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Abstract

Several aspects of three basic problems concerned
with the propagation of elastic waves in solid media are
explored,

Stress and displacement correction terms resulting
from application of a subsonically moving point load to the
free surface of the infinite half-space are obtained using
Fourier transform techniques (the load moves subsonically
with respect to the longitudinal and transverse wave speeds).
It is shown, for the supersonically travelling point load,
that the solution is given, in the limit as the load
velocity becomes large, by the well known solution of Sauter
for the impulsive point load.

Analytic function theory is used to predict the
existence of Rayleigh waves on the free surface of the
infinite half-space and Stoneley waves along the welded
interface between two dissimilar solid media. A brief
analysis shows that free~running waves are also possible on
the interior surface of an infinitely long cylindrical
cavity. These waves are dispersive, however, because of the
introduction of a characteristic length.

The early and long time approximations for the hoop
stress generalted through scattering of a plane dllatational
wave by a c¢ylindrical cavity in an infinite medium are
developed, Use is made of Friedlandler's Riemann surface
representa;ioh (early time) and expansion in Fourier series

(long time).
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I. Stresses Produced by a Moving Point Load

on the Surface of an Infinite Half-Space

1. Introduction

Numerous investigators have considered the stresses produced
by the application of a travelling line load to the surface of an infinite
half-space. The earliest work of interest is that of Lamb published in
1916 (1). In this paper, Lamb extended his earlier {2) solution for the
stationary line load with periodic time dependent amplitude to the case
of a travelling line load by use of an integral technique. Briefly, his
method is based on summing up the contributions from an infinite array
of stationary line loads to generate a solution for the moving line load.
His principal application was to fluids which, of course, cannot trans-
mit transverse waves and, therefore, concern us little here. Lamb
also considered the problem of the travelling point sourcc on the
surface of an infinite fluid half-space (3).

More recently, Sneddon (4) has considered the problem of the
travelling line load, assumed to have been moving with constant velocity
for a long time, applied to the surface of the elastic half-space. His
velocity is subsonic with respect to the dilatational and equivoluminal

wave speeds of the medium. Still later, Cole and Huth (5) have extended



1.1
Sneddon's work to the cases of a subsonic, transonic and supersonic
line load velocity. Finally, Ang (6) has obtained a transient solution
for the subsonically moving line load whose motion is started
impulsively from rest at time zero.

Extension of the work referenced above to the three-
dimensional case is of interest for comparative purposes. This is
easily done, in principle, by assuming a travelling delta function
load to be applied to the free surface of an infinite half-space.

The stresses produced by application of the line load in the
two-dimensional case and the delta function load in the three-
dimensional case are, in effect, Green's functions. Their value is
inherent in the fact that stresses caused by arbitrary loading can be
obtained from them. This is done formally by applying the principle
of superposition and is valid provided the medium being studied remains

elastic.



2, Equations of Motion

It is convenient to define coordinates x, y, 2 as
being fixed in the elastic medium. Consider a con-
centrated load, positive downward, acting on the free
surface of the infinite half-space and moving in the
negative x-direction with speed U. This configuration is

defined in Fig. 1 below:

U <«—

osl

z
Fig. 1 Coordinates and Boundary Conditions

The location of the load can be specified by the

equation:

X +Ut =0 @.1)



We can write the equation of motion for the elastic
medium as
w——
(}\.\.z/u.) aro.d dv -/u.c.uvl corl T = Pyt (2.2)
where A and,/L-are Lanme's constants, Q is the mass density
— —_ . :
and W= LL.(\L.,'U'; UJ') is the vector displacement (7).
Helmholtz vector decomposition theorem can be used
to separate the equation of motion into its longitudinal
and transverse parts. Write:
= — d. —
U=9qrad ¢ + corlp & dvp=o0 (z.3)
The equation of motion decomposes into:
- = .-
/u,carlcur/tp "‘f%d-=°' A\V(P=O (ZS)
J
The vector identity:

cor corl T = grad div v -vo (z.¢)

applies in rectangular cartesian coordinates and equations

2.4 and 2.5 bhecone:

A
Vo= 2 bt 27
vzq-; = E!T—?_w{t- ') dl\) \P = 0 (29)

where:

Cx? =3 ).+'2££ (é.qJ

¥R e
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2 ra

and 'EL )CH- are the longitudinal and transverse wave
speeds, respectively. It is obvious that solutions for
the potentials 4) and q; yield a solution for the
displacement ﬁ by application of equation 2.3.

It is now assumed that the load has been moving for
a long time and that a steady stress pattern has been
established. A Galilean transformation

x =X+ Ut (2.11)
where -E:tE' \g: Tg and =72 has the effect of
placing the observer on the load, i.e., he sees a steady

stress pattern. Define:
2

Fﬂf':: Igiz <2JZ]
2 2 |
M= 2__1;,‘ (2.13)

and the potential equations become:

(\-“‘:L)d)xx T ¢‘3‘3 + (bz% = 0 (Z.W-)

Y - ] T (2.5
(I-M:)Wxx*‘w‘j‘ﬂ + Wz =°dew—o 2



3. Stresses and Boundary Conditions

The stresses may be obtained, after calculation of

N
L ) from the stress tensor:

(dwu.)]'_ +}/.§6ya.du.+(%ra.& u..) } (G
where—I. is the unit tensor and * represents the transpose.

At ¥=Q , the boundary conditions are:

Tae = M8 +aw€+a_) b 2uur o - ISP &2
- - A 4+ ) = (z.3)
Tax= Tue = (Y +20) = 0
= - - 3¢
T%-'Czj-/;(%%’+%%f)_o Xy
and the definition for_ui can be used to obtain:
&) @)
w = aﬁé + (.i* - éﬂk ) 615)
0% o0y 0%
o) &)
=2 CT 1) G.¢)
v= 94w (3 )
(?-)
= b 4 (2 319! (7)
w= 904 ( S )
where the superscripts refer to the components of the
-

vector potential ¢J.

Use of equations 3.2 through 3.7 and the potential
A .
equations for (b and Y allows the boundary conditions

to be rewritten after some manipulation as:

Tae = o boe M2 vl + 4 - Wiz
= —S(X\S(Q)P (’3-8)
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@) ) @) R)
Tax =/U‘52¢zx -(Mz'-z)%‘x- Yy + Wz + Yy, } = 0 (3.9)
a) ) B) @)
T\j'%.:/u'izd'-j% + (M:“)‘Pxx'wfgg - l{)x% + wxg ? =0 (3"0)

-
The diva'-:Q relation may be used to eliminate one
of the transverse potential components from the above

equations. However, this operation is reserved until later.



4, General Solution Procedure

Two cases must be distinguished depending on whether
h ing load is subsonic (02 BY R <) with
the moving load is subs PLJ PT
respect to the longitudinal and transverse wave speeds of
) 7.2

the medium or supersonic (-0°<¢3u,ﬂ7 < O) . Exact
equations for the potential functions associated with the
subsonically moving load will be developed in a subsequent
section. Since exact solutions to these equalions are
not readily obtainable and since the supersonic problem
is suspected to be of similar intractability, the limiting
cases of low subsonic and high supersonic speeds will be
explored in still later sections.

The range of X and 4 is from ~00 to 00 . This
suggests the use of an operational technique based on the
double Fourier transform. In this study the double Fourier

transform pair is defined by:

@ “wxrway)
Q—g(wl,wz,ﬂ =S§ ¢(X,t5,%) e chhi (d.1)
oA - (00,% +y)
syt = L ((Boape b G

-0
In evaluating the Fourier transforms of the equations of

motion and boundary conditions, the potential functioens

and their first derivatives with respect to ¥ and \j are



assumed to vanish at X)Lj = 'LOO . Alsae, the

——
functions ¢X¥,' ..... :‘pxx)' - e - are assumed to be
square integrable over the range (-0 ) .

The transformed equations of motion become:

bor - (P00t} § = 0y U= 1M 43
G- (Bufrwd)F =0 5 BF= 107 (.4)

transforms to:
_® () —(2)
Ty =-L(w‘q) TR ) 4.s)

The transformed boundary conditions are:

<L
fl
O

and the side condition, div

Tea = = “(Mr-2)9 +z/1.(w.,_¢ Flu, w(z) w qa ) ==P  (4.6)

— - _@) ) -3 @}
Tax - 20w, 6 + 0 (Mr-20 +w,w, 0 +»w,_w%) Wi =o (4.1)

o

= - _B)

Tyz = 200, 6, ~ws 2 ()3 pat & eng=e )
e

The complete solution to this boundary value problem
is defined by the inverse Fourier transform of the solution
obtained from equations 4.1 through 4.6. As noted earlier,
two cases must be distinguished, i.e., the subsonic and

supersonic moving load.



5. Subsonic Case

[ 2
For this case, O<PL p A , and the
) 'T
potential equations are always elliptic. Solutions to

equations 4.3 and 4.4 can be written as:
a

- + -0 7 2 7 T

Plo,uz)= Ce +Ge Qs Blw 4w, G1)

—(¢) Wbz @W-bt 22 . 2

L])(L(wl‘w,"%]z C3 € +C.(_ J ) b =< @-rw' + W, (5.2)
where a)b7 0 always and i = 1, 2, 3.

The requirement for bounded solutions as z ranges
()

from 0 to 00 implies that C, = Cz = 0 . Our
solutions become:

y C o (5.'3)

¢(w“w1,%) - 7'e‘

(i) @) -be

P (w,wy,2) = Ce e (s.¢)

Equations 5.3 and 5.4 can now be substituted into the
boundary conditions as defined by equations 4.6 - 4.8.
Application of Cramer's rule then allows evaluation of the

(<)
coefficients CZ. and (lL :

wlplCe = - P { 2w - w(Mr-2)} (s:5)
l\L‘Dle)=—-P{2LO.sz§ (5-4:)
/J_\D)Cf)—: P{ZC&w.i (s.7)

and from the side condition:



() @)
CS)___ L(wCu_ r wely ) _ g (5.)
b
where the determinant of coefficients is:
2
D] = {ewt-wii-] - dablutwl) (.9

)
The exact solutions for (b(x Ij'%) and Y (K,lﬂ,l—) can

now be written in integral form a )
-\Iw A, W'z WX wy)

P (( W)l e dud
(, g aw @ilO)
Pl G | Dl )
o o \] ‘ar i & +iwxrihy)
qs{)(“j 2)= g w.z ) dw dw,  (s.11)
2 \ Dl

@ P ~Vostp R+l > 2Ll xauy)
wz(“.‘ﬁ.'*)= 2(P Sgw' \Jw.z}ifwf e dwdw, (s.12)

4-‘\1’71..-00 ] D]

\p(ag\c‘ ‘j:%\ = 0 (s.13)

these improper integrals do not exist near the origin,

however, differentiation with respect to x, y, or z
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eliminates this difficulty. For cxample:

) . Ry 2 +ilwatwy)
2 T
29 . P S%&wz‘w?(mr"ﬂ Bl € dodw, (510)
VT Y J) \1)'

which is now an odd fumction of W, or W, near the origin,
thus, there is a change for the integral to exist.
A transformation of coordinates can be affected

accuording to the following schemes

W,

w, (3\_
Hence:

w, B = Pos ¥ (s.5)

Wy = P sin ¥ (5.16)

and the Jacobean of the transformation is:

_ a(wuwl) = (5.1"))
13l - 2(p, Y) —1%
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Equation 5.14 can be rewritten as:

co 21 -p? +LCYCOS(S-3‘)
P
%_i = -F gg é(—.COSK ESm‘()e @PL:]X:J(a
0 o
where:
Y

and:

@ (%Lcos Y, (-* Sin *c‘)

(A
2 7 CoSY
28in ¥ - (Mr-2) —o @

- i —
- =2z
Qi{zsinzx ( M;-2) cos” *1 — | BT o+ siny

B B

+imes (““ +Smx).§

1g)

(s.9)
(5.20)

(521)
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Equation 5.18 may be integrated with respect to e

and since >0 , the expression reduces to:

2T
3¢ _ P B..[zﬁfsl'nzh‘- (M-:-Z)wszk-_l dy (5.22)

ot Wt}"' Y_Z “ir cos(e-¥)) ﬁz PE Sin¥ - ( M%—?-‘) f-o‘z“]z
(e}

Y} P‘-@ Cosx + @fs.’fy\ (Coszzr +8C Sircy)

The potential functions, as well as their derivatives,
must be real. However, even after rationalization of
equation 5.22, it is not apparent that the imaginary part
can be deleted. It appears that the complete expression
must be retained at this stage in its evaluation.

A standard trick may now be employed in an atiempl 1o
evaluate the integral in equation 5.22. Let 7 = QLV

and integrate around the unit circle in the complex

a—plane. We have:
Cos ¥ = .%: (31' _;!-)
LSinY = lz"( —-%-)
d3

dv= — L ==

]
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and equation 5.22 becomes: d

26 . P (L)g 36 %) (5.23)

[} 3 4myk

(5.24)

The poles implied by the denominator of equation

5.23 are readily found to he:
L9

fo= LTt LT fe e2s]
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and since Z_> 0O always, it can be shown that:
Y‘

17,1 &1
17212 |

always. Thus, 3‘ y lies inside the unit circle; %,
outside.

Very little progress can be made in analysis of the
function Q(‘I)) unless we assume special values of

Poisson's ratio,‘)} . For example, assume ‘I)= o '

Then, since:

[4
Co _ M7 _ Nt _ 2(i-9) (52¢)
Crz ”Lz /U. /—Zﬂ

this special value of 1) yields:

2 2
MNr = 2M,_
and equation 5.24 becomes:

2

£ )
d(3)= = (52
22 |fa* ol Pl [0 (5 ]

which is still not susceptible to simple analysis since
the denominator is of O(f‘) and the term in the radical

implies the presence of four branch points.
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Similar difficulties appear in attempts to evaluate
the potentials Qﬂa) and ¢Fl)defined by equations 5.11
and 5.12. However, equations 5.10 - 5.13 are the exact
integral expressions for the poitentials. These can be
evaluated, in principle at least, provided appropriate
derivatives are taken to eliminate the difficulty at
the origin., Certainly, the equations or integrals can
be evaluated provided numerical values are assigned to
say ﬁ4£z, fﬂ:i as well as ?t even though numerical
methods may have to be resorted to in evaluating, for
example, either equations 3.10 = 5.13 or in obtaining the
roots gf the denominator in equation 5.23. 1In particular,
if ML‘-: Mr?': (o) ,ﬂ arbitrary, the solutions to
equations 5.10 - 5.13 must yield the same stress field
as that obtained by Boussinesq for the stationary point
load problem. This result is indeed obtained as will be
shown in a subsequent section.

It is of interest, before departing this section,
to examine the singularities of the common denominator
of equations 5.10 - 5.13. We can equate this denominator

to zero and after rationalization write:

2 KA ¢ 2 2 z
[zwa— wf(MT-z)‘l —w(u.\z@fw;f )(wfrar (W hwl) = o (s.29)
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The roots of equation 5.28 yield the desired

w? L
singularities. DMNow let L= )\ and divide the above
2\ ¢ We
expression by @ﬂz) to obtain:

[2-1— )\(;+@:)]4_ \e,()\@fﬂ\(ngzﬂ)(kh)l = o (s.29)

which yields on expansion:

AUNPCIPIN G

Therefore, >\: o] is always a root. The coefficients

are:

A= 1+4[3;(1-4533+ “ﬁrw +4ﬁr“ ¥ @Tg
B= #4407 +24@r + 16 - 10l (v2py) (5.1)
C = g«+u°p:' *-14(574-—!%(33(7-*‘@2)

D= m(@:’— ﬁf)

A very simple analysis consisting of plotting the
above coefficients for various values of @;?) 1) fixed
and for several values of '1)/ ﬂTz fixed shows that only
coefficient A changes algcbraic sign for the subsonic case.
We deduce then that the character of the solution changes,

dependent on whether coefficient A is positive, negative
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or zero. Suppose ,4=O « Substitute -
2 2 < . 2 2
By=i-M= =¥ Bi=t-t1 = I- g

= e
to obtain
r ¢ 243 .2 2 2 3
4=o=(g_)_9 _q),«zsz _U_)-/ég 1+ U ) #6U (s:32)
¢ C%z G* C}? C.* C?

Note that:

e €33
A,

U . UFf (5.3%)
Nt2zp

Equation 5.32 is identical to equation 50, Love,

pg. 308, provided (7):
2 , &
Y _ %
Cre
2 2
’
U =

C.*

Love defines 2
2

/ Pl

2 2
4 = re

£ (xtzul
where.lz is the velocity of propagation of surface waves.
Therefore, if we let anj; , we conclude that the
vanishing of coefficient A occurs when ithe surface load
travels at a speed equal to the Rayleigh wave speed. Of

particular significance is the fact that in the three-
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dimensional case no singularity is generated when the load
travels at the Rayleigh wave speed. This is not so in
the two~-dimensional case. For example, see Lhe subsonic
portion of the work of Cole and Huth (5) in which the
solutions indicate a singularity exists when the surface
load travels at the Rayleigh wave spced.

As a concluding remark of perhaps academic interest,
some simplification of the equations results if we
assume /Q = O . Then equation 5.30 becomes a quadratic
in >\ (A= O always a root) whose roots are easily
determinable. Assumption of specific values of )\ and‘/L
simplify the problem even further. For example, one might
assume Poisson's condition >\§f/.. . That is to say, the

problem is simplified, not simple!
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6. Subsonic Approximation

In this instance we assume U 1o be very small
compared to the longitudinal and transverse wave speeds
in the medium. Then @Ll @T—»l since M_ Mr—> o
We will compute the static terms plus the first correction
terms resulting from the motion of the load for the stress
2:215 and the displacement in the x~direction (L. As
noted previously, the static portions must be identical
with the results of Boussinesq.

We proceed with the computation of TQ% first.

The expression for Uaz is obtained from equation 3.1 as:
7 () ) %
— - - — A‘l
'CH__ }kd’“("‘r e) +z}’~( ¢‘1‘1 t¥a "V«j% ( )
and the integral expression for T:qu is obtained by

substitution of equations 5.10 - 5.12 into equation 6.1.

e 2 -\)gﬁw.‘a—wf’% +L(w\x+w13')

Tz = zzggg-{qz(m}-ﬂ-zo:] e

4y
-

We obtain:

_ ~Jpholal 2 4 Lo ciuny)

K3 b i

+ platrad (grufhal (fvel) e du) du,
| DI
(t.2)

where ‘I)I is the determinant of coefficients defined by

equation 5.9.
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We assume that all appropriate terms in equation

6.2 can be expanded in a Taylor's series and obtain:

» y T 2 A z
[0 --w ) = (el ) - iy 1
2 (0w,
< wloted) - g bu)uimy ratm! ¢3)
and:?

L

\ % S
\)pfw?‘+w—f :Q(g-mf)wﬁw.f = (0 %uw?) {l ~ WM 73
uﬁz+uhf

L
o (U.J'z'-t—w-z')l-{l - wlev.z - m|q.Mt.¢ - - —-} ((n.‘-l‘)
2(wirat)  glwiewd)

plus a similar expansion for vp:w.l+wz'£' . The
exponential terms become:
J(-MHwlw? 2 -Az _AT
~ Miwte
e = e P IR T e
ZA
4 w.‘{'%l"l\_ e + W € M. e 4= (G‘S)
& A3 _ 81q1
L

<
where /-} :(w‘z.;.w.:‘) . A similar expansion is



[3™)
[3%)

obtained for the remaining exponential term.
The determinant of coefficients‘lﬂ can be written

after expansion and simplification as:
Y
VDI'--—£Q400,+W1 (MT )+'“% Nh;(mf?-ﬂf)

¥ ”¢(MT++ M:‘) T

—
2

or equivalently:

)
DIz SN ylothad)- i aa (2 Y 3
2 HZ_ H?.
. T

= m\z(MLz“ PE)E 4(‘-0\1%)1_2) - wlzk Hn.z +--- jg

2
where:
SPﬁx_ My )
_kME= —2Mr + (HT"’HL )_ 1(7‘2—;"24— T
- L'L"MT - Mtz_i
Mr"
T T
- _ 33)\ ﬁ\o/u.\+ q)u,\iMLz (L.é)
J 8t )
. AN
since ,
X+‘zju—
It is convenient to invert \I)) We obtain:

o E{(u?z—(i?-ﬂr“).ﬁ*“f;w Sl il B



Now substitute equations 6.3 - 6.7 into 6.2 and

after some simplification obtain:
od

~ P = [u- (w4 wd
T%% - - ;:‘-TZS 1 + t_lr(wlz_l,w%)-i \ )
- 00 :

+ W (MEMS) + kMl

X
(wtwl) +L(wx+uy)
1
+ Wt (M My )} e du, duw,
‘v

The integrals in equation 6.8 can easily be
evaluated if we transform to polar coordinates according

to the following scheme:

W, = (Joos“b" L W= esin ¥

P4
i

rcos & ) 5 = YsSin o



We obtain:

o 2T |
-__r g gi + x q—ez + f"coszw (Hfa—kﬂf'— MTZ)
Vh l+
°0 0
_Q% +ipr cas (8-%)
+<E.Hh+mAEC$Kz nge @ﬂ)
g

The term:
Flir k)M a MT?' (‘)\i-zt)
N RPN

after some manipulation and equation 6.9 becomes:

< o _(.s% + Lercos (e-¥)

-?%-}-b(w cos (9 Y)

(\*':’Z‘f)g cos’y Aféx
Vs

X
P
riJ

I

5
o

t%%-—f gg e eclfc;‘(
- o
z.“.m - cercos{e-v)
_F ngfze.?“fr afa}:
ym?
0 ©
2l 0 —p2 i r cos(@-¥%)
- gg MTz't' ()\-I-E&)Ecosz‘f e v | dfch’
*-HT’“O A 2 X+}w
ZF§°
)

£

((a,lc)



where:

(S ME M A3p
Mot My = My (H ;1'3.)’ M (},m#\)

The first two integrals represent the stress for
the stationary point load where as the last two integrals
constitute the corrections for the motion of the load.
The correction terms include all terms of ()(Ph?,PﬂTz) .
The integrals in equation 6.10 are readily evaluated.
Their evaluation is c¢arried out in Appendix A. See

equation A.14. The result is:

Tin = 33—3%3 5 +M:(\Hﬁ“ z

AL (%Z.‘_ rz)?’ Nt M L{-(‘-Z?'-}-ri) *
332 a3 2Zr Cos 26
- s + =
G(2ar)® v (=4r %
2
+ 1'1( Ar2 ) X, <
nezp s Lg(R%ed)®
¥ | 22
3% 3 ®Frcoszef (, 1)
— s + 2 IO
(et 8 (Rur T]
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Noting that:

? (]
A -
(gs 26 = 2cose—1 = X=2
7.
X +43

equation 6.11 can be rewritten in bhetter form as:

—E%% = ’_P_ - 323 v (}\-{-Z)J. X 33::_‘_ 3—-‘%—(‘:}2_32)]
17 —'F? >\+}a- YR wR®

)\.‘,3 3% 3 (‘k’: ):( (Q.n}
tM M'tp.“.e?ﬁs gRs ¢R®

where:

=.X2+'21

Comparison of-tzi,above with that of Cole and Huth
(5), Figure 2 shows Lhe same behavior near X='3=°
That is, the stress becomes more negative with
increasing P1T . The first term, which represents the
static contribution to the stress, agrees exactly with
the Boussinesq result as given in Love (7), pg. 192.

Encouraged by the success of the computation for
T:E%’ let us proceed to evaluate an approximate ex-
pression for the displacement in the x-direction, W .

We have:

@) G
w= ¢ + ¥, - ‘P.-:.) G.5)
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Substitution of the integral expressions 5.10, 5.12,

and 5.13 into 3.5 above gives:

o0 --\“@Z‘w.z'\-w—f 7 4w ruwg)

P S o [fl2)-2wl] e du, dws
¢ﬂz | D)
}k—oo

Gﬁrw. sy 24w mmag)
LAlr ZL'P ggw \ip Wy quw, Py, d_'u_)j_{&

| DI

- 0

(.13)

We assume again that the appropriate terms in equation

1 1
6.13 can be expanded in a Taylor series as fﬂ;, Pﬁr - 0 .
The expansions of equations 6.4 - 6.7 apply here also.

Equation 6.7 can be cast into different form by making the

substitution:

MT'L- H:.': HT’L(\— %’i) = HT‘L(itl:}L) (L“n

We obtain from equation 6.7 then:

\D\—‘S —(x”ﬁ) : [1 y W kM ] .19

RRL R TR TR NEIOREC | R (R 1+wz
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Therefore, when expanding the numerators in the

integrands of equation 6.13, we must retain all terms of
O(M:‘) MTLL) in order to obtain the first correction
term for the moving load. After expansion and

simplification, we obtain for the u-displacement:

. o 3 ¢ ' 3.1
we -P gg({'“‘\% g L EMr M )-— W (HT1+H..Z)
4Tl 2R B MMM At
- 00
] 3
w My + 2 (M- H&VS{ 1
2R (Mr-M?) A"
-Az + L {wx +w-,,_c3)
1
FhwtMoy.. e Jw, duw, ((..M,)
4A°
where: \

A= (wsz*’w?-z)?_

as before and k is defined by equation 6.6.
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The quantities (MTZ-Q- VI,_Z) , etc., can be

. kA
expressed in terms of }AT and Lame's constants as:

MT4+MS" VL [ Akl +spl ‘i
Mt ME v YN e 2 0)

Mie Mt = M [ Asis )

?\+7-/u.
1yt TN+
Mr=Mo = My (-&-:-%L) ((,,,n)
M U

Substitution of equations 6.17 into 6.16 gives
o)

W= _E_'?_ ggs W, _‘_G&%HT(\+W}£>\+SP.) zﬂ:(\“ ~)
LTS ZA  gAs Ovp)( ez gﬂz e

~ 0

po (4 )J,‘_”.\_M(;:/; k;ﬂ;ﬁm =

-Az +L'(w‘x $wy )
+.k_%? Mr _/_{.Li \ie ’ Aw‘sz @.18)
] |
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which can be combined somewhat to yield:

00

P wi oW (M w3Mt \?‘-\-'-l')l\'\'slﬁz]
w= 4717#5&{ TIETE (M}AJ' eﬂ"f[ S

—A2 +i(w X Fwey )
_wlT M w.%zvlrz()\@g )75 e Y (g ((»"‘1)
wy gAY\ hers

We effect the same transformation to polar

coordinates as was used in the evaluation of T:%%,to

obtain:
0 2T
P Q% Cos ¥ 4 Cos¥ (}* )+ Co'aa'?.MTi[\l-!—‘f-jL\'\'slﬁz}
Y T 8 One )
o o

-pEHpr cos{@-¥)

dwdf.
({,,2 o)

3
PR Los Y, MT" e"%ZCos?w. HT }\+3£L_ e
- ¢ ' 8 \4%}»

This integral is again readily evaluated, although
somewhat tediously. We obtain the solution from Appendix

A, equation A.36 as:

P xz _ P X

L= 4ﬂ}p &3 inCthJ'R(%+42)

_ T MTZ.'&S r cos3@ l — 3% 1‘%
LA (=+R) R ?-3 =+R 'R?'
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P MTZ XX%‘I—)LM-S})}]X racosie 3%
(

T L Onepl® WRF R RER)
1.7, 3 2
_ 'PMT%()\+3!5:)SYCO$3G 3 +q2 +-§_1]
YT o NI E+RPLRY RY ®
kA
_ 3% 732 4 3% } + Rle xtiryt ez’ C=n
2RI RY ®REFL) )

The first two terms in equation .21 represent the
displacement resulting from the stationary load. These
agree with Love (7), pg. 191. The remaining terms
represent the first correction for motion of the load.

Before departing this section it is noted that, in
principle, additional correction terms may be developed
using this same technique. However, it is anticipated
that such an attempt would prove to be prohibitively time

consuming.
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7. Supersonic Approximation

The load travels, in this instance, at a speed
exceeding the longitudinal and transverse wave speeds in
the medium, i.e.,

Us>> C, Cr (7.1)
Therefore, we expect to see only backward running waves
emanating from the source of the disturbance. Suppose
we pass a plane through the origin of coordinates parallel
to the x - z plane. We would expect to see backward
running rays along which the disturbances originating at
the surface propagate with the appropriate wave speeds

somewhat as shown in Figure 2 below.

U <

A<

\J
X1

)
1
; Cr
1
1—~X-‘—>\§\
A O\,

Fig. 2. Supersonic Load

o

(9
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We could use the double Fourier transform technique
as in the subsonic approximation. However, we postulate
that the solution in the y - z plane may behave as
though an impulsive, concentrated load were applied at
the origin y = 2z = 0. Such a result would indeed be
fortuitous since Sauter (8) has extensively studied this
problem. His results would then carry over to the
supersonic problem to be studied here. We shall explore
this question further.

Assume that our longitudinal and transverse potentials

¢can be cxpanded in power scries, c.g-,

¢[X15)%} = (bo('?) ;Z)i) + #14;1(;?1?:)4'”‘

- -t ~ A ™ o~ o
\P(“J‘:\:%) = \Po(f,x,%) + __‘-_L\Pl({- TT)+---
M
where we need consider only the leading terms in equation
A (A
7.2 as M, M —> 1large.
We note that the distance from the moving load to
Section A-~A, fixed in the medium, is given by X=:i-+17¥

See Figure 2. Therefore, x grows like Tt and we choose

as coordinates:

x=U¥

(a.3)

which are reflected in the potential expansions above. We
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have chosen \3:—’\7 so that the coordinate directions
will be consistent with those of Sauter. Note that t=t
Loanat
=t throughout.
Equations 2.14 - 2.15 are valid and represent the
potential equations after the Galilean transformation has

been made. We rewrite them for the supersonic case,

T
since ML—LJ MT’ >\ as:

(M=) dyn - ‘f’gcj - Pze = O
(7.4)

(MT‘?-") q-jxX - m;jlj - m\%% = 0 ') Cln'\l$=o

Using equations 7.2 and letting'tf-d> large,

equations 7.4 become:

e X

E‘E‘d)%;: = V4, ¢

7.5)

Nz . -

_‘_.LTJ:.__N = vlp\o ; Cllu\,uo‘:ﬁ

¢t Tkt

where
t
¥ = F .@.z.?_
3T 2%

The boundary conditions of equations 3.8 - 3.10
become, after substitution of equations 7.2 - 7.3 and

7.5
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Taz Toyx (M-.—z-z\ &)

————————————————

‘2 Lpf;i, __SWRRIP__s(®SE@P (o)
U

M M
T Tew . _2d, v (04 2y
MM v
@) @)
_ %35%(1'7) ~ Yoo .1'_7.) - o G.7)

In the limit, as TJ"? large we obtain from the

above equations:
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()

(€26 ) by + Oy +2G W
_s@)SRIGEP ¢.9)
/LLU
2005 - 2‘% *‘%ﬁéq = 0 G.19)
_El?‘w‘?éz ‘Lp:s;%' v tpfx')‘i‘ =0 @. 1)

—h
The div 4%-: O relation can be used to eliminate

equation 7.11. It becomes, in the new coordinate system:
() (?.) f3)
a% (_!_) aq) qu 67"—2_)
3t ‘U % 3@'
and as J —> 1%:ge:
@ )
_ole ¥ _ g 7.13)
-3’4 '32

D1fferent18t1on w1th respect to x yields:

- R’ 45,.~. = 0

thus, equation 7.1l reduces to:
(@)

N _
T Yorg = © G 14)
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Py P
We note that in the two-dimensional system (X)2d there

()
can only be one transverse potential. Therefore, \P =

; o

and equation 7.11, which implies 7.14, is automatically
satisfied.

We must now show that the boundary conditions of
equations 7.9 - 7.10 are identical to those of Sauter(8).
Using the two-dimensional form of the stress tensor,
equation 3.1, we readily obtain Sauter’s boundary
conditions, defined in the referenced work by equation

1.5, in the form:

—_— r - g - L e r \r I\ ~ -
Lee _ ° ch%: v ((2=2@) d_&“g= o Slx)8() (.15)
T ? X
2ol o =
Txz - QU w4 G.1e)
M o x
where "u" has been substituted for S, , etc.

-~ = 7

If W=1i1w+Rw is substituted into Navier's
equation, equation 2.2, we easily obtain Sauter's
equations of motion as defined by equation 1.3 in his work.
We deduce then that the equations of motion of Sauter
and those for our supersonic approximation are identical =-
without further ado . The combhination of Navier's
equation (equation 2.2) and Helmholtz vector decomposition

theorem (equation 2.3), both in two-dimensional form
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(X,Z) 5 imply the existence of the following wave
equations for the potentials 4) and 4)

L b,
v ¢ W G.)

v - g—wt' divP =

)

S ()
where =] ) has only one component.

From Helmholtz theorem we obtain
@)

@) G.1¢)
2
w = <L% + (Px

and substitution of these results into equation 7.15 =~

7.16 gives:

(cB26Hh,, +Coby +2GH0Y - o SGUBG (g
/L
®@) @)

2-¢ .32. + \p\(x = 0. (—1420)

Neglecting the right hand sides for the moment,
equations 7.19 - 7.20 agree with equations 7.9 - 7,10 if

we identifys
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- ) R
g0
ta f X

G.w1)

The question of algebraic sign of the forcing function is

simply a matter of definition.
identical ifs =
[
- — = T
192

Dimensionally:

-1 I]- (2]

which is impulse per unit length.

The foreing functions are

The forcing function on

the right hand side of equation 7.15 must be non-dimensional,

therefore:

He 4
Lol - {EE%S&)_J: [T J

and the forcing functions are identical.
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We conclude then that our original postulate was
correct, i.e., for the supersonic approximation, the
results for the impulsive, concentrated at the origin,
loading problem do indeed carry over and define the
behavior in our y - z plane - at a fixed station. The
familiar wave front pattern is expected to he ohserved
the y - z plane for this approximation and is shown in

Figure 3 bhelow.

B

(s
n
& o
A

LonaL{uJ{naJ
von Scl'\micH' —é

Transverse

N
f
]

Fig. 3. Supersonic Approximation - Wave Pattern

at Section A-A.

in
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I1. Surface Waves of Elastic Solids

1. Introduction

The original work of Lord Rayleigh (9), wherein he
develops the relation for the speed of plane waves
propagating over the surface of an elastic solid, assumes
the X » Y dependence of the displacements to be simple
harmonic. Then the dilatation, © , decays exponentially
with distance; % 4, 1into the interior of the medium. Lord
Rayleigh's original analysis is three-dimensional but is
easily specialized to two dimensions as is done in Love
(7}, pp- 307-309.

Then again, the frequency or speed equation for waves
at the welded contact surface of two semi-infinite media
was developed by Stoneley under the assumption of a
simple harmonic plane wave which vanishes as Z , the
distance into the interior of the medium, becomes infinite.
The work of Stoneley is discussed in Ewing, Jardetzky and
Press (10), pp. 111 - 113.

The purpose of this section is to show, that for the
two-dimensional case, e.g., plane strain, the assumpiion
of simple harmonic disturbances is not required to predict
the existence and speed of surface waves. 1In particular,

analytic function theory provides a beautiful tool for
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analysis of the two-dimensional cases discussed above.

A brief analysis on the question of the existence of surface
waves which travel parallel to the geometric axis of an infinitely long
cylindrical cavity in an infinite medium will show that these surface
waves do indeed exist also. However, the introduction of a character-
istic length into the problem causes the wave to become dispersive.
This problem has been studied previously by Biot (11). The formula-
tion of the problem herein differs slightly from that of Biot, however,
in that Fourier transform techniques are used to generate the wave
speed equation. Both results are equivalent,

It is well known that circumferential waves also exist on the
interior surface of an infinitely long cylindrical cavity. This problem
has been studied for the steady harmonic wave propagation case by
Viktorov (12) who determined that the waves are also dispersive ih this
case, These remarks and the analysis referred to above are included
only to direct attention to the fact that introduction of a characteristic

length results in a dispersive surface wave.
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2. Rayleigh Waves

Consider the infinite half-space. We formulate the
problem by asking the guestion:

"Is it possible to have a deformation, travelling
along the surface at constant speed, which satisfies the
boundary conditions of zero stress?".

The deformation {(arbitrary) and coordinate

configuration is as shown in Fiqure 4 below.

Y
4

X

]

o
—Iy

Fig. 4. Surface Deformation Travelling at Constant
Speed {(Arbitrary Shape)

The medium extends to infinity in the y~direction,
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thus, the problem is one of plane strain. It is

convenient to make the Galilean transformation:

X = §'+-IJ€ 62./)

and since we are in essence looking for the Rayleigh

wave speed, define

U= (g 2.2

Restricting our discussion to two dimensions the results
of Part I, Section 2 can be used to obtain the equations
for the longitudinal and transverse potentials inm the form:

z 2% 2%
o( <~ 4+ =X = O
o odxE 0’*

(z.3)
z ' kA
do QW L oW
T It 22t
where:
(4
ity
(2-4)

CE CE?
JT' = | 2;}

Solutions to the polential equatioas can be obtained

in terms of analytic functions of the complex variables:
Z, = X+ Lo F

(z.s)
?T = ¥ +' L'.a(-r%



We writes

b= R§E(E)]
Y= @LW(?M

where:

d= d+i¢
D= w+iy

(.6)

(2.7)

and * denotes the harmonic conjugate. That equations 2.6
are indeed solutions to equations 2.3 is readily verified
by direct substitution.

The boundary conditions for the stress free surface

are obtained from Part I, Section 3 as:

_Zé'_%. =0= 2\“ ¢¥X’ - (w)""-zsbxx * 2¢X%
M * # (2.¢)

i
Xe - 0 = 2!¢x3 + ¢4x +-qy 9&><
Vo

The boundary conditions can bhe integrated with respect to

X. This introduces, at most, a constant displacement.
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The result is:
5 w‘f‘# +2‘~u{_ = q
@.9)
¢ +(\+°‘.T)q)

Moting that 3L=3T at B = © , the boundary conditions

can be expressed in terms of the analytic functions § and

{._-4 (reisfj e 1§} + 20§t Pl= o

' CZJO)
z&{id,jf + (Hal,-)ﬁ.{@z = o

or equivalently:

%—z)&w'}-zr%«; 131 -

(2.11)
_z\s| CCRz Q,.\ 'z. Ca W‘}w
e §idl= - 404
(2.12)
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The first of equations 2,11 is satisfied if:

| ‘ 2\ - %@: |
@: - L (Cﬁz_z) J (2.13)

cr

Substitution of the above result into the second of

equations 2.11 gives:

{_ %\ﬁ- C_E.Z‘\gl— e & (z?.— %i)z} QJ-EQ'? = @ @ 14)

CL-L CT‘

1
and since the Qﬂ_%@ } +0 y We must haves

2

(Z-C_E}>__q.\J\~C_@_Q\(\- " - o (2.15)
P C Cr

Satisfaction of equation 2.15 implies the existence
of a surface deformétion, travelling at speed caZ

which satisfies the boundary conditions of zero stress.



48
This result is independent of frequency or any other
parameier except the elastic constants }\ and/u"’f The
speed is, thus, non-dispersive. It is easily verified

that CjR is indeed the Rayleigh wave speed. We have,
2 2
(2:-<hz‘> = 4‘dl~'€E} Q\‘ (e
Cr® [ Crt

Squaring both sides and rearranging gives:

. 4 3 3 .
(%1@—_1)- 8({(@3) +14(C§)-\b%{§0+%) +|e§_;= o (2.!6)

which has been shown to yield the Rayleigh wave speed in
Part I, Section 5. It is only necessary to identify
<3Ft?5 U .

The beauty of this analysis lies in its simplicity.

Note that the only restrictions are that § and \P be

analytic functions.

» anc’ the clenSl.‘\l:j of ‘Une me:’:'um/ Q
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3. Stonelev Waves

Consider two infinite half-spaces in contact as shown

in Figure 5 below.

\/—w o

Fig. 5. Interface Deformation Travelling at

Constant Speed (Arbitrary Shape)

The problem can be formulated by asking the question,
similar to that of the previous section, i.e.:
"Is it possible to have an arbitrary deformation
which travels at constant speed along the welded interface
and which satisfies the boundary conditions prescribed

there?”.
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The assumption of plane strain can again be made,
Making use of the results obtained after the Galilean

transformation in the previous section, the equations

applicable to the first medium

3 2
O(Lza—é + .a__é - ©
ox*? 0=’

may be written as:

€XD)

o/

{1

2 i 2
o 2V & __“21 o
Ax? 2

and to the second medium zas:

LT~ r I
L2838 o
2x*t 2
(3.2)
(4 ~ ~~
S S
ox° ®*
where:?
[4 3 2
°(L.- |- C_s. dT = 1= ES_
¢z’ Gt
T
(3.3)
~7. Cs'l :1\.1—‘ Csz
°<L— ‘— _ﬁ'—i) T - ~z
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The substitution II'E-CS has been made since the
Stoneley wave speed is to be sought.
The stresses and displacements must be continuous

across the welded interface, therefore, the boundary

conditions become:

Tz'{: = z-‘zz

Tay = T
X <X
(3.4)

w= &

w = O

at %-:Ol

Solutions of equations 3.1 - 3.2 can be obtained in

terms of analytic functions of the complex variables:
3‘-: X+L°(;.% ) ;T = X+L°l-|-%

G.s)

Ny

3._:)(-4-(«&1%',%— X + Lely &

This approach implies that:

¢= R{FGIT 5 9= R {00

| G.¢)
F-R§8E); ¥= R{TE
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where:
. ¥ .
=9 +i¢"; P=wriy®
N (3.7)

~ * L I

F=F+id Q=0
and * indicates a harmonic conjugate.

Equations 2.8 - 2,11 of the previous section can be

used to obtain the stiress boundary conditions:

wp'e {8 t-zpe, 0927 = pER{ET- 22 44T

(3.8)
C2pety 58] wBR1T] =253 0T - BB RT
where
2 2 L 2
@ = Sé_ -2 } c;== %?i -2 (3.9]

@.10)

the displacement boundary conditions can be written as

(a.‘i: z = O) s

G.a1)
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or equivalently:

R587 rar 007 = Q5T+ & A-1T T -
S §3) e RET = - 8-18T] ¢ RIET

Equations 3.8 and 3.12 are satisfied if:

A ! 1-~| . | ‘~~~|
l_p(ﬁé-}l?&é telpr P -2lgdr b = o
- ! -~~~| 1 : fad 1~‘ —
2ipd G2 - pp R HREQ = © (3.13)
I~ L - 4
§-¢ -ty T+ i@ =0
1 o~ >l { o
L - g +0-9¢ =0
Equations 3.13 can possess a solution, other than the

trivial one, only if the determinant of coefficients

vanishes, i.e.:

p(ﬁz | -/U.ffz 2 ey ~2lkd
,?_E/u.gl,_ —zi}'Ze'(l -/.,«Pz ﬂ@'z
i - —-iJT- LQ;

Lﬁl\_ -Ldl_ { _‘
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The determinant can be expanded by a well-known

method. The result is:
-~ ~ 1 K ._4 ~ o~
- 2 f (=AY - p7) + R (- ) (B - T_ar)
- (- 4Li})(($“(32- dlidy) - it (i- Tdr)(BF -y ) (3.15)
T ACHE O B+ (- ST (phddar) = o

This result is symmetrical and contains ne parameters other
Lo d

th he elasti A A X
an theelastic constants )}L) )}L

e, 7

2 AT
which is contained in the terms o(‘_)Q:J (3 (3 , etc.
)

is non-dispersive.

and the densities

We conclude that the Stoneley wave speed,

The existence of the Stoneley wave is,

of course, contingent upon the existence of real roots of

equation 3.15.

Substitute the following terms into equation 3.15:
T . ~ ~T
A
2= C‘sz _ . ~2 C
3 ;G

- = S -7
Crt E;l

T Y e _

°(L= |\~ Céé_:z —3 A| J JL" |- cc% — ﬂ?_
[

«- ——

°<T= { — _C_S_: = B' ) 0(-\-= 1— %E-'i - Bz
Cr T
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and after some manipulation obtain the result:
¢ ol Y -
CS 3(?‘?)—(€AZ‘GA|)((>B'L_P|31)

~1

+uCs (per- GG Nph B FAB - p +7) 3.1¢)
+ d(pcr'- ff@'{‘)z(l— MBI 1-AB) = o

This result, which is believed to be correct, agrees with
equation 3.139 of Reference (0), except for the algebraic
signs of @A, and @53\ in the C; term. The
original work of Stoneley was not available at the time
of this writing, therefore, equation 3.139 of the cited

reference could not be verified.

Suppose the density of the second medium vanishes,

i.e., 'é’-» @ . The following result is obtained:

(1- 880§ G GG 4G (12 A8 = o B.17)
The coefficient:
(- AzBe)

7 C ik
= | -'\S;‘ g;? d"’ é? o
o C&F :#
7

rd A% ~
and can be cancelled unless CS =0 or C,_ a.hcl CT —>Co .
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The equation which remains can be written as:

r4 2 i !
(%_z)_up\[l-%s:t\(lv%_ = 0 (3.18)

which is the familiar expression for the ordinary Rayleigh
wave speed as shown in Part I, Section 5.

In the event that e—*-o s the Rayleigh wave speed
equation applicable to the second medium is obtained.
This fact provides additional validity to the conclusion

that equation 3.16 is indeed correct.
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4. Waves on the Surface of a Cylindrical Cavity
in an Infinite Medium.

This analysis will show that the introduction of a
characteristic length results in a surface wave which is
dispersive in nature.

Consider an infinitely long cylindrical cavity of radius

"a" in an infinite medium as depicted in Figure 6 below,

T Y
— % A o
7 s
rt { _
LY
A

Fig. 6. Coordinate System for a Cylindrical Cavity
in an Infinite Medium
It is convenient to use circular cylindrical cooxrdinates.

Them, because of axial symmetry, there is no @-dependence of

the variables in the problem,
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The problem can again be formulated by inquiring as
to the possibility of waves travelling along the surface of
the cavity at constant speed which satisfy the boundary
conditions of zero stress on the surface.

The equations of motion are easily obtained from:

e _dnT (1)
a-l:
whereT is the general stress tensor:

T = )\I divit +}J.§‘3ra.=| s +(rjra.af o) g | (¢.2)

and ¥ indicates the transpose. ? is the identity tensor.
Recognizing?
. Z 1 - .
div (AI div u,) = A 3Va,c| div e (.43)
equation 4.1 takes the form:
3t

a.i‘.%_ = >\ara.cl div i ‘+/;. 4!‘\4-6?‘45‘3 (._(,'4)
*
+/.o. div (3”,&@)

In cartesian tensor notation:

c)u.L - (au., + (au.;_ b oYy .
Uit att Zn( 'BXJ) )“bx ﬁj a-;«.l;_ ) (45)
which can be rearranged into the form:
QJ&L (au' + (Eﬂﬁi-kzﬁ}'
Q oX ) fLDX o, bxz

ou; _ 3_“-5) (4.¢)

3—‘#; ox,



or:
e (e 2 (2 (22 aw-)@ (47)
—h = +2 ey 4+ | ==L - :
0 ott ( }J')ax;_ 3\5*) /'L’bv.j [ S} ¥
which can be written in vector notation as:

% _ (xie ddiv® - corl corl @ &.g)
e T ( }A-)ﬂ\"d. v /l- or

Application of Helmholtz theorem:
A O dov T =
w = 3ra-<14>+(.ur|¢; w i = e
allows equation 4.8 to be separated into two equations for

—h
the longitudinal (¢) and transverse (Y) potentials, i.e.:

vz¢ = EI:'L (b{:'b
x)

—corl curl q'j = él-} q_;{:t f div = o

-—
where, for the problem being considered, U has only a
component associated with the O-direction,

In circular cylindrical coordinates, equations 4.9

become:
T
0% 13 , ¢ _ L 24
3’?7-*_ r or 23T Cr td
({.10)
3 L L a _ v W
ort r or 22t Crt ott re
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-
where the curl curl QJ components have been obtained from

Magnus and Oberhettinger (13,
After the Galilean transformation:
z=2+Ut (gan)

equation 4.10 become:

2 52
% L2 podo ¢ _ o

(-l-, I2)

21‘_9,4,_1_8_&(5_4-471@ -¥Y _o

drt v or o=® rt
where!
T cz
= |- = - = U
ol cr ¢
. (4.120.)
? ¢ (=T

The range of 2z suggests the application of the Fourier

transform. Equations 4.12 become:

az&: +.L3$ - 41w?$ = 0
Are  r oar -
(.13)
azqr_F z'aiﬁ __Qﬁzjgt+ i ) a; = o
ES R AR
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Where the Fourier transform pair is defined by:

-~ X ~LUE
$(ruw)= g $(rz)e dz
- (4.14)

Solutions to equations 4,13 are:

Flrw) = A T, (qor) + Bw) R, (d cor)
(Yas)
[17(th= C(w) I (_41-03?) + :D(w) ku (41-wr')

The functions ﬁ?ﬁu) and C(“Q are chosen equal to zero to
insure regularity of the solutions as > 300 . We obtain:
@ .
WAE>
d(re)= L\ Bk (dwr)e dw

KAl

% {.16)

2 Wz
Plrz) = %ﬂ DK (¢, 0rje du.

— &0
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Equations for the radial ( T:rr ) and tangential
(-Er% ) stresses may he obtained from Reference (7) as:

T O\
trr: )\Vd) +"2/U~ "a"';.

(417)

U
t_r_: w [ 4r ::-_‘)
- \ 0% ar Fi
where:
K = 2% _ ¥

r= oY 5_%—

(4.18)

Using equations 4.12., 4.17, and 4.18, the stresses can
be written as:

[4
'E,.%=/u.{2,%-%% (144 )aw o atr=a (4.19)

We can integrate equation 4,19 with respect to z and take

the arbitrary functional equal to zero., This introduces an

arbitrary displacement into the problem at most. The result

is:

{2@ (c+=lf)-%i = 0 . .20)
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The radial stress can be written as:
Ty = )(lﬁo(f)?é%z +_2},Lga; (:%%-— %‘% = 0 atr=a (@21
which becomes after substituting for A 3
Ne (- ) (4 22)

the following:
Tppo= {(r-dr +24 )a‘f’ + (aw— 2w \2 (&.23)

It is convenient to obtain the Fourier transforms of equations

4,20 and 4.23 as:

{z.@_?{_ Lw(u&:)ﬁ% = 0 U.24)
or r= o
~ T . -
{(-—1-41—7'4-2«5)(-&3@ H@i‘“dw%ﬂh = (4 .29)

Substitution of equations 4. 15 into 4. 24 and 4. 25.yields:

(1442 242) &0 B K, e02) +245 0 BK, (4.0a)
~ 2104 D Kal&rwa’) =0 (4.26)

24 w0 B K, (4 oa) (+d) (0D K, (4r0a) = 0. (4.27)
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The above relations may be simplified by use of the identities:
Y| 1
K, (2) = - K, (&) (.28)
|
K, (%) = - H\ (i")
We obtain:

(1447-242) BK, (40a) - 247 BK, (4,00)
~2id; DK (d;0a) =0 (. 2a)

_ 24, BR, #,0a) = (1+d2) L DK, (dr@a) = o

A non-trivial solution of equations 4.29 is obtained only if the
determinant of the coefficients B(w) and :D(LO) vanishes. This

condition vields:

— (= 24 (v ol K @)K (da)

£ 22 (144 K (dwa) K, (dwa)

el K (qoa) (4ua) = o {.30)

This is clearly an equation for the speed of the surface wave if one
T

congiders the definitions of &, , O(T . The above equation for the
speed, C , of the [ree-running surface wave is clearly dispersive
because of its dependence on w . the frequency of the disturbance,
as contained in the Bessel functions Ko ( )anc Kl { ).
Suppose a -—» large, but not infinite, them
-¥X

Kh(\() ~ .__e.—-
2

iT



N
(%]

-X
Ky () ~ = ==

\S&x
m

and equation 4, 30 becomes:

-l Wa ~ AW
e ' i-(s#)?l 44._4% =0 (4:21)

Agsuming that the exponential term does not vanish, the expression
in braces ylelds the speed of the surface wave. The definition of

R -
o, . Ay =allow equation 4. 31 to be written as:

21_ _‘Ll zl
C u C C
- ~ \(‘—~ = J\- >, =0 32)
(2 C'l}) CL CT'-L (LI-

Comparison with equation 2. 15 of Part Il shows that the true Rayleigh
wave, which is non-dispersive, is recovered by this approximation,

Clearly, the assurnption of W —> large yields the same result.
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ITI. Scattering of a Plane Dilatational Wave by
a Cylindrical Cavity in an Infinite Medium

1. Introductltion

Consider an infinitely long right circular cylindrical
cavity contained in an infinite, isotropic and homogeneous
medium., A plane wave of dilatation, which travels at
speed CL in the medium, is assumed to engulf the
cavity, The direction of travel of the wave is normal to

the geometric axis of the cavity. See Fiqure 7 below.

(X)!

Figure 7. Coordinates and Direction of
the Dilatational Wave
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If the stress produced by the oncoming wave of dilatation is

expressed as a Heaviside step, e. g.:

G; = aH ({-_24__(!_::_:‘:_ (.1)

then solutions for disturbancesl which vary arbitrarily with time may
be constructed by application of Duhamel's integral to the solution for
the step. This idea then establishes the importance of knowing the
golution for the step input plane wave.

Much interest has been devoted to this problem recently,
Gilbert (14) has considered scattering of a plane compressional wave
by a cylindrical cavity for both normal and oblique incidence. His
work considers only the illuminated portion of the cylinder, that is,
the portion on which the incident wave impinges, and is applicable for
early time. Gilbert and Knopoff (15) have used a method based on a
development by Friedlander (16) to explore the effects of scattering of
compressional waves, emanating from a line source in the medium,
by an embedded rigid cylinder. Early time solutions for the illuminated
and shadow (diffracted wave) zones were obtained. Soldate and Hook (17)
have also contributed to the cavity scattering problem. They have
obtained a low frequency - long time solution.

The most recent work on this problem has been accomplished
by Miklowitz {18), He considers the circular cylindrical cavity subject
to either an oncoming plane transient wave of dilalation or subject to an

impulsively applied line load acting on the interior surface of the cavity.



67.1
His representation is based on Freidlander's method and by applica-
tion of Fourier-Laplace transforms and contour integration, he has
generated exact integral solutions to the problem. His work shows
that the Rayleigh wave is predominant for long time and further, that
the Rayleigh wave is non~-cecaying in space (@ ) and time. Ina
related paper, Miklowitz (19) has shown that the introduction of visco-
elasticity (Maxwell model) has the effect of attenuating the Rayleigh
wave.

The object of the investigation herein is manifold., First, the
exact integral representation for the hoop stress at the boundary of
the cavily is to be developed. This quantity is expected to ve of
’primary importance as a design parameter for shock resistant struc-
tures. The method to be followed is essentially that of Baron and
Matthews (20) in which the solution is represented in Fourier series.
It is anticipated, and shown later, that the resulting integral repren-
tations are not amenable to solution in closed form. Thus, certain
approximations will be introduced to abtain the early and long time
behavior of the hoop stress at the cavity boundary. It appears that the
use of Fourier series for long time and Friedlander's method for
early time solutions is appropriate. These representations are
explored in subsequent portions of this paper. Unfortunately, the
work of Miklowitz was not available during this investigation and the
validity of the Fourier series representation for long time is in doubt,
especially in light of the non-decaying nature of the Rayleigh waves

as shown by Miklowitz,
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2. Boundary Conditions

Coordinate z, along the geometric axis of the
cylinder, extends to infinity in both directions. Thus,
the problem is one of plane strain.

Hooke's l1aw can be written as:

€y I—[G'x -7)(“'3 + U'z-ﬂ

E
éj__ JE_[U'S_‘v(O'%-I-U‘x]] (z.1)
e[V ]
where:
E =

Young's modulus

o
0

Poisson's ratio.
The shearing stresses, Z_ ‘j%, Z_X?: are
identically zero.

If a dilatational potential of the form:

2
b= T H(x- ¥+0-)(Jc_‘s¢.£~) (2.2)
zp Co

is chosen, then, it is easily shown that the wave

equation (which will be shown to apply in a subsequent
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section):
> 2 z z
3'&1 a'jz C[_z Bt""
. T d

is satisfied. Also, expressing w = 3!"&. 4’ and
using the expression for the stress tensor (Part I,
equation 3.1) results in the cquation for the stress as
given in equation 1.1 above.

A most useful result is obtained from the preceding

analysis, namely:

_Br_ 2% _ 2.
eﬂ__a_g_ atjz._o (¢)

then, equations 2.1 allow the relation between U, and

O'a to be written as:

G'__‘_'v(/fﬂ)o;(: 10-;(_:__60; (2’5)
(-P* a4

This result will be used throughout the following analysis.
It is convenient to express the boundary conditions

in circular cylindrical coordinates:
g.= 0 atr=a

2.6)

Teg=o ot r=a
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where:

T = IE(G-‘+03) +-‘i-(0‘x-0':j)cos ze

T.—e el —'12"(0.;("0-5)5;” ZQ (2.7)

i

Oy _Li(c;<+o"j)-ii(o~x-03)c¢asze

or equivalently, using equatien 2.5:
2 2
T, = Gx(Cose—GS:'ne)
Tro = - (He)a*;_ Sin 26 (2.9)
2

1
U-e T (s;'nza -~ € Cos 9)

}]

which are valid for U} equal a tensile stress.

The stress field generated by the incident wave,
assuming the cavity to be absent, is given by equations
2.8. This fiela 1s defined for every point in the
medium. Addition of stresses —~Tn and ~Lrg on a
circle of radius "a" in essence creates a cavity for
which the boundary conditions, equations 2.6, are saltisfied.
Then, when the resulting stress field, which can be
considered the scattered field, is added to the incident

field, the complete solution is found.
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Thus, for the scattered field, the boundary
conditions:

G, = -0H [’E- —g—: (l-\»COS e)] (COSZG - € S{nze)

Tre= TH [4:~ (a+cose)](i_l___)srn 26

must be satisfied at r= Q@ .

(2.9)



3. Egquations of Motion and Stress Equations -
Scattered Field

The equations of motion can be obtained from Part II,
Section 4 as:
2
Th= L2
T
CL
(3.1)

N
dlv Yy=0

ﬁlﬂ

- |
—cor| corl Y = '—z
&y

RN
where lP has only one component which is associated with

the z=direction. 1In circular cylindrical coordlnates (r,€)

only the relatlon.

“corl corl T = = graddivy - ¥ K7

N
is valid and the equation for Y/ becomes:

—

z> -
\Y4 Y = E;z .a_’..gz. (3'2)
where
t_ 2t L9 128
v ‘a\'z' ;' o + r* e’

The stress equations are obtained from Reference (7)

as?e

G—r=>\A+2/A.‘a_E:"

Tro= * i_;_ auey + ka (ueﬂ G.3)

= NA -\—2/;.( a‘*e-t—_“:r)

r 08
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where: z
A=dvR = V& B. )
Writing: %
= 3ra¢'<§ + corl $J cit'u_tlj =0 (3.5)
Using this result in equations 3.3 yields:
A
2 [0 _ LB_‘J'_ Low
>~Vd%\'/w(‘a r? Skrare)
_uf22%% _ 2 2 41 2w oW
_Cre'/u(?‘ar?e e %6 v or ort
_ L) (3.7)
re 08°
2 (A 2
T = N9 +2uf1, 89 13 L1796
© /A(\f"‘daz roree Fr or
+ 4L 3_*_“)
r* Qe
% which Lm‘-l{es:
U= 20 .+ LOW - W = 196 _ ¢ . | (3.6)
~2ar r o8 '’ r e v
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4. Solution Procedure

A Laplace transformation can be effected to eliminate

the time derivatives., The equations of motion become:

2 2 -
- ¢ = 0 = La lace oFera:‘:ar
ve-f 7 (1)

G

where it is recalled that iﬁ has only one component.

The stresses, 0. and Ug , are even and periodic in
© . However, the shear stress, (pg , i5 odd and
periodic in © . Inspection of the stress equations 3.7
suggests writing $ and '\]-J as Fourier cosine and sine
series, respectively. Thus:

$

CoSne

i
4}“

i Mg -M

(4.2

Ssinne

€l|
3

Then each harmonic of equations 4.1 must satisfy:

6“ 1a=y‘_ t * T a—

Br? +—¥'-—B%' (D;?a‘,'-%z}cbh' © @ )
' .3

J =n 130, _ (W VP, =0

art r or (_\r"+q-‘) "
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Solutions to equations 4.3 may be expressed as modified

Bessel functions of the first and second kinds, i.e.:

$n= AnIn(%dE) + Bh Kn(%)
4 )
o= CaTn (£ )+ Do K (£

The constants An= Ch = 0 to insure outgoing waves

as r —» large.

If the definition of the Heaviside step function is used:

HD:_ %:(i+cos e)] =1 £z %(tﬂos&)
.s)

= 0 ') o{:‘nerwfce

the Laplace transformations of the boundary conditions as

expressed by equations 2.9 can be written:

A | "-.Ed:._(t-t-cose)
(a,64)=- %‘(Cosze-esinze)e
3 _%E(H-Cose) @'L’)
T, (26 ¢)= ?(L__é)sin ze. € .

<
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The boundary conditions can also bhe written as

Fourier cosine and sine series, respectively:

0
7. (2,6p) = 7, ,cosne
N=0o

“2)
0
T e(0~Je,da)= Z b, Sin ne
Nn=o

where:

(ae¢)59

A
T

o L/’—\—i

T
:[_2_-_go (a‘e,dn) cos ne de (%)

-
- Z_g 60,6, ¢) sin ne de

T

Using the results from equations 3.7, 4.2 and 4.7, the

boundary conditions for the scattered field can be written

as:



17

_ 3¢ _?)4_: n'3 az;ﬂ no h?jnz
a"-5x<3fg+;~7n r-"'dJ" +.2/u(_;‘-r7'q)"+7 ar>r=a~
“.9)

where each harmonic must satisfy these equations.

The evaluation of coefficients anand A,, is carried

out in Appendix B. The results are:

2000“'6 {(/ 6)@/1'[42) (fe[e)r (ze)

Gy,

i

)z, (2)] f 1o)

a.

4= ze (s T, @)/, (@)

Substitution of equations 4.4 and 4.10 into 4.9 allows

determination of the constants Zgg and jqq « However,
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equations 4.9 can be rewritten in a more convenient

by use of equations 4.3 and the relation:

ez _ G
2

as:

" 2N [ <94
R r \dr
/LL
7‘-_'?'_4_92;1}
r oF = a

form

(L11)

@/,/2/

Equat1ons 4.12 become, after the indicated substitutions

__Q:e é) [é-é/I/?éJJ-/HG)[I z(-f)

2 (4)]f

:37{_5:,«4»]/(( ( }

+D,{ 28 K (54 ) - %Wg)}

6/./3/
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and: @L
/AG/;e é) (/,46){{1’ z(—f) I,,“[?A {2

= B [apkl(ag) sz k(4]

./.Z)/(‘[zn +f_]/(/%£)+_,g,(//_£} Gust)

The coefficients may be expressed as:

Y.
218, - - & [T g 5 el ) 5. (4]
bimes {24 6(8)- (2244 ) %, (%) ]

- &t

5o g l4t)- e (2]
f/mesfé./?ﬁ/( (.aﬁ) 24 /\/n(?&)j 6/./5/



12/2,= £ e Hf—’-’i*z”)"(zf) 2 4, (4)7
f/}»es{!_f_:f[ (Q*ﬂ) 'H—Z(_‘é)j}

-/— (7'8 (—j )(é G)I(_ﬂ?&)v‘//ﬂ)[ ”*2(_2&)4-;_2(%&]]}
é,me:f-%&/%),L %47, /%g)j (4.r¢)

where?

/D[ = [%‘z/l"ﬂzj‘_é«z e 1]'« (?é)/(/ (?Z)
280, () 1 (3p) + 22 )l

/7 (7 /7
)4 ) i)

a%.Cr

Some simplification in coefficients Zzﬂ and .Z% may

be effected by nse of the Wronskian:

I, () k) (1) - T,/ () hyle) = - #2)

L
o
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and the recurrence relations

(W T, ()= 2 T, ()

#.19)
LT () -9 T (=)= o T, (<)
Using equations 4.19, the result is obtained:
ﬂfz(%‘é)"‘r z(‘-?#’
= (24 ) (st)- 45 2 ot
(#-20)

Tyue (42 )- Toe (%)
¢Qn_z-/2£) ¢C°n ,,//é:;é.)

Then, substituting equations 4.20 into 4.15 - 4.16 and
using equation 4.18 in 4.16, the result is obtained, after

some manipulatlun, that:

/DB - e (—/ f[?—‘fé-'z (i-n}- 21 g?a/y_)zﬁ,(%ﬁ)

Tl B 1))
(con't)



a2

+ ?.Q'(nz-t)rnl(%) Hn‘(%g)} (L‘-?-l)

azC
%
T &L on 2
I:D!Dn =Le ¢ {i‘:ﬂ +8Gn (nz—u)-} @.‘zz)
Jop o " aR
where the results:
z
=2 _ )2
—€=,5 " 2
_ _ 2 G°
€= 2 ZEZ"‘ . 23)
and
He - G
z C.t

have been used to obtain the expressions for the
coefficients as given by equations 4.21 - 4,22,
The complete solutions for the dilatational and

transverse potentials are to be obtained by evaluating

S
—

the inverse Laplace transforms of the harmonics, <bn
and tpn , then summing the series as implied by equations
4,2. Application of the Fourier=Mellin inversion theorem

yields the result:

T
¢(qe,£)=£l;tg Beka(%kﬁe dp
r-ic0 o Y+ico
L\ B K[ d 24
+Zcosne 21ln. K, (_cr:)e P Y2y
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where:
-5 {9 (e
and:
06 YL bt
Y(ret) :nZs,-n ne. L\ DKy (%) e dp. [4.26)
= ¥-La0

The above potentials are those associated with the
scattered field, The displacements and stresses may he
computed by application of equations 3.6 - 3.7. The total
stress and displacement at any point must, of course,
include the effects of the scattered field and the
incident wave as discussed in Section 2.

The hoop stress al lhe cavity boundary is perhaps of
primary importance, especially in the design of shock
resistant structures of cylindrical shape. Noting that the
terms 6—)n, In( ), Kn( ), In‘( )) Ky: ( }' 13,,,
and Y)ilq are even in "n™ and using equations 3.7 and
4.24 - 4.26, the hoop stress at F= (. caused by the

scattered field may be written as:

&0 Lne | ELO0 . 2 K
b= L € |, - _RMn 13
TR Py o SR S
f=-00 v-io

/ Pt
r2ib 4 (2)(% < o
(C’M’é/
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¥tioo
L é
pLoye Ltk g (2
2 2]7(.' aclr Cr
=-% =i

st
v 2pn  (ap) ] D& o) (A7)

The Lame constant >\ may be expressed as:

A= /LQ—Q (. 28)

Using this result and substituting for the coefficients

B

following expression for the hoop stress:

h and I)b from equations 4.21 = 4,22 yields the

Y4 LCO a.
‘ l‘i{,ne ‘ E-th’)‘l'l 2
. =L e . Te ¢ 2
ACTRIEE s\ Fe o ﬂ%.ﬁ
N=-o
¥-100

-a] ()

e R )

ath ot G Cr

gl (g) (2 ()

(Con't)



v 86 () T, @) K () ] 2 dp

a}CL ¢r ‘JDl
: G
2 iné e - ?2]).3 n |
+ L Zi e . L g\ E[eg =) —1€Ql"<n (QJZ)
2 2L P G Cr
N=-00 Y-ico

. .kt
. z_nu,,(u)}gmw(n‘-!)}%—, d} (4.29)

ot ralileE et

where IJ)] is defined by equation 4.17.

Expansion of the preceding equation does not result
in any appreciable simplification since no combinationsof
Wronskian type occur. The denominator determinant ll)lof
equation 4,17 is alsoof such form as to add additional
complexity to attempts to solve the equation for the hoop
stress. Perhaps the application of digital machine
computation techniques could be effected to obtain a
solution to equation 4.29 or for that matter, for the

potential equations 4.24 - 4.26. This possibility has

not bheen pursued.,
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It is considered that some useful results can be
generated by consideration of the early and long time
behavior of the solution to equation 4.29., This idea is

carried out in subseguent sections,
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5. Long Time Approximation = Scattering of
a Plane Dilatational Wave

It is a well known fact that solutions for large
time may be associated with small values of the Laplace
operator "p", This fact will be used in this section
to generate a solution which is applicable for long time.

The limiting forms (F.—» o) of the modified
Bessel functions appearing in equation 4.29 could be
utilized to obtain an approximate expression for the
hoop stress. However, the modified Bessel function of
the second kind (K%] contains logarithmic terms and the
resulting expansion becomes somewhat tedious to handle.
Considerable simplification results from making the
approximation, Faro o, @t a much earlier stage.

Equation 2.8 may be rewritten as:

0, = O (t:_é + It€ Cos 26)
2 A

T _ﬁcr(\:_g Sin 26 5.1)
re ®x = (

—_ —& _ L€
Oy = o;(_? == Cos ze)
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If the algebraic signs are reversed, the above
expressions represent the forcing functions for the
scattered field portion of the solution, Thereforé, as
'E-:,m , Only the YN=0 and YI=2Z harmonics will
influence the solution. With this fact in mind then,
only the first three harmonics (n:o}a,z) will be
computed.

Assuming @:>o , the transformed boundary conditions
for the scattered field as expressed by equations 4.6

can be written as:

— ~ - - Q \
v (a,e) . U_f_’_‘ 5‘:?:@ b 1€ Cos Le'ﬁi Ef’(ti-case)

+Qﬂf(q+zcose + 1+ Lcoszg k- }
ce T %

(A

:Era(a)e:l’) = %('—"’—e- Si'n?e'){\- %LP-(H Coss)

(A
+ alt (H’ 2cos & + L 4 L (oS8 +.-- ’}
CL* r A A
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which can be rewritten up to O(l‘?) as:

— - ' 7,2
0p)=-T ) 1-€[1- 4p) 4+ T=3€ &
(Tr(a) )P) = 5 -::(' -C-E) m _Ef"

¥ %sin ye + O(Pg)} .

(s.2)

(5.3)
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Thus, the appropriate Fourier coefficients can be

selected from the above expansions bearing im mind that:

o

5‘-}‘(@)9) ),)__= Z d, cosne
e (4.7)

fre(a,elr,) = Z {ohsin ne

=0

The transformed boundary conditions are still
expressed by equations 4.12 and solutions for the
transformed poteniials by equation 4.4.

The expansions for the modified Bessel function of

the second kind may be obtained from reference 1) as:

n

41
Ka(2)= € T,() g (3)
N=-1 2

i 0,0 (8)

ot Nn¢em
—n W( l)+W0ht) ‘
+ —‘i() 2;0(%) 5 :;;n(+n+m)! + .z (5.4

m-n (H-m-n) !

m!
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where N0 ; n:—.l,z,’:’,”— and:

NEm

Ih(z)= ai &)

m ! (h+m) !

(5.5)

m=0

Alsos

4,(2)= ~T,(2) log (2

o Z2m
+ Y, (%) y(m+)

2
m=o !

and:

K = Euler’'s constant = 0.5772157 coee

For small £ = e’é oTr éﬁ , Lthe above expansions
r Ce
may be written as:

-n -

K (e)= L (%) (n): = L(2) Tn)
| (5.¢)

Kr: (%) =~ % Hn (%) ) \ea.ch'nj ‘Ler\m Oh)a.J
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and Ho(%)%’ - lo% (%).

5.1 Zeroth Harmonic (h= O) P—> O)

The results of equations 4.4 and 4.12 may be used

to obtain:

@y = Bl 2 )- 24 Bl g

O.

(1)
loo S—/xf;:Donaj %JCET) +Zp D, ('Ja_,)

@

The approximations of equations 5.6 have been utilized.
The above equations may be solved for Bo and -Do .
Introducing the results for a° and Lo from equations

5.2 = 5.3, these coefficients may he writien as:

G,

n

e
)
]
)
i
N‘p
~
-u-|q
—FT
o«
N
\
e
&
.i-
~1
L}
Im
M
4_:}
N
~e)

o
1M
|
1%
i
|
e,
-v |9
o~y
o
[ N
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Solutions for potentials d% and 4% may be

expressed, by reference to equations 4.24 - 4.26 as:
Yoo
¢(re{) g e !;3)—’--(‘.-_@.)—@'—
211'&. /J_ A P 2 JC
¥-ico

& pt
+(1=3€) Eﬁgwo(%)e dp

which may be integrated to give, using the results of

reference (13):

s+ )= ale (—e |
hluotz- gl

The transverse potential, 4% » 1s obviously zero,

Assuming Q#i:;; large, the dilatational potential
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simplifies to:

_(7.:__§).@E +---
le /C

5.2 First Harmonic (h:l, ‘o-» o)

Substitution of equations 4.4 into 4.12 yields:
!
QE( t 42 73/([2,&)_2 z?/c(a)
/ /4131 1%; v N (o Zii 7 % 7{%

F L ()£ 24 (4]

O~
i

= -2a[Lan )L 74 (L)]
()Y e 2 )

The leading terms in M[%é)) /\), l(/ﬁcf.) etc.,
(=

as implied by equations 5.6 may be substituted above

(5 2,
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to yield:

.@_L_g(_/_’f +_‘1‘_)§1-_B_ ¢(r D,
M a*

a*/ ep ' 434
@T/z)
4 = hg-(L+L)22
/oc a/b G a a/,
whiech can be solved to obtain:
2
MELIDIB = - a +4
Y6
(513
2
a =
ML DD = - a, +4,
#C
where IDI is the denominator determinant ands
-| C. bt -1
IDI = (-8 -Cp )
a‘.“CT' &aZCrg
=.a'G (1 ety ) Gl
&C G

Extracting the Fourier coefficients d, and é,
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from equations 5.2 and 5.3, coefficients BI and _D,

become:
B = ‘/CT- Z(- (-/Z ap’ +/+G_A .féz}
I ua,/; y €.* e ¢*
‘é/}néé'{-—@fg_' —“_—_f&.z,g-—-)}
e §G*
s 25 ey ) e )

SV)
i
Y

™~N

QN
K
N

|
hN

+~

AN
I
D
I\
2
‘\
D
&N
~N
+
S
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Equations 4,24 - 4.26 permit the solutions for ¢'

and \P' to be written as?

Y+id p-t
¢ _ d
s ) PRl

T=led

(5.1¢)

" YHiad J
S ETICIN

¥-Leb

It is convenient Lo use Lhe expansion for K‘ (f‘ )
(r
in the form:

and since K(_P_)'—: loa(zcr> cee h

K (—*—)— —m(_'&)( z(r wq- +)

G or--- (517
e
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A similar result may be obtained for }{,(%Hi).
L
Incorporation of equation 5.17 into 5.16 then allows

the potentials to be written as:

¢ +L&
R A g g i(( a.vG}_ a?rc}z‘o_..]
Cos € 2 - ZITL. zcj 2CH

T-L 0

-t.
O < U
Y'CL Fz Vcl}r

dnd - (5,18)

FHd
LTI gi Ho(_t[é_agrt_",]
Sin 8 Q/U. ZTr\a Z.CL ZCLZ

F-idd E'

pat @G 3 F J‘a.
[
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The integrals for Cb‘ and 'ng may he evaluated

by use of reference (13, The result is:

20 e T v
+ 0.1C-r?4: 0-_-_?‘_9'2_
Y‘CL et
(s.19)
Zu 4, :v_ﬂ_zf‘ Q/n}(‘ft-ﬁ‘/ at )2,
0o siné@ 2C, ot r r } I
b2 2 |G |a)T]
2 L?. 2t* r r

F oy )

2pu b - dYG @G 4 2t a6t
T Cose 2(3t 20t rGl k(R
(5,20)
5 .2 2

2 Y ~ _ar _ a’ /-ﬂ_é(zf_d‘?(‘r__-.

o Sin6 20+t PTA ST rC*
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5.3 Second Harmenic (YI-‘- 2 P—”O)
It is obvious that the higher harmonics require the

retention of additional terms in the Bessel function

expansions. For example, }(z r )n; ___z 3 therefore,
all terms up to C)(F in the coefflclents 131 and 131
must be retained to obtain all possible contributions

from the inversion integrals.

For the second harmonic, equations 4.12 become:

Ly (£ +2)B 4 [c 2:‘82/(2/_,&)

/u_ G* at L ac,

2[eely)-2 i)
(s.2/)

by ¢ ﬁkz(%)—ékz(%)]’?z

A
E)nnly) g 2nly)

The Bessel functions ké (,L Aéf( ) may be expanded

as follows:

o A ~ iz
Kz 2 - log ()= 4443 K, (<)

[4
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Ko () = L [Ks(t) + R (4]]

= -i_i‘_-ilog(%)_-;%-.rgi-qik o (et

!
using equations 5.4 -~ 5.5, the identity for R’&i)

the approximation for small argument:

Ky () = — log (&),

With the above results and noting that Jl’mi 103(01 )—30,
>0

N>\ 5 equations 5.21 may be rewritten as:

4o
po

I

A ya
2400 v 200 _ 4 G _z \p
(F]’: (ﬁ_—‘c’# )B (11—2. ';,3) 2

(5. 22)

L}

be WCE 2 (4G 2
e (E‘F_l-%‘ 5B GlR- 502

Solutions for the coefficients.Bz and ]}z may be

ohtained without recourse to determinants. These are:



— )31
W+E

ors
z
B, = & ( )(a& 4,) (5 23)
%/L
using the results of equations 4,23,

Substitution of Zit into the second of equations

5.22 gives:

;iz— E(Zj‘ﬁf/{;if)@u(/ é)(dz A) 4_9} az D

4
n% £ (6ch)r L (a2t e

after manipulation and disregarding terms of greater than
O(4*)

Use of equations 4.24 - 4,26 and the values for Ziz and
1?2 above, plus the Fourier coefficients &, and ‘AZ

from equations 3.2 « 5.3, allows the solutions for the
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potentials to be written as:

¢ T+lco
Z
I AR L
¥-Loo

+(12) 2 L) )¢ %

Y+ico

;"‘_‘_Jn&%e-:-j‘ —(% 'qug g(Hé (—" E:)
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It is again convenient to approximate the KZ( )
functions., Using equations 5.4 - 3.5, the result is

obtained for small argument that:

—~ 2
K, (d) = i'z_% +1;_ K, ().

Perhaps it is well to remark here that the functions
{{z ( ) and kﬁ( ) of the previous section have been
approximated because the inversion integrals for }{J(]i)
a
on pg. 125 of reference (13) contain misprints. This fact
is readily verified by comparison with Chapter V of
reference (22),
The approximation for l(;éi) above results in the
following expressions for the potentials:
Y+l
¢ ¢ & _ 1 _zal
Yo = _GQ0((+€) L (e)) 28 - L - 28=e
o528 2\ l-€ i r“p p r-)p’-
¥-i

ek k(2 )]

——

2 Pt
+(7+se)zza.}e i Gua)
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Yiim
e ‘-_"-‘-a'a_) S i(n—e)[g._Cf_.L
sinze 2T i zp
/k ¥=Lleo P
+_)9_H( ) za,Cr]
4 (145€ %e cl
(g 1o 4
Y400 t
p
_Q‘fcf , _\__§3|+e ZC'r e Cl‘a
24Crw Tl </
/V~ r-io

The above integrals are readily evaluated using

reference (13) as:

9 x 4T (Lt.f:)%(we)ic_firz-i _alt
Cos 2O ?./j. | —& r-“ 7 ;‘.Z
2" lnlet \,Ct_\.;-':se&z%
+€ct'%t n): ¥ r-) '1 (iq'-')r‘
¥ .~ _adlc 3 Cokt T2 .
22 x-20 el 4 x 2w )Gt (et)E
sinze (=€) ( ["'"‘ Tt 'y (&) “
- Za(;Q:.F( + )tégizi
(| TE A
_a¥r (14e)

(526k)
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Assuming that Ct . g_T_t > | the
r Y
potentials can be rewritten as:

Cos 26 7»- YCoecal 4
(5.2%)
e »_d'e lig-nf_r_"ez_ 286t - x ?(
Sin2é M |~€ rt reCo S’Cffz
_Q_f_‘g_‘(ﬂsc—)f t _ et H—G)
R 2 o Sy V¥ grt
-2
Letting ZE-L'IE = /+ €& from equation 4.23 allows \Pz
L

to be written in better form as:

Yo o _e'r l’r__é)sfﬁtz_ 2airt _ r
Sin26 R N S ol R Td”
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5.4 Hoop Stress (0"6) - Long Time Approximation
The hoop stress is given by equation 3.7 and for
the scattered field only, the result for the first three

harmonics is:

T, (ret)z ..a.cri 1€ -
sc

L{i-€)-€ér (\-&-ié C0se
\1-&)2(._4:2' \r"( )

ZCEfF .t

3€ [11€ +(H—E 1+€ +(|+€-30.z1( $269.
J’[w( )Ccﬂf (=¢) 4c ('t‘)zq:‘# ){J ’ }

(5.20)

The hoop stress resulting from the incident field is

given by either equation 2.8 or 5.1 as:

0 (16,t) = T(1=€ - 1€ cos20)
n r4 2

thus, the total hoop stress is given by:

ret)= Ug O = cr( U;é_(.osze
%(J ) } ei-\n sc )
_a.za-ie q:__)_L_ - L, (=€) - €1 l+39°)wse
e v 2(39

rA
3¢ H—e) r (ee)* 1 '-(cos 20
+|38 (k€ ¥
[4(1% & T Tme g

(con't
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(A
Lﬁ) L. 2 +(14e)3% | Cos 20 5.3|
{\—e 2G4 (1ve S (s:31)

When € —» 0 (1/: Poisson's ratio—»o) and

+ > s the above result reduces to:

Ta (r, g)-k) > 9; (&-— Cos20)

" 4 3
...gf(r(_._\_ +3G° tesz6
et 2r4 )

0T

¢
- i+ 4t _g:( 3.7 cos 2 5.32)
0y = ?(H r*) L (14 r*)u 6 (

This is the familiar result for the thin plate (plane
stress) containing a circular hole of radius ™a". At
6= I_Z.r and Y= Q. , the hoop stress is three times the
applied stress and is a tensile stress if the applied

stress is tensile,
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6. Early Time Approximation - Scattering of
a Plane Dilatational Wave = fFourier

Series Representation.

The early time behavior of the solutions for stresses
and displacements is expected to be of greater significance
than that for long time, This conclusion may be drawn
from consideration of the response of a simple dynamic
system, which contains damping, to a Heaviside step
forcing function. Unfortunately, in the cavity problen
being considered here, the early time solutions are most
difficult to obtain,

Application of the Fourier series representation, as
in the previous section for long time, requires summation
of an infinite number of harmonics to obtain the early
time solutions, This infinite summation is particularly
required when the rate of envelopment of the cavity by
the incident wave is relatively slow. Then, it is
expected that the response will be too rich in harmonics
to be described by a few modes. This result, or expected
behavior, is discussed in reference (23) with respect to
stress waves produced by pressure loads on a spherical
shell.

Early time behavior, in Laplace transform theory,

is associated with large values of the operator "p",.
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Observe that "p" has dimensions of fregquency, thus large
"p" implies kigh frequency responses which nccur during
short time intervals, for example, across a wave front.
Note also that in wave motion problems, the time variable
must be replaced by ":-— ‘!:O(X‘UA) vhere ":o (Xl‘é) is
the time at which the wave reaches the point in qguestion.

It follows that a complete description of the early time

behavior depends on the following ranges of "p™ and "n":
|

0&n< a0,

The range of "p" and "n" requires use of the

uniformly valid approxiwmation for the modified Bessel

functions Ih(%?‘)) Hh (_Ep.) , etcetera, as found in
- (=
reference (1), pg. 66, for example. These approximations

are:

K,(d)= \[—' (nt+ &) ;exr[ (n2+42)%+n Slhgtﬁ-]

-{T- 4 -1 (C.l)
In(d E\]-Z_Tr-‘(nH) EX{-[(H1+£)—VI Sinh :__]
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where = LJ: and Y})ol >0 is
C\.
required, From these expressions, the results are

obtained that:

Kn‘("l)g - (_rfi—fi)-i Kn (4 )
(L.ZD

1
‘d)g (h2+alz)7'

T, («)
A

The boundary conditions and solutions for the
potentials ¢h and L‘Jh , after the Laplace
transformation, are represented by equations 4.12 and
4,4 respectively. The following expressions for coefficients
Bh and Dn are obtained from equation 4.12 after use

of equations 6.1 - 6.2 above:

B, = o
(J”.+'m) ( )
(¢.3)
D, = b

/u(f_+2n) ~(%2)

(rt
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which are valid for p —> large and all values of n.
The Fourier coefficients a,, and éﬂ are defined by
equations 4.10, Use of equations 4.20 and 6.1 ~ 6,2
allows these coefficients to be written:
%ﬁ L
2z
a,=-27¢ (_) 1#(1#€)) 0 G-” (f-d_,ﬁ) Ur
a z
T
"4
g ) X

4,= 2ZTe L(—)n//*é)ﬁ._zgz ﬁﬁ%‘%z)zl;/%f)

’ ay?

\

which are also valid for p —> large and all n,
Solutions for the potentials 4) and L]J are given,

by reference Lo equations 4,24 -~ 4.26 and noting ihat Bh

is even in n where as Dn is odd, as:
¥tioo
EARICIEY
r-Lom
(6.5)
@ ¥l
)€™ RENCAT 4,,}

=-00

&32 B

n-

d)(re-t)

II?

~j—

plhot)

T~Loo
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where the contour lies to the right of all singularities
in the complex p~plane. The behavior of I%, and qu with
respect to "n" is best assessed by consideration of

equation 4,10 and 4,20 and substitution of the identity:

T, (@)= & [ Doy @)+ T, (W]

which is even in n. See reference (13).

It is again convenient to evaluate the hoop stress
since some of the Bessel functions will be eliminated by
this artifice. 1In particular, the hoop stiress at = GO

is to be evaluated. Equation 4,27 may be applied to give:

o) ino YL@ P‘t
~ | .o XLt Q
%(a,e‘k}hiZe mtg e {EE" B,,Hn(_C@
N=-0 :
r-Lo

Substitution of the results from equation 4.23, 4.28 and

6.2 - 6.4 allows the hoop stress equation to be rewritten as:
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YL PG-'— _) "

aet 5%2 "ezm i(,le. +2;") %"H I"(%f)}

y-lo CT° G*

it g e Gl R
(H—e \l\n +_‘o_ {an \;M@_t ]}J‘p t.7)

alpt

Equation 6.7 yields the hoop stress for the scattered
field and is valld for p-=» large and all values of n.
The above expression can be rewritten once more

using equation 6.1 for the Ih function as:

. Yo @ i
2 ine PG'" Cu 7 apn¥ N
U‘e(a)e)'t)gj_ie . '_ e R .?‘_' q—(h+a- )C__)
2 2’ ({3 +_z_n_f) Jrr Q
N=-@ Y-l T @°



’E\me.s 2€ .)'.’ + € (nz- Y\2+ Q_z_[;'_z_ ) 4 3_?_!_1
€ L a"if C* atp

22 2 7

+ 4N L (H—e)(n n'y &P

a}l—‘,3 (e

- Zn C\. (H-E)\F\% c&(jef\]ﬁ_ &:Ez .} Jr. ((a.ﬁ)
T |

Assuming that n is fixed, the complex integration
implied by equation 6.8 may, in principle, be carried
out. However, there are branch points at:

k._ + inlCt  + {nC

ST e T o

and poles at:
p=o, +{Enk
) a

to be considered and evaluation of the integral in closed

form does not appear to be mathematically tractable.

On the other hand,bif uniform convergence of the
series for the hoop stress is assumed, the integration
and summation operations may be interchanged, This implies

a summation:
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S £(n)

to be carried out. MNote that the question of uniform
convergence has not been resolved. In fact, it is
questionable that the series converges fn any sense because
of the presence of the exp E('V\'LJ'- @gﬁ;)i] ternm,

However, if the series were un;}ormly convergent, a
beautiful method from the theory of complex variables
could be applied to sum it. See, for example, reference
(24), The method requires that §(h) be a meromorphic
function of the (complex) variable n and that lim Y\f@ﬂ‘>0 .

inl->eo

Unfortunately, these conditions are not satisfied by §(h)
and the method does not apply.

A method is applied in the next section to determine
the early time behavior which eliminates the requirement

for summing an infinite series.,
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7. Early Time Approximation ~ Scattering
uf a Flane Dilatational Wave -
Friedlander's llethod.

The method to be applied in this section is based on
a development by Friedlander (16). All gquantities 1o be
found are periodic in © . Rather than express the
potentials, etcetera, in Fourier series, Friedlander

suggests writing the potentials as:

43‘(\39’“ = i ¢(r, etzmmt)
m=—00

(1.4
p(ret) = Z ¢ (r e+emmt )

w)=-00

which are also periodic in © . This definition implies
that the potentials ¢ , 4) , etcetera, are defined on a
Riemann surface R having a branch point at the origin with
its sheets defined by:

(2m-1)T & 8 £ (eme)TT

where:

= .-~ -- )-| Ol . - .- .

Successive sheets are juvined along the negative axis as

shown in Figure 8 below:
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Fig. 8. Riemann Surface R

The Y)=0 sheet extends from -T£BLT , the M=

sheet from TTL 6 & 3T , etcetera.
o | i N
It is easily verified that ¢) LP are periodic
in & s however, q‘.)) \P are not necessarily periodic,

This method is particularly simple since only one solution
for (1) , say ¢(¥‘, elf) need be generated to obtain

|
the complete solution for ¢ (Y‘,Q‘t)
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The boundary conditions to hbe satisfied on the plane

M=0 are:
T, (ae’c __U'HK (cose- ‘)‘*‘k](%‘ e(.osze))—ﬂ‘é_e

= 0] otherwise

Troa,9t)= o H] Elwse-Net] (L€ 6 20);-TLo LT

(7.3)

= O otherwise

A left-running wave has been assumed for convenience.

These boundary conditions define the scattered field and
woere ohtained from equations 2.9, The stresses resulting
from the scattered field must be added to those from the
incident field to obtain the complete solution. Boundary
conditions to he satisfied on the other sheets may bhe
phrased similarly.

The early time behavior depends on the solutions
from the W}= O  sheet, that is, as long as the wave

position is defined by lG‘(TT' « When the incident

wave reaches the position !e]-.:'ﬁ' 3 Gontributions from
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the ffl=| and yy=-| sheets arrive simultaneously and
must be included. In what follows, attention shall be
restricted to the Y= O sheet.

The time dependence can be removed by taking the
Laplace transform of the wave equations. The Laplace

transform pair is defined bhy:

iy - pt
¢ (r o,p) = gé(r,eﬂc)ek dt

G4
Tioo

t
dlret) = L= gctx(he)aa)ep J},

2TTL
T=-L00

Since the range of 8 is —-00¢% 0O £ o , a Fourier
transform with respect to "@ " may be applied to the wave
equations to eliminate the © -dependence. The Fourier
transform pair is defined by:

S p) = § Flnope de
— (7.5)

ALD
3(r0,p)= 1 (" F(raple du.

\./"38

1
ran

8
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The wave equations may be written by reference to

equations 3.1 - 3.2 as:

2 | )
Vé=1L¢
CL ‘Ef 67'19)

1 |
V}Q)-z .%1LP£{_
Cr
where:
"Vz: _b.:' 4'--1-@. + L _B_E
¢ Fr r*det
and:
| 00
¢ (r eﬂc) = Z cb(r,emmw)’c)
Me=-0

G-
o0
\p‘(\ge,%) = Z LP(?‘,GHmﬂ"'t)

m=-

Each C}) and Ll) must, of course, satisfy the appropriate
wave equation., The Fourier-Laplace transforms of the

wave eguations are (m-_—_o SLee‘t) :



1a2

o
o~
=g
+.
[
o
]
~
TlE,
+
S~
©-¢
[
(o)

o
-1‘
I
o
5

G.¢)

"
o

ey

with solutions:

§ = M) T () + B@)Riw (2 )

(3.9)

<0
i

Clw) Ty (tk ) + D)k (1)

The functions /-](Q):C(Qq): O to insure outgoing waves

as F — o0 .

The boundary conditions expressed as functions of

the potentials (b and QJ are given by equations 3.7.

Their Fourier-Laplace transforms are:



where G"Y. and T\"S are defined by equatioas 7.2 - T.3.
The range of p and d)again suggest the use of the
uniformly valid approximations for the modified Bessel

functions. From reference 1), these approximations are:

{
— - Jl_ _ _
Ko ) 2T (04%a%) *exr'{-(wﬁ—o{‘) b0 Sinh @ .
)

T, &)

—}lﬁ(wzu) e\c‘p[(wh LDsmL ‘3'

from whie e

L
Kog(a)z _ @525 ()
(‘z,uz)

, L
T,,%) = CETVAS SHEY)
A
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Substitution of equations 7.9 and 7.11 -~ 7.12 into

7.10 yields the result, valid for p — large and all
Lﬂ~va1ues:

B(‘A)) = 6’;.((1‘(&]) ")
(G 8 )Ka(eh)

C

6. 13)

W — Tro(4,3,p)

5 i) ka(a)

These equations are analogous to equations 6.3 obtained

through use of the Fourier series representation, Note

that Kw(ol)-: K_w(ol) , therefore the absolute value

signs have been Temoved on the order.
~ The transformed quantities Q. (4, F) and
%\—e (aJD) P) may be obtained from equations 7.2 - 7.3.
™ -%‘f("c"se) ~-(Qe
C“ﬁ(a,@,r)=—§%€ (€ + u€ cosze)e  de
1)
T _%E(\-wse) _iwe

~ _ vag _
-Er(eo"nw)k) = Tr-F e (U:Ee 5m26)€ de‘
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The limits of integration are established by noting that

G;(a,g,‘f) and 'C;e(a,e,t) are zero outside the
Tange ~-TT<$e &0

There exist several alternative ways to evaluate

the Fourier transforms abhove, for example:

(1) Apply the method of stccpest descent where

k is a large positive parameter.
(2) Direct calculation

(3)

or
Application of Poisson's summation formula,
Poisson's summation formule will be used, not because it

is easiest but because this approach will illustrate the

[ L™
relation between the Fourier transforms G, , Tp,, and
their respective Fourier coefficients ah ) LV\ . It

is shown in Appendix C that:

i

| A
?Eﬁ.cql(a)n»k)

Q,
=

fiasj

_ (b
<

1]

T (an p.
L To(an p)

from which it is deduced that:

L Eawp) = a(e)
ZTTO;("F) 2

7.16)
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Application of equations 7.6 to equations 4,10

yields the desired results

_4p

Gi(a,0,p) - - TTe @ (-0, (ap ) +(12€)| Tas (2)

Lot (az'f‘ﬂk

a (7.47)

_ap
To@dp)= LT e (a+e)§rw+z (4 )-To (%83

This result is readily verified by direct evaluation of
the integrals expressed by equations T7.1l4. Note that the
term Q—)Lo is eliminated from equations 4.10 by the
assumption of a left-~xunning wave.

The approximations for the Iw() and I:O( )
functions as defined by equations 7.11 = 7.12 plus the
recurrence relations given by equations 4,19 allow the

boundary stresses of equations 7.17 to be written as:

& _3_

Ef' | (2 ¥
a.(a “);f):«ﬁ_f%ﬁe-' \}%5[&#4%) s ](&M— )

ar
3 (7.8a)

BB
] ' az "- . -1 ( !
% ex‘,Km- Ef:) W simb L_E_FL_

7.

+é) ¢ (wﬁ- 6



_F a"\o (2 (’l.l%L)
t 4
~ o (w+‘ﬁ-[1 ) i exp [(wﬁ%)_ cbs{nk‘ogdf_;'k

Equations 7.9, 7.13 and 7.18 imply that the
potentials associated with the M=© sheet may be written

in integral form as:

0 Y+i o +pt
$(rot)= _L?g g B(WK, () e dpdd
dwil ) ) -
~00 ¥-L
G1a)
| 0 Y+ st-}‘pt
, t)= L W)k \ dp du
vtoe w"cg g. plly()e o

It is again convenient 1o evaluate the hoop stress
at p= @ to eliminate some of ithe Bessel functions. As
remarked earlier, it is perhaps of greatesti importance in

the design of shock resistant structures in any event.
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The Fourier=-Laplace transform of the hoop stress

(equation 3.7) is:

fg:(.ﬁhl-@f$+ _i’:_ﬁ»,-?i—_!-_a(g_éﬂ) (.20)
}L sz g r dr r r dr

where the results

= =-£ G.21)
CT !
has heen substituted from equations 4,23,
(o
Substitution of ¢» and qj from equations 7.9 and
B(LJ) and :D(uJ) from equations 7.13 gives the following

form for the transformed hoop stress:

(€pt_ 20
~ CT:L a?. ~
G—e(a'lwl ‘p)-’; T (aﬂc“)) F)
pe | wd
o a‘)
L%
W' &'}f)
C+t ~ .
_lw T Tpe (&3 p)  (q.20)
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S

~
where (. azwl"l:‘,.l9 are defined by equations 7.18.

The transformed hoop stress written out is:

c-e(a)m)r);\ﬁ_r?ﬂ'.e ‘ ‘
£+ )
G Q
\
) z t —T" ‘1"‘?
times 5[?-0:- +2;0} ][(H‘Q*a%(‘;z}(wl ‘(‘E ) _(H-e)i:‘,z( :L‘l-) ]
% ¢ i G
1 n¢, 2
+ 29 (90 “’a;tl)(ﬁ'é) Caf X(MH (L‘I.) (w’ch&) ]%

times 3 €Xjn[(®+ ') -0 5mL ‘%EF-] } (‘1.23)

The inverse Fourier transform of the hoop stress is:

° T
0‘(0@)»)— gcr(amr)e, %4 (‘L’uﬂ

and the method of steepest descent can be applied to
evaluate the integral. The operator "p" is assumed to he

|
large and positive. A saddle point occurs where 5'(UQJ=:



130

We have:

!
2,2.% o _
| §(w)= (w2+ G'.E.ﬁ.&)_ W sinh Q_:; rilde

(D= - siah Wl 4 Lo

P
$'(@) = - (wz+ 9-_:@_.:.')—7'

thus, the saddle point occurs at:
- a .
Cao - ¢ —Ef? Sin 6 (%!?5]
and:
JC(ZUO)= Ak cose
Ce

(7.2¢)
£l) - - 1

Gf cose
Ce

The saddle point is located on the £L~$caz axis and
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climhs up the axis as © varies between 0 and "_l'zl"_'.
The solution to be obtained here is only valid for
0% Ie\ < -ﬂ-é_"- since the integrand implied by equation
7«23 is not defined at Ie’:T—z'-: . Special techniques
are available for handling the case of diffraction of a
plane acoustic pulse by a cylinder in the range \elﬂ'jg
and \6]) T—;—: . See reference (16), These techniques
do not apply here, primarily because of the requirement to
satisfy two boundary conditions rather than one. Thus,

the solution generated here is applicable only to the
reflected wave zone, Additional study is indicated in
order to generate a solution applicable to the diffracted
wave zone, i.€., l e] = 1 .

2
These are hranch points located at:

W=*_ %k *Lak
Cu ) Cr

and poles at:

A

1
s

The relation between wave speeds in the medium can be

written as:?
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—_ = (7.27)

where7) = Poisson's ratio, Considering only positive
values of 1) o although negative values are nol excluded

thermodynamically, the following results are obtained:

ﬂ:‘:O' c¢2=2

/ St———

(7.28)

It can be concluded that c 22 C,- for 7}>_ 0
i.gs, oé__1}é.- i » The branch points, poles and
contours of integration are then as shown in Figure 9, on

page 133,



e

133

Rfal

_gb
G

Figs 9. Contour of Integration in the Complex

¢ ~Planc,
§(w)
The term € can be written as:

(o) 500) + §aow,) +£'0,) &
e
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then evaluating equation 7.24 at d)o , the result is

obtained that:

C? _-F.Cose a‘;t J—(‘f

L
. z \
__(HG)ZSMG( (L simcd + & Qa ) ‘-______
o' c a _cEcose

Q )

WBE . (7.29)

Note that:?

0 }"(wa (- a)z

Se Yy e G.30)
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which represents the first term in braces in equation

7.29. Equation 7.29 simplifies somewhat 1o:

_@Eh(‘-case)
gla,ep)=-Te

P

Co

(+€)==cCos®
]

coste - € Sin‘e

times (). (sfn"e— Gccsze)zl -

L

L e e

Cost0— € S/i®

The inverse Laplace transform may be obtained from

reference (13) as:

S (a;%f) = -—O’F} [’c - ca'-: (I-Cose)]
SC

+\mes i(sinzé- GCOSZQ) {\ - C;L_ (i4€)cose (k_ Q. +_G_. CoS e)]
@ (cos’e- €sin‘e L G

L
+[2.CT (1xe)sice 1(‘_ (‘L-Lé)ﬂ'nza]z['&-"g'.]\g' G.32)
a (cos"e-esin‘e e C
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This expression represents the hoop stress at the cavity
houndary resulting from the scattered field, It is only

applicable when:

& (i- cose)
[
and:
™
lel< 5

The total hoop siress at the cavity boundary may be
obtained by adding the above result to the stress obtained
from the incident field., Equations 1.1 and 2.8 give the

incident field stress as:

0 (4,01)= oH [Jc.- %_ (t-case)](s{nze - €cose) (—,‘33)
tn

for the left—running wave. Therefores

O‘é =U"'e_‘+0"e O”H[ L((’COSG)]

: - % _ ceoste) Cu (14€)cose (-E_Q-_ + & cose
times %(5"* e-€cos 6)[ 7y m“ ) G )

_T2G (ie)sin’e [\ (_J_La_)s:ne (&-2&.)‘% (7.3¢)

& (Cos“e-€sm )



137

Consider the position ©@=0 on the cavity, then

equation 7.34 can be written as:

Ct
%{O{OEQJO)H%‘ G'H(Jc\g-e(wé) —at? (-"35)

which implies that the hoop stiress at the leading edge of
the cavity is a linear function of time which ranges

hetween 0 and _G'G(H-e) , that is, it approaches

-G'GCH'G) as +t - .?:_ . Suppose Poisson's
L

ratio (1)) is -'?:' then, from equation 2.5:

€=-2 - _L
-7 Z
and the hoop stress at ©= O varies linearly with time
between the values O and 9: , approaching Q: as
'(‘:—) %:- or as the incident wave approaches the
position e = LI .

2

The long time solution, equation 5.31, yields the

following result for ©=0 at Y= G as ‘E%OO :

T

o -€ _3 _ :
eﬁa'=¢g-e+ = 2(;+e)§_ (3e+1);
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when »: -3,- :

a
o: (a,00) = & .
e%ckal ! s

From the preceding analysis, it may be concluded
that the early time behavior is significant. However,
the original premise that the early time behévior is
dominant has not been verified. Verification of this idea
is contingent upon either continuing the solution, based
on Friedlander's method, into the diffracted wave zone
GG!Z -Tl-:z) , Or else evaluating equation 6.8 which
is based on the Fourier series representation of the
potentials and boundary conditions, Neither approach
appears to be mathematically tractahle at the present
time. However, the Fourler series representation does
hold some promise for, if the Laplace inversion implied
by equation 6.8 were carried out, the resulting summation
on "n" could be evaluated for any desired number of terms,
In any event, additional study of the early time behavior

of the cavity response problem appears to be indicated.,
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Appendix A - Integral Evaluation - Subsonic Approximation

(katlg

Examine each inteqgral in equation 6.10Aseparate1y. The

first is:

%m s(e-x)
LoY Co
T Eip_q (T dnde (.0
'ﬂT C)‘Eo o

Suhstitute ¥—-© = A y AY: clc( and

@ %z'ﬂ'-e Lermsd
r-22("( e Judp (4.2
'oynt oR g
y -

The O-term appearing in the limits of integration is of no
significance because of the periodicity inm © and it can be
dropped. The resulting integral for c{ is well known, in
fact, it is exactly Z'ITJ—O(QY‘) . Reference Magnus

and Oberhettinger (13), pg. 26. Thus, we have:

l

0
P P2 . n.3
T - z'Fg T(edp = £ 2 = (@.3)
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See Magnus and Oberhettinger (13), pg. 131.
The second integral can be evaluated from the above

results. It is:

Lfr cos (e-k)

o0
= _}_'3_ dr d a.)
I, %g xdp (

T,=-Pe2 _1_ (as)

2T 2%° \]z-‘+r"

We can write the third integral in equation 6.10 as:

e P Ler cos(e-¥)
T,=- gge€%§ cosy. e\ dyde (A.L)
yr .

where:

a - My 2 (Myt}
a >\+fh

After use of a trigonometric identity for Cosz'b’

217 LPY cos(e-¥)

@
- AP (< asame dyd a7
I3 g.n-zgo('J ( ¢

T

AP B i ’rcos(e-a')
T

0
b 1 -P% 2%. €@ dr d
R A ee gcos f
LA
4T 2 / g @_ Q)
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where we have used the results from 12. ahove. Now

we can effect the familiar substitution ¥-©=¢l

dy=da and expanding (oS 2(&-{—9) obtain:
1 o, T
I3 - - E—P —B__‘_ ‘ - .B_.P.. nge_? S $C052d. Cos?@
g oor @yt gme

— Sin2d Sin ze} eéfﬂ“dc/ot Jf . (A,‘D

The sin Zol terms are odd with respect to of=Tr and give no

contribution. Reference to Magnus and Oberhettinger (13),

pag. 26 provides the result:

» :
__AP?* o€
I‘3 - _EB—?@? ¥ %?SQ e TZ((Y) CosZ8 AQ Cﬁ-to)

and the same reference, pg. 131 ygivess:

. A
_ AP | y AP cosze[ 3r , A.it)
Ls= 4T O*\|FPr™ kS (

YT (2+r?)

The fourth integral in equation 6.10 is obtained from
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13 above as:
(3

BP ¢ | BP [ 3r -] A
T,=-25°2 _L_ .+ BF¢ssie 5/ (B2)
¢ a9t \JErt $Tr (%Y
where?
7 2
B= M % M@é).
Y4 Atzp
Finally, the sum I|+IZ+I3 + I._‘_ yields
the desired result:
P2 g
.CZ%"—SB 2,7 :E'—T-..-zz
97 L0 \(2%r 2T\
__HTZE(‘Hz“)Pf l _ 3rcos20 ]
F S T T )

et F 0 sresze T (o)
1)52_

8 “hrep LT \7Re? (2% ¥
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which reduces to:

23
T :E_i_ + Mr LINtE2 i: + 2
T o (2% T N+ /u.> w(Zart 2t ~ w(Z4H) *h

2
+3zr cos ze I]Jr M: b3 )[ 2 g,

¢ (22 +r2) =/ X-&-Z/. S(Ez-H‘z)

_._3_{ 5, t 3%1'60__9256 ]1 (r-x.w)
9(Fr) 2(zier?) o

It is convenient here, as in the evaluation of TZ!

(Part I.)
above, to sxamine each term in equation 6, 20 separately.

The first term is:

- P2 Lercos Ce-¥)
S ee (os¥. € A‘a‘c]e

cosd Cos®

T

LekCoSol.
~Sind Sin6)e A,{JQ (A.15)
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where we have used the substitution ¥- 6= o J cl‘o‘: C‘eL

again. The sin o term is odd with respect to o =T and

contributes nothing. Reference to Magnus and Oberhettinger

(13), pg. 26 gives:
(V]

‘-‘ll:- Pz 2 G:QQI(er)Cose JQ (A.IL)

and we obtain from pg. 131:

H __:_Pi _a__i____‘____ SR ali .Cosg.i (f-\.n)
Vg 2 (e 2+

or, since Y (CosS® = X

H=-P22C( L . _x 73 (a.18)
G 02 [ \RPee™ 2V

which reduces to:

H< 2 x= - P x=z. (A.19)
| YT (2% ) YT L Rr®
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The second term may be written as:

co (All
- L v cos(o-¢)
Hy = - g e g cos?. e. J}Ae
g (i) % )
2m-€
. - g%
- ‘_l-_]i_ e g(cosaLCoSG-
rhep) )
Corcosal
— Sind S;;-,e)e e det Cle (Q 20)

where the familiar substitution has been made. The sin ol
term is discarded as before and the previously cited

reference gives:

(4]

- 02 |
oo =2 ge.? T (el cose dp
q:rT(M/u.) )
= — P . rcose (A.zi)

ter(Mf».) \]2-.’-+—r 2V re
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Or equivalently:

TR

L. x I X . (A.22)
wr(Zb) J2sr® 24t (

—thr(M/u) -Ta(am

Evaluation of the remaining terms requires use of

the identity:

3
cCos ¥ = -lq_—((.os 3 + sc:os?r), ((Z}.z?)
We can write the third termasas:
00 %zvr
H[3 -t CFP gee g_‘_(cas?b’-i—BCosY)
YT +
0 0
LercosCe-Y)
Eives € JxJe (A .2¢)

where:

Co Mr| X+ uphs 'i#‘].
8 (M};.V'
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The familiar substitution yields:

co 2T-©
-— O .
]-[3 - L€F e,e gi.(cos%lc,osa\e- Sin3dsin3é
Ny +
0 -8
L y COSeol
4 2C0Sel COS © ~ 3 Sinel Sin e)e c:[,,( c’@ (f.),zs)

The sin 3¢l , sinel terms are again odd with respect to
o =T and yield no contribution. We obtain from the same

reference:

00__€% v

CP( e

_;r/: 0-'+_ cosae.g(er)-amse.:]:(("'ﬂé("
CP

ﬂ

H;

(0336 .

3
‘ N
ZTI’/.A.\: ¥ V@At (24 )?

i

_ 358 1 . _r ‘} (A.20)
=T 2 A

or equivalently:

Ha= 2 0] fw&.@“u‘{f&eﬂ.@.
T (,Wj; { (M)u.)z :{ R(z+R)’

3X | (f—}. 1)

N epm———

R(z +’R)
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The remaining integrals can be evaluated by reference

to Hgy €.g9.2

FJq, L

(A

o LerCos(Q-a‘)

:é?zgcgsax.e AH(» (ﬁ.z?)

o]

2 gy;
lm}pb%

_ PeMrrafy Cos'36
32T 0% i Vter® (%+\F'+r1)

3¥

A.
(%J%a—r ‘)E ( cq

Or equivalently:

)

H¢= _P%MTzSYCOS36[ 3 s
32Mpe (2 +{2re ) (B4

+ L 3/ ¥
(= +2%r) (@)

- ‘ = | (ﬂ 30)
gx [ (=+ W)(%zﬂ"z) v (= +W )(%"4.‘3)3&]%

- _Pz H-r Skcosae 3 + _T ]
H“" 32Tk [ (=¢+RPR*  (@+RJR?

et aell 6
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Similarly, the last integral can be expressed as:

@ i cprcos(8-¥)
He= -t PR (“3 )3 ge,e%gcosax ee drde (A.32)
5 3271/,. IS o )

l_]g__. P%N-r( Hj})b S v cos 36
T

o4k \ Nz @t @ FR)’
, W(%—rm-% (ﬂ"aa)
or after differentiation:
s = %2(;‘%)3 (;:E%)I (%3 4-(%‘4- %)
) (z:+r e (%2+ Z+7)° (:i‘f/z]
e (%3: " (;-"%2")%]} (-39

- P%H ()\4_}* Y‘COS3G Q _\_3_%_4_3_&"
e T oV 31 (@+R)* o Bt %]

_3x 3 4 3%° (B 3¢
2 [32 Ti?ﬂ (p.35)

Z2+R
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Finally the displacement u as expressed by equation

6.20 may be obtained from:

\L(X,B,%):: H, o+ Hy + Hy # Hy + He . (A.3¢)
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Appendix B — Fourier Series Coefficients (a, and hp)

The Fourier coefficients as defined by equations 4.6
and 4.8 of Part III wmay be written as:
04’. T @_lzcgse

Qo= - S[l-—(H’G)‘SWs e]e deo
F o

C_l_h ™ &Ecma

o

Gp,=-%Ze f[i-(li—e)ﬂne]cmnee - de (B.l)

f

_%_k_ i __Ec.ose

Ln" Te (1re) ‘Sm’leSmnee cle.
il

Coefficient a, is readily evaluated using the results

of Watson (25), pg. 79 as:

Ay = - S;-'e LSI,(%H-(P&) %F .I\ (%H} : (B.Z?
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The coefficients a, and b, may be rewritten as:

- %h ™
a, = - 2% - gg[t_ (\_«_-_L_g)usne‘_\*-(\%)cos(ma)e

WP A
%Cose
+ (H—e Cos(n-z)eze de 033)
_Q-_h —Q#Cose
Lh__, ZWP (|+e)§{c“(n-z)e cos(n+z)e }C de.

Noting that coefficients ay and b, are of the form:

_oQCose

YY\ S Cas de (B.L/-)

where ol = @_._h i k = integer, standard contour integration
Le
around the unit circle, ¥=¢€ s in the complex z-plane

may be employed to evaluate the coefficients. Let:

Lo 8 -(e |
Z=E . Cose'_— e +€ )'.‘_" —L(%*‘"‘
) 2\ &
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A% L.e. Cle . The integral becomes:

—dcosé

YY\__: _\z_ gocos‘ﬁe.e de

gy -5 (g
= § (e 2%)e % e

———

L&

with a pole at z = 0.

Thus:

W\= WLS(% +%£)E )%

\2l=)

_ 2l Residues (O. 3.
R é “ %) ®s)

where ay are poles inside the unit circle.

The form of equation B.4d above suggests that

V{\ §n [I%)( 35} . See Watson (25), page 181,

equation 4. Notice that when = ) , an integer, the
second term in the formula of Watson vanishes. The

modified Bessel function of the first kind is defined as:



- N Vt2m
I,o(”“* Z _____(2'6’)
m! T (V+m+)
N=o0
See reference (25), page V7. Thus, when 1) = integer:
o0 ‘_6'1)+2m 4 (
T(-7)=¢ pi ) = - I B6)
1) )'g'avn‘.'l"('l)%—mu) W0

: o \
To obtain the residues at z = 0, the coefficient of 3;

in the expansion of the integrand of equation B.5 is

required. It is convenient to treat the integrand in two

parts. For the first part:
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Also
_ © 4, P -
eﬂ Zé)(%")z
7}/
Y=o ’

Therefores

B - f;-‘(w-é)
Z .

o K 2 Y, 9 -V
()'7")%’“ | ZG-J (%)=

T ) T
o (/AH Jos (V1)
co @ + +¥ U+ K- 1)
>l 5 @Y
(,uﬂ) (‘V*H)
M=a Y=o
The coefficient of -}Z:- occurs for /LL+K-2)=~| or
p’=//_+/<+/ ;/0. and K fixed; K2 -| always.

Thus, the residue at z = 0 is:

@ 2utREl, 2urK4
1 (%)

Pes (%= 0) =

uso TCut) T (s Kae)

K+\ o
2 (¢)

= /u+| }A-H Fid+)
@W-eitnw @D

l<+|+2/U~

' K+1
= G‘) :E

K+
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which accounts for the first term in equation B.5.
The second term may be evaluated in a completely

similar fashion, i.g.:

g(ﬁh)e‘ %(z“i-) - ‘o"-zt.(%"'"é‘)

-z e =Ry 2

or:

v d(ml) o@ C_)ww)(%)ﬂﬁ)i/u-a-v

s —/UZ=0§=0 'I"(/;.h)T'(‘\)H)

and the coefficient of -‘-%- is obtained when:
/j.-'XL'ﬁ'= -1
°rfl-=¥+'l)—l ;J and ¥ fixed; T2 | . Thus:

*er-H-?.‘I)

?es(’-l—-o) = )

(%)
Z T=1+v4) TUH)

* L w
= &) Ir_‘(&) = &) I‘k(d) (B.?)
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which is the same resull as obtained for the first term.

The integral)YL can be wrilten then as:

z +% de

g(\ﬁ' _&_‘ ..-(%+ =)

nzl-—

4 "
1;:‘ Zﬁes(%w) = T €) I&(et). 3 9

Using the results of equation B.9, the coefficients as

expressed by equation B.3 may be written as:

_ :at:r'"%f s a € ) _.mz (_}_a_
&, = - & - (160 T () +(s2)0 T (%)

c(se)) T, (2]

Q’B.M)
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Appendix € =~ Evaluation of the Fourier Transforms

ﬁ(a‘l L'J) ‘a) and %\'e (a:“ai F)

Poisson's summation formula may be used conveniently
F?
in evaluating the Fourier transforms for G'Y‘(a')‘a)”)
N
and 'Ere (a)LD)P) rather than direct evaluation of
equations 7.14 in Part III, This summation formuls is
easily developed. Suppose there exists an infinite

periodic array of delta functions arranged as shown below:

-{:b -2 o o+T|T Q{C

00/ | | )

-2 etc.

The funetion ;(}) representing this array may be

written as:

{(¥) = Z S(k-4,-2nm) (C./)

which is periodic of period 271 and an even function of t.
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The function §:CE) can be expressed as a Fourier series,

In the range Oé'EéZTr ; the function is:

f(e) = S(-1,)

therefore:

Z (et 2om) = f

or equivalently:

L f;fl!_ - n) -
277 277
=—00

T -Vt
fm.ue dto Le
0

cd[f-{;,)

.z&é
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Let 'f-— 'éo-_—Zﬂ'é , say, then

© (yiznk)

icf(?@-n) = Z €

n:-m =00

@ én(Z]ﬁé) |
= Z € @3)
H=-00
This result is Poisson's summation formula and is in the

appropriate form for use here.

Suppose:

! (¢}
5,(8,6,p)= Z'ﬁ;(a,enmg p)
n=-e @ & L)(e+an) N
-7 .air_rgﬁ“;(alw, be oD Cv
N=~-00 -0

— )
where C ) represents the Laplace transform and ( ) the

Fourier transform, Rewrite equation C.3 as:

P in(Tw)

E §@-n) = e

n=-00 N=-00

¢.5)
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Egquation C.4 can he rewritien as:

o A L
7 aep)- 5 (& @ape ool

Nz=-6 —00
iné
‘ ~
- E'EUYCQ‘ n jp)e €6
|
Now 0; (a, 9/ JD) is given by equation 4.6, It

is even in § and can be expressed as a Fourier series:
1 @ inée
G (a,6,p) = 2 A,e .7
Y=~ 00

Equating equations C.6 and C.7 yieldss
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which relates the Fourier transform 0?. to the Fourier
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coefficients of 0}. . Note that:
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Similarly, suppose:
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Application of Poisson's summation formula gives:

i — Lne
Trolt8,p)= LT, (anple . (¢.10)
£



165

The tangential stress -Cre (a,e,p) is
represented by equation 4.6. It is odd in @ and can

also be expanded in Fourier series as:
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Comparison of equations C.10 and C,11 gives:
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Equation C,12 must he operated on to give the desired

result. Write:
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by reference to equation 4.8. Substitution of equation

C.13 into C.12 yields the desired results
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which relates the Fourier transform of 'Cre to
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the Fourier coefficient of tre .



