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1. THE CONTINUOUS MARKOV PROCESS

1.1.0 INTRODUCTION

Since the first treatments of Brownian Motion as an example
of a continuous Markov Process, the applications of Markov Processes
in physical situations have extended over a wide range which includes
guch extremes as barometric pressure distributions and structural
responses to earthquakes.

In this part, the notion of a continuous Markov Process is
presented and described in terms of a transition probability and a
Fokker-Planck Equation. Two uniqueness theorems are presented
here, as well as a heuristic discussion of the large time behavior of
.such a process,

1.2.0 THE N-DIMENSIONAL, FIRST ORDER, CONTINUOUS MARKOV

PROCESS

The first order Markov process is a random process for which
only the first conditional probability is nceded for a complete descrip-
tion. In the case of a Markov procaess the first conditional probability
is given the rame '"'transitior probability,'' Let .Y Tepresent an n
dimensional vector whose components are 2Vi (i=1,2,...n)and let vy
represent an n dimensional vector with componsants V- The conditional
probability density for y at time t, cn the condition that y was equal to

1Y at time tl, oY at time tz, anes and ni at time t, will be denoted by

k
Pk(y,t/ly, tlzzy,ta, .o ;ky’tk)' A first order Markov process is one

for which

Pk(Y:t/ly,tl;2Y:t2; 0"-;kY:tk) = Pl(Yst/lY:tl) ) (101}
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when t > ¢, > t2 e v e >tk. Thie first conditional probability density is

I
often called the transition probability, however for convenience, the

transition probability will here refer to P._,, where

T’
Pr(y/x, tit ) = Py, t + t_/x,t ) . (1.2)

When the process is a stationary one, the conditional probabili-
ties can depend only upeon the timce diffcrences, and one may write in

this case
Po(y/x.t) = Poly/x, tit_) » (1.3)

1.2.1 THE FIRST PASSAGE PROBABILITY
’ The probability of y equaling z at least once in the time interval

from t; tot, given that vy was equal to x at time t) (where t. < t) will be

1
denoted by F{z/x, t—tl;tl)° When the time derivative of this exists, it _

will be denoted by T{z/x, t-t;5t;) so that
T(z/x, t-t,;t )=i Flz/x, t-t,;t,)
’ 1’71 ot ! IR

T will be called the first passage probability density. This
name arises from the fact that the probability of y equaling z at some
time in the time interval from t to t + dt, on the condition that v was
% at a prior time 3 and y # z for all time from t1 to t, is given by
T(z/x, t-tsty) dt.

As it is obvious that for y to get {rom the point (in phase space)
x to .the point z, it must at some time equal z for the first time, one

may formally write
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1

Pl(z,t/x,to) =£ dt1 T(z/x,tl-to;to) Pz(z,t/z,tl;x,to) ,
(@]

for t > to. For a stationary Markov process the dependence on the
initial time, t,s cisappears, and the conditional probabilities become
transition probabilities. Tkus, when the process is a stationary Mar-
kov process, and T(Z/X’tl_to;to) = T(z/x,tl;O) is replaced by T(z/x,tl)

L
I:‘,I,(z/x,t) = S‘

. dt1 T(z/x,tl} PT{Z/Z, t-tl) . (1.4)

The applications of the convolution equation given by Eq. 1.4 will be

discussed later, in Part 4 of this thesis.

1.2.2 THE SMOLUCHOWSKI EQUATION
For simplicity of notation. the integral expressed as a single
integral in =z, that is J.dz, will be used to denote an n-fold volume inte-

gration cver all the z.,

i
w 00 oo

Sdz f(z) :S S. s e e 5‘ f(z) d.zllzlz2 . v dzn.
-0 Y- ~00

Using this notation, and utilizing the joint probability densities, one

can show that for any random processes having such densities,

Pl(y,tl/x,to) = §dz Pl(z,tzfx,to) Pz(y,tlfz,tz;x,to) . (L.5)

This equation is a general form of what is oiten called the Smoluchowski
Equation. If the process is a Markov process, the conditional probabili-

ties become transition probabilities, and Eq. 5 becomes

PT(y/x,t;tD) = Sldz PT(z/x, "r;to) PT(y/z, t-7; £+ T), {(1.6)
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provided that t > v > 0. Eg, 1,6 is the Smoluchowski Equation. The
Smoluchowski Equation is used in the derivation of the so-called
Fokker-Planck or Kolmogorov Equations, which will be discussed in

the following section,

1.2.3 TIIE FOKKER-FPLANCK EQUATIONS

The Smoluchowski Equation is often used as a tool for ob-
taining the Kolmogorov or Fokker-Planck Equations, which are partial
differential equations governing the behavior of the transition probability
in a Markov Procr:ess;.k For brevity, only the name Fokker-Planck
Equation shall be used in this thesis.

As derivations of the Fokker-Planck Equations are common
tc much of the literature,** a derivation will not be given here. Given
certain assumptions, an n-dimensional, first order Markov Process

has a traunsilivn probability PT(y/x,t;to) which satisfies a forward

Fokker-Planck Equation given by
n
g 9
st [ Pply/x.tt )] = - z N Ay, t+t )Pply /=, 5t )]

{1.7)
2

ay o7, [Dy (v, t7t )P oy /x,tt )]

?fL\HAa
M:ﬁ

end a reverse Fokker-Planck equation given by

" A derivation not utilizing the Smoluchowski Equation was prescnted
by J. K. Dienes (1),

** See for example S, Chandrasekhar (2), pp. 31-33, or M. C. Wang
and G. E. Uhlenbeck (3), pp. 331-332,
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n
3 , ) N ;) ”
5 PT(y/x,t,to} ol PT(y/X,t,tO) -Z Ak(x,to) ETR PT(’y/x,t,to)
o} ko1 k
(1.8)
n n 2
+5$‘ D (xt)-—-—a————P (v/x,t;t )
2/, ki‘*™7 7o ax.axk T PRt 2
‘ i
k=1 i=l

where the Ak and Dki are to pe determined from the so-called "incre-
mental moments.”
Let y have the initial value x at time t,» and let the vector Ay,

whose components are AYk’ pe defined by
Ay = y{t_+ At) - x . (1.9}

The incremental moments will be given by the mean or expected value
of products of the form AyiAyk . v Aymu If the taking of the mean
or expected value is denoted by brackets, { ), then one can define the

incremental moments by M. . ,
1y s sdll

(x,t ;At), where
(&)

M, . (x,t_:At) = (AyiAyJ.. .. Ay S, (1.10)

13)s«0lll

or expressed as an integral,

M x.tO;At) =

i,j,u..k(
(1.11)

SdY(Vi-Xi)(YJ--xj)» ey, X )P (v /X, A )

The basic assumption used in deriving the Fokker-Planck

Equations is that the limits given by
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M. . x,t ;At)
Lim 1yjs- .k( o)

cach exist., Further. it is assumed that when the incremental moment

is higher than a second moment, that is Mi ik M , etc., this
5

i,j,k,m

limit will be zero. In cther words, it is assumed that

Lim (AY;87;8y0)

At—~0 At =0,
Lim ( AYiAYj AYkAyrn> - 0
Lt—=0 At '

etc. In this case the limits taken using the first and second incremen-

tal moments will yield the coefficients Ak and Dki’

e A
et ) = Lim M Gt sae) L (AY) (1.12)
k T At—~>0 At TAt->0) At : °
b, Gt ) 5,1 M bt a0 (Ay Ay (1.13)
ki A0 At A0 At °

The reverse Fokker-Planck Equation, given by Eq. 1.8, has
certain applications in first passage time prohlems. It is basically
the forward Fokker-Planck Equation that will be of interest here., In
C¢iscussing properties of its solutions, the term Fokker-Planck Equation

used here will in general refer to the equation given by

. i 3[A,(y, 1)P] izz 8%[Dy (v, 1)P] -
Bt BY . 2 9y, 9y; . (.14
k=1 k=1i=1 !
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Thus, any Markov process having a transition probability that satisfies
Eq. 1.7, and an initial probability density £(y), will havec a probability
density P(y,t} that will satisfy the Fokker-Planck Equation, Eq. 1.14,

and have the obvious initial condition

P(Ystl) = f(Y) ’

15

Further, if this initial condition is an n-cdimcnsional dclta

provided that the initial time is considered to be t

function,

f{y) = 8(y-x) = 6y -x;) 8(y,-%,) . . . 8y, -x ),

then P(y,t) will be equal to the transition probability,
P(y,t) = PT(y/x,t-tl;tl) R

When the Markov Process is a stationary one, the coefficients
Ak and Dki no longer depend upon time, and the Fokker-Plarnck Equa-
tion, Eq. 1.14, is grecatly simplified,

Before proceeding to applications of the Fokker-Planck Equation,

certain properties of solutions to the equation will be discussed.

1.3.0 SOLUTIONS TO THE FOKKER-PLANCK EQUATION

A number of properties of solutions to the Fokker-Flanck

* This fact may be seen by noting that the transition probability is
simply the first conditional probability, so that

Pyt = §ax ) Priy/etotyst)) -
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Equation are to be considered here, particularly uniqueness, existence,
and large time behavior. For simplicity cf notation, the FP operator

will be used, where the FP operator is defined by

n .
o dlA ly,t)g]
_ 9g k
PR Z5T T L ey
k=1 <
(1.15)
& %D, ly,. el
T2 9y, Oy. :
- v, oY
k=1 i=1 k™74

The Fokker-Planck Equation will often be considered in specific
cases where certain restrictions are placed on the cocfficients Ak and
Dki' The two dediinitions to follow will cover these cases,

Definition 1: The Fokker-Planck Eguation is stationary if the
coefficients Ak and Dki do not depend on time,
so that Ak(y,t) = Ak(y) and Dki(y,t) = Dki(y).

Definition 2: The Fokker-Planck Equation is steady if the

coefficients Al{ and Dki

(i} The Dki(y,t) are zero for i orkiless than

are such that

m + 1 (where m is an integer less than n,
0 € m < n),

(ii) The equation

n 11
z z .Dki(y,t)xixk -0

k=m+1 i=m+1}

nas as its only solution X = 0 for

all k 2 m + 1,
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(iii) The set of equations
m
9g _ _ &g
F{ - z Ak(Y:t) ayk ’
k=1

E‘?i = O0Ofork=m+ 1, m- 2,

Ve . . .on,
has as its only solution g = constant.

As in all uniqueness proofs, there are certain restrictions on
the class of functions involved. To avoid continual repatition of theae
requirements in the sections on uniqueness to follow, the restrictions
will be combined into a single definition. For lack of a better name,

a function which satisfies these will be called "well hehaved.

Definition 3: A probability density, P, is well-behaved if and

only if each of the following requirements is

satisfied:

{1) FP(P)=90 forallt> t and all y;

(ii) P = ¢ forallt> t, and all y;

(iii) The multiple impraoper Riemann Integrals
given by [dy P, [dy A 8P/8yk,
Jay b, 8%P/ay, oy, [ay P 8A, /0y, »
[ay (an /8y ) (3P/8y,), and
fdy P BZDki/Bykayi are each absclutely
anc uniformly convergent for t in every
closed interval lying strictly betweoen

t, and o;

1
(iv) fdy Ply,t)) = 1;



-10-

(v} 8P/st is uniformly continuous in y and
t for all v and for t in every closed
interval lying strictly between t and o;

(vi) The limit as ¥ ™ * @ of each of the
following functions exists and is zcro:

akP, DkiBP/Byi, PBDki/Byi.

The requirements defining a "well-behaved" probability den-
gity appear quite restrictive, however they are only slightly more so
than the requiremcnts that would be neceded for a rigorous derivation
of the Fokker-Planck Equation.

'1.3.1 UNIQUENESS OF SOLUTIONS TO TIIE FOKKER-PLANCK

EQUATION

It will be proved here that any two well -behaved* solutions
to the Fokker-PFlanck Equation having the same initial condition are
identical. This proef will be two intermediate theorems, to be

stated here, and proved in Sections 1.3.1.1 and 1.3.1.2

Theorem 1: If P is a well-behavec vrobability density, then
for allt = ty,
gdy Ply,t)=1. {(1.16)
Theorem 2: Given that Pl and PZ are each well-behaved

probability densities. Define P3, P4 and

x by

* See Definition 3, page 9.
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P; =aP + (1-a}P, , {1.17a)
P, =DbP + (1-D}P, , (1.17b)
x = Pa/Pé , (1.17c)

where a and b are any numbers such that
D<a<hb<l.
Let g(x) be any function of x, such that [or
x lyirg in the range a/b < x < (1-a)/(1-b),
g'(x) and g'' (x) exist and
lg{x)| <M,
lg'(x)| < M,
O<es g''(x) € M,
are salisflied fur some value of M and c.

In this case, the integral

Aft) = S'dy glx) Py, {1.18)
exists, and satisfies the incquality

Afty = g(l), (1.19)

with strict equality hcolding if and only if
P, = P,. Further, the derivative dA(t)/dt

exists, and
dA(t)/dt < 0, {1,20)

Uniqueness follows rc¢adily from Theorem 2. If P1 and PZ are

each "well-benaved" and are identical at t, {so that at ty» x1is 1), then

A(tl) = g{l), As A(t) can only decrease (Eq. 1.20) and is bounded below
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by g(l}, it must be g{l} for all t = tl. From the Theorem, it can be
seen that this implies Pl = PZ' This may be expressed in a unique-
ness theorem as follows.
Thcorcm 3: UNIQUENESS: Given that Pl and 132 are cach well-
behaved probability densities, having the same
initial condition, Pl(y'tl) = Pz(y,tz). Then for

all t = 1:1,
P]_(Y:t) = Pz(Y:t) a

1.3.1.1 Proof of Theorem 1:
By using the uniform continuity of 9P/8t, and uniform con-

vergence of the integral fdy aP/dt, it is possible to write

g—t 5dy P =5dy 8P /8t .

From the Fokker-Planck Equation, this may be converted to the form

G = 3A (y,t)P]
dy P = - dy 5
wlor-) Jo—5
k-1 ¢

2
RN 8% [Dy.(y,t)P]
1)) fo—zh
‘ Yi¥s

k=1 i=1

From Definition 3, it may be noted that each of the integrals
vo Lthe right hand side of Lthe above cequation is absolutely ané uniformly
convergent, and hence the order of integration may be interchanged.

By deing so, and using requirement vi of Definition 3, one sces that

" See Definition 3, page 9.
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they arc each 0, so that

d -

, it must be one far allt = t.,

Hence, as fdyP is one at time t 1

l.3.1.2 Proof of Theorem 2:

To prove this theorem, four intermediate lemmas will be
utilized.
Lemma 1: A(t) exists, and

~ 1 b 2
Al) > g) + ¢ [ ay x-1)°P,. (1. 21)

Proof: From the continuity of the P's, the bound on g(x),

and the definition of g(x) it is obvious that g(x) is a bounded,

continuous function. This, coupled with the integrability

of Py and P5, and hence P4 implics the existence of the

integral defining A(t).

If a finite Taylor Expansion is used for g(x), and the lower
bound or g''(x) (see Eq. 1.17} is used, then

g{x) = g)+ (x-Lg' (1) + 3{x-1)% c.

Multiplying by P4 and integrating leads to

cdv glx} Py = g(l) S'dy Pyt g'll) S‘dy (P3-P,)
(1.22)

+ +c gdy (x--l)2 Py-

If now Theorem 1 is applied to this, the inequality of
Eq. 1.2] is obtained.

Lemma 2; dA(t)/dt exists and

galn) H%Edy P, glx) = de a[P,gx)] /ot .

Prooi: From Lemma 1, the integral defining A(t), fdy Pég(x),
exists. By noting that
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'é'a'i;“[Pz; gix)] = g{x) 8P4/8t + g‘(x)[8P3/8’c—x 8P4/Bt] , (1.22)

one can combine the continuity and boundedness of g(x} and
g' (x) with the uniform integrability of 8P3/8t and 8P4/Bt to
show that the integral '

S‘dy 3P, glx)] /ot

is uniformly convergent. Similarly, onc can use Eq, 1,22
to show that the integrand, 8| Py g{x)] /8t, is uniformly con-
tinuous. Thus the differentiation uncder the integral sign, as
indicated by the statement of the lemma, is justified.

Lemma 3. With the FP operator as defined by Eq. 1,15,

dA(t)/dt = gdy FP [P, gix)] . (1.23)

Proof: By combining the definition of the FP operator with
the result of Lemma 2, one finds

. I A (y,t)P, glx}]
k=1

(1.24)

n

n 2 ;
2l L 9y, 9y,

k=1 i=1

As in the proof of Liernma 2, the continuity and boundedness
of g{x), g'(x), and g''(x) can be used along with the integra-
bility of terms involving the "well-behaved" probability
(requirement iii of Definition 3) to show that each of tae inte-
grals on the right nand side of kqg. l.Z24 is absolutely and
uniformly convergent. The absolute convergence justifies
an interchange in the order of integration, and the limits
stated in requirement vi of Detinition 3 shows that each of
these integrations is z¢ro. Hence,

de FP[P,glx)] - dA(t)/dt = 0.

Lemma 4: With the FP operator as define¢ by Eq. 1.15, one has

n n
FP[Pg()] = -P g () ) ) 3D (y.tox/oyox/y,.  (1.25)
k=1 i=1
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Proof: The proof of this is & straightforward substitution

into the definition for the FP operator. One must also

utilize the definitions of x and g{x), as well as the fact

that both Py and P4 will each satisfy the Fokker -Planck

Equation.

Lemmas 1-4 can now be utilized to complete the proof of Theo-
rem 2. From Lemma 1, it is seen that the integral defining A(t) exists,

and from Lemma 2, dA(t)/dt exists. Eg. 1.19 of the theorem follows

dircctly from Lemma 1. Eguality can hold in Eq. 1.19, if and only if

CS‘dy (x—l)z P4 = J,

25 seen {rom Lemma 1. As c is positive and the integrand is non-
regative, the integrand must be zero. For the integrand to be zero,
cither x =1 in which case P, = PZ’ or P, = 0 in which case P = PZ, = 0,
Thus therec is equality in Eq. 1.19 if and only if P =P,.

By using Lemmas 3 and 4, one may express dA(t)/dt as

n Il
———dﬁét) = - de Pyg'(x) Z Z 3D, (y,t)dx /8y, 8x/dy, . (1.2¢6)
k=1 i=1

Frowm the definition of the Dki as incrernental second moments, g, 1.13,
it is seen that the Dki must be glements of a positive definite matrix,
Thus, as P4 and g''{x) are non-negative, and the double sum must be

non-negative, it follows that

dA{t)

e < 0,

which is Eg. 1.20 of the Theorci.
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1.3.2 LARGE TIME BEHAVIOR OF SOLUTIONS TO THE STEADY
FOKKER-PLANCK EQUATION

In most physical problems that lead to a Fokker -Planck Equa-
tion, onc would intuitively think that the effect of initial conditions
would disappear as time went on., Such a tendency can be formally
shown in the case of a steady Fokker-Planck Eguation, but cannot
he rigorously proved. To éemonstrate this, an additional theorem
is needed.

Theorem 4: Given that P1 and 1:"2 are each we}..l-behaved* solu -
tions to a steady*:‘& Fokker-Planck Equation, and

that P1> 0. Then equality can hold in Eq. 1.20 of

Theorem 2,

dA(t)
dt
if and only if PI = PZ'
Proof: If x =1, then equality will hold in kq. 1. 20,
as A(t) in this case will be identically g(l). If
equality holds in Eq. 1,20, then by using Eg. 1. 26,
one has

<0,

n n
gdy PLgtx) Z z l)ki(y,‘c)B}n{/BykElx/ayi = 0, {1.27)
i=l k=1

But as the integrand is non-negative, it must be =zero
itself, Further as P| > 0, then P4 > 0. One also has
g''"(x} 0. Thus, Eq. 35 yiclds the result

n ‘

n n
Zz Dki(y,t} Bx/ayk ax/ayi =0.
k=1 i=l

* See Definition 3, page 9.
** See Definition 1, page 8.
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According to the definition of a "steacy" Fokker-Planck

Equation, Definition 3, this implies that
Bx/ayk=0_fork=m-‘rl, mt2,...n,
As x is defined by P3/P4, the Fokker-Planck Eguation
may be combined with Eq. 1.28 to yicld
m
dx /ot = —z A ly,t) Bx/ayk .
k=1

But, according to the definition of a "steady" Fokker-
Planck Eguation, this implies that x is a constant.
Further, Theorem 1 may be utilized to show that be-

cause
de P3 =S‘dny4:x§dy P4 ,

the value of x must be one, so that Pj = I—Ience
equality can Lold in Eq. 1. 20 if and on]y 1f2P

{1.28)

The result of Theorem 4 can now be used to show (formally)

the tendency ol solutions of a stecady Fokker-Planck Eguation to have

the same asymptotic behavior. Assume that there is at least one

solution, Pl(y,t), such that Pl(y,t) > 0. Let Pz(y,t) represent any

other well-behaved solution. As in Theorcin 2, deliae g{x) and A{t).

Then, from Theorems 2 and 4, one has

Afe) = gll)

dA(t) o

Tdt o,

witk equality holding in each case if and only if P = P,.
Rigorously, one can conclude only two facts {rom this,

these are that the limits of A(t} and dA(t)/dt exist and satisfy

I.m Aflt) = g(l),
t—=o0

Lim dA(t)/dt = 0,
t-roo

if one uses Definition 3 to show continuity of dA{t)/dt.

and

(1.29)

(1.30)

(1.31)

(1.32)
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Thus, A(t), whick is in a loose way a mcasurc of the differences
in Pl and PZ’ will decrease to a limit.

Formally, one might conclude that because dA(t)/dt can be zero

if and only if Pl = P, and the limit of dA(t)/dt is itself zero, then

Lim (Pl - Pz) = (. (1.33)
=0

Thie formal conclusion cannot be considered a rigorous proof, but
should be considered a heuristic argument.

FEq. 1.33 implies then, that solutions to the steady Fokker -
Planck Equation appcar the samc asymptotically as time goes to
infinity, provided that it is known that there is at least one solution

Pl such that Pl > 0,

1.3.3 UNIQUENESS OF STEADY STATE SOLUTIONS TO THE FOKKER-
PLANCK EQUATION

When the Markov Process is a stationary process, the Fokker-
Dlanck Equation becomes stationary,* so that the coefficlenls are inde-
pendent of time. In this case, it is often possible to find a solution to
the Fokker-Planck Equation that does not depend upon time. Such a

solution is called a stcady state sclution.

Definition 4: A steady state solution tc a stationary Fokker-Planck

1ol

Equation is any well-behaved  solution P, such that
oP /ot = 0.
It is possible to use the theorems developed thus far to prove

that the steady state soluticn is unique.

: See Definition 1, page 8.
"" See Definition 3, page 9.
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Theorem b: UNIQUENESS: If there is one steady state solu-
tion, P, to the stationary*, steady** Fokker-Planck
Equation such that
P> 0,

then P is the only steady state solution to the

equatiomn.
Proof: Assume that there are two solutions P and P, that
are both steady state solutions. As in Theorem 2, define
A(t), using /P&ti P. As both P and P, are independent of

time, dA(t) 0., But from Theorem 4, this implies

that P = PZ'

1.3.4 LARGE TIME BEHAVIOR OF SOLUTIONS TO THE STATIONARY
FOKKER-PLANCK EQUATION

In the case of a stationary Fokker-Planck Equation (one whosec
coefficients are independent of time), it would seem, on the basis of
physical reasoning, that the solutions to the Fokker-Planck Equation
would approach limits of some sort as time goes to infinity. This is
heuristically implied in the case of the stea.dy,*#c stationary Fokker-
Planck Equation where it is known that any steady state solution must
be unique.

IF'or exampie, if there is a steady state solutiorn Ps(y), then by
using the formal arguments of Section 1.3.2, one has (formally) that
for any well-behaved solution P(y,t}

Lim P(y,t) = Ps(y) (1.324)
t—m

He

" See Definition 1, page B

Al

=
Sce Definition 2, page 8
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Even when no steady state solution can be found, the fact that, for
any T, P(y,t+ T) must satisfy the stationary Fokker-Planck Equation
if P(y,t) does, may be used with the formal arguments of Section
1.3.2 (Eq. 1.33} to show (formally} that

Lim (P{yv.t+~T) - P{y.t)] = 0 (1. 35)
10

If requirement v of the delinition of a "well behaved" probability den-
sity is strengthened to make 3P/t uniformiy continuous in the open
interval from £ to infinity, then Eq. 1.35 can be used to show that

Lim B8P(y,t) _ 0
8t T

t—~oo

This implies in a formal way that P(y,t) approaches a limit as t goes
to infinity. If this limit happens to be a solutiorn to the Fokker-Planck
Equation, and is non-~zero for all y, then it is possible to continue the
formal arguments to show formally that this limit is the steady state
solution, Similarly, if this limit is zero, for all y, it can be for-
mally shown that there is no steady state solution (in the sense of
Definition 4). In such a case, regardless of the initial conditions,

the system will diverge (y will go teo infinity in probability).

If the stationary Fokker-Planck Equation is non-steady, very
few conclusions can be drawn, as neither the formal results of Section
1.3.2 nor the unigqueness theorem for the steady state, Thecorem 4,
are applicable. Such situations arise physically when there are points
or regions in phase space that are cither unattainable or "traps" so

that
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P_{y/%,t) =0 for certain values of x, certain valucs
T
of y, and all t.
A singular point in the Fokker-Plarck Equation (a y for which all of
the Dki(y) vanish) is often an indication of a "trap." For example, if
at a point y = z, all of the coefficients Ak(y) and Dki(y) vanish, then

a possible formel solution to the differential equation is
Ply,t) = 6(y-2).

If there is more than one such point, it is cbvious that there is nothing
unigue about time independent (formal) solutions to the stationary
.E‘okker—Planck Equation.

The behavior of solutions to the stationary equation, where
there is only one such "trap" is discussed by Khas'minskii (4), wherc
a2 method analogous to Liapunov's second method is used to obtain
necessary and sufficient conditions for * stability" of the Markov Pro-
cess, rlowever, in the treatment by Khas'minskii, it is assumed
that the Dki(y) arc the elements of a strictly positive definitc matrix
for y# 0. This requirement is too stringent for most of the physical
problems that utilize the Fokker-Planck Equation, and hence no dis-

cuggion of his results will be given here.

1.4.0 SUMMARY

I this section the basic idea of a continuous Markov process,
its transition probability, and the Fokker-Planck Equation has been
introduced. It has been shown that solutions to the Fokker-Planck

Equation with prescribed initial conditions are unique, and, for the
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special case of a stcady stationary Fokler-Planck Equation, the stcady
state solutions are unique.

It has been demonstrated that well-behaved solutions to the
stcady Fokker-Dlanck Equation have a tendency to converge towards
each other, in that a difference between any pair of sclutions can be
"measured,” as in Eq. 1.18 of Theorem 2, by a function of time,

Alt), which can only decreasc. This leads in a formal way, as do-
scribed in Section 1. 3.2, to the heuristic conclusion that any pair

of solutions to the steady Fokker -Planck Equation will asymptotically
behave the same. A problem yet to be solved is that of finding the
restrictions on the coefficients of the Fokker-Planck Equation for
which it can be rigorously proved that all solutions will asymptotically
behave Lhe satne,

Another unsolved problem is that of determining the possible
existence of steady state solutions to the Fokker-Planck Eguation,
Does a slalivnary steady Fokker-Planck Equation always have a steady
state solution?

Finally we come to the relation of the Fokker-Planck Eguation
ané the Markov Process to physical problems, and alsu the applica-
tion of the Fokker-Planck Equation for obtaining statistical results.
The type of system which yeilds a Markov Process as a solution, as
well as the derivation of the coefficients of the Fokker-Planck Egaa-

tion, is discussed in the following section.
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2. THE MARKCV PROCESS AS GENERATED BY

DIFFERENTIAL EQUATIONS WITEH RANDOM COEFFICIENTS

2.1.0 INTRODUCTION

In Part 1, the Markov Process was treated from the point of
view of the Fokker-Planck Equaticon alone, and no discussion was
presented treating the process itself. In this part, it will be demon-
strated that a system of cifferential equations can define a Markov
Process, anc the Fokker-Planck Equation for such a process will be
derived.

Particular emphasis is given to a discussion of the differing
results of various authors in the case of "parametric white noise."
-These differing results have led to a controversy concerning the
coefficients AK of the Fokker-FPlanck Equation, Eq. 1.14, even in
some of the simplest examples.

Among the examples given will be the general linear differ-
ential equation with "parametric white noise," and an "equivalent”
linear differential equation with no parametric white noise will be

derived.

2.2.0 DISCUSSION OF WHITE NOISE

The classical example of an n-dimensional Markov Process
is a system of differ'ential equations in which random parameters
are present and satisfy certain restrictions. These restrictions lead

to a definition of Gaussian "White Noise,

or as referred in some
literature, the "Formal Derivative of a Wiencr Process." Though

Gaussian White Noise is often only considered as being a fictitious
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entity, it is a convenient tool for representing Gaussian Noise whose
correlation time is far smalier than the smallest characteristic time
of a system being analyzed.

Consider the n first order differential equations of the form

Im
Vk‘ = ak(y.t) + z hl{i(y,t) ni(t) , (2. 1)

i=}

where Kk ranges from 1 to n, ak(y,t) and hki(y,t) are known functions
of y and t, and the n.l(t') are stationary random wvariables such that
ni(t) and nj (tl) are completely independent when t # t {for all possible
i and j). Assume further that the statistical propertics of the ni(t)
are known. In this case, if information about y {the n dimensional
;a,’ector whose components are yk) is desired at time t, and its value
at time to is known, no additional information is obtained by knowledge
of y at any time prior to t . This would not be true if there was any
correlation between the nj.{t) at two different times. Hence, only the
{irst conditional probability density 18 nec¢ded to describe the system,
anc the process is an n-dimensional, first order Markov Process.

The ni(t), which are stationary and independent of themselves
and each other at differing times, are called white noisec. Without
loss of generality, it can be assumed that they have a zero mean.
Using brackets, ( ), tc denote the expectation or mean, one can ex-

press these properties as
(n;(¢)) = 0, (2. 2a)

f’ - .
\ni(t)nj(tl))— 0 for t# t). (2.2Db)
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Thus, the correlation functions <pij(t), where
0,8 = {n,{s) ny (e sy, {2.7%)

must be zero. except perhaps when the argument is zero. If the cor-
relation function existed for zero argument, then the well-known
Wiener-Knintchine relations* could be used to show that the power
density spectrum of the noise is zero. In this case, the noise will
be considered to be trivial. If, however, one desires non-trivizal
white noise, so that the power density spectrum is not zero, then
impulse functions are necessary in the correlation function,

Thus, the correlation functions for white noise will he of the

" form

so that the power density spectrum will be a constant. From this

it is obvinus that the mean square of non-trivial white noise is infinite.
It must be noted that satisfying Eq. 2.4 is not sufficient to

describe "white noise." This is because a lack of correlation does

not necessarily imply independence. If, however, it is required that

the ni(t) be Gaussian, then a lack of corrclation does imply indepen-

dence, and Eg. 2.4 is sufficient to describe Gaussian White Noise.

ko . . . .
* These relate the correlation functions to power density spectrums

through the use of the Fourier Cosine Transform.
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2.2.1 THE CONTROVERSY IN THE DETERMTNATION OF COEFFI-
CIENTS FOR THE FOKKER -PLANCK EQUATION

As shown in Part 1 of this thesis, to calenlafe the coefficients
in the Fokker-Planck Equation, it is necessary to compute the expec-
tation or mean of the moments of the incremental changes in the Vier

Ayk. where

and the yk(t) are known. Two techniques have heen utilized so far,
neither of which is rigorous, and only onc of which vields consistent
results.

The first, as illustrated by Bogdanoff and Kozin (6), involves
a free interchange of incremental and differential changes. For
example, in attempting to calculate the coefficients Ak(y,t) in the

Fokker-Planck Equation, where

o) = Lim o (2.5)
A Y't = ""im ———— » 2-
k At—0 At

Eq. 2Jwould be used to show that for the system defined by Eq. 2.1
(dy, > = a{y,t) dt,

as the :ni(t] ezch have zero means., Thus, if one assumes that the
interchange of increments and differentials is zllowable, it would

appear that
A ly.t) = a ly,t) .

It may be noted that this is equivalent to assuming that
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Ay dyk

: k
Lim —A-t—> = <_C—1t_> 3

Ay
Lim () = ¢
At—0

At—~>0
The basic fallacy here is the assumption that such interchanges may
be done. The inconsistencies arising from such an interchange will
be pointed out in the example to be treated in Section 2. 2.2,

The second technique, though often expressed in many differ-
ent ways, always involves an integration ot the Gaussian White Noise.

This is not surprising, as Ay, is given by
t+ At
Ayk = Yk(t'lﬂ At) - Yk{t) = c Yk‘ (tl) dtl H

and the equation for yk' . Egq. 2.1, inveolves the noise terme. Mr,
Kozin (7) has pointed out that white noise may not be integrated, as
it does not exist in the mean square sense. Rigorously, if one ac-
cepts the unintegrability of white noise, the incremental changos Ayk
cannot in general be found and the Fokker-Planck Equation cannot
be obtained. Formally, however, the integral of white noise is simply
the Wiener Process, and can be treated as such. It might be noted
that Kozin, in conjunction with Bogdanoff (6}, has utilized the term
"Formal Derivative of a Wiener Process" to describe the white
noise. If the term "formal derivative" is uscd to imply the inverse
of an integration, then white noise is integrable, and its integral is
a Wiener Process.

To avoid this difficelty concerning the integrability of white
noise, one may cither ignore the fact of its lack of integrability and

use the results of a formal integration, or one may use Gaussian
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Noise whose correlation time is far smaller than any characteristic
time of the system. Physically it would seem quite reasonable to
assume that a system could not differentiate between pure "Gaussian
White Noise" and Gaussian Neoise with an extremely short correlation
time, any moxre than the naked eye could distinguish between a point
source of light and a small light source if hoth are at a great distance
frorm the observer. This is a difficult thing to justify mathematically,
and so will be demonstrated in an example in Section 2.2.2, and
postulated in the more general derivation to foliow in Section 2.3,

Approaching the problem from this latter viewpoint yields
results that are consistent with each other and physically meaning-
tul. Approaching the problem from the former viewpoint (interchang-
ing of differentials and increments) yields inconsistent results,

Both approaches yielc the same results in the case where

n

oh..(y,t)
Z by (v, t) —e— = 0,
T dyk
k=1

which takes in a large number of physical problems. It is possible,
in these cases where both viewpointis yield the same result, to change
variables to obtain an apparently different problem ifcr whick the two
viewpoints yield differing results, It is only the latter viewpoint that
vields results consistent with the variable change in these cases. The
following example will demonstrate this (see Section 2.2.2.1).
2.2.2 THE FIRST ORDER LINEAR SYSTEM WITH PARAMETRIC
WHITE EXCITATION

Because it illustrates a number of points just discussed, and
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because it has been the source of some controversy, the first order
iinear system with parametric white excitation will be discussed here.

Consider the system whose differential equation is given by
yieyta yt)- n(t)y{t) = 0, {2.6)

where ao is a constant and n{t) is Gaussian White Noisc with a corre-

lation function given by
{ n{t) n(‘to)) = 2 D8ft-t_) , (2.7)

or, as some authors prefer, nt) is the formal time derivative of a

Wiener Process, z({t), for which
{[z(t) - z(tO}JZ) =2D lt-t_I . (2.8)

From the earlier discussion, it is seen that y(t) is the result
of a cne-dimensional continuous Markov Process, From Part 1 of
this thesis, it is seen that the Fokker-Planck Equation (assuming there

is one) must be of the form

2
9P _ _ Ba(y)P . , 8°B(y)P
- Tay Tt oyl (2.9)

where the coefficients bily) and aly) are to be determined by the limits

. {Ay)
a{y) = Lim : ) (2.10)
At-0 At
- {an® -
b(y) = Lim AT e (2.11)
At—~0

If one assumes a free interchange of differcntials and increments, then
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R4
bhe may obtain the resulls:

aly) = -a_y,
(2.12)
2
bi{y) = 2Dy~ .
However, as mentioned earlier, this cannot be justified. If one utilizes
a Zormal integration of the white noise, or treats it as non-white and
then lets it approach white noise {before taking the limits indicated in

e ale

Egs. 2.10 and 2,11), he will obtain the results:

aly) = (D - a )y

(2.13)

bW)=2DY2-

As there are faults to be found in either derivation, the author
will attenm:pt here to demonstrate the validity of the latter result (Eq.
2.13) by observing the implications of the derivation, and its relation
to known results. It will first be shown that a change of variables in
the well-known Brownian Motion problem leads to inconsistencies in
the former result, and secondly it shall be shown that by using a non-
white n(t) and letting it approach Gaussian White Noise also leads to
inconsistencies in the former result.
2.2,2.1 Parametric Excitation Obtained by a Variable Change in the

Brownian Motion Problem
One of the first applications of the Fokker-Planck Equation was

the subject of Brownian Motion of free particles. In the presence of

" See for example Bogdanoff and Kozin {8).
** See for example Caughey and Dienes (9).
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no damping, the velocity of the particlee will satisfy the Langevin Equa-

tion,

= nft}, (2. 14)

&%

where n(t) is the white noise described by Eq. 2.7. The transition
probability is known to have a Fokker-Planck Equation identical to the

one-dimengional diffusion cquation,

BPl BZPI
s = D—t (2.15)

ox

and the transition probability is Gaussian and given by

P, (x/x_,t) ! [ ) } (2.16)
Xfx ,t)= ———— exp | - 4= | - .
L o 17Dt P 4Dt

If one now changes to a new variable y, where the change of

variables is given as
Yy =y, exp {-x + X - aot) R (2.17)
then one formally obtains as a differential equation for v the result
y'taytnalt)y= 0, (2.18)

which is identical to Eq. 2.6. Is such a procedure justified? The only
argument against it might lie in the differentiability of yv. However, v
can be no less differentiable than x, and thus Eg. 2.18 is satisfied to
the same degree that Eq. 2,14 is.

The change of variables of Eq. 2.17 can be used with elementary

techniques to find the transition probability for vy,
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Po{y/y,.t) =

2
[log(y/y )+ 2 t] T+
o ° } (2.19)

1
—_—_— exp{—
vy4rDt Iy! 4Dt

for y/yo > 0 and zero for y/yo < 0, Similarly the Fokker-Planck Equa-

tion in the new variable can be found to be

2 2
AP 8{2,0 - T))ypz A" Dy 'PZ

2
= t+ o (2.20)
gt 0 2
y ay

A direct comparison of Eq. 2.20 with the resuits obtained by
an integration of white noise (see kqg. £2.13) shows they are identical,
and a comparison with results cbtained by interchanging of differen-

tials and increments {(see Eqg. 2.12) shows a distinct inconsistency,

2ole2.2 Almost White Parametric Noise:

Consider the system defined by the differential equation
y'+taytnlt)y=0, (2.21)

where the nf{t) is not white, but a Gaussian variable with zero mean,

and an autocorrelation function ¢{t) where
et) = (n{t+ s)n(s)) . (2. 22)

It is possible to solve explicitly Eq. 2.21 for y, and if its initial value
is Y, at time zero, then the Gaussian character of log (y/yo) can be
used to find the conditional probability density for y {there is no transi-
tion probability in this case), Thus, if one denotes by u{t) the variance

of log (y/yo) , then
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t t t tl
uft) = 5. S. ga(t1*t2) dt1 dtz = 2 S.dtl\g dt2 cp(tz), (2. 23)
0 0 0 0

anc the conditional probability is

[Log (y /y Ja t]

1
Ply/y_,t) = —————— EXP{ - ) (2.24)
© YZau(t) Iyl 2 uft) ]

for y/yo > 0, and zero for y/yu <0,
A direct substitution shows that this conditicnal prooability

density will satisfy the differential equation

a_P “a[a() = %ul{t]]y P N

8%{1u' (t) y° Pl
ot ay

Byz

(2. 25)

As discussed in Partl of this thesis, it may be noted that for
times large enough to make the currelatiovn, @(t), negligible, this
conditional probability density becomes a transition probability.

Thus, one might say that Eq. 2.25 represents a Fokker-Planck Equa-
tion for the process, when times are much larger than the correlation
time.

For purposes ol comparison, let the correlation function, ¢(t),

be cxpressed as

o(t) = 2 Dyt) , (2.26)

where Y(t) is "almost" a unit impulse. To be more specific,
co
SI gfe) dt = 1
-Q0

and if el(t) and ez(t) are deiined by
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(e8]
e (t) = z&: L)) dt (2.27)
t

1
ez(t) =1 S; el(tl) d.t1 s (2. 28)

then there is a "correlation tirne," tc, such that for t>> tc, one has
Iel(t) <<,
and
< < 1.
lez(t)i 1

By using the definitions of Egs. 2.26-2.28, one can skow that u(t) and

'u' (t) are given by
uft) = 2Dt [1 - e, (t) ]
w'(t) = 2D [1 - e (1) ]

Thus for t much larger than the correlation time, tC, the condifional

probability density, P(y,L}, becommes a transition probability given by

llogly/y )+ a t] ©
1 O o)
P (y/y sty = ——— exp{-— } , {2.29)
TH o vazDt lyl tDt

when y/yo > 0 and zero {or y/yo < 0, Further the Fokker-Planck Equa-

tion for this transition probabilily is giveu by
9P 8la_-D)P.. 9°Dy°P
© T T

T _
5t 2y ¥ > ' (2.30)

The results of Egqs. 2.29 and 2. 30 are identical to those found for white
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noise, when the coefficients in the Fokker-Planck Equation are based
on an integration,

It should be pointed out that,in the example just discussed, no
characteristic time of the system arosc. Thais is not true in general.
Similarly, in general, the definition of an "almost white" function
would have to be adapted to suit the problem. However, the main
notion of an almost white function remains as one for which the cor-

relation time is small.

2.3.0 A GENERAL EXAMPLE OF AN N-DIMENSIONAL MARKCV
PROCESS

As discussed in Section 2.2.0, the system of n differential equa-

tions, given by

Lya]

Ykl = ak(Y-t) - z hkl(y:t) nl(t) » (2. 31)
i=1

where k runs from cne to n, ak(y,t) and hld('y',t) arc known functions of
y and t, and the ni(t) are Gaussian Wkite Noisc having correlation func-

tions
(ni(t) nj(t1)> = ZBiJ. B(t-t)} , {(2.32)

cefines an n-dimensional Markov Process. The Fokker-PFlanck Equa-

tion for this process will be given by Eq. 1.14, rewritien here as Eq.

£.33,

-

I n n 2
__EE-:_)= _Z 3Ak(y,t}P Z S\ 8 Dki(y,t) P (.33
at Byk 2y aykay_; ' :

k=1 k=l i=1

o~
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it will be shown here that the cocfficicnts Ak(y,t) and Dki(y,t)

are given by the relations

I m Im

' S‘ 8h, .(y,t)
Aly,t) =a (y,t)+ Z Z /, Brjhir(v_,t) ——J———ayi ) (2. 34)
i=1j=1r=1
and
m m
Dp;lyst) = _Zz Brj o (yst) hkj(y,t) . (2. 35)
j=1 r=1

Some authors in deriving the coefficients for the Fékker-Planck Equa-
tion, have found Ak(y,t) to be simply ak(y,t), as discussed in Section
2.2.0. The effects of such a result were discussed in that section,
-and will not be further treated here. Similar results to those given
by Egs. 2.34 and 2.35 were found for simpler problems by Dienes (1},
Caughey and Dienes (9), and Leibowitz (10). Each of these authors
used a different approach to obtain their result.

Using summation convention, so that repeated indices imply
a summation over all possible values of the index, one may combine
Egs. 2.33-2.35 to give the Fokker-Flanck Equation |

da, (y,t)P 8h, (y,t)
L) SO S S N N (y,t)[_lfl__?__}p
ot Byk rj ayk ir Byi

(2.36)

82

+ B, mm—a—
rj aykayi

[h,(v.t) hjk(y,t) P] .

For some purpeses, it 18 convenient to combine the second and third
terms on the right hand side of Eq. 2. 36, and write the Fokker-Planck

Equation as
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op 8 [ak(v,t)P] a [ | a[hir(y_’t??h-

T o K B2 dh ({y,t) - i o , 2.27
ot oy rj By, 1 kJ(Y ) oy, ] { )

k i

where summation convention is again applied.

The derivation of the Fokker-Planck Equation for the system
of Eq. 2.31 will be effected by first calculating the incremental mo-
ments when the noise terms, the ni(t}, are Gaussian but not white.
The results obtained from this arc unambiguous, and cithcr proccdurc
discussed in the section concerning the controversy of the coefficients,
Section 2.2.0, will yield the same results. Secondly, the noise will
be alloﬁed to approach Gaussian White Noise, and the results of this
limiting procedure will be used to find the limits defining the Ak(y,t)
‘and the D, ly,t).

An alternate derivation, utilizing "crossing times" may be
found in Dienes, Referenge (2). It has the advantage of deriving the
coefficients without any calculation of incremental moments as is

done in most such derivations.

2.3.1 ALMOST WHITE PARAMETRIC NOISE

Consider the n + m dimensional, first order Markov Process

~ defined by the system of equations

m

yk' = ak+z hki n, fork=1,2,...n, (2. 38a)
i=l

’Tni'Jrni:di(t) fori=1,2,...m, (2. 38Db)

where the ay and hki may be functions of y and t, and the di are White

Gaussian Noise such that
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(di(t)dj(tl)) = 2 Bij{)(t——tl) . (2. 39)

As the time constant T goes to zerc, the ni(t) will approach white noise.
Standard procedurcs will yield the Fokker-Planck Eguation for this sys-
tem with T # 0, and an identical result will be obtained by either of the
two procedures discussed i Section 2.2. For this reason, the deriva-
tion is omitted, and only the result is given here. Using summation
convention, this is

oP _ -9 {ay thy ;0 ) P] N 3n;P) 3. %

T . (2. 40)
ot Byk T on, -2 Bniank

The expectation or mean of a function of y, n, and t, is given

by the n + m fold integral

<f(Y;11,t)> = S§.°°°'E f{y,n,t} deldy2, .d“y'ndnldnz. dn__ .

jo4!

If Egq. 2.40 is multiplied by f(y,n,t), and the resulling cquation is inte-
grated over all y and n, then integration by parts can be formally used

to derive the equation

d{f) _ ,8i\, . af
3 = (gt ey v hygmy) Byk>
(2. 41)
] Diy , a%

of
-2 (et =2 e
L T ik

It is this equation which will be used to derive incremental moments,
Eq. 2.41 and the Gaussian nature of the n; will be used to show
that when g(y) is a known function of the Vi satisfying certain require-

ments, then for sufficiently small 7 and At, one has
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(2 ap~2)
gt-i-At(gt=<a 8 . B n O n . 08
At k c'}yk rjir dy, " kj Oy, “t
_ i k
(2.42)

+ 0(1) exp (-At/T)+ 0{1) '1*é + 00) At ,

where the subscripts on the brackets denote the time at which the mean
is taken, and the terms written as 0(l) denote bounded terms. This
equation, Eq. 2.42, will be derived in Section 2.3.2.

Once Ec¢. 2.42 is derived, the coefficieris in the Fokker-Planck
Equation follow naturzally. For if the tirmme cvonstaal 7 is allowed Lo ap-
proach zero, thus making the nk(t) approach those of the original prob-
lem defined by Eqs. 2.3l and 2, 32, then one {inds that {or the original

problem,

(8) s e (B),

J , ] J
X =(a.—-‘g-—1-Bh h g>t

x Byk rj ir Byi kj Byk

+ O(1) At .

Herce, if the value of the Vi at time t is known, so that the brackets
may be removed when followed by the subscript t, one has, after tak-

ing the limit as At goes to zero,

Lim 84y ap8 _ 9% . p 1 _9° g

At—=0 At " %k Byk rj ir ayi hkj Byk (2.43)

If onc denotes Ayk by the expression
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Ayk = Yk - Yk(t) = Yk(t + At) - Yk(t) 3
then Eq. 2.43 can be used with a g(y) given by
gly) = Ay, AYJ- Ay, » - - AV,

to show that

Ak(y,t) = g_.tl_l;no —=T— T A + Brjhir ———5—?—1— s (2. 44a)
Ay, Ay
Dki(y’t) =A]1.:.4_1>r6:| —xT — ~ ZBrjhirhk_j , {2. 44b)

and all limits of higher moments, such as

(By; by, By;)
At

Lim
At—0
will be zero. Lhus one finds the coefficlents and the Fokker-Planck

Equation as given by Egs. 2.34-2.37.

2.3.2 DERIVATION OF EQUATION 2,42

The basic assumption utilized for this derivation is that well-
behaved functions of y and t have a mean square that is bounded for
some small interval of time following the application of iritial condi-
tions. To be more explicit, the following definition is given:
Definition: A function of y and t, f(y,t), is said to be MSB (mean

square bounded) if there exists a bound A and a time T,
such that for

and

one has



-4}~

(y,0)) <A,
provided that y has a finite initial value at t. Both
A and Ty may depend upon t , the functional "form of
fly,t), and the initial values of y.

it is assumed now that g(y) is sufficiently well behaved so that each of

the following is MSB (in the sense of the preceding definition):

i. gly).
ii, A
iii. hki’
iv. The first five partial derivatives of items i, ii,

znd iii, with respect to the variables t and the Vit

V. Praoducts of each of the preceding items up to andé
including five terms,

This assumption is not unreasonable, in that the only g(y)' s for which

it need holc are polynomials in y. In general the ay and h‘ki will de

well-behaved functions of the y and t, thus it would be an extraordinary

gitnation if the assum ption were not satisfied.

The proof to foliow will be divided into seven parts.,

(1) By first noting that the variances of the n,(t) in the problem
defined by Egs. 2.38 and 2.39 are of the order of 1/7, or

(0% =oty/r

and utilizing the Gaussian nature of the n; terms, one may
state that if f(y,t) is M5B, then for sufficiently small t-t
(where t, is the initial time at which finite initial conditions
are applied) and sufficiently small 7, one has

(i(y,0) n,) = 0(1)/7% (2. 45a)
{fly,t} n, nj)z o(1)/7 , (2. 45b)

(£(y,t) n, n, :r_k} = 0(1)/73/2, etc. (2. 45¢)
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If g(y) satisfies the basic assumption, then each of
the following is MSB:

i. gly)
iil. g, ly,t) = hsragi/ays .

Further, if G(y,t) is used to denote either g(y), gi(y,t)
or gri(y,t), then each of the following is MSB:

iv, a,j aG/Byj,

. h. 98G/oy.,
v Byp 2670y,
vi. 9G/8t .

Each of the above Zollows from the basic assumption
following the definition of MSB.

Using the mean equation, Eq. 2.4l, one may write
d 1 - .
5 (n G) + = (n G) = (n_8G/ot)

+ ¢ -

b {ny a, BG/Byj> : (nV n, hy . BG/ayk> .

Thus, using the results of Bgs. 2.45, this becomes
d 1 _

TO (nvG> — <nvG> = 0(1)/7 ,

for sufficiently small t-t, and 7. Thus, for sufficiently
smmall L-LO and 7, one has

<nvG>t = {n,G)yq exp[-(t-to)/'r] ,

or, using the finite initial conditions, simply
(n, G), = 0{1),

for sufficiently small t-t, and T,

As in the derivation vf Eq. 2.47, uvne may write,

d{G)
A= 0(1)

(2. 46)
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(6)

(7)
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by utilizing Eqs. 2.41, 2,45, and 2.46. This then leads to the

result

(G), = (G)t0 + {t-t )0(1) , (2. 47)
for sufficiently small t—to and 7.

Similarly, by using Eqs. 2.4l, 2,45, 2.46, and 2.47, one can
show that

' 1
(nyn_ Gy, = By (G), +0(1)/72 _
| e (2, 48)

+0(1)t-t ) /7+ 0(1) {exp [-2(t-t ) /7] } /7,

for sufficiently small t-to and T,

In a similar manner, bul now including the results of INg, 2.48,
one can show that

(an)t = Biq('hki aG/ayk)_to + 0(1)7%
{2.49)
+ {t-t_)0(1) + 0(1) exp[ -(t-t )/T] .

for sufficiently small L~LO and T,

Finally, by combining the results of Eq. 2.4l and Eqgs,
2.45-2,.49, one arrives al the resull

- ag a og |
= + (t-t —=+ B . h, —— h .=~
(&) t (g t, (-t ) <ak Byk rj ir ayi 'K Byk) t,

1
$0(1) (t-t ) exp [-(t-t )/T] + 0(1) (t-t ) T2
+ (1;-t0)2 0(1) ,

for sufficiently small t-t_ and 7. If one replaces t by t + At,
and t, by t, this yields E%l. 2,42, as desired.
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2.4.0 A LINEAR SYSTEM WITH PARAMETRIC WHITE NOISE
Consider the (n+ 1) th order linear differential equation given

by

k . .

dy _ _

[bk+ ak(t)] — = ad(t) + £{t), (2.750)
dt

where the bk are constants, f{t) is a deterministic signal possessing a

power density spectrum, and the a(t) are Gaussian White Noise such

that
(a,it)) =0, | (2.51)

(ai(L)ak(t1)> - ZDikﬁ(t-tll) . (2.52)

The Fokker-Planck Equation will be utilized to analyze the mean
and mean square of y, as well as the autocorrelation function. In par-
ticular, the mean will be determined by an {n + l)@ order &ifferential

equation,

& Ny +i (b -D a®(y)

oL k Prn) —TR (2.53)
=0

= f(t) -D 2
dt ds™ dn

" and the variance will be determined by a system of +(n+1)(nt2) first
order linear differential equations with constant coefficients. Hence
the stability of the mean and variance can be ascertained by the stand-
ard technique of finding the sign of the real part of the roots of an
(n+tl}th and a %(n+1){n+2)z}_1_ polynomial. It is the mean equation, Egq. _
2.53, that is the basis for the controversy discussed in Section 2. 2.
Further, it will be shown that when the system is mean square

stable, it possesses the same mean and the same "average" power
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density spectrum as the output of the linear system,

dn+1X = k
e +z b - Dy )? = £(t) - Dy_+ alt), . (2.54)
k=0

wherc a{t) is Gaussian White Noise, with an autocorrelation function
of the form 2A6(t), and the constant A is determined by the coefficients
of the original differential equation and the Dkin This "equivalent"

system can be analyzed using standard Fourier technigues.

2.4,1 THE FOKKER-PLANCK AND MOMENT EQUATIONS
The differential equation for y, Eq. 2.50, can be expressed

as n first order differential equations by defining ¥y a8

yk:——E' k:o,l,Z,nuo, n. (2'55)

Thus one may write

yk' = Vipp fork=0,1,2,. . .,n-1, ' (2.56a)
1

v, = -z (b, + a, ()] vy, + aglt) + £() . (2.56b)
k=0

“As described in Section 2.1.0, this represents a Markov Process in
n + 1 dimensions, and utilizing the techniques of Section 2.3, one can

write the Fokker-Planck Equation as
n-1
ap _° 8y 1 P) 0

= - )P -
ot oy oy I:
k=0 k n

k i Yk dn

ANl

(b, - D P-D P:l

0
(2.57)

{[Z z Pri¥rYi” 22 Ddgvk+ Ddd:lp} o

Yn k=01i=0 =0



to solve for the probability distribution, it can be used to determine

some of the statistical properties of the Ve In particular, if the ex-

n

pected value or mean of a function of the Vi M(yo,yl, . sy ), de

desired, where

(M)=SS‘. . e ogMdeodyl. cedy

then by multiplying the Fokker-Planck Equation, Eq. 2.57, by M and

formally integrating by parts, one obtains the equation

, n-1

détM) = z <V1<+1 By > t [1(t) - Dy, ] <8M>
k=0

n
“z (bk“Dk)<Yka >+Ddd<a ’

k=0 Byn

n n ' n 5
+Zz 1k<YYkaM) "zz de<ykahg>n
k=0i=0 Yn k=0 ayn

2.4.1,1 The Mean of y(t)

By setting M = Vi in Eq. 2.58, one obtains the result

d( Yk>

- " ey fork= 01,2, 0 un,

&y ) >
o Z (By - D) {yy + £} - Dy
k=0

(2.58)

(2.59a)

(2.59Dh)

If these two equations, Eqs. 2.59, are combined, they yield the equation

n”< > d<y>
Z(b Do) —1> = 1(t) - D_.

(2.60)
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This cquation for the mean is quite similar to the original differential
equation, Eq. 2.50, with the basic difference lying in the shift of the
coefficients due to the an‘ terms. When the noise term in the coeffi-
cicnt of the ncxt to highest deorivative, an(t), is mero then the equation
for the mean is identical to the original equation without the noise
terms. It is this shift in the coefficients that has played a major role

in the controversy discussed in Section 2.

2.4.1.2 The Variance of y(t):

Let u,, be defined bythe equation
Wi ™ Yy © <Yiyk> - (yi>(yk> s (2.61)

so that u, , represents the variance of Vier As u., = u, . and both k and

ki ilk ki

i will take on all integer values from 0 to n, there are a total of
%(n+1)(n+ 2} of the Usye These may be found by utilizing the moment

equation, Eq. 2.58, with M given by

If this is done, one obtains

W oy T By, fOT i# 0 k#En,

(2.62a)

n
F— = %iln Z (b -D_, ) u, fori#n, (2. 62b)
k=0



du n I n
1 nn _
5 @& " Z (b D) ukn*z ZDmulk
k=0 x=0 i=0
(2, 62¢)
E n n
: Z Z D; (e (y;) ZZ Dk ¥ * Bag
k=0 i=0 =0

Equation 2,62a represents In(nt+l) cquations, Eq. 2.62b represents n
equations, and Eq. 2.62c represents one equation, giving a total of
L1{nt1)(nt2) equations for the same number of unknown uye In principle,
Egs. 2.39 could be solved for the means, and the result uscd in Eq.
2.62c to lead to the solution for the Uspee In fact, this can be very
complex, however, standard Laplace techniques can be used to test

for slability of the mmeans and the ER If both arc stable, then the

mean squares, (ykz) , given by
2y _ 2

will also be stable.
Tre variance of vy, Uog? can be used with the well -known Cheby-
shev Inequality to give a conservative upper bound on the probability of

y differing from its mean by more than a given amount,

Probability {ly - (y) i2c) < u.(m/c2 .

2.4.1.3 Autocorrelation and the Power Density Spectrum:
Ofter. of interest in the analysis of tirmme functions is the time

average autocorreclation function {henceforth time averages will be
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by a bar over the guantity, } given by
t +T
T(7) = yi{t)y(tt7T} = Lim T i yit)y(ttT)dt , (2. 63)
T oo
o

and its Fourier Transform, often calied the power density spectrum.
In a system of the sort being discussed, however, the time average
correlation function and the power density spectrum (if they exist),
are random functions. In fact, for the system being discussed, the
limit indicated by Eg. 2.63 does not exist in the normal sense of a
limit. In many instances, the stochastic correlation function, R(T),

where

R(T) = (y{thylt+T)) , (2. 64)

is used. To eliminate the effect of initial conditions, either it is as-
sumed that they are applied at -, or t is allowed to approach infinity.
If all inputs are stationary, this leads to a possible meaningful result,
and further if the process is ergodic and the time average correlation

function exists, then
R{(T) = T(T) .

To avoid difficulties in having an "autocorrelation function”
that is either a random variable or a time function, the time average
of the stochastic correlation function will be used, and denoted by

Ra (T) where

R, {7} = Rir) = {y(tly@t+7)) (2. 65)
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If the time average autocorrelation functivn exists, and the averaging
processes can be interchanged, this will cqual the stochastic average

of the fime average correlation function,
R_(1) = {T{7) = {y({thylerT)) .

Thus, the Fourier Transform of Ra(’r) will be called the average power
density spectrum, as it will represent the stochastic average of the
power density spectrum (if it exists). For a stationary, ergodic sys-
tem (which will occur if f{t) in Eq. 2.53 is constant) the "average power
density spectrum" will be identical to the usual notion of a power density
spectrum.,

Assume that initial conditions are applied at the time to’ and
that T 2 0, In this case, the stochastic autocorrelation function for

tEt is given by
(y(t)y(t—!-?')} = SSKOZO PT(x/z,T;t)PT(z/u,t-tO,tO) dxdz, (2.66)

wherec the double integral represents a 2(ntl) fold integration over all
the xi and s the PT represents the transition probability, and the
initial conditions are v, T uy at time t, In a manner similar to the
generation of the equations for the mean and variance, it is possible

to show that for L2t _, 72 0, {yt)yi+T)) = (yo(t)yo{t‘rT)> =
t+T

(yo(t))S; H_(br7-t,) [£6) - D . ] dt

nx 1

(2. 67)

n

> Z (y (B)y () Hy (),
k=0
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where the H. {t) are solutions to the eguation
k

ntl

"y ) S din{t)
(b . —_—— = 0 , (2. 683_)
n+]_ dtl
with the initial conditions
din(t) p {0 for k# i
[ dti =D = 1 for k=1 . lz.f)Sb)

The form of Eg. 2.67 will be particnlarty useful for the com-

parison with an "

equivalent” system. As it stands, it is not partica-
larly useful for evaluation of the correlation function, for one must
first calculate the mean, (yo (t)), and also the cross moments,

<Y0(t)yk(t)> , to obtain results.

2.4,2 AN EQUIVALENT SYSTEM

Consider the system represented by the differential equation

dn+1 % = dkx ’
EEIFT' + z (bk - an) gt"]:'c_ = f(t) - an + a—(t): (29 09)
k=0

where the b Do an, and f{t) are all as defined in the original sys-

k?
tern of Egs, 2,50-2.52. aft) is Gaussian White Noise, with zero mean,

and a correlation function given by
(alt) att,)) = 2 D8t-t;) . (2. 70)
As in the original system, ecuations for the mean and variance similar

to Eqs. 2.59 and 2,62 may be derived for the x, , where

dkx
X = —

k dtk

for k=0,1,2,. . . n,
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The mean equations for the X will be identical to those for the Vi

Eqgs. 2.59, so if they have the same initial conditions, one finds that
(%0 = {y) (2.71)
Similarly, if one defines Wy by
Wi]’.’i = <Xixk>- <Xi><xk> L) (29 72)

then it can be shown that the w,, will satisfy Eqgs. 2.62a and 2.62b
with the u replaced by Wi Only the equation corresponding to Eg.
dw
i . .
2.62c, that for I will be different.

Further, one can show that the autocorrelation function,

(x(t x(t+ TY) , will be given oy

(x(e)x(t+T)) =(x (t)x (t+T)) =
tt7

(xo(t)>S; Hn(t’r'r—tl) [f(tl} - an] dtl (2.73)
-rz (xk(t)xo{t)) I—Ik('r) s
k=0

where the Hk{t) are defined by Eqgs., 2.68. Thus, when the initial values

of the X and ¥, are identical, so that Eg. 2.71 holds, one may subtract

Eq. 2.73 from Eq. 2.67 to obtain

{ylt)lylt+7)) ~ (x(t)x{t+T)) =

n (2. 74)

- W, I, {t) .
z (uko 3:0) k( )
k=0
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If the time average of Eq. Z.74 is taken, then one obtains

(ydyierT) - (x{t) x(t+T)) =
(2.75)

In
DR WENCE
k=0

It will be shown that when the original system has a bounded mean
square, then it 1s possible to choose a value of D tor which Ifg = m
for all k, so that in this case x and y not only have the same mean,
but have identical average power density spectrums.

If the criginal system has a bounded mean square, then the
means, the Uy and the W must ali be bounded., As the derivative

of a bounded time function must have a zero time average, one can

average kKqgs. £.5Y to snow that

(yk> = 0 for k=1,2,...n, (2. 76a)

{y» = (y,) = [ft) - Dy 1/(b_-D_) . (2. 76b)

T'hese equations will alse hold with Vi replaced by X o
Similarly, if the time average is taken of Egs. 2.62a and 2,.62b,

one obtains the result

Ul -+ ui+1,k =0 fori#n, k#n, (2.77a)
n

1:114_1’n —z (Dk - an) Uy = 0 fori#n. {Z.77b)
k=0

Eqs. 2,77 will also hold if the u,, are replaced by the w., « When the
mean square is stable, Eqs. 2,77 will represent 3{ntl)(n+2)-1 indepen-

dent equations for the 3{(n+1){n2) unknowns, so that they may be used
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to solve for the u. in terms of u_, » giving

Use = S U 0 . (2.78)

and as Eqgs. 2,77 also hold for the w., s one has

Wik = €k Voo ° (2.779)

Thus, if D is chosen such that y and x have identical time

average variances, Uio = Yoo

with Eq. 2,75 to yield

LEgs. 2.78 and 2,79 may be cuombined

Cylt)y(trT)y = (x(e)x(ttT)) . (2.80)

To summarize, it can be said that the two systems defined by

n

dn—l*l dky

7 +z (b +a ()] —F =aylt)+ £(t),
dt o dt

and
It

+1 ke
d¥ dx _

I Z by D) —3¢ = 20 F £6) - Dy,
dt o dt

where the ak(t) and a(t} are white noise such that

(P) = (yPa)

have identical means, identical average autocorrelation functions, and
hence identical average power density spectrums. If f(t) is a constant,

then the twn aystems will also have identical power density spectrums,
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2.4.3 EXAMPLE: THE SECOND ORDER LINEAR SYSTEM WITH
PARAMETRIC WHITE EXCITATION

Consider the system defined by the differential equation

-i+ b+ a)i0)] S+ [w 2+ a ]y =10+ a6, (2.81)
dt

where a.l(t), ao(t), and ad(t) arc Gaussian White Noise such that
(ai(t)ak(tl}} =2 Dik 6(t-t1) .

This is a specific example of the general linear system oi Eg. 2,50,
Thus its Fokker-Planck Equation can be found by using Eq. 2.57,
and similarly the means, variances, and equivalent system can be

found by using the earlier results of this section,

2+4.3,1 The Mean;
As in the general case, the mean, (y), will satisfy the dif-

ferential equation
4
YY) 4o - J_L . ey -
2 F (b - Dy 1 + (W DEOKY) = £(t) Dig -

Hence the mean will be stable if and only if

2

b>D and W > D

11 10 °

2.4.3.2 The Variance:
The equations for the Ui where the u;, are defined as in the

general case by

ik © <Yiyk> = (Yi> <Y1{) ’

are given by
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00
s
du
01 _ 2
—ar— = Wy - W -Pphigg - (b-Pypugy .
dayy 2
1 . (wE- - (b- :
=g~ © ~(w,-3Djg)ugy - (b=2Dyq)uy g ¥ Dyqug,

+ D00<Vo>z t2Dp; (¥ (v + Dy (V1>2

"2Dgo(Yo) - #Pg Yy T Dygq -

Standard techniques, utilizing Laplace Transforms, yield three inequali-
tics that are necessary and sufficient for the stability of the Ul (having
once established stability of the mcans, (yk) ). It is possible to use

these inequalities, along with the physical requirement

2
D11Pg0” Po1 -

to show that stability of the variance occurs if and only if
b - 2D11> 0,

and

2

(w

- Dy} (b - 2D} > Dy -

2.4.3.3 The Equivalent Systemn:
As in the general case, this system will be equivalent, in the

sense of the mean and the average power density spectrum, to a system
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:E ( I I) dt ( “I} ( ) ( ) ]j L] Zu 82
~[' [)--I) ‘!’ W D X = a t f t D ( )

where a(t) is Gaussian White Noise such that
(aftlalt)))= ZAB(t-t)) ,

with A to be determined as follows.,

Liet the constants m, FOO, and Fll be defined by

£) - D,
=
2 >
v - Dig
F = [£t) - F(e)] 2
T3z
Fip= Ixl™ -

In thie case, A will be given by

(>-Dy))(w 2-Dy ) 5
A= (b-2D. )(w 2-D. )-D (PooFoot PFiyt Pag-2Pgemt Pgom™)-
11/ (%4 ~P1g)-Dog

(2.83)

Thus,if the mean and variances are stable {Secs, 2 4.3,1 and
2.4, 3 2), and A is chosen so that it satisfies Eq. 2.83, one finds that

an "equivalent system" for the system defined in Eq. 2.8l is given by

Eq. 2.82,
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2.5,0 A NONLINEAR EXAMPLE: THE MAXWELL DISTRIBUTION
Assume that there is a system of N identical particles whose
coordinates are e and momenta are P’ such that the potential energy
is a function of the Q. alone, V(q). If all particles are subjected to a
damping force proportional to the velocity and each particle is further
subjected to a random force that is Gaussian and white (as in Brownian

Motion) then the equations of motion will be given by

dp,
kK _  9V{qg) _
W@ T T T, b p_+ nlt), (2.84)
da
e 1
& " Pk (2. 85)

‘where the nk(t) are Gaussian White Noise such that

0 for i#k
(ny (thn, (L)) = (2. 86)

2D6(t-tl) for i = k.

As described in Sections 2.1 and 2,3, this system comprises
a continuous Markov Process of order 2N, and will have a Fokxker-

Planck Equation given by

N
a(p, P) 2

T o) {F et R vaelr D TR L e
ol I k U op,

If the potential energy, V(qg), increases rapidly enough as the

q, go to infinity to make the integral

f(a) =S‘g .. gexp [- aV{q)] dqldqz. . e qu (2.88)
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converge for positive values of a, then a possible steady state solution
to the equation will be given by
b 2 bmV{g)
exp ['Eﬁ"sz T DB |
P= k=l ) : T
£(bm /D) (27D /b)2N

. ‘ (2.89)

_When the potential energy V(q) is such that the integral defining
f(a), Eq. 2.88, converges for positive a, and further V(q) is infinite
for no finite value of g, then Theorem 5 o.:E Part 1 ofthis thesis can be
used to show that this steady state solution is unique. When there are
forbidden regions, suc_h that V(q) may go to infinity, modifications in
the uniqueness proof are necessary to rigorously show that Eq. 2.89
represents the only steady state solution. However, if the potential
is considered to be very large for certain values of the g, so that they
are not forbidden but are highly improbable, then the uniqueness proof
may be used.

From the form of the steady state probability density of Egqg.
2.89 it is obvicue that the momenta and displé.cements are independent.
Further, the probability density for the momenta alone is seen to be

the well-known Maxwell distribution.

2.6.0 COMMENTS
In this section the Fokker-Planck Equation has been derived

for the system defined by the set of differential equations

I

yk' = ak(y,t) + z hki(y,t)ni(t) fork=1,2,...,n ,
i=1

where the n.{t) are Gaussian White Noise. For the case where the n, (t)
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are not white, but simply Gaussian produced by the passage of white
noise through a linear filter, then a Fokker-Planck Equation can also
be derived, However, the new Fokker-Planck Equation contains not
only t and the Vi as independent variables, but now also the n {and
perhaps their derivatives).

As an example, consider the equaticn

a? o d '

S+ 228+ [1+nt)]y=0, (2. 90)

qte dt

t

where n{t) is Gaussian White Noise. As in Section 2.4, if one defines

Vo =Y and v, = dy/dt, then the Fokker-Planck Equation for the prohahil-

ity density P(yo,ylgt) will be of the form

y. P) ‘ '
op _ o) 9 2 3’p
5% - 5 - By, [(yo + Zzyl)P]+ Dy —5 - {2.91)

Though this equation cannot be readily solved, it can be nsed to find
equations for the moments as shown in Section 2.4.1. 1In particular,
this is a special case of the example treated in Section 2. 4.3, and from
the results of that section it is seen that the system is mean square
stable if and only if-z > 0 and D< 1, |

Now, if n{t) is not white, but the result of white noise passed

through a filter, such as

where d{t) is white, such that
(d(t)d(tl» = zna(t-tl) ;

then the process bhecomes a three-dimensional Markov Process (if
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the filter had been second order it would be four dimensional, etc.),
and associated with the three-dimensional probability density

P(yo,ylan;t) is the Fokker-Planck Equation

op 2y P) a

5t = ayo - 8V1 [(YO+ ZZY1+ nYO)P]
(2.92)
2
1 8 D #“P
T m Pt T

T an

This equation not onl.y' cannot be. readily solved, it yields no useful
moment equations similar to Egqs. 2.59 and 2.61 because of the pres-
ence of the term a(nyub’)/ayl. ‘I'hus, the obtaining of the Fokker-Flanck
Equation in this case is of dubious importance.

One unsolved problem is thus that of eliminating the n depen-
dence from Eq. 2.92. As the integral ot P(yo,_yl,n;t) over all n will
yield a two-dimensional probability in Yo and Vi (if P is the transition
probability, then its integral will be the first conditional probability
in the variables Vg and yl), an integration of the equation might seem
worthwhile. However, the presence of the term B(nyop)/ayl again
manages to complicate matters.

Another unsolved problem is that of determining the stability
in a situation of this sort without utilizing the Fokker-Planck Equation.
Thus far only sufficient conditions for stability have been found.
Attempts at solving such a problem and the evaluation of some suf-

ficient stability conditions are discussed in the section to follow.
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3. SOME SUFFICIENT STABILITY CONDITIONS FOR LINEAR

SYSTEMS WITH RANDOM (NON-WHITE) COEFFICIENTS

3.1.0 INTRODUCTION

As pointed out in Part 2, the stability and instability of linear
systems whose coefficients are aums of conatants and Gaussian White
Noise can be determined by Liaplace transforms applied to appropriate
moment equations. This will lead explicitly to stability boundaries for
the various moments, and is most often useful in determining "mean

square stability."

Unfortunately, such a procedure cannot be extended
to cover non-white parameters. At present, there is no general method
that may be used to show instability when the coefficients are random
’but not white, and only conservative sufficient conditions for various
forms of stability can be obtained.

Some attempts at determining stability boundaries have been
published by Chelpanov (11) and Samuels (12). In the former paper,
corre¢lation times of the random parameters were assumed to be much
smaller than the natural times of the system, thus, as described in
Part 2 of this thesis, making the random signals essentially white.
The latter paper is unfortunately erroneous in parts, and its results
are questionable.

In a later paper, ¥F. Kozin (7) treated sufficient stability con-
ditions by utilizing an ergodic property of the random terms and by

using the Gronwall-Bellman Lemma (14}). Less conservative condi-

tions have been obtained by T. K. Ca.u.,c:gheyqc by using an appropriate

Ly_‘aQOnof function and the same ergodic property.
Communicated verbally to the author.
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Caughey's Lyaponof function was quadratic in form, and sug-
gestéd the possibility of using a general quadratic Lyaponov function.
Herein is presented an approach for obtaining sufficient conditions

for stability, utilizing a general guadratic Liyapconov function.

3.2.0 STATEMENT OF THE PROBLEM
Consider the first order vector differential equation repre-

sented by

dy | [ -
gr T 1Al Y+ £@)[F.] Y = Gt), (3.1}

where [A] and [I-“i] are n by n matrices, Y and G(t) arc n dimensional
column vectors, znd the fi(t) are random scalar time functions whose
statistical properties will be discussed in Section 3. 3. Summation
convention is implied, so that repeated subscripts imply a summa-
tion over all values of the subscript.

It is assumed that the system described by

dy _
HT+[A}Y"O’

is absolutely stable, so that the Eigen values of [A] will all have posi-
tive real parts.,

In the notation to toilow, the subscript T will be used to denote
the transpose of a matrix or vector. [I] will represert the unit matrix.
The matrix [W] will represent a "weighting" matrix used in determin-
ing a "norm." [W] wiil be strictly positive definite, and the norm of a

vector Z will be denoted by l1Z 1|, where

Iz W% =z, [w] z . (3.2)
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‘This deiinition of a norm will satisfy the triangle inequality,

”Z1+ zzﬂ < Hzlﬂ+ ﬂzzﬂ , | {3.3)
and further,
t .
]|S zadt | < g Izl at, fort = 0. (3.4)
0 0

Bounds on the components of the vector Z can be found in terms
of the norm. In particular, if [Wj] represents the n-1 by n-1 matrix
formed by removing the jth row and jth column of the matrix [W], then

one has

det| W
zjz <z P —3 (3.5)

where det [Wj] and det [W] represent the determinants of the respec-

tive matrices.

3.2.1 THE HOMOGENEOUS EQUATION AND THE LYADONOV
FUNCTION

Lot X(t;R,tl) represent the solution to

‘é_}iJr [a] X+ 6@ [F] X = 0, | (3. 6)

with the initial condition
}{(tI;I{,tl) =R. (3.7)

Since it was assumed that the cigen values of the matrix [A] all
had positive real parts, it is possible to show that given any real,
symmetric, strictly positive definite matrix [P], there is one unique

¥ This is a trivial extension of Theorem 2, page 245, of reference (14).
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[W] [A] + (Al [W] = [P], (3.8)

and this matrix [W] will be real, symmetric, and strictly positive
definite. L.et it be assumed that a choice is made to obtain the real,
symmetric, strictly positive matrix [P], and this choice is then used
to determine the matrix [W] according to Eq. 3.8. The Lyaponov

function to be used, will be the norm square of X(t;R,tl), as given by
Ix 1% =x (W] X . - (3.9)
By a straightforward differentiation, one finds

d 2
*n IxXhe = -X.[P] X+ fi(t)XT{[W] [Fi] + [Fi] T[W]}X . (3.10)

ol
As the matrix [P] is strictly positive definite, the matrix
[P] - a[W] will be positive definite for some positive values of a. Let
a be chosen as the largest of these, In tcrms of cigen valucs, a may be
expressed as
i 1
a = smallest eigen value of [W] 2[P] [W] 2, (3.11)

or

1 Lo
(largest eigen value of [P] 2 [W] [P] 2) 1 (3.12)

)
[

As both [P] and [W] are strictly positive definite, there is no inherent
obstacle to the obtaining of the square roots., The Lyaponov function

utilized by Caughey was found using a [P] equal to the unit matrix, so



. -65-

that in that case,
a = (largest eigen value of [W] )-1 .

Thus, with an a chosen as above so that P - a W is positive

definite, one has
“Xp[P] X < -a X [W] X = -alixI®, (3.13)

Similarly,rone can obtain the smallest value of bi for which
both the matrix b, [W] + [W] [Fl] + [F1] T[W] and the matrix
bi[W] - [W] [Fl] - [Fl] T [W] are positive definite. If \; is the
eigen value of the matrix [W]%[Fl] [W]"% + [W]_%[Fi] T[W]% having

the largest magnitude, then
b, = ;xil ; (3.14)
Thus, with the bi as chosen above, one finds that
. _ 2
[XT [w] [Fi]+ [Fi] T[W] X| < b, XT{W] X = b Hxlll . (3.15)

Combining the inequalities of Eqs.3.13 and 315 with Eq. 3.10 leads to the

result

d 2 2 ' 2

I i‘jxill < -aliXl®+ b l£ @) X" (3.16)
Thus, integrating and using the initial value from Eq. 3.7, one obtains

IfX(t;R,tl)u2 < IR 112 exp{-a(t-tl) + by S‘t lfi(tz)I dtz} .
1

And by taking the square root, this becomes



- LHh6-
xR, ) < IR exp {-%a(t—tl) : gbig Ffi(tz_)ldtz} . 301D
1

3.2.2 THE INHOMOGENEQUS EQUATION
With the vector X(t;R,tl) as defined in the previous section one

may express the general solution to Eg. 3.1 as
t
Yit) = X{t;¥(t_),t | + i X{t;G(t)), 61 at, .
o}

If one now uses the inequalities that the norm must satisly, Egs. 3.3

and 3.4, one obtains the fact that
t

1) <Xt Yt )t L+ (

“t
(@]

IlX[t;G(tl),tl] If dt,

and by applying the results of Eq. 3.17, this yields

YO < IYE I exp {-date-s,) + %bii 1,661 at, |
© (3.18)

t t
+ X ilG(tl)_” exp {-%a(t-—t1) + ébiX lfi(tz)i d.tz} dt; .
o 1

This bound on the norm of Y(t} can be used in a discussion of

stability conditions for various forms of stability.

3.2.3 TYPES OF STABILITY
Before describing the various notions of stability, the various

forms of convergence should be outlined,

i. h(t) will be said to converge to ho if and only if

Lim h{t) = ho . (3.19)
t—>



ii.

iii.

iv.

67
h(t) will be said to converge in mean square to h_ if and only if
. 2

f—iz ((hit) - h.O)_> = 0, (3.20)
h(t) will be said to converge in probability to ho if and only if
for every positive €, one has

Lim {Prob.| ]h(t)-—ho [>e]} = o. (3.21)

t—+o :
h(t) will be said to converge to h_ with .proba.bility one if and
only if

Prob. [ Lim h(t) =h0] = 1. (3. 22)

t—co
As pointed out by Parzen (15), this is equivalent to
Lim {Prob. [supremum lh{t)-h > €l} = 0 (3.23)
T->c0 t=T : ©
for every positive €.

To help keep these various forms of convergence in their proper

perspecctive, the following quotation from page 416 of Parzen (15) is

given:

"One thus sees that convergence in probability is
implied by both convergence with probability one and
convcrgence in mean square. However, without addi-
tional conditions, convergence in probability implies
neither convergence in mean square nor convergence
with probability one neither implies nor is implied
by convergence in mean square."

The types of stability most often used are the following:

Absolute Stability: If Y is the solution vector to a homogeneous

differential equation, the system is said to be absolutely stable
if 1Yl converges to zero. I Y is the solution vector to an in-
homogeneous differential equation, the system is said to be

stable if 1Yl is bounded.
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ii. Mean Square Stability: Tf Y is the solution vector to a homogen -

eous differential equation, the system is said to be absolutely
stable if MYl converges in mean square to zero. If Y is the
solution Véctor to an inhomogeneous equation, the system is
said to be mean square stable if the mean square of Y is

bounded.

iii, Probable Stability: If Y is the solution vector to a homogeneous

differential equation, the system is said to be stable in proba-

bility if f'Yll converges in probability to zero.

iv. Almost Sure Stability: If Y is the solution vector to a homo-
geneous differential equation, the system is said to be almost
surely stable if Yl converges to zero with probability one.
If Y is the solution vectar to an inhomogeneous differential
equation, the system is said to be almost surely stable if Y |l

e

is bounded with probability one.

Thus it may be noted that probable stability is implied by almost
sure stability, absolute stability, and mean square stability, Almost
sure stability neither implies nor is implied by mean square stability.,

The "stability" used in the analysis of the linear systems of
Part 2 is mean square stability, for in the case of parametric white
excitation, it was shown that Laplace techniques can be uéed to deter-~ |

mine stability of the mean and mean square.

¥ This implies that given any solution in the ensemble of possible so-

lutions, the probability is one that this solution is bounded (the un-
bounded solutions form a set of measure zero). There may not be any
common bound for the bounded solutions,
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3.2.4 THE ERGODIC REQUIREMENT ON THE fi(t)
It is to be assumed that the fi(t) are random, stationary, and

ergodic time functions for which the expectation of their magnitudes,
E[lg@l] = (lfi(t)l> ,

are known. As they are ergodic and stationary, in some sense the

random functions hi(t)’ given by
t +t
L7 i el
hi(t) = i fi(tl) . dt1 s , (3.24)
o
will converge to E [Ifi(t) I] as t goes to infinity. To keep a clear di-
vision of the ways in which this convergence can occur, the following

definitions are given.

Definition 1: The f‘i{t) will be called strictly ergodic if the hi(t)

converge to E[ lfi(t) 7.

Definition 2: The fi(t') will be called ergodic in probability if the

hi(t) converge in probability to E[ lfi(t) 1.

Definition 3: The fi(t) will be called almost surely ergodic if the

h.{t} converge with probability one to E [ifi(t) 1.

The application of each of these different types of ergodicity
can be shown as follows. First, if the fi(t) are strictly ergodic, the
iimit of the hi(t) as defined by Eq. 3.24 must exist, and be uniform
in to (as‘the i'i(t) are also stationary). Hence, given any positive

€. there exists a Ti.SuCh that

! t0+t .
l{;i l&&ghﬁ3-EUguHﬂ»|sei, \ (3.25)
O
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provided that t = Ti. One may use this then to bound any integral of

the fi (t) by writing

tz t2+ .If'i t2+ Ti
S. ifi(t)fdrzg lf.l(t)l dt - g lfi(t)l dt, (3.26)
4 b )
where it is assumed that t2> tl. By using the inequality of Eq. 26 on
the integrals on the right hand side of Bg. 3.26, one obtains
tZ - | _1
5; !Ii(t)!dt < (tZ_tl)iEi' lfi(t)Ij - Eif— 2e,T, ,
1

provided that ¢, > 1:1. From this it follows that if the fi(t) are strictiy

2

ergodic, given any positive € one can find a T such that

2
bii ifi(t)l at < (t,-t,) blE[ lfi(t)i] +£}'— 2€T. (3.27)
1

H the Ei(t) are ergodic in probability, one can show that for any
positive € ,
'to-l't .
Lim < Prob. [f biffi(tl)l dtl-biE[in(L)l] t-€l = o]}.-, 0. (3.28)
t > t
Finally, if the fi(t) are almost surely ergodic, it implies that the
hi(t) of BEq. 3.24 converge with probability one. Thus, Eq. 3.25 and
Eq. 3.27 will be valid with probability one. Hence, givenany :Ei(t) in
the ensemble of possible f.i{t), the probability is one that for every posi-

tive ¢ there will be a T such that
t2
bii |fi{t) dt < (t,-t,) biEI_ifi{t)l] +c} + 2¢T. (3.29)
1
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There may be no common T, as the T will not only depend upon ¢, but
will also depend upon the fi(t) chosen,

Eqs. 3.27, 3.28, and 3.29 can be used with Eq. 3.18 to help

specify sufficient requirements for certain types of stability.

3.2.5 SUFFICIENT STABILITY CRITERIA

It was found in Eq. 3.18 that the norm of the solution vector to

the system in question could be bounded as shown

. t
v < %G )l expl- dafs-t ) + gbig e lae,]
t

o

(3. 30)

t t
+S; llG(tl) I} exp{-—;—a(t-tl) + %bii ]fi(tz)i dtz} dt, .
o 1

From the ergodic requirement on the fi(t)’ one hae that in some

sense the integral given by
t
g £ (6,01 dt,
tl :

will approach (t-t,)E[ tfi(t) IT, so that an inspection of Eq. 3.30 would

lead one heuristically to conclude that stability of some sort might be

implied if
a>b. E [i.fi(t)l_J .

Eqs. 3.27, 3.28, and 3.29 can be used with Eq. 3.30 to verify this in

certain instances, The results of this are given below:

The Homogeneous Equation

Assume that the fi(t) are stationary random such that

a>b, E [!fi(t)l] , (3. 31)
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and that G{t) is the zero vector.

(i} T the fi(t) are stricfly ergodic, the system is
absolutely stable.

(ii) If the fi(t) are ergodic in probability, the system
is stable in probability.

{iii) If the fi(t) are almost surely ergodic, the sys-

tem is almost surely stable.

The Inhomogeneous Equation

Assume that the fi(t) are stationary random variables such

that

a>bE [lfi(t)l] . (3.32)

(i} I the fi(t) are strictly ergodic and IG(t) I is
bounded, then the system is absolutely stable.

{ii) If the fi(t) are almost surely ergodic and HG(t) I
is bounded with probability one (almost surely
bounded), then the system is almost surely

stable.

3.3.0 EXAMPLE: THE SECOND ORDER DIFFERENTIAI, EQUATION
Consider the system defined by the differential equation
dz dy
Sl 222 1+ £(t)] v = glt), (3.33)
d 2 dt :
t
where f(t) is a stationary, almost surely ergodic random variable and
g(t) is bounded with probability one. It will be shown that a sufficient

condition for almost sure stability is given by
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E[lft)]] < 2

- (3.34)
1+ (1+ 1/z2)E

This is demonstrated by defining the vector Y as the two-dimon
sional vector with components y and dy/dt. Thus, Eq. 3.33 can be put
in the form of Eq. 3.1 by defining fl(t) as I(t), G{t) as the two-dimensional

column vector with components 0 and g(t), and the matrices [A] and [Fl]

as
0 -1
[A] = ,
1 2z
[0 0]
[F,] =
L 1 0

Using the identity matrix for [P], one finds from Eq. 3.8 that
[W] is given by
zt+l/2z 3

(W] = ,
1/2z

|-

and from Eqs. 3.11 or 3.12 and Eq. 3.13 one finds that a and b1 are

given by
a = 2 T (3. 35)
z+ 1/z+ (1+ z2°)2
2 -1
b = (1+2%)72 (3.36)
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Thus Eqé. 3.35 and 3.36 can be used with Eq. 3.32 to yield the
stability requirement given by Eq. 3. 34.

The result obtained as described can be compared with that ob-
tained by Kozin (7) using the Gronwall-Bellman Lemma. Figure One
represents a sketch of the upper bounds on E[lf(t)!] for which a suf-
ficient condition for stability is satisfied. The solid line gives the

upper bound of Egq. 3.54, and the dashed line gives the result of Kozin.

upper limit on E[ 1£(t) ]
for sufficient stability

Tconditions
ln 0 T -
0.15¢4 - —— | —_— Result of Kozin
— — —
—_ ~ 1 - —— —
- P — —> 7

Figure One;: Comparison of Sufficient Stability Criteria

The result obtained by using the methods of this section contain
no singular behavior at the point of critical damping (z = 1) as does the

result of Kozin,



C=75-
3.4.0 BOUNDED PARAMETRIC NOISE

Consider the vector equation

dy ‘
ar " [al Yo £t [Fyl ¥ = G@) (3.37)

where, as in Eq. 3.1, [A] and [Fi] are n by n matrices, Y and G{t) are n
dimensional column vectors, and summation convention is implied, so
that repeat subscripts imply a summation over all values of the subscript.
However, the scalar time functions fi(t) now are considered as bounded

such that
Ifi(t)i < p; - (3.38)

It'is furthcr assumed, as in Eq. 3.1, that the cigen values of the real
matrix [A] all have positive real parts. One can then choose a real,
symmetric, strictly positive definite matrix [P], and proceed as in
scction 3. 2.0 to find the strictly positive definite matrix [W] given by
Eq. 3.8, and the coefficient a given by Egs. 3.11 or 3.12. One could

also find the bi from Eq. 3.13, and use Eq. 3.17 to show that
”X(t;R,tl)“ < [IRH exp [—%(a—bipi)(t—tl)]

However, a better bound can be obtained in many cases,

Proceeding in a manner similar to the determination of the bi’
one can find the smallest c; for which the matrices ci[P]+ [W] [Fl] +
[Fi] T [ W] and Ci[P] - [W] [Fl] - [Fl] T [W] are both pbsitive definite.

i ﬁi is the eigen value of the matrix

[B17= {[W] [F,] + [F,] L [W]} [P]™
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having the largest magnitude, then
c, = lﬁi! | | (3.39)
It is a simple maitter to show that
= b, 3.40
c; < bl/a, {3.40)
Then, similarly to the derivation of Eq. 3.7, one can show that if

1 = c:P; s {3.41)

one has
UX(t;R,tl) I < IR exp {--;;a,(l-cipi)(t-tl)] . (3.42)
Thus, as in the derivation of Eq. 3.18, one can use Eg. 3.42 and find

Ihym il = ”Y(to)l.l. exp [—%a(l—cipi)(t—to}]

t

S' ﬁG(tl) I exp [-%a(l-cipi){t-tl)] dt, , (3.43)
t
o]

provided that C.P; = 1.
From kq. 3.43 it can be scen that not only is the sufficient
stability criteria obtained from this equivalent to that for the first

order system
d
E'YE*" zall-c.p)y = Gyl , (3.44)

but when c.p;, < 1, the solution to Eq. 3.44 can be used as an upper

bound on Y Il.
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3.4.1 SUFFICIENT STABILITY CRITERIA
From Eq. 3.43, the following obvious conclusions can be drawn:
i, If cipi< I, and IIG(t) [l is bounded, then the system of
Eg. 3.37 is absr.:)lutelgr stable.
ii, If Cipi< 1, and lIG(t)ll has a bounded mean square, then
the system of Eg. 3. é? is mean square stable.
iii. If ¢;p.< 1, and lGe) il is bounded with probability one,

then the system of Eq. 3.37 is almost surely stable.

3.4.2 EXAMPLE: THE SECOND ORDER SYSTEM

Consider the system defined by

2
ST 2 Fr 1+ 10)] y = g(v), (3. 45)
dt

where g(t) has a bounded mean square and f{t) is bounded, such that

l£¢t)| < p. (3. 46)

Assume further that z > 0, so that without the parametric term the sys-
tem would be stable. This equation can be put in the form of Eq. 3.37

if one defines Y as the two-dimensional column vector with components
y and dy/dt, G as the two-dimensional column vector with components 0

and glt). f;(t) as £(t). p, as p. and the matrices [A] and [Fl] as

o =

[A] = , (3. 44)
| 1 Zz_
[0 0]

[Fl] = (3.45)
|1 0|




- -78-

Let the [P] matrix be defined by

r -
2 2z i
forz <2 2
2z 2
[P] = (3. 46)
(2 1/z ] 1
forz =2 2
1/= 2
so that the [W] matrix (from Eq. 3.8) will be given by
1/z 1] 1
forz <2 2
1 1/=
o A
[W] = (3.47)
[22 1 ] 1
forz = 2 2
I 1/z
This will yield for the constants a and ¢y the values of
1
2z for =z <2 2
a - (3.18)
1
I/Z for z =2 2 y
1 1
>y for z <22
- 2
N _ 2z(l-z") (3.49)
1 -1
2

Thus, as g(t) has a bounded mean square, the systein will be mean

square stable if

P& =P < b
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or if simply

)l <1/c (3.50)

1 3
where <y is given by Ec. 3.49. This region of stability is sketched in

Figure Two, below,

4 p = maximum of [£(t) i

1.0+
STABL.E

. 707

Figure Two: Sufficient Stability Region for Eq. 3.37

One can use the results of Section 3, 4,0 to place a bound on the
solution. For simplicity, let it be assumed that the initial conditions are

zero, so that from Eq. 3.43 one has
t
Ny )l i lIGte) Il exp [~Zali-c phe-t)] ct, | (3.51)
0
provided that cp s 1. From the definition of the norm, Eq. 3.2, and
the {W] of Eq. 3.47, onc has
1
NGl = lg(t)l /22 . (3.52)

Further, one can use Eq. 3.5 to show that

2 { HY“Z z/(l—zz) for z €2

P

<

(3.52)

e

Iy i? /= for z 2272 .
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Eqgs. 3.51, 3.52, and 3.53 can be combined with Eqgs. 3. 48 and
3.49 to show that when p< l/ci- {one lies in the stable region of Fig. 2},

one has

t

1
Iyl < (1_22)'z§ gl exp{-z2{1- —B— T (c-t)rdy,  (3.54)
| 0 22(1-2%)2
L S
for z <2 4, and similarly when z = 2 2 one has
. *
1 1
Iyl <= go Ilg(tl)l_ exp [- 5 (1-p) (t-t))] dt, . (3.55)

3.5.0 THE SELECTION OF THE LYAPONOV FUNCTION OR NORM

The question naturally arises, how does one choose the best [P]
matrix used in the determination of the [W] matrix, which defines the
norm or Lyaponov function? In the example of Section 3. 3.0, the [P
matrix used is the identity matrix. Is it the best choice?

There appears to be no answer to these questions, If oﬁe could
use an arbitrary positive definite, symmetrical matrix [P] and use
this to minimize the products bi/a, or in the case of bounded parame-
ters minimize c;, then this [P] would be the best. No general pro-
cedure for this has been found. Hence, one can only guess at good

choices for the [P] matrix.

3.6.0 COMMENTS

In this section an approach for obtaining sufficient conditions for
stability of a linear system has been given. It still remains for someone
to develop a method of determining necessary conditions for stability,

and thus to obtain stability boundaries.
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One other related problem is that of extending the techniques
developed here to cover possibly some nonlinear situations. The fol-
lowing example, due to Caughéy,* demonstrates how this can be done
in one specific situation. I.et y satisfy the differential equation given
by

2

i%-+zzg%ﬂ1+ﬂn]y+gw)=m (3.56)
dt

where z is positive, f(t) is almost surely ergodic, and g{y) is a function

of y having the same sign as y, and satisfying the inequality
Y
25‘ g{x) dx < ygly) . (3.57)
0

This covers such cases as g(y)::y3, y5, etc. As will be seen, the suf-
ficient conditions for almost sure stability are identical to thoee for the
problem when g{y) = 0, and are thus given by Eq. 3.53 found in the
example of Section 3.3.0, that is

2
2.1
i+ (1+1/z e

E [lfit)l] < . (3.58)

As before, let the vector Y be defined as the two-dimensional
column vector with the components y and dy/dt. Let the Lyaponov func-

tion V(t) be defined as

y
V&)="Y“Z+%Sjgﬂdx, (3.59)
o

where the norm squared, Iy HZ, is as defined by Eq. 3.2. Further let
the matrices [A], [FI] , and [W], as well as the scalar a and b, be as
defined in the example of Section 3.3.0. In this case the‘analog to Eq.
3.16 will have the form

* Commmunicated verbally to the author.
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i‘%ﬂ < -a Iy l% b, (o)l iy 2 -y gly) . (3. 60)

If one solves Eq. 3.59 for 'Y |2 and uses this in the inequality of Eq.
y
3,60 along with the fact that fog(x) dx must be positive, then

¥
dzt(t) % -aVit) + b}. If{e) vie) + %S\ glx)dx - vaglv) . {(3.61)
| S 0

Dut for the a given by Eq. 3.35, it is a sitnple malter Lo show that

a < 2z, so that using this along with Eq. 3.57 yields

y
ES‘ glx}dx -ygly) < 0. (3.62)
1)

Z
Thus, from Egs. 3.61 and 3,62, one has

VO < avie) + b l£(t) | vt - (3.63)

Thus, by applying the techniques of this part of the thesis, this shows

that the system is almost surely stable for
E[lft)l] < a/bl ,

which leads to Eq. 3.58,

Once it is established that a system is stable in the sense of
being mean square stable, stable in probabiiity, or almost surely stable,
other problems arise. For example, in some systems it is of para-
mount importance to know the probability of the output exceeding a given
value, In such a case it does no good to demonstrate, for example, that
the mean square is bounded. A bound on the mean square can certainly

be used to give an upper bound on the probability of exceeding a fixed
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level (by use of the Chebyshev inequality) at a given time, bul vne is
usually interested not in one given time, but all times in some interval.
Thus we come to the problems of first passage. What is the probability
that y will not exceed sorue given value in a fixed tlme interval, orc
what is the mean and mean square time taken for y to get from some
initial value to another given value? These are questions that are of
great importance, and unfortunately cannot usually be answered. This

first passage problem is discussed in the following section.
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4, FIRST PASSAGE TIMES IN A SECOND ORDER SYSTEM

4,1.0 INTRODUCTION

Of major interest in vibrational systems with random excitation
is the meén and mean squarce lime for the system to gel [roin vne state
to another. A more general problem is that of determining the proba-
bility distribution of the elapsed time in getting from one state to
another.

In principle, this problem can be solved for a stationary Markov
Process. Using the notation of Part 1 (Sections 1.2.0 and 1,2.1}, if
one defines T{z/x,t) as the probability densily for the time of passage,
t, to get from the point x to the point z in n dimensional phase space,
and if PT(z/x,t) represents the transition probability for the variable

Z, then Eq. 1.4 of Part 1 states that
t

PT(Z/X,t) = go d‘u:1 T(z/x,tl) PT(z/z,t-tl). (4.1)

By using Laplace Transform techniques, the convolution equation indi-
cated by Eq. 4.1 can be readily solved, giving T(z/x,t) as the inverse
Laplace Transform of a ratio of Laplace Transforms of PT(z/X,t) and
PT{z/z,t). In general, the calculations necessary are far too difficult
to perform, except in the simple case of a one-dimensional Markov
Process, generated by the linear differential equation

dy -

a-"-_i:-'i‘ ay = n(t),
where n(t) is white noise,

A similar problem, that of the evaluation of the frequency with

which a variable y(t) crosses a given value z, has been worked out by
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Rice (14), for the case where y({t) is a stationary random variable. In
particular, when y(t) is a Gaussian variable with zero mean, then the
mean number of times per unit time that y is equal to z is given by Nz’
where

2
N, = @%ﬁ % exp [-22/2(yD) 1 . (4.2)

Consider the resonant system defined by

y'' + 2by' + Wzy = nf(t), | (4. 3)

where n{t) is white noise, wilth an autocorrelation function given by
{ufL) u(Ll)) =2 Dﬁ(t-tl) . (4. 4)

Such a systein is used as an approximation of a structural response Lo
an earthquake. * A desired result is that of the "probability of failure"
which is the probability that in a given interval of length T, [yl will have
exceeded a fixed value of X at least once. Another desired result is the

"mean time to failure,"

or the mean time to get from one value of lyl to
the fixed level X. Neither of these desired results fall into the type of
problems just discussed.

Though this problem does not appear complex on the surface,
there is no known technique for solving it, Messrs., Rosenblueth and
Bustamantc (17) have utilized approximations and boundary valuc tech-
niques to obtain approximate solutions for the probability of failure.
Their approach will be justified here by the obtaining of the same results
in another manner, and further the mean and mean Squa.r'c timoes to

failure will be calculated. It will be assumed that the system is highly

¥ See Rosenblueth and Bustamante {17).
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resonant, so that
b<<w,
and that the fixed level X will be such that

1
X>>%V_)i

This latter condition will be satisfied if X is much larger than the steady

state standard deviaticon of y, for then

X>>_(.%£. >>_(_]_D_éf)_
W W

o

4,1,1 THE BOUNDARY VALUE PROBLEM APPROACH

| As described in Part 2 of this thesis, the process defined by Eq.
4.3 represents a two-dimensional Markov PProcess. If p represents the
time derivative of v, and P is the transition probability for the process,

then the Fokker-Planck Equation will be given by

2 2
9P _  9{pP) . 8{2bp+ wy)P L D 0 P (4. 5)
at ay ap ap2 ) °

It is suggested by some that Eq. 4.5 must be satisfied not only
when P is the transition probability, but when P is the conditional prob-
ability density on the condition that a given region in phase space has
not been left for all time from the application of the initial conditions
to the present. The basic difference being that P must satisfy some sort

of "absorbing" boundary condition on the boundary of the given region.
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If one attempts to use this assumption to calculate the probability
of y not exceeding a fixed value Y, one apprbach might be to use the ab-
sorbing boundary coﬁdition o

P=0 for v=1Y.

One might then use a Fourier Transform on the p coordinate and a La-
place transform on the variable Y-y. Formally this leads to a result
for which no inverse transform exists. Other attempts at absorbing
boundary conditions have been used for this problem and none of them
have led to a solution.

However, it is possible to approximate the problem by working
with a new variable, a.nd obtain a Fokker-Planck Equation for the transi-
tion probability in this new variable as a one-dimensional problem, and
this equation can be solved as a boundary value problem with an absorb-
ing boundary condition. For example, if w > b, and one defines the
cylindrical coordinates r and © by the relations

by+p=r1rcosh,

(Wz-bz)% y=r sin 8 ,

then the Fokker-Planck Equation, Eq. 4.5, takes on the form

1
P o prbr 24 (whpdzl 3B
t or r o9r
2 2
oa"pP , 1 0P 1 o P
tD bt Tz T2
or »- 388
al 2
8"P 1 0P 1 oP
+ 4D (—5 - = Z= - =5 ——=) cos 26
2 arz r 9r 2 892
+ D(l op 1 82P ) sin 20
r'Z' 96 r 9rae :
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If now one defines P as the probability density in r alone so that

_271'
??—'S‘ P de ,
0

ke

and uses some sort of symmetry a.ssurnptionsﬂ‘ to neglect those terms
in the equation involving sin 20 and cos 26, then an integration of the
Fokker-Planck Equation in cylindrical coordinates over the variable

0 from 8 =0 to 68 = 27 vyields

= aP . D b ap
£~ 2PE+ brant o o (r 51

vl

} .

cnlm

This e'qua.tion for P is the one used by Rosenblueth and Busta-
mante for a boundary value problem approach to the first passage
problem. The problem itself and its solution are given in Section

4,.3.2.2,

4,1.2 THE INTEGRAL EQUATION APPROACH

In principle, it is possible to convert this problem to the solution
of an integral equation. For example consider the problem of determin-
ing the probability that Iyl will not have exceeded the value X in the time
interval from 0 to t, on the condition that att = 0, v and dy/dt are zero.

One may utilize the transition probability, PT(y,p/yo,po;t),
found by solving Eq. 4.5 with appropriate impulsive initial conditions,
and utilize this to obtain the first and second conditional probabilities

in terms of the variable r = lyl. As in the notation of Part 1, Section

"No attempt is made here to justify this assumption as the partial differ-
ential equation for I’ is derived in another manner in Section 4.3.0 based
on assumptions outlined in Sections 4.2.0 through 4. 2.2,
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1.2 of this thesis, let these be indicated by Pl(r,t/ro,to) and Pz(r,L/rl,ng

ro'to)" It may be noted that due to the stationary property of the white

noise, n(t), both P1 and Pz tan depend only upon the time differences, t—-to
and t-ti' Let T(r/x,t-to) be the first passage probability density (as in
Part 1, Section 1.2} so that the probability that r has not exceeded the value

X in the time interval from zero to t will be given by
t

1 - SOT(X,O,tl) dt, ,

whenr=0att= 0.
In & manner similar to the derivation of Eg. 1.4 of Part 1, one
may note that for r to get from an initial value RO to a new value X, it

must pass through any given intermediate value R, for the first time.

1
This may be expressed by the integral equalion,
t
Pl(X,t/RO,O) = S; T(Rl/Ro,tl)PZ(X,L/Rl,LI;RO,O) dt, , (4. 6)
' o

provided that R, either lies strictly between Ro and X or is equal to X.
Thus, if one could solve Eq. 4.6 for T(R/Ro,t), one could find the de-

sired first passage statistics.

4,2.0 THE GENERAL PROBLEM AND A SOLVABLE APPROXIMATION

Consider the highly resonant second order differential equation

v+ 2by' + wly = nft) , (4.7)

" Ry here lies either strictly between R, and X or is equal o X. It may
be noted that if X and R, were vectors instead of scalars, there would
be no such thing as an intermediate value, so that in that case Ry would
have to equal X, giving an equation analogous to Eq. 4.1.
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where b and w are constants such that
b << w, ' {1.8)

and n(t) is a stationary Gaussian variable, with zero mcan and an auto-

correlation function ¢{t) given by
{(n(trt)n(t) = o(t). (4.9)

It is assumed that n{t) is either white, or nearly white, such that there

exists a correlation time t , much smaller than 1/w, for which

w tC
S lo(t) dt<<5 eft)dt = D . (4.10)
t 0

C

The variable r will be defined as the positive square root of

r = py)® + by + v, (4.11)
where p is given by

p = w? - bl (4.12)

The quantity r can be used as a bound on the displacement, velocity, or

energy, for
iyl < =/p,

ly'l < wr/p,

2 2

i

' 2 2
Trom S+ Sty
It will be shown that the first passage problem when applied to

the variable r can be approximated by one where the variable is the



-9]1-
result of a one-dimensional Markov Process, and can he salved either
by a boundary value approach of Section 4.1.1, or an integral equation
approach of Section 4,1. 2.

Ag in the notation used previously, let T(R/Ro;t) represent the
first passage probability density, so that T(R/Ro;t)dt is the probability
that r = R for the first time in the time interval from t to t+dt, omn the
.condition that r = RO at t = 0. From this first passage probability den-
sity, one can find the probability that r = R at least once in the time
interval from 0 to t (probability of failure), as well as the mean and
mean square times to get from Ro to R. Tt will he shown in the follow-

ing sections, that when
2
(R - R )" >> D/w,

the problem may be approximated by another problem where r is the

result of a one-dimensional Markov Process, whose transition proba-

e

bility is given by

PT(r/ro,t) =
2. 2 -2bt _bt (4.13)
r+r e 2rr e
._..._...2........_.._—.___ exp I:_ o I __........__9._....___
D -2bt) D -2bt) ol D -2bt) )
-.E"(I.*C E (l—e F (1"'9

The solution of this approximate problem is worked out in Section 4.3.

* The area increment associated with this probability density is rdr, so
that in the strict sense it might not be considered a probability density.
As r must be non-negative, PT is zero for negative r.

POl
sk

IO is the modified Beascl function, Io(x) = Jo(ix) .

el
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4,2.1 DERIVATION OF THE APPROXIMATE TRANSITION PROBABILITY
As the noise, nf{t), in Eq. 4.7, is Gaussian, y and y', as well as

linear combinations of the two, must be Gaussian. Define x and z by the

equations
3 = by + Y'I s (4. ].48.)
Z = PY , (4.14b)

so that x and z have the first conditional probability density of the form

2 2
[ uxx(z—rnz) uZlez(z-mz)(x-rnx)+uzz(x-mx) :l
exp! -

2
2(uxxuzz_uxz )
Pl(x,z/xo,zo;t) = . 1 , (4.15)
27lu._u. -u 14
XX ZZ HZ
where one has
m, = (=), | (40162)
m_ = (z), _ (4.16Db)
2
u = <X2> -m_ (4.16¢)
u ., = (xz) - m_m,_ , (4.16d)
_ 2 2
Y, = (z“) - m “ . (4.16e)

Each of the means and moments of Eqs. 4.16 are determined on the as-

sumption that at t = 0, X and z have the values X, and z respectively.
One can explicitly solve for x and z in terms of the initial

conditions X and z, and the noise ferm n{t). This solution may be

represented in terms of a single complex equation,
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-{b-ip)t -(b-ip)tl

xtiz = (xo+izo)e + S‘O n(t—tl) e cii:}L . (4.17)

Eq. 4.17 can then be used to calculate the means and moments of Egs.

4,16,

If now, for convenience, one defines the complex variable q by

g=x+t 1=z, (4.18)
and the quantities q,° mq, ., and u, by
qO = XO + izo, (4. 193.)
rnq =m_+ im_, (4.19b)
u, ={lg-m ]2) =y _+u (4.19c¢)
1 Vq ] XX zz ’ :
— - 2 —-— — 3
u, = ((q mq) ) =u__-u o+ 2iu_, (4. 19d)

then the conditional probability, Pl of Eq. 4.15, may be expressed as

Pl(x, Z/XO, zo;t) =

2 — 2
ullq—-mﬂl - Real u, (q—mq)
exXp- - 5 >

u, © - qul

1

wlu? - lu,y 1213

From Eq. 4.17, one has

-(b-ip)t ~{b-ip)t,
q= qo e R SIO n(t—tl)e dt]. -

(4. 20)
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Thus, if it ie assumed that the averaging proccss and integrations may

be interchanged, it is possible to find mq,ul, and u,. These are given by

_ -(b-ip)t
mq =q ¢ , (4. 21)
t t “b(t;rt, M ip (£ ~t,)
uy = Slo dtl SO dtz cp{tl—tz)e | ) (4. 22a)
A ~(b-1p) (b ¥t )
u, = jo at) SO plt;-t,)e . | (4, 22b)

If only times larger than the correlation time, tc of Eq. 4.10, are

considered, then for t > tc, Eqgs. 4.22 yield

D -2bt
uy EB—-(I - e ), (4.23a)
D ~2bt_2ipt
u, = 515 (1-e e ) . ‘ (4. 23b)

One may use Eqgs. 4.23 to show that

b
qul/ul < = coth bt,

and as the hyperbolic cotangent of x is bounded above by 1+ 1/,
ju | Su (ot o) | (4. 24)
Thus, for b< < w and t > > 1/w, one has

qui <<u (4. 25)

1 °
Similarly, as the real part of a complex function is less than or equal

to its magnitude, one has for b<< w and ¢t > > 1/w,
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[R_eal[ﬁ; (q—mq)z:l [ < < uy fq—mqlz . (4. 26)

Thus, for t> > l/w; the inequalities of Egs, 4,25 and 4,26 may be

used with qu 4,20 to give the conditional probability density as

: 1 lq-m |
Pl(x, z/xo, zogt) = ﬁ"{ exp [— ~——--9——--—ul ]. (4. 27)

If one now changes to cylindrical coordinates, where the radius

r is identical to the r defined by Eq. 4.11,

X =T Ccos O,

r sin 8 ,

N
i

one may find the first conditional probability density for r and 8 (where

now the arca differential ie rdrd@) from Eq. 1.27, by noting that
g=1re o

Denoting this first conditional probability by PC, one has

rZ— 2rr e_btcos(e-e -l~p1:)-l—3:'2ezm2bt
eXP[' 5 7% - - ]
/ e ) (
P {r,8/r ,8 ;t} = — , (4. 28)
c o’ o w%)(l—e th)

provided that t > > 1/w,
If one integrates the 8§ dependence out of Kqg. 4.28, what is ob-
tained is the probability density for the variable r on the condition that

att =0, v is T and @ is @ . However, the result of such an integration
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is independent of 60 , so that the result vields the first conditional proba-

bility in the variable r alone. Performing this indicated integration yields

2,2 -2bt

rtr e 2rr e_bt
axr —— 1 —‘LHW
PP ~2ht o|D ~2ht
E (]._"e ) B (l-e
P (r/ro,t) = ) (4.29)
D . o-2bt
2b

where Io is the modified Bessel function, Io(x) = .Io(ix),

Eq. 4.29 represents the first conditional probability for t >> 1/w.
If only time intervals much larger than 1/w are considered, then as the
correlation time of the noise, t. is much less than 1/w, no additional
information is gained if values of » for t less than zero is known. This
implies that for time intervals much larger than 1/w, Eq. 4.29 not only
represents the first conditional probability, but a transition probability

as well, Thus for time intervals much larger than l/w,

PT(r/rost) = Pc(r/ro,t) ° (4.30)

4,2.2 APPLICATION OF THE APPROXIMATE TRANSITION PROBA-
BILITY

Thus far it has been shown that for large enough times, t> 1/w,
the variable r appears as though gencratced by a first order, one-dimen-
sional Markov Process, and hence its statistical properties are deter-
mined by a transition probability. However, for the solution of the
approximate problem, the behavior for all time will be utiiizcd. I
is therefore necessary to make some comment about the small time

behavior,
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‘One may utilize therresults of Section 4, 2.1 to find a bound on
the variance of r. In the notation of Section 4.2,1 the variance is given
by u; (Eq. 4.22a). It is possible to use Eq. 4.10 wilh Eqg. 4.22a to

show that

u, < 2Dt . (4.31)

If one is interested in only changes of r greater than some value Q,

such that there is a t1 for which

Q2/2D>>t >>1/w, and1/b>>t >>1/w,

1 i

then for times less than t; the probability that any significant change
in r (in comparison to Q) can take place is very small. This is because
the mean of r cannot change (as bt < <1 for t < tl) and the variance, 2Dt,
is much less than QZ. This suggests that time differences smaller than
tl are microscopic enough to be ignored on a larger scale, in analogy
with the distance between molecules as compared with the size of objects
in mechanics.

For times larger than £ the behavior of r is governed by the
transition probability of Eq. 4.29. Hence, in solving the first passage

problem for r to get from R0 to Rl where
(R, - R_)%/2D>>1/w , (4.32)

the problem may be approximated by a first passage problem where r is

governed by the transition probability

The area differential for this probability density is rdr, and PT is zero
for negative values of r.
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| PT(r/ro,t) =
(4.33)
5 r2+r Ze_th 2rr e_bt
exp | - _— 1 .- S— .
D _o-25¢, D 1..-25%, | Dy .25,
b b b

4,3.0 SOLUTICN OF THE APPROXIMATE PROBLEM

Let T(r/ro,t) represent the first passage probability density for

r, Hence, 'i‘(t{/ro,t)dt represents the probability that ¥ = R for the first

time in the time interval [t,t+dt) on the condition that r

r at time
0O
t = 0. As in the derivation of Eq. 4.6, when R1 lies strictly between Ro

and R or when R1 is equal to R, one may write
¢ ,

PT(R/RO,t) = So'r(ﬂl/t{o,tl) P (R/Rl,t—tl) dty ; (4, 34)

where P'I‘ is the transition probability of £q. 4.33,
The convolution equation, Eq. 4.34, is most easily solved through
the use of Laplace transforms. Let H(r_/ro, s) and L(r/ro, s) represent

the Laplace transforms of T(r/ro,t} and PT(r/ro,t) so that

joo]
H(r/r_,s) = S{; T(r/r_,t) e 5t g,

(s 0

L(r/ro,s) = SVOI PT(r/ro,t) e__St dt.

By transforming the convolution equation, Eq. 4.34, one obtains the result
L(R/RO, s)
H(Rl/Ro,s_) = TR R s , | (4.35)

provided that R1 lies strictly between Ro and R or Rl equals R. Thus,
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to find the first passage pfobability density, one need only transform
the transition pi-obability, and use Eq. 4.35 to find the transform of
the first passage probability density. An inverse transform then will
yield the first passage probability density.
From the H(Rl/RO, s) one can calculate the mean and mean
Squa;e times to get from Ro to Rl' If these are denoted by <tp> and

(tpz) , then when the limits and integrals exist,

: ° OH(R,/R_.s)
{t_) =S t T(R,/R ,t)dt = -Lim — (4. 36)
P 0 1“7o >0 ds
5 002 | BZH(Rl/R ,8)
{(t.%) =§ t“T(R /R, t)dt = Tim > ° ) (4.37)
P 0 50 s

Further, one can calculate the "probability of failure.” If

Q(Rl/Ro,t) is the probability that r = R, at least once in the time inter-

val from 0 to t, on the condition that r = RO at t = 0, then

L

Q(Rl/Ro,t) = g

. T(Rl/Ro,tl) dt, ,

or in terms of the transform of T, one has

otico st
H(Rl/RO, s) e

2wis

Q(R,/R,.t) =

ds (4. 38)
o-ico

It will be shown that the probability of failure can also be deter-

mined by solving an appropriate boundary value probiem. The Fokker-

Planck Equation for the transition probability of Eq. 4.33 is given by

0P _ opP D o P '
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Assume now that R1> RO. Though Eqg. 4.39 is an equation for the transi;
tion probability {(and must bg_ satisfied for all r}, if one finds a solution
P(r/Ro,t) which safisfies Eg. 4.39 {for r < Rl)’ along with the initial

condition

P(r/RO,O) = _RL 6(r—R0) .

O

and the "absorbing" boundary condition
P(Rl/RO,t) =0,

then a purely physical argumenl might lead (o the following: "P(r/RO,t)
will represent the probability density for r, on the condition that r = Ro
when t = 0, where the absorbing boundary atr = Rl acts in a way to keep
r from ever decreasing below Rl once it has reached it. Thus the proba-

bility that r < R
R

1
y P(r/Rc;,T) rdr "
0

1 for all time from t = 0 to t = T will be given by

If one follows this line of thought further, then one would conclude that
"the probability of failure, Q(Rl/Ro,t), will be given by

Ry

Q(Rl/R ,t) =1 - S‘ P{(xr/R ,t) r dr." ' (4. 40)
o} b o
The validity of Eq. 4.40 will be demonstrated in Section 4.3.2.2, by a
direct comparizson with Q(Rl/Ro,t) as found by Eq. 4.38. Resnlts ob-
tained by using this boundary value problem approach may be found in

reference (17).

4.3.1 EVALUATION OF THE TRANSFORM OF THE TRANSITION
PROBABILITY

To find L(r/ro, 5) one must evaluate the integral
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0
L(r/ro,s) = SO PT(r/ro,t) e 5t dt, (4.41)

where P, is given by Eq. 4.33. If one makes the change of variables,

e %Pt za f14a),

a=1/(e?Pt -1y,
the integral becomes
0 ob 5‘.S/Zb 1 ]:"2(14*.3\.)4-3:(‘]2
Lix/rg.8) = 0 D (1a)5/2a F [ 5/b }

Zbrro vﬁ(l—'ra)
X ID [ 5 - :lda .

The result of this integration has been found by MacRobert, and is given

by

|F, (s/2b,1;br7/D} E(s/2b;s/2b: :br >/D)

L{r/r_,s) = (4.41a)
° D ebr?/D (br?/D)3/20 g fan)
when » < r . When r > *, the integration yielde
[F,(s/2b,1;br_%/D) E(s /2b;s /2b: :br®/D)
L(r/ro,s) = > {4, 41Db)
D PT /D (er/D)S/Zb (s /2b)

The lFl represents the confluent hypergeometric function, and the E

is the MacRobert's E function. For simplicity of notation, lFl will be

*See Eq. 15, p. 470 of Reference (18).
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denoted by Humbert's symbol ¢ where
1 Fila,cix) = &la, eix) . (4.42)

Further the { function will be used instead of the MacRobert's E function.

sk
They are related by

E(a,b::x) = T(@)T(b) x*{(a,a-br1; x) . (4.43)
Thus, the transform of Eq. 4.41 may be expressed as

L(r/ro, s) =
(4. 44a)

2
L o5¥"/D (s /20,1502 /DIT(s /2b) (s /2b.1ibx 2 /D)

when r < T and

L(r/ro, g) =
(4. 44b)
e—er/D

% @(s/zb,l;broz/n I'(s/2b) ¢(s/2b,1;br2/D)

when r > ro.,

4,3.1.1 Properties of CI)(a.,l;x)qw

${a,i;x) or 1Fl(a,l;x) is given by the series

o0

k
. - F(a—i—k) =x

d(a, 1;x) -z —F(_é.T -("l:')—z ’
k=0 *

and has the property that it is a solution to the differential equation

* See Reference (19).
*Many of these, and other properties, may be found in Reference (19).
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xy''x)+ (1-%) y'(x) - a y{x) =

that is well behaved as x goes to zero.

‘For small a, one may write

w k-1
D(a,l;x) =1+ az m—ﬁ-aZ[z "i-:lm‘l‘ U(a, ), (4. 45)
k=1 k=2 r=l

where O(a3) represents terms of the order of 3.3 or higher, Further, this

function has the limiting property

o0
k 1
. b 5
Lim ®(b/x,1;x) =z w2 ° 1,(2b2}, (4. 46)
x>0
k=0
whetre IO iz the modified Bessel function.

The Sturm-Liouville problem defined by
x 7' (x) + (1-x) ' (x) + \Ey(x) = O (4, 47a)
y(L) = 0, (4.47Db)

yields a complete orthogonal set of solutions given by ®(-\ z,l;x), where
the Eigen values given by the A are real and positive. The Eigen func-

tions are orthogonal with respect to the weighting function e”X, so that

S‘ d{-\ z,l;x) (I’(-?\.nz,l;x) e *dx =0 for k+# n.
]

It is possible to use the differential equation and end condition

that @(-)\kz,l;x) must satisfy, Egs. 4.47, to show that

L

X2 9d(r,1;x) 8d(r,l;x)
.S;e 7(-N ,lx)dx- -Le [ 5 5 z JX (4.48)
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and further that

L - L
e Fh(-\ 2,1;x)dx'= - Le [ S(I)(r,l;x):| (4. 49
‘S‘O vk 2 ox <=L )

?\k i 5
r-—lk

4.3,1.2 Properties of (a,1;x)

bfa,l;x) is related to the MacRobert's E function, E(a,a::x), and

to the hypergeometric function, 2Fo(a.,a;—l/::s:), by the equations
E{a,an:x) = Fz(a) XaLp(a,,_l;x),
2lT‘O(a,,a;-l/x) = x(a, ;%) .

{a,l;x) is defined by the series,

-1

?(a—) ®(a,l;x) log x

P(a,l;x) =

k
T(atk) x
z Ty [U(atk) - 2y(l+k)] (k!)z ,

where U{r) represents the logarithmic derivative of the gamma function

['(x),
_ d
§(r) = g7 log Tr)
For small a, one may write

al'(ala,l;x) =1 - a(¥ tlog x)

{4.50)

k k
1 2% Ep(k)x (log x)x ] 3
-+ + - L + 0(a”),
[ 2 RE(eY) (kD) k(K" a

* Many of these, and other properties, may be found in Reference (19).
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where ¥ is Euler's or Masheroni's constant, 0.5772...

The function y(a,l;x} has the limiting property

' 1
CLim I(b/x) ¢(b/x,1;x) = 2 KO(Z b2) , (4.51)

x—+0

where K _ is the modified Bessel function defined by

o0
(3)
Ko(x)'r—" -{log Ix) ID(x) + z Pkt 1) =& 5= .
k=0 (e}

4.3.1.3 Special Case of Zero Damping
When the damping term, b, is zero, the transition probability of
Eq. 4.33 takes on the simpler form
2 2

1 r+r0 rr

PT(r/rn,t) = 5 exp[- —-~2—ﬁ%~—] I [__]5"1:9_] o (4.52)

The Laplace transform of this may be found in tables (20), and is identi-
cal to the limit of the transform of Eqs. 4.4l as b goes to zero. This
transiorm is

1
% I, [(ZS/D)% r] K, [(2s/d)? ro] for r«< o,

% I [(ZS/D)% ro] K, [(Zs/D)% r] for r>r .

]

As the results for zero damping are identical to those where the damping

tends to zero, such results will not be treated separately.

4.3.2 PROBABILITY OF FAILURE

Assume that the system starts with an initial condition, r = R0

at t = 0. The probability of failure, Q(R/Ro,t), will be defined as the
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probability tha.t._r =R at leé,st once during the time intcrval from =zcro to
t, on the condition.that att=0, r = R‘o" When R = Ro’ le(R/RO,t) will
represent the probability that r < R for all time from 0 to t. This is the

only case that will be treated here. -

4.3.2.1 Inverse Transform Solution
From Eq. 4.35, the Laplace transform of the first passage prob-
ability density, T(r/ro,t) will be given by

L(rl/ro, 8)

H(r/ro,S):-T(r?r,—S)— fOI'V 1'121'> I'O .

Thus, from Eq. 4.44b, one finds

B(s/2b,1;br */D) |
H(r/r_,s) = > ) (4.53)
°© ®(s/2b,1;br“/D)

for r >r_. Using Eq. 4.38 with Eq. 4.53 yields

gtico . 2
st ®(s/2b,LlbR _“/D) .

o-icc °  &(s/2b,1;bR%/D) 2™

Q(R/Ro,t) = (4. 54)

The only singlila,rities of the integrand are at s = 0, and at
2

s = —thk fork=1,2, elc., where the kk are solutions to the equa-

tion

B(-\ 2

L LbR?/D) = 0. (4. 55)

From Section 4.3.1.1. it is seen that the )\k are real {they are identical

to the eigen values called A in that section, when L = sz/D), Thus

the singularities of the inlegrand all have a non-positive real part. One

can use residue calculus to show that the integration of Eq. 4.56 yields
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| X §(-r 2, 1R 2/D) e PPN |
QR/R_,t) =1 z > , {(4.56)
k=1 )\'k Ak
where the Ak are defined by
9®(x, 1;bR% /D)
A = 223 (4.57)
k % >
x:=—kk

and the ?\k are given by Egq. 4.bb. As will be demonstrated in Section
4.3.2.2, this result is identical to the result obtained by a boundary
value approach. As the behavior of such a result has been discussed

by Rosenblueth and Bustamante {17), it will not be discussed here.

4.3.2.2 The Boundary Value Solution
As pointed out in Section 4. 3.0, an artificial approach to the

problem is to define the probability of failure as in Eq. 4.40 by
R

QR/R_,t) =1 g P(r/R_,t) r dr, (4. 58)
0

where P(r/Ro,t) is a solution to the boundary value problem

9P _ 8P ., .1 &, oP

—EaT—ZbP+bI-5-IT +3D—i—§-}-(r§), (4.59&)
P(R/R_,t) = 0, (4.59b)
P(r/R_,0) = Ri(; §(r-R_) . (4. 59¢)

Using standard techniques, and the A as defined by Eq. 4.55, the ortho-
2

I

gonality of the ®(-A,_2,1;pR%/D) leads Lo’

* See Section 4.3.1.1 for the properties of the ® function.



P(r/RO,t) = =

where the Ck are given by

b(-)

G, =

2
k 3
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—brz/Dio

k=l

~2b)N t

Ck@(—)» Z,I;brz/D) e k

thoz/D)

k

0

[

gsz/D .

‘I’z(—Kk yix) dx

2

Using Eqgs. 4.58, 4.60, and 4.61, one finds that

(8.6
Q(R/Ro,t) =1 - Z (-1

k=1

where the Bk are given by

bRZ/D

= a0

e

-X

2

2

2
s L;bR /D) By e

Cb(-)\k ,L;x) dx

0

B
k SbRZ/D
. ]

2

(-},

2

,1;x) dx

2
—thk t

(4. 60)

(4.61)

(4.62)

(4.63)

If one now uses Eqs. 4.48 and 4.49, then with Bk given by Eq. 4.63 and

with the A, given by Eq. 4.57, one finds

k

Bk==1/Akhk

2

Thus the Q(R/Ro,t) obtained by solving the boundary value problem, given

by Eq. 4.62, is identical to the Q(R/Ro,t) found by solving the integral

equation, Eqg. 4.56.
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4.3.3 MEAN AND MEAN SQUARE TIME TO FAILURE
Assume again that r > r_, so that the transform of the first pas-
sage probability is given by Eq. 4,53, rewritten hel_-e as Eqg. 4.64:
| (I’(S/Zb,l;broz/D)

H(r/r _,s) = . - (4.64)
© &(s/2b,1;br% /D) '

Using the results of Egs. 4.36 and 4. 37, it is seen that when the mean

and mean square times to failure are given by (tp) and (tp2> then

H(r/rgs)=1-(t,) s+3 (tpz) s+ o(s%) , (4.65)

2 vanishes faster than s% as s goes to zero.

where o(sz) or "little o of s
If one expands thc hypergeometric functions in Eq. 4.64 with the

aid of Eq. 4.45, one finds that

H(r/r_,s) = 1 - 5% [g(br®/D) - g(br_*/D)]

+ 1(s/26)% {n(br®/D)-h(br_°/D) + [glbr?/D)-glbr */D)] %}  (4.66)

+0(sd) ,

where g(x) and h(x) are series defined by

(o8]

k
, X
g(x) =z k&Y (4.67a)
k=1
w n-1 a
hx) = zz z [ - 1] Ilé Fory - (4. 67b)
n=2 k=1 '

From this, one may use Eq. 4.65 to find expressions for the mean

ol
and mean square times to failure, ™

£ . N
T Timc to increase from T, to r,
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(t,) =55 Lex?/D) - gbr 2/D)] (4. 68a)

N

2o 2 2
(¢2)= (£ + o [Br®/D)-hior 7/D)] (4. 68b)

When the damping, b, is small, so that br2< < D, one obtains the

result

(tp> = (r2 - Roz)/ZD s
2
(tpz)z SR * - r % /8%

For non-zero damping, the results for the mean time to failure
are easily tabulated, as the function g(x) defined by Eq. 4.67a can be
expressed in termas of the exponential integral, ﬁ(x) ., Which can be found

in various tables such as Jahnke and Emde (21). In particular,

0 k X
g(X) :Z E.t_i.!_): S(; (et—l)%l:u: Ei(x) ~ v - log x , (4. 69)

k=1

where ¥ is Euler's or Masheroni's constant, 0.5772...

From Eq. 4.68a, the mean time to failure may be expressed as

2 2
r? g(brz/D) Yo g(bro/D)

(t,) =% :
T P brf/D

and thus the function g{x)/x plays a major role in determining ( tP> .
The table below gives some representative values of g(x)/x as a func-

tion of x
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x glx)/x x g(x)/x
0.01 ' 1.003 1 1.318
0.02 1.005 2 2.035
0.03 1.008 3 3, 485
0.04 1.010 4 5.110
0.05 1.013 5 8.244
0.06 1.015 6 14,50
0.07 1.018 7 29,55
0.08 1.020 8 55,23
0.09 1.023 9 115,23
0.1 1.026 10 219, 40
0.2 1.052 11 552. 1
0.3 1.080 12 1246, 8
0.4 1.110 13 2861.3
0.5 1.140. 14 6656.8
0.6 1.172 15 15664
0.7 1.206
0.8 1.242
0.9 1.279

For large values of x, one can use an asymptotic expansion for

g(x)/x given by
gx) = (exml-x)/xz + (SX—I—X—%XZ)/X3 +. ..

=
n-
. (n- 2) Z

k=0

9 e e g

P‘“i

and thus approximate g(x)/x by x"2e* for very large x.

4.3.4 MEAN TIME TO DECREASE FROM T, TO r
When r, > r, as in the previous case, one can derive the Laplace
transform for the first passage probability. This yields
W(s /2D, 1;br02-/D)

I—I(r/r ,8) = .
° W(s/2b, 1;br%/D)
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As in the previous case, one may calculate the mean and mean square
time fpr passage from r_tor, this time by utilizing the expansion given
by Eq. 4.50. Proéeeding in this manner, if the mean time of passage

is denoted by (tp), then one finds

{tp) =3 log(ro/r) o

e

If it is noted that this expression is independent of D, then it can be seen
that the mean tirn_e to decrease from T, to r will be independent of nit),
the noise for which D is a measure (see Egs. 4.9 and 4.10). In fact, if
one considers the case for which there is no random term n{t), then it

is possible to show, without assumptions, that

and thus the time taken to decrease from r to r, in the presence of the
noise term, is exactly %— 1og(r0/1'). Hence, the addition of the random

term n(t) will not, in the framework of our approximations, change the

mean time for a decrease,

4.4.0 SUMMARY

In this section the first passage problem for the variable r, where
r% = (by + dy/dt)? + (w2-b%) y2

and

2
4y + 2]:).—‘“--1»-I + Wzy = n(t)
dtz dt

has been solved on the basis of certain assumptions. In particular, n(t)
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is white with the autocorreliaiion function
(n(t)n(tl)} = 2D56 (t-t)) ,

or almost white as described in Section 4.2.0., Further, the system is
highly resonant so that b< < w and only variations r much larger than
VvD/w and time intervals much larger than 1/w are to be considered.
For this case, the probability of failure is found in Sections 4.3.2.1 and
4,3.2.2 and its behavior is discussed in more detail in Reference (17).
The mean and mean square times to failure are given in Section 4, 3. 3.

The example considered here is only one example of the problems |
of this sort, and unfortunately the approximations used here cannot be
further extended to cover other cases. There remains to be solved the
whole field of first passage problems, in that present techniques are
applicable only to one-dimensional Markov processes or one-dimensional
approximations of higher order processes,

In principle one can always solve for the first passage probability
T(z/x,t) by using Laplace transforms and the convolution equation, Eq.
4.1. However two basic problems arise. The first is strictly a compu-
tational problem, that of finding the Laplace transforms needed. Secondly,
even if one cou.ld find T(x/z,t), it would not be particularly useful when
x and z are vectors. It yields, to be sure, the statistics for the passage
time between two points in phase space, but in practical problems one
is usﬁally interested only in a single coordinate in phase space, such as
the displacement, and other coordinates, such as velocity, are only in

the way.
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5.0 CONCLUSIONS AND SUMMARY

It has been shown that the system of differential equations given

dyk
Tl ak(y,t) + hki(y,t)ni(t) for k=1,2,...,n0, (5.1)
where summation convention is implied, the A and hki are known func-

tions of y and t, and the ni(t} are Gaussian White Noise such that
(ni(t)nj(tl)) = z.BiJ. 8(t-t;) , (5.2)

represents a first order, n dimensional, continuous Markov Process,

whose Fokker-Planck Equation, according to Eq. 2.37, is given by

d(a, P) ath. P)
oFP _ ) ax + B 9 [ ki ir :l (5.3)

ot By, rj By, 8y,

As pointed out in the discussion of Section 2.2.1, this is contradictory
to the result arrived at by some authors,
As proven in Section 1.3.1, well-behaved solutions to Eq. 5.3

with given initial conditions are unique. Further, if the h . are zero

kj
tor k = p, where p 18 any integer U,1,2,...,n-1, less than n, then one
can show that Eq. b.3 represents a "steady" Fokker-Planck Equation

in the sense of Definition 2, Section 1.3.0, if and only if the coefficients

cik(y, t) defined by

ik T Brj Py Bir

represent the elements of a strictly positive definite matrix such that

for any vector with components x, ,
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=
¥ F T 0

with equality holding if and only if all the Xy for p< k € n are zero.
When the equation is steady, solutions will tend asymptotically towards
each other in the sense of Section 1. 3.2, and if there is a steady state
solution to the Fokker-Planck Equation, it will be unique.

It has been demonstrated that the linear differential equation

n
k
n+1 Z [y + a, (t)] idl"r? = aylt) + £(t) , (5. 4)
k= t

where the ak(t) are Gaussian White_ Noise, represents a simple form of a
(nt1)-dimensional Markov Process, for which the stability of the moments,
(y) ; <y2> » etc., can be readily determined using appropriate moment
equations and Laplace transform techniques. Further when the system

is mean square stable so that <y2> is bounded, then it is "equivalent,"

in the sense of having the same mean and same average power density

spectrum, to the system defined by the equation

n
dky
n+1 Z (b -D k dtk = alt) + f(t) - an , (5.5)

where a{t) is a Gaussian White noise term, chosen as described in Section
2.4.2, and the Dik are coefficients arising from the correlation of the
ai(t_) terms, according to Eq. 2.52.

In Section 3. some sufficient conditions for stability of linear sys-
tems with non-white parametric excitation were derived by assuming that
the excitation was ergodic. The techniques used, unfortunately, give no

insight into the problem of finding necessary conditions for stability, and
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only in the case of white paramefric excitation can stability boundaries
actually be obtained, and then oniy in simple cases, such as the linear
pré’blem of Eq. 5.4.

Related to the problem of determination of stability requirements
is the first passage problem, discussed in Part 4. Therein it is pointed
out that the problems of this sort can only be solved exactly in simple
cases involving one-dimensional Markov Processes., In Part 4, the
resonant system defined by

2
d”y dy 2 _
?Jer—&-E-i-WV n(t),

where n(t) is Gaussian White (or almost white) and b<<w is converted
approximately to a one-dimensional Markov Process in terms of a new

random variahle, v, where

2

1~2'= (WZ-—bz)y2 + (by+ %)2 ,

and the first passage problem for this one-dimensional Markov Process
is solved.

A number of unsolved problems are discussed in the concluding
sections of each part {Sections 1.4.0, 2.6.0, 3.6.0, and 4.4.0), and
these include such problems as the proving of the existence of steady
state selutions of the Fokker-Planck Equation, reducing the order of
the Fokker-Planck Equation, evaluating stability boundaries for lineax
systems with non-white excitation, finding solutions to more general
first passage préblems, étcn There are other unsolved problems in
addition to these. One of the most basic ig determining the statistics of

thé output of a linear filter, when the input is random but not Gaussian.
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One can, in principle, find the moments of the output in terms of the
correlation mouments of the input, bul for any moments higher than the
second this becomes a burdensome task.
The literature in the field of stochastic processes is extensi{re,
and no attempt at a bibliography will be made here. A receni biblivgraphy
| listing other bibliographies as well as the articles themselves may be

found in Reference (22).
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