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Preface 

We live in an age in which computers and computer software are becoming more and 

more an integral part of the society that we live in. Artificial Intelligence (AI) has made 

dramatic progress over the past thirty years, and there is plenty of scope for further 

research. Examples of progress are the development of theories of inference for expert 

systems and a better understanding of the capabilities and limitations of neural networks. 

In the years to come, I believe we will find closer and closer ties between A1 fields and 

the fields of statistical modeling and inference. The benefits of robust automated learning 

techniques that may result from this synergy are enormous. 



Abstract 

In this thesis, the consequences of automating network management of telephone networks 

are examined. The role of network managers is to monitor the network for exceptional 

conditions and place controls into the network if necessary to deal with these network 

exceptions. One potential consequence of automating network management is a network 

which is capable of adjusting itself quickly to changing traffic conditions, also known as 

a network with dynamic routing. Simulations are used to show that there are benefits to 

be gained from implementing dynamic routing by automating the actions of the network 

managers. 

In this thesis, the application of learning techniques such as neural networks and linear 

predictors to the tasks of network traffic management is also examined. Three network 

management tasks considered are: (i) recognition of traffic patterns in the network (ii) 

learning suitable thresholds for network congestion control and (iii) time series prediction 

of trunk group occupancy. It is found that non-linear learning techniques such as neural 

networks can give small gains over the more standard technique of linear predictors. 
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Chapter 1 
Introduction 

1.1 Purpose 

For some years, Caltech and Pacific Bell have cooperated to develop an expert system to 

aid network managers in their job of continually monitoring and controlling the telephone 

network. Some interesting opportunities for research have resulted from this work. The 

results are described in this thesis. 

The purpose in writing this thesis was twofold: 

To quantify the benefits of using tools that were intended for network management to 

improve routing of calls from origin to destination in typical Regional Bell telephone 

networks. An analysis was also carried out of whether such an approach is always 

stable. 

To demonstrate the applicability of learning systems known as neural networks to 

problems that arise in day to day management of telephone networks. 

Both goals have been successfully achieved. 

1.2 Roadmap 

This thesis is composed of a number of separate traffic studies grouped into two parts. 

These parts are: 

Benefits of dynamic routing 

Application of learning techniques to network management 

Dynamic routing is a means of routing telephone traffic from its origin to its destination 

using automatic routing adjustments to handle changing network conditions. 

Network management is presently very much a manual activity consisting of monitoring 

the telephone network to diagnose the cause of any network failures or exceptions and 

placing controls in the network to reduce the impact of these failures or exceptions. 



Learning Techniques refers to the use of neural networks, linear predictors, or other 

techniques for automatically detecting patterns in data and extrapolating based on those 

patterns. 

The impetus for all of these studies was a project called NOAA, Network Operations 

Analyzer and Assistant, which was a joint project between Pacific Bell and Caltech to 

develop a system to automate network management. NOAA is described in Appendix A. 

1.3 Traffic Studies 

To best understand the concepts and terminology used in this thesis, a review of traffic 

theory may be in order. [Sch87] or [Coo811 give more details for the interested reader. 

1.3.1 Trunks and Trunk Groups 

A telephone network can be modeled as a set of nodes and links. See Figure 1.1. Telephone 

traffic is carried on trunk groups. A trunk group is a set of trunks, each of which can 

support a conversation. Trunk groups are used to link the offices. If all the trunks are 

busy on a trunk group, then no new calls can be accepted on that trunk group. Typically 

a switch makes a number of attempts to connect the call, but if all routes available to it 

are busy, then the call is blocked. 

The nodes are the telephone offices which act as switches for the telephone traffic. 

These offices route the traffic onto the appropriate trunk groups depending on the number 

dialed by the customer. 

1.3.2 Random Arrivals 

For network planning and modeling purposes, the usual assumption is that of random 

arrivals[Sch87]. In other words, the probability of a call arriving in the next small time 

interval is independent of call arrivals in the previous time intervals. This is also known 

as memoryless arrivals. 

This is an approximation because, if a call is blocked, the customer will usually try 

again immediately. Thus, if a trunk group is fully occupied, the arrival rate will increase. 

This phenomenon is usually not included in the model. 

Let X denote the average arrival rate of new calls with units of calls per second. One 

exception to the assumption of random arrivals is the special case of overflow traffic which 
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Figure 1.1 : Telephone Network 

is considered in Section 1.3.9. 

1.3.3 Memoryless Holding Times 

An assumption that is observed in practice is the assumption of memoryless holding 

times[Coo81, Sch871. In other words, the probability of a call completing in the next 

small time interval is independent of how long the call has been in progress. 

This leads to an exponential distribution of holding times. If T is a random variable 

denoting the observed holding time of a call with units of seconds, then: 

From this the average holding time is obtained as Th seconds and the average rate at 

which a call is serviced is defined as 

with units of calls per second. For telephone traffic, Th is usually on the order of 180 

seconds [DS84]. 

1.3.4 Traffic 

The traffic is defined to be: 



Figure 1.2: State Diagram 

and the unit is taken to be Erlangs. The traffic is a measure of the relative rate at which 

calls are arriving in comparison to the rate at which they are being serviced. In general the 

number of trunks will need to be larger than the offered traffic if the blocking probability, 

that is, the probability that a new call arriving to the network is blocked, is to be kept 

low. 

1.3.5 State Diagrams 

Given N trunks, an arrival rate of X calls per second, and a departure rate of p calls per 

second, the state of the trunk group is defined as the number of trunks that are occupied 

on that trunk group. A state diagram which shows all the possible states of the trunk 

group and the rate at which those states are being entered and exited can be drawn. Here 

the circle with i in it, indicates the state of i trunks being occupied. This is illustrated in 

Figure 1.2. 

1.3.6 State Probabilities 

From the state diagram and its implied differential equations, the state probabilities in 

steady state can be found. Define pi(t) as the probability of i trunks occupied at time t. 

Consider arrivals and departures during a small time interval dt. This gives a set of N + 1 

equations of the form: 

The total probability must always sum to 1: 
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Thus from any initial state, the final state can be deduced by setting: 

which gives: 

1.3.7 Erlang Traffic Tables 

From the above the blocking probability, B(a, N), which is the probability that all trunks 

are occupied when a new call arrives, can be seen as: 

Equation 1.10 is known as the Erlang-B blocking equation [Coo81]. From this equation, 

the number of trunks needed to keep the blocking probability low can be calculated. An 

example of such a calculation assuming a 1% blocking probability is given in Table 1.1. 

1.3.8 Poisson Distribution 

If the number of trunks is large (N -+ oo), then Equation 1.9 becomes: 

which is a Poisson distribution. Recall that a Poisson distribution with mean a has variance 

equal to a. 

1.3.9 First Routed and Overflow Traffic 

The above has assumed random arrivals, also known as first routed traffic. When a call 

arrives to a telephone network, it is first attempted on a direct path to its destination if 

one exists. If this attempt fails it is then tried on an alternate path. 

In general, overflow traffic (traffic that has overflowed from a direct path), will not 

arrive at random instants of time. In other words, a previous arrival on a trunk group 

carrying overflow traffic increases the likelihood of a future arrival. 

For overflow traffic, the following equations [Coo811 apply. These equations are derived 

using a more complicated state diagram which models the number of trunks occupied 
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Table 1.1: Maximum Tkaffic Assuming 1% Blocking 

Number of Trunks 

0 

Maximum Traffic (Erlangs) ] 
0.00 



on the direct route and the number of trunks occupied on the overflow route in a two 

dimensional state diagram. The state probabilities can then be solved for. 

Define a as the mean level of the overflow traffic that results from random traffic of a 

Erlangs being offered to a trunk group of size N .  Then it can be shown: 

Note the use of the Blocking formula, Equation 1.10. Define v as the variance of the 

overflow traffic. Then it can be shown: 

a 
v = a  1 - a +  ( N + l + a - a  

(1.13) 

The derivation of the formula for the variance is not trivial. See [Coo811 for details. Define 

the peakedness z as the ratio of the overflow variance v to the mean overflow traffic level 

a: 

z = v / a  (1.14) 

For random arrivals, the value of z would be one. For overflow traffic, z is greater than 

one. This is bad from the point of view of blocking because it means that more trunks 

must be provided to cope with a given level of traffic, because of its greater variability. 

The worst case peakedness would occur when a small amount of traffic overflows from a 

single large trunk group. In such a case, call arrivals would be highly clustered. 

1.3.10 Numerical Example 

For example, take the case of 210 Erlangs of offered traffic on 200 trunks: 

The calculations give 18.007 Erlangs of overflow traffic: 

Using a table of 1% blocking tells us that 231 trunks carry 209.8 = 210 Erlangs. Thus 31 

trunks can carry the 18.007 Erlangs of overflow traffic with 1% blocking. 

On the other hand, 27.2 trunks would be necessary to carry the 18.007 Erlangs of traffic 

if the 18.007 Erlangs represented "ordinary" traffic. This demonstrates that overflow traffic 

requires slightly more trunks than ordinary traffic, because it has higher variability. 
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Figure 1.3: Hierarchical Telephone Network Routing 

1.4 Routing Arrangements in Telephone Networks 

Routing arrangements in telephone networks usually follow either a hierarchical or non- 

hierarchical arrangement. For example, presently Pacific Bell uses hierarchical routing 

and AT&T uses non-hierarchical routing. 

1.4.1 Hierarchical Routing 

In a hierarchical routing network, customers are connected to endoffices which in turn are 

connected to tandems. See Figure 1.3. 

Endofices are the exchanges that serve customers and tandems are the exchanges used 

for traffic between endoffices that are not directly connected. 

In a hierarchical network, high usage trunk groups link offices that are close together 

geographically. They are designed to overflow to final trunk groups, which are the back- 

bone of the network. This arrangement minimizes the total network cost. 

1.4.2 Non-Hierarchical Routing 

In a non-hierarchical network, each endoffice can also act as a tandem. See Figure 1.4. 

In a non-hierarchical network, a distinction is made between the direct path between 

two endoffices and an a2ternate path. A direct path is a direct route between two endoffices. 

An alternate path connects two endoffices via an intermediate endoffice. 

1.5 Historical Perspective on Teletraffic Engineering 

In the past 100 years, teletraffic engineering has become a recognized branch of engineering. 

It was in 1917 that the Danish mathematician A. K. Erlang first published the blocking 



Figure 1.4: Non-Hierarchical Telephone Network Routing 

formula, Equation 1.10, that bears his name [Coo81]. This blocking formula enables 

calculating the correct size for any system with a fixed number of servers, random arrivals, 

and memoryless holding times. 

Developments since then have been made in network designs that use alternate routing. 

An understanding of the nature of the overflow traffic distribution was obtained in the 

1930's. The seminal paper on telephone network design is a 92 page paper by Wilkinson 

in the 1956 Bell System Technical Journal [Wi156]. This paper needs surprisingly few 

changes today, when applied to the planning of regional Bell telephone networks. 

The most recent changes in telecommunications networks have been the addition of 

a separate signaling network to handle message packets for call setup and routing, and a 

move from analog voice transmission to digital with the consequent improvement in signal 

quality over long distances. These changes have taken place gradually due to the necessity 

to avoid costly write-offs of the installed base of network equipment. 

Over the coming years, Asynchronous Transfer Mode (ATM) technology can be ex- 

pected to move from the laboratory to the telephone network. ATM is designed to carry 

video as well as voice traffic. This will result in big changes to the way networks are 

designed and built. Exciting opportunities exist for the telephone companies, especially 

those that succeed in finding the winning applications for this new technology. 
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Chapter 2 
Introduction to Dynamic Routing 

2.1 Introduction 

In telephone networks, not enough equipment is provided to enable every customer to 

establish a simultaneous connect ion to every other network customer. Instead a statistical 

approach is taken in the choice of equipment capacities in telephone networks. Traffic 

measurements are taken and enough equipment is provided in the trunk network to satisfy 

the expected number of conversations in progress at the busiest hour of the day. Since the 

network planners are conservative in the amount of equipment installed, it is the task of 

routing algorithms to ensure that the networks are used efficiently. 

Static routing algorithms are used to calculate routing tables for the network switches. 

These routing tables are not adjusted to account for traffic conditions in the network. 

Dynamic routing algorithms make adjustments to the call routing based on the state of 

the network or based on the time of day. 

2.2 Dynamic Routing 

A simple example of a small network is given in Figure 2.1. This shows a three node 

network, with nodes labeled A, B, and C. Each pair of nodes has a set of bi-directional 

links between them, capable of 10 simultaneous conversations. If the traffic requirements 

are such that each node has five calls destined toward each other node, there are at least 

two possible stable states for this network depending on the routing algorithms used. 

One stable state would be the direct routing approach. In this case a call between A 

and B would only be allowed to use the direct link from A to B. If this were the case, all 

the offered calls could be accepted and the network would be capable of supporting the 

30 simultaneous conversations. 

Another alternative would be the two hop routing approach. In this case a call between 

A and B would be allowed to use the direct link from A to B or alternatively to use a 

two-hop route from A to C and then C to B. If this were the case, a stable state could arise 

with all calls in the network taking two hops and only half the traffic, i.e. 15 simultaneous 

conversations, being accepted. 



Rom this example, it would seem that direct routing is always preferable. This is true 

when the traffic offered is symmetrical in nature. On the other hand, if a lot of traffic is 

offered between A and B with no traffic originating from B or C, it can be seen that using 

direct routing increases the probability of calls from A to B being blocked, since two-hop 

call completion possibilities are eliminated. 

From this simple example it can be seen that a static or dynamic routing algorithm 

must strike a balance between increasing the global network efficiency by carrying out 

direct routing whenever possible, and increasing the network resilience to failure or unex- 

pected traffic patterns by offering as many routing possibilities as possible. 

The first major implementation of dynamic routing in the North American tele- 

phone network came with AT&T's implementation of Dynamic Non-hierarchical Rout- 

ing (DNHR) which was introduced into the toll network in 1984, with projected network 

savings of 15% [HSS87]. DNHR is a routing scheme that updates the routing tables de- 

pending on time of day. In this way the difference in the busy hours in the different time 

zones across the USA can be taken advantage of. DNHR was subsequently replaced by 

RTNR which is described in this chapter. 

The remainder of this chapter includes descriptions of: 

RTNR or Real-Time Network Rerouting from AT&T 

DR5 or Dynamic Rerouting Based on 5-Minute Data from Bellcore 

DCR or Dynamically Controlled Rerouting from Prism Systems 

NOAA or Network Operations Analyzer and Assistant developed at Caltech 

2.3 Description of RTNR 

AT&T has implemented a Real-Time Network Rerouting System (RTNR) in its network. 

The introduction of RTNR into the AT&T switched network was completed in July 1991 

[ACF92], replacing the older DNHR system. The routing tables in the switches are up- 

dated in real-time using the signaling network. See Figure 2.2. Thus, at call setup time, 

the switch can send the call on the route that offers the best probability of completion. 
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2.3.1 AT&T Network 

The AT&T network consists of approximately 100 switches and associated transmission 

equipment for the switching and transmission of calls. The network switches are dis- 

tributed across the United States, which means that there should be potential savings 

by taking advantage of the different time zones in the different states. Another goal of a 

dynamic routing system is to provide a self-healing network that adjusts to take account 

of any equipment that may have come into or gone out of service. 

2.3.2 Signaling System No. 7 

The signaling system is vital to the implementation of RTNR. Signaling System No. 7 is 

an international standard and allows the transmission of call setup information between 

switches as the customer dials the number. Rather than transmit the signaling information 

along the same voice channels that the calls will use, a separate signaling network is used. 

See Figure 2.2. The messages sent in this network are the subject of the international 

standard. AT&T has extended the signaling message set to include information about 

routing possibilities that can be used at call setup. 

The routing scheme is a two-hop scheme, which means that a maximum of two hops 

will be used to set up a call. The originating switch first tries a direct route to the 

terminating switch. If the direct route is not available, the originating switch tries to find 

a two-link path by first querying the terminating switch through the signaling network for 

the busy-idle status of all trunks connected to the terminating switch. It then compares 

its own trunk group busy-idle status information and finds a list of two-hop possibilities 

that are lightly loaded on both legs. One of these is chosen at random. 

Two points should be noted. The first is that a 16 byte message is sufficient to 

communicate the busy-idle status of all the trunks in the terminating exchange, assuming 

the network has at most 128 nodes. If there are at most 128 nodes, then each node will 

have routes to at most 127 other nodes. A single bit is used for each route busy-idle status. 

Busy status means that over 90% of the trunks on the route are occupied. The shortness 

of the message is a key requirement of this dynamic routing scheme, since millions of calls 

are set up over the course of a day, and the signaling network should not be overloaded. 

The second point to note is that a cache scheme is used to speed up the call setup. 

When a request for trunk status is sent, instead of waiting for a response, a call setup 



is attempted using the most recently received status information. If this fails, the switch 

will make another attempt when the new status information arrives. This speeds the call 

setup. 

2.3.3 Benefits of RTNR 

As can be seen from this brief description, RTNR provides a routing scheme that dy- 

namically adjusts itself to network conditions. In other words, if a free route exists for a 

call, RTNR is very likely to find it. On the other hand, if certain routes are congested or 

unavailable, RTNR is likely to avoid them. In addition it simplifies the task of network 

planners, since optimum routing tables for the switches in the network no longer need to be 

calculated prior to adding new equipment, since the network will adjust itself accordingly. 

AT&T network planners have used simulations to show that an RTNR network can 

carry the same traffic as a DNHR network, with 2-3% fewer facilities [AC93a]. Thus, 

RTNR results in lower equipment costs. In addition, network planning and administration 

have been simplified. 

Measurable improvements in service quality have also been found since the introduction 

of RTNR. For example, the busiest day of the year is the Monday after Thanksgiving. In 

1990, with DNHR 17,086 of 136 million calls were blocked on AT&T facilities. In 1991, 

with RTNR 228 of 157 million calls were blocked on AT&T facilities. This represents a 

substantial improvement. Some of this improvement could be attributed to changes in the 

number of trunks in the network but AT&T in [ACF92] imply that the implementation 

of RTNR was the main cause of the improvement. Other cases involving barely degraded 

quality of service despite transmission facility failures are also cited. 

2.4 Description of DR5 

DR5 is a system proposed by Bellcore to implement a limited form of dynamic routing in 

the local telephone network [CKP91, OK85, K089, Kri891. 

2.4.1 Regional Bell Telephone Networks 

The main constraint in the local telephone network compared to the long distance net- 

work is that switches are supplied by more than one vendor in a given network. Thus, 

implementation of dynamic routing is more difficult, since cooperation between different 



vendors to update routing tables in the switches is required. This is still an unsolved 

problem. 

Instead DR5 takes the approach of using the existing infrastructure for network man- 

agement and adapting it to provide a limited form of dynamic routing. Existing network 

management capability in the local telephone network allows network managers to obtain 

data about every trunk group in the network at 5 minute intervals. If network managers 

find a problem in the network, they can effect expansive or restrictive controls to reroute 

traffic or cut down on traffic entering the network. DR5 uses the same interface to network 

management systems as the network operators, computes reroutes based on trunk data, 

and implements these reroutes using network management controls. Using simulations, 

Bellcore has estimated this approach can provide 50% of the potential benefits of full 

dynamic routing [CKPSl] . 

2.4.2 Limitations of DR5 

DR5 has limitations because the network management system was not originally designed 

for supporting DR5. First, some routing issues need careful handling when implementing 

controls. Number translation is the step during call setup of translating the telephone 

number that is dialed by the customer to find a trunk route on which the call can be 

sent. Number translation issues may mean that two controls must be put in to effect a 

single reroute. The first control is a precautionary control that prevents routing loops. 

Occasionally reroutes may not be allowed due to reroutes already in place that could result 

in routing loops. 

Second, the update time of 5 minutes means that not all of the gains of dynamic 

routing are realized compared to the DCR and RTNR systems. 

2.5 Descriptionof DCR 

DCR or Dynamically Controlled Routing is a dynamic routing system that works well with 

Northern Telecom DMS switches. It is currently installed in the Canadian network. Like 

RTNR, it updates the routing tables in the switches at short time intervals to take account 

of the current state of the network. Unlike RTNR, there is a central network management 

location that carries out all of the computations with respect to the new routing tables for 

the switches. More recently DCR has been enhanced to provide the capability to prevent 



traffic associated with a high volume call-in from impacting the network. 

2.5.1 Expansive Controls 

The heart of the DCR network is a central network processor. Each switch reports to the 

network processor every 10 seconds with respect to its trunking status, overflow traffic 

and CPU occupancy [Car89]. Using this information, the network processor updates the 

routing tables of the switches within 5 seconds. This cycle repeats every 15 seconds. 

A call in the DCR network uses at most two hops. Some facility failures in the 

Canadian network were handled well by DCR. For example when a transmission link was 

lost on June 16, 1989 between 18:OO and 22:00, DCR enabled all calls to be completed 

without overflow. Other out age examples were also given. 

2.5.2 Restrictive Controls 

More recently DCR has been extended to handle restrictive controls in the event of high 

volume call-in conditions, where call-in traffic has a low probability of completing and 

should be cut off at source to prevent interference with regular traffic [LR91]. 

The DCR approach, which is also used by network managers, is one of call gapping. 

A call gap specifies that only a certain number of calls are to be let through to a given 

telephone number or range of numbers in a control interval. In the case of DCR, the 

control interval is of the order of 15 seconds. The number of calls to be let through is 

a function of the arrival rate, the holding time, and the number of lines serving the call 

destination. In addition, the switch processor occupancy of all the switches in the network 

provides feedback as to when further throttling is required. Removal of the implemented 

controls is only made when certain low thresholds are passed to provide hysteresis in the 

control process. 

Simulations have shown the system to work well in a large network even in the event 

of update data not always being available, or holding time estimates being inaccurate. In 

each case, the system is able to update the call gaps to keep switch processors below 85% 

occupancy, as opposed to 100% occupancy when the algorithm is not implemented. The 

customer still receives all the calls that they can handle. On the other hand, alternative 

call gap algorithms have been shown to oscillate when update information is not available 

[LR9 11. 
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2.6 Description of NOAA Dynamic Routing Possibilities 

NOAA is described in detail in Appendix A. 

Presently NOAA monitors the network for calls that are overflowing from trunk groups. 

To move more towards dynamic routing, NOAA could monitor trunk groups for occupancy 

above 90% and put in expansive controls before the trunk groups overflow. The main 

reason this is not presently done is that there is a bottleneck in obtaining information 

from the Pacific Bell network management system, which means that NOAA is limited in 

the number of controls that it can implement and monitor in a 5 minute period. 

In Chapter 3 the equipment savings that can be expected from implementing dynamic 

routing using a system such as NOAA are examined. 

2.7 Comparison 

In this section some comparisons are drawn between the various dynamic routing systems. 

2.7.1 Local Versus Global Knowledge 

RTNR is the main dynamic routing system which avoids the use of centralized knowledge 

to update the routing tables in the switches. This has the advantage of providing a quick 

response to any exception situations. Also the cost of providing a data path from all the 

switches to a central location for the transmission of occupancy and routing information 

is avoided. On the other hand it becomes more difficult to use a system such as this for 

network management purposes, especially for restrictive controls, since a global view is 

lacking. 

NOAA, DCR and DR5 all carry out processing of controls or routing table updates at 

a central network management location. 

2.7.2 Update Times 

DR5 and NOAA use a 5 minute update cycle for controls and network data. The RTNR 

and DCR schemes have update cycles of seconds. In general, the faster the response, the 

more traffic can be saved in the event of exceptional situations arising in the network. 

However, the faster the response, the more data processing capability needs to be present 

in the network management center. 
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2.8 Analysis of Dynamic Routing 

Most dynamic routing schemes are analyzed using simulation techniques to find the equip- 

ment savings associated with implementing the scheme. 

Ash et al. in [ACF92] have shown using simulations that RTNR provides capital equip- 

ment savings over DNHR. Ash et al. in [AC93a, AC93bl have showed that network design 

and network capacity management in RTNR networks amounts to a linear programming 

problem for which known methods with certain heuristic adjustments perform well. 

Mitra et al. in [MGH93] carry out an analysis of a generalized RTNR scheme which 

sends more than one bit to indicate whether a route is busy or not. A simplified model of 

a symmetric network in which an assumption was made that each link was independent of 

other links was used. This model is called a Fixed Point Model. Fixed Point Models are 

discussed in detail in Chapter 4. Trunk reservation in which a small number of trunks was 

reserved for direct routed traffic was part of the model. Trunk reservation is discussed in 

detail in Chapter 8. Simulations were carried out to verify the independence assumption 

for the Fixed Point Model. The results indicate that using two bits (four states) to signify 

the trunk state is close to optimal. 

Chaudhary et al. in [CKP91] used simulations to show that DR5 shows improvements 

over static rerouting schemes. Koussoulas in [Kou93] presents a model which is the core of 

the analysis routine used in DR5. It assigns a cost to each routing decision based on the 

possible loss of traffic due to the inefficiency of two hops over a direct route. Simulations 

were used to verify an analytical model of a symmetric network. Again independence of 

link traffic was assumed. The results indicate that the cost scheme proposed produced 

close to minimum network blocking. 

Langlois et al. in [LRSl] have carried out simulations to show that the proposed 

restrictive controls in DCR work well. 



Chapter 3 
Simulation of Dynamic Routing 

3.1 Introduction 

In Chapter 2 the various options available for dynamic routing are described. In this 

chapter, simulations are carried out to evaluate the benefits of dynamic routing based on 

5 minute network management data. 

3.2 Simulation Setup 

The simulations yield estimates of the equipment savings that may be obtained by pro- 

viding extra routing choices to switches in the network using a system such as NOAA. 

The simulations are of symmetric networks. 

Two routing schemes are considered: 

With hierarchical routing, each call is first tried on the direct route and then on a 

fixed alternate route. 

With NOAA type routing, each call is first tried on the direct route, then on a fixed 

alternate route, and then on a NOAA suggested route. The list of NOAA suggested 

routes is revised once every five minutes. The list of NOAA suggested routes is 

obtained by attempting to route traffic from the most heavily loaded direct routes 

to the most lightly loaded alternate routes. The algorithm is given in more detail in 

Section 3.4.2. The update time of five minutes is used because the present NOAA 

application receives new data concerning trunk group occupancy every five minutes. 

The analysis generalizes to arbitrary update times. 

3.3 Calculation of Equipment Savings 

For each data point on the following plots, three simulations are performed. The first 

simulation is of hierarchical routing. The next simulation is of hierarchical routing with 

one more trunk on each trunk group. This gives a figure for the increase in traffic carrying 

capacity caused by an increase in equipment. The final simulation is of NOAA type 



rerouting. The increase in traffic carrying capacity when NOAA rerouting is used is then 

converted to an equivalent change in trunk equipment requirements in the network. 

In symbols, let Al be the maximum traffic that a hierarchical routing network can 

accept given C trunks on each trunk group, and 1% blocking, X2 the maximum traffic 

given C + 1 trunks on each trunk group and 1% blocking, and X3 the maximum traffic 

given C trunks on each trunk group with NOAA rerouting and 1% blocking, then the 

equipment savings S that would result from implementing NOAA rerouting are given by: 

3.4 Routing Arrangements 

In more detail, the routing arrangements are as follows. The network is a symmetric 

network (see Figure 8.1 for an example of a 5 node symmetric network) with N nodes and 

C uni-directional trunks between each pair of nodes. Both N and C are varied during the 

simulations. 

3.4.1 Hierarchical Routing 

For the hierarchical routing arrangement, a call from a node i to a node j is first attempted 

on the direct route from i to j. See Figure 3.1. If the call is blocked on the direct route, 

because all C trunks are occupied, it is then attempted on a fixed alternate route. The 

fixed alternate is chosen to be via an intermediate node, k, and requires a free trunk to 

be found between i and k and also k and j. 

The value of k is chosen to equal (i + 1) (N where ( denotes the modulus operator, 

unless (i + 1) 1 N happens to equal the destination node j, in which case the intermediate 

node is set to (i + 2))N. 

Random call arrivals at an average rate of X calls per second are considered, where X is 

varied during the simulation. Memoryless holding times (See Sect ion 1.3.3) are considered, 

with an average holding time of 180 seconds. 

3.4.2 NOAA Rerouting 

For the NOAA rerouting, the call is first tried on the direct route and the fixed alternate 

route, and finally on a NOAA suggested alternate route. At five minutes intervals the 
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Figure 3.1: Direct and Alternate Routes in Symmetric Network Model 

NOAA suggested alternate routes are revised. For each direct route, a search is made 

through the (N - 3) possible alternate routes, not including the fixed alternate route. The 

capacity of each of these alternates is noted. The alternate route with the most capacity is 

chosen as a NOAA reroute, provided it has more spare capacity than the fixed alternate. 

In the event of a tie between a number of equally good alternates, the tie is broken at 

random. 

If there are i trunks occupied on leg number 1 of the alternate route and j trunks 

occupied on leg number 2 of the alternate route, then the capacity of that alternate is 

taken to be C - Max(& j), corresponding to the minimum capacity on each of the two legs. 

3.5 Results 

The simulation results are shown in Figures 3.2 to 3.4. For comparison, the NOAA 

algorithm is rerun using 15 second updates of the routing table instead of 5 minute updates. 

This is done to find the limits as call by call update of the routing tables is approached. 

The results indicate that carrying out 15 second updates gives approximately double the 

equipment savings in all scenarios compared to carrying out 5 minute updates. 

It could be asked whether 15 second updates is close to call by call update of the 

routing tables. Assuming 10 trunks between nodes, this would allow about 5 Erlangs to 

be carried with a small amount of blocking (see Table 1.1). This gives an arrival rate of 

X = pa = 5.0/180 calls per second (see Equation 1.3). This is 36.0 seconds between new 

call arrivals on average. Thus the 15 second update of routing tables should be pretty 



close to call by call update of the routing tables. 

Figure 3.2 shows that for a 10 node fully interconnected network, the equipment savings 

for NOAA rerouting with 5 minute updates vary from about 5.8% to 2.3% as the number 

of trunks between nodes increases. In qualitative terms, this can be understood by noting 

that large trunk groups are more efficient, in terms of the amount of traffic that can be 

carried, than smaller trunk groups for a given level of blocking. This can also be seen by 

inspection of Table 1.1. Thus there is less spare capacity in the network that the NOAA 

rerouting algorithm can make use of. 

Figure 3.3 shows that for a symmetric fully interconnected network with 10 trunks 

between each node, the equipment savings for NOAA rerouting with 5 minutes updates 

varies from about 5% to 6.8% as the number of nodes increases. In qualitative terms, this 

can be understood by noting that the more nodes in the network, the better the choice 

that the NOAA rerouting algorithm has in seeking a lightly loaded trunk group. 

Although the first point in each of Figures 3.3 and 3.2 should agree, they differ due 

to the size of the interpolation step used to find the traffic for a given level of blocking. 

Figure 3.2 uses a smaller interpolation step and should be more accurate. 

Figure 3.4 shows that for a symmetric network with 30 nodes and 10 trunks on each 

trunk group, the equipment savings for NOAA rerouting with 5 minute updates varies 

from about 2% to 6.8% as the connectivity increases from 23% to 100%. Connectivity 

measures the number of connections between network nodes compared to the total number 

of possible connections. In a 30 node network, the total number of possible connections 

would be 30 * 29 = 870. 

This indicates that in a real network, the equipment savings would be less than the 

results suggested by simulations of fully interconnected symmetric networks. For example, 

the connectivity in a real network may be close to 20%. The connectivity of metropolitan 

networks would be higher, perhaps as large as 50%. 
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Chapter 4 
Fixed Point Models for Dynamic Routing 

4.1 Introduction 

A Fixed Point Model (FPM) uses a knowledge of arrival rates and departure rates and 

routing rules to calculate the state probabilities corresponding to a given routing model. 

See Section 1.3.6 in Chapter 1 for what is meant by a set of state probabilities. An initial 

set of state probabilities is assumed. Iteration using the arrival rates and departure rates 

is carried out until there is little change in the state probabilities. 

4.2 Simple Example 

FPMs are usually used to model networks, but here a single trunk group is modeled for 

illustrative purposes. 

Assume a trunk group with one trunk, whose state transition diagram is illustrated in 

Figure 4.1. This will have two states, busy or empty. Assuming the arrival rate is X = 2.0 

to both states and the departure rate is p = 1.0 from state 1. Calls arriving when the 

system is in state 1 (i.e. one trunk occupied) are blocked. 

Define pi (n) as the probability of i trunks being occupied at time n6t.  Assume the 

initial probabilities for the FPM are po(0) = 0.5 and p l (0 )  = 0.5. These initial probabilities 

can be arbitrarily chosen as long as they sum to 1. Take 6t  = 0.01 time units. Then iterate 

for each time n using: 

 PI(^) = p i ( n  - 1)  + Xpo(n - 1)6t - p p l ( n  - l ) b t  (4 -2 )  

Within 400 iterations, this converges to 

which compares well with the true answer for the equilibrium probability distribution of 

113 and 213 respectively, obtained from equation 1.9. The blocking probability is equal 

to the probability that the trunk group is busy when a new call arrives, namely pl.  



Figure 4.1: Simple State Transition Diagram 

When an FPM is used to model a symmetric network, usually a single trunk group 

is modeled and it is assumed that this trunk group can represent any trunk group in the 

network [MGH93]. 

4.3 Benefits and Costs of the FPM Approach 

For symmetric networks, it was observed that the FPM is faster than simulation. The 

FPM does involve some iteration but the run times were a lot less than the run times of 

simulations to get the same estimates. 

Despite the fact that an FPM models a stochastic system, an FPM does not make 

use of a random number generator. Each run of an FPM model will give the same result, 

assuming sufficient iterations. Given sufficient iterations, the choice of the initial st ate 

probabilities have an exponentially small effect on the final outcome. Since an FPM 

model may make some approximations, it is difficult to know how much confidence to 

associate with the FPM result. The best way to characterize the accuracy of an FPM is 

to compare with simulation. The simulation can be designed to avoid the assumptions 

implicit in an FPM. 

The main assumption for FPMs is independence of trunk groups. In other words the 

state of each trunk group is assumed to be independent of the state of the other trunk 

groups. This assumption implies that a call that uses two trunk groups in order to connect 

to its destination is modeled as two calls, each using one of the trunk groups. Clearly this 

is inaccurate. 

The network blocking is a function of the blocking on the direct route and the blocking 

on the alternate route(s). The independence assumption implies that the blocking on the 

direct route is independent of the blocking on the alternate route. The results of this 

chapter will show that this condition is not met at low traffic levels. 



4.4 State of the Art 

Fixed Point Models have been used in recent years to analyze different routing algorithms 

in symmetric networks. In [MS91], D. Mitra et al. use fixed point models to evaluate two 

routing methods for telephone networks called Dynamic Alternate Routing (DAR) and 

Fixed Alternate Routing (FAR). The Fixed Alternate Routing used a fixed pre-computed 

routing table whereas the DAR algorithm varied its routing based on whether blocking 

was encountered or not. The study concluded that DAR was a feasible method of routing 

that did better than FAR following network failures. 

In [MGH93], D. Mitra et al. use fixed point models to evaluate variants of AT&T's 

RTNR routing algorithm. The study concludes that it is possible to improve on RTNR by 

transmitting slightly more state information between nodes. This paper gives references 

to 8 other papers on the subject of Fixed Point Models for telephone network routing 

evaluation over the past twenty years. 

In [ACL94], G. R. Ash et al. describe how fixed point models are use in the dimen- 

sioning of the AT&T network, to calculate the trunk group sizes given a set of traffic 

demands, desired blocking probabilities and the RTNR routing rules. The planning algo- 

rithm is called Fully Shared Network (FSN) design. 

4.5 Starting Point 

The starting point for the analysis of FPMs in this chapter is a paper by Akinpelu [Aki84] 

on overload performance of non-hierarchical routing networks. The purpose of the Akin- 

pelu paper is to show that networks which use DNHR can have two stable states under 

overload conditions. In an appendix to the paper, an FPM is given for networks with a 

fixed but arbitrary number of choices for alternate routes. 

4.5.1 FPM of Akinpelu 

It is assumed that: 

1. The mixture of traffic offered to a trunk group has random arrivals. 

2. Trunk group blocking probabilities are independent. 



The term path is defined to be a set of distinct trunk groups that forms a connec- 

tion between two nodes. The term route is defined to be an ordered collection of paths 

connecting the same point-to-point pair. 

Let W be the expected offered load for point-to-point pair j. Let L = C j  W be the 

total offered load. Let pi, ni, and ai denote the blocking probability, trunk group size, and 

offered load for trunk group i. Let qi = 1 - pi. A path is denoted by r ,  a route by R, the 

route for point-to-point pair j by Rj and the route formed by the first k paths of Rj by 

Finally D(R) is the probability that route R is blocked. 

Define 4 as the expected carried load for path k for point-to-point pair j. Then 

Define Ki as the expected total carried load for trunk group i. Then 

Also 

from which ai can be found. To find pi use: 

where B(n, a )  is the Erlang B blocking formula which gives the probability of blocking 

assuming n trunks available, traffic of a, and memoryless arrivals. Define z as the expected 

network blocking. Then 

Define C as the expected network carried load. Then 

For iteration purposes, the blocking needs to be recalculated. Using the independence 

assumptions gives: 

assuming the paths of R are disjoint. 
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4.6 Simple FPM for Hierarchical Routing 

The first FPM derived in this chapter is a simple FPM for Hierarchical Routing. The aim 

is to compare the blocking for an FPM that models NOAA rerouting with the blocking 

for an FPM that models hierarchical rerouting. The FPM for NOAA rerouting will be 

given later in Section 4.8. 

The routing scheme is meant to model the hierarchical routing typically present in a 

regional Bell telephone network. The network is symmetric. A call is offered first to a 

direct route. If this routing attempt fails the call is offered to a fixed alternate route. The 

alternate route is a two hop route. 

4.6.1 FPM 

For the fixed point model, define N as the number of nodes, C as the number of trunks 

on each route, 6t as the timestep of the iteration, p ( i )  as the probability of i trunks being 

occupied on a route, pb as the blocking probability for a call offered to a route, X as the 

arrival rate of calls, and p as the service rate of calls. Without loss of generality, p is 

taken to be 1. In other words, the time unit is taken to be the average holding time of a 

call. Initially the occupancy probabilities p ( i )  can be arbitrary provided they sum to 1. 

The probability of a call being blocked on a route is simply the probability of C trunks 

being occupied on a route. 

Define AT as the total arrival rate of calls on a route. Then 

since the route carries direct routed traffic and overflow traffic. The direct routed traffic 

has an arrival rate A. The overflow traffic has an arrival rate Xpb provided the other leg of 

the alternate route is not blocked. Each direct route carries the overflow traffic from two 

alternate routes. 

The state probabilities can be updated as follows: 
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Figure 4.2: Blocking for FPM and Simulation 

The network blocking z can be calculated as 

corresponding to a call being blocked on both the direct route and on either leg of the 

alternate route. 

A comparison of the FPM results and simulation results for the simple FPM for hi- 

erarchical routing is given in Figure 4.2. The simulation is a simulation of 5 hours of 

telephone traffic on a network with 10 nodes and 10 circuits between each node. Each call 

arrival and departure was simulated. 10 runs of the simulation were carried out to derive 

error bars for the estimates. 

The lack of agreement for low traffic levels could be due to the assumption that blocking 

on the alternate route is independent of blocking on the direct route. This clearly is not 

true for low traffic levels. The more complex FPM in the next section will model this 

dependency. 
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4.6.2 Simulation using Latin Squares 

When the simulation work for comparison with an FPM started, if a call was to be routed 

between nodes i and j, then node (i + 1)IN was chosen as the intermediate node for the 

alternate route, unless (i + 1)IN was equal to j, in which case the intermediate node 

was taken to be (i + 2)IN. It was thought that since no node was treated specially, the 

agreement with the FPM model, which assumes symmetry, should be good. 

However, as the modeling progressed, it became clear that routes of the form (i,  (i  + 
1)IN) were more heavily loaded than the other routes as a consequence of this routing 

scheme. What was needed to restore symmetry was a Latin Square format for the routing 

table in the switches. The Latin Square is used to choose the via node for alternate 

routing from source to destination. A Latin Square is a table of integers in which the 

same integer appears only once in each row and column. Since each number appears only 

once, it can be used as a choice for the via node with the row representing the source and 

the column representing the destination. This arrangement will spread the traffic evenly 

over the network. See Figure 4.3. 

The special property of this Latin Square is that the elements along the diagonal are 

equal to the row number. This constraint ensures that the chosen via node will never be 

equal to the source or the destination node. To construct the Latin Square, a perturbation 

method was used. The initial square was set to be 

a i j = ( i + j ) l C  j - 1  i - j  odd 

which is a Latin Square without the special property that is required for the routing table 

in the switch, namely that the elements on the diagonal be equal to the row number. Then 

3 types of random perturbation were carried out: 

row swaps 

column swaps 

element swaps 

The element swap started by swapping two elements in some row. This violated the 

column constraint for the second element, requiring another element swap. This again 
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SOURCE NODE 

0 1 2 3 4 5 6 7 8 9  

Figure 4.3: 10x10 Latin Square. Used to choose the Via Node for Alternate Routing 
from Source to Destination. Each entry appears once in each row and column assuring 
symmetry. 

violated constraints requiring another swap. This set of swaps terminates when the column 

constraints for the first element in the original row was fixed. In switching theory, it is 

similar to the algorithm used to set up the crossbar elements in a rearrangeable switch. 

Without this element swap perturbation, no solution was found. 

The stopping criterion was when all the diagonal elements were different from each 

other. Once such a square was found, a simple re-labeling could generate the type of 

square in Figure 4.3. The search time was not very long, under 30 seconds on a Sparc 

10. It should be noted that the number of Latin Squares in the search space was over 

(n!)2n/nn2 = 1 o 3 O  for n = 10 [vLW92], so this type of search would have failed if there 

was a unique solution. 
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4.7 Improved FPM for Hierarchical Routing 

It was noted in Section 4.6 that a reason for poor agreement between the FPM of a 10 

node network and the simulation could be the violation of the independence assumption 

that blocking on the direct route is independent of blocking on the alternates. In this 

section, an improved FPM is described that models three routes, a typical direct route 

and the two legs of its alternate route. 

For the fixed point model, define N as the number of nodes, C as the number of 

trunks on each route, 6t as the timestep of the iteration, p(i, j, k) as the probability of i 

trunks being occupied on a direct route, j being occupied on leg 1 of its alternate route, 

and k being occupied on leg 2 of its alternate route, pb as the blocking probability for 

a call offered to a route, X as the arrival rate of calls and p as the service rate of calls. 

Without loss of generality p is taken to be 1. In other words, the time unit is taken to be 

the average holding time of a call. Initially the occupancy probabilities p(i, j, k) can be 

arbitrary provided they sum to 1. 

The state probabilities can be updated as follows: 

where cl, . . . , cg are contributory terms due to call arrival and departure events. 

Considering departures gives 

cl = (i+l)p(i+l, j, k)+(j+l)p(i, j+l, k)+(k+l)p(i, j, k+l) -ip(i, j, k) -jp(i, j, k)--kp(i7 j, k) 

(4.22) 

where p(i, j, k) = 0 for i, j or k < 0 and p(i, j, k) = 0 for i, j or k > C. 

Considering external arrivals gives: 

Considering internal arrivals causing a transition from state (i, j, k) gives: 

where 



where Xi ( j) ,  the internal overflow traffic to j, is the rate of arrivals to leg 1 of the alternate 

route from the direct route assuming j trunks presently occupied on leg 1 of the alternate 

route. This is calculated as: 

The numerator represents the probability of being in a state amenable to a call arrival. 

The denominator represents the probability of j trunks being occupied on leg 1 of the 

alternate route. 

Considering internal arrivals causing a transition into state (i, j, k) gives: 

where 

c4.l = 2Ai(i - l)p(i - 1, j,k) i > 0 

Note that in this model, a simultaneous transition to state (i, j, k) is seen from state 

(i, j - 1, k - 1) once a call is re-attempted on an alternate route, following its failure on 

the direct route. 

Finally some departures leave j and k simultaneously: 

where f is an estimate of the fraction of calls that were rerouted from direct route i instead 

of other direct routes. An approximate value for f based on the offered traffic is computed 

to be: - 
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Figure 4.4: Blocking for Improved FPM and Simulation 

Here 

which is the same set of formulas as used in the simple FPM model of hierarchical routing 

to yield the offered traffic from the direct route. 

The network blocking z can be calculated as 

corresponding to a call being blocked on both the direct route and on one leg of the 

alternate route. 

A comparison of the FPM results and simulation results for the simple FPM for hi- 

erarchical routing is given in Figure 4.4. The simulation is a simulation of 5 hours of 

telephone traffic on a network with 10 nodes and 10 circuits between each node. Each call 

arrival and departure was simulated. 10 runs of the simulation were carried out to derive 

error bars for the estimates. The agreement with the simulation is much improved at low 

traffic levels. 
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Figure 4.5: NOAA Via Route Options 

4.8 FPM for NOAA 

With NOAA rerouting, a call will first try the direct route, then a fixed alternate route 

and finally a NOAA-suggested alternate route. The table of NOAA suggested alternate 

routes is revised every 5 minutes. The NOAA suggested alternate route is the alternate 

route with the most available capacity. If there is a tie for the route with most available 

capacity, then one of the routes is chosen at random. If none of the potential alternates 

gives more available capacity than the fixed alternate route, no NOAA reroute is chosen. 

Let p(i) be the probability of i trunks being occupied in a typical route in a symmetric 

network. A matrix A = aij is defined, where aG is the probability of a route appearing i 

times as a NOAA alternate choice given j trunks occupied on the route at the start of the 

five minute period. A matrix B = bjk is defined, where bjk is the probability of j trunks 

being occupied at the start of the 5 minute period given k trunks occupied now. 

The initial values for p(i) can be chosen arbitrarily provided the values sum to one. 

The B matrix is initially set to be the identity matrix. 

4.8.1 NOAA Via Routes 

Based solely on the p(i) values, the A matrix can be calculated as follows. Recall that the 

A matrix gives the probability of a route being part of i NOAA alternates, given that j 

trunks are occupied at the start of the 5 minute period. 

An intermediate value p, is defined to be the probability of a route being chosen once 

as a NOAA alternate, given io trunks occupied. 



The 2(N - 3) possible cases for which the route could be chosen as an alternate are 

illustrated in Figure 4.5. This shows N - 1 routes from any given node. When the choice 

of a NOAA alternate is made, two of these routes are ruled out because they represent 

the direct route and the first alternate. The remaining routes may be chosen as NOAA 

alternates and carry extra traffic as a result. 

4.8.2 Binomial Distribution 

The 2(N - 3) possible cases for which the route could be chosen as part of a NOAA 

alternate are taken to be independent Bernoulli trials. Then 

It remains to calculate p,, the probability of a route being chosen as one NOAA 

alternate, given io trunks occupied at the start of the 5 minute period. 

4.8.3 Multinomial Distribution 

Consider the situation where there are io trunks occupied on leg 1 of a potential NOAA 

alternate and 1 trunks occupied on leg 2 of a potential NOAA alternate. The overall 

capacity on that route is denoted as: 

Consider the further condition that there are j and k  trunks occupied on the two legs of 

the fixed alternate route, and that M(j, k )  > M(io, I ) .  

Looking at the other N - 4 possible alternates, the probability that a given alternative 

has more capacity than M(io, 1 )  is denoted as p ~ ,  equal capacity as p ~ ,  and less capacity 

as p ~ .  In this situation, assuming route independence, there is a multinomial distribution: 

These probabilities are given by: 



The probabilities of cases where there are a paths with equal capacity, N - 4 - a 

paths with less capacity, and 0 paths with more capacity can be summed. This gives the 

following formula: 

using the formula for the multinomial distribution [Fe150]. 

A route is chosen as a NOAA alternate if it is a clear winner in the set of choices for 

a NOAA alternate, or with a probability l l a  if there are a  equally capable winners. This 

gives: 

4.8.4 Update Equations 

The change in state probabilities is calculated as: 

where Ar(i) is the change due to call arrivals when i trunks are occupied on the route, and 

i is the change due to calls departing. 

Considering call arrivals gives 

where pb is the probability of a call experiencing blocking on the direct route and An@) is 

the rate of arrival of traffic due to NOAA reroutes. 

The NOAA traffic depends on i, the number of trunks occupied on the route now, and 

j, the number of trunks that may have been occupied at the start of the 5 minute period. 

Use is made of the A and B matrices. The A matrix contains elements aij , the probability 

of a route appearing i times as a NOAA alternate choice given j trunks occupied on the 

route at the start of the five minute period. The B matrix contains elements bjk, the 

probability of j trunks being occupied at the start of the 5 minute period given k trunks 

occupied now. The NOAA traffic is given by: 
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where c is the probability of no NOAA reroute found, and pa, the probability of being 

blocked on the alternate route, is given by 

This iteration of the state probability update equations updates the pi probability vector 

and the loop can begin again. Iteration terminates when the change in probability is 

sufficiently small. 

4.8.5 Calculating the Probability of No NOAA Reroute Found 

A NOAA reroute is only chosen if it does better than the existing fixed alternate route. 

Let c be the probability that no NOAA reroute is found. In other words, the route chosen 

by NOAA is the same as the fixed alternate route. Suppose the fixed alternate route has 

j trunks occupied on leg 1 and k trunks occupied on leg 2. Then the probability that no 

NOAA reroute is found is: 

where M = max(j, k). This accumulates the probability of finding a NOAA reroute and 

subtracts it from 1 to find the probability of no NOAA reroute. 

4.8.6 Calculating the Network Blocking 

The network blocking is defined to be: 

where pb = p(C), the probability of C trunks being occupied on a route, pa is the proba- 

bility of the alternate route being blocked (see Equation 4.53), and the final term is the 

probability of the NOAA reroute not existing or else existing and being blocked. 

4.8.7 Updating the B Matrix 

The B matrix needs to be updated at each timestep. A backwards Markov approach 

using the state transition probabilities is needed to calculate the change in probabilities. 

In matrix form, this is: 

B(n + 1) = B(n)S (4.56) 



where S is the Markov matrix for transition between states if time were reversed. Recall 

that the B matrix contains elements bjk, the probability of j trunks being occupied at 

the start of the 5 minute period given k trunks occupied now. The S matrix contains 

elements s k i ,  the probability of k trunks being occupied at a previous timestep given 1 

trunks occupied now. 

The following equation is given in [Fe150] for a reversed Markov chain: 

for the probability that the system was in state j at the previous time step, given that the 

system is in state i now. Here ui and uj are probabilities from the invariant probability 

distribution (equilibrium distribution) and pji is the probability of a transition to state i 

from state j. Using this formula, and a small timestep, it is found that the Markov matrix 

for a transition between states if time were reversed is the same as the Markov matrix 

for a transition between states with time going forward. This makes calculation of the S 

matrix above straightforward. 

Using a state transition diagram gives: 

l o otherwise 

Here A' denotes the total rate of call arrivals, which was used to update the p(i) vector 

of probabilities. 

4.8.8 Results 

Figure 4.6 shows a comparison of the FPM model with simulation. The route independence 

assumption seems to result in an underestimate of the blocking for low traffic levels but 

otherwise good agreement is seen for high traffic levels. The same phenomenon was seen 

in the simple model of hierarchical routing in Section 4.6. 

4.9 Conclusions 

It seems from our observations that an FPM can give a faster answer about network 

blocking for symmetric networks than simulations, although that answer may not be as 
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Figure 4.6: Blocking for NOAA FPM and Simulation 

accurate as a simulation. 

It has been shown that FPMs for symmetric networks are least accurate when traffic 

levels are low and the network is on the threshold of blocking. The cause of the loss of 

accuracy seems to be the assumption that blocking on the different paths of a route is 

independent. For the networks examined in this chapter, it seems to be the case that block- 

ing on the direct route biases the occupancy on the alternate routes to be higher, which 

means that direct multiplication of the blocking probabilities results in an underestimate 

of blocking on that route. 

For networks with a larger number of alternates used for rerouting, such as AT&T7s 

RTNR rerouting, the increased traffic mix that results from a greater choice of alternates 

could restore the independence assumption, increasing the accuracy of the FPM. Such 

networks were not considered in this chapter. 

An original FPM for NOAA-style rerouting was derived in this chapter. This was done 

mainly to verify the accuracy of the results obtained by simulation, since a simulator for 

NOAA-style rerouting had already been developed. See Chapter 3. 



Chapter 5 
Stability of Traffic Patterns in Networks 
with Dynamic Routing 

5.1 Introduction 

In this chapter, standard control theory is used to model the routing of telephone traffic. 

A model is developed to investigate the maximum delay in the transmission of routing 

information that will still allow stability. Simulations are used to validate the model, and 

to investigate the multi-service case. Finally, conclusions are drawn about applicability of 

the results. 

5.2 Present State of the Art 

Much work has already been done in the application of dynamic flow models to telecom- 

munications networks. In a dynamic flow model, stochastic variations of traffic levels are 

ignored and an approximation is found for the change in the expected levels of traffic 

using differential equations that relate the time varying call arrival rate, blocking rate, 

and occupancy levels [KON91, Oht91, FCC89, FC87, LR911. 

In [KONgl], Kaniyil et al. examine structural instabilities in symmetric telecommu- 

nications networks with non-hierarchical routing using potential functions. In this work, 

time dependent average quantities are used to characterize the state of the system. The 

existence of two stable states at high traffic levels is shown. 

In [Ohtg 11, Ohta uses a dynamic model of a symmetric network to predict the onset of 

congestion. The intention is to implement controls prior to congestion to keep the network 

operating at full efficiency. A dynamic flow model will show that there is a delay between 

the sudden increase in call arrivals and the onset of congestion. Ohta demonstrates the 

feasibility of an advanced network management system which makes use of congestion 

predict ion. 

In [FCC89, FC87], Filipiak et al. present a framework for estimating future occupancy 

statistics in a communications network based on present measurements of occupancy, ar- 

rival rate, and holding time. Good results are obtained by comparing the model predictions 
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with measured values taken from the French telephone network. 

In [LR91], Filipiak et al. apply the same theory to the dynamic rerouting that was 

part of the Toronto trial of Dynamically Controlled Rerouting (DCR) in the Canadian 

Network. Their simulations show that the results obtained are more accurate in the case 

of high load than the estimation and prediction methods used in the trial. 

5.3 Model of a Single Route 

An important component of a network model is the model of a single route. Figure 5.1 

shows the rise in traffic level following a step rise in offered traffic. Using generating 

functions, Cooper[Coo81] shows that the expected number of trunks occupied following a 

step increase in traffic from No to Nl is given by 

where Th is the average holding time of telephone calls, No is the initial traffic level, and 

Nl is the new traffic level. 

This system can be modeled as a linear time invariant system with a transfer function 



In control theory terms, this is a system with a time lag Th. The stochastic variation 

about the expected level is regarded as noise and not explicitly modeled. This is a standard 

assumption in control theory. 

5.4 Stability of Reroute Controls 

These studies originated from the development of a telephone network management tool, 

called NOAA (Network Operations Analyzer and Assistant). NOAA is described in Ap- 

pendix A. 

As reroute controls become more automated concerns arise about the stability of the 

automated systems. In particular, it is desirable to find out how big of a margin exists 

between stable and unstable behavior, in terms of the parameters that specify the system. 

For this purpose, IRR (Immediate Reroute) and ORR (Overflow Reroute) controls 

are distinguished. An IRR control reroutes traffic before it attempts the problem route. 

Traffic is diverted elsewhere in the network where spare capacity exists. An ORR control 

reroutes traffic after it attempts the problem route and finds no capacity available. The 

ORR control offers that particular call an extra chance of completion. 

From a stability viewpoint, one would expect to see fewer problems with ORR con- 

trols as each call tries the standard routing first and then tries the added routing options 

specified by the control. For each call that tries the problem route, its chances of com- 

pletion are increased by the implementation of an ORR control. In the case of small 

overloads, network throughput can only be expected to increase, as individual calls have 

more possibilities of completion. 

For an IRR control, if too much traffic is diverted and the delays in obtaining the 

feedback about traffic information are too great, there is a possibility of instability. Traffic 

from route A could be diverted to Route B which may then experience a problem and find 

spare capacity on Route A. The overload situation could oscillate between route A and 

route B, causing an overall decrease in throughput. 

The model in Figure 5.2 was used to analyze a system with two possible routes between 

some source destination pair. Observations about the traffic level on either route are used 
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Figure 5.2: Rerouting Model 

to decide on what percentage of new call arrivals to divert to the other route. It is assumed 

that IRR controls may be applied to either route. This model is simplified in two respects: 

Network Management uses sampled information. Traffic information from the switches 

is typically available every 5 minutes or 30 seconds and not continuously. This is 

not modeled here. 

Network Management takes no action until a route overflows. This could be modeled 

by an element in the feedback path such as a relay with dead-space. However that 

has not been done here. 

The purpose of the analysis is to examine the order of magnitude of the time constants 

that could result in instability. 

5.5 Model of Rerouting Algorithm 

The model of the rerouting algorithm is shown in Figure 5.2. The figure shows two routes 

with an independent stream of traffic offered to both, and some feedback controls based 

on the observed traffic. Observations about the traffic level on either route are used to 



decide on what percentage of new call arrivals to divert to the other route. Here ui is the 

offered traffic on route i and xi is the observed traffic on route i. 

The model includes a delay term of Tf seconds in the feedback of control information. 

The model also includes a gain factor k in the feedback path. The gain factor k is a 

measure of how much traffic is diverted by the network management control from a full 

route to an empty one in steady state. If a is the fraction of traffic diverted from a full 

route to an empty one in steady state then 

This can be derived from the model by removing the lag factor and delay once steady 

state and constant inputs are assumed. It is assumed that a 5 0.5. In other words, the 

most aggressive traffic balancing would split the traffic equally between trunk groups. 

In the NOAA network management application, k = 0.187 but typically k can vary 

from 0 to oo depending on the aggressiveness of the network management. 

In the NOAA system, typical values for the holding time Th and the feedback delay 

Tf are 3 minutes and 5 minutes respectively. 

5.6 Analysis 

The system shown in Figure 5.2 is a standard multi-input multi-output system from the 

control theory point of view. However the presence of the delay terms makes the analysis 

a little more difficult. Looking at the output of the adders: 

Grouping terms gives: 

rz(l + sTh + ke-sTf)  = u2 + ke-STf XI 

The definition of stability is from [DSW73]: 

Definition 1 A system i s  stable 2ji ts impulse response approaches zero as t i m e  approaches 

infinity. 



To check for stability, set ul = 0 and multiply the first equation by (1 + sTh + ke-sTf) to 

eliminate 22. This gives: 

and thus 

Note that the transfer function for x1 /ul also has the same denominator. A sufficient 

condition for instability is for the denominator to be 0 for some value of s on the s = jw  

axis. This critical threshold of stability is of interest to us. Looking for a 0 denominator 

gives: 

(1 + sTh + ke-'*f) = -(ke-"f ) 

1 + sTh = -2ke -sTf 

Setting s = jw  and equating real and imaginary parts gives: 

These equations give some interesting results 

For k < 0.5, this mode of instability does not arise. This is a consequence of 

equation 5.12. 

The critical value of the feedback time can be solved for given some value of k > 0.5. 

For example, if k = 3 and Th = 3 minutes, then it is possible to solve for w = 3.416 

which leads to T,, = 1.840 minutes for the period of oscillation. Also Tf, the critical 

value of the feedback delay, is found to be 0.509 minutes. This suggests that if Tf > 0.509 

one should see some signs of instability. 

5.7 Simulation Study #I 

To verify the effects found in the analysis, a simulation is carried out. In the simulation, 80 

Erlangs of traffic are offered to each of two routes which are assumed to have 100 trunks. 



Figure 5.3: Route Occupancy Assuming Automated Rerouting (Tf = 1 minute) 
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Figure 5.5: Rerouting Model 

A holding time of 3 minutes, a variable feedback delay and a gain of k = 3 are assumed. 

The results are shown in Figures 5.3 and 5.4. Instability can clearly be seen for the larger 

value of Tf. 

5.8 Simulation Study #2 

To see how this situation is affected by the addition of an additional service with a longer 

holding time, a second service is added. The top half of the model in Figure 5.2 is replaced 

by the two service counterpart shown in Figure 5.5. The results indicate that the service 

with the shorter holding time dominates. 

This would seem to indicate that a network that carried speech and short data "con- 

versations" would need feedback controls that had time constants with very small delay 

to avoid instabilities, assuming a control algorithm similar to those used today. 

5.9 Conclusions 

Standard control theory has been applied to a network management problem with the 

aim of seeing whether the automation of network management controls could result in 

instabilities. The conclusion is that this can happen. Careful control of the delays in the 
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feedback of information used to calculate routing strategy is necessary in order to prevent 

this. 

This analysis should be applicable to control schemes such as RTNR (Real Time Net- 

work Rerouting) described in [ACF92] and presently implemented in the AT&T long 

distance network. The RTNR routing scheme is a dynamic routing scheme that makes 

use of cached information to decide the route to be taken for a call. In this chapter, it 

is suggested that if the cache becomes too old (perhaps due to delays in the signaling 

network), instabilities can arise. 
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Chapter 6 
Application of Learning Techniques to 
Network Management 

6.1 Learning Techniques 

The learning techniques used in the following chapters include neural networks and linear 

predictors. A brief description of both techniques is given here. 

6.11  Linear Predictors 

A linear predictor is really a simple type of neural network whose output is a linear 

combination of its inputs. See Figure 6.1. 

Suppose there are N inputs xi to the linear predictor, which has weights wi and an 

output y. Then the output y for an input vector X is given by: 

Suppose now that there are P input vectors Xp, each of which is of the form (4,. . . , G), 
and a desired output i jp  for each of these input vectors. Then a sum of squared error 

(SSE) function E can be defined as follows: 

A possible learning rule would be to carry out an adjustment of each weight to minimize 

the error E over all the training patterns: 

where q is a small constant, termed the learning rate. If the learning rate is too small, 

convergence is slow. If the learning rate is too big, there may be no convergence. Trial 

and error is used to find the appropriate learning rate. 

Straight forward differentiat ion gives: 
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Figure 6.1: Linear Predictor 

From Equations 6.3 and 6.4, provided 7 is sufficiently small, the optimum weights to 

minimize the error, E, with respect to the weights can be found. As a practical matter, an 

extra input is always added to the linear predictor which is set to a constant, either 1 or -1. 

The constant input gets multiplied by a weight to give a constant term in Equation 6.1. 

This allows the linear predictor to estimate a wider range of functions. Equation 6.1 now 

becomes: 

6.1.2 Neural Network Architectures 

Many neural network architectures can be found in the neural network literature, for 

example, feed-forward neural networks, recurrent neural networks, and Hopfield networks. 

Feedforward neural network will be discussed shortly. Recurrent neural networks are 

similar to feed-forward networks, except that they contain feedback connections. Hopfield 

networks are usually used for optimization problems. In this thesis, feed-forward neural 

networks are mainly considered. A good reference for all these architectures and associated 

training techniques is [HKPSl] . 
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Figure 6.2: Feed-forward Neural Network 

6.1.3 Feed-Forward Neural Networks 

The feed-forward neural network is one of the most widely used neural networks. An 

example of a simple feed-forward neural network is shown in Figure 6.2. In this case, the 

output y as a function of the inputs 4 and 4 for input pattern p is given by: 

3 2 

Here Oi, the threshold term, can be treated as a weight applied to an extra input set to a 

constant -1. In this case, there are 3 so-called hidden units, each with output: 

2 

If it is assumed that there are P input vectors Xp, each with a desired output yp, an 

SSE term E can be defined: 
P 

p=l 

The first layer weights are updated according to: 

Similarly, second layer weights are updated according to: 
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using the Back-Propagation algorithm [HKPSl] . 

6.1.4 Back-Propagation 

The Back-Propagation algorithm can be derived by differentiating Equation 6.8 with re- 

spect to the appropriate weight. It derives its name from that fact that errors are propa- 

gated from the network outputs towards the network inputs. 

Define ep  as the error when input pattern p is presented. Then 

and the total error E is given by: 

The desired derivative for any weight w is given by: 

The derivative of ep with respect to Wi is given by: 

where hi is the output of the hidden unit, given by Equation 6.7. The derivative of ep 

with respect to wij is given by: 

using the chain rule for differentiation and the fact that 

6 tanh(z) 
= (1 - t a n h ( ~ ) ~ )  (6.16) 

6s  

By substituting Equations 6.14 and 6.15 in Equation 6.13 and then using Equations 6.9 

and 6.10, the desired weight update can be calculated. 

6.2 Motivation for the use of Neural Networks 

Neural networks have traditionally been used for pattern recognition and pattern classifi- 

cation and are well suited to this task. The weights in such networks can be learned from 



sample data and training can be done using the well known backpropagation algorithm 

[HKPgl]. 

The neural network approach is valuable for a number of reasons. Firstly the neural 

network has the ability to learn. Many software systems in the telephone network require 

the intervention of humans if the implemented function is to be modified. Neural networks 

on the other hand contain their "program" in their weight settings and can even contin- 

uously update their weights as they are running. This automated learning capability is a 

key benefit of neural networks. 

In addition to the ability to learn, the neural network has the ability to generalize on 

data that was not present in the training set. Neural networks have been characterized as 

universal function approximators [Bar93, Cyb89, HSW891. In other words, given sufficient 

number of hidden units, neural networks can approximate any given well behaved function. 

Conversely, given fewer hidden units, a smoother version of the target function can be 

learned. This explains the ability of neural networks to generalize well, even on input 

data that contains a lot of noise and artifacts. Neural network are compared to other 

non-linear function approximation techniques in chapter 9. 

6.3 Network Management 

The task of network management is to monitor the network, identify any anomalies in 

the network, and, if necessary, place controls in the network to allow revenue generating 

traffic to complete and block any traffic that has a low probability of completion. 

6.4 Applications of Learning Techniques to Network Man- 
agement 

In the following chapters, a number of applications of learning techniques to network 

management are considered: 

Recognition of Traffic Patterns Clearly this is an integral part of the job of network 

traffic managers. 

Aiding Congestion Control If the network becomes congested, then various controls 

are available to the traffic manager to relieve this congestion. The neural network 

can learn the thresholds of when to apply such controls. 



Time Series Prediction of Trunk Group Occupancy As network management be- 

comes more automated, it is possible to predict trunk group occupancy and place 

reroute controls that require fewer adjustments to changing traffic conditions in the 

network. 

Conclusions on the applicability of the learning techniques are given in each chapter. 



Chapter 7 
Classifying Telephone Traffic Patterns 

7.1 Introduction 

Network management of communication networks is an activity that is becoming increas- 

ingly automated. The impetus for this automation is firstly the increased computing power 

available to help provide a rapid response to changing network conditions and secondly 

the adoption of common standards for the exchange of information between the systems 

being managed and the management systems. 

Operators may use expansive or restrictave controls to respond to network exceptions. 

Expansive controls are used if the network contains capacity that can be used to carry some 

of the extra traffic. Expansive controls reroute calls in order to give them an extra chance 

of completion. Restrictive controls are used if the extra traffic has a low probability of 

completion and is interfering with normal network operations. Restrictive controls relieve 

congestion by cutting down on traffic at the point it enters the network. 

Network exceptions that the operators can monitor are trunk group overflows, trunk 

group high occupancy, and switch alarms. Each trunk group can handle a limited number 

of conversations, and if too many call attempts are offered, the trunk group occupancy 

will rise and eventually call attempts will be rejected. This is referred to as trunk group 

overflow. The network management center receives data for every trunk group in the 

network every five minutes. 

Switches can also indicate the onset of congestion or the existence of certain conditions 

by means of switch alarms. The network management center receives a list of switch alarms 

in the network every thirty seconds. 

7.2 Pattern Matching of Network Events 

The following is a partial list of network events of interest to network management: 

single random trunk group overflow 

loss of a transmission link 
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Figure 7.1: Traffic Pattern Recognition System 

loss of a switch 

call-in situation, e.g. concert tickets on sale. 

unusual traffic patterns, e.g. Mothers' Day. 

weather day, e.g. heavy day of snow. 

a natural disaster, e.g. earthquake. 

Ideally, the operator would wish to know the event type, the event location, and the 

event severity. If it is assumed that occasionally new event types occur, then the operator 

would also wish to know to that this event type is not one previously observed. 



Figure 7.1 shows the information flow for a system that could provide this information. 

The current list of exceptions and controls is compared to historical data to check the sig- 

nificance of the departure from normal state. The filtered traffic pattern is then compared 

to a table of known traffic patterns and classification is performed. If the traffic pattern 

is sufficiently different fiom known traffic patterns, then the classifier should indicate this 

result. 

Some similarities exist between this and character recognition. The differences are 

that the traffic pattern learning system should be capable of unsupervised learning and 

detection of new classes. 

The benefits of such a system as an extra resource for the decision making process of 

the network management operators or of the NOAA expert system are obvious. 

7.3 Data Set 

The data set for this study consisted of 125 days of traffic data from June 1994 to Jan 

1995 with some gaps. The logged data for each day consisted of a list of network overflow 

exceptions and network controls that were present in the network every 5 minutes. 

This logged data was too much data and too little data at the same time. Too much 

because of the work involved in extracting historical records from 600 Mbytes of data, 

and too little because the number of abnormal events was so few. During the period of 

interest, observed one weather day, and a small number of call-ins were observed. No 

other significant deviation from normal operations was observed. 

7.4 Filtering of Significant Events 

The approach taken to filter out significant events from the large data set was to remove 

routes that regularly or even occasionally overflow. This was done by plotting the data 

on a grid and then estimating the probability that a given pixel would indicate activity 

at that particular day at that particular hour. This is equivalent to looking at prediction 

residuals when inferring the state of the network and is similar to the Hidden Markov 

Model techniques of Section 9.13 of Chapter 9. 

Figure 7.2 shows an example of a 64x64 pixel map. Each pixel is turned on if at that 

time there is a network exception or control in that geographic area. 



Figure 7.2: Example of a Pixel Map Indicating Network Activity 

The real data was examined on a grid of size 50 miles by 50 miles centered on LOS 

Angeles broken up into 64x64 pixels. Each pixel was a square with a width and height of 

50164 miles. The size of grid chosen was a compromise. Too small a grid and one does not 

get a global view of the network. Too large a grid and the chances of two simultaneous 

events taking place increases and classification is more difficult. The 50 mile by 50 mile 

grid seemed to work well. 

As mentioned above, an estimate p(i, j, t), the probability of a pixel at position (i, j) 

being turned on at time t ,  was sought. The time t was specified to accuracy level of a given 

hour on a given day. For example, a unique record would be associated with Thursdays 

loam to llam. 

The data for estimating this probability was a history of some number N of previous 

records for this day and time, on which the pixel was turned on on x occasions. 

Two choices arose for the estimation of probabilities. The Maximum Likelihood (ML) 

estimator is: 

and a Bayes estimator making certain simplifying assumptions discussed below is: 

The ML estimator maximizes f (XI!?) with respect to 0 where f is the probability density 

function, x is the observation, and 6' is the parameter being estimated. 



Figure 7.3: A Rainy Tuesday in Los Angeles Before and After Filtering. Filtering Removes 
Routes that Regularly or Even Occasionally Overflow on that Day at that Time. 

The Bayes estimator is E(Olx), the expected value of the unknown parameter 0 given 

some observation x. The Bayes estimator requires the specification of a prior distribution 

for the parameter 0. The prior distribution contains the best estimate of B prior to taking 

any measurements. Here the prior distribution was taken to be a uniform distribution 

between 0 and 1. Refer to [Ros8'7] for details of how both ML and Bayes estimators are 

derived for a Bernoulli trial as is the case here. 

For probabilities that are small and limited data, the Bayes estimator does a better job 

of estimating the probability, especially with regard to testing the significance of future 

events. Consider the case where there are seven records, none of which show the pixel on. 

The ML estimator gives l jM = 0.000. The Bayes estimate gives l j B  = 0.125. If in the 

next record, it is found that the pixel turned on, this has a probability of 0.000 using 

the ML estimator and 0.125 using the Bayes estimator. The Bayes estimator, because it 

avoids zero probabilities, is more useful. 

Each pixel of the pixel map can be assigned a probability of being on at any given 

time. A filtering step can then be carried out to show only pixels that are significant at 

the 97% level. An example of such a filtered image is given in Section 7.5. 



7.5 Results 

Figure 7.3 shows the results of the filtering step on a Tuesday afternoon with floods and 

really heavy rain in Los Angeles at 3pm. The left part of the diagram shows the pixel 

map before filtering. The right part shows the pixel map after filtering. Filtering is at 

a significance level of 97%. Pixels that are turned on represent network exceptions or 

controls. 

Of all the pixels in the map, only 57 pixels have non-zero probabilities because they 

denote the location of telephone switches. The hypothesis that this is a normal Tues- 

day afternoon can be rejected at a 99.4% confidence level, assuming 6 successes from 

57 Bernoulli trails with p 5 0.03. The significance figure is information that the event 

classifier can use to recognize events. 

It could be argued that the map pixels are not independent. Taking account of the 

fact that trunk groups are used to connect switching offices, one can imagine a more strict 

test for significance that would divide the number of pixels turned on by 2 to account for 

the fact that a problem on a single trunk group could result in two pixels being turned 

on, one at either end. The probability of a success would similarly be divided by 2, giving 

p 5 0.015. Now with 3 successes from 57 trials, the calculated significance figure is still 

above 96%. 

7.6 Conclusions and Future Work 

This has been a first attempt at learning traffic patterns that are present in telephone 

networks. Some success has been obtained in detecting traffic patterns that are different 

from normal. An efficient and easy to implement pattern filtering stage has been proposed. 

As more data is obtained, the emphasis will be on the unsupervised learning of traffic 

patterns. Options for this unsupervised learning are: 

Generative Models[SM92, Smy941. Storing a template and using that as the pattern 

to be matched should be a feasible classification method. If the distance between 

the new pattern and the stored patterns is too great then a new class is declared. 

ART[HKP91, SB941 is a classification technique that has an adjustable vigilance 

parameter that controls when new classes are formed. It should be straightforward 
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to use the pixels as binary inputs for ART. 

a clustering e.g. k-means[HKP91]. This is a standard method of unsupervised learn- 

ing. 

The use of a HMM (Hidden Markov Model) suggests itself as a means of increased 

confidence in the assessment of the hidden state of the system, given a set of observables 

[Smy93, GA93, Smy941. HMMs are discussed in Section 9.13 of Chapter 9. However, the 

"attack phase" of network events is the primary interest, in order to provide the correct 

response, and the HMM is less useful during this phase. 

In summary, there is hope for the development of an automated network traffic pattern 

recognition system, and some of the necessary steps in filtering network traffic pattern data 

have been successfully carried out and reported upon in this chapter. 



Chapter 8 
Learning Telephone Network Trunk 
Reservation Congestion Control using 
Neural Networks 

8.1 Introduction 

Congestion control is an important topic in the design of telephone networks and will be 

even more so in the design of ATM networks. In this chapter, neural networks are used to 

decide the level of trunk reservation to apply in congestion situations. The communication 

networks investigated are symmetric fully connected telephone networks. 

8.2 Trunk Reservation 

8.2.1 Definition 

A simple example of a small network is given in Figure 8.1. This shows a simple five node 

network, with nodes labeled A to E. Each pair of nodes has a set of links between them. 

This small network can be used to demonstrate the concepts underlying trunk reservation. 

Calls are usually set up using either one or two hops. For example, a call from A to 

E could be setup using either the trunks from A to E, or else A to B and then B to E. 

In lightly loaded traffic conditions, using two hops allows more opportunities to complete 

telephone calls. However in heavily loaded traffic conditions, the two trunk groups used 

by a two hop call could instead be used to set up two one hop calls and reduce the network 

blocking. 

One hop traffic is called direct routed traffic. Two hop traffic is called alternate routed 

traffic. 

Definition 2 Trunk reservation is a policy whereby in each trunk group, alternate routed 

traffic is blocked zf there are fewer than R trunks free on  the trunk group. R is known as 

the trunk reservation parameter. 
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8.2.2 Simulation 

Trunk reservation favors the direct routed traffic at the expense of alternate routed traffic, 

increasing the network efficiency in times of high load. The parameter R can be very small 

and still have a substantial effect, as is illustrated in Figure 8.2. 

In this figure, the probability of a new call arrival being blocked in a symmetric network 

is shown. The network has 10 nodes and 100 trunks between each pair of nodes and 111 

Erlangs offered to each trunk group. n u n k  reservation is only enabled 2.5 minutes into 

the simulation. A trunk reservation parameter of 1 is used. The blocking shows an almost 

immediate decrease. The decrease is not immediate because trunk reservation is a blocking 

policy which blocks alternate traffic, so that shortly after trunk reservation is enabled the 

probability of being blocked on a direct route is unchanged but the probability of being 

blocked on an alternate route has increased. Soon a new equilibrium is reached in which 

the overall blocking is decreased since less calls are blocked on the direct route. 

Figure 8.3 shows an alternate view of the effect of implementing trunk reservation. 

Here the percentage of direct routed calls to total calls is plotted during the course of the 

simulation. Once again, enabling trunk reservation on all trunk groups at t = 2.5 minutes 

into the simulation has a dramatic effect on increasing the proportion of direct routed 

traffic in the network. The peak at t = 1 minute is due to an initial transient as calls 

arrive to an empty network. 

Figure 8.4 demonstrates that an overload situation is indeed being simulated. It plots 

the state probabilities, that is, the probability of n trunks occupied out of a 100 on a 

typical trunk group, at t = 2.49 minutes. This is just prior to trunk reservation being 

enabled. Clearly there is a significant probability that all 100 trunks are occupied on the 

trunk group, indicating that the network is in an overloaded state. 

8.2.3 Known Results Concerning Trunk Reservation 

Akinpelu in [Aki84] shows that trunk reservation prevents networks having two stable 

states at high loads. Kelly in [Ke194] references a result by Hunt and Laws that a policy 

that chooses the least busy alternative for routing and implements trunk reservation is 

an asymptotically optimal policy in minimizing blocked traffic, as the number of network 

nodes increases. 

Closed form solutions for the correct value of the trunk reservation parameter, R, to 
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use as a function of network load, traffic mix on the trunk group, and number of trunks on 

the trunk group are not known, except in the asymptotic case for symmetric networks with 

many nodes and the same traffic offered to each node [MS91, MG921. In this chapter, a 

neural network is used to choose the value of the trunk reservation parameter as a function 

of input variables that will be described later. 

In the remainder of the chapter, the constraints for this problem, training the neural 

network, the architecture of the neural network, the traffic mix, results, and conclusions 

are discussed. 

8.3 Constraints 

In a large network, it is unrealistic to expect each node to have a global view of the network. 

This is especially true when the network contains switches from different vendors. In such a 

case, there would have to be agreement between the vendors on the format of the messages 

communicating the switch state between all the switches. Such agreement could take years 

to accomplish. Instead it was decided to require the inputs to the neural network to be 

local information, in other words, statistics about the route or statistics about the switch 

to which the route is attached. 

The system proposed would have RN separate neural networks, where RN is the num- 

ber of routes in the network. Since each neural network is being trained to optimize trunk 

reservation on a single trunk group, questions of global network stability would have to 

be addressed before implementing such a system. These questions are not addressed in 

this study. 

The main benefit of using a neural network on this problem is the ability of the network 

to adjust its weights to reflect changes in the nature of the traffic in the communications 

network. An indirect learning approach is taken. In this case, the neural network is 

not provided with training examples taken from analytical studies of trunk reservation. 

Instead, simulation is used to provide the training set. The neural network is required to 

adjust its weights to minimize the overall network blocking in the simulated network. 
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Figure 8.5: Neural Network Output 

8.4 Neural Network 

The neural network has two inputs and two hidden units. A linear output unit is used 

to aid in function fitting. Since good results were obtained with two hidden units, the 

number of hidden units was not varied. Equation 8.1 defines the neural networks output 

y in terms of the neural network inputs xi and neural network weights, W i j ,  Wi, Oi and 8: 

The inputs are the switch loading and the traffic mix. The switch loading is defined 

to be the number of occupied trunks attached to the switch divided by the total trunks 

attached to that switch. The trafic mix is defined to be the number of direct routed 

calls on the trunk group divided by the total number of calls on the trunk group. This 

second parameter was used experimentally. The results indicate it does not have a strong 

influence on the value of the trunk reservation parameter chosen and could be left out. 

See Figure 8.5. 

The neural network will output fractional values for trunk reservation. These are 

interpreted as follows. If the trunk reservation parameter from the neural network is 0.3, 

then 0.3 of the time a trunk reservation parameter of 1 is used, and the remainder of the 



time a trunk reservation parameter of 0 is used. 

Each simulation cycle represents a 3000 minute or 50 hour traffic simulation. This 

generates about 18000 test cases and 18000 training cases. Each training case or test case 

fell into one of the following classes: 

A direct routed call is blocked because the trunk reservation parameter is not high 

enough. The training data contains a new higher value of trunk reservation. 

An alternate routed call is blocked, indicating that the trunk reservation parameter 

is too high. The training data contains a new lower value of trunk reservation. 

To keep the neural network output steady in regions of the input space that rarely 

experience blocking, 1% of the simulated call arrivals are used as training data, 

keeping the value of the trunk reservation parameter unaltered. 

Quickprop [Fah88] is then run for 200 iterations to tune the neural network weights. 

About 10 such simulation cycles are necessary to get good results. See Figure 8.6. 

8.5 Traffic Mix 

For the traffic simulation, a mixture of light (4.4 Erlangs), medium (6.7 Erlangs) and 

heavy (8.9 Erlangs) traffic is used. The simulated network has 10 nodes and 10 trunks 

between each node. Because light traffic occurs far more often in real life than medium 

or heavy, a weight of 0.8 is given to the light, 0.15 to the medium and 0.05 to  the heavy 

traffic for the purpose of computing blocking. 

The light, medium or heavy traffic level is indirectly input to the neural network 

through the switch load input variable. As the traffic level increases, the expected switch 

load will increase also. 

It is important to note that online training in a "live" network could be substituted for 

the traffic simulations. Once enough new training cases were available, the neural network 

weights could be tuned. In this way the neural network could continually adjust itself to 

the traffic mixes found in the real network. 
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Figure 8.6: Learning the Trunk Reservation Problem 
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8.6 Results 
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Figure 8.6 shows how the training and test error decrease with the number of simulation 

iterations. The results show the averages over 10 runs with different initial random seeds 

for the traffic simulator. The random nature of the telephone traffic being simulated is 

the main reason for the difference between the test and training curves. With longer 

simulation times, the performance on the training set should surpass the performance on 

the test set, as one would intuitively expect. 

The results are given in tabular form in Table 8.1. The results indicate a 13% decrease 

in blocking compared to not using any trunk reservation. An even greater decrease is 

found compared to using a value of 3 for the trunk reservation parameter. 



The algorithm described in Section 8.4 does not necessarily minimize blocking. Indeed a 

simple counting argument can be used to show that the algorithm performs badly at high 

traffic levels. 

To see this, consider the case where the traffic load is extremely high. For example, the 

offered traffic may be 10 times the traffic that the network is able to carry. In this case, 

the majority of calls will be blocked. Each blocked call results in one training case for 

increased trunk reservation and four training cases for reduced trunk reservation using the 

algorithm described in Section 8.4. The four cases for reduced trunk reservation are due 

to call attempts on the two legs of the fixed alternate and the NOAA suggested alternate. 

The traffic simulator assumes NOAA type routing as in Chapter 3. Since there are more 

training cases for reduction of trunk reservation than increase of trunk reservation, the 

trunk reservation will be reduced to zero. Clearly this is not desirable in a high traffic 

situation. 

The following sections explore why the basic algorithm works at all for medium traffic 

levels, indicate the difficulty of finding the optimum trunk reservation policy and describe 

an improved training algorithm which exhibits good behavior at all traffic levels. 

8.8 Principle of Basic Algorithm 

The basic learning algorithm seeks to strike a balance between blocked direct routed calls 

and blocked alternate routed calls, as shown in Figure 8.7. However the optimum trunk 

reservation algorithm would allow more blocked alternate calls at high traffic levels, as 

shown in the figure. 

The question arises: can the optimum trunk reservation algorithm that minimizes 

overall blocking be learned by measuring network blocking? In practical terms, the answer 

is no. The overall blocking B can be written as a function of the network topology N ,  the 

network traffic 7, and the trunk reservation policy as expressed by a set of neural network 

weights W. The network topology N is a list of nodes and links along with a specification 

of link sizes. The network traffic T is a list of offered traffic values between node pairs. 
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Figure 8.7: Principle of Learning Algorithm 



In real life, the network topology changes from day to day and the network traffic 

from hour to hour. The traffic never exactly repeats itself. Thus it is difficult to gauge the 

change in blocking produced by a change in weights W when it is so strongly affected by 

the changing network topology and the changing traffic. This makes learning the optimum 

trunk reservation policy by noting changes in blocking and correlating this with changes 

in the weights extremely difficult. 

However the basic learning algorithm can be improved upon by studying more closely 

the process of trunk reservation. 

8.9 Trunk Reservation Revisited 

Consider a trunk group of size N with a trunk reservation parameter R of 1. When there 

are less than N - 1 trunks occupied or exactly N trunks occupied, the trunk reservation 

parameter does not influence network behavior. 

When there are exactly N - 1 trunks occupied and an alternate routed call arrives, 

trunk reservation causes this alternate routed call to be blocked. The expectation is that 

a direct routed call will arrive shortly that can make better use of the free trunk. 

From this viewpoint, trunk reservation can be looked upon as a bet. When an alternate 

routed call is rejected, the network loses revenue, but the bet is that a direct routed call 

will arrive within a short length of time that will produce more revenue, because it makes 

more efficient use of network resources. The longer it takes for the direct routed call 

to arrive, the bigger the revenue loss from rejecting the alternate routed call. This is 

illustrated in Figure 8.8. 

If it is assumed that the alternate routed call has a holding time of Th, and the direct 

routed call has twice the revenue generating potential of an alternate routed call, then the 

point when the bet has been lost is about 2/3Th after the alternate routed call has been 

rejected. 

8.10 Improved Algorithm 

The improved algorithm generates test cases and training cases as follows. For each 

alternate routed call that encounters trunk reservation, a test is carried out. The neural 

network inputs are noted at the time the call arrives. Then a count is carried out of the 
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Figure 8.8: Profit Following Trunk Reservation Decision 

number of direct routed calls that arrive subsequent to the alternate routed call and get 

blocked. The counting period is two thirds of a holding time. The number of blocked 

direct routed calls is written to a training file as the desired value of trunk reservation on 

the route. 

Since the traf ic  mix input variable has little effect on the trunk reservation, this input 

variable for the neural network is removed and a variable called the alternate success rate 

is substituted. The alternate success rate is an exponential moving average of the rate at 

which calls are successfully carried after failing to get a trunk on the direct route. The 

rationale is that if there is spare capacity on the alternate routes, then there is less of 

a need to provide trunk reservation. The results show it impacts the level of suggested 

trunk reservation in the expected way. 

The interpretation of fractional values of the neural network output is also changed. 

If the output of the network is 0.1, this indicates that the "bet" would be lost 9 times 

out of 10. Given this interpretation, a rounding approach is taken, i.e. 0.1 is rounded to 

a trunk reservation of 0. Similarly a neural network output of 0.9 is rounded to a trunk 

reservation value of 1. In other words rounding to the nearest integral value is used or, 
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the bet is taken if the chance of winning is over 50%. 

The results for the revised algorithm are given in Table 8.2. The function learned by 

the neural network is given in Figure 8.9. A new entry has been added to Table 8.2 giving 

the results for a trunk reservation parameter of 1. 

While the old algorithm is beaten by a fixed trunk reservation of 1 trunk, the new 

algorithm beats any fixed level of trunk reservation. 

For comparison, the table also shows the performance of the neural network compared 

to a linear predictor with the same inputs and outputs. The neural network performs 

slightly better. Over 10 runs with different random seeds for the traffic simulator, the 

difference between the two methods is found to be non-zero at the significance level of 

98%. The differences in blocking performance are given in Table 8.3. It can be concluded 

that the neural network would be slightly better than the linear predictor in learning this 

problem. 

8.1 1 Conclusions 

In this chapter, neural networks have been applied to telephone network congestion relief 

and done better than the conventional technique of a fixed reservation scheme. In addition, 

it has been shown that: 
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The neural network can be applied to a difficult indirect learning problem. 

In the test network, a large decrease in average blocking is seen. 

By substituting live traffic for the simulations in this chapter, the neural network 

can learn in real-time. 

It should be possible to extend the results in this chapter to networks containing 

trunk groups of different sizes. This would require an extra input to the neural network 

containing this information, and longer simulation runs to make sure all parts of the input 

space are well represented. 



Chapter 9 
Time Series Prediction of Telephone 
Traffic Occupancy 

9.1 Introduction 

In this chapter, a number of methods for time series prediction of the occupancy statistic 

are considered. The advantages and disadvantages of each are discussed. The results are 

given in Table 9.4 on page 103 and Table 9.5 on page 103. 

Although the problems described in this chapter are concerned with monitoring tele- 

phony traffic, the techniques should be applicable, with little modification, to the monitor- 

ing of any large network. For example, rather than monitor trunk group occupancy, the 

network manager may be monitoring link throughput, but the same analysis techniques 

should apply. 

It would be useful to be able to predict telephone traffic occupancy on trunk groups 

prior to putting reroute controls in the network for two reasons. First, it may be possible 

to monitor occupancy on all the trunk groups in the network and implement a reroute 

control when the occupancy trend shows that a route is in danger of overflowing. Second, 

there is a delay between when capacity information is obtained for a trunk group and 

when a control is put in the network. This data gathering delay is of the order of two or 

three minutes. If NOAA's recommendations are made on the basis of predicted occupancy 

rather than occupancy, it may result in a need for fewer adjustments to the control. 

For this study, data was gathered while NOAA was running, logged to a file and 

examined in Caltech with a view to carrying out time series prediction. 

One of the main motivations in beginning the study is to see whether the use of neural 

networks would give a significant advantage in carrying out time series prediction because 

of their ability to realize non-linear functions of their inputs. 

9.2 Data Set 

Definition 3 Occupancy is a moving average of twenty samples of the number of trunks 

occupied on  a route. The samples are taken every 30 seconds, and the result is scaled to 
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be between 0 and 100%. 

Occupancy is a good indicator of the spare capacity of a trunk group. 

Occupancy is reported every 5 minutes. 

Two data sets were gathered: 

A short data set with about 1500 observations of occupancy on a single trunk group 

with 144 trunks between Los Angeles and Pasadena over the course of a week. The 

data set went from Friday to Friday with some gaps. This data set was used to 

compare various methods for time series prediction. In all cases, the aim was to 

estimate y7 given yl, ya, . . . , y~ 

A long data set consisting of 18000 observations of occupancy on a trunk group with 

360 trunks between Los Angeles and Gardena. This provides about 10 weeks worth 

of data. This data set was used to help model the daily profile of occupancy on a 

trunk group and the spike component of the occupancy statistic. 

In all cases, an estimate y7 given yl, y2, . . . , ye is desired. The reason this many co- 

efficients are chosen is that the autocorrelation function has died down to close to zero 

by the sixth coefficient. This is illustrated in Figure 9.2. The autocorrelation of the first 

order difference of occupancy was plotted, since the occupancy process does not have a 

zero mean. In contrast the first order difference of occupancy is very close to be a zero 

mean process, making the autocorrelation coefficients easier to interpret. 

The occupancy for every trunk group in the network is reported every five minutes. 

The first 300 points of the short data set are shown in Figure 9.1. Some key features to 

note are: 

The traffic level varies according to time of day. The plot shows the traffic level 

dropping on Friday evening, rising again on Saturday morning, and remaining level 

during Saturday afternoon. 

Spikes may be present in the time series, e.g., close to example 60. 

The variance of the occupancy varies with the traffic level. The plot becomes more 

jagged as the trunk group occupancy increases. 
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Figure 9.1: Occupancy Dataset 
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Figure 9.2: Autocorrelation of (First Order Difference of) Occupancy 

9.3 Simulation 

For comparison, a simulation program was written. For the simulation, memoryless ar- 

rivals and memoryless holding times are assumed. A constant traffic level is assumed, 

although this could have been easily changed to test more advanced models of the daily 

variation of occupancy or the occurrence of spikes. 

A plot of the first 300 points of a simulation of 36 Erlangs of traffic is given in Figure 9.3. 

The method of simulation employed is to make a list of instants, each instant corre- 

sponding to one of the following. 

A random call arrival (in fact the inter-arrival times which have a negative exponen- 

tial distribution are simulated). 

A random call departure (using the fact that the holding time has a negative expo- 

nential distribution). 

A deterministic sample time, where a record is made of the number of trunks occu- 

pied. 
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Figure 9.3: Simulation of 36 Erlangs of Traffic 

The list is then sorted and processed sequentially to yield a simulation of the occupancy 

statistics for the trunk route. 

The main difference between the simulation and the real data is that the simulation 

shows much less variability due to time of day or traffic spikes. However the simulation 

does show some variability due to the random nature of call arrivals. 

9.4 Cross-validat ion 

In testing the relative merits of prediction techniques, a distinction must be made between 

learning ability and generalization ability. A good prediction method will generalize well 

on examples that have not been seen before, by learning the underlying function without 

learning the associated noise. 

The first step in testing a method is the division of the supplied data set into a test 

set and a training set. The training set is used to derive the coefficients of the model and 

the model is then tested on the test set. In testing two or more models, the one that does 

best on the test set is the better one. 



There are two reasons a model may not do well on a test set. 

1. The model may not be able to provide a function that closely fits the function that 

is to be estimated. For example, a linear model will not fit a non-linear function 

well across all of its input space. 

2. The model may provide too rich a space of functions and return a function that 

implements the noise in the data set as well as the underlying function. Such a 

model will not generalize well. 

This can be tested using cross-validation. With v-fold cross-validation and a data set 

of size N, v tests are carried out. Each test employs N - N/v samples as the training set 

and the remaining N/v  samples as the test set. This makes maximum use of the data set 

and allows us to check the significance of the results. 

Strict cross-validation involves using a test set of one example and training on the 

remaining examples. This is done repeatedly leaving out one example at a time. In this 

way, maximum use is made of the data set in determining the generalization performance 

of the models. Strict leave-one-out cross-validation would have been better but results in 

a lot more computation time. A single run for the neural network took about a week on 

a Sun Sparc 10, and strict leave-one-out cross-validation using the same software would 

have taken almost a year. The back-propagation algorithm [HKPSl] is the culprit for the 

long run times, in addition to the need to duplicate the runs to assess the affect of the 

random weights used for initialization. 

An advantage of using cross-validation is that it provides some measure of the signifi- 

cance of the result. When comparing two models, one model may do better than another 

because (i) it more closely represents the underlying function or (ii) by chance it more 

closely represents the test set noise terms. By repeating the experiment using a second test 

set, an indication of the significance of the second factor is obtained. The more repetitions 

of the generalization test are carried out, the more significant the results for generalization 

capability. 

For this study, the examples are first shuffled to randomize the order and then 50-fold 

cross-validation is carried out. It is found to be important to keep the ordering of examples 

the same among the different met hods. 



9.5 Notation 

The time series prediction problem can be generalized to one of function approximation. 

Given a number of examples of a function plus noise, a function is desired that closely 

matches the training data and generalizes well on any new data that is supplied. It is 

easily shown that the function that minimizes the mean square error in the long term is 

the expected value function. 

Consider a typical time series xi,  x2, . . . , x,. An estimate 2,+1 = f (xi, xz, . . . , x,) of 

the value of the time series at the next time step is desired by choosing f to minimize a 

loss function C = E(X,+~ - f )2. Differentiating with respect to f and setting the result 

to zero gives 

f = E(~n+i lx i ,x2 , . - . ,xn)  (9.1) 

Differentiating again with respect to f shows that this is indeed a minimum. 

From this result, it is seen that time series prediction is a special case of the more 

general function approximation problem where the function that must be approximated is 

the expected value function. This observation allows the use of many results that have been 

derived over recent years about function approximation [Bar93, Cyb89, HSW89, UM911. 

This is of particular importance for neural networks. 

9.6 Motivation 

An example is used to motivate the use of non-linear predictors. Consider a stationary 

discrete time random process xi,  $2, . . . , x, with the following properties Vn:  

1. x, is a first-order Markov process, i.e., the value of z,+l depends on the value of x, 

only and no extra information is provided by observations xi,  2 2 ,  . . . , x,-1. 

-3 
with a normalizing constant A = T e s  ~ i ( & )  2. P ( x ~ )  = 2- 

The optimum predictor is 

which is non-linear in x,. 



9.7 Linear Predictor 

9.7.1 Introduction 

In the past, the linear predictor has been the mainstay of statistical prediction techniques 

and regression analysis [Ros87, Chr91, WG94, B JR94, DH87, Pan911 . A regression model 

attempts to predict the value of a dependent variable from one or more independent 

variables. If the dependent variable is a continuous function of the independent variables 

and if the input space for the independent variables is small enough, then a linear regression 

model can give good results. 

9.7.2 State of the Art 

The field of regression analysis is well developed [Ros87]. Least squares estimates of the 

regression parameters for a regression model can be obtained. These estimates minimize 

the sum of the squares of the residuals with respect to the regression parameters. An 

assumption that is usually made is that the regression errors are independent, identically 

distributed normal random variables with mean 0 and some variance 02. Given this 

assumption, the distribution of the regression parameters can be found to be a normal 

distribution with known mean and variance. Confidence intervals can be derived for the 

regression parameters. Similarly confidence intervals for the predicted values can also be 

obtained. An index of fit which is a measure between 0 and 1 is defined which measures 

how good the regression fit is. 

In the seventies, Box and Jenkins wrote a definitive text book on the subject of time 

series prediction [BJR94]. A procedure for developing models of time series is proposed 

which put an emphasis on parsimony of model parameters. The analysis of correlation 

coefficients of the data is shown to be an important step in the selection of an appropriate 

model. Moving average and autoregressive stochastic models are described. The use of 

differencing techniques to deal with non-st at ionarities is described. 

In the signal analysis arena, the subject of modeling of time series is equally import ant 

and there has been much work on the modeling of associated stochastic processes [Haygl, 

PP80, Lat89, Sch871. For stationary processes the linear predictor coefficients are related 

to the autocorrelation coefficients by the Wiener-Hopf equations [Haygl]. The Wiener- 

Hopf equations are not used here, but it is interesting to note that they are very similar to 



the equations used in statistical regression analysis. In this section, a statistical regression 

analysis approach is taken. 

It is known that for a process that has a multivariate Gaussian distribution the Linear 

Predictor (LP) is the best predictor[Chrgl]. Since the Poisson or telephone traffic distri- 

bution looks like a Gaussian for large traffic levels, and the collected traffic data shows no 

traffic being blocked which would cause the Gaussian property to be lost, and the moving 

average operation used to calculate occupancy from sampled telephone traffic would not 

cause the Gaussian property to be lost, it is not surprising that the linear predictor did 

well. The other nonlinear methods can only give small percentage improvements. 

9.7.3 Training a Linear Predictor 

The procedure for training a linear predictor to minimize error on the training set in a 

least squared sense is well known and involves the calculation of the pseudo-inverse matrix. 

To find the LP weights, a matrix equation can be written for the residual errors ri of an 

approximate solution of the prediction problem in terms of the occupancy observations yi 

as follows: 

or in short, 

Then rTr (the total square residual error) is 

Now, differentiating rTr with respect to w and setting the result to zero to minimize the 

error with respect to the weight vector w gives 

and hence 

= ( A ~ A ) - ' ( A ~ ~ )  

Thus the LP coefficients can be obtained by a simple 6x6 matrix inversion. 



9.8 Non-Linear Predictor 

Non-linear prediction allows the use of y i y j  cross-product terms in the A matrix of Sec- 

tion 9.7. For example: 
6 6 6  

~7 = x WiYi + C x WijYiYj  
i=l  i=l  j=i 

Taking a 3.&Yfj cross-product as an example, residual errors r i  now become: 

As in Section 9.7, matrix inversion is used to give the predictor coefficients: 

- 

A 

Thus the LP coefficients can be obtained by a simple 7x7 matrix inversion. 

This method is also known as polynomial regression [Ros87]. It is one of many non- 

linear techniques studied in this chapter. It shares with the other techniques a non- 

parsimony of parameters. In other words, for N  inputs, there are o ( N ~ )  possible second 

order crossproducts and o ( N ~ )  possible third order cross products. The more parameters 

in the model, the more data that is necessary to correctly estimate them. If not enough 

data is available the generalization results will not be good. 

A slight improvement in prediction performance is obtained. Trial and error (see 

Table 9.1) shows that the best results are obtained with pure squares of the input terms. 

Overall results are given in Section 9.16 on page 104. 

w 1  I:: 1 - 

9.9 Neural Network 

Comparisons of neural networks and linear predictors show that neural network sometimes 

can give better results [TdAFSl, SP901. However the data sets used are not particularly 

long, so the st atistical significance of these comparisons may be quest ionable. 



)0.016215 1 StandardLinearPredictor I 

Error 

0.016283 
o-016256 

Table 9.1: Scaled RMS Prediction Error for Various Cross-product Terms 

Crossproduct Terms 

Y4Y4 Y5Y5 y6Y6 Y4Y5 y5Y6 

Y5Y5 Y6Y6 9596 

1 Number of Hidden Units 1 Error 1 

Table 9.2: Neural Network Test Set Prediction Error for Varying Numbers of Hidden Units 

Moody in [UM91] gives learning limits for neural networks. See Section 9.11 for some 

details. A key point in his paper is that too many hidden units combined with a low 

value for weight regularization will produce an increase in generalization error. Weight 

regularization is the step of adding an error term to the function to be learned. This error 

term penalizes neural networks that have large weight values, or non-smooth outputs. The 

aim is to avoid learning that noise in the training data set. From Moody's work it can be 

deduced that there is an optimum number of hidden units for a given learning problem. 

In these studies, a feed-forward neural network with a single hidden layer is used. 

Quickprop[Fah88] is used for training as it has faster convergence than standard back- 

prop and is freely available on the Internet. For the neural network, trial and error shows 

that four hidden units and a linear output unit gives best results (See Table 9.2). The 

linear output unit is used to aid function fitting. This architecture is fixed prior to training. 

See Section 9.16 on page 104 for results. 

A plot of hidden unit activations gives valuable insight into the features of the data 

set. There are four hidden units. One of the hidden units reacts strongly to the overall 

traffic level. One of the units reacts strongly to rate of change of traffic level while the 
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Figure 9.4: Activation of Hidden Unit #3 
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Figure 9.5: Activation of Hidden Unit #4 



Figure 9.6: Recurrent Neural Network (Cell Threshold Weights not Shown) 

other two reacts strongly to the rate of rate of change of traffic level. Examples of two 

of the plots are given in Figures 9.4 and 9.5. It is possible that the neural network is 

constructing a Taylor Series of the function of be approximated. 

9.10 Recurrent Neural Networks 

Recurrent neural networks allow the use of feedback in addition to feedforward connections 

[WZ89, QSM92, Pin89, Pea891. In this way, the network retains some state information be- 

tween the presentation of examples. Recurrent neural networks are more difficult to train, 

but some successes have been reported for the time series prediction problem [CMA94]. 

The architecture of the recurrent neural network is somewhat different to the archi- 

tecture of the other models in this chapter. Instead of 6 inputs, there is only one (See 

Figure 9.6). Recurrent neural networks are assumed to use their internal hidden units to 

hold state information, similar to the way finite state automata work. So there should be 

less need to present the previous inputs at the same time as the present input. Instead 

the recurrent neural network should learn the input features that are significant, and store 

some representation of these states in the hidden units to aid in prediction. 

Since it is assumed that the previous six examples contain all the necessary information 

for making a prediction, this state information may not buy us any additional prediction 

power. See Section 9.15 for details on how time of day information can be more easily 

incorporated in the prediction process. 



Using a recurrent neural network on the long data set, with one input, one output, and 

a variable number of hidden units, and using the training techniques described in [WZ89], 

a scaled prediction error of 13952 is the best that could be achieved, which is worse than 

the performance obtained by the linear predictor. These results suggest that the function 

space of this recurrent neural network is not rich enough to model the expected value 

function that needs to be approximated by the time series predictor. 

9.11 Learning Limits for Neural Networks 

J. E. Moody carries out an analysis of generalization and regularization in non-linear 

learning syst ems[UM91]. 

Assume a set of 2n real valued input/output data pairs are given and a function to 

fit the data is to be estimated. The data is split equally into a test set and a training 

set. The noise is i.i.d. with mean zero and finite variance 02. The noise is not necessarily 

Gaussian. 

For a linear predictor, references are given to the following result for the MSE ete,t: 

where p is the number of parameters (weights) being estimated. 

For a neural network, a new result correct to second order is given: 

where p,ff is a complicated function of various Jacobians. However for a locally linear 

model, p,ff is a decreasing function of A, the weight decay parameter for the neural 

network with peff (A = 0) = p. The form of Equation 9.13 suggests that (i) there may 

be a trade off between having too many hidden units which will cause the second term in 

equation 9.13 to rise or too few hidden units which will cause the first term in equation 9.13 

to rise and (ii) given enough data, there will be an arbitrarily small difference between 

test set performance and training set performance. 

9.12 Local Approximation 

Another name for the Local Approximation technique might be "History will Repeat ." 
The idea is straightforward. A training set and a test set are given. To carry out a 



prediction for any particular test set example, find examples in the training set which 

most closely resemble it. Then train a linear predictor on that subset of the training set 

and use it for prediction. This procedure is repeated for each example in the test set. 

The algorithm is more precisely specified as follows: 

Given: 

So , a training set consisting of no examples, 

S1 , a test set consisting of nl examples, 

each training set example is of the form {y;, y;, y$, yi, yk, yk, y;). Each test set example is 

of the form {yl, y2, y ~ ,  yd, ys,y6, y7) where y7 is to be predicted from yl . . . ys. 

A forecast is carried out for each of the nl examples based on a model derived from the 

training data So. Instead of using a single model for all the test examples, as is usually the 

case, a different model is derived for each test example. The model is a linear predictor 

which is derived as follows. Choose a neighborhood Na < no. Pick from the training set 

the Na examples which minimize the Euclidean distance d, where 

Here Y' indicates a number from the training set, and y indicates the current example 

from the test set. 

Finding these examples can be done in one pass through the training set and a linear 

predictor trained using only those examples, as detailed in Section 9.7. 

Figure 9.7 shows how the generalization error varies as the neighborhood, Na, for the 

local approximation technique varies. 

[FS87] reports excellent results for this method on chaotic series using a small neigh- 

borhood and noise free measurements to a high precision. 

The disadvantage of this method is that the most accurate predictions require keeping 

on-line a large number of training examples. In this case, if traffic spikes occur infrequently, 

a large volume of data is needed for each trunk route to be sure that the spike is captured. . 
In contrast, the neural network model is more attractive, requiring a much smaller amount 

of information to be stored (i.e. the weights) to characterize the function to be estimated. 
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Figure 9.7: Minimum Error for Local Approximat ion 

9.13 Hidden Markov Model 

Hidden Markov models (HMMs) are popular for word classification in automatic speech 

recognition[LRS83, RLS83). 

The HMM is defined by a set of states, S, and two matrices Aij and B&. Aii is the 

probability of a transition to state i from state j, and B& is the probability of observing 

o given that you are in state i. This is illustrated in Fig. 9.9. The Aij matrix gives rise to 

the Markov in the name, since the next state depends on the present state as in a regular 

first-order Markov model. The B& matrix gives rise to the Hidden in the name, since the 

states are not directly observable. 

The Baum-Welsh algorithm can be used to learn the A and B matrices[LRS83]. A 

different algorithm, the Baum Backward-Forward algorithm can be used to derive the 

probabilities of the system states given the observations [LRS83]. In this way, the HMM 

can be used as a classifier. 

In this case, a HMM is used to classify the trunk group as being in one of two 

modes/states: (i) traffic varying a lot as during a traffic spike or (ii) traffic behaving 
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Figure 9.8: Hidden Markov Model State 

normally. This classification is used to choose between two linear predictors for training 

purposes as shown in Fig. 9.10. For testing purposes, as shown in Fig. 9.11, the HMM 

output probability for state 1 ( p l )  is used to combine the estimates from the two linear 

predictors (LPi) to yield the occupancy estimate & as follows: 

The A-matrix is learned from the data using the Baum-Welsh algorithm. The obser- 

vation, o(n),  used as input to the HMM model is the prediction error from a 5-input linear 

predictor in predicting the most recent occupancy reading. 

A plot of the probability of traffic not being "normal" traffic is given in Figure 9.8. 

Compare this to the original time series shown in Figure 9.1. The traffic spike close to 

example 60 can be clearly seen. Also the decline in traffic close to example 25 can be 

clearly seen. 

For the state transition probability matrix, A: 



Ppi next time step 

Y State s(n) t- observable o(n) 

Figure 9.9: Hidden Markov Model 

1 Train LP2 ; F, 
Figure 9.10: Training a Dual Linear Predictor 

Then for time-step n: 

where p: is the estimate of the relative probability of being in state i at timestep n. 

An assumption of a Gaussian distribution of prediction error is used to generate the 

output matrix, B. For the output matrix: 

O n  = Y n  - Cn (9.19) 

The results (see Table 9.4 on page 103 and Table 9.5 on page 103) indicate that the 

Hidden Markov Model is able to improve the robustness of the linear predictor by detecting 

traffic spikes in the input data and training a second linear predictor on the time series 

that follow traffic spikes. This gives an improvement over the standard linear predictor 

but is not the best overall method. 



Figure 9.1 1: Testing a Dual Linear Predictor 

9.14 Log Transformation 
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A log transformation of the data is carried out, prior to training a linear predictor. This is 

the best prediction method for the short data set. It is believed that the reason that it is 

so good is that it tends to give the same output as a linear predictor when the traffic levels 

are about constant. This is because the log predictor has approximately the same weights 

as the linear predictor, as shown in Figure 9.12 and averaging in "log space" is the same 

as averaging in linear space if the points being averaged are close together. Figure 9.13 

highlights the fact that there is little difference between the log predictor and the linear 

predictor for most of the predictions. 

LPl 

LP2 

Classifier 

On the other hand, in the event of spikes (as occurs in a small part of the data set) 

the log predictor gives much better prediction results. (See Figure 9.14). This may reflect 

the geometric averaging process as being better than the arithmetic averaging process 

following a spike. Figure 9.14 highlights the fact that there is a large difference between 

the log predictor and the linear predictor following traffic spikes. 

It might be argued that heteroskedasticity is the cause of the log predictors success. 

Heteroskedasticity is the change of variance of the occupancy statistic as the traffic level 

rises. This may interfere with the calculation of the coefficients of the LP. A possible 

solution suggested in [Ros87] is to take a log transformation of the data to flatten the 

variance as is done here. However heteroskedasticity can be ruled out as a cause of the log 

predictors success because in this event, a weighted least squares predictor should obtain 

the same improvements as the log predictor, and this is found not to be the case. 

Weighted least squares is a means to avoid the bias introduced by heteroskedasticity. 

The weighted least squares experiment trains a linear predictor but weighs each input 



Log Occ and Linear Predictor Weights 

2 4 
Weight 

Figure 9.12: Comparison of Log and Linear Coefficients 
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Figure 9.13: Typical Log Predictions and Linear Predictions. Note that Log and Linear 
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Figure 9.14: Log and Linear Predictions Following Spikes. Note that Log Predictor is 
Better than Linear 

pattern vector according to the average level of traffic present. The details of the algorithm 

used and the best weights to use are given in [Ros87]. In this case, the best results are 

obtained with a weighting function that linearly decreases from 2.0 to 1.0 as the traffic 

level rose from 0 to 100% occupancy. 

9.15 Including a daily profile 

Using the longer data set, it is possible to generate a daily profile for the trunk group. 

The traditional approach by utility companies is to classify the day into one of: 

Saturday 

Sunday or holiday 

Day after Sunday or holiday 

Weekday 

and then use historical records to derive a profile of each day. This profile is fed into the 

predictor to aid in prediction. The key point is that part of the daily variation that the 

occupancy statistic follows every day is deterministic. 



I Method 1 Error 1 
Standard LP 13112 1 1 1  

Table 9.3: Scaled RMS Prediction Error using Daily Profile 

I Using linear predictor 1 16215 1 

Method 

Using last sample 

I Using Hidden Markov Model 1 16081 ( 

i 

Error 

18308 

I Using log transformation 1 16033 ( 

Table 9.4: Scaled RMS Prediction Error for Short Data Set 

Best results are obtained by dividing the data into each of the four day types, carrying 

out a 5 point moving average operation to smooth the data, calculating the profile for each 

day type by averaging the available data for each data period belonging to that day type 

and finally using the first order differences of the relevant profile as an extra input to the 

linear predictor. Carrying out all of these operations resulted in a 5% improvement in the 

prediction error, as shown in Table 9.3. Because of the 5 point moving average operation, 

the data set in this section is slightly different from the dataset in earlier sections. 

In this implementation, no account is taken of holidays. Instead holidays are treated 

as normal work-days. It is likely that treating holidays the same as Sundays as suggested 

by [HY91] would slightly improve the results. 

I Using log transformation 1 131 16 1 

Method 

Using last sample 
Using linear predictor 

I Using local approximation 1 1301 1 1 

Error 

13487 
13130 

Table 9.5: Scaled RMS Prediction Error for Long Data Set 



9.16 Results 

The results for the short data set are shown in Table 9.4. The results for the long data 

set are shown in Table 9.5. Neural networks and local approximation techniques do well 

on the long data set. 

All methods predict the next observation based on the previous 6 observations. The 

linear predictor can be taken as the baseline performance to beat. Error is RMS prediction 

error multiplied by 10,000, with a difference of 100 for the short data set and 10 for the 

long data set being significant. In each case, 50-fold cross-validation is used. 

9.17 Conclusions 

The presence of occasional spikes in telephone traffic occupancy means that it is possible 

to do better than use a linear predictor for this data set. 

The general nonlinear methods of neural networks and local approximation did well 

and can be expected to be near optimal as the data set size increases, as discussed in 

Section 9.11. Some progress in understanding the role of each hidden unit in the neural 

network predictor is obtained, as discussed in Section 9.9. 

The HMM has a side effect of giving a classification of the state of the trunk group. 

This could be useful in a network management context. 

Inclusion of a daily profile as one of the inputs, as described in Section 9.15, results in 

a 5% improvement in prediction capability. It is expected that there exists a fundamental 

limit to prediction implied by the random nature of call arrivals. This is explored in 

Chapter 10. 



Chapter 10 
Model of the Occupancy Process 

10.1 Introduction 

Figure 9.1 in the previous chapter indicates that occupancy depends on time of day. In 

this chapter the dependency of occupancy on the day of the week is examined. A model of 

weekday occupancy will be developed that provides a good visual fit with observed values. 

Clearly, occupancy has some randomness due to the random nature of call arrivals. 

This random nature must be included in the model. The strategy pursued in this chapter 

is to find a daily profile, add a loading factor to account for the observed variability, 

simulate the daily profile with the added loading factor and compare it visually with the 

observed occupancy values. This is similar to the time series models developed by utility 

companies [HY91, PHK921. 

A model of occupancy would have some benefits: 

It would indicate the limits of predictability. In Chapter 9 various methods used 

to predict trunk group occupancy are compared. With a model of the occupancy 

process, it is now possible to investigate how close each method comes to the fun- 

damental bound imposed by the random nature of call arrival. Section 10.7 gives 

details. 

It would indicate the presence of spikes. With a model of occupancy, it is much easier 

to detect a departure from normal operations. It also becomes possible to attach 

a statistical significance to such departure. If properly presented, this information 

could be very valuable to the network traffic manager. 

10.2 Day of Week Dependence 

Looking at the long data set from Chapter 9, it is possible to check whether occupancy 

varies from day to day. This is done in Table 10.1. Clearly there is less traffic on Saturdays 

and Sundays than on weekdays. The most traffic is to be seen on a Monday, when business 

people return to business after a weekend. The traffic profile on Tuesday, Wednesday, and 



Day 
Mon 
Tue 
Wed 

1 Sun 1 2.31 & 0.88 1 4.61 0.83 1 5.53 f 1.26 1 5.04 & 0.99 1 6.34 f 1.52 1 

08:OO 

12.4363.32 

Thu 
Fri 
Sat 

Table 10.1: Occupancy Mean and Standard Deviation for Different Days and Times 

11.08 & 2.71 
11.22 6 2.63 

Thursday seems to be similar. Based on this, the remainder of the chapter contains a 

description of the development of a model for occupancy on these days. 

1O:OO 

37.87~k7.84 

11.23f3.11 
10.29 f 3.02 
3.89 1.30 

The dataset showed some anomalies on Thursday November 25 and Friday November 

26, the Thanksgiving holidays. There is also less traffic than usual during the two weeks 

when many people take their Christmas vacations. To account for these holiday periods, 

the period from Thursday November 25th to Tuesday November 30th and the period from 

Saturday December 25th to Thursday January 6th are excluded from the data set. A 

complete model would include special cases for Thanksgiving and Christmas vacations. 

In the past, the Monday after Thanksgiving has been found to be the busiest day of the 

year for telephone traffic. 

29.79 f 4.44 
26.56 Ifr 3.31 

10.3 Tuesday to Thursday Scatter Plot 

12:OO 

20.95k4.68 

26.85333.69 
26.98 13.10 

7.32 f. 1.35 

Figures 10.1, 10.2, 10.3 and 10.4 show scatter plots of a seven point moving average of 

occupancy on Tuesdays, Wednesdays, Thursdays and all three days respectively. The seven 

point moving average is chosen to aid the comparison of the daily profiles, by smoothing 

the random fluctuations in the traffic. One obvious traffic spike can be seen in Figure 10.3 

close to data-point number 250. The similarity of the traffic profiles is remarkable. 

18.41 4Z 2.53 
17.71 Ifr 2.90 

10.4 Traffic Profile 

14:OO 

25.00313.82 

17.62&2.72 
17.69 f: 4.31 
7.55 k 1.91 

Figure 10.5 shows the daily traffic profile. It is derived by simply averaging all the available 

readings for each data period. 

20:OO 
13.45~t3.13 

24.61 4Z 2.79 
22.44 & 2.78 

12.15 f 2.55 
10.84 * 2.70 

23.004Z4.40 
21.66 * 6.91 
7.01 k 2.12 

13.53k6.08 
10.41 k 2.77 
6.59 + 1.99 
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Figure 10.1 : Tuesday Occupancy Moving Average 
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Figure 10.2: Wednesday Occupancy Moving Average 
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Figure 10.3: Thursday Occupancy Moving Average 
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Figure 10.4: Tuesday to Thursday Occupancy Moving Average 
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Figure 10.5: Daily Traffic Profile (Tue-Thu) 

10.5 Characterizing the Variance 

With a large number of trunks, the theoretical traffic distribution will be close to a Poisson 

distribution, with mean and variance equal to the offered traffic a. In other words, the 

traffic variance is proportional to the mean traffic level. The moving average operations 

used to calculate occupancy from traffic samples and to smooth the occupancy readings 

will not cause this property to be lost. If the applied traffic level is constant then one 

would expect to see a variance that is proportional to the traffic level. A plot of the bounds 

suggested by such a variance is given in Figure 10.6. 

Clearly this can be improved upon. The fit is good at low traffic levels but is poor 

at higher traffic levels. If it is postulated that a loading factor that is proportional to 

the applied traffic is added to the profile, then making the variance proportional to traffic 

raised to a higher exponent than 1.0 may be better. Figure 10.7 shows the effect of bounds 

suggested by a variance that is proportional to traffic raised to the power of 1.5. The fit 

is good for all data periods except the lunch hour. 
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Figure 10.6: Traffic Upper and Lower Bounds with Variance(1) 

0 50 100 150 200 250 300 
Five Minute Period Number(0 - 287) 

Figure 10.7: Traffic Upper and Lower Bounds with Variance(2) 
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Figure 10.8: Simulation using Occupancy Model 

10.6 Model 

This gives rise to the proposed occupancy model. The model uses the traffic profile from 

the data set, adds a loading factor for the day, which is a multiplicative factor of the form 

where z is a normal random variable with mean 0 and variance 1, and o is a loading factor. 

Good results are obtained with o equal to 0.13. Finally this loading factor is removed 

during lunch hour to agree with the reduced variance observed during this time. 

Thus, to simulate occupancy using this model, the following steps are needed: 

1. Decide on day type. 

2. Use the observed profile for that day type. 

3. Scale the profile by a multiplicative factor M given in equation 10.1. 

4. Simulate call arrivals according to that profile. 

The visual agreement between the observed data in Figure 10.7 and the simulation of 

the model in Figure 10.8 is good. 



I Data Period 1 09:25 1 09:30 1 09:35 1 09:40 1 09:45 1 09:50 1 09:55 ( 

Table 10.2: Occupancy Profile and One Realization Prior to 09:55 

Occupancy 
Realization 

I Occupancy I 

18.16 
18.00 

Table 10.3: Predictions for 9:55 Occupancy by Various Methods 

Indexed Linear Predictor 
Simulated 

Although this trunk group carries overflow traffic, for simulation purposes it is treated 

as first routed traffic without appreciable error. 

18.91 
16.00 

19.1335 
19.4300 

10.7 Limits of Prediction 

It was mentioned in the introduction that one of the benefits of a model of the occupancy 

process would be to find the limits of predictability of occupancy. It is possible to use the 

model of occupancy to simulate a large number of future evolutions for occupancy from 

a given point in time. Since each of these evolutions is equally likely, this will give an 

indication of the limits of predict ability. 

An example of this procedure for the time period ending in 9:55 (period 119) is shown 

in Table 10.2, and the results for the various prediction methods are shown in Table 10.3. 

It is possible to carry out 10000 evolutions of the realization shown in Table 10.2. Based 

on these evolutions, the best possible prediction of the next traffic sample at 09:55 would 

be 19.43 f 0.84. Table 10.3 shows how close each of the prediction methods is able to get 

to this best result. 

Clearly the use of indexing gives a major improvement over the other methods, coming 

closest to the expected value of the next occupancy reading. 

The important lesson to be learned is that there is a certain randomness in call arrivals 

that it is impossible to predict. In this case, it is the standard deviation figure of 0.84 

above. Unless one tries to model every subscriber in the network, it would be impossible 

to reduce the expected prediction error for the 09:55 prediction below this, assuming the 

19.50 
16.00 

20.15 
18.00 

20.82 
18.00 

21.32 
18.00 

22.14 



model of the occupancy process is accurate. 

10.8 Simulated Dataset 

It is possible to carry this technique a bit further. It is possible to generate a simulated 

dataset using the model of the occupancy process developed in this chapter. The difference 

between the simulated dataset and a real dataset is that for each future value of occupancy 

that is to be estimated, a large number of evolutions can be carried out, in order to estimate 

the expected value of the occupancy reading, and the standard deviation of the occupancy 

reading. 

This technique is used to generate a dataset of 3000 examples of weekday occupancy. 

For each of the examples, 1000 evolutions are carried out. In this way, the expected 

value pi of the future reading of occupancy and the minimum prediction error ai, that 

is, the standard deviation of future reading of occupancy, are known for each of the 3000 

examples in the dataset. 

The following equation is used to calculate the error associated with the different 

prediction methods, Em. Here yi is the predicted value of the test set for example i for 

this prediction method, found using 50-fold cross-validation on the 3000-element dataset. 

with the error, ei, being defined as: 

The error, Eopt, associated with a hypothetical optimum prediction method is simply: 

This results for the different prediction methods are reported in Table 10.4. The results 

are scaled by 10,000 to get rid of decimal points. The indexed methods use an extra input 

which is the first order difference of the daily profile for that particular time of day. This 

gives 7 inputs instead of the usual six. 



Last Sample 

1 Indexed Linear Predictor 1 7030 1 

Error 
8281 

Linear Predict or 
Local Approximat ion 

7889 
7416 

Table 10.4: Scaled RMS Prediction Error on Simulated Dataset 

Indexed Local Approximation 
Optimum 

The local approximation method gives a sizeable gain over a linear predictor. However 

the indexed local approximation method is the best method, coming close to the perfor- 

mance given by the optimum predictor for this model. The indexed linear predictor is not 

a lot worse. 

The figure of 6997 in Table 10.4 seems to be the smallest figure obtainable, using the 

given inputs. This is indicated by the fact that the training error from a neural network 

with the number of hidden units varying from 1 to 10 can show no improvement. 

The results in Table 10.4 give an indication of how close to the limit of predictability 

the various prediction methods can come. 

6997 
5782 

Effect of Dataset Size 

Equation 9.12 seems to suggest that as the dataset size increases, the RMS error should 

decrease according to the formula: 

where p is the number of parameters (weights) being estimated. 

It is possible to test the effect of using a smaller dataset size by simply breaking the 

3000 element data set into n groups of size 3000/n. For the indexed linear predictor the 

results are given in Figure 10.9. A good fit is obtained using the 1/71 term, however it is 

clear that the fit could be improved. A better fit includes l/(n2). The fitting formula is: 

This would indicate that the minimum test error for very large n would be 0.7015. It 

would also indicate that a 3000 point dataset would be large enough to come very close 
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Figure 10.9: Decrease in Error for Indexed Linear Predictor as Dataset Size Increases 

to this minimum test error. In fact, from the graph, it is apparent that dataset sizes of 

greater than 500 points are sufficient for coming close to the minimum error. 

10.10 Conclusions 

The model of occupancy proposed in this chapter is similar to time series models of power 

load put forward by utility companies. The aim of the model is to explicitly incorporate 

all of the sources of variation in the occupancy readings. There are a number of sources 

of variation in the occupancy readings. The occupancy readings depend on: 

Day of Week 

Time of Day 

A Loading Factor 

Exact Arrival Instants of Calls 

The model of occupancy that is proposed includes all of these sources of variation. 

It successfully describes the observed occupancy during weekdays for one trunk group. 



It has been used to investigate the limits of predictability of trunk group occupancy. A 

model based approach should also prove useful for the detection of traffic spikes. 



Chapter 11 
Conclusions 

11.1 Introduction 

In this thesis, some of the issues that arise from considering dynamic routing based on 

5 minute data are examined. It is foreseeable in the future that all telephone networks 

automatically adjust the routing tables in the switches in the network to compensate 

for changing network conditions and provide the maximum of service quality with the 

minimum of equipment. 

11.2 Dynamic Routing 

In Chapter 3, simulations are carried out to test the benefits of dynamic routing based 

on 5 minute data. The factor with the largest influence seems to be network connectivity. 

With a typical network connectivity of 0.25, the equipment savings from implementing 

dynamic routing are approximately 2%. In a typical metropolit an network, with higher 

connectivity, the equipment savings may be of the order of 3.5%. 

The benefit of dynamic routing are also seen to decrease as trunk group sizes increase. 

This is explained qualitatively as a consequence of larger trunk groups containing relatively 

fewer free trunks for a given level of blocking. This means that there is less spare capacity 

for the dynamic routing algorithm to use. 

11.3 Fixed Point Models 

A fast method for the calculation of network blocking probabilities is described in Chap- 

ter 4. For symmetric networks and simple routing schemes, FPMs are instantaneous. 

However two drawbacks are apparent. 

First, the use of FPMs usually implies an assumption of route independence. Thus 

FPM blocking results are approximate. Without resorting to simulation, it is difficult to 

write down an expression for the error introduced by the fixed point method. 

Second, for non-symmetric networks, the run-time for the FPM will be proportional to 

the number of routes to be modeled, which rises according to o ( N ~ )  where N is the number 



of network nodes. Thus runtimes can rise very quickly as the network size increases. 

Despite these limitations, FPMs have been useful for calculating estimates of network 

blocking associated with various routing techniques. 

11.4 Network Stability 

In Chapter 5, simulations and analysis are used to examine the dynamics of dynamic 

routing, when the routing information experiences a delay in feedback. The lesson is that 

tight control of the feedback time of routing information is necessary in order to avoid 

network inst ability. 

11.5 TrafficPatterns 

A model-based approach to the detection of normal and abnormal traffic patterns is put 

forward in Chapter 7. An example of the use of this approach to characterize a stormy 

day in Los Angeles as being an abnormal day with a 99.7% certainty level is given. It 

is seen that the first step in detecting departures from normal operation has to be the 

formulation of a model that describes normal operation. 

11.6 Learning Techniques 

In Chapter 9 the application of many different learning techniques to time series prediction 

of telephone traffic occupancy is considered. It emerges that local approximation and 

neural networks are two techniques that generalize well. Using a long data set with 

about 18000 elements, it is possible to be confident in the comparative performance of the 

different predict ion techniques. 

It should be noted that in network management, function approximat ion is import ant. 

There are many functions that would be difficult to solve for analytically, that can be 

obtained by fitting a function to observed network data. For example, the optimum trunk 

reservation parameters are considered in Chapter 8. 

The linear predictor and the neural network are good function approximators and 

difficult to beat. The linear predictor has advantages over the neural network in that it 

is quick to train and there is little or no danger of overfitting. On the other hand, the 



neural network can provide a better fit for functions that are a non-linear function of their 

inputs. 

Cross-validation is the key technique for testing learning ability. The cross-validation 

technique allows maximum use of the dataset, by dividing it into many small test sets. In 

this way, the significance of the difference in performance between the various prediction 

methods can be judged. For this reason, cross-validation is the perfect method for testing 

generalization capability. 

Using the model of the occupancy process in Chapter 10, it is possible to estimate 

that the linear predictor came to within 36% of optimal prediction, and that the local 

approximation technique came to within 28% of optimal prediction. Both of these figures 

assume that the model of the occupancy process is an accurate description of the process. 

As an engineering principle, it is useful to know what the bounds of performance are for 

a particular problem to see whether it is worthwhile to improve the standard techniques 

to come closer to those bounds. 

The presence of spikes in the traffic data mean that methods for robust time series 

prediction must be considered. The HMM technique described in Chapter 9 automatically 

detects when a time series is going out of bounds, and stops training the linear predictor 

when this happens. This results in good prediction performance. Alternatively a model 

based approach allows one to simulate the evolution of occupancy over the course of a 

day, and detect any significant departures from normal operations. 

11.7 Future Work 

The following are some ideas for future work. In all cases, the future work would require 

further data collection steps, and hence is not included in this thesis. 

More Fine Grained Traffic Patterns In Chapter 7 the work on traffic patterns is 

based on observing network exceptions and controls placed in the network. This 

is a very coarse grained view of what is happening in the network. If instead, daily 

traffic profiles are available for all the trunk groups, then it would be possible to 

study smaller departures from normal operations. Much more information would be 

available to support traffic pattern classification. 



Inputs for Trunk Reservation In Chapter 8 the inputs for the trunk reservation study 

are chosen in an ad hoc fashion. The model of trunk reservation as a bet should 

lead to the determination of what inputs are necessary and sufficient to make a good 

trunk reservation decision. In carrying out any prediction operation, the resulting 

prediction is only as good as the input information supplied for the prediction. 

Occupancy Model for Different Types of Trunk Groups In Chapter 10 the occu- 

pancy model proposed is a good fit for the trunk group for which data had been 

collected. It remains to be seen whether the same model will be equally good for 

other trunk groups carrying different traffic mixes. 

Stability of Trunk Reservation In Chapter 8 the trunk reservation policy is learned by 

neural networks to provide reduced network blocking. In this thesis, the question of 

whether such a policy of learning the network control algorithm can ever be unstable 

is not answered. Intuitively, one would suspect that the policy can be unstable if the 

learning rate is such that the neural network weights can vary a lot with each new 

call arriving. There may be a limit on the learning rate, below which the control 

algorithm is always stable. This should be an interesting area for further study. 



Appendix A 
Network Operations Analyzer and 
Assistant (NOAA) : A Real-Time Traffic 
Rerouting Expert System 

A.1 Introduction 

The research in this thesis was inspired by a system called NOAA (Network Operations 

Analyzer and Assistant). NOAA is a set of programs that runs in the Pacific Bell Network 

Management Center in Sherman Oaks. The objective of NOAA is to duplicate the actions 

of the network management staff in responding to emergencies and putting controls into 

the network. 

Typical emergencies may be: 

Random overloads of trunk groups. 

Focussed overloads caused by phone-ins. 

Unusual calling patterns as may occur on Mother's day. 

Earthquakes. 

Other major events. 

In each of these cases, the network manager must diagnose what the problem is, based 

on observable symptoms and place controls in the network to reduce the impact of the 

network event. 

The NOAA project was started in September 1990 as a joint project between Caltech 

and Pacific Bell to develop an expert system to aid in real-time network management. It 

has since been developed to the extent that it is placing controls in the Southern California 

telephone network without any manual intervention, and has become a product currently 

offered for sale to other regional Bell telephone companies. 

A. l . l  Network Concepts 

In order to gain some appreciation of the network management tasks, one must have a 

description of the network to be managed. The Pacific Bell Southern Californian telephone 
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Figure A. 1: Pacific Bell Southern California Telephone Network 

network provides service to at least 1 million subscribers. For administrative and legal 

purposes it is divided in Local Access and Transport Areas (LATAs) and the network 

management center in Sherman Oaks manages LATAs 5 and 6. Geographically LATAs 5 

and 6 extend to San Diego in the south and include all of the Los Angeles urban area. 

The network is hierarchical. Endofices are the exchanges that serve customers and 

tandems are the exchanges used for traffic between endoffices that are not directly con- 

nected. This is illustrated in Figure A.1. For Southern California, there are 6 tandems to 

be managed and over 200 endoffices. Each endoffice is connected to one or more tandems 

and the tandems are fully interconnected. 

There are two types of trunk groups. High usage trunk groups are dimensioned to be 

lossy, i.e. during the busy hour they are not guaranteed to have enough capacity to carry 

all the offered traffic. Traffic will therefore overflow on the Final trunk groups which are 

dimensioned to provide enough trunks so that calls are rarely blocked. In general there 

will be a final route between each endoffice and its parent tandem. It is these final routes 

that provide the backbone of the network. The final routes are therefore closely monitored 

by the network managers. 

A.1.2 Network Management Concepts 

Network management staff may reroute traffic elsewhere (expansive controls) or cut the 

traffic off at its source (restrictive controls). 

Expansive controls are appropriate for a single overload situation where due to sta- 



tistical fluctuations in the offered traffic, a trunk group does not have enough capacity 

to handle its offered load. Typical expansive controls might be (i) orr (overflow reroute) 

which reroutes calls to another trunk group after they have overflowed or (ii) irr (immedi- 

ate reroute) which reroutes a certain percentage of calls before they even try the "problem 

route." Other controls may have to be put in at the same time as the main control to 

avoid routing loops. 

Irr controls provide an advantage when there is a two way trunk group and the office 

at the far end cannot effect controls. By using an irr, enough traffic can be lifted to 

prevent overflow at either end. 

Restrictive controls are appropriate for call-in conditions, where most of the traffic has 

a low probability of completion, but its presence is interfering with the normal network 

operations. This traffic is characterized by a large number of call attempts per trunk and 

low holding time. Currently NOAA handles expansive controls and restrictive controls to 

a limited extent. 

A.1.3 Netminder 

Netminder is an AT&T product used in the Pacific Bell network management computer 

system. It provides a display to the network operators of the state of trunk groups in the 

network. It highlights overflow conditions on final trunk groups and alarm conditions in 

the telephone exchanges. 

Netminder information is polled from the offices in Southern California every 5 minutes 

for trunk group data, and every thirty seconds for switch alarm data. Netminder stores this 

information in its database. NOAA can then query this information using SQL database 

interrogation commands. SQL is a database query language. 

CUBE 

CUBE is the Caltech / U S Geological Survey Broadcast of Earthquakes system. It 

provides epicenter and magnitude information of any earthquake occurring in California. 

Although CUBE only applies to California, the same type of system could conceivably 

be used to access information about other types of natural disaster, such as the National 

Hurricane Center's early warning system and tornado watch data. 



Indications of an earthquake are first received on sensors distributed throughout Cal- 

ifornia. This data is relayed to Caltech in Pasadena, where it is processed to provide 

epicenter location and magnitude information. Pager messages are then sent on the stan- 

dard paging system to NOAA, and a data interface to the CUBE pager allows the message 

to be read and processed by NOAA. 

Earthquake information received in real-time is displayed on NOAA's map in the form 

of a circle around the epicenter along with a numerical indication of the magnitude of 

the quake on the Richter scale. The map interface allows the operator an immediate 

identification of quake location and magnitude as well as identification of end-offices that 

may be impacted by the quake. 

A.3 Architecture of NOAA 

The Architecture of NOAA is shown in Figure A.2. The Pacific Bell network management 

system is called Netminder. NOAA is connected over an Ethernet data link and appears 

as an ordinary operators terminal to Netminder. NOAA runs on a Sun workstation under 

UNIX. 

A.4 Statistics 

NOAA makes its diagnosis on the basis of available information about the trunk groups. 

This information is available to NOAA in the form of counts of certain events for each 

trunk group during a 5 minute period. These events are, for instance, (i) a trunk being 

seized in order to carry a telephone call (ii) a seizure that is not successful i.e. overflow 

(iii) a survey of trunk occupancy at a given instant. On the basis of these counts, the 

following standard statistics are calculated: 

ACH Attempts per circuit per hour 

CCH Connections per circuit per hour 

OFL Percentage of attempts that overflowed 

OCC Percentage of trunks occupied on average 

HT Holding Time of Calls 
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Figure A.2: Architecture of NOAA 



The 5 minute period is a compromise. The shorter the period between data collections, 

the faster the response to any potential problems, but the larger the amount of information 

to be processed, requiring more expensive hardware. The 5 minute period means that 

problems can be cleared relatively rapidly. 

Since a large amount of information is available, filtering is carried out. First, excep- 

tions on high usage routes are ignored and only final route data are examined. Second, 

exceptions on special purpose final routes are ignored. For example, a trunk group for the 

time announcement can be expected to have a short holding time. Thirdly overflows are 

treated as having higher priority than other exceptions, since an overflow on a final may 

represent lost traffic. 

A.5 Decisions 

When an exception condition has been noted on a trunk route, there are many possible 

explanations for it. Typically phone-ins to radio stations and TV stations may generate 

excess call attempts. Facilities failures may mean that overflow shoots up on related 

trunk groups. Occasionally the data gathering may interfere with maintenance operations 

and unreliable data is returned. Finally random overflows can occur on individual trunk 

groups. 

For any reroutes, a search for spare capacity is carried out. If there is an overflow 

problem between A and B where A is an endoffice and B is a tandem, then the program 

first looks for capacity on other trunk groups going from A to B, and then carries out a 

search for A to B via C possibilities. Here C has to be one of the 6 tandem exchanges, 

because of the hierarchical nature of the network. The candidate reroutes are then sorted 

according to available capacity and controls are suggested that make use of the minimum 

number of reroutes that achieves the required capacity. 

The rules used in the program are of three separate types: 

a rules that indicate which exceptions can be safely ignored. For example overflow on 

high usage routes is ignored; 

a rules that indicate which routes can be used as candidate reroutes; 

rules that map a suggested reroute into a list of controls to effect the reroutes. For 

example, certain other routes may have to be finalized first to prevent a round-robin 



DISREGARD ANY EXCEPTIONS ON TRUNK GROUP COMMON LANGUAGES (CLLIS) 
ENDING WITH "MD" (EX: LSANCA02AMD; LSANFDRCCMD). EXCLUDE SAME 
WHEN SEARCHING FOR VIA ROUTE CANDIDATES. 

DISREGARD ANY EXCEPTIONS ON CLLIS INDICATING "PB" IN THE STATE 
DESIGNATION (EX: OKLDPB0349T). EXCLUDE SAME WHEN SEARCHING FOR 
VIA ROUTE CANDIDATES. 

DISREGARD ANY EXCEPTIONS ON THE FOLLOWING HIGH VOLUME CALL-IN 
CLLIS: HLWDCA01520, SNANCA01977, COTNCA1143A, SIMICA11629, 
SNDGCA0157X 

Table A. 1: Typical Network Management Rules 

situation, where two switches pass a call back and forward because of the network 

routing rules. 

Some of the above rules were already written down in operators handbooks. Others 

were supplied by the network management staff. Examples of the rules are given in 

Table A. 1. 

A.6 Controls 

It was mentioned above that there are many causes of exceptions on the trunk groups. 

Similarly there are many possible controls that can be put in to improve the network 

throughput. In general, controls can be divided into protective controls and expansive 

controls [Fi190, Be188). 

Protective controls are used to cut down the amount of call attempts entering the 

network. For example in the event of a phone-in, controls can be put into each endoffice 

to block call-attempts to that telephone number. Alternatively a certain percent age can 

be let through. This limits the amount of congestion in the network. Clearly the calls 

destined for a phone-in are bad traffic as there is a high possibility of non completion, and 

therefore they should be blocked at source and not rerouted. 

On the other hand, expansive controls allow trunk groups that are normally separate 

to share their capacity. If there is a single random overload, then expansive controls are 

called for. Two alternatives here are overflow rerouting, which reroutes overflow traffic 

only, and an immediate reroute which puts all call attempts onto the alternative route 



first. Each is appropriate for certain cases. Finally spray rerouting is possible, whereby a 

number of alternatives is given and each is tried for a given call. 

A. 7 Graphics Interface 

A clear record of the actions that NOAA carried out was also essential to gaining user 

acceptance. This was achieved through a well designed graphics interface. In this case, two 

scrolling lists were provided. The first was a list of exceptions in the network, the second a 

list of controls currently in the network. Beside each entry, NOAA's recommended action 

was given in summary form. Verbose advice was available by selection of an exception 

or control and pressing the "details" button. Color was used to supply an indication of 

the severity of the exception or the recommended action for the control. For example, 

a red lamp next to the control entry signified that NOAA recommended a modification, 

whereas a yellow lamp next to the control entry indicated that NOAA recommended 

removing the control. Exceptions were filtered before being presented to the operator. 

The aim was to give the operator an at-a-glance indication of the status of the network 

and the recommendations that NOAA produced. A screen capture is shown in Figure A.3. 



1 LI NOAA - Network Operations Analyzer and Assistant - Copyright (0 1994-1995 ACL Systems I n c  1 

f.9 Network Exception List 

Overflow Detai ls  ) Implement ) (UnIMark Special) Hide Specials ) 
Perlod From To a-of 1 b-of 1 o f  1 % Const Recommend Dlscretes 

HIR Indicatlom Detai ls  ) Imlement ) (UnIMark Special) Hide Specials ) 
Perlod From TO NPA Pre f i x  Const Recommend Dl scretes 

I 

1, Period: 15:00:00 Total overflow: 0 Last period: 0 Preventable last period: 0 

d~ control ~ i s t  

Cmtmls Detai ls  ) Remove ) Adjust ) (UnIHark Special) 
From To Time Mod Present Advl ce Recommend 1 

@ cxkpfk0570t : dxnpfkl167b-xx : 15:00:00 : n : canf 100 : y : do nothing 
@xpnofk0391t : zxfpfk01nxO-ft : 15:00:00 : n : o r r  100 zxfpfkOInx0-ky : y : do nothlng 
aqghpfk l3nxo : zctgfkl172b-xx : 15:00:00 : n : o r r  100 kperfk0396t- f t  : y : do nothing 
@ zc tg fk l  lnxO : qghpfkl Inx l -xx : 15:00:00 : n : o r r  100 kperfk0396t-xx : y : do nothing 

Call taps Detai ls  ) Remove ) Adjust ) (UnIMark Speci a1 ) 
TO Tlme Mod Present Advl ce Recommend 

@var ious  , . . .  : ecsnfkOInx0-XX : 15:00:00 : y : cg 50 21 39628849 : y : do nothing 
@ dxnpfkl lnxO : XXXXXXXXXXX-XX : 15 :00:00 : n : cg 10 8181111399 : y : do nothing 
@ dxnpfkl I nxO : xXXXXXXXXXX-XX : 15 : 00 : 00 : n : cg 10 8181111398 : y : do nothlng b 

1, Number of controls: I4  Number of Caps: 244 Check 109 Total saved: 0 Last period: 0 
- - = = -  

Figure A.3: Graphical Interface for NOAA 
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