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ABSTRACT

The separated flow about slender delta wings of shallow
triangular cross section is investigated. The Brown and Michael
theory is extended for this cross section and the solution is indi-
cated. The limitations of this theory are pointed out. Computation
becomes very complex and other methods such as electrostatic
analog procedures appear preferable.

Wind-tunnel tests were carried out on four delta wings with
apex angle of 30° and triangular spanwise cross sections with flat
base surfaces and included angles at the leading edges of 0, 10,

20, 30°, respectively. These tests were done in the 10-ft. GALCIT
low-speed wind tunnel,

Pressure measurements were taken at speeds up to 160
ft. /sec. and Reynolds numbers up to 4 x 106 based on the maxi~
mum chord of 4 ft. Experimental spanwise pressure distributions
are compared to theoretical results for a delta wing of zero thick-
ness (due to Brown and Michael). Experimental results show
secondary vortices near the leading edges. These are not taken
into account in the theory and so the theoretical and experimental
pressure distributions differ markedly.

However, the experimental spanwise local lift coefficient,
which is obtained by integrating the spanwise pressure distribution,
does agree very well with theoretical results. A simple geometri-
cal definition for a corrected angle of attack makes it possible to

plot local lift coefficients for the four wings on one curve.
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It is shown that the drag of the wings with triangular cross
section including base drag is higher than that for wings of zero
thickness. The results are applied to a brief analysis of the pos-
sibility of reducing lift-dependent drag of slender delta wings. It
is shown that this drag reduction can be substantial {more than 10%)

for certain special cross sectional shapes.
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I. INTRODUCTION

Present development of aircraft and space vehicles indicates
that in the not too distant future aircraft will operate at hypersonic
speeds, and reusable aerospace planes capable of re-entering the
earth's atmosphere will be an economic necessity if continued and
expanded exploration of space is to be feasible.

These requirements point to the development of highly swept
wings, of which the slender delta wing is, for structural and other
reasons, the soundest choice. It may become desirable, and this
is being investigated at present in the lifting body concept, to use
the delta wing not only for its lifting properties but also to improve
the aerodynamic properties of the wing-fuselage combination, by
giving the wing a thick cross section and using it to store fuel, cargo,
and powerplants. The purpose of this research was to gain an under-
standing of the separated flow field behind such a thick delta wing at
moderate angles of attack.

It is well known that the vortex sheets being shed continuously
from the leading edges of sharp-nosed slender wings coil up into the
form of conical spirals (Ref. 2) which lie just above the wing and
determine to a large extent the flow above it. Behind the wing these
spiral vortex sheets roll up into the conventional trailing vortices.

The outward flow in the boundary layer on the upper surface
of the wing between the point directly below the main vortex core
and the leading edge encounters rising pressure gradient and sepa-

rates forming one or more small vortices near the leading edge.

(Ref. 2)
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Below each main vortex there is a region of very low pres-
sure, It has been suggested and experimentally verified by G. H.
Lee (Ref. 3) in 1959 that this low pressure region may be used to
good advantage. If the wing is given an appropriately contoured
cross section (see Fig. 4) the lift vector is tilted forward causing
a reduction in drag below that of a flat wing of zero thickness.

To solve the problem of separated flow over a slender delta
wing theoretically, the flow field is commonly approximated by
simplified mathematical models which, to make the problem trac-
lable, negleclt the boundary layer separation on the wing and
consider only the main vortex sheets in more or less realistic
approximations to the real flow.

One such simplified model, due to Brown and Michael
(Ref. 1), is used in this study to show how the potential flow over
a delta wing of triangular cross section with two concentrated vor-
tices above the wing may be solved in principle. The mathematics
becomes rather unwieldy even for this simple cross section and a
solution would be prohibitively complex for more complicated
shapes. In that case a more promising approcach might be the use
of an electrostatic analog like a field plotter.

For practical applications, it would be very convenient if
pressure distributions for wings of zero thickness could be applied
to flat moderately thick wings with sharp leading edges without
modification. Making this assumption, some calculations were
carried out in this study to show that substantial reduction of lift-

dependent drag is possible under certain conditions,.
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The wind-tunnel tests were carried out on wings with shallow

triangular cross sections. This simple cross section was chosen

for its structural simplicity and so as not to confuse the issue by

introducing too many variables.
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II. THEORETICAL CONSIDERATIONS
The problem to be considered is the flow over a slender delta
wing with leading edge separation.

The equation for a slightly perturbed compressible flow is,

(Ref. 4)

2. 2. .2
(1-Mm2) 2 %’+ ? g’+ 9 %’ =0 (1)
ds ox oy

where ¢ is the perturbation potential and the s,x,y coordinates are

fixed on the wing as shown in Fig. 1.

52
Now if we consider very slender delta wings, then -—%—5- will
2 2 9s
be much smaller than 8——-%2 and —a——-% and thus the first term of equation
ox 9y
1 may be neglected as long as M is not too large. Then we have the
equation
2 2
.a_@ + a_(é = 0
2 2
ax oy

which is the Laplace equation for the disturbance potential of the
two-dimensional crossflow in the x,y plane.

Therefore we see that as long as the term (I—MZ) 3_2_%2 can
be neglected, Lhe three-dunensional flow may be split up ?nsto the
flow parallel to the wing and the potential crossflow in the plane
normal to the wing.

The results obtained by solving for the potential in this way
are applicable for both subsonic and supersonic flow (Ref. 5) as
long as (I—MZ) QE—%B is small. In the subsonic case the problem

0s
solved is the potential flow over an infinitely long slender delta
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wing since the presence of a trailing edge would affect the flow
everywhere. A finite wing in subsonic flow will not produce the
conical flow field which results from the slender body theory.

But in the supersonic case there is no upstream influence
and a shock wave will terminate the flow field over the upper sur-
face of a finite wing at a positive angle of attack and therefore
that flow field is conical and can be predicted right up to the trail-
ing edge from the slender body theory.

A. Flat Wings

The potential flow about a slender flat delta wing of zero
thickness with leading edge separation has been solved by Brown
and Michael (Ref. 1), using the slender body theory and a mathe-
matical model of two concentrated vortices above the wing con~
nected to the leading edges by plane vortex sheets. The spiral
vortex sheets in the real flow are thus approximated by placing
concentrated vortices near the center of the coiled up sheets and
since the vortices grow in strength with s, the plane vortex sheets
from the leading edges supply the necessary vorticity increase
with s.

The boundary conditions at the wing are (1) that the normal
velocity component must vanish and (2) that there is no flow around
the sharp leading edge. This is analogous to the Kutta condition
normally applied at trailing edges of wings.

The condition applied in the flow field is that the net force
acting on the combined system of concentrated vortex and vortex

sheet be zero.
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A solution to the Laplace equation satisfying the above-
mentioned conditions can be found numerically and from the result-
ing complex velocity potential the pressure at the surface of the
wing can be found, taking into account also the flow component
parallel to the wing surface.

Strictly speaking this is not correct, of course, since both
the strength of the main vortices and their height above the wing
increase with s. The approximation is suitable however for wings
of extremely small apex angle and at very small angles of attack
in which case the vortices appear as two dimensional in the x,y
plane. This mathematical model does not consider real effects
but gives good results for overall lift coefficient, while not suc-
ceeding in predicting the spanwise pressure distribution across
the wing. The results of Brown and Michael are compared to the

experimental results in Figs. 19, 20, 22.

B. Wings of Triangular Cross Section

The method may be extended to slender delta wings of tri-
angular cross section, as illustrated in Fig. 1.

Consider two complex planes z and §{, where z = x | iy,
¢t = £+ in, as shown in Fig. 2. The wing cross section is located
in the z-plane with the vertex of the triangle at the origin and the
imaginary axis bisecting the triangle. By symmetry we may con-
sider the flow in the half-plane x > 0 independently. We now wish
to transform the half-plane x > 0 bounded by the imaginary axis

and the lines AB and BC in the z-plane to the half-plane bounded
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by the imaginary axis in the {-plane. The triangle is thus trans-

formed into a straight line. The transformation = = f() is

4 8 1
_ 4 L (2
z = A (m) (—t;;—l-g) 4
+i
where A is a constant and 237 is the vertex angle of the triangle.
The constant ¢ determines mn for the point C.
In the {-plane, we have a free stream Uga in the n direction
and two vortices at §0 and _Zo' Thus the velocity potential for the

flow in the f-plane is

F(L) = -i 5 4n (

where y is the strength of the vortex at 1;0.
The boundary condition at the leading edge requires a stag-

nation point at the origin in the {-plane; this gives the condition

27U0a _ 1

= o+
Y N

1
C‘o
The condition imposed on the vortex system in the z-plane is that
the net forces on the line vortex and the vortex sheet be zero.
The force on the vortex sheet per unit length is
dy * i -
pU T (zo—aHa cot Bx). The force on the line vortex per unit
% 3
length is -pv y, where v 1is the velocity normal to the vortex.

Therefore, equating the two vector forces

Py

" Cosines of small angles are taken equal to unity; sines of small
angles are taken equal to the angle.



Now

=

v

%%(zo—a-l- ia cot B)
d
, Y=s gt
Ue
vy zo—a+iacotﬁ7r)

The velocity v consists of two components, one due to the component

of the free stream normal to the vortex and the other due to the dis-

turbance potential.

* * s
v =U + (u+iv),

where (u + :'w)Z is the
O

afs
=

U

ES

o]

mean value as z zZ e

(zo + ia cot Bm)
- Ue

a

(zo t+ ia cot B)

-Ue + (u + iV)Z

a
[0}

The mean complex velocity at the vortex position is obtained by

considering the complex potential function from which the complex

potential function due to the vortex at z has been subtracted. We

define

then
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. (z_ + ia cot B7) Fy
Tz iUe —2 + (=)
v a dz ‘=
o
(z_ - a+ ia cot )
o
= Ue
a
Therefore, finally we obtain
dFl 2zO
S )Zo= Ue [—é_ + 2i cot pm - 1]
or
dF, 2z
(Wl)zo‘(dz)o=U€[ - 2i cot B7 - 1]

We now substitute Fl into this equation to obtain our equation, the

solution of which will yield z -

F, = % [4n (¢ -t )-4n(t+T)-tn(z-2)] - iUat

or

g
i

p = [pEan 0+ T) - 1Uat] - FX [infz - zg) - 40 (& - 3]

Now
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Consider the singular part of Wl as § — Eo s
]: 1/f| ) 1 J _ [(Z—ZO)-f'(g-t;o)}
g"'éo Z'ZO z;__,go f'(g'go)(z“zo) g_.;o

We expand z in a Taylor series

2= £(5_)F £1(5) (L-8)+ HU(L-5)7+ ...

z = (L)
2z = £(L )50 )+ 37 (L )(L-L )7

Substituting
[ (2-2)-f' (45, 1
LTC-E =) oy
{f;)(;-coﬂ%f;;(g-go)z-f'o(c-co)-fg(;-40)2 J ]

(88 M+ (-8 )] [ (6-L de (8-8)%] 4=t~ g

Thus

1t
i o}

- qu):l+ 2:}_- )
(g

L
(W = [f_'(lzj‘

% o “7T LT )2

and from the boundary condition at the leading edge

T —
E.t&,

Substituting for y in the above expression and substituting (Wl)i;
o

into the vortex force balance equation, we get




~11-

@5 i) e )
O (o]

where for the triangular shape

¢ Pt 2
£1(8) = Alp2D) (o)
and
Br3 Bt 3
1 4 B N 1
£1(0) = A [ B | }
(E-I)B(?}lc)% g (C-1) 2 {C+ic)

Equation 1 may be solved numerically for C‘o’ Unfortunately, the
term on the right hand side involving ;o cannot be eliminated.
Therefore, the only method of solution is that of iteration,
A value of z  is assumed and substituted into the equation, which
is then solved numerically for f,o, This description is, of course,
purely formal; in the actual computation one has to work with both
the real and imaginary components of { and z.
Once a value for ;o is obtained, the correspnanding value of
z is found and compared to the assumed value. If the two do not
agree, the computed value of z, is substituted back into the equation
and the procedure repeated until the desired accuracy is obtained.
As can be seen by looking at the expression for f' and f'',
this computation would be extremely long and tedious.
The experimental results show that the mathematical model
of two vortices does not properly represent the physical flow picture.
Since it was not considered to have sufficient practical value here,

the lengthy computation for the vortex position was not carried out.
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III. DESCRIPTION OF MODELS AND TESTS

A. Wind-Tunnel Models

Four delta wings of identical planform but with triangular
cross section of varying thickness were tested in the 10-ft. GALCIT
wind tunnel. The proportions and dimensions of these models are
shown in Fig. 3,

The seminose angle ¢ for all models was 15° and the length
48'',

Model A; Flat aluminum plate with fin on lower side
for structural rigidity. 26 pressure orifices
on both top and bottom surfaces. Leading
edges bevelled at 45°,

Models B,C,D: Wooden models with milled aluminum leading

edges. Triangular cross section with included
angle at leading edge of 10, 20, 30°, respec-
tively.

The models were stingmounted and the sting was attached
to a heavy U-shaped tube pivoting at the side walls of the tunnel
about a iine through the center of lift of the model.

The models each have pressure orifices at three stations
along the wing at 40, 70, and 97 per cent of wing length. Addi-
tional orifices are located on the base,

No direct lift or drag measurements were made.

B. Test Conditions

Pressure data were recorded photographically for each of
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the four models for angles of attack between -2° and 20° and at 2°
intervals. These measurements were repeated for several values
of q between 15 psi and 50 psi to ascertain that there was no depen-
dence on Reynolds number.

Tufts were attached on the models and photographs taken to

study the air flow over the top and bottom surfaces of the wings.
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IV. RESULTS AND CONCLUSIONS

A. Spanwise Pressure Distribution

The results are plotted in Figs. 6 - 25. Figs. 6 - 19 show
the spanwise pressure distributions for the different wings and at
the various stations. The distribution for the lower surface is given
only for model A. Since only a few pressure orifices were located
on the lower surface of the other three models, only the average
pressure on that surface is given in tables adjoining Figs. 8 - 10.

It is evident upon inspection of Figs. 6 - 14 that there exist
one or more small vortices besides the main one; these are seen
to be very near the leading edge. Unfortunately, the spacing of
pressure orifices on the present models was not close enough to
definitely determine the pressure distribution in the region .9<x <1,0.

It should be possible in future research to study the flow field
in the immediate neighborhood of the leading edge by means of small,
closely~spaced, pressure orifices and by flow visualization tech-
niques. It may turn out to be possible to influence the main flow
field above the wing by manipulation of the flow near the leading edge
and to produce favorable results such as an increase in lift.

Figs. 6 and 7 show the pressure distributions for the upper
and lower surfaces of model A. The effect of the small leading-edge
vortices is clearly visible. It is probable that the pressure for
small angles of attack is influenced to a certain degree by the finite
thickness of the plate; however, this effect will be less serious for

larger values of a.
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Similar distributions for models B, C, D are shown in Figs.
8 - 10. The lift decrease with increasing 8 can be clearly seen.

The pressure distributions at station 3 near the trailing edge
for the four models are plotted in Figs. 11 - 14. The effect of @ at
this station is almost nonexistent. The curves of Cp at any constant
value of a are practically identical for the four values of 81 they
differ possibly near the leading edge.

Figs. 15 - 18 show the pressure variation along the wing by
means of plots for stations 1, 2, and 3 at a few angles of attack. It
is scen that the flow field is very nearly conical over a large part
of the wing at small angles of attack. But at large angles of attack,
the departure from conical flow becomes marked.

Fig. 19 shows the effect of 8 on the pressure distribution at
a constant angle of attack of 12°. The distribution predicted by the
Brown and Michael theory for the flat wing is also shown for com-
parison. One interesting fact is that although the experimental and
theoretical distributions differ strongly, their integrals over the

span agree very closely, as is shown later in Fig. 22.

B. Vortex Position

The position of the peak of the negative pressure plot on the
upper surface may be taken as the approximate position of the vor-
tex above that surface. This distance, designated as (zc-) , C_,

a’'minp
is shown plotted versus a in Fig., 20, and versus the local 1lift

coefficient Ci in Fig. 21. The curve predicted by the Brown and

Michael theory is also shown,
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As 0 increases, the vortex at first moves towards the center,
but then this trend rcverses and the vortex begins to move away from

the center. The reason for this is not clear.

C. Local Lift and Drag Coefficients

The local spanwise lift coefficient is defined as

P

1

®

Clzs.(c -~ C }dx cos a
0 Plower upper

This coefficient is plotted versus a in Fig. 22. It is seen that the
result for the flat wing agrees very closely with the results of Brown
and Michael. The decline of lift with increasing 0 at constant a has
been noted before.

If we now make a simple geometrical definition for a cor-

rected angle of attack
o -1
@ =a-3 where o =tan = [tanetan 6]

then the value of CJZ versus a for all four models fall on a single
curve with little scatter, as shown in Fig. 23.
The local drag coefficient for a flat wing is defined in analogy

with C.C as

1

C =§(C -C )dx*sina
di 0 Py Py

For the wings with triangular cross section, the lift coefficient is
less than that for the flat plate for a fixed value of a, and therefore

the drag coefficient as a function of C, will be higher. But the lLift

vector is also tilted forward due to the forward-facing top surface,
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and this in turn reduces the drag coefficient.

This drag-reducing component is
1

C = S‘ (@] dxa\tane sine cosa
d P
red 0 u

Taking this into account one obtains the true local drag coefficient,
which is shown as a function of C, in Fig. 24 for all four models.
Note that the local drag coefficient is unaffected by 8, since the
results for all wings fall on one curve.

In addition, there is, of course, the base drag which must
be taken into account. This is plotted in Fig. 25. The conclusion
is thus that a conical wing of purely triangular cross section has
higher drag than a flat wing of the same planform and producing

the same lift,

D. Reduction of Lilt-Dependent Drag

G. H. Lee (Ref. 3} in 1959 conducted wind~-tunnel tests on
slender delta wings of a cross sectional shape designed to make use
of the peculiar spanwise pressure distribution for reducing the lift-
dependent drag below that of a flat or thin symmetrical wing. The
cross section employed is shown in Fig. 4.

The wings he used were not conical all the way to the trailing
edge, but were faired off from 0.7 chord to the trailing edge. Lee
found substantial reduction of lift-dependent drag, up to 30 per cent,
but realized that the effect of the rounded-off back end was not clear

and certainly contributed to the drag reduction.
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The experimental results obtained in this study may be
applied to predict the qualitative behavior of drag as a function of
0, the angle of the step in Lee's model. Since the included angle
at the leading edge is zero, it may be assumed that the pressure
distribution for the flat wing can be applied directly in this case.
This will certainly be a good approximation for small values of 0.

For purposes of this calculation, conical flow will be as-
sumed, i.e., the local lift and drag coefficients at station 1 (40
per cent chord) will be used as lift and drag coefficients for the
entire wing. Base drag coefficients are determined from base
pressures measured for the corresponding triangular wings,

The drag-reducing component of the integrated pressure-

force vector for the upper surface gives

V8
CD =§C dx*tanﬂpsinecosu
red X Py

The basc drag coefficient is

2

—)\2) tan® tan € cos a

C =C (p
‘Ubase Prase

Thus, the net reduction of the drag coefficient is

K

C dx* sine - C ( Z-)\‘?')tar:x € lcosn tan®
P P p base B

X u
This shows that the quantity in brackets shouid be maximized by
the proper choice of p and A\. From Fig. 6 it can be seen that these
should lie roughly in the intervals; .8 < p<.9, and .5< A< .6.

The above expression shows that the reduction in drag is
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greatest for large 0. This statement is qualified by the limitation
that for large 0 the flow field will be altered appreciably,

Calculations were carried out for the following values of
the variables involved: X = .5, n=.8, 0< 9 < 45°, The results
are plotted in Fig. 26. It is interesting to note that the drag re-
duction as a percentage of the flat-plate drag as computed here has
a maximum value between a = 16° and 18°. The drag reduction is
about one tenth of the flat-plate drag for 6 = 45° and 14 < a < 22°,
For a below about 11°, the thick wing has higher drag than the flat
one,

For reasonably large 8, say near 45°, the flow will be ap-
‘preciably altered due to the sharp corners of the cross section. A
cross section such as the one shown in Fig., 5 may be more success-

ful for maintaining high lift in that case.
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