h%e, Ao, —i)(Aw,, —1)

where ¢, is the vacuum permmitivity, N the equilibrium population assumed in the
ground state, (1; the optical dipole matrix element between the i'th and j'th state, T; the
corresponding dephasing time, and A @;; is the corresponding normalized detuning defined

as. Aw; =(w; - (- j)w)T;. The second-harmonic susceptibility is proportional to

(2)

Xo.00 Which is the coefficient of the second-harmonic frequency component in the

perturbative expansion of the susceptibility. The depletion coefficient )(((j,) 20— 18 merely

twice the complex conjugate of the second-harmonic generation coefficient x® In

20,0,0)"
deriving these coefficients we have considered only the near-resonant interaction of the
first-harmonic with the ground to first (0—1) and first to second state (1—2) transitions,
and the second-harmonic with the ground to second state transition (0—2). Although, in
general, each of these terms could represent a summation of several paths, the resonantly-

enhanced terms completely dominate.
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To solve the wave equations we define the propagating optical field as:
E(zf)= %{Em (D)ee™ + E, ()¢ e + c.c) (9.3)
In the latter definition, unlike standard convention [6] we arbitrarily assign the second-

harmonic a propagation vector of 2k, where k is the first-harmonic's propagation vector

defined by:

k=2 2y Rey®, 1= (.4
c C

(@)
This definition includes the phase-mismatch from both the host material and the
transition induced dispersion in the complex nature of E, (z). As long as the treatment is

limited to only an incident pump wave, there is no need to take the phase contribution of

the nonlinear term into account. The amplitude absorption coefficients are defined as:

a
o, (Awy) = ——Im[ () ] (9.52)
2nc
and:
w
O (A0) = =~ Im ¥ 20)) (9.5b)

for the first and second-harmonics, respectively, and a phase mismatch coefficient is

defined as:
(6]
Bou (A, 800) = — {3, =1+ Re[ Y g1 200 ~ RE[ X (0]} (9.5¢)

The wave equations are thus reduced with the slowly varying amplitude approximation

(section 5.7) to:
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dE w .
2 =-q.E,-i— 2, _EE, 9.6a
dZ (4 a0} 2nc Z(m,2w, a2 ( )
and:
dE . .
— = —(aZa) + lﬂZw )EZw - l_'xgc)u,m,a))EaZ) (96b)
dz nc

for the fundamental (E,) and the doubled harmonic (E,,), respectively. An analytic

solution requires the neglect of either the absorption or the depletion for the equations to

be decoupled.

9.2.1 Transparent Approximation

When the absorption is neglected the total optical intensity is conserved and we may
substitute:

E,(2)E,(2) = E,(0)E,(0) - E,, (2)E,,,(2) (9.7)
into Equation 9.6b. Assuming phase-matching, (8,,=0) we obtain:

dE .0
——dz“’ Ei— Yon 0o (Ea(0)— E2 (2) (9.8)
Z nc

and hence an amplitude conversion efficiency of [6]:

£y (2)
E,(0)

= Tanh[(@/ nc) ¥, oy B, (0)2] (9.9)

9.2.2 Nondepleted Approximation

On the other hand, considering the absorption while neglecting the depletion (second term

on the R H.S of equation 9.6a) leads to the solution given as:
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)

L Xo.00) (e72%% — ¢\ E_(0) (9.10)
ne (0, —20,)

EZm (Z)
E,(0)|

which is obtained by solving Equation 9.6a and substituting into Equation 9.6b. The

conversion is thus maximized at an optimal propagation length (z,,,,) of:

1 o
= In(—22 9.11
Z (205 ) O.11)

™ =20

20 [ ]

leading to a conversion efficiency maximum of

E2a) (Zmax ) —_

20,
O a) 277 -2d,
o | ne B Ol (™) (0.12)

2 20)

Substituting equations 9.2 and 9.5 in equation 9.12, we find that the conversion efficiency
i1s maximized when the absorption of the second-harmonic is twice that of the first’s

(0,,=20,). This occurs when the imaginary components of the linear susceptibilities for

the two frequencies are equal (Im[y(, , 1=Im[x5) ,, 1), in which case the conversion

efficiency is maximized at the propagation distance of:

Zom =1/ 00, (9.13)
This result may be derived by taking the limit of Equation 9.11 as o,,— 20, or more

simply by re-solving Equation 9.9 for o, =20.,. The conversion efficiency at z,,, reaches

a value of:
(Zmax ’Zgzo,m,a))]Eﬂ) (O) = _1.. . IX((zz(i),ay,a))le (0) (9 14)
E © | ne  ea e Im[x), ] |

which is proportional to the ratio of the nonlinear to linear susceptibilities. For equal

optical dipole elements (W,,=HL,,), equal detuning from the one and two-photon resonance
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(Awy,=Awy,), and equal dephasing times (Ty,=T(;=T,), the conversion efficiency simply

becomes:
Ezg(fggﬁ =.1_._l£z_1£23'2(_0)7551.92£ (9.15)
© € e

where Q,, is the Rabi frequency of the initial pump (first-harmonic) field interacting with

the first to second excited state transition. From this private solution emerges the

importance of the generalized Rabi frequencies which we define for later use as:

E
Q, ()T, = HuEe@ 7 _ g

2h (9.16:a-c)
_MyE (2) . _
Q,, ()T, = —'2'0'52;};_7;0 =Q,
1 E, (2) Mo T,
o) T. =01t Wr o Haly
21 (2T, o 21 m(:ulo];o)

1.e. the Rabi frequencies in units of the relevant transition’s linewidth. Thus, for the above
conditions the maximal conversion efficiency is proportional (Equation 9.15) only to the
optical dipole matrix element between the first and second excited states (L,,), to the
pump amplitude (E (0)) and to the dephasing time (T,). The peak efficiency is maximized
when the dipole matrix elements between the ground state and both excited states are
equal (Mo1=Hg2) but surprisingly independent of their absolute value. Only the
propagation length at which this maximal conversion is obtained (Equation 9.13) is
inversely proportional to the square of the ground state's dipole matrix elements
(Mo;=Hep), quadratically proportional to the detuning (Aw,=Aw,), and inversely

proportional to the total population (N). Since for equal strength transitions (dipole
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elements and dephasing times) equal detuning is the optimal condition, and since equal

detuning quadratically increases the propagation length, full resonance is the optimal

conversion condition despite the enhanced absorption losses.

9.2.3 Numerical Propagation Equations

At first glance neither the non-depleted (section 9.2.2) nor the transparent (section 9.2.1)
perturbative derivations presented above are justified. The validity of the non-depleted
approximation simply depends on the conversion efficiency; as long as the amplitude of
the second-harmonic is much smaller than that of the first it is justified (see rigorous
justification in section 4.2.3). The commonly used transparent approximation [6],
however, warrants justification not just for resonantly-enhanced interactions. Whereas all
optical transitions contribute to the absorption, only the ones originating from
asymmetric systems contribute to second-harmonic generation. Furthermore, in a three-
level system the second-harmonic generation coefficient is inversely proportional to the
product of the first and second-harmonics’ detuning, whereas the absorption of each
harmonic is inversely proportional to the respective detuning squared (Equations 9.2 and
9.5). Hence the ratio of the second-harmonic generation to the dominating absorption
process is, at best, unchanged with detuning from resonance. Since any nonlinear-optical
material may be viewed as a summation of discrete level systems, the transparency

assumption is a priori unjustified for any material.
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The above argument leads us to expect that a numerical solution of Equation 9.6, taking

both absorption and depletion into account [7], is always needed. In practice, however, it
is seldom of any use in the perturbative regime. We generally expect that saturation in a
three-level system will occur at roughly the saturation intensity of a similar two-level
system (the rigorous derivation of section 9.4 will verify this to within a factor of two).

The Rabi frequencies for which the perturbative treatment is meaningful are hence:

Q, < % %«/1 +AG* (9.17)

1
where T, is the excited state's lifetime. The perturbative treatment near resonance is thus

limited to small amplitudes (£2,,<<1), and, using Equation 9.15, to small conversion

efficiencies for which we are justified in neglecting the depletion of the first-harmonic.
Therefore, when limited to nearly-resonant sub-saturation intensities, the non-depleted
approximation is valid and a numerical solution using perturbative nonlinear coefficients
[7] barely extends this range of validity. In Figure 9.1 we compare the predictions for the
maximal amplitude conversion efficiency obtained by: neglecting the absorption (Equation
9.9), neglecting the depletion (Equation 9.15), using a numerical solution of the
propagation equation with the perturbative coefficients (Equation 9.6), and using the
nonperturbative solution of section 9.5 (Equation 9.35). Neglect of the depletion is shown
to be a good approximation for resonantly-enhanced transitions in the intensity regime
where a perturbative treatment is reasonable, i.e, Q <0.3 (Figure 9.2a). This is
essentially due to the fact that only small conversion efficiencies may be obtained near-

resonance at subsaturation intensities. In the regime of high intensities and large values of
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the detuning, on the other hand (Figure 9.2b), the depletion must be included but neglect

of the absorption is a reasonable approximation. Off-resonance, large values of the Rabi

frequency (€2,) do not lead to saturation and significant conversion is obtained at
distances much shorter than the absorption length (1l/a,,). Therefore, for optical
frequencies detuned by more than the Rabi frequency (£2,) the neglect of the absorption,

which like the second-harmonic coefficient is second order in the detuning, may be a
postriori justified. This regime is typical of second-harmonic generation in non-dispersive
nonlinear crystals, but it is not relevant to intersubband transitions, where the transition

frequency to line width ratio is limited.
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Figure 9.1a The second-harmonic amplitude conversion efficiency: E, (z,.)/E (0) and
conversion length (z,,.) versus normalized amplitudes at moderate pump intensities. The
solid curve (Pth) is the results of the perturbative numerical solutions (Equation 9.6), the
narrow-dashed curve (NA) is the "transparent” approximation (Equation 9.9), the wider
dashed curve (ND) is the perturbative non-depleted approximation (Equation 9.15), the
dashed-dotted line is the non-depleted and constant saturation approximation (Equation
9.34), and solid dots (Full) is the results of the nonperturbative treatment (Equation 9.35)
Jor the double-resonant case (Aw =0). £, stands for the saturation amplitude of an
equivalent two-level system.
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Figure 9.1b The second-harmonic amplitude conversion efficiency: E,, (2,,..)/E (0) and
conversion length (z,q,) versus normalized amplitudes for strong pump intensities. The
solid curve (Pth) is the results of the perturbative numerical solutions (Equation 9.6), the
dashed curve (NA) is the "transparent” approximation (Equation 9.9), the solid dots
(Full) are the results of the nonperturbative treatment (Equation 9.35) for the double-
resonant case (A® =0), and the empty dots are the results of the nonperturbative

treatment for a highly detuned case ( A® =100).

9.3 Transition Induced Phase-Mismatch

Before proceeding with a nonperturbative treatment of second-harmonic generation it is
worthwhile to analyze the influence of the dispersion generated by the intersubband
transitions [8]. It is common practice to assume that the strong interactions of
intersubband transitions, and hence conversion lengths which are much shorter than the
bulk’s coherence length, allow for phase-matching issues to be neglected. In practice,

saturation may greatly increase the interaction distances required for second-harmonic
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generation and the bulk’s phase-mismatch may need to be considered. Furthermore,

phase-matching may not be taken for granted even for subsaturation intensities and short
propagation distances because of the large dispersion accompanying the intersubband
transitions in accordance with the Kramers-Kronig relations [6]. These large index
contributions could, as discussed in Chapter 4, compensate for the bulk phase-mismatch
if correctly designed [9], but could, on the other hand, significantly limit conversion

efficiencies even at short propagation lengths.

For the case of a non-dispersive host medium (n,,=n,) the phase-matching condition

B,,=0 (Equation 9.5c) becomes Re[ (s, 1= Re[x3)20)]- Thus, while equal imaginary

components of the susceptibility satisfy the optimal ratio between the first and second-
harmonic's absorption, equal real components satisfy the phase-matching condition. For
equal strength transitions these conditions are simultaneously met by equal normalized

detuning of the two harmonics (A @,;=A@,,). Full-resonance is the trivial case of equal

detuning that has the advantage of no transition induced dispersions even when the
interaction strengths are initially unequal or altered by saturation. When the real
components of the linear susceptibilities are not equal, however, they constitute a

transition induced phase mismatch which limits the coherence length to:
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Bza) Re[;(((;)m,uu)] - Re[/’(((zm)]

(9.18)

where A is the first-harmonic’s free space wavelength. For case of opposite normalized

detuning (A @,,=—A® ) the transition induced coherence length has a minimum of:

1 /1 i1 n(l+Ad*)
l.= — (=) = T e = T =
20, (A®) [Ad| 2Ad|  2jAd| o, (0)

(9.19)

where we have used the ratio between the real and imaginary components of the linear
susceptibilities, and 1/a.,,(0) and 1/o, (A®) denote the amplitude extinction length for a
line center and a detuned second-harmonic respectively. The transition-induced coherence
length increases linearly with detuning, but its ratio to the length required for maximal

conversion (zma;=1/0,,(A®@)) is inversely decreased. We thus see that for normalized
values of the detuning larger than m/2, the transition-induced dispersion, rather than

absorption, becomes the factor limiting second-harmonic generation conversion
efficiencies. Thus for intersubband transitions in quantum wells, where the interaction
length is typically significantly shorter than the bulk coherence length but on the order of
the absorption length, phase-matching considerations may not be neglected. The effect of
the intersubband transitions induced dispersion on the second-harmonic generation
process is shown in Figure 9.2 for a pump amplitude where the perturbative treatment is

still valid (€2,=0.01). Phase-matched detuning (A @,,=A®,,) quadratically increases the

conversion length but does not affect the absolute conversion; the anti-phase matched
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detuning (A @, =—A@,,) on the other hand, leads to a phase mismatch with a coherence

length given by Equation 9.19, or roughly: /.=rlA @}/[2a,,(0)].
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Figure 9.2: The generated second-harmonic amplitude (E,(z)/E (0)) in the perturbative
regime (£2,=0.01) versus the propagation length (in units of the line center non-saturated

extinction length) for several values of the detuning. It can be seen that phase-matched
detuning (A®@, = A@,,) leads to equal conversion efficiencies but at increasing

propagation lengths, whereas anti-phase matched detuning (A&, = —AQ,,) leads to a
much smaller conversion efficiency (Equation 9.19).

9.4 Non-Perturbative Analysis

Nonperturbative models have been previously presented by DeTemple et al., for
resonantly-enhanced second- [3] and third-harmonic generation [10] using the rotating-

wave approximation. They show that, besides the obvious increase in the propagation
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length, saturation leads to a lower maximal conversion efficiency than would be expected

from the perturbative treatment. Further conclusions show a nontrivial dependence of the
conversion efficiency on the ratios between the optical dipole matrix elements. Boucaud
et al. [11] experimentally demonstrated the saturation of second-harmonic generation in

GaAs/AlGaAs asymmetric quantum wells. A maximal conversion efficiency of 3.4x10™

was obtained for a 2.2jum propagation length at Brewster angle incidence. This conversion

efficiency was obtained for an external pump intensity of 16MW/cm? equivalent to an
effective intensity (internal and polarized along the growth direction) of 450kW/cm?. A
further increase in the pump intensity led to a decrease in the conversion efficiency

demonstrating the saturation of the SHG coefficient.

We base our nonperturbative analysis of second-harmonic generation on the general
formalism of section 6.1 which reduces all orders of harmonic generation to a coupled set
of algebraic equations within the rotating wave approximation (Equations 6.11 and 6.13).
For an n-level system the problem becomes that of n® real equations with (n+4)(n-1) free
parameters. For any given nonlinear process the equations are analytically soluble and
effective nonperturbative nonlinear coefficients may be derived to replace the standard
perturbative ones. Because these coefficients are intensity dependent, however, they vary
along the propagation path rendering the propagation equations without an analytic
solution. The multitude of parameters also leads to extremely complex expressions for the

coefficients making any attempt at deriving simple optimization criteria difficult. These
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difficulties have caused the conclusions of the various treatments of resonantly-enhanced

second-harmonic generation to differ. DeTemple [3] concluded that full-resonance
maximized the conversion and that large efficiencies (>50%) are possible on-resonance at
high intensities due to the "ac" -stark effect. Boucaud and Julien [4] later arrived at the
opposite conclusion: i.e. that some detuning is necessary to obtain high conversion
efficiencies. Ikonic et al. [12] considered the possibility of both tuning the transitions and
quasi-phase matching via applied 'dc'-fields, assuming that larger efficiencies may be
obtained at double-resonance. More recently, Meyer et al. [13] found, that some detuning
may be advantageous, but of a rather limited contribution. Rosencher [7] used a numerical
solution of the propagation equations but with perturbative coefficients and concluded
that conversion efficiencies larger than 20% may be obtained on-resonance before the
onset of saturation - questioning the practical necessity of the non-perturbative solutions.
The inconsistencies between these various treatments [3,4,7,12,13] are due in part to the
different approaches used, the multitude of free parameters involved and the different

numerical values assumed.

As a starting point of the nonperturbative analysis we use the analytic solution of
second-harmonic generation in the perturbative limit (section 9.2) which we modify to
treat the high-intensity corrections [1,2]. Effective intensity dependent coefficients are
defined for both the second-harmonic generation and the absorption enabling a qualitative
analysis of the effects of saturation. We attempt to qualitatively clarify the behavior of

resonantly-enhanced second-harmonic generation in the various regimes and obtain
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quantitative results from a full numerical solution. As we have shown above for

nonparametric processes (Chapters 7 and 8), the perturbative expansion diverges at
saturating intensities. Furthermore, upper limits can also be derived for the n®-Harmonic
generation as a function of both the linear behavior and the saturation intensity. These
limits are explicitly derived below for second-harmonic generation, a derivation that may
be repeated for higher order harmonic generation or for sum/difference frequency

generation.

The equations derived in chapter 6 for general orders of harmonic generation (Equation

6.15) are reduced in the case of second-harmonic generation to:

(9.20a-c)
S A : <* 7:)1 a ulz
(A, py, —1) = plZQ?.w(_]:_) = P00 () = (Poo — P11)E2,
02 01
=~ = T, M, 15,
(Aw,py, i) = pozQ ( L) - PmQM( )= (P11 = P2)2,(—5)
T, T, Ho Ty,
(A(bozﬁoz —i= ﬁlzgw (“%) - .50194) (E'lz_ﬂ') - (poo ~ P2 )-Q'z(o
T, Ho Ty,
plus their complex conjugates for the off-diagonal susceptibility terms, and:
(9.20:g-1)

Poo = poo( 01)_Im[pmQ +P02 2m( )]

2 00 0
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for the diagonal terms, where we have defined normalized first- and second-harmonic Rabi

frequencies as: Q =Q,, T, and Q, =Q,,T,;, respectively (€ is defined in Equation

9.16). To examine the modification of the perturbative conclusions we define effective

linear and nonlinear coefficients ( ¥ 52, ) according to:

Nqnozﬁoz = Solfif,?zm) E,, + eol((iﬁ?m,a,)sz (921a)

and:

Ng(Uo Py, + W,P) =€ XD E +ex") . E E (9.21b)
G Ho1Por + Hy2P), 0Xwo Lot EXwr0-0) Lol :

These effective coefficients, defined analogously with the standard linear and second-
order coefficients, are no longer constants and must be found for each specific set of field
components. They are only uniquely defined when one field component is negligible, or

as derivatives in a small-signal approach.

The general algebraic solution for the set of nine susceptibility equations with 14 free
parameters (Equation 9.20) is extremely cumbersome. Since the generated second-
harmonic is still quite small at the divergence of perturbative treatment (Figure 9.1a), we
begin by considering an arbitrary first-harmonic but a weak second-harmonic. By
presenting solutions for several selected cases we obtain a qualitative understanding of the
high-intensity phenomena, isolate the influence of the various system parameters, and in

particular study the saturation of the effective linear and non-linear coefficients.
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The simplest solution for equation 9.20 is found in the case of double-resonance, all equal

dipole matrix elements, and all equal relaxation times. The effective second-harmonic

generation coefficient becomes:

~ (2)
(eff) — Ngli,p,, _ [Z(Za),w.m)]res

Aeowe) = &,E2 1+ 8Q, 2

(9.222)

In a case which is more realistic for intersubband transitions, the lifetimes (T;=T;) are
different (larger) than the dephasing times (T;=T,), in which case the effective

susceptibility becomes:

(2)

() _ X(Zm,m,m)
_ 9.22b
X000 [1+ 293} a+ 3]; / 7; )] ( )

This equation resembles the expression for the absorption in a two-level system
(Equation 7.5), but with a faster rate of saturation. The self-saturation in a three-level

system is obtained as:

a

) _ X .0
= , 9.23a
Ao 1+2Q T /T) ( )

for the linear susceptibility of the first (pump) harmonic, and:

prca E_I_V_q_:l_lp_z_ Py =[x® ] (1+5Q,%
20,20) g, aEzm (Re.20)dres (1+ 89@2)(1_*_ 29@2)

(9.24)

for the linear susceptibility of the second-harmonic (where the case of equal relaxation
times is given for simplicity). The higher coefficient in the denominator of Equation 9.22a
shows a faster rate of saturation for the second-harmonic generation process versus the
saturation of either harmonic’s absorption. We can conclude from this (without resorting

to the numerical solution used to obtain Figure 9.1) that the perturbative treatment of
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second-harmonic generation is limited to intensities lower than the saturation intensity of

a two-level system with the same dipole matrix elements and relaxation times. Another
conclusion is that since the second-harmonic generation coefficient saturates more readily
than the absorption in a three-level system, and since the second-harmonic conversion
efficiency is generally proportional to the ratio of the second-harmonic generation to the
absorption coefficients (Equation 9.14), the conversion efficiencies at saturating
intensities will be smaller than those predicted from the perturbative treatment. This also
suggests that at high intensities intentional detuning from resonance will lead to higher
conversion efficiencies by reducing saturation. The influence of detuning on the
conversion efficiency, however, turns out to be quite involved [2] as is discussed in more

detail in section 9.5.2.

9.4.1 Optical Dipole Matrix Elements

Before proceeding with the full numerical solution in section 9.5, we analyze the influence
of the optical dipole matrix elements and of the relaxation times in this and the next
section, respectively. The perturbative solution (Equation 9.15) showed that, since up to
second-order perturbation theory the transition between the excited states (1-—2)
contributes to the second-harmonic generation but not to either harmonic's linear
absorption, the maximal (amplitude) conversion efficiency is linearly proportional to the

optical dipole matrix element between them (u,,). For saturating intensities, however,

where a non-negligible part of the population is transferred to the excited states, the
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dependence on the excited states dipole element (i1,,) becomes more complex. To isolate

this dependence we assume double-resonance and equal ground state dipole elements
(Mo =M,,), and solve the density matrix equations (Equation 9.20) to obtain:
(9.25)

Z(eﬁ) = N:uozijoz — [X(Z) ] (,ulz /:uO] )[1 + 2(22} (2(.‘112 /:uol )2 - 1)]
OO gy T N AQ (/oY + DI Q4 (L] ey + )]

)
Qo,0,0)

We find by differentiation that in the high-intensity limit the absolute value of

has maximums at 1,/ 1, =+/9++/73 /2=2.09 or 0.338. We also see that for:

Q, = S (9.26)
21 —2(M2/Il01) ]
the second-harmonic generation coefficient becomes identically zero (7 | =0 ) due to

destructive interference. Thus for all dipole element ratios obeying: (M, / u01)<1/«/2_
there exists an amplitude of the first-harmonic where the second-harmonic generation
disappears. In the high amplitude limit that dipole element ratio becomes
(U, I ) =1/ /2. This zero crossing of the second-harmonic generation coefficient has
no analog in the perturbative treatment as it does not occur for Q_ <1/+/2. It is also not
shared by the first-harmonic's linear absorption coefficient given by:

(9.27)

[1+ 95, +3Q5 (u, / o)) + 495 (fh, / 1)’
[1+ 4% (1, / Mo, + DI+ Q2 (1, / 1)) + D]

e — N, (D, +Pyy)
Z(co,w) - € E
0™

— 1
- [X(w,a))]res

The first harmonic’s absorption ( )(((27,0)) thus has a maximum for a ratio of (ulz/um:\/Z)

and then monotonicly decreases for increasing ratios. Figure 9.3 shows the second-



harmonic generation coefficient (a) and the first-harmonic absorption (b) versus the dipole
element ratio at several intensities. We see that at low intensities the effective second-
harmonic generation coefficient is maximized for: W/, —>1/Q, and does not
monotonicly increase with W,,/lL, as expected from the perturbative treatment. Increasing

dipole ratios do, however, lead to a higher conversion efficiency, as the absorption
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decreases more steeply with them.
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Figure 9.3: The effective second-harmonic generation coefficient (Equation 9.25) and first-
harmonic absorption coefficient (Equation 9.27) versus the ratio of the optical dipole
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9.4.2 Relaxation Rates

Although the relaxation times in quantum wells are more difficult to modify than the
transition energies or the optical dipole matrix elements, it is still worthwhile to examine
their influence upon second-harmonic generation. Because for intersubband transitions the
life time may be up to an order of magnitude greater than the dephasing time, we examine

the situation of a uniform lifetime (T,=T,=T,,=T,), and a uniform but different
dephasing time (T,,=T,,=T,,=T,). By solving the density matrix equations (Equation

9.20) for the double-resonance and equal dipole matrix elements case we find the effective

second-harmonic generation coefficient as:

@
e X000 (9.28)

Xeovow = [1+2Q2(1+3T,/T,)]

and the effective first-harmonic linear coefficient as:

)
(ef) Xo.0)

Yoo = U 202T/T,)

(9.29)

Hence, as expected, a larger ratio between lifetimes and dephasing times (T1/T,) increases
the saturation rates. This will limit the perturbative solution to smaller normalized

amplitudes (Q,) and hence smaller conversion efficiencies before the onset of saturation.

9.4.3 Pump Saturation of Second-Harmonic Absorption

Following the notation of this chapter, the effective linear susceptibility of a two-level

system (Equation 7.5) is given as:
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NUy B, . (Aw - i)
(eff) __ 01701 m
[x(m,m)]2-level - EOEm Z[X((L),a))]res (1+Aa)2 +4Q(327;/7;)

(9.30)

Comparing this to the absorption in a three-level system derived in Equation 9.23a, we
see that the addition of a third equidistant level halves the saturation rate. In a three-level
system, however, the pump will not only saturate its own absorption but that of the
second-harmonic as well. To examine this a finite second-harmonic term is kept in the
solution of the density matrix equations. Solving for the simplest case: on-resonance and
all equal relaxation times and dipole elements, we obtain:

- QH1+2Q D+ Q,, 1+5Q,7+2Q, Q.2+ Q, %)

= 200 931
Pox (1+10Q,% +16Q,* +5Q,, 2 +16Q,°Q, > +4Q, *) ©31)
By keeping only first order terms of the second-harmonic this simplifies to:
- -Q° (1+5Q,7
Poy = ) (9.32)

7y T %0 3 7
(1+8Q,°) 1+8Q,)(1+2Q,°)
The first term on the R H.S is the second-harmonic generation term (Equation 9.22a) and
the second is the second-harmonic's linear (absorption) term. The effective second-

harmonic linear susceptibility is thus:

Nu,, dp, (1+5Q,7%)
o) = Mo OPo _ @ 9.33
x(Zm,Za)) 80 352,0 [X(Zw,ila))]res (1+8Qw2)(1+ 2Qw2) ( a)
where:

2
(X 20 Jres =~ Nty (9.33b)

he,

is the second-harmonic's line center non-saturated linear susceptibility.
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From Equation 9.33 we see that the real component of the susceptibility for the second-

harmonic saturates at a different rate than that of the first-harmonic given by Equation
9.23. This may introduce a phase-mismatch at high intensities even when the
susceptibility at the two frequencies is equal in the perturbative regime. Only in the
double-resonance case, when the linear susceptibility terms are pure imaginary, the
transitions cannot induce a phase-mismatch. Figure 9.4, generated with the numerical
solution of section 9.5, shows the dispersion induced by uneven saturation for values of
the detuning that would not lead to a phase-mismatch in the perturbative regime (wide-
dashed curve). It is interesting that, for this specific case, opposite detuning actually leads
to a greater conversion efficiency than equal detuning. There is however, as shown in
section 9.5.2, no simple guideline for optimizing the tradeoff between the reduced

saturation and the increased dispersion accompanying detuning.
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Figure 9.4: The generated second-harmonic amplitude versus propagation length
demonstrating saturation induced phase-mismatch. Whereas the doubly-resonant case
(wide dashed curve) remains phase-matched, the equally detuned case (the solid curve)
looses its phase-matching because of the unequal saturation of the ground to first and
ground to second state transitions. The narrow-dashed curve shows the case of opposite
detuning which is not phase-matched even at perturbative pump intensities.

9.4.4 Saturated Propagation Equations

The effective susceptibilities derived above (Equations 9.21 through 9.33) may be used to
crudely include the effects of saturation in an analytic solution of the propagation
equations (Equation 9.6). By considering no depletion of the first-harmonic, only linear
dependence on the second-harmonic, and a uniform level of saturation along the
propagation path, the perturbative coefficients in the solution (Equation 9.14) may be
replaced with the saturated ones. On resonance and for equal dipole elements and

relaxation times we obtain:

- (1+2Q 2 23 2 93 2 2 2
Q,,(2) ==l( o ){e 22/0420,7) _ 220450, 1482, )1+20, )]}

5 (9.34)

()

This non-depleted and constant saturation approximation is plotted as the dashed-dotted
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curve (Sat) in Figure 9.1a, along with the perturbative results presented above (section

9.2) and the full numerical solution of the next section (9.5). It can be seen that this crude
approximation is a significant improvement over the perturbative approach for moderate

pump intensities.

9.5 Propagation Equations

9.5.1 Upper Limits on Second-Harmonic Generation

Since the induced second-harmonic polarization is no longer a simple quadratic function of
the first-harmonic amplitude, the wave-equations (Equation 5.17) can no longer be

analytically solved. They are hence rewritten as:

oQ i(n’ —nl, o~
&Zm — _[(—XQ—(I)Tz)‘QZC" - ,poz(%z.)z (9.35a)
(@,0)dres 01
and:
R, =i . -
32(0 = '2—1(,001 + P ’—:—2" : (935b)
01

where the normalized distance Z is defined in units of half the line center’s non-saturated
absorption extinction length (i.e. the intensity extinction length) as:

- W o Nu’T,
Z (wm).zz—[x((z’m)]ms.z =___E&1_@.-z
nc nc  gh

(9.36)

The second-harmonic generation rate (Equation 9.35a) is proportional to Py, which

saturates (Equation 9.28) to a value of 1/[2x(1+3T,/T,)], or simply 1/8 for equal diagonal
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and off-diagonal relaxation rates. Since the second-harmonic only induces transitions

between the ground and second subbands, its saturation amplitude is identical to that of a

two-level system (Equation 7.5 - Q3% =1/2,/T,/T). The upper limit on the second-

harmonic amplitude that may be generated in a given interaction distance is thus:

Q,( _ z
—e <L 937
o S JLIT +3yATT, 372

In terms of intensity this limit becomes:

L,(Z)< L% (z/4) V T,=T (9.37b)
and:
~ sat ]; -~ 2
L, <L --77~(z/3) V T>>T, (9.37c)
1

These are absolute upper limits on the generated second-harmonic and not on the
conversion efficiency. They will only be reached when the transitions are completely
saturated all through the propagation length, i.e., increasingly larger pump intensities will
be necessary to approach this limit for increasing propagation lengths. It is easy to show

that N<z?/[8(1+3T,/T,)] is a crude upper bound for the (intensity) conversion efficiency,

but a more accurate estimate requires a numerical solution of the propagation equations.

To demonstrate the fundamental limit derived in Equation 9.37 we consider the case of

propagation through the nonsaturated extinction length of the first-harmonic: =1, i.e.,

z=10pum for typical intersubband transitions. Assuming: T,/T,=10, and a saturation

intensity of 500kW/cm? the upper limit on the generated second-harmonic intensity is
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roughly SkW/cm?. Figure 9.5 shows the conversion efficiency (for T;/T,=1) as a function

of the incident first-harmonic (pump) amplitude for several values of the detuning and for
three given propagation lengths. For a propagation distance of one extinction length the
conversion efficiency is limited to about 1%. This value is even further reduced for
unequal relaxation rates (T;>T,). Similarly to the case of phase-modulation discussed in
Chapters 7 and 8, a demand for a given generated second-harmonic intensity leads to a

demand for a minimal propagation length.
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Figure 9.5: The second-harmonic intensity conversion efficiency at the end of a finite
thickness propagation layer versus the initial pump amplitude for several values of the

detuning for a propagation layer thickness (L) of L=25/a,, (a), of L= 10/c,,, (b) and of
L=1/a,, (c). The absolute converted second-harmonic intensities are shown (the dots) for
the resonant cases only.
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Figure 9.6, shows the conversion efficiency and length as a function of pump intensity for
various ratios of the dipole matrix elements (l1y)/pz). For the case of all equal lifetimes
and dipole matrix elements, a propagation length of roughly 100 times the unsaturated
extinction length and a pump intensity of over 100 times the saturation intensity will be
needed to reach 25% intensity conversion efficiency. The limited second-harmonic
generation conversion efficiencies presently obtained using intersubband transitions can
be understood in this view. It seems some more optimistic predictions [7] will probably
not be realized unless propagation lengths are significantly extended. Although a larger
ratio of the excited state dipole matrix element (U,,) to that of the ground state (Lio;) leads
to a better conversion efficiency, it should be remembered that there are practical limits on
the magnitudes of the obtainable dipole matrix elements. A high value of the ratio would

therefore come at the expense of a small 11y, and hence lead to a quadratic increase in the

required propagation length.
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Figure 9.6: The numerically derived on-resonance conversion efficiency versus
normalized amplitude ($2,) for several values of the dipole matrix element ratio: 11,5/, .

The conversion distance (the dots) is only shown for L,,/lly= 1, but this curve is typical of
the other ratios.

9.5.2 Detuning Considerations

In sections 9.2 and 9.3 we showed that within the perturbative treatment, and with the
nondepleted first-harmonic approximation, full resonance is the optimal conversion
condition. However, when saturation of the nonlinear coefficients is taken into account
the conclusions become considerably more complex. The multitude of parameters
involved in a three-level system make it impossible to reach a general conclusion on the
preferred detuning, but it is apparent from the unequal saturation rates of the second-
harmonic generation (Equation 9.28) and absorption (Equation 9.29) coefficients that the

perturbative conclusions will be modified. An example of the influence of detuning on
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second-harmonic generation at high-intensities (€,=10) is shown in Figure 9.7. It can be

seen that unlike in the perturbative regime (Figure 9.2), saturation makes some detuning
advantageous despite the created phase-mismatch - although at the expense of longer
propagation lengths. As the dashed curves in Figure 9.7 show, the advantage becomes

even more significant when phase-matching is externally imposed (PM).
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Figure 9.7 The numerically derived second-harmonic amplitude: E, (z)/E (0), versus
Dpropagation length for several values of opposite detuning (A®,, = -Ad,,) at a

saturating (£2,=10) optical intensity. It can be seen that in this case larger anti-phase
matched detuning (A&, = —Ad,,) leads to a higher conversion efficiency despite the
induced phase-mismatch. The dashed curves show that the contribution of detuning is

much greater when phase-matching is externally enforced (PM). The inset depicts the
energy levels in a corresponding step quantum well.
Since the conclusions of Figure 9.7 may not be simply generalized, a more systematic

study of the effects of detuning is needed. The numerically derived conversion efficiency

and conversion length, for a low (,=0.1), a moderate (Q,=1), and a highly saturating

(Q,=10) initial first-harmonic amplitude are plotted versus detuning in Figure 9.8. This is
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repeated for equal detuning of both harmonics (Figure 9.8a-b), and for opposite detuning

of the two harmonics (Figure 9.8¢c-d). We see that, even for moderate amplitudes,
increasing (equal) detuning leads to some improvement in the maximal conversion
efficiency. This is in contrast with the perturbative results which showed that the
conversion efficiency is independent of detuning (Figure 9.5). At moderate amplitudes,
however, the minor improvements that may be obtained with increased detuning come
with the penalty of a quadratic increase in the conversion length (Figure 9.8b). Only at
high amplitudes (Q,=10), where the conversion distance hardly increases with detuning,
does it actually become favorable to detune from resonance. The crossing behavior

between the high and low amplitude curves, seen in Figure 9.8b, is due to the transition

from the saturated to the perturbative regime with increased detuning.
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Figure 9.8: The numerically derived conversion efficiency and the distance at which it is
obtained versus detuning for a low (£2,=0.1), a moderate (2= 1), and a highly

saturating (£2, = 10) initial first-harmonic amplitudes for equal (a and b) and opposite (c
and d) detuning of the two harmonics. The solid curve in d is the transition-induced
coherence length (Equation 9.19).

From the perturbative treatment (Equation 9.19) we expect a larger induced phase-

mismatch for unequal detuning, where the extreme phase-mismatch occurs for the case of

opposite detuning (A @o1=—A ¢2) which is shown in Figure 9.8c and d. The trade-off

between the reduced saturation and increased phase-mismatch as a result of detuning leads
to the maximums in the conversion efficiency curves shown in Figure 9.8c. Figure 9.7 thus
represents only a specific case of anti-phase-matched detuning that is actually favorable.
The conversion distances in Figure 9.8d eventually approach the perturbative coherence

length linear limit of L¢=|A @|*n/2 for all amplitudes (Equation 9.19). This dependence is
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quite distinct from the quadratic one, approaching the extinction length, seen for the

phase-matched case in Figure 9.8b.

In some recent studies of intersubband second-harmonic generation it has been suggested
that detuning of the second-harmonic may improve the conversion efficiency by reducing
the absorption of the generated harmonic. Figure 9.9a and Figure 9.9b plot the conversion
efficiency and length for a resonant first-harmonic versus detuning of the second-

harmonic. It can be seen that the optimal detuning is roughly V2 times the first-

harmonic’s Rabi frequency when the propagation length is not otherwise limited. Thus,
unlike the perturbative regime, where we've shown detuning of the second-harmonic to be

detrimental, some detuning (A 6)21=\/2*Qm) helps reduce saturation at higher intensities.

Figure 9.9c and Figure 9.9d plot the conversion efficiency and length for a resonant
second-harmonic versus detuning of the first-harmonic. Both the low and high amplitude
limits display a monotonic decrease in the conversion efficiency with the first-harmonic's

detuning, while in the moderate regime there is a local maximum for finite detuning.
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Figure 9.9: The numerically derived conversion efficiency a (c) and the distance at which it
is obtained b (d) versus detuning for a low (Q2,=0.1), a moderate (2, = 1), and a highly

saturating (2 = 10) initial first-harmonic amplitude shown for a resonant first(second)-
harmonic versus detuning of the second(first)-harmonic.

9.6 Summary

The generalized form in which we have presented our results should enable the treatment
of resonantly-enhanced SHG without recourse to unjustified approximations or to
numerics. We have shown that double-resonance is the optimal conversion condition in
the weak intensity limit but not necessarily at saturating intensities, that full conversion is

theoretically approachable on-resonance, and that the phase-mismatch is an inherent
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consequence of second-harmonic generation via off-resonant transitions. The effects of

detuning, dipole matrix elements, and relaxation times on the conversion efficiency and
conversion length at high intensities were examined. The fundamental limits derived on
second-harmonic generation in a finite propagation layer clarify the limitations upon
intersubband transition-induced second-harmonic generation despite the resonantly-
enhanced nonlinearities. Whereas resonantly-enhanced transitions display impressive
nonlinear coefficients and moderate conversion efficiencies have been demonstrated at
relatively low intensities, we have shown here that the generation of a strong second-
harmonic requires thick propagation layers. The large nonlinear coefficients of quantum
well intersubband transitions do not therefore lead to an inherent advantage at high
powers. Rather, it is the possibility of achieving moderate conversion efficiencies at low
pump intensities and for sub-wavelength propagation lengths that seems to be the most

promising feature of these designable transitions.

It should be noticed that the limits on the second-harmonic intensity that may be
generated in a given propagation length (Equation 9.38), similarly to the limits derived in
Chapters 7 and 8 for resonantly enhanced phase-modulation, may be extended to
arbitrarily detuned transitions. Hence, at least in principle, they are valid for any
nonlinear optical media. In practice, for most materials it is difficult to isolate the exact
parameters of the transitions inducing the nonlinearities (which are typically not discrete).

Because the saturation intensity is proportional to the detuning over the homogeneous
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broadening squared, it is typically extremely large for “transparent” media. Hence the

perturbative treatment of the second-harmonic generation remains sufficient.
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Chapter 10

Monolithic Integration of Quantum Well Infrared
Photodetector and Modulator

10.1 Introduction

With the on going transition from infrared (IR) imaging systems based on single detector
elements, or lines of detectors, to two-dimensional focal-plane arrays (FPAs) there is an
emerging need for temporal modulation (chopping) of the IR scene in order to achieve full
TV rate integration and to reduce 1/f noise problems [1]. The rapid improvements in the
performance of GaAs/AlGaAs quantum well infrared photodetectors [2,3] (QWIPs)
together with the well developed technology of III-V materials has made them natural
candidates for such IR FPAs [4]. Bandgap engineering techniques have also led to recent
demonstrations of IR modulation using the short extinction length and ultrafast response
characteristic of intersubband transitions [5,6,7). In this chapter we report on the
monolithic vertical integration of an optimized quantum well infrared modulator with a
QWIP. The results, demonstrated for a single detector element, show the potential for
efficient focal-plane IR modulation. Such modulation is particularly important for

QWIPs, as their inherently large [8] and spatially nonuniform [9] dark-current leads to
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saturation of the readout circuits, thereby limiting integration times. Beyond monolithic

integration with quantum well intersubband photodetectors (QWIPs), the multiquantum
well modulator (MQWM) may also find other applications as it may be hybridized to
FPAs of alternative materials. Indeed, some higher operating temperature IR-FPAs in
development [1] require a mechanical chopper, introducing a moving component and thus
negating one of the inherent advantages of FPAs over scanning systems. The monolithic
integration of the multiquantum well modulator with the detector also turned out to be a
uniquely simple and accurate scheme for studying the optical properties of electrons in

quantum wells under bias.

The idea of the monolithic integration of the modulator and detector is a direct result of
our analysis of the nonlinear optical response of intersubband transitions (Part II), and of
considerations arising from the design of an infrared FPA monolithically integrating GaAs
QWTIPs and GaAs readout electronics. That design was carried out last summer in the
Submicron center at the Weizmann Institute of Science in collaboration with Prof. Israel
Bar-Joseph and Prof. Udi Meirav. The work on the modulator was carried out in
collaboration with Yuanjian Xu who processed the samples and carried out the QWIP
measurements, Ali Shakouri who grew the sample, Andrew Tong who wrote the self-
consistent program (Chapter 2) that led to the uniquely accurate design capability, and

with John O’Brien who consulted on the growth and other matters.
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10.2 Motivation

Scanning IR imaging systems typically have a small number of detectors that may be
individually addressed by external electronics. For staring FPAs, with between 10* to a
few times 10° elements, individual connections becomes impractical, and the array is
typically hybridized via indium bumps to a Silicon readout array [4]. The charge
integration capacity of the individual capacitors in these readout circuits is currently
limited by their pitch to roughly 107 electrons for a 10-5cm? pixel. Even with predicted
improvements, charge-handling capacity is expected to be insufficient for T.V rate
integration (40ms) of the total QWIP current (~10%A/cm2) at LiN, temperatures [10].
The shortened integration period thus negates the fundamental advantage of staring over
scanning arrays: that of increased integration times (reduced bandwidths), and hence
reduced noise-equivalent temperature differences (NETDs). As a result the NETD will be
linearly proportional to the dark current rather than to its square root, as it is in the single
detector case without charge integration limitations. Furthermore, a large integrated
voltage on the readout capacitor places high demands on the injection transistor [11] and
induces a nonlinear detector response. Off-chip integration, such as external sampling and
averaging of the video signal, is impractical as a full altemative as it requires prohibitively

fast electronics (and hence also cooling requirements) for full scale (640x480) arrays.

By modulating (chopping) the incident radiation it is possible to separate the 'ac' photo-

response from the 'dc' dark current. If the detector's dark-current (modulator in off-state)
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is subtracted from the detector's joint signal and dark-current (modulator in on-state),
J

only the net current (and noise) will accumulate on the capacitor. Thus the combination of
an IR-modulator and a minimal on-pixel electronics circuit [12] allows collection of the
detector’s signal current only, leading to increased integration times. A schematic of this
idea is shown in Figure /0./. An increase in the integration time by a factor of N (from
Tau to Teame) Will improve the signal to noise ratio by a factor of VN/2. Furthermore,
even if charge integration limitations are somehow removed (or dark currents are reduced),
temporal modulation reduces 1/f noise by shifting the central bandwidth from near ‘dc’ to
the modulator’s frequency. The benefits of the modulator may be compared to replacing
cw operation by a chopper + lock-in amplifier mode of operation. Thus, on-pixel, super-
T.V. - frame-rate integration, for enhanced viewing of slowly varying scenes also becomes
possible. Non-temporal schemes for T.V. rate integration, such as constant current or
dark cell subtraction do not lead to reduced 1/f noise. Spatial subtraction schemes are in

fact susceptible to the large dark current nonuniformity (10-20%) of QWIPs [9].

Mechanical choppers, although used in some currently developed IR-FPAs [1], constitute
a fast-moving component with the associated power requirements, reliability issues, and
operating noise which compromise the inherent advantages of FPAs over scanning
detectors. Development of a fast reliable electrooptic modulator in the IR would therefore

be an important step towards realizing the full potential of staring IR-FPAs.
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Figure 10.1: The monolithically integrated intersubband modulator and QWIP are shown
in a and the separation of the ‘ac’-signal from the ‘dc’ dark current are schematically shown
in b. The top half of b shows the detector output signal versus time and the bottom part
shows the integrated charge with (alternating slope) and without (constant slope)

chopping. The former increases the integration time from Ty 10 Ty,
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10.3 Proposed Solution

The application which this project was designed for is schematically drawn in Figure
10.2. A ‘dc’-electric-field will be used to enhance the absorption of a multi-quantum well
modulator (MQWM) in the spectral response range of a vertically integrated IR-detector
array - hence chopping the radiation flux impinging upon it. The modulator may be
implemented as a single large element, the size of the FPA array, or as an array of
individually addressable pixels overlapping the detector elements. The latter design is
more processing intensive, but also more forgiving to material imperfections. It also offers
a potential for novel image processing applications, essentially a mid-IR spatial light

modulator, and is more compatible with the use of microlenses [13].

Silicon readout

IR scene

hase-gratin

XS P g g
O modulator layer
Detector layer

J&— Indium bump

Silicon readout

Figure 10.2: schematic illustration of an infrared-FPA with a monolithically integrated
modulator.
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10.3.1 Modulation Schemes

Quantum wells designed for modulation differ from those designed for photo-detection in
their barrier height: both photocurrents and dark currents are undesirable so the excited
states should be as confined as possible. Furthermore, the variation of the absorption
spectra with applied bias, minimized in quantum well detectors for a constant gain
spectrum, needs to be maximized for efficient modulation. Realization of quantum well
modulators thus sets two basic requirements: that sufficient absorption can be created in
the MQWM layers and that the absorption can be sufficiently controlled. Each of these
requirements has been individually met: QWIPs with a near-unity quantum efficiency
[14] and several methods of effectively controlling the intersubband transition-induced
absorption [5-7] have been demonstrated. By combining these achievements we obtained

a high-contrast modulator.

Electric field modulation of intersubband absorption may be obtained either by a shift of
the resonance energy using the ‘dc’-Stark effect in asymmetric wells [5], control of overall
structure symmetry in coherently coupled asymmetric quantum wells [6], or by
modulation of the quantum well population [7]. The compatibility of the quantum
coherence effect with the high doping levels and relatively narrow barriers required for an
efficient modulator is still undetermined. Which of the two other techniques is preferable
depends on the electric fields that may be applied without excessive current and on the
transition broadening. Whereas population transfer leads to absorption amplitude control

with a minor wavelength shift, the ‘dc’-stark effect modifies the absorption spectra and
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has a smaller effect on the total integrated absorption amplitude. Since the goal of our

modulator was chopping of infrared radiation rather than tuning we chose the scheme of
lightly coupled quantum wells. This scheme insures minimal modification of the
detector’s line shape and robustness at the high doping densities required. Applied bias
was used to move electrons from a narrow well, with a resonance frequency designed to
be at the maximum of the detector’s photoresponse, to a wide (reservoir) quantum well

with a transition energy at the tail of the detector’s photoresponse spectrum.

Since the intersubband dephasing time is on the order of 0.1ps and inter-well electron
transport times are on the order of 1ps, there are only electronic capacitance limits to the
modulation frequency. Fundamentally, the combination of the fast relaxation rates and the
extremely short propagation length required for full modulation (order of one wavelength)
make these modulators promising candidates for ultra-high speed modulation. With the on
going development of large band offset materials [15] and the initial observation of

intersubband transitions at fiber-optic wavelengths [16] (1.55um) the basic modulation

principles developed in this project may find numerous other applications.

10.4 Charge Transfer Between Coupled Quantum Wells

The dynamic range of the modulator is determined by the voltage control over the electron

surface density in the ground state of the narrow quantum well (Figure 10.3). The most
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accurate way of calculating this dependence is by using the self-consistent program

described in Chapter 2. A simple analytic model taking into account the density of states,
Coloumbic repulsion and flat-band boundary conditions can, however, reproduce the
numeric solution with extremely high accuracy. This model for charge transfer between
two wells is valid as long as each well by itself is symmetric and they are only lightly
coupled. In this case the wavefunctions remain unmodified to the first order by the
electric field (to the second order they shift by the same amount) so their separation
remains constant. The separation of the coupled quantum wells and the length of the
structure period are shown below to be the only parameters controlling charge transfer as

a function of applied voltage.

10.4.1 Coulombic Repulsion

Assuming that the Fermi level is above both ground subbands, that there is no thermal
distribution of charges, and that the wavefunctions remain unmodified by the electric
field, we can solve for the charge transfer as a function of applied bias. As a starting point
for the self-consistent derivation we do not include Coloumbic repulsion. This leads to a

surface charge transfer () between quantum wells as a result of voltage applied between

the centroids of the subbands (V) given as:

do _dog) _1 m4q
dav d\Vg) 2 ai’

(10.1)

where m* is the electron effective mass, q the electronic charge, m*/n#? is the 2-d density

of states per subband, and the factor of 1/2 comes from lowering of the Fermi level (equal

surface density of states in both wells).
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Figure 10.3: A schematic defining the parameters used in the calculation of the charge
transfer between coupled quantum wells.

The charge transfer will lead, however, to a screening electric field (E,), which will offset

some of the external field (E.x) which originally induced it. The internal field (E;,) will

hence become:

Eint = Eaxt - Eo’ = Eext _ﬂ (102)
£,€

where g is the vacuum susceptibility and € is the susceptibility in the quantum wells,
given by £=13.1-3.0x, where x is the aluminum concentration in Al,Ga,_.As. As a result of
the reduced field (Eiy) the corrected charge transfer will be given by :

._._o_"l_).ﬁiQ_ (10.3)

=L, E, —L= 4
g, 2nh

w int ~ 27Fh2 - w( ext

where the charge shift distance is defined as:

(10.4)

L=\ Jdv )~ (v v,
i.e., the separation between the ground states of the narrow and wide quantum wells: ¥,

and ¥, , respectively. Since the field is linear with charge there is no approximation



221
involved in considering charge transfer between two district points rather than between

wavefunctions. Solving Equation 10.3 for ¢ we thus obtain:

m'qL,
2 ext
o= Zﬂf;* . ZEOE/IJEM (10.5)
1o ma’L, v+
2¢ emh?

where we have defined the screening term as:

y= 2¢e,enh’
- m'L,

(10.6)

10.4.2 Voltage Boundary Conditions

Since the voltage drop across the structure is held constant, the electric field must

maintain the condition:

Ot
V,=E, (L ~L)+(E,,~E,)L, =E,L, - (ﬁ)LW (10.7)

L4

where L is the total length of one period (well + barrier) and V,, is defined as the voltage
applied across a period. Hence, using Equation 10.5 the field between periods will be
given by:

LW

E =V (L —
e =V, /(L y+1

) (10.8)

The correction in the applied field will come as a result of interperiod charge transfer as

discussed in section 2.8. The charge transfer density will hence become:
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0'—808__..11’___
q Lp--Lw+pr

(10.9)

Equation 10.9 shows that the highest charge transfer for a given voltage will be achieved
for the largest intra- to inter-period separation (L./L;). This added dynamic range will
however come at the expense of a slower response. The conclusion remains valid as long
as the barrier is much smaller within each period than between periods. Although a
rigorous analysis requires inclusion of transport issues, they may be neglected (at low
temperatures) as long as the barrier area above the Fermi level is much smaller within each

period than between periods.

10.4.3 Absorption Induced by Population Transfer

Neglecting the contribution of carriers in the reservoir (wider) well, the absorption within
the detector’s response spectrum is given for a single pass through a multiquantum well
stack as:

2ng’ ou’ _sin’(6)
nig, T[1+(AE/ )] cos(6)

A(AE) = -log, (1, /I,) =1og (e)- (10.10)

where A is the optical wavelength, n the refractive index, and 6 the angle between the

polarization vector and the plane of the quantum wells (accounting for both the reduction
in the interaction strength and the decrease in the propagation length as the propagation
direction approaches the normal to the quantum well planes). The dipole matrix element,
the transition’s half-width at half-maximum (HWHM) energy, the total surface charge

density in the narrow wells, and the detuning energy are defined as: p, I', &, and AE,
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respectively. For an estimate of the obtainable performance we consider a stack of 100

quantum wells, each doped to 6=1x10"’cm™ optical matrix elements (l1) of 20A° a
wavelength (A) of 10um, and a half-width at half broadening energy (I') of 3.3meV (a
dephasing time of T,=200fs). This leads to an absorption (¢*™) of greater than 98% for

normal polarization; at an angle of 45° the absorption is reduced to 95% due to selection
rules. The variation of the surface density with applied bias is given in Equation 10.9,
which when inserted into equation 10.10 gives the variation of the absorption with the

applied bias.

10.5 Monolithic Detector and Modulator: Results

10.5.1 Design and Structure

To meet the rather severe design criteria both the bound-to-quasicontinuum detector and
the multiquantum well modulator were designed with a self-consistent program (Chapter
2) using feedback from a single previous iteration. The program includes nonparabolicity,
both direct and indirect Coulombic interactions with their explicit temperature
dependence, and a self-consistent electric field correction to match voltage boundary
conditions. The integrated device was grown on a semi-insulating GaAs substrate by
molecular beam epitaxy (MBE). The multiquantum well modulator, consisting of 50

periods of weakly coupled asymmetric quantum wells, was grown following a 0.6um
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n'-GaAs contact layer and a 0.2um GaAs buffer layer. The growth sequence of each

modulator period consisted of a 9nm undoped GaAs well, a 3nm undoped Al 4Gag¢As
separation barrier, and a 10.8nm storage well. The latter was Si-doped to a nominal
volume density of 2x10'%cm™ in a 4nm thick region beginning 0.5nm away from the
barrier (Figure 10.4). The modulator periods were separated by 42.2nm Al ,Gagg¢As
barriers. To maximize the modulator’s dynamic range this structure was designed so that
about 20% of the charge would be contained in the narrow well at low temperatures. In
fact, while it contained roughly 28% of the population at room temperature, this reduced
to roughly 11% at 80K and 8% at 10K. Using the self-consistent solution (Chapter 2) and
attempting to take into account possible inaccuracy of the growth parameters we find that
donor segregation of around 3nm is the most likely candidate accounting for the observed
population distribution. Such segregation is expected [17] and will have a minor influence

on the separation energy or on the voltage dependence of the charge transfer.

The QWIP was grown on top of the modulator following a 0.2um GaAs buffer layer and
a 0.6um n*-GaAs contact layer. It consisted of fifteen 6.5nm-thick Si-doped GaAs QWs

with a nominal doping density of 1.1x10"2cm™? and sixteen 44nm-thick Alj13GaogAs
barriers. Single element mesas where fabricated in a two-step etching process and an edge
of the sample was polished to 45° to couple IR radiation in accordance with the
intersubband selection rules. The room temperature absorption of the sample is shown in

Figure 10.5. After a standard intersubband FTIR measurement, the top detector layer was
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chemically etched, and the absorption of the modulator stack alone was measured. The

curve fit to the difference between these measurements allows us to deduce the detector’s
absorption spectrum at room temperature. It should be remembered, however, that the
absorption spectrums of both the modulator and detector will be shifted at lower
temperatures. There is also some nonuniformity across the wafer. Furthermore, there is
some offset between the detector’s absorption and photocurrent spectrums because the

latter also depends on the escape probability from the quantum well.
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Figure 10.4: The self-consistent solution of the coupled quantum wells at 30K. The left
(narrow) well, with an absorption peak at 10.61um, is designed to contain 20% of the
population. The right (wide) well, with an absorption peak at 12.5um, is designed to
contain 80% of the population. The nominal charge location and density in the wide well
are also shown. The ground states are the solid lines and the excited states the dashed lines.



T ————

- detector +

o 0.6 Detector [T modulator ’ p

~3 {

g Modulator i

=° 0.5 ’ ,"-

23 GaAs i ) W

< 0.4 S MIAA 7o)

[re—) ‘ o

fod 3

s 0.3 A,

‘. > Vn ~f ]

5 0.2 [ ONGA ;

o

= Y. o detector

< 0.1 nALBA —
”MA — modulator b

_.____ s willi T SRR WY GH T J SH WY THAE TN DU ST YT GHT SN S ST TOR W 1

1250 1150 1050 950 850 750 650
Wavenumber [1/cm]

Figure 10.5: The room temperature absorption spectra of the asymmetric double quantum
wells and the detector jointly and separately (obtained by chemically etching the detector).
A schematic of the fabricated modulator and detector structure is shown in the inset.

10.5.2 Modulation

Modulation was measured in a Mattson FTIR at 10K with the (monolithic) QWIP
replacing the original MCT detector. The operating temperature was not limited by the
modulator, but, as expected, by the detector. Since the latter was unoptimized, the
experiment was limited to sub-LN, temperatures. As derived in the previous section, the
modulator’s dynamic range will depend on the charge transfer and hence on the applied
voltage. The maximal applied voltage was limited by the leakage current produced in the
modulator which varied between samples, where we limited the current to 100uA for a
300%400mm mesa to prevent heating damage. This leakage current nonuniformity,

together with the high concentration of oval defects in our samples and the fact that the

current is orders of magnitude above the expected thermal current at 10K and does not
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display an exponential dependence on the activation energy, show that it is limited by

material quality issues and not by fundamental transport mechanisms as in QWIPs.
Improved quality should hopefully allow application of higher electric fields and hence

increase the modulation depth.

The detector’s photoresponse is plotted in Figure 10.6 for a negative bias (-13V,
E=-36kVcm) at which the narrow well is almost completely depleted, and for a positive
bias (14V, E=38kVcem) at which nearly half the population has been transferred to the
narrow well. The transmission at line center of the narrow well is seen to vary from
almost 100% to 60%. It can also be seen that the modulator’s peak response is, as
designed, within a fraction of the broadening (=1mev) of the detector’s photoresponse
maximum. In another sample processed from the same wafer a slightly higher modulation

depth of 45% was obtained (for a voltage of 20V), but with a slightly larger separation

between the peaks of the detector’s response and the modulator’s absorption.
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Figure 10.6: The detector’s photoresponse for a negative (-13V) and positive (+14V)
modulator bias leading to the depletion and the filling of the narrow well respectively. Their
ratio gives the modulation depth. The self-consistent solutions of the quantum well under
the positive and negative bias are also schematically shown.

Figure 10.7 displays the self-consistent solutions of the coupled quantum wells under the
negative bias depleting the narrow well (-36kV/cm) and under the maximal positive bias
applied to this sample (38kV/cm). From the former we can deduce that the only charge
remaining in the narrow well at E.4=-36kV/cm is due to nonuniformity. This remaining

charge, no more than one percent of the total doping, leads to the barely discemible kink

in the detector’s absorption spectrum at 10.7um (Figure 10.6). From the solution for a

field of E.4=38kV/cm we can deduce that the voltage applied on this sample (+14V) is

below that necessary for the crossing of the ground subbands.
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Figure 10.7: The self-consistent solution of the coupled quantum well modulator at the
negative (-36kV/cm) and positive (38kV/cm) applied fields for which the detector’s
response spectrum is shown in Figure 10.6.

10.6 Voltage and Population Dependence

By subtracting the detector’s response when it is blocked by the modulator from its full
response we may deduce the absorption in the modulator. This is done by subtracting the
detector’s response for a given bias, applied to the modulator from the detector’s
response when the maximal negative voltage applied to the modulator (-13V). The results
of this for voltages between -12V and +14V are shown in Figure 10.8. Whereas the
absorption of the narrow well is accurately derived this way, the spectrum obtained for
the wide well is not. Since we cannot apply sufficient bias to completely empty the wide

well we have to curve fit the detector’s unperturbed response at those wavelengths.
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Furthermore, because the detector has a very low efficiency at the wavelength of the wide

well’s absorption (=12.5um), the measured signal will be close to the noise level.
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Figure 10.8: The modulator’s absorption change given by the ratio of the detector’s
response at -13V to its response at voltages between that and +14V.

By curve fitting the absorption spectrum of the narrow quantum well with a Lorentzian
line shape we obtain the dependence of the transition parameters on the applied bias.
These parameters (given here for a different sample on the same wafer for which a higher

bias could be applied) are shown in Figure 10.9.
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Figure 10.9: The voltage dependence of the (narrow-well) intersubband transition
parameters.

Figure 10.9a shows the integrated absorption as a function of applied bias, with an almost
perfectly linear slope in the OV to 17V range. Equation 10.10 is used to correlate the
integrated absorption change to the population transferred (the left to right hand axes of
Figure 10.9a). The population transfer per applied voltage is about 15% larger than
expected from Equation 10.9 or from the self-consistent solution of Chapter 2. Inclusion
of exchange interaction within the Hartree-Fock model [18], however, accounts for this
correction. As population is moved into the narrow well its exchange energy (negative)
increases while that of the wide well decreases as its population is reduced. As expected,

the exchange interaction partially offsets the Coloumbic interaction.
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Figure 10.9b shows the full width at half-maximum transition broadening energy

(FWHM) versus applied bias. From application of the opposite (depleting) bias, from the
bias-induced broadening of wells with constant populations, and from theoretical models
[19], we deduce that the bias induced broadening contribution accounts for only a fraction
of the observed broadening. The rest of the broadening is consistent with the filling of the
ground subband of the narrow well. This will lead to increased broadening both through
the contribution of single-particle nonparabolicity [20] and through the effective
nonparabolicity created by the momentum dependence of the exchange interaction [21].
The contribution of the electron-electron scattering is also expected to be minor [22] at

these densities.

The direct consequence of the increased broadening with increased population is shown in
Figure 10.9¢c - although the integrated absorption area of the narrow well (Figure 10.9b)
monotonicly increases with applied bias, the peak amplitude saturates at roughly 15V and
eventually declines. Examining Equation 10.10 we see that the added broadening cancels
out the contribution of the added population to the peak absorption. This means that
application of larger biases and hence a greater charge transfer no longer contribute to the
peak modulation depth beyond the saturation point. An increase of the modulation depth
beyond the maximal value obtained (45%) thus requires more coupled quantum well
periods in the modulator. Increased bias, on the other hand, will lead to increased

broadening which is also useful if it is important to cover a larger spectral range (as can be
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seen in Figure 10.6 the absorption spectrum of the bound-to-bound modulator is much

narrower that that of the bound-to-continuum QWIP).

The observed broadening may have important consequences for many intersubband
transition based devices. One apparent conclusion is that previous estimates of the
separation required between the donors and the electrons to reduce the donor induced
broadening were greatly exaggerated [23] as they did not consider the population induced
broadening. Obtaining the population induced broadening limit on the maximal value for
the absorption in optimized quantum well structures is also of fundamental importance
for nonlinear processes. As discussed in Part II of the thesis the maximal linear interaction
strength sets upper limits on the obtainable nonlinear phenomena in a given propagation
thickness. The issue of population induced broadening, which we have briefly touched

upon here, definitely merits a more comprehensive treatment.

Figure 10.9d shows the increase in the intersubband transition energy as function of
applied bias. The self-consistent solution shows that this shift is due to the increased
population and hence increased exchange interaction. This has been measured before by
comparing growths of nominally identical structure with increasing doping concentration

[24], but has never been directly observed.
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10.7 Future Directions

The immediate improvement required of the multiquantum well modulator is a
significantly higher modulation depth. The signal transmitted through the modulator in its
off-state will add to the ‘dc’ rather than ‘ac’ component and hence translate to a reduced
detector efficiency. From equation 10.10 and from the results of Figure 10.9 we can
deduce that 200 coupled quantum well periods, requiring a growth of an epitaxial layer

about 8pum thick, with a voltage swing of 30V, will lead to an absorption of roughly 95%

- a result which should be quite sufficient for most applications. Once this goal is
obtained, several other improvements could greatly increase the potential applications of

this concept.

10.7.1 Normal Incidence

One of the main difficulties encountered in attempts to utilize intersubband transitions is
the selection rule dictating interaction only with polarization perpendicular to their
planes. This selection rule may be overcome by a two-dimensional phase grating [25] or
by transitions between states with relaxed selection rules: either in p-doped wells or
quantum wells in indirect bandgap materials [26]. Achievement of normal incidence
modulators via the use of intersubband transitions violating the selection rules of the
diagonal effective mass model (section 1.4) would allow for natural integration with
alternate IR-detectors. The reduced mobility of the latter limits their potential as

detectors, but may lead to reduced currents and hence be an advantage for modulators.

10.7.2 Operating Temperature

Since the proposed modulator is monolithically integrated with a QWIP which operates at

77K or below, and since the quantum wells in the modulators are designed with higher
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barriers than those in the detectors - the former will not impose a cooling requirement.

Indeed, unlike in detectors where the dark current is fundamentally related to the
absorption wavelength [8], the final state in modulator intersubband transitions may be
well confined. Thus the use of MQWMs in conjunction with elevated operating
temperature detectors [27], or even room temperature ones [1], should be possible as

conduction band offsets of over 1V have been obtained on GaAs substrates [15].

10.7.3 Spectroscopy

The ‘dc’-stark effect may be used to shift the absorption spectrum of an asymmetric
modulator and hence control the detector’s gain spectrum. This method is preferred over
the direct tuning of an asymmetric quantum well detector because the bias change will
unavoidably change its gain and dark current along with its spectrum. Furthermore, the
modulator, which is based on a bound-to-bound transition, can be designed to have a
significantly narrower absorption line width than the detector. Thus, it is feasible to
monolithicly build a fast imaging infrared spectrometer which may find applications in

remote sensing and environmental monitoring,
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