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ABSTHACT

In this paper the relationship between the 2-length
0,(G) and the 2-exponent e (@) of a finite solvable
sroup G 1s studied. It is shown that K (G)=2e,(G) ~ 1
provided that ,(6)=1.

The special case of groups satisfying e (3) = 2,
le8ey groups whoge Sylow 2-groups are of exponent 4,
is investigabed to determine whether ,Q 2$32 in this
case. This question is not answered but it is shown that
a cerbain normal subgroup (which may be the whole groun)
satisfies A4 s==€se In addition if &ll the elements of
order 4 are contained in this subgroup, then ,Qgc_g_eE
for the whole group as well. Ag an application of this
lagt result, it is proved that ﬂ ==e, 1n a group of

sxponent 1l2.



I. Introduction

The primary objective of this thesis is to obtain
an improved bound for the 2-length of a finite solvable
group G in terms of its 2-exponent. In addition the
special case where the Sylow 2-gubgroup of G is of
exponent 4 is studied.

The first results on the p-length of a group were
obtained by Hall and Higman in [3_]. Following their paper
we meke the following definitions:

(1) A finite group G is calledAa p';group, where D

is a prime, provided p does not divide the
order of G.

(2) G is p-solvable if each of its composition

factor groups is either a p-group or a p’—group.

(3) The upper p-series

1= PN <Py ...-:gi:é@i =G
of a p-solvable group G is defined inductively
by setting Nk/Pk to be the greatest normal
p'-subgroup of G/Pk and Pk+l/nk the greatest
normal p-subgroup of G/Hk.

(4) The least integer £ such that Y = © is called

the p-length of G and is denobed by fp(s),

or, if the group G is understood, simply by .ep.
(5) cp(G) for a prime p and a finite group G is

defined to be the class of a Sylow p-subgroup

of Ge
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(6) For a finite gzroup G and a prime p the pwexgonent
eP(G) of G is defined by the rule that pe'? (%) is
the exponent of a Sylow p-subgroup of G,
i1.€s, The greatest order of any p-element.

It is shown in [5] that ﬂp-_sc in any p-solvable

group., An application of this Whichpwe use repeatedly
is that if @ is solvable and e,(G) = 1 then £,(G) = 1.
This follows since a group of exponent 2 is necessarily
abelian,.

For an odd prime p, Hall and Higman showed that
1:@-_59P if p is not a Fermat prime and Ip-‘!"-.zep if p
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ities are best—possible. Ko results, however, were obbained

about the relationship between IP and e, when » = 2.

Thig gap was filled by A. H. M. Hosre inp E‘J who showed
that .ﬁ2 =3e, - 2 in any 2-golvable group where fezl.
In Tthe present paper it will be shown that under the
same conditions ﬁ3£2e2 -~ l.

It is not known whether or not this is best-possible
and a better result may very well be true. Indeed, the
author knows of no solvable group in which ,@2 exceeds ege

The special case e,(G) = 2 is studied in more detail
and one result is that if G is of exponent 12,

12

i.e.’ P4 = 1 for all x in G’,; then E(G)sea(G’)a
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IT, Statement and Proof of the Main Theorem

Por the rest of this paper we adopt the comvention
that all groups referred to are assumed finite, and 1f
G is such a group then |G| is its order. If His a
proper subgroup of G this is written H<G and if, in
addition, H is normal in G we write H<IG. GF(pn) denotes
the finite field of pn elenents.

Befare proceeding to our main result we first
state some hasic properties of The upper p-series

1= PDQHOQPl-QI\Il< voe -:l%s% = G.

Lemma 1. For i21, P;/N; ; contains its centralizer
in G/Ri_l and Ei/Fi contains its centralizer in G/Pi.

Lemma 2. If F;/N; ; 1s the Frattini subgroun of
Pi/Ni__l far i21l, then Pi/Fi is its cwn centralizer
in G/Fi.

Corollary. For i1, G/Pi‘is faithfully represented
as a group of automorphisms of the elementary abelian
p-group Pi/Fi.

Proofs of these results are to be found in [3].

How an elementary abelian p-group can be considered

as a vector space over GF(p). In particular from

the corollary we have‘that_G/Pl is faithfully represented
as a linear group operating on the vector space Pi/Fl‘

G/Ei hae no normal p-group except for the identity and

£,(5/P)) = £y(®) - 1.
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Now if g is an element of order p® in G/P) then the
minimal equation of g on P}./El is (x - 1)T = OEWhe.re T
is some integer =1 If r<p®, i.e., (g - 1)P -1 .o,
then g is said to be exceptional. The following is
proved in B]

Lemma 3. If g is of order p™ and not exceptional
in G/Py, then ep({})?,zml.

We are now vrepared to state our main result:

Theorem 1. If G is a finite solvable group and
L,(6)=1, then L,(G)=2e,(G) - 1.

I first remark that, since Feit and Thompson have
proved the long-standing conjecture that groups of odd
order are gsolvable, a 2-solvable group is in fact
solvable, Solvability is quite important in the proof
of theoren l.

Fow if 12 = 1 the conclusion is trivial and, since
e, = 1 implies 12 = 1, we see that _,@2 = 2 implies that
e,Z2 so the result again follows. Now if £ ->2, then
_QE(G/P?_) = ﬁz(G) -~ 22=1, so that if we could prove
that 3-2(&/?2)5 ez(G) - 1 then theorem 1 would follow
by induction on the order of G. For this purpose we
only need to concern ourselves with the exceptional
elements in G/Ei becanse of lemnma 3.

It will be shown that if g is of order 2™ ang
exceptional in G/Py then g% is in P,/P. This
will immediately prove that ea(G/Pg)ﬁea(ﬁ) - 1 and

theorem 1 will be proved.
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Theorem 2., Let & be a solvable linear group onm a
field ¥ of characterisbic 2 and agsume & has no normsl
2-group other than the identity. Then if N is the largest
normsal 2'-—subgroup of ¥ and if g ie an exceptional clement
of order 2% in &, it follows that g2m~l is in the larsest
normal 2-subgroup of G/N.

Proof. G/P; satisfies the hypothesis of this theorem
so that, by cur previous discussion, theorem 1 follows
from theorem 2. The rest of lhis sectlon is devoted to
the proaf of Thecrem 2.

It should be pointed out that this theorem is a
more general result than the special casme needed to
prove theorem l. Although in the statement of theorem 2
it is agsumed that G is finite, neither T nor the
dimension of the space on which § operates neesd be
£inite,

Naw neither the hypoethesis nor the conclusion of
the theorem lis affected by an extension of the field F.
Thus, without loss of generality, we assume that F
is algebraically closed.

Since an element of order 2 cannot he exceptional
(since otherwise 1t would have to be the identity), n
21:&-—2 2 olt=1

and then h™ = g .

In proving theorem 2 we define subgrouvs H and Hys

mast be greater than 1. Let h = g

GBHBH:L, nee H), ané g normalizes H) (H; need nob be
normal in G). It is then shown that if x is any element

in the largest normal 2-subgroup of Hl/HlnN, then
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(b2, x) = (h, x%)°. From this it will follow that L
is in the largest normal 2-subgroup of Hl/HlnH, and,
finally, from this the desired result.

Our first step is to prove two lemmas which are
of use later and which 2lso mobivate the definition
of H., Here, and elsewhere, we denote the space on which
¥ operates oy Ve

Lemma 4. If Q is any 2"-subgrcmp of @ which is
normalized by g, then h"2 fixes every minimal charachber—
igtic ¥-g submeoduie of V.

Progf., A minimal characteristic F-Q submodule is
gimply the join of &8ll those F-Q submodules overator
isomorphic to a given irreducible F-§ submodule, Now
gince @ 1s a 2.'-group ¥V can be written as the direct
sum of the minimal characteristic F-Q submodules,

V=V, @0V, 0@ ees
Since g normalizes @, g must permute thoe vi among
themselves, Now if h2 does not fix every V; then
g;; as a permutation of the V;, has a cycle of length

T m m
Emo&lt(g“l)al::gzl*'ge 2+-o.+-g+l

gsince F is of characterisgtic 2. Thus (g - l)em"l
could net be zerc in this case, contrary to assumption.
Iemma 5. If q is any abelian Etmsubgrmlp of 7 and
x is any element of @ normalizing @ and Pfixing every
minimal characteristic FP-Q submodule of ¥, then

x centralizes Q.

Proof. V=7, @V, @ ... where the ¥, are the
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minimal characteristic F-{ submodules. Supnose (x, Q) £ 1.

Thus there exists a Vi, Vl say, such that (z, Q) is not

the identity on V;. Now Q is abelian and F is algebraically

closed so that Q operates on V, as a secalar multiplication,

ie€e, if y€Q and V€V, then yv = X (y)v where X(3) is a

scalar. Thus we have (this compubation is taken from [LI-])
XEyaw = @y = 2 ly G = Gy = X

Therefore (¥, z)v = v for all y€ Q, V€ Vl contrary to

(9, x) not being the identity on ¥V, . Thus the lemma is

proved.

F How let H be the following set of elements of %

x€ H if, and only if, for every normal f-—subgroup Q of

T, x fixes every minimal characteristiec F~Q gubmodule

of V.

It is easy Vo see that H is a normal subgroup of G
and h2€ H by lemma 4, Since the largest normal 2-subgroup
and the largest normal Et-s.ubgroup of H are normal in G
we have at conce that H has no normal 2-~subgroup other
than the identity and the largest normal 2'-subgroup
of H is HnH.

We now proceed to comstruct a characterishic
2_'-subgroup K of’ H such that K is nilpotent of class 2,
no Z-element of H except for the identity centralizes E,
and if K = Kl pid K2 X eee 15 the representation of X as
the direct product of its Sylow subgroups, K4 the Sylow
qi-subgroup of K for some prime Q3 » then each K; is of

exponent g;. The importance of K is due to the fact that
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a Syiow 2-gubgroup of H can he represented faithfully as
a group of aubomorphisms of K, and The restricted naturs
of K then restricts the structure of the Sylow 2-subgroups.
Po construct K, first let § be the largest normal
nilpotent subgroup of H. Clearly Q&HAN. Furthermore,
since I is solvable (this is where solvability is
crucial), § must contain its centralizer in H. (This is
proved in [1].) Since § is nilpotent we can wribe
G- x Ty % e
where §; is & g;-group for an odd prime g; and g # a3
for i £ j.
Lemma 6. e(Q) = 2, i.e., § is nilpotent of class 2.
Proof. Since n° € H, h° does not centralize §e Thus
by lemmas 4 and 5, § is not abelian. Thus ¢(Q)2 2. How
suppose ¢ = ¢(§)=3 and let
3= M@PL@e ... M=1
be the lower central series of § and let n be the
first integer Z(c+l)/2. Clearly n=<€c~1 since
e-12(c+1)/2 for c23. But from [2, p. 150] we have
(P, D= N 1@D £ 1, and from 2. ». 159
(L@, NLE@ENEL, @) = 1 since 2ne+l,
Thus we have that [ (§) is abelian and, of course,
normal in ¥ but not centralized by §. But from the
definition of H and lemma 5 we see that This is
impossible, Hence ¢ = 2.

This naturally implies that each Qi is of class not
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exceading 2. How ai is an odd prime and so greaber
than 2. Thus §; is a regular gg-group. (For the definition
and preoperties of regular g-groups see E&, D lBZ;~186].)
Then the elements of order at most qia form a chavactsr-
istic subgroup of §; which will be deroted Ca('ﬁi).
Setv Ky = CH(§;) and E = Ky X K, X vue
Ve now prove some elementary resulbs which imply that
ro 2-element of H‘except for the identity centralizes K,
Temma 7. If @ is & group, x & non-trivial auto-
morphism of order prime To lQ', and if M is a normal
subgroup of Q admitting x, then x cannot centralize
both M and Q/M.
Prcof. Suppose that x does centralize both M
and Q/M. Since x is non~trivial we have thati there
must be a y€ @ such that ¥ # ye Thus we na:mst have
v% = yz where z is in M and z # 1. I‘l'cwyx :yzz:yza
since x cenvralizes M. By induction we have yxn = yzn
for all n. This is a contradiction since the orders
of x and = are relatively prime.
Iempa 8. If P 1s a regular p-group with e, (F) = n>1
and x is 8 non-trivial automorphism of P of order prime
to p then x does not centralize Gn"'l(P), Tthe subgroup
congisting of all elements of P of order dividing pn"'l.
Proof. Buppose x does centralize C2T(P). Then by
the previous lemma x camnot centralize P/Gn-l(P).

But for any y€P, y¥ must belong to CPH(P) snd thus
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must be cenbtralized by x. Thus yp = {yX)P. But since

P is regular this implies that (y-lyX)P = L. Since n>1
we see thut ¥ 1y~ = (¥, X) is always in Cn"l(P). Hence
% centralizes both Cn*l(P) and P/Cn-l(P) contrary Lo
assumption. Therefore the lemma is proved.

Corcllary. IT P 1s a regular p-group, x & non-trivial
auvtomorphism of order prime to p then x does not
centralize Ol(P).

Broof. T e (P) = 1, then CL(P) = P. If e (P)>1,
then the result follows from the lemma and from

Cnra—l[én—a(Pi] _ gt=a~l(py,

LAg a result of this we see that no 2-element (excepnt
for the idenkity) of ¥ centralizes K. K and each K; is
a characteristic subgroup of H and thus normal in @.

Since h® does not centralize X {since e is a nan-idenity
2-~-element of H), K cammob be abelian., Thus K is of
class 2.

Wde are now prepared To define the subgroup Hl. For

thisg purpose decompose ¥V for each Ki into the sum

V=V 0 V@ ...
where the vij are the mimimal characteristic F-Kj
submodules. Let Cij = {}:':{EH and (K4, x) is 1 on Vi;}‘

Clearly wach.Ci is a nurmal subgroup of H although it

J
is not necessarily normal in @.

low let Ei be the intersection of sll the Ci'

d
which contain h?. It h2 i3 nobt in any Gij Then set Hj

equal 50 H. In any event HyElH and Hy is normalized by g.
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As wag the case with H, Hy cannot have any normal
2-gubgroup other than the identity and the largest
noxmal 2'-subgroup is (HnH)n}El = HynN. It will be shown
that h® ig in the sreatest normal 2-subgroup of Hy/HjnN.
This will imply that h2 is in the greatest normal
2-gubgroup of H/HAN whick, in tum, will imply that h2
is in the greatest mormal 2~-subgroup of G/N.

Iet P be a 2-subgroup of H; such that P(HNN)/E N
is the largest normal 2-subgroup of Hy/H;nN. Since,
modulo N, P is normalized by g we can take P and g to
helong to the same Sylow 2-subgroup of T,

Now h°€ H, so that if °¢ P then by lemma 2, b°
does not centralize PF §(P) where @(P) is the Frattini
subgroup of FP.

lemma 9. If x€P, then (12, x) = (h, x)°.

Proocf. h may or may not belong to Hy but h
normalizes T (since h and I generabte a 2-subgroup and h
norralizes P modulo a E'mgroup) go that (h, )€ 2 and
thus (h, x)ae I(P). Therefore once the lemma is proved

2

we have at once that h™ centralizes P/ @(P) whick

implies that h° must be in P which will finish the proof

of theorem 2.

Let & = (h%, x)(h, x)~° and suppose k # 1. But k
igs a 2—element of Hl and thus camnnot centralize K.

Hence (Ki’ k) # 1L for some i. Choose vij such that (Ki’ k)
is not the identity when restrlceted to Yij’ ’ﬁcm"ke Hl
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80 thal by the delinibion of Hi we must have (Ki, hg)
also rot the identity on Vij' (This last statement is
the motivation for the definition of Hy.)

In vhat follows let V'@ = Vij’ Q the image of K;
when restricted to V', q = g5, &nd x; the image of x
when restricted to V’. Let gzmpml be the first power
of g fixing Y’ and let g, be the image of this element
when regtricted to V'. From [3, P. l%] i1t follows that

since g 1s exceptional, g, must be exceptional, i.e.,
I
(é'e’il - 132 l—l = Qe
NOW’hE is not the identity on V' and so h? is not
exceptional on v', Thus mlaza and so b fixes ¥ .
) S

We define by = g;° * . ‘then both (g, hlz) and (g, k),
where ¥, = (hle, xl)(hl, xl)"a, are not equal to the
identity.

Since g; is exceptional and (Q, hla) £ 1, @ cannot
be abelian. But ¢(X) = 2 so that @ must be of class 2.
Since, in addition, Q is of exponent q, we have

Z(Q)?Q’ = $(q) (Z(Q) is the center of Q).

How V' is the sum of absolutely irreducible F=Q
submedules all of which are operator isamorphic to
each other. Cn an dbsolubtely irreduecible F~G module Z{Q)
hag to be cyelic and gererated by a2 scalar matriz. The
sawe zust hold Lrue for Lhe representation of g on Vr.
Thus Z(R) is cyclic of crder g generated by a scalar
matrix,., Now Q' # 1 since Q is not abelian., Therefore we

'
nuet have Z(Q) = ¢ which means that §Q is an cxbtra-special
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g-gToup. (See E\, De :LE].) Hote alsoe that if S is the
2-grou; generated by x; and g1 waen (4(Q), 3) =1
since Z{Q) is zenerated Dy a scalar natipiz.

Tow let T ne an irreducible F-QS submodule of V'.
By 3, . 14] we have that ¥ is an irreducible F-q
module, v' is the sun of F-Q wodules operator isomorphic
to ?". Thus (4q, hla) Z1 on v" and of course g; must be
exceptional on V”. Then by [?, P ég we have the
following: (1) aml-l is a power of q, and (2) if 81
is faithfully amd irreducibly represented on 91/’
(such a g; can always he found since hla is not the
identity on Q/Q'), then Q can be written as the central
preduct of Q; and a group @, and g; transforms QE/Q'
Lrivially. Ye oow need the following result:

Lemma 10. Eml -1 =g and IQl/Qtl = qa.

Proof. The following argument is essenbially due
to Eﬁ].

i |
Firat we havya 2

~ 1 = q" for some n. But m=2

so that ¢" = 3 (mod 4) and n must be odd. Thus q- + 1

is divisible by g + 1., Thus we must have q + 1 = 23“1
for some s>»3. q - 1 = 2r where r is odd., Hence we have
gz = 2% + 1 and q2n -1=7% Ly ., (g)rgzes + nr2®,
Since r and n are odd we see that 2° is GShe highegt rower
of 2 dividing ¢ — 1. 3ut @ = 2 ¥ = 1 so

q2n -1=2 (2 - 1)e It now Follows that = = mp + 1

9
and then that q = 2 ~ = 1,
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By 2 o'l
Since % divides o~ - 1, the polynemial (t - 1)
divides (tq - t). Thus the irreducible factors modulo g
m
1
2

of © ~ 1 are all of degree less than or equal to 2.
However no clewent of order 4 can howve a faithful
l-dimensional representation over GF(q) since g = 3 (mod 4)
so that -1 is not & quadratic residue of q. Thus since

Gy is a 2-elenent of order at least 4 and gq is faithfully
and irreducibly represented on.Ql/Q! it follows that
,Ql/Q" = QE'

Now the representation of § on V" is isomorphic
to the represertation of Q on v so that (gl, Q) =1
on V" implles vhat (gl, QE) =1,

Thus from the preceding lemma we see that the
centralizer of g, in the space Q{Q' has co-dimension 2
over GF{q). It easily follows that this is also true
for all powers of 81 (exeept for the identity, of course).
Now if g, is of order 4 then the equation of g; on Ql/Q'

2

must be € + 1 = O so that gla must have the representation

(3

Q -

on Qi/Qf. If g, is not of order 4 then glg can have no
faithful l-dimensional representation over GF(g) so

that QlfQ' musl pive an lrreducible representation of glz.
These results can be summed up by stating that in tke

completely reduced representation of g12 on Q/Q', there is

only one non—vriwvial block unless gy, is of order 4 in which
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case there are two non~trivial blocks.

Now Q/Qt can be considered as a vector space M over
GF(g)e M can be givem the structure of a symplectic space
as follows ‘:5, Pe 17]:

Let ¢ he a generakor of Q’. Then for any elements
a, b of Q the commutator (a, b) must be a power of <.
Define ’D(a, b) by the equation

(a, b) = ef(a’ b).
P(a, b) is uniquely defined on /9 and is bilinear
and skew symmelbric. Since Q' = Z(Q) it follows that
fis of maximum rank on M.

Fow since f is of maximum rank the dimensiom of
M must be even, 2r say. Since (8, Q') = 1, 8 preserves
the synpleetic structure of M. Thus the homowmorphic
image S of 3 cobtained by the representation of S on
Q/Q' may be considered as a subgroup of a Sylow
2-gubgroup of the symplectic group S{2v, g). (8(2r, q)
is the sympleectic group on a space of dimension 2r
over GF(q).) Iet i?l, 'é'l, and h; be the images of
X1+ 81 and hy, respectively, in the homomorphism S5-»8.
From (Q, h;°) # 1 and (§, k) # 1 it follows that
B2 #1and (5%, %) # (Bp, %)%

e now describe a Sylow 2-subgroup of S(2r, q).
{This ig based upon E, TP » 25-—213.)

¥ is of dimension 2r over GF{(g) so that M can be
provided with The sitructure of & space of dimension o

over GF(qE). For an element OCGGF(QZ) define o€
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over GF(Q_ }, the expression

4 [ §
,OENiui.Z ﬂidi) ;Z(O(iﬁi - ol ﬂl)/v’
where @ is a primitive fourth root of unity, is a
skew symmetric bilinear form on M of rank 2r with values

in GP(g)e. Since all such forms are equivalent we can

~

assune 035 the fundamental form, g~ - 1 is divisible
I + I -1-1

by 2 "7 50 that GF(q ) contains a pI‘lIIll‘blﬁe 2 1 ~th

root of unity O . Then 99 eq+l 62 = ~L.

Tet ©, be the brensformation of GP(q°) o¢—p §% and

let t2 be the transformation «-)eoc'.
m
1 ig of order 2 1, tz is of order 4 and together they
mq+1
generate a generalized quaternion group of order 2 L .

t

Call this group T and let P, ke a Sylow Z-subgroup of
the symmebtric group on the numbers 1y 2, evey To ALL
transformations ¥ of ¥ of the form

F&Z oguy) = Z(Ti“i)ud'(i)’
where the T, are taken from T and @QTis a permutation
from P, , form a Sylow 2-aubgroup of S(2r, ql.

Thus we may suppose O to be a subgroup of the
group just described. We first need a lemma giving
additional information about gl and then we will be
ready to finisgh the proof of lemma 9,

Lemma 11. The permubation ©° assoclated with §, is
the identical permutation.

Proaf. It is shown in B-, Pe 23 that o= is of
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order smaller than the order of B+ Mirst suppose O is
of order 2. Then the order of gy is greater than 4. Thus
§ia when completely reduced has only one non-trivial
hlack. But the permutation asscciated with 'é;'la is 0'2
which has at least 2 disjeint non~trivial cycles. Clearly
this is a contradiction. Thus e = L.

Now suppose O # 1. Assume, say, (1) = 2, o(2) = 1.
In the complete reduction of gi on ¥ there is only one

non~-yrivial black. Thus 'gil mist be the identity on
% , %6 Now B1(0X¢U; + o6u,) = P06, + T,06U,.
Thus £.2(04u; + eguy) = T, oqu; + TiT,ous.
Cne of TETl oy T1T2 must not be the identity of T,
Bubt if either one is the identity then the other is
also, Thus neither ome is the identity and so 'éig has
two non-trivial blecks which can happen only if B, is
of order 4 which implies that Tng is of order 2.
Trhus both TlT?__ and T,T; must be the tramsformation
oL ~Pp —-X.

(This is the only element of order 2 in T.) Thus the
centralizer of 'éle in ¥ has co~dimension 4 over GP(q)
whereas it should be 2. Thig proves that ¢ = 1.

Therefore g; fixes each u; and must act trivially

i
on ey for all bubt one value of 1, 1 = 1, say. Thus

§1 S o) = AUy ¢ i-‘;l“iui

i}
where A ig an element of order 2 1 in T, Then we have
ml-2

El(z “3.”‘1) = Az “1‘11_ + 3§1°<1u1 and
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Ela(__s_.x:u-:) = =-Ofu, + Eg(,_-u,..
A ALd ﬂl b R
Assume X (Z ox;uy) zzﬂjio-: 1Raf (i)
Case T: af(L) # 1. Assume, say, that A ~H(1) = 2.

m, -2 m, -2
= ot 1,2 &,
(Rys F)(E0¢;u,) = & o u; + (I A T, )o0su,
-z-z oC;u, .
my =2 ifl,2
But (.A"'2 )2 = =I (~I is the tramsformation ec—$—o¢)
R -1
; - N2 _
(B, Z)7@RO¢ ;) = oy ~ ehuy + 5‘1 Rt
¥

It is easy to check that this is the same as (512, %1
cagse II: (1) = 1. It is easily verified that in this

case (512, 5{'1) ig the identity while

.-, =
2 2
] Tl) “lu-l + %“i.uit
I
Now A is of order 2 1 in a generalizmed quaternion group
+1
of order Eml sg that the only conjugstes of A in 1

are A and A_l. Thus

27 L, = (TP AT )% - (cIX-D) = I
Thus (E,, %)% is also the idemtity,
Therefore it has heen shown that
- 2 2 e
(Eln Kl) = (E}_ ' Xl)
in g8ll cases, This finishes the prool of lemma S, Wilh

this, theorems 1 and 2 are alsoc proved.
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IIT. Groups with €, = 2

Since, if a solvable group satisfies e, &1, then it
also must satisfy',feggeg, it is perhaps a natural question
to ask whether this is also true if e, = 2. This question
is even more tao the point when it is realized that (Lo
the author®s knowledge, at least) there have not been found
any examples of groups in which J22 exceeds €oe

In an argurent simllar Go that used in the preceding
sechion we show that if 32(6) = 2 then a normal subgroup
(which may be The whole group) satisfies J?2£EE. If all
elementes of order 4 are contained in this subgroup then
it will follow that 122(63352. As an application we
show that this must happen if G is of exponent 12, i.e., if
1% = 1 for all x in G.

Unfortunately, in the situation analogous to the
hypothesis of theorem 2, we need an additional assumption
to prove the desired result for groups of exponent 1l2.

This condition is that § should be irreducibly represented
on the space V¥, Therefore hefore proceeding further we
prove a reduction theorem which allows us to assume this
extra condition.

A proposition is said to be of type A if it has
the following faorms

If G is a finite p-solvable group satisiylng

condition B, then JZPCG):Ef(eP(G)),

where £ is a monotonically increasing function defined
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for non-~negative integral arguments, £(0) = 0, =ad
condition B is either vacuous or sbtates that
epi(G)=58i. for some set, possibly
infinite, of primes p; and non-negative integers &;.
¥ote that the propeosgibtion that if G is of exponent 12
then .fé(szsez(G) is certainly of type A for a group'af
exponent 12 is of order 2a3b and thus soelveble by a
well-inown theorem of Burnside and the condition that
G 1s of exponent l2 is equlvalent to stabting that
eE(ngga, eﬁ(G):El, and ep(Gl:SQ for all primes p # 2, 3.
Vie now state and prove cur reduction theoren.
Thecrem 2o In proving a propesition B of type A it
guffices to prove it for the following special case:
(1) ¢ is the normal product of V by & where V
ig a wveector gpaee over F, a specified finite
field of characteristic p, and T is a
p-solvable linear group on V having no
normal p-subgroup other than the identity.
(2) A1l groups of orxder abt most ,Gﬂ satisfy ¥.
(3) ¥V is an irreducible P-G module.
Proof. First it should be explained that F may
be arbitrarily picked from among the finite fields of
cheracteristic p, but once 1% ig chosen it is to remain
fixed for The rest of the argument.
In proving theorem 3 we assume the proposition T

is valid for the special case and then prove it is
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valid for the general case.

Fow suppose G is the grouv of smallest order
satisfying the hypothesis of T but not the conclusion,
and let

1= POQNGQP]_Q...QI} Q& = G
bte the upper p-series of G, Since £(0) = O we must have
IP(G)>0. Now if Fy/N_ is the Frabbtini subgroup of Pl/No;
then, as is shown in [3], 4 (a/p) = A (o) so that if
Fq # 1 then we would have a proper factow group of G
satisfying the hypothesis but not the conclusiorn of the
proposition T

Therefore assune Fp = 1. Thus P; ils an elementary
abelian p-group which we identify with a wector space Vq
over GF(p). G/P; is faithfully revresented a&s a linear
group & an Ve

Now by E’r, Pe g we find that we may assume that
G has only one minimal normal subgroup. This subgroup
must be contained in ¥; and we denote it with M. It
M=V then T is irreducibly represented on V1. How
if M # ¥y amd if @ is Taithfully represented on Vi/M
then we have that fp(G/M') = ,ﬁ P(G) s8¢ that we would
have a conbradiection to the definition of G.

¥inally, suppose that V; # M and T is not
faithfully represented on V,/M. Then the elements
of § centralizing V,/H form a normal subgroup of

B greater than the identity. Iet Q be a minimel rormal
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subgroup of T centraliging V1/K. Clearly Q must be a
p‘-—group 80 that V as a G-module is courletely reducible.
Thus there exisgts a G-module Mp such thab 'ifl- = X My o
Clearly @ is the identity on My bub is rot the idenbtity
on M since Q is faithfully represented on V;. Now let X'
be the centralizer of § in V_'l. e have M.' nermal in G
since Q is normal in @, and M= My butM%M. All this
centradicts the fact that My is the unique minimel normal
subgroup of G.

Thus we see from the above that we can assume that
% is irreducibly vepresented over GF(p). One conseguence
of this is that if H is any normal subgroup greater than
the-identity in § then H can have no non-zero fixed
vector in V;., Por if H d4id have a nom-zero fixed vector
then all the wvectors fixed by H would form a non~trivial
submodule of Vq.

Now ¥ i1s some finite fleld of characteristic p so P
must be a finite extension of GF(p). et 1 = G,+8, ...; 8.
be a basis for ¥ over GF(p) and let Vs Yoy eeey Vg be a
baslis for ¥y over GF(p)+ Finally let V be the vector
space over F with basis Vis evesy V

ge ANy vector of V is

of the form
S r

27 25 10
where gy 5 € GF(r). & 2cts on V in the obvious way.
Congider the group G* = &V, i.e., the normal product

of ¥ by T. Suppose that g* is of order p° in G*, Then
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g* is the ordered pair (g, v) for some g€ 5 and v€ V. Naw
if § is not of crder p™ vhen T must be of order pm"l
and cannobt he e}:cepulondl on Y. Thus there must be a Vi
such that '('g' - l)P "lv # Q, Therefore § is not excep—
tional on V, and so we have bthat e.P(G)?, (n-1) + 1 =

Thus in any eveob e (G_)?B (G*}. Since for g # p,
e (G*) = € (G) we have that G* gatisfies eondition B.
F‘thhermore ﬁP(G) .EP(G*) sa that if G* satisfies T
a0 does G,

Now suppose X is any normal p'-subg,roup other than
the identity in & and suppose

= °13 0175

j: i=0
is a non~zero vector fized by H, Since v £ O the

coefficient of vj is not zero for some J, J = 1 s&ye

P is & Field so Tthere exists & €F such thas
«(ZD ¢;1 ©7) = L.
==

How H must also fix o&v which can be writhen in the form

1 k2]
XV = v + v vhere

T 3]
v ""‘"i: W v:ZEc.ev
17 %3 0dd’ jo2 i-1 +d A

and the c;j are the coefficlents for ofv. It iz clear

. ) s I
that for H to fix Ofv it must also fix v . But v is
a non-zerc vecvor of Vl. Thus H can have no fixed

non-zerg vector in V.
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Now if V is an irreducible F-& module then we are
already at the special case'ef the theorem, Therefore
assume U ig a proper submodule.

If § is not faithfully represented on V/U then
let § be a wminimal normal subgroup of & centralizing
Vv/U. Q must be & p'-—group so that ¥ is completely
reducible as an P-@ module. Thus there exists an 7~Q
aodule U such that V = U-@.U'. U' contains non-zero
vectors since U 1s & proper submodule, and § is the
identity on U'. We have seen that § cannot have any
non—~zerg fixed vectors so this is a contradiction.

Therefore T is faithfully represented on V/U.
Thus - ,QP(G*) = ﬁP(G*/U) and of course ep(G*)?—'ep(G*fU)
so that if G*/U satisfies prorvosition T so does G*
and then so does G

Now we sLill have that any normal non-identity
p‘——subgrmp H of T camot bave any fiwcd non-zerc
veetors in V/U since V is completely reducible as an
P-H module, Thus if T is not irreducibly represented
on V/U then the same argument as before yields thah
® ig faithfully represented on & non~trivial factor
module of V/U. Corntinuing in this way we finally arrive
at the case where ¥ is faithfully and irreducibly
represented on some vecbor space over the field F.
This is just the special case mentioned in the Theorem

and so theorem % is proved.
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As was stated previously, one of the results of
this sectlon is that if G is of expoment 12, then
J?E(G)zEeBCG). Before proceeding further it might he
well to Jjustify this work. For in a group of order 2a5b
the 2-length and the 3-length can vary at most by one.,
Thus i¥ 1t were Urue lhal the 3-length of a group
of exponent 12 was L, then it would be quite trivial
to state that the 2~length was at most 2. However,
in E, Pe a is found 2 group of exponent 12 bub
with 3-length 2. The group cbtained by taking the
direct product of this group with the symmetric group
on 4 lebtters ia a group of exponent 12 with both the
2=length and the 2-length equal to 2. Thus the stated
result about groups of exponent 12 carmot be obbtained
in & trivial wsy by arguing on the 3-lengith.

For the rest of this section we make the following
gtanding assunptions:

(1) ¢ = Gv, the normal product of ¥ by g,
where ¥ is a vector space over & finite
field ¥ of churaeterigtic 2.

(2) ¥ is faithfully and irreducibly represented
a5 a linear group over V,

(3) G ip finike, solvable, ard has no normal
2=group obther than the identity,

(4) 32(6)252.

¥How we are interested in seeing under what condibions
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can ﬂE(G) exceed e,5(G)s But 1f e5(d) = O then both
e,(G) and 422_({}) are 1 and if e5(G) = 1 then 12(@) =1
end we havs ,2 2_(G.) = 62(6): 2. Thus we pmay as well asgune
(5) eg(ﬁ} = 2
Bo far we haven' specified F. Our choice is given by
(6) If Q is any pmormal nilpotent 2'-sabgroup
of clasg =£2 in T then any irreducible
representation of @ over ¥ is in fact
abgolutely irreducible.

Since there are only finitely many subgroups
of G, 1t follows that by taking F to be a large enough
extension of GF(2) we can assume (6) holds. Any finite
field of characteristic 2 satisfying (6) is satisfactory
for what follows.

Tabter we shall add to these assumpbions the furbher
one that G 1s of exponent l2. Actually it should be
poirted out tilat until we restrict ourselwves to groups
of ewponent 12, we will make no use of the fact that
@ is irreducibly represented on V.

The approach used to invesgbigate the structure of
G is similar to that used in the proof of theorem 2.

We will show that 1if K is the largest mormal 2'—subgrcup
of &, them a certain 2-subgroup, to be described later, .
must. be contained in the greatest normal 2-gubgroup of
T/¥. In particular if £,(G)>2 (which is the same as
saying that 12('5))1), we will see thalt there must exist

an element of order 4 of a special type in &,
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First let H be the following normal subgroun of T
x€H 1f, and only if, for every normal nilpotent subgrouy
Q of class at most 2 in &, x fixes every minimal character—
istic F=-Q submodule of V. A normal nilpotent subgroup of
T nmust be a.a,-group since atherwise T would have a
non=trivial normal 2-subgroup. Thus if § is such & group
then V splits into the sum of minimal characteristic
P-@ modules, 80 the definition of H is intelligible,

Wow from (5) there are elements of order # in &, and
from (4) all such elements must be exceptional., Thus if g

is of order 4 in &, then ga

m:gt be in ¥ by lemma 4, Fence
H 1s greater than the identity. H has no normnal 2-group
except for the identity and the larcest normal 2'—growp
in H is AaN (¥ being the greabest normal Ei—group in @M.

Iet § be the greatest normal nilpotent subgroup
of Ho §=§; X G X +.0 where q; is a gy~group and the
q; &re distinet odd primes for distimet i. Now it is still
true that H centralizes any normal abelian subgroup of &.
Thus the proof of lemma © is applicable and we ohtain
¢(@) = 2. Now let X; = CT(q;) and let K = Ky x K, x ...
Ag in the proof of theorem 2 we find that no nen~identity
2—-element of H centralizes K.

Now let I; be the subgroup of T consisting of all
elements which fix every minimal eharacteristic F-K;
module for all i. Since o(H;)E2, FPH;BH. H; has no
normal 2-subgroup except for the identity and its

1
greatest normal 2 -—-subgroup ip HlnN.
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Tet P be a Sylow 2-gsubgroup of Hy. P # 1 since
eefﬁ) = 2 and if g is of order 4 then gae H. Kow the
square of any element of P must vbe in H., Thus P/FPaH
is of expoment 2 and thus abelian, Therefore o' H. e
now prove two lemmas which will ther enable us to show
directly Lhalt PH/N is normal in %/N.

Tema 12, Suppoge that g and h are Ttwo elenents of P
and V' is a minimal characteristic F-X; submodule of ¥,
Let 4, Ty 9 and hl be the restrictions of Eiy 24 and h,
respechively, to V‘. Then, if (qQ, hia) = 1, it follows
that (Q, (874 by)) = 1.

Proof. Assume (Q, (31 27)) # 1. Therefore neither
gy nor hy centralizes Q. Now if (Q, gla) = 1 Then

(Qs (81» Bp2) = (Qs (%lhl)z) and
(@ (83Ppe B1)) = (R By 7rg; hyain®) = (@, (g0 b))
In this case simply replace 81 by 81k Therefore, without
loss of generality, we may ascume that (g, g12) £Z 1 clong
with (Q, 1y°) = 1 and (Q, (g7, B)) # 1L

Now exactly as in the proof of lemma 9 we obtain
that Q is an extra-special g-group (g = 3 since g; is of
order 4 and thus exceptiocnal so that 4 - 1 must he a
power of q), Q/Q' is a symplectic space, g; and by
preserve the symplectic structure of Q/Q', and we
may assume that g; and hy operate on Q/Q’ ag follows

E1(Zoesu;) = Aowyuy ¢ i%_“iui

B (Foeay) = 205060,
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where o is a permubation of order==2 (since (Q, hla} = 1),
and A and the T, are chogen from . a group isomorphic to

the quaternion group of order 8 (since g = 3). In

addition A must be of order 4 since (q, gla) £ 1,

Yew 1f & does net fix 1 them (g4, T;) weuld be of
order 4 bubt its centralizer in QJQ' would have co—dlmens
sion 4 over GF(%). Thus (gl, by) would be of order 4 but
not excesptional wnich is impossible,

= 1 we masht have

Trug o fixes 1 and sinece (Q, hla)
It is now an easy matter to verify that (g, B) =1
and the lemma is proved.

" Gorollary. If g, h€P and h°

= 1, then (g, h) = 1.
Proof. (g, h) iB in P' and thus in H. So if (g, h)
is not 1 then (Ki’ (g, W)) # 1 for sone K. The lemma
states that this cammot happen.
femma 13, I g, h€ P, then (g, h)2 = 1.
Proof. Suppose that (g, n)° # 1. Then for some Ky
(Ks» (3, 2)°) # 1. Choose V' o be 2 minimal charscteristic
F-K; submoduie of ¥V such that (Ky, (g, h)%) is not the
identity on v'. Define Qy &4, and hy as in the previous
lenna, Then if either (Q, g;°) or (Q, hy°) is the ideatity,
then (gy, hy) = l. Therelore assume neither g12 nor hlz
centralize Q. Thus g, and h; are excepiional and of
order 4. Hence  is & 3-group and 81 and hl operate
on Q/Q' ag followso:

81 2 e uy) = Aogyuy + %"‘i"‘i
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By Zeciuy) = Bogyly + :é“i“i‘
L#d

Wow if j # 1 then {gl, B;) = 1 and if §j = 1 then

we have

(Fpr B (S oesuy) = (4, B) od Uy + iz;él-l“
But A and B are elements of a quabternion group so that
(A, B)® = 1 and “he lemma is proved.

Theoren 4., PN/NAG/N.

Iroof. I shall orove that P(Hlnﬂ )/HlnNSHllenH
which is equivalent to the theorem since H,«Q¥.

Let P; be the subgroup of P such that PN /Eny
is the largest normal 2-subgroup of H;/HinN. P;d P and
P2 Z(P) (since Py must convain 1ts centralizer in P),
Thus by the corollary Yo lemma 12, Py contains all
elements of order 2 in P, Iet P, ={:§c,x2 =1, X€ P:;}.

o is an elementary asbelian group which is normal;
module HlnN, in Hl‘ Iet C consist of those slements of
Hlf}llnﬂ which centralize both P, amd P1/Pp. Clearly C

is a normal subgroup of HllenEI. Buk any 2'-element

in C would then have to cemtralize Py contrary to ¥y
containing its centralizer in H/H,AN. Thus C is a
normal 2-subgroup of }i}_/HlnH. But from the corollary to
lemma 12 and from lemma 13, P(}IlnN)/Hlnﬂﬁ(}. Thus P = Py
and the thecrem is proved.

capollery. M,(H) = L.

Now let S be a Sylow 2~subgroup of & which contains FP.

Trom the theorem it Ffollowe that F iz normal in S.
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Lemme 14, If P conteins all elements of order &
in 8, then 2('&’5) = L.

Pregf., If S = P we are done. Therefore assume S £ P,
Then if x€ 8~F we muat have v - 1. Also x€3~F, 7€
inplies that xy € 8~P so that (m)?‘ = 1 which implies that
X TyxE o= ;y"'l. Thus x induces the autormorphisa 37—);?"1 of P.
This can be an automorphism only if P is abelian. If hoth
¥ and X, are in 3-P, then 1%, centralizes P. Bub
ez('@) = 2 gc that P doeg cantain elemenbts of order 4,

Thus x;X, cemnot be in S-P.

Therefore |S/P| = 2 and P is abelian. Now if x€ S-F,
vy €, then (x, ¥v) = :s:"ly-lm = “_9’26 §(”{3) and so X
centralizes P/@(P). Therefore PN/N camnot be the largest
normal 2-subgroup of G/N. But P is meximal in S. Then
SN/N is the largest normal 2-subgroup of T/N. Thus
£, = 1.

To our originel assumptions (1)--(G) we now add

(7) G is of exponent 12,

This implies thet K must be a 3-group. Ve prove that
ﬁ »{8) = 1 in this case by showing that the Lypothesis
of lemma 14 is satisfied.

Now suppose there exists an element of order 4 in S-P.
g% is in Heo (K, %) # 1. Tet V = ¥, @ V. @ ... be the
decomposition of V¥ into minimal characteristic F-K modules.

Since g€S-P, g does not fix some Ve ga does fix each V;

and if g° is not the idemtity om a V; then g must fix that
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V; for otherwise g could not be exceptlonal. (It is showm
in [5] that if g 1s execeptional then the first power of
g fixiang a V; must he excepbional on that Vi)

Before proceeding further, we first need the following
results

Lexmma 15. There exist x and ¥ in K such that
((zs 2°)y (3,0 27)) # L.

Eeoof. Let C = {X,XG K, (x, £°)€ Z(K)}. Clezrly
C24(K) but C # K since then gg would centralize Z(K) and
K/Z(¥) conbraxry to (K, {g”?) £ 1. ({52 centralizes Z(¥) by
lemmas 4 and 5.) KfZ(X) is an elementary abelian 3-group
so. that Ghere must be o GF(3)-z module of KAZ(X)
complenentary to 0/Z(K). Thus X/Z(K) = LSZ(X) (P ClZ(E)
and g normalizes L. Now for all %€ I~Z(X), (i, g2)¢ Z{E).

Now suppose x, ¥y € I~Z(K) and (x, 82)(;51', ga)"le Z(E).
l, gg) = (x, g2);§r" (y-}‘, gz). But since K/Z(K) is

abelian (xy~ %, g°) = (X, £, €5 (mod Z{X)},

and, similarly, 1 = (3¥ 0, 8°) = (7. 289)(y T, 5°).
2 o |
L) s s e 2 (mod #(K)).

Ihus X,y"le Z(K). Theretore (w, gg) = (T gg) (mod Z(X))

But (xy~

Thus (xy

ify and only if, = = y (mod Z(X)) for x, Y€ L.

It immediabely follows from this that for any
x€ Ly there exists a y such that x = (y, ge) (mod. Z(¥3}).
Wow L cannot be abellam since g normalizes I, and gz does
not centralize it, From all this we see that there existh

>
%, Y€ I such that ((x, {-32), (Fs 87)) # 1.



Kow, taking x and ¥ to satisfy the lemma, we may
agsume without any loss of generality that ((x, ga), (¥, ge))
is not the identity on Vy. Clearly this implies that
gg ig not the identity on Vi so g umust fix Vq.

Since g does not fix every V;, assume g does nob
fix Voe Therefore 5;2 is the identity on Ve which then
also must be the case for (x, gz) and (¥, gaj.

Now V is an irreducible P-F module so that there
mist be an element teking ¥V, into Vs, (This is the only
place where irreducibllity is made use of,) Such an element
must be of the form zh where h€ S and 7 is from a Sylow
Z—subgroup of G which necessarily must combain K. Our

timate contradiction will be that z and K generate
elements of order © whieh ig imposeible in a group
of exponent 12.
If h?i = Vﬁ_then zvm = ?2. Set g = hgh—l. Then

wa have that

- 2 2
(G 3% GO L s
i1s not the identlity on Vpe It is further clalmed that
- =3
glva # Vz. For suppase glvz = VE. Zhen gh lVE =h -_VE
and, since gV, # V,, this izplies that bV, = Vi, § # 2
Then we mist hawve That gvj = Vj. But g;h"lé S so that

(eh™H)%€ H. Thus (gh™1)? fixes V. Therefore gh V. = Voo

B
Alsc (h.-l)2 must fix ¥V, so we have h"lvj = Vse We finally
conclude that V, = ghfl?j = gV, which is a contradiction.

Hence g1V, £ Voo
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If we now replace Vy, 8, X, azmd 7 by V,, 87, Xh-i,
and yhﬂl, respectively, we may assume that zZ¥y = Vo,
((x, gg}, (¥ gaj) is not the identity on Vi, and
gl # Vs, Let m; = (x, ga} and y7 = (7, gz). %y and ¥q
must be the identity on V, since g2 is. Fow gince G is
of exponent 12, z must be of order 3. Thus aVy = Vo,
Vs =V, (n # 1, 2}, and 2V, = V.

Now let V. = V] @V, @ V. V' is fixed by z and

T
the restrictions of X1s T and 2 to ¥V are

c O A} M O o\ . T ¢ 0O
z={B O O,:zclzo I O,ylzo I Q ],
0 C a O ¢ W O ¢ K

where I is the identity and O the zero matrix. Now
(ﬁcl, Y1) is not the identity on Vq bub (x;, y7)€ Z(X)
and Z(K) is represented on V, as a cyclic group
generated by a scalar mabrix. Thus (My N) = @ I where
& is a primitive third root of unity. From 25 = 1
we get C = AL,

Now =z, Xq and ¥ all belong to the same Sylow
s-gubgroup of & which must be of exponent 3,

2

a xile 80 that we must have xlz Klle = 1.

(z:{l)5 = z3xl
Direct computation yields that this implies that
W, = A7NtAL Similarly m; = a7hwla,

Thus (M, §p) = A7TQT, N1, But i and W
generate a grdup of exponent % and class 2. It follows

casily that (M1, N°5) = (M, M) = @I



Wl © QO
Thus (Xl, ;‘fl) ={ O I 0Of.
8] 0 &Y

It is now a simple matter to verify that

2
Z A
(Xit yl) (le yl) (Xl! 31) £ L,
Thus z(xl, yl) is a 3-element of oxder greater than 3.
This contradiction proves that the hypothesis of lemma 14

ig satisfied ard thus:

Theorem 5. If G is a Tinite group of exponent 12,
then ﬂg(ﬁ)ﬁeg(G)-
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