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Abstract

In Chapter 1, I briefly survey the literature on Bayesian implementation, dis-
cuss its shortcomings, and summarize the contribution of this thesis. In Chapter
2, I formally state the implementation problem, making no assumptions about
the agents’ sets of types, preferences, or beliefs, and I prove Jackson’s (1991)
necessity and sufficiency results for environments satisfying two weak conditions
called “invariance” and “independence.” In short, incentive compatibility and
Bayesian monotonicity are necessary for Bayesian implementability, and incen-
tive compatibility and monotonicity-no-veto are sufficient. I prove Jackson’s re-
sult that, for environments with conflict of interest, Bayesian monotonicity and
monotonicity-no-veto are equivalent, but I show that conflict-of-interest places
an unnatural restriction on agents’ beliefs when the set of states is uncount-
able. I note that, when agents have uncountable sets of types, preferences over
social choice functions derived from conditional expected utility calculations
will generally be incomplete, and 1 show that this incompleteness sometimes
leads to implausible Bayesian equilibrium predictions. I propose an extension
of expected utility preferences that preserves the properties of invariance and
independence.

In Chapter 3, I consider environments satisfying invariance and a condition
called “interiority,” and I show that incentive compatibility and an extension of
Bayesian monotonicity are necessary and sufficient for Bayesian implementabil-

ity. Using the extension of expected utility preferences proposed in Chapter 2



and assuming best-element-private values, I then show that interiority is satis-
fied in two important classes of environments: it holds in private and public good
economies, and it holds in lottery environments, for which the set of outcomes
is the set of probability measures over a measurable space of pure outcomes.
In Chapter 4, I consider lottery environments satisfying best-element-private
values and a condition called “strict separability,” and I use the results of Chap-
ter 3 to show that incentive compatibility is necessary and sufficient for virtual
Bayesian implementability. I then show that strict separability is satisfied for
a suitably large class of environments. It holds when private values and value-
distinguished types are satisfied and the set of pure outcomes is finite, and it
holds when private values and value-distinguished types are satisfied and the
set of pure outcomes is a finite set crossed with an open set of allocations of a

transferable private good.
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Chapter 1

Introduction

The canonical implementation problem is the problem facing a planner who
must choose a social alternative when the desirability of alternatives depends
on the pooled information of individuals. The planner could simply ask indi-
viduals to reveal their information and, assuming individuals are truthful, use
their replies to determine the most desirable alternative. It is likely, however,
that this simple institution will give some individuals incentives to report their
information falsely, leading the planner to choose an alternative she wouldn’t
have chosen were she fully informed. That is, some individual might have in-
formation that leads him to believe he can do better by misleading the planner
than by reporting honestly. If the moral fibre of society cannot be counted on to
restrain the self-interest of individuals, the planner must impose an institution

that gives individuals the incentives—whatever their information may be—to
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take actions leading to desirable alternatives. Other examples of implementa-
tion problems abound. Instead of a planner and a society, a regulator may seek
to overcome externalities in production by devising a system of fines that gives
a collection of firms incentives to produce at levels maximizing total surplus. Or
a monopsonistic seller may wish to organize an auction that maximizes revenue.

Underlying these examples is a common structure that lends itself to formal
analysis. By treating this structure formally, it is possible to prove theorems
that apply to all of the examples at once, as well as the multitude of examples
not listed above. 1 show next how the elements of the planner’s problem are
represented abstractly, using — to indicate the relationship of thing to math-
ematical object. Once understood for this example, the mapping should be
obvious for the problems of the regulator and auctioneer. The elements are

represented thusly,

society

the social alternatives

an individual’s information

the pooled information of
individuals

an individual’s conditional
beliefs

the desires of the planner

an agent’s motivations

set of agents

a set of outcomes

an agent’s type

a profile of types (state
of the world)

probability measure on a
o-algebra of states

a social choice function

type-contingent preferences
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over social choice functions,

where a social choice function is defined as a mapping from states to outcomes.
Note that I take agents’ preferences over social choice functions as primitives,
whereas agents are usually supposed to have preferences over outcomes that
induce preferences over social choice functions. It is convenient to distinguish an
implementation problem from a Bayesian environment, or simply environment,
which is a specification of sets of agents, outcomes, types, agents’ beliefs, a o-
algebra of states, and agents’ interim preferences. An implementation problem
is then an environment together with a social choice function.

Omitted from the above list is the institution put in place by the planner.
This is represented abstractly by a mechanism, or game form, which permits a
set of actions for each agent and specifies an outcome for every combination of
agents’ actions. Together with an environment, a mechanism induces a game of
incomplete information in the obvious way. Given an implementation problem,
a mechanism is said to Bayesian implement the social choice function at hand
if there exists a Bayesian equilibrium of the induced game of incomplete infor-
mation, and the outcomes of every such Bayesian equilibrium coincide with the
outcomes of the social choice function. A social choice function is Bayesian im-
plementable if there exists a mechanism that Bayesian implements it. Bayesian
implementation is the design of mechanisms to solve implementation problems

in this sense, and the theory of Bayesian implementation, the topic of this the-
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sis, seeks to understand the conditions under which implementation problems
have solutions.

The work on Bayesian implementation is abundant and notably includes
Postlewaite and Schmeidler {1986), Palfrey and Srivastava (1989), Mookher-
jee and Reichelstein (1990), and Jackson (1991).! These papers contribute to
the theory of Bayesian implementation by isolating properties of implementation
problems that are necessary for the existence of solutions, and by isolating prop-
erties of implementation problems that are sufficient for the existence of solu-
tions. Managable conditions that are both necessary and sufficient for Bayesian
implementability are prized but rare. Jackson (1991) supplies the sharpest
known characterizations: the only implementation problems with solutions sat-
isfy incentive compatibility and Bayesian monotonicity; and for environments
with conflict of interest, all implementation problems satisfying incentive com-
patibility and Bayesian monotonicity have solutions.? For other environments,
he shows that incentive compatibility and monotonicity-no-veto are sufficient
for the existence of a solution to an implementation problem.

The results of Bayesian implementation, including Jackson’s, are limited in
two respects. First, it is universally assumed that interim preferences over social
choice functions are derived from measurable utility functions over outcomes by

calculating conditional expected payoffs. Second, it is assumed that each agent’s

1See Palfrey (1992) and Palfrey and Srivastava (1993) for surveys of the literature.
2 Jackson actually considers the implementation of social choice sets, which are collections

of social choice functions.
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set of types, and therefore the set of states, is finite.®> This implies that each
agent’s set of possible preferences over outcomes is finite, a particularly strong
restriction when the set of outcomes is infinite. For example, consider a two
consumer, two commodity exchange economy in which consumer i’s type is a
real number t; between zero and one, a state is a pair (1,¢2) of such numbers,
and consumer ¢’s utility function over commodity bundles is Cobb-Douglas with
parameter t;. While it may be reasonable to suppose that any utility function
for consumer ¢ with 0 < ¢; < 1 is possible, perhaps uniformly distributed over
the interval, the assumption that ¢’s set of types is finite precludes this. Con-
sequently, there are many interesting environments, when formulated naturally
to allow for infinite sets of types, to which existing results on Bayesian imple-
mentation do not apply.

In both respects, the results on Bayesian implementation are less general
than the well-known results on Nash implementation (see Maskin, 1986). Nash
environments can be formulated as Bayesian environments in which agents’
types are perfectly correlated and their type-contingent beliefs place probability
one on the realized state, and the results for Nash implementation do not rely
on either the assumption that agents’ sets of types are finite or that agents’
preferences over outcomes have any utility representation, measurable or other-

wise. The results of Chapter 2 extend Jackson’s to the implementation of social

3An exception is Palfrey and Srivastava (1991), who consider compact metric spaces of

types. The authors do not, however, explore the problems of measurability in full detail.
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choice functions in environments for which neither of these assumptions need
hold, therefore obtaining the results on Nash implementation as special cases.
Implicit in my formulation of the implementation problem is less structure than
is commonly regarded as definitional. The set of outcomes is arbitrary, the set
of states is the cross product of arbitrary sets of types, the o-algebra of states
need not have a product structure, conditional beliefs of agents need not be de-
rived from prior beliefs about the distribution of states, interim preferences over
social choice functions need not be derived from preferences over outcomes, and
these preferences need satisfy only reflexivity. In particular, the set of states
may be uncountable and there may exist non-measurable sets of states. I show
that Jackson’s necessity result holds for environments satisfying “invariance,”
and that his general sufficiency result holds for environments satisfying invari-
ance and “independence.” The conditions of invariance and independence are
extremely weak, the former stipulating that outcomes on sets of zero conditional
measure are irrelevant for an agent’s comparison of two social choice functions,
and the latter stipulating that agents can compare the outcomes of social choice
functions on proper subsets of states. I also prove Jackson’s sufficiency result
for environments with conflict of interest, but I show by way of an example that
his condition places unnatural restrictions on the beliefs of agents when the set
of states is uncountable.

Allowing for uncountable sets of states raises two important issues not en-

countered in the work on Bayesian implementation. First, and easiest to address,



Bayesian Implementation 7

modulo games and integer games no longer possess the properties required of
them. Jackson’s proof uses a version of the modulo game such that, given the
strategies of other agents, any agent can choose a strategy that wins the contest
at every state. While this device is extremely useful for eliminating unaccept-
able strategy profiles as equilibria when the set of states is finite, it is ineffective
when any agent’s set of types is infinite. I construct a version of the modulo
game, called the name recognition contest, that is effective for arbitrary sets
of types. The contest specifies a very large set of possible names, and it asks
each agent to report a name and a subset of names that is restricted in size
but larger, in a sense, than the union of all agents’ sets of types. The name is
interpreted as the agent’s name, and the subset of names is interpreted as the
set of names recognizable to the agent. If one agent recognizes the reported
names of all other agents but is recognized by no other agent, then the one
agent wins the contest. The set of possible names and the admissible subsets
of recognizable names are specified so that, given the strategies of other agents,
any agent can report an unrecognizable name and a set of recognizable names
owning the reported names of all types of other agents.

Second, and more fundamental, when there exist non-measurable sets of
states, there will generally be social choice functions for which conditional ex-
pected payoffs cannot be calculated, and in such cases interim preferences de-
rived from conditional expected utility calculations will be incomplete. Note

that an outcome function composed with a strategy profile is exactly a social
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choice function, so agents’ interim preferences over social choice functions nat-
urally induce interim preferences over strategy profiles. When these interim
preferences are incomplete, there are two equally viable notions of strategic sta-
bility: according to one view a strategy profile is stable when for no type of
any agent does there exist a strictly preferred unilateral deviation; and accord-
ing to another view a strategy profile is stable when it is weakly preferred by
every type of every agent to every unilateral deviation. I adopt the first, per-
missive view of Bayesian equilibrium, but the results of Chapter 2 hold—with a
slightly different meaning—when reformulated in accordance with the second,
restrictive view as well.

Although the above results hold in any case, I argue that the incompleteness
of interim preferences derived from conditional expected utility calculations is
often implausible. Specifically, I offer an example in which this implausibility
is reflected in Bayesian equilibrium strategy profiles that are clearly unstable.
This particular manifestation of the problem of incompleteness is due to my
permissive definition of Bayesian equilibrium, but I show that the restrictive
definition leads to unsatisfactory Bayesian equilibrium predictions in the same
example. That is, strategy profiles that are clearly stable are not equilibria.
The issue of incompleteness is often circumvented by simply restricting agents
to subsets of strategies for which conditional expected payoffs can be calcu-
lated, but this is unsatisfactory for two reasons. First, and especially relevant

to the theory of Bayesian implementation, there may be no natural subset of
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strategies to which agents should be restricted. Even if this is not a prob-
lem, there remains the difficult task of formalizing the notion of “natural” in
this context. Second, I show that in some games there exist strategy profiles
that are clearly stable even though no agent can calculate conditional expected
payoffs for them. Again, this objection is particularly relevant for the theory
of Bayesian implementation, since its goal is to design mechanisms admitting
only special equilibria. Unacceptable strategy profiles should be eliminated by
well-designed mechanisms—not disqualified by ad hoc assumptions.

I propose an extension of expected utility interim preferences that avoids
these pathologies by approximating conditional expected payoffs of social choice
functions. More precisely, a social choice function composed with an agent’s
state-contingent utility function yields a mapping from states to the real num-
bers, and when this function is bounded there will exist a measurable function
that dominates it pointwise. Integrals can be calculated for each such func-
tion with respect to an agent’s conditional beliefs, and the conditional expected
payoff of the social choice function can be approximated by the infimum of
these integrals. This approximation is defined for every bounded function from
states to the real numbers, and I refer to it as the upper integral. Assuming
that agents’ utility functions are bounded, I use the upper integral to extend
expected utility interim preferences over social choice functions to complete bi-
nary relations in such a way that environments with interim preferences given

by this extension satisfy invariance and independence.



Bayesian Implementation 10

Since conflict-of-interest is unduly restrictive, the only results with wide ap-
plicability to environments with uncountable sets of states are then the partial
characterizations of Chapter 7?. In Chapter 3, I provide a full characterization
of Bayesian implementability applicable in environments satisfying invariance
and a condition called “interiority.” For such environments, incentive compat-
ibility and an extension of Bayesian monotonicity are necessary and sufficient
for Bayesian implementability. Interiority requires, roughly, that there exist
an “interior” set of outcomes such that no social choice function with interior
values is best for any type of any agent, and that any strict preference for one
social choice function over another can be replaced by a strict preference for
an interior social choice function over the other. This greatly simplifies the
elimination of undesirable strategy profiles, and the results of Chapter 2 can be
tightened accordingly. I then show that many environments of interest satisfy
interiority. Assuming best-element-private values, I show that interiority is sat-
isfied by the continuous environments, which are defined by three properties:
agents have extended expected utility interim preferences, agents’ utility func-
tions over outcomes are continuous, and the set of outcomes that are best for no
type of any agent is dense. The weakness of interiority follows upon considera-
tion of the environments satisfying these conditions. They include the private
good economies with continuous, monotonic preferences, and since conflict-of-
interest is irrelevant here, they include the pure public good economies as well.

These environments also include the lottery environments, for which the set of
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outcomes is the set of probability measures on an underlying measurable space
of pure outcomes, and for which a weak no-indifference assumption holds.
Extended Bayesian monotonicity is even stronger than Bayesian monotonic-
ity, which is known to be restrictive in some environments, so rather few imple-
mentation problems can be expected to have solutions in the sense of Bayesian
implementability. It is therefore of interest to explore weaker, yet acceptable
standards for the existence of a solution. One way to weaken the requirements of
Bayesian implementability in lottery environments is to require only that a social
choice function have arbitrarily close (in an appropriate metric) Bayesian im-
plementable neighbors. This is the notion of virtual Bayesian implementability,
first introduced by Matsushima (1988) in Nash environments and subsequently
investigated by Abreu and Sen (1991) in Nash environments. Abreu and Mat-
sushima (1990b) consider Bayesian environments in which each agent’s set of
types is finite and which satisfy a very weak condition reminiscent of what I call
“strict separability.” They prove that incentive compatibility and a technical
measurability condition are necessary and sufficient for virtual implementability
in iteratively undominated strategies, and inspection of their sufficiency proof
reveals that these conditions are also sufficient for Bayesian implementability.
Matsushima (1993) considers Bayesian environments in which there are at least
three agents, the set of pure outcomes is a finite set crossed with an open set
of allocations of a transferable private good, and each agent’s set of types is

finite. Assuming a weak form of value-distinguished types, he shows that strict
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incentive compatibility is sufficient for virtual Bayesian implementability. These
characterizations are both partial in nature and both rely on the assumption
that the set of states is finite.

In (Duggan, 1994), I consider lottery environments satisfying best-element-
private values and strict separability, assuming only that agents’ prior beliefs
agree on sets of measure zero and that each agent’s set of types is a Hausdorff
topological space.* I show that in such environments incentive compatibility is
necessary and sufficient for virtual Bayesian implementability. The framework in
which I prove these results differs from that of Chapters 2 and 3 in two important
respects. First, I restrict agents’ strategies to fairly natural subsets for which
expected payoffs can be calculated. Second, I argue that this restriction is
problematic in the common interim formulation of Bayesian equilibrium, so I
use the ex ante formulation of Bayesian equilibrium, whereby agents choose
strategies before they learn their types and they seek to maximize their ex
ante expected payoffs. Measurability issues aside, the interim formulation of
Bayesian equilibrium is somewhat more desirable than the ex ante, since there
may be ex ante equilibria with some agents not best-responding on sets of types
with zero prior probability.

In Chapter 4, I prove the characterization result of (Duggan, 1994) for virtual

Bayesian implementability in the interim framework of the two previous chap-

41 actually use the even weaker assumption that the diagonal of the set of states is mea-
surable with respect to the product o-algebra derived from the o-algebras on the agents’ sets

of types.
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ters. The proof uses the characterization of Chapter 3 and proceeds by showing
that, in lottery environments satisfying best-element-private values and strict
separability, every implementation problem satisfying incentive compatibility
has arbitrarily close approximations satisfying incentive compatibility and ex-
tended Bayesian monotonicity. Strict separability demands, roughly, that there
exist a social choice function such that each type of each agent is best off when
the social choice function uses none other than the agent’s true type, regardless
of which types of other agents are used. If the social choice function is employed
as a mechanism in which agents simply report their types, this is tantamount
to requiring that truth be a strict dominant strategy equilibrium of the induced
game. This is apparently a strong condition, but I show that it is satisfied in a
suitably large class of environments. It holds in lottery environments satifying
private values and value-distinguished types when the set of pure outcomes is
finite, or when the set of pure outcomes is a finite set crossed with an open set
of allocations of a transferable private good.®

The results of Chapters 2, 3, and 4 represent a substantial contribution to the
theory of Bayesian implementation. In Chapter 2, I extend the most powerful
existing characterization results, which rely on the assumptions that the set of
states is finite and that agents have preferences over outcomes with a measurable

utility representation, to environments satisfying the much weaker conditions of

5T should take this opportunity to point out the weakness of Abreu and Matsushima’s
measurability condition: it is always satisfied in environments satsifying private values and

value-distinguished types.
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invariance and independence. After extending Jackson’s full characterization of
Bayesian implementability for environments with conflict of interest, I note that
it’s applicability is limited when the set of states is uncountable, and in Chapter
3 1 offer an alternative full characterization that applies to every environment
satisfying invariance and interiority, regardless of the set of states. These re-
sults are summarized in Figure 1, where arrows are labeled by the conditions
needed for the implication, and in Figure 2 I illustrate the logical relationships
between several interesting classes of environments and these conditions, where
undirected lines represent conjunction. From Figures 1 and 2 can be derived a
number of easy corollaries, only some of which are stated formally in the sequel.
In Chapter 4, I replace the existing results for virtual Bayesian implementabil-
ity, which are partial in nature and rely on the assumption that the set of states
is finite, by a full characterization of virtual Bayesian implementability for lot-
tery environments satisfying best-element-private values and strict separability,
regardless of the set of states. I show that these conditions, strict separability
in particular, hold in a suitably large class of environments.

Technically, these results are contributions to game theory, but they can
be applied in specific examples of implementation problems to the extent that
Bayesian equilibrium describes the behavior of individuals, firms, bidders, and
so on. As with other results on Bayesian implementation, the mechanisms in
my sufficiency proofs may be exceedingly difficult to use in practice and the

Bayesian equilibria of their induced games may fare poorly as predictions of be-



Bayesian Implementation

invariance, invariance

independence .
MNV Bayesian

+ IC implementability

invariance,
interiority

invariance

invariance,
independence,
minimal consensus,
conflict-of-interest

BM
+ IC

Figure 1.1: Results for Implementability

economic lottery
environment environment
\ / private
values
continuous
environment
best-element-
private values
extended
expected
utility
interiority
invariance independence

Figure 1.2: Conditions for Environments

15

EBM
+ 1C




Bayesian Implementation 16

havior, and my results are therefore subject to the usual criticism. But it seems
to me that this criticism is misplaced. These mechanisms are mathematical
constructions designed solely for the purpose of proving game-theoretic propo-
sitions under the weakest possible assumptions, and as such they can hardly be
expected to serve as institutions, systems of fines, or auctions in real implemen-
tation problems. The theory of Bayesian implementation seeks to understand
when implementation problems, abstractly formulated, have solutions, thereby
informing the planner, regulator, or monopsonist as to whether it is theoret-
ically possible to create institutions with proper incentive properties. In case
it is possible, the institutions actually imposed will have to rely on whatever
environment-specific structure is available, and practical aspects will have to be
considered.

An appropriate target of criticism may be, however, the notion of Bayesian
implementation itself. That is, it may be objected that the theoretical possi-
bility of implementing social choice functions using unrealistic mechanisms is
uninformative in specific examples of implementation problems. Jackson (1992)
argues that to each solution concept there should correspond a class of admis-
sible mechanisms, and that the mechanisms used in sufficiency proofs should
be admissible for their corresponding solution concept. He proposes, in effect,
to replace the notion of implementation with a stronger notion of admissible
implementation. Another alternative, and the one I favor, is to replace the

solution concept of Bayesian equilibrium with weaker, more compelling solu-
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tion concepts. The ultimate solution concept would reflect difficulty of play
and would be powerful in the statistical sense—it would predict any strategy
profile that could reasonably arise in a game—even at the cost of high type 1 er-
ror. Some possibilities in this direction are explored by Abreu and Matsushima
(1990a) for iterative removal of weakly dominated strategies, Abreu and Mat-
sushima (1990b, 1992) for iterative removal of strictly dominated strategies, and
Jackson (1992) for one-stage removal of weakly dominated strategies. Jackson
shows, however, that even this very weak solution concept is not weak enough.

I leave further considerations of these issues for future work.



Chapter 2

Bayesian Implementability

in Arbitrary Environments

In Section 2.1, I supply the notation and definitions required for the formal
treatment of Bayesian implementation in arbitrary environments. I impose less
structure on the components of an implementation problem than is usually
presumed definitional. In particular, I take agents’ interim preferences over
social choice functions as primitives rather than assuming they are derived from
conditional expected utility calculations, and I place no restrictions on the size
of agents’ sets of types. In Section 2.2, I note that the integer game and modulo
game are ineffective when the set of states is infinite, and I offer the name

recognition contest in its place. This contest possesses the crucial property of

18
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the integer game and modulo game, it is applicable for arbitrary sets of types,
and it does not rely on the axiom of choice. In Section 2.3, I prove Jackson’s
necessity result for environments satisfying invariance, and I prove his general
sufficiency result for environments satisfying invariance and independence. I
also prove the equivalence of Bayesian monotonicity and monotoncity-no-veto
for environments satisfying conflict-of-interest, with an extension of Jackson’s
full characterization as a corollary. I show by way of an example, however, that
conflict-of-interest restricts agents’ beliefs in an unnatural way when the set
of states is uncountable. When this is the case, there will generally be social
choice functions for which conditional expected payoffs cannot be calculated and
expected utility interim preferences will be incomplete. In Section 2.4, I show
that this incompleteness leads to Bayesian equilibria that are clearly unstable,
and I propose an extension of expected utility interim preferences that satisfies

invariance and independence.

2.1 Notation and Definitions

A completely general approach to Bayesian implementation would consider im-
plementation problems with no restrictions on the set of agents, the set of out-
comes, the sets of types for each agent, the beliefs of agents, the preferences
of agents, or the social choice function to be implemented. Existing results on

Bayesian implementation with incomplete information are quite general with
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respect to the social choice function, often implementing collections of social

»

choice functions called “social choice sets.” But they are less than general in
other respects. It is universally assumed that the set of agents is finite and that
the preferences of agents over social choice functions are derived from expected
utility calculations, and it is nearly always assumed that the sets of types for
each agent are finite and that agents’ conditional beliefs are derived from a com-
mon prior. When this last assumption is not made, it is replaced by a weaker
assumption regarding common support of beliefs.

My formulation of the implementation problem is completely general in all
but two respects. I assume that the set of agents is finite with at least two
members, and I consider the implementation of single social choice functions
rather than social choice sets. The latter restriction is made for convenience,
and the results below would likely hold for social choice sets with three or more
agents—once considerations of closure (see Jackson, 1991) are made. Beyond
these assumptions, the restrictions I impose are weak enough to be considered
definitional. An implementation problem is an ordered pair (e, f) consisting of
an environment e and a social choice function f, which is just a mapping from
states to outcomes. Let F' denote the collection of social choice functions for
e with generic elements f,h € F, and let P(F x F) denote the set of binary

relations on F. Formally, an environment e is a sequence (I,0,T,7,pu, R),

where

I={1,...,n} set of agents with n > 2 and elements i, j
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0] set of possible outcomes with elements z,y
T; set of possible types for agent ¢ with

elements t;

T = X;c1T; set of possible states with elements
t=(t1,...,tn)

T o-algebraon T

p:IxXTxT =R agents’ conditional beliefs

R:IxT — P(F xF) agents’ interim preferences over social

choice functions.

This formulation departs from the standard formulation in several ways: I re-
quire nothing of the sets of outcomes or types; 7 need not have a product
structure; conditional beliefs need not be derived from prior beliefs on (T, 7);
and the R;(¢;) need not be derived from conditional expected utility calculations,
nor need they satisfy completeness or transitivity.

I do require that 7 contains all singleton cylinder sets of the form {¢;} x T_;,
where I use the notation ¢_; and T_; in the usual way. Agents’ conditional beliefs
depend only on their own types, that is, pi(.Jti,t—;) = p:(.|t;, ;) for all 4 € I,
allt € T, and all t'; € T_;, and I will write simply p;(.Jt;) for the beliefs of
agent 7 at type t;. Of course, p;({t;} x T_;jt;) = 1foralli € I and all ¢; € T;.

Foralli € I and all t; € T}, let p}(.|¢;) denote the outer measure defined by

pi (Slts) = inf{p:(Qlt:)1S € Q,Q € T},
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for all S C T, and let u* denote the set function defined by
w(S) = sup{i (SIt:)li € I,t; € T}

for all S C T. The next proposition shows that u* is an outer measure, so that
all sets with p*-measure zero are p*-measurable, and that p* is a measure on

the o-algebra of p*-measurable sets. Of course, this holds for each p}(.|t;).

Proposition 1 p*(#) = 0; for all S*,8* C T, §' C S? implies p*(S) <

p*(S?); and for all S*,8? C T, p*(S* U S?) < p*(S*) + p*(S?).

Proposition 1 is proved, with all other propositions, in the appendix. I will write
f~ fif wr({t € T|f(t) # f*(t)}) = 0. The next proposition shows that ~ is

an equivalence relation.
Proposition 2 ~ is reflexive, symmetric, and transitive.

Let [f] denote the set of social choice functions f* such that f ~ f*.

I also require that agents’ interim preferences over social choice functions
depend only on their own types, that is, R;(t) = R;(t;,t_;) foralli € I, allt € T,
and all t'_; € T_;, and I write simply R;(¢;) to denote the interim preferences of
agent 7 at type t;. These relations are meant to represent agents’ weak interim
preferences over social choice functions and therefore must satisfy reflexivity, but
they need not satisfy completeness or transitivity. As usual, I write f P;(t;) h
if and only if f R;(t;) h and —h R;(t;) f. The relations P;(t;) are asymmetric

and represent the agents’ strict preferences. In the standard formulation of
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the implementation problem, interim preferences are derived from conditional
expected payoffs determined by the integrals of state-contingent utility functions

u;(.].) : O x T — R. Denoting these preferences by R, f R;(%;) h if and only if

/ ws(FO)1E) dps (t]F:) > / wih(E)18) dps (t[Es).
T T

When T is countable and 7 is the power set of T' these interim preferences on
F are complete and transitive, but when T is uncountable and 7 is a proper
subset of the power set of T" they will in general be incomplete, for it may be
that u;(f(.)|.) is non-measurable for some social choice function. Formulating
a Nash environment as a Bayesian environment, interim preferences I%,-(t,-) over
social choice functions are given by agents’ preferences over outcomes, and they
are complete as well as transitive. I will proceed without making any specific
assumptions about the nature of interim preferences over social choice functions,
and my results consequently apply to these environments as special cases. I
return to these issues in Section 2.4.

Regardless of the set of states, environments with preferences given by R or
R satisfy the two weak conditions defined next. Given an environment e and
two social choice functions f and h, let f/sh denote the splicing of f with h

along S. That is, f/sh is defined by

R(t) fteS
(f/sh)@) =
f(t) else

forallteT.
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Definition 1 An environment e satisfies invariance if for alli € I, all t; € T;,
and all f*, f2, K1, h2 € F,
pi({t € TIfFH() # FP(O)}HE) =

pi({t € TIRI(t) # h*()}t:) = 0

fYRi(t) Rt and &

imply f* Ri(t:) h®.

Definition 2 An environment e satisfies independence if for all i € I, all

e, all f1,f2, RN h2 e F,and allSCT,
f1/sh! Ri(t;) f2/sh implies f'/sh® Ri(t;) f?/sh?.

Invariance requires only that an agent’s preferences between two social choice
functions are unaffected by changes on sets of states with zero outer measure.
In particular, if ¢} # t; then the outcomes of f and h on the set {t} x T_; are
irrelevant for agent ¢’s interim preferences at ¢;. This is often taken for granted,
but I make the assumption explicit. Independence, in effect, allows agents to
compare the outcomes of social choice functions on proper subsets of states.
When the preference f'/gh! Ri(t;) f2/sh' is independent of the specification
of h!, as independence requires, it makes sense to say that agent ¢ weakly prefers
the outcomes of f! on T\ S to those of f2.

A game of incomplete information in its most abstr%ﬁ Wform is a quadruple

(I1,T,%,1I), where

% set of strategies available to agent I

Y = XierZ; set of profiles of available strategies
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II:IxT—P(Xx L) interim preferences over strategy profiles.

Elements of ¥; are denoted o;, strategy profiles are denoted o, and I use the
notation o_; in the usual way. I require that agents’ interim preferences over
strategy profiles depend only on their own types, that is, II;(t) = L (¢, 1))
foralli € I,allt € T, and all ¢/, € T_;, and I write simply II;(¢;) to denote
agent ¢’s interim preferences at type ¢;. I interpret II;(¢;) as a strict preference
relation and therefore require it to be asymmetric. A mechanism is an ordered

pair (M, g), where

M; set of possible messages for agent i
M = X;erM; set of possible message profiles
g:M— 0 outcome function.

Elements of M, are denoted m,, profiles of messages are denoted m, and I use
the notation m.; in the usual way. Let £;(M;) denote the set of the functions
a; : T; — M;, and let (M) = x;¢7Z;(M;) denote the set of profiles of such
functions. In an environment e, a mechanism (M, g) induces a game of incom-
plete information with the set X; = X;(M;) of strategies available to each agent
i and interim preferences I1;(¢;) over strategy profiles given by interim prefer-
ences over the corresponding social choice functions. That is, o IL;(¢;) & if and
only if

goo Pi(t;)god.

I conform with the literature on Bayesian implementation by considering only
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induced games with pure strategies rather than behavioral strategies, which
map from an agent i’s types to probability measures over M; equipped with
some o-algebra.

Work on Bayesian implementation defines the Bayesian equilibrium strategy
profiles of a game of incomplete information as those for which no type of any
agent can gain from a unilateral deviation. This is satisfactory when agents’
interim preferences are complete, but the possibility that the R;(¢;) are incom-
plete raises an interesting issue in the definition of Bayesian equilibrium. Is a
strategy profile stable whenever it is weakly preferred to every unilateral devia-
tion, or is it stable whenever there is no strictly preferred unilateral deviation?
I take the second, more permissive approach, but the results of this chapter
continue to hold when reformulated according to the restrictive approach.! I
next define Bayesian equilibrium, given a mechanism and an environment, for
an induced game of incomplete information, and this leads to the definition of

Bayesian implementability.

Definition 3 For a mechanism (M, g) and environment e, let By 4.y denote
the set of Bayesian equilibrium strategy profiles of the game of incomplete

information in e induced by (M,g). Then o € By gy if 0 € B(M) and

go(di,0-;) Pi(ti)goo

IMore precisely, the statements of the definitions and theorems below would be unchanged,
though their content would reflect the different meaning of Bayesian equilibrium under the

restrictive approach.
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foralli €I, allt; € T;, and all &5; € Z;(M;).

Definition 3 is stated in terms of social choice functions, reflecting their primitive
status, but it is equivalent to the usual definition (see Myerson, 1991) when T'
is countable, 7 is the power set of 7', and interim preferences over social choice

functions are given by R.

Definition 4 A mechanism (M, g) Bayesian implements the social choice
function f in e if Biargey # 0 and for all 0 € By ge) goo € [f]. A social
choice function is Bayesian implementable in e if there exists a mechanism

that Bayesian implements it in e.

A social choice function f is Bayesian implementable in e if there exists a mech-
anism with at least one Bayesian equilibrium and with the property that the
outcomes of every Bayesian equilibrium coincide with the outcomes of f at all
but a p*-outer measure zero set of states. Such a mechanism effectively solves
the implementation problem (e, f).

In Section 2.3, I will show how the implementation problems with solutions
are related to those satisfying incentive compatibility and Bayesian monotonic-
ity, which I state next for a given an implementation problem (e, f). Following
the above convention, X;(T;) will denote the set of all functions from T} to T},
and X(T) will denote the set of all profiles of such functions. Let 7 € £(T')
denote the truthful strategy profile defined by 7;(¢;) = ¢; for all i € I and all

t; € T;.
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Definition 5 An implementation problem (e, f) satisifes incentive compati-

bility if 7 € B(r,5.¢)-

For all i € I, let F; denote the set of social choice functions f such that, for all

t; € T; and all o; € E;(T3),
~f o (i, 7-3) Pilts) f.
The set D, sy of deceptions is the set of @ € ¥(T') such that foa ¢ [f].

Definition 6 An implementation problem (e, f) satisfies Bayesian monotonic-
ity if for all & € D, yy there exist j € I, t; €Ty, and f € F; such that
foa Pi(i;) foa.

Incentive compatibility requires of a social choice function f that truthful re-
porting is a Bayesian equilibrium in e of the game induced by the mecha-
nism (7', f), and Bayesian monotonicity corresponds Maskin monotonicity (see
Maskin, 1986) in Bayesian environments with incomplete information. It ap-
plies when agents use deceptive strategies, which are reports of types that lead
under the mechanism (7, f) to outcomes other than social choices on a set of
positive p*-outer measure. Bayesian monotonicity requires for each deception
the existence of an agent j, a type ¢;, and a social choice function f such that,
when other agents report deceptively, type £; of agent j prefers the outcomes
under f to those under f. The additional requirement that f € ﬁ'j entails that,
when other agents report truthfully, no type of agent j prefers the outcomes

under f to those under f.
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Jackson (1991) introduces monotonicity-no-veto, a property of implementa-
tion problems which in a sense combines Bayesian monotonicity with no veto
power. For a given implementation problem (e, f), I next state a simplified
version of Jackson’s condition. For all j € I and all @ = UieI Q; x T_;, let

Q#i = Uz Qi X T—;. I refer to such a set @ as a cross.

Definition 7 An implementation problem (e, f) satisfies monotonicity-no-

veto if for all a € X(T), all Q = U;e; Qs x T—i, and all f € I such that

(foa)/af ¢ (1],

~(foa)/qu(hoa) Pi(t:) (foa)/quf
implies
el eT\Q;feF;  (foa)quf Pi(E;) (foa)/g,,f.

Monotonicity-no-veto is not entirely transparent. It is stronger than Bayesian
monotonicity because it considers crosses Q and social choice functions f that,
roughly speaking, do best for each agent i on ();. Monotonicity-no-veto re-
quires, for each deception a and every such @ and f , the existence of j € I,
t; € T;\ @y, and fe F’] satisfying the following property. When outcomes are
given off by the social choice function f with agents reporting o and on @
by f, type t; of agent j would prefer to have outcomes off @ determined by

the social choice function f with agents reporting a. That is, type £; of agent
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j must have a strict preference when outcomes are changed on only the subset
T\ @ of states. Setting @ = (, this additional requirement is unrestrictive, and
monotonicity-no-veto reduces to Bayesian monotonicity.

Jackson observes that monotonicity-no-veto is actually equivalent to Bayesian
monotonicity in environments with a certain conflict of interest.? Moreover,
Jackson observed that, when the set of states is finite, this conflict of interest is
evidenced by every economic environment with a private good. The following

is a somewhat weakened version of Jackson’s condition.

Definition 8 An environment e satisfies conflict-of-interest if, for alli € I,
all t; € Ty, all f € F, and all o € E(T), there exist ji1,j2 € I, t;, € T},

tj, € Tj,, k', h? € F with ji # jo such that
f/{ti}XT..i(h’l Oa) Pj1 (tjl) f

and

fluxr_. (B oa) P, (t;,) f.

This version is weaker than Jackson’s in two ways. First, Jackson’s holds for
arbitrary sets S C T rather than for cylinder sets {¢;} x T—;, and second,
Jackson’s version requires the existence of constant social choice functions h!
and h? satisfying the above condition. Nonetheless, my version of conflict-of-
interest is strong enough to deliver the equivalence of Bayesian monotonicity

and monotonicity-no-veto, even when the set of states is uncountable.

2Jackson refers to these environments as “economic environments.”
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2.2 The Name Recognition Contest

Proving that an implementation problem has a solution usually requires the
construction of a mechanism that solves the problem. The mechanisms used
in the Bayesian implementation literature rely on the existence of a contest
that is a free-for-all, in the sense that every agent can win at every state if
the strategies of the other agents are fixed. Precisely, a contest is a pair (C, w)
where C = x;¢;C;, C; is a message space for agent i, and w : C — [ specifies
a winner for every profile ¢ = (e1,...,¢,) of messages. The required property
is the following: for all 7 € I and all v € £(C) there exists ¢; € C; such that,
for all ¢t € T, w(¢&;,v-;(t-;)) = j. An example of such a contest is the well-
known integer game, which has each agent reporting an integer with a prize
going to the owner of the highest number. That is, C = X;c;Z with elements
z=1(z1,...,2n) and w(z) = min(arg max;cs z;). When each agent’s set of types
is finite this contest is a free-for-all, since an agent can simply report one plus the
highest integer reported by any agent at any state. When agents have infinite
sets of types this construction becomes problematic, since there may not be a
highest integer reported by other agents.

Another example is an adaptation due to Jackson (1991) of the modulo game.
Jackson’s construction has each agent report n + 1 vectors of integers in the set
vV =4{0,1,... ,nTz}, where T = max;er |T;|. The first n vectors of each agent’s

report have length T', and each agent’s n+ 1th vector has length one.® An agent

3This is actually somewhat simplified. By increasing the size of V, I am able to use reports
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+ wins the contest if, for all j # i, j’s n + 1th vector appears as a component
in 4’s jth vector and ¢’s n + 1th vector does not appear in j’s ith vector. If no
such agent exists then agent 1 wins the contest by default. More precisely, each
C;=Vix---xV,xV,whereforallt € I, V;, = {O,l,...,n-T—2}—f. Let cf denote
the jth vector in ¢’s report ¢;, and let cfk denote the kth component of i’s jth
vector. Finally, let w(c) =i if, for all j # 4, c;””l = cfk for some component k
and ! # c;-’k for no component k. If no such 4 exiéts then let w(c) = 1.

To see that this contest is a free-for-all, fix the strategies v_; of agents other
than 7. Agent i must set éf so that, for all j # 4, each element of the set
{c}‘“}:—}tj € T; ¢; = 7;(t;)} appears as a component of &. Since j has at
most T types and ¢’s jth vector has T components, i can pick &; to satisfy this
condition. Also ¢ must set 5?’” so that it does not appear as a component
in any vector in the set {ci|3j € I,t; € Tj ¢; = v;(¢;)}. This set contains
at most nT vectors each with length T. The set of components appearing in
these vectors therefore has size no greater than nT". Since &1 can take on
nT + 1 values, i can pick 5?“ to satisfy the condition. This shows that the
adapted modulo game has the desired property. Although difficult to describe,
the adapted modulo game has the advantage that when T is finite so is C, a
property not shared with the integer game. As with the integer game, however,

the construction breaks down when T is infinite.

In this section I construct a contest, the name recognition contest, that

such that each agent’s n + 1th vector has length 1 rather than the length n used by Jackson.
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is very close to the adapted modulo game but has the free-for-all property for
arbitrary sets of types for each agent. Each agent picks a name from a very large
set of possible names and picks a subset of familiar names that is restricted in
size but still larger than the disjoint union of the agents’ sets of types. If an agent
7 is familiar with the names of all other agents and no other agent recognizes ¢’s
name then 7 wins the contest, and if this holds for no agent then the winner is
the lowest indexed agent. Any agent can win the contest given the strategies of
other agents by reporting a set of familiar names that includes the names of all
types of all other agents and picking a name that is not familiar to any type of
any other agent.

Before formally defining the name recognition contest, some preliminaries
are in order. For two arbitrary sets X and Y, I will write X B Y if there
exists a mapping from X onto Y, and I will write X > Y if X B> Y and not
Y > X. This relation captures a notion similar to the cardinalities of X and
Y, and coincides with that notion when the axiom of choice holds. To see that
X bY 7 implies X b Z, let fxy denote a mapping from X onto Y, and let
frz denote a mapping from Y onto Z. Then fyz o fxy is a mapping from X
onto Z. Suppose there exists a mapping fzx from Z onto X. Then fzx o fyz
is a mapping from Y onto X, a contradiction.

As no confusion will result, I will denote the name recognition contest by
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(C,w). Let T = J;e; Ti x {i}, let the set A denote the power set of
T=J U i) x {t:} T,
iclt,eT;

and note that A b T. Let A denote the collection of subsets B of A such that
T > B, and note that .4 is non-empty. When T is infinite, for example, A
contains all finite subsets of A. Intuitively, A is the set of names agents have
to choose from, and A is the collection of sets of familiar names agents have to
choose from. For all i € I, let C; = A x A with elements ¢; = (a;, B;), so each
agent i reports a name a; € A and a set B; € A of familiar names. Let w(c) =1
if a; € A\U,,; B; and U,xi{a;} € By, and if this holds for no ¢ then w(c) = 1.

The next theorem shows that the name recognition contest is a free-for-all.

Theorem 1 For all j € I and all v € T(C) there exists &; € C; such that, for

allt € T, w(&;,v-;(t—;)) = 3.

Proof: 1 will sometimes write an agent ¢’s strategy v; € Zi(A x A) as (v;, 5;).

To see that

T>J U Gits),

el t;eT;

note that, for all ¢ € I and all t; € T}, T b B:i(t;) implies the existence of a
mapping ¢, from T onto B;(t;). Then define ¢ : T — U;c; U, ep Bilts) by
(i, ti,t5,7) = ¢iy,(t;,7). Take b € B;(t;) for some i € I and ¢; € T;. Since
#i 1, is onto Bi(t;), there exists (¢;,7) € T such that ¢; 4 (t;,7) = b. Then

#(i, t;, t;,7) = b, and it follows that ¢ is onto U;e; Uy, ez, Bilti)-
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Now take j € I and fix the strategies v_; of the other agents. Let B; =
{b € AlFi € I,t; € T; v;(t;) = b}. That T > B; follows since the mapping
¢ : T — B; defined by 4(t;) = v;(t;) is clearly onto. Let b be an element of

A\ Uier Uy, er, Bi(t:), which is non-empty since

AT [ Bit)

i€l t; €Ty
Let a; = bfor all t; € T;. Then when j uses & = (d;, B;), j recognizes the
names of all other agents at every state, while no agents recognize 7’s name.

Therefore, w(é;,v7-;(t_;)) =jforallt € T. n

There are other contests, similar in spirit to the integer game, that also have
the free-for-all property. For example, assume that 7 is infinite and well-order
the set 27 by =, let 0 denote the least element of 27, and let [0,w] denote the set
of elements between 0 and w according to <. The contest has each agent report
an element of [0,w), where w; is the least element of 2T with the property that
[0,w:] has greater cardinality than T.* The winner of the contest is the agent
who reports the highest element according to <. The set of reports of types of
agents other than j will have cardinality no greater than that of T, so it Has
a least upper bound @ € [0,w;). Note that (@,w;) is non-empty, for otherwise

[0, @] has cardinality greater than T, contradicting the choice of wi. Then agent

4That such an element exists can be assumed without loss of generality. If not, consider the
set T =TU {w'} and extend < to =<', according to which ' is the unique greatest element.
Then <’ is a well-ordering and the set of w such that [0,w] has cardinality greater than T

owns w’. By the definition of a well-ordering, there is a least such element wi.
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j can report w € (I, w; ), thereby winning the contest at every state.” Unlike the
name recognition contest, this contest uses infinite message spaces even when 7’

is finite and it relies on the axiom of choice to ensure the existence of <.

2.3 Characterization Results

The necessity of incentive compatibility for the existence of a solution to an im-
plementation problem is known as the revelation principle, first acknowledged in
the Bayesian framework by d’Aspremont and Gérard-Varet (1979) and Myerson
(1979). The necessity of monotonicity for implementation in Nash environments
was recognized by Maskin (see Maskin, 1986), and was established for a class of
Bayesian environments Postlewaite and Schmeidler (1986). Jackson (1991) was
the first to note the implications of types with zero probability. In this case,
an implementation problem has a solution only if there exists a p*-equivalent
implementation problem satisfying incentive compatibility and Bayesian mono-
tonicity. It is not necessary that the original problem satisfy these conditions.
The next theorem shows that Jackson’s result holds for every environment sat-

isfying invariance. Note that independence is not needed.

Theorem 2 Assume e satisfies invariance. f is Bayesian implementable in e
only if (e, f*) satisfies incentive compatibility and Bayesian monotonicity for

some f* € [f].

51 am indebted to Kim Border for this construction.
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Proof: Assume that the mechanism (M, g) Bayesian implements f in e, and
take 0 € B(a,g,e)- Let f* =goo* € [f]. Then foralli € I, all t; € T;, and all
a; € y(Ty)
=f* o (aiy i) Bi(t:) f*
if and only if
~f*o (o] oai,0r;) Pi(ti) go o™,

which holds since 0 € B(ps,4,c)- This implies that 7 € B(r 5. ) and that (e, f*)
satisfies incentive compatibility.

Now take any & € D(, ¢+, so that f*oa ¢ [f*]. Then Proposition 2 implies
that f* oa ¢ [f], and since (M, g) Bayesian implements f in e it follows that

0% 0 & & B(p,g,e)- SO there exist j € I, ; € Tj, and 6; € 5;(T;) such that
go(5j,0%;0a_;) Pi(i;) goo* od.

By invariance, this implies that
go (im0l 0a-;) Pi(t;) goo*oa,

= *

where m; = &;(t;). Define f=go (j,0%;), s0 foa=go (M, 0% )oa =

go(mj,0*,0a_ ;) and f*o& =goc*od imply
foa Fi(t;) f*od,

as desired. To see that f € Fj, take any t; € T and o € Z,(T}), and note that

invariance implies

~f o(a;,7-;) Pi(t;) f*
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if and only if

—go(mj,0;) Ri(t;) goa®,

which holds since 0* € B(a g.e)- n

Implementation problems satisfying incentive compatibility and Bayesian
monotonicity are particularly tractable, for a rather intuitive reason. To solve
such an implementation problem (e, f), a mechanism can have agents report
their types and use these reports to pick the outcome determined by the social
choice function f. Since incentive compatibility is satisfied, truthful reporting
will be a Bayesian equilibrium of the mechanism with outcomes that coincide
everywhere with f, so the only remaining difficulty is the possibility that some
equilibria lead to outcomes that do not coincide p*-almost everywhere with f.
One way to deal with this is to enrich the message spaces of agents, allowing each
agent ¢ to indicate that other agents are reporting deceptively and to impose
the outcomes of some social choice function f € F; using the reported types of
other agents. No agent can gain by imposing these outcomes when other agents
report truthfully, but when the mechanism at every state uses deceptive reports
of agents to pick outcomes determined by f, Bayesian monotonicity ensures that
some type of some agent j can gain by defecting and imposing the outcomes of
some f € E;.

Incentive compatibility and Bayesian monotonicity are insufficient, however,
for the existence of a solution to an implementation problem. Once the message

spaces of agents are so enriched, a mechanism need not at every state use agents’
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reports to pick the outcomes determined by f. In this case the opportunity to
defect may not be enough to eliminate all unwanted equilibria, but the attrac-
tiveness of defecting is greatly enhanced for implementation problems satisfying
monotonicity-no-veto. Take a strategy profile, suppose that off some cross @ of
states the mechanism uses the deceptive reports of agents to pick the outcomes
determined by f, and suppose that on () the mechanism picks outcomes in some
other way. If the strategy profile is a Bayesian equilibrium and the mechanism
gives each agent ¢ the opportunity to impose any social choice function on the
band (Qx; and any social choice function f € F; elswhere, then the antecedent
of monotonicity-no-veto must hold. The condition ensures that some ¢ € T3\ Q;
can gain by defecting and imposing the outcomes of some f € F; on the set
T\ @. Jackson showed that incentive compatibility and monotonicity-no-veto
are, in fact, sufficient for the solution to an implementation problem, and the
next theorem shows that a version of this result holds for every environment

satisfying invariance and independence.

Theorem 3 Assume e satisfies invariance and independence. Then f is Bayesian
implementable in e if (e, f*) satisfies incentive compatibility and monotonicity-

no-veto for some f* € [f].

Proof: 1t suffices to find a mechanism (M, g) such that B(s,q..) # @ and goo €
[f*]for all & € B(p,g,e), since this implies goa € [f] by Proposition 2. Have each
agent i report 1i; = (£, fi, hi, iy ki, 65,8) € My = Ty x Fy x Fx {0,1} x {0,1} x

C; x C;, where (C,w) denotes the name recognition contest. I will sometimes
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represent a strategy §; € Z;(M;) by the sequence (di,éi,zﬁi,ﬁi,ki,%,éi) of
component functions. Before defining the outcome function, I must adapt the
name recognition contest so that it may be played by any two agents. Let
w; ;(ci,¢;) = tifa; € A\Bj and a; € B;, and similarly for j. If neither condition
holds then w; ; (¢, ¢;) = 0. Given a message profile 1, let I(k) = {i € I|k; = 1},

let I(]) = {i € I|i; = 1}, and order I(l) as follows. If there exists i € I({) such

that, for all € I(l) \ {i}, w; ;(é,€é;) = ¢, then ¢ is top ranked in I(l). Use
the same procedure to determine the top ranked agent of I(l) \ {i}, who will
be ranked second in I{l). Iterate this procedure until there is no agent who
beats the remaining agents in the name recognition contest, and then order
them according to their indices. Let L([, &) denote the lowest ranked agent of
I(I) according to the ordering derived from é.

Now partition M into n + 2 sets

M® = {sh € M|3i,j €I such that i # j,i € I(k),
j € I(k)UI(l),i = wi;(é:,¢;)}

M {rm € M\ M°|L(I,é) =4}

i

M = M\ O M,

=0
and note that [ # 0 implies that 1 € M° U Uier M i, It is straightforward to

check that k # 0 and 7 € M™ if and only if [ = 0 and there do not exist
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distinct 4, j € I(k) such that i = w; ;(é;,€;). Define the outcome function as

ho(ey(f) if € M°
g(m) = fi(d) if m e M

JM6) if m € M™tHL,
Unlike most mechanisms, each agent reports two social choice functions, two
integers, and two entries in the name recognition contest. These complications
are needed to ensure, given a strategy profile and the cross () consisting of the
states at which at least one agent reports a positive integer, that any agent j can
impose the outcomes of social choice functions in F on Qx; without affecting
the outcomes off Q«;, and that every type t; € T; \ Q; of agent j can impose
the outcomes of social choice functions in Fy off Q; without affecting outcomes
on Q«;.

To anticipate the arguments below, suppose that outcomes are given by the
strategy profile 5. The mechanism is constructed so that agent j can impose the
outcomes of b € F on Q#; by reporting h as j’s second social choice function,
reporting one as j’s second integer, and submitting entries that ensure victory
in both name recognition contests. The second integer acts aggressively, triggef—
ing the é-name recognition contest whenever another agent ¢ reports a positive
integer and loses to j in the pairwise é-name recognition contest. Leaving other
reports the same, it is easy to see that this strategy will not affect the outcomes
off Qx;. A type t; € T; \ Q; of agent j can impose the outcomes of f € ﬁ’j off

(%; by reporting f as j’s first social choice function, reporting one as 5’s first
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integer, and submitting an entry in the é-name recognition contest to ensure
victory. Leaving other reports the same, I claim that this strategy changes only
the outcomes off Q;. If 6(t) € M? then the only consequence of j’s switch is
to include j in the set of agents reporting a positive passive integer, which will
not move the reported message profile. Since j’s second social choice function
and entry in the é-name recognition contest are the same, the outcome is un-
affected. If 5(¢t) € M* for some i then j’s switch will not move the reported
message profile. Since j wins the é-name recognition contest, the outcome is
unaffected. If 4(t) € M™*! then j’s switch will not move the reported message
profile. Since j reports the same type, the outcome is unaffected.

The proof consists of two steps. The first step is to establish the existence
of 0* € B(p,g,¢) such that g o o* € [f*]. The second step is to show that this

equality holds for all 0 € B g.¢)-

Step 1 : Consider the strategy profile o* defined by o}(t;) = (¢, fi,h,0,0,)
for all 7 € I and all ¢; € T;, where ﬂ € Fi, h € F, and ¢ € C; are arbitrary
constants. To see that 0™ € B(as,g.c), take any i € I and &; € X;(M;), and

partition T} into S} = {t; € T;|Ai(t;) > 0} and S? =T\ SI. For t; € S2
=g o (5i,02;) Pi(t:) goo™

if and only if

—~f* o (&, 7-3) Pi(ts) f7,
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which holds since (e, f*) satisfies incentive compatibility. For ¢; € S},
ngo(di,02;) Pi(ti) goo™

if and only if

~f o (&i,7-3) Pi(ti)
which holds since f = ¢;(t;) € F;. Therefore o* € B(a,g,e), and clearly p*({t €

Tlg(a™(t)) # f*(H)}) = pu*(0) = 0.

Step 2 : Now take 0* € B, q.¢), and suppose that goo™ ¢ [f*]. Let Q; = {t; €
Tilli:(ti) +)\f(ti) > 0}, let Q = UieI Q; xT_;, and let Q;ﬁi = Uj;éi Qj xT_; for

all 7 € I. Note that g(a*(t)) = f*(a*(¢)) for all t € T \ @, which is to say that
goot =(fToa’)/qg(goo™). (2.1)
To see that
Viel,t;€T;,he F
(" 0 0")/ Q0w (99 07)/@u (o a®) Pilt:) (f* 0 a*)/qlg 0 o)
take j € I and {; € T; and suppose that
((f 0 0*) /e (900 au (Ro ™) Bi(E;) (f 00 )qlgoa®)  (2:2)

for some h € F. I claim that type t; of agent j can gain from a unilateral
deviation, contradicting the assumption that 0* € Bpy,g.¢)-
Consider the strategy 6; € £;(M;) defined by 6(t;) = (aj(t;), 5 (t;), h, A(t5),

1,&;,€;), where ¢; and é; guarantee that j wins both name recognition contests
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at all states. This strategy changes the outcomes of g o o only on the set Q4;,

where agent j wins the name recognition contest and h determines the outcome.

Then

go(6j,02;) = (900%)/qu(hoa")) (2.3)

i

((F* 0 0®)/Qu@y; (9007))/Qus (R o ™) (24)

where (2.4) follows from (2.3) by substituting from (2.1). Then substituting

(2.1) and (2.4) into (2.2) yields
go(5;,0%;) Pi(t;) goo™,
contradicting the assumption that o* € B g.). Therefore,

Viel,t;eT;,,he F

((fF o)/ e (g0 0))/ gu(hoa™) Pi(t:) (ffoa™)/qlgo ™).
By independence, this implies

Viel,t;eT,,heF

=(f*o a*)/Q¢.‘(h o a*) Pi(tz') (f* o a*)/Q;éi (g o U*)

so the antecedent of monotonicity-no-veto is fulfilied.
By monotonicity-no-veto, there exist j € I, t; € T; \ @;, and fe FJ such

that

(foa™)/qulgoo®) Fill;) (foa*)/qulge0") (2.5)
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I claim that type ¢; of agent j can gain from a unilateral deviation, contradicting
the assumption that ¢ € B(asg4.). Note that K/;(t]‘) = 0, and consider the

strategy &; € X;{M;) defined by
(@} (t), £, 95 (83),1,0,7} (8), &) il t; =1

5;(t;) =
at(t;) else

for all t; € T;, where é; guarantees that j wins the second name recognition
contest at all states. This strategy changes the outcomes of g o ¢* only on the

set ({f;} X T_;) N (T \ Qx;), where the outcome is determined by f o a*. Then
pi({t € Tlgo (65,07;)(8) # (f o a)/qu (g0 a™)(1)}IE) =0,
80 {2.5) and invariance imply
go(55,0%;) Pi(t;) (f"oa™)/qulgod). (2.6)
Since i; ¢ Q;, (2.1), (2.6), and invariance imply
go(Gj,0%;) P;(t) goo¥,
contradicting the assumption that 0 € By g.). Therefore, go o™ € FlP |

Unlike Theorem 2, Theorem 3 holds only for environments satisfying invari-
ance and independence. Weak as these conditions are, independence can be
dropped by suitably restating the property of monotonicity-no-veto. Changing

the antecedent to
Viel,t;eT, he F,heF,

~((f 0 @)/Q\@ui(h o a))/@u(hoa) Pi(ti) (fea)/of
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suffices for this purpose. Little is gained by dropping independence, so I use the
original statement of monotonicity-no-veto, which is closer to Jackson’s.
Jackson (1991) shows that Bayesian monotonicity implies monotonicity-no-
veto for environments satisfying conflict-of-interest, and it follows as a corol-
lary that incentive compatibility and Bayesian monotonicity are necessary and
sufficient for Bayesian implementability in such environments. Since, in Jack-
son’s framework, these environments include all economies with a private good
and selfish, monotonic utility functions over outcomes, this full characterization
applies to many implementation problems of practical interest. 1 next prove
Jackson’s theorem for arbitrary environments satisfying conflict-of-interest, but
T argue that the corollary on Bayesian implementability has limited applicability

when the set of states is uncountable.

Theorem 4 Assume an environment e satisfies conflict-of-interest. Then (e, f)

satisfies Bayesian monotonicity if and only if it satisfies monotonicity-no-veto.

Proof: That monotonicity-no-veto implies Bayesian monotonicity follows sim-
ply by setting @ = (). Now assume that (e, f) satisfies Bayesian monotonicity.
Take o € B(T), Q = U;e; @i x T—i, and f € F such that (f o@)/of ¢ [f] and
Viel,t;eT;,heF
(foa)/qulhoa) Pilt) (f o a)/quf-

Suppose that Q # @, so there exists i € I and t; € T; with t; € @;. Consider

agents j; # jo corresponding to ¢, t;, f o, and « in the definition of conflict-
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of-interest. If j; # 4 then {t;} x T; C Q4;, implies that
Vhe F =(foa)/inyxr,(hoa) P (t;,) foa,

contradicting the choice of j;. Therefore, j; = i. The same argument establishes
that j» = ¢, so that j; = j2. This again contradicts the choice of j; and 72, so

the original supposition must be wrong. That is, Q = 0. It follows that

(foa)/of =foa

and foa ¢ [f]. By Bayesian monotonicity, there exists j € I, ¢; € T}, and
f € Ej such that

foa Pi(i;) foa.
Then @ = 0 implies {; € T; \ Q; and
(feoa)/quf Pilty) (feoa)/quf,
which establishes monotonicity-no-veto. |
The next corollary follows easily from Theorems 2, 3, and 4.

Corollary 1 Assume e satisfies invariance, independence, minimal consensus,
and conflict-of-interest. Then f is Bayesian implementable in e if and only

if (e, f*) satisfies incentive compatibility and Bayesian monotonicity for some

frelf]l

While conflict-of-interest is satisfied by a large and interesting class of envi-

ronments when the set of states is finite, or even countably infinite, it becomes
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very restrictive when the set of states is uncountable. Intuitively, when agents’
beliefs about the realization of the state are continuous, the sets {t;} x T-; will
be negligible to all agents other than ¢ and it will be impossible to find agents j,
and J» as in the definition of conflict-of-interest. I next formalize this intuition

with a simple example.

Example 1 Assume that n = 3, that each T; = [0,1], and that 7 = x3_,7;,
where each 7T; is the Borel o-algebra on [0,1]. Assume that agents’ conditional
beliefs are derived from a common prior represented by a density function ¢ on
T. Each agent ¢’s beliefs conditional on type ¢; are then represented by a con-
ditional density ¢(.|t;). I leave the set of outcomes and preferences unspecified,
assuming only that invariance is satisfied. Take any i € I,t; € T;,f € F,a €
2(T),j1 # Jartj, € Ty, tj, € Tj,, and A1, h? € F. Without loss of generality,

assume j; # 1. Then since p} ({t:} x Ti|t;,) = 0, invariance implies
~f/gyxr_: (Bt 0 @) Py (t5,) f,
so conflict-of-interest cannot hold. 0

In this example I assume nothing about the set of outcomes or about the
interim preferences of agents, so that the example holds for even the most nat-
ural choices of these parameters. In particular, the set™of outcomes may be a
set of allocations of private goods and interim preferences may be derived from
expected utility calculations with strictly monotonic, selfish utility functions

for each agent. The example shows that, when the set of states is uncount-
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able, Corollary 1 applies only if the beliefs of agents are rather special in the
sense that for each type t; of agent ¢ there exists a type t; of agent j # i
whose conditional beliefs place positive probability on the lower-dimensional
event {t;} x T_,. Theorems 2 and 3 avoid this limitation, but they provide only

a partial characterization of Bayesian implementability.

2.4 Extended Expected Utility

The standard formulation of the implementation problem specifies state-contin-
gent utility functions over outcomes for agents that, together with the assump-
tion that each agent’s set of types is finite, induce complete interim preferences
over social choice functions given by the magnitude of their conditional expected
payoffs. I formally define the notion of an expected utility environment next,

without the assumption of finitude.

Definition 9 ¢ = (I,0,T,7T,u,R) is an expected utility environment if
there exists u : I x T x O — R such that for all i € I, all t; € T;, and all
fiheF,

fRi(t:) b
if and only if

/ w(FOIF) dps(tlfe) > / wilh(B)]8) dpss(1F:).
T T

I have omitted some natural structure from this definition, including a o-algebra

on the set of outcomes and measurability of agents’ state-contingent utility func-
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tions with respect to the product o-algebra on O and T', but this is unimportant
for what follows.

When T is uncountable and 7 is not equal to the power set of T', there will
in general exist social choice functions for which the above integrals are not
defined, and R;(¢;) will be incomplete. The results of Section 2.3 go through
in any case, but the next example shows that this form of incompleteness has
unsatisfactory consequences for the set of Bayesian equilibrium strategy profiles
for some games. In particular, some strategy profiles will qualify as Bayesian
equilibria simply because their conditional expected payoffs cannot be calculated

and unilateral deviations cannot be compared to them according to R.

Example 2 For an expected utility environment é, assume that n = 2, that
O ={0,1} x {0,1}, that Ty = T» = [0, 1], and that 7 = Ty * T, where 71 and 7>
are equal to the Borel o-algebra on [0, 1]. Agent’s conditional beliefs are derived
from a common uniform prior on I'. For all t € T and all z = (z;,z2) € O,
assume uy (z|t) = x, and us(z|t) = zo. Consider the following mechanism. Let
M, = My = 2001 % [0,1] with elements 7h; = (fi,.g'i), and define the outcome

function g = (g1, g2) by

1 if fz € 5’1
gi(my,me) =
0 else
for all i € M, and similarly for go. The induced game of incomplete information

is strategically simple. Each agent 7 should report S; = [0, 1], thereby receiving

a payoff of 1 at every state. Now let S denote a non-measurable subset of
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[0,1/2], and note that the strategy profile o that has each agent ¢ report ¢’s
true type and the set S at every type is a Bayesian equilibrium. This follows
since u1(g(o())].)7H({1}) = Th x § ¢ T, so that agent 1 can calculate the
integral [, u1(g(o(t))|t) duy (t|f1) at no type f;. Therefore, there is no unilateral
deviation & such that g o (71,02) Pi(f1) goo. A similar argument for agent 2

establishes that o € Ba,4.4)- o

The predictions of Bayesian equilibrium in the above example are disturb-
ing, since ¢ is qualified as a Bayesian equilibrium of the induced game simply
because no type of any agent can compare the social choice function goo to the
social choice function induced by any unilateral deviation. Considerations of
payoffs are irrelevant. In fact, both agents receive one unit of utility at less than
half of the possible states, though each agent 7 could receive one unit of utility at
every state simply by reporting S = {0,1]. The particular perverse predictions
of Bayesian equilibrium in this example are due to my permissive definition of
Bayesian equilibrium, but equally perverse predictions are generated by the re-
strictive definition. An intuitively obvious candidate for a Bayesian equilibrium
in the above game is the strategy profile & that has each agent ¢ report ¢’s true
type and the set [0,1] at every type, but it is not an equilibrium under the
restrictive definition of Bayesian equilibrium, because ~go o Ri(t) go (61,69),
where &1 is defined in the example. The problem is not the definition of Bayesian

equilibrium, but rather the incompleteness of interim preferences given by R.
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These issues might be dealt with by simply restricting each agent i to the use
of a subset &) C ¥;(T;) of admissible strategies such that each u;(g(a'(.))].) is
7 -measurable for every ¢’ € ¥/, but this merely transforms the problem to one
of determining which subsets are admissible. If each agent’s message space has a
natural o-algebra (and utility functions and outcome functions are appropriately
measurable) then the admissible subsets might be just the measurable mappings
from types to messages, but this approach is also problematic. Even if the notion
of “natural” could be formalized, it is unlikely that there would always exist
unique natural o-algebras, and in case there were a unique natural o-algebra it
would be difficult to justify this restriction on the grounds of payoffs. Indeed,
the next example shows that there are simple games with strategy profiles for
which no type of any agent can calculate conditional expected payoffs, but
for which each agent is clearly made worse off by unilaterally deviating. The
assumption that such strategy profiles will never arise is ad hoc and particularly

inappropriate in the context of Bayesian implementation.

Example 3 For an expected utility environment €, assumen = 2, O = {z,y, z},
Ty =T, =[0,1], and 7 = 7; * T3, where 7; and 75 are equal to the Borel o-
algebra on [0,1]. Agents’ conditional beliefs are derived from a common prior
according to which, with probability 2/3, states are drawn from a uniform dis-
tribution on the diagonal of . For all t € T, let ui{z|t) = us(z|t) = 1, let

w1 (y|t) = wa(ylt) = 3/4, and let u1(z|t) = u2(2|t) = 0. Consider the following
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mechanism. Let My = M, = {H, T}, and define the outcome function g by

z ifm=(HH)
g(m) = y ifm=(T,T)
z else
for all m € M. This mechanism induces a game of incomplete information
in & similar to the matching pennies game, the only difference being that
matching tails to tails results in a slightly lower payoff than matching heads
to heads. Let S be a non-measurable subset of [0,1]. Note that agents can-
not calculate conditional expected payoffs from the strategy profile o that has
both agents reporting heads when their types are in S and tails otherwise, for
u1(g(o())])*({1}) = § x S ¢ 7, and similarly for agent 2. This strategy
profile cannot, however, be discounted as an equilibrium, for it has the property
that any agent who unilaterally deviates is clearly worse off. To see this, sup-
pose type s € S of agent 1 reports tails instead of heads. The set of states at
which agent 2 reports heads contains the singleton set {(s,s)}, which accord-
ing to agent 1’s conditional beliefs at type s, has probability 2/3. The most
optomistic approximation of the payoff of this deviation would presume that
type s of agent 1 loses one unit of utility only at the state (s, s) and gains 3/4
units of utility elsewhere, but even then it is apparent that agent 1 is worse
off, since (1/3)(3/4) < 2/3. Now suppose type s € [0,1]\ S of agent 1 reports
heads instead of tails. Again, the most optimistic approximation of the payoff

to this deviation would presume that type s of agent 1 loses 3/4 units of utility
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only at state (s, s), which has conditional probability 2/3, and gains one unit of
utility elsewhere. Again, agent 1 is worse off, since 1/3 < (2/3)(3/4). A similar

argument for agent 2 establishes the claim. 0O

This example shows that comparisons between social choice functions are
often possible even when conditional expected payoffs cannot be calculated.
For another, less specific example, suppose that u;(f(.)].) and w;(h({.)].) are
non-measurable but that there exists a 7-measurable function v : T — R such

that, for all t € T, w;(f(t)|t) — wi(h(t)|t) < v(t) and
[ o0 autaiy <o
T

Then it is clear that type £; of agent 1 should weakly prefer h to f. Unfortunately,
this comparison will not in general complete R;(f;). The extension of R,(;)
to a complete preference relation on F' requires comparisons that are not as
clear but are nonetheless plausible. Such an extension should be interpreted
as one among many possible postulates of behavior in environments with non-
measurable subsets of types.

To this end, I define an extension of the integral to non-measurable functions
v: T — R by calculating the integrals of measurable functions that are above v
but very close. I write w = v if, for all t € T, w(¢t) > v(¢t),.and I formally define

the upper integral of v with respect to p;(.]t;) as

/* v(t) dpi(tlt;) = inf { /T w(t) du: (tE)|w = v,w T — mble}
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for all 4 € I, all &;, and all bounded functions v : T — R. I next formally
define an extended expected utility environment as an expected utility environ-
ment with interim preferences over social choice functions extended to complete
preferences using the upper integral in a way that satisfies the technical re-
quirements of Chapters 3 and 4 and admits an intuitive interpretation. The
additional requirement that u is bounded is necessary to prove the existence of

the upper integral.

Definition 10 e* = (I,0,T,7T, u, R*) is an extended expected utility en-
vironment if there exists u : I x O x T — R bounded in absolute value such

that for alli € I, all t; € T;, and all f,h € F,
fRi(t:)h
if and only if

[ i 01 i) st
- [ 1) - w O} () 2 0.

Thus, when the upper integral of one differential is non-negative and the integral
of the other is non-positive, so that a preference is clear, R}(Z;) agrees with that
preference. And when the upper integrals of both differentials have the same
sign, f is weakly preferred to h according to R(f;) if and only if the upper
integral of the first differential gives at least as strong an indication of preference

as the integral of the second.
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The upper integral has several properties that will be important for the
sequel. I state these in the form of propositions and then summarize their im-
plications for extended expected utility environments in Theorem 5. In the
proofs of the following propositions, relegated to the appendix, I will often refer
to a 7-measurable function w : T — R such that w = v and [ w(t)d p;(t|t:) =
[" v(t)dui(t|t;) as an upper approximation of v. Let V denote the set of func-

tions v : T — R bounded in absolute value.
Proposition 3 For alli€ I, allt; € T;, and allv € V, [ v(t) dui(tlt;) exists.

Proposition 4 For alli € I, all t; € T;, and all v € V, there exists a 7T -

measurable function w € V such that w > v and

[ wtduacii = | o) dpss(H1E).
T

Proposition 5 Foralli € I, allt; € T}, and all vi,v2 € V, pr({t € T|v1(t) #

vo(t)}E:) = O implies
[ @) = [ o) dueif,

Proposition 6 For alli €I, ollt; € T;, and all v;,v2 €V, vy > vy implies
[ @t > [ o dm i),

Proposition 7 For alli € I, allt; € T}, all vi,v2 € V, and all S C T with
ui(S|E:) > 0,

vy = v; and Yt € 5 va(t) > v (1)
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tmplies

[ a6 = a0 dutetiy >
Proposition 8 Foralli € I, allt; €T;, allc € R, and allv eV,
/*{v(t) +cydus(t)t) = c+ /* v(t) dps(t|E:).
Proposition 9 For alli €I, allt; € T;, alla,b€ Ry, and all v1,v,: T — R,
/ “{ani(t) + bus(8)} dps(tlf) < a / " n(8) dpss(t)E) + b / " oal(t) da (t]Fs).
Proposition 10 Foralli€ I, allt; € T}, and allv €V,
~ [ dutelf < [ o0 dusteli),

Proposition 11 Foralli € I and alli; € T;, if {vi} is a sequence of functions

mV with v, = v €V then
/ v(t) dlii(t[{i) < lim inf / v (t) dﬂ,(tl{,)
k->00

Proposition 12 For alli € I and all t; € T}, if {vy} is a sequence of functions

in V with v, — v € V uniformly then

[ ot 2 1m sup [ w0 duatef)

k—o0
Propositions 3 and 5 establish the existence of the upper integral for bounded
functions from states to the real numbers and its invariance with respect to
changes on sets of states with outer measure zero. Proposition 4 shows that

every bounded function has an upper approximation, a property useful in the
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proofs of several propositions. Propositions 6 and 7 establish two monotonicity
properties of the upper integral. Propositions 8, 9, and 10 establish several
weak additivity properties of the upper integral. Finally, Propositions 11 and
12 establish two weak continuity properties of the upper integral that are not
used in the sequel, but are stated here as a matter of interest.

The interim preferences R}(f;) are complete if, for all f,h € F, either
f R:(t;) h or h Ri(t;) f or both. I refer to R}(t;) as strictly monotonic if
two conditions hold. First, u;(f(.)].) = w;(h(.)].) implies f RX(t;) h, and sec-
ond, f P?(t;) h is implied by w;(f(.)]-) = ui(h(.)|.), p;(S)t:) > 0, and, for all

te S, w(f@)t) > uh®)]).

Theorem 5 FEvery extended expected utility environment e* satisfies invariance

and independence. Moreover, each R}(t;) is complete and strictly monotonic.

Proof: Proposition 5 easily implies that every extended expected utility envi-
ronment satisfies invariance. That these environments also satisfy independence
follows since, for all i € I, all f', 2, h',h* € F, and all S C T, both functions
ui((f1/sh)()]) —usl(f2/sh*)()].) and wi((f1/sh*)()].) —ui((F2/sh*)()].) are
equal to zero on the set S. Proposition 3 shows that, for all i € I, all ¢; € T;,

and all f,h € F,

/ {uFO1) - w0} ds (81 / {us(RO1E) — wi F(0)10)) dus(t]Es)

is well-defined. That R} (#;) is complete follows by the symmetry of the definition

of weak preference. Proposition 6 shows that, for all ¢ € I, all t; € Ty, and
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all f,h € F, u;i(f(.)].) = wi(h(.)].) implies f R}(#;) h. Propositions 6 and
7 together show that u;(f(.)}.) > w;(h{.)|.), with strict inequality on a set of
positive u}(.|t;)-outer measure, implies f P?(f;) h. This establishes the strict

monotonicity of R (t;). [ |

2.5 Conclusion

In this chapter, I formulate the implementation problem for arbitrary environ-
ments, and I extend the results of Jackson (1991) to environments satisfying the
weak conditions of invariance and independence. In particular, the set of states
may be uncountable. I take agents’ interim preferences as primitives, assuming
only reflexivity, thereby obtaining as special cases results for Nash environments
and for environments with preferences derived from conditional expected util-
ity calculations. Of technical interest is the name recognition contest, used to
prove the sufficiency result for monotonicity-no-veto, which possesses the crucial
properties of the modulo game but which is effective for arbitrary sets of types.

I then prove the equivalence of Bayesian monotonicity and montonicity-
no-veto in environments satisfying conflict-of-interest, a relationship noted by
Jackson, with the obvious full characterization of Bayesian implementability as a
corollary. I offer an example showing that Jackson’s conflict-of-interest condition
is quite strong when the set of states is uncountable, entailing an unnatural

restriction on the beliefs of agents regarding the realized state, thereby limiting
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the applicability of the corollary in such environments.

I end with an example showing that interim preferences derived from con-
ditional expected utility calculations do not accurately reflect the motivations
of reasonable agents when the set of states is uncountable. The reason for this
is that, in such environments, these interim preferences will generally be in-
complete. Another example shows that the usual way of completing expected
utility interim preferences, effectively restricting agents to use strategy profiles
that induce comparable social choice functions, is unsatisfactory. Specifically,
there exist games with strategy profiles for which no agent can calculate con-
ditional expected payoffs but which are clearly stable. I offer an intuitively
appealing and technically managable extension of expected utility interim pref-

erences using upper integrals.



Chapter 3

A Full Characterization of
Bayesian Implementability
in Very General

Environments

In Section 3.1, I add to the conceptual apparatus set forth in Chapter 2. In Sec-
tion 3.2, I show that the conjunction of incentive compatibility and extended
Bayesian monotonicity is necessary and sufficient for the implementation of so-

cial choice functions in environments satisfying invariance and interiority. In

61



Bayesian Implementation 62

Section 3.3, I show that the class of environments satisfying interiority is large.
Assuming best-element-private values, interiority is satisfied by every continuous
environment, a class that includes the lottery environments and the economic
environments. Lottery environments are extended expected utility environments
for which the set of outcomes is the set of probability measures over a measurable
space of pure outcomes, and the economic environments include every economy
for which agents have continuous, monotonic preferences over commodity bun-
dles. Among these are the pure public goods economies, which do not typically
satisfy conflict-of-interest and to which Theorem 4 does not apply. Section 3.4

concludes the chapter.

3.1 Notation and Definitions

Given an environment e = (I,0,7,T,pu, R), a set O of outcomes is interior if
foralli € I, all t; € T, all S C T with p}(S|t;) > 0, and all f € F with

f(S) C O, there exists h € F such that

f/sh Pi(t:) f.

For an interior set O of outcomes, let F' denote the set of social choice functions
h with A(T) C O. Roughly, F is the set of social choice functions that are
not maximal for any type of any agent on any set of states with positive outer

measure. If e is a private good exchange economy, for example, then F is the

set of social choice functions that do not allocate the entire endowment to any
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agent at any set of states with positive outer measure.

In Section 3.2, I consider environments for which there exists an interior set
of outcomes such that any strict preference for one social choice function over
another can be replaced by a strict preference for an interior social choice func-
tion over the other. I state this condition formally next. Given an environment
eand a cross Q = U;e; Qi X T, let Quj = U,; Qi x Ty, let QF = Q \ Qs
and let QT = Uier Q7. That is, Q7 is the set of states in one and only one set
Q;. I will sometimes refer to Q \ Q% as the center of the cross, to Q* as the
arms of the cross @, and to Q;* as the ith arm of the cross. Note that the Qj

are pairwise disjoint.

Definition 11 An environment e satisfies interiority if there ezists an interior
set O of outcomes such that for alli € I, all t; € T, allae S(T), adll SCT,

and all f*, >, f3, fPe F
(froa)/sf* Pi(ts) (fPoa)/sf*

implies

3h e F (floa)/s(hoa) Pilts) (fPoa)/sf".

Suppose a type t; of agent ¢ prefers one social choice function to another and
that both social choice functions use a deception a off a set S. Then interiority
stipulates that there exists a social choice function h with interior values such
that the agent’s preference is unaffected when the first social choice function is

spliced with h o « along S. Note that this condition involves something like the
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continuity of P;(¢;) and denseness of Fin F. Moreover, since h uses o and f?
does not, the condition hints of best-element-private values, stated precisely in
Section 3.3 for extended expected utility environments, which requires roughly
that the outcomes that give an agent high utility are independent of other
agents’ types. Theorem 9 explores these intuitions and shows that interiority is
satisfied in a large class of environments.

For environments e satisfying interiority, the results of Section 3.2 character-
ize the implementation problems (e, f) for which there exists a solution. They
are just the ones satisfying incentive compatibility and extended Bayesian mono-
tonicity, defined formally next. Given an implementation problem (e, f), recall
that F; denotes the set of social choice functions f such that ~fo(a;, 7—;) Pi(t;) f
for all t; € T; and all o; € X;(T;). In Section 2.1 I defined the splicing of one
social choice function with another along a set of states. In this chapter I deal
with the splicing of one social choice function with a collection {f;}.er of social
choice functions along disjoint collections {Q] }:er of states, and the following

shorthand will be useful. Let

f//ijz =(-- ((f/Q;rfl)/Qg‘fz) )/Qifn

denote the result of splicing f with each f; along the corresponding Q7. For a
set H; C F, a function a € X(T), and a function ¢; € Z;(H;), let (;, a) denote
the social choice function defined by (v;,a)(t) = ¢:(t:)(a(t)) for all t € T.
Let H = x;¢rH;, and let £(H) denote the set of profiles ¥ = (¢1,...,%,) of

functions ¥; € L;(H;).
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Definition 12 An implementation problem (e, f) satisfies extended Bayesian
monotonicity if there ezists a collection {H;}ic1, with each H; C F;, such that

foralla € 5(T), all Q = U;¢c; Qi xT—; with p*(Q\ Q") =0, and all ¢ € T(H),

Vielt;eTi,heH;, feF

_‘(hoa)/Q:éefPi(ti) (foa)//er(z/)i’a)

implies
(f 0 @)/ /g3 (1) € [f].

To see that this condition implies Bayesian monotonicity, take o € D(, ), and
let each ; = §} in the statement of extended Bayesian monotonicity. Then each

Q7+t =0 and each Qx; =0, so

(fo o)/ [+ i) = foa ¢ [f].

Then there exists j € I, ; € T;, and b € H; C Fj such that

(hoa) Pi(t;) (foa),

which establishes Bayesian monotonicity.

For implementation problems (e, f) satisfying extended Bayesian monotonic-
ity, there exists a collection {H;};cr of sets of social choice functions with the
following property. Suppose the center of a cross ) has zero u*-outer measure,
the outcomes on each arm (); are given by social choice functions in H; and «,
and outcomes off ¢ are given by f and «. If no type of any agent ¢ would prefer

to have outcomes determined on the ith arm by any social choice function in
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H; and outcomes determined elsewhere by any social choice function in F, then
the outcomes described above must coincide with the outcomes of f at all but

a p*-outer measure zero set of states.

3.2 Characterization Results

The most powerful full characterization of Bayesian implementability is Jack-
son’s (1991) result for environments satisfying conflict-of-interest, but he as-
sumes that the set of states is finite. I show in Section 2.3 that Jackson’s result
is true even for uncountable sets of states, but that in such environments conflict-
of-interest implies an unnatural restriction on the beliefs of agents. Since the
advantages of conflict-of-interest are limited to a rather small. class of environ-
ments, in this section I explore the possibilities of Bayesian implementation in
environments satisfying interiority instead. I find that environments with this
structure are quite tractable: the conjunction of incentive compatibility and
extended Bayesian monotonicity is necessary and sufficient for the existence of
a solution to an implementation problem. The next theorem establishes the

necessity of these conditions, and does not rely on the assumption of interiority.

Theorem 6 Assume e satisfies invariance. Then f is Bayesian implementable
in e only if (e, f*) satisfies incentive compatibility and extended Bayesian mono-

tonicity for some f* € [f].
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Proof: Assume that f is Bayesian implementable by the mechanism (M, g) and
take 0* € B(pr1,g.e)- Let f* = goo” € [f]. Incentive compatibility of (e, f*)

follows from the proof of Theorem 2. For each i define
H; = {go (ms,0%,)lm; € M},

where go (m;,0*,) is defined by go (m;,0%,)(t) = g(m;,0* (t=;)) forallt € T.
Now take o € E(T), Q = U,;¢; Qi x T—i with p*(Q\ Q") =0, and ¢ € Z(H).

Assume
Viel,t;eT,he H,f€F
~(hoa)/quf Pi(t:) (f*o a)// g+ (¥, ).
For all : € I and all t; € Ty, let m}* satisfy ¥;(t;) = g o (m¥,0*,). Then define
& € S(M) by

mb ift; € Q;

K

6’1‘ (ti) =
of(ai(ts) else,

for all i € I and all t; € T;. To see that

(fFoa)//q+(di,a) € [god], (3.1)

take t ¢ @ \ QT. First suppose t € Q*. Since the Q] are pairwise disjoint,
there is exactly one j € I such that ¢ € Q. Then 6;(t;) = m{ and G-j(t—;) =

ol i(a-;(t-;)), so

g(6()) = g(m" 0% ;(a-;(t-;)))
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= (go(mY,0%;))(a(t))

¥;(t5)(a(t))

= (¥, )(t)

((F" 0 a)// g (i, a))(D).
Now suppose t € T'\ Q. Then &(t) = o*(a(t)) and
9(6(1)) = g(a™(a(®))) = f*(a(®)) = (f* 0 &)//q+ (i, a)(t),
50
{t e Tl(go6)(t) # ((f* 0 )/ /g (i, a))(H)} CQ\ Q7.
The claim follows, since p*(Q \ Q*) = 0.
To see that & € B(p,g.), take j € I, §; € Tj, and &; € Z;(M;). By

invariance, it follows that
~g0(6;,6-5) Pi(t;) god
if and only if
=g o (m;,6-;) Pi(tj) god
where ; = &;(f;). Let ;(t) = {i # jlts € Qs}, J5(t) = {i # jlt: ¢ Qi}, and
define h € H; and fE F by
h(t) = go(m;,ol;)(t)
f&) = go (i, (miier ), (07 (@i(t:))ies, v)
for all t € T. It is straightforward to check that

go(mj"}-—j) = (hoa)/Q¢j.f' (32)
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Then invariance, {3.1), (3.2), and
~(hoa)/guf PiE;) (f o a)// g+ (%1, )
imply
go(m;j,6-5) Pi(t;) goé.

Therefore, & € B(p4.)- Since (M,g) Bayesian implements f, it follows that

go & € [f]. Finally,
(f*0a)// g+ (Wia) ~gob ~ f ~ f*
and Proposition 2 imply
(f* 0 @)/ g+ i,2) € [F°],
establishing that (e, f*) satisfies extended Bayesian monotonicity. 1

The next theorem establishes the sufficiency of incentive compatibility and
extended Bayesian monotonicity in environments satisfying invariance and inte-
riority. Interiority is used to show that the center of a certain cross has p*-outer
measure zero, so that extended monotonicity may be applied. This is done by
having agents play the name recognition contest, constructed in Section 2.2,
and allowing the winner to impose on the center of the cross the outcomes of
any social choice function with interior values. Interiority implies that for no
type of any agent is there such a social choice function that does best when the

center of the cross has positive outer measure. No conflict of interest is needed.
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Theorem 7 Assume e satisfies tnvariance and interiority. Then f is Bayesian
implementable in e if (e, f*) satisfies incentive compatibility and extended Bayes-

ian monotonicity for some f* € [f].

Proof: It suffices to find a mechanism (M, g) such that B 4.c) # § and goo €
[f*] for all 0 € B(p,q.), since this implies g o o € [f]. Have each agent i
report m = (&, fi, ha, b kiy &) € My = Ty x F x H; x {0,1} x {0,1} x
{0,1} x C;, where (C,w) denotes the name recognition contest, constructed in
Section 2.2. I will sometimes represent a strategy &; € X;(M;) by the sequence

(&, qgi,z/}i, i, &, T, %) of component functions. Partition M into the following

sets
MY = {meM|li=1,_;=k_;=p_; =0}
M = {ieMli#gp>00+kj+p;>0,0i;=Fki;=p_i; =0}
M° = {i € M|Fiy,ia,i3 € L0y # iy # i3 # i1, ks, > 0,
Ly + kiy + pi, > 0,135 + ki, + Ps, > 0}
M* = M\|[Mu|J MY,

ijel
and define the outcome function as
hi(f)  if e MY
9(m) = 4 fue@) if me MU,y MY
(6 if m e M*.
The mechanism is somewhat different than the one used to prove Theorem 3,

because now agents report a single entry in the name recognition contest and
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three integers: an aggressive integer I}i, a passive integer ii, and an interme-
diate integer p;. An agent ¢’s passive integer allows the agent to impose any
social choice function in H; whenever no other agent reports a positive integer;
1’s intermediate integer triggers the name recognition contest between 7 and j
whenever exactly one other agent j reports a positive integer; and ¢’s aggressive
integer triggers the name recognition contest whenever two or more other agents
report positive integers. The proof consists of two steps. The first step is to
establish the existence of ¢* € B4,y such that g o 0* € [f], and the second

step is to show that the equality holds for all 0 € By g..).

Step 1 : Consider the strategy profile o* defined by o7 (t;) = (i, fi, 24, 0,0,0,)
for all 7 € I and all t; € T;, where f; € f'", h; € H;, and & € C; are arbitrary
constants. To see that 6™ € B(p4.c), take any © € I and 6; € X;(M;), and

partition T} into S} = {t; € Ti|A(t;) = 1} and S? = T; \ S!. For t; € 52,
~g o (5i,0%,;) Pi(t;) goo™
if and only if
~f" o (G, 7-i) Pi(ts) £
which holds since (e, f*) satisfies incentive compatibility. For ¢; € S}, invariance

implies that

=g o (6;,0%;) Pi(t;) goo™

if and only if

—hi o (&, 7—;) Pi(t:) f*
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which holds since h; = 1[1,-(ti) € H; C F,. Therefore, 0™ € B(ps,4,¢), and clearly

pr({t € Tlg(a™(8)) # f*(£)}) = p~(0) = 0.

Step 2 : Now take 0 € Bya,g,c)- Let Qi = {t; € Ti|A] (t:) + &} (t;) + 7} (¢:) > 0},
let Q = UiEI Qi X T,.i, let Q;g,' = Uj;éi Qj X T_j, let Q:’ = Q \ Q;ﬁ, and let
QF = Uier QF . To see that p*(Q \ Q%) = 0, suppose not. Then there exists

j € I and t; € T; such that i@\ Q7|t;) > 0. Note that
9(0™ (1)) = Pi(y(e (@ (1)) € O

for all t € Q \ QF, where O is the set of interior outcomes in the statement of

interiority. Then there exists A € F' such that
(g900™)/qua+h Pi(fj) goo,
and by interiority, there exists f € F such that
(go0*)/quo+(foa®) Pi(i;) goo™. (3.3)

I claim that type ¢; of agent j can gain from a unilateral deviation, contradicting
the assumption that ¢* € B(ps,,,.). Consider the strategy ¢; € £;(M;) defined

by
&j(tj) = (a;(tj)af: ¢;(tj)7A;(tj)7 177?j(tj)76.‘i)

for all t; € Tj, where ¢; guarantees that j wins the name recognition contest
at all states and 7;(t;) = Aj(¢;). Suppose for the moment that this strategy

changes the outcomes of g o 0* only on the set @ \ @, where j wins the name
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recognition contest and f determines the outcome with a*. This implies that
go(mj,0;)=(goc")/q\@+(foa’),

which yields
go(mmy,0%;) Pi(t;) goo”,
after substituting into (3.3). This contradiction shows that p*(Q \ @*) = 0.
To see that &; does indeed change the outcomes of g o * only on the set
Q\ Q*, take t € T. There are three cases to consider. First, suppose t € T'\ Q.
Then (A;(t;),A%;(t=;)) = A*(t) = 0, (&;(t;),x%,(t=;)) = (1,0,...,0), and

(75 (85), 2 ;(t-5)) = (A5(2),0,...,0) =0, so

9(6;(t5),02;(t-5)) [ (@;(t5), 0 ;(t—5))
= fr(a*(t)

= g(o*(¥),

as desired. Second, suppose ¢t € Q*, so there is exactly one agent i who reports
a positive integer. If i = j and Aj(t;) = 1 then (X;(t;),\";(t—;)) = \*(t) =

(1,0,...,0), k2 ;(t—;) = 0, and 7* ;(t_;) = 0, so

9(;(t;),075(t=3)) = i(t;)(@;(t;), ot (¢-5))

il

¥;(t)(a™ (1))

I

g9(a* (%)),
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as desired. If i = j and Xi(t;) = O then (X;(t;), A" ;(t—;)) = X*(t) = 0, and
KE(t—j) =7Z;(t—;) =0, s0
9(6;(t), 02 ;(t-5)) = fr(@;(t;),el;(t-5))
= fre"(t)
= g(o*(¥),
as desired. If i # j and Af(t:) = 1 then (X;(£;), A% ;(t=54)) = A1;(t—) = O,

(Rj(t5), K2 5:(854)) = £Z;(t—s) = 0, and (7;(2;), 72 ;,(t—5.0)) = (A(£;),0,...,0) =

0, so

9(;(t;),02;(t—5)) = 97 (t:)(8;(t5), 0 ;(t—;))

I

¥; (t:)(@* (1))

= g(o*(t)),
as desired. If j # ¢ and A} (¢;) = 0 then (;\j(tj)y)\ij(t_]’) =0, so
9(6;(t;),02;(t—5)) = f(&;(t),al;(t-5))
= f(a’()

= g(e*(?)),

as desired. Third, suppose t € @ \ Q. Then there exists ¢ # j such that

Af(t:) + K5 (t:) + 7 (t;) > 0, so &;(t;) = 1 and 7;(t;) = ¢; imply that

9(Gi(t),07;(t=5)) = it)a;(t;), ot ;(t_;))

i

(),
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as desired.

Next, I show that
(fTea)//g+{¥i,a") €goo™]. (3-4)

To this end take t € Q. Since the Q] are disjoint, there is exactly one j such

that ¢t € Q;‘, and then

9o* (1) = Uit (1)
= (¥],0)(t)
= ((f 00"/ [+ W a D).

Now take t € T'\ Q. Then
g9(o™(8)) = (" (1)),

and the claim follows since p*(Q \ Q1) = 0. To apply extended Bayesian

monotonicity, I must show that

Viel,t;eTi,he Hy,f € F

~(hoa®)/quf Pilt:) (£ 0a”)//qr(¥i,a”).
To this end, take j € I, f]- €Tj, he€ Hj, and f € F, and suppose that
(hoa®)/q,,f Pi(t) (f° oa")// o+ (i, a’). (3.5)

I claim that this allows type £; of agent j to gain from a unilateral deviation,

contradicting the assumption that ¢* € By, g.)-
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Note that interiority and (3.5) imply the existence of f € F’ such that
(hoa”)/qu(foa) Pi(t;) (f*o a’)/[ g (i, a"). (3.6)
Now consider the strategy ¢; € £;(M;) defined by
&; = (a(t;), f by 1,1,1,E))

for all t; € T}, where ¢; guarantees that j wins the name recognition contest at
all states. This strategy changes the outcomes of g o ¢* on (Q+;, where j wins
the name recognition contest and imposes the outcomes of f using the agents’
reports o, and it changes outcomes off Q;, where j imposes the outcomes of

h using o*. That is,
go(mj,02;) = (hoa")/q,,(foa®). 3.7)
Then (3.4), (3.6), (3.7), and invariance imply
go (1my,0%;) Pi(t;) goo*,
a contradiction. Extended Bayesian monotonicity then implies that
(ffoa™)//g+(¥i,a") € [£]. (3.8)

Finally, (3.4), (3.8), and Proposition 2 imply that g o o* € [7*], as desired. W

3.3 Interiority

Although interiority is not implied by conflict-of-interest, in this section I show

that, assuming best-element-private values, many interesting extended expected
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utility environments satisfying conflict-of-interest also satisfy interiority. Interi-
ority is satisfied, for example, in economies with a private good and monctonic
preferences. But interiority is also satisfied in environments that do not typ-
ically satisfy conflict-of-interest. It holds in pure public good economies with
free disposal, and it holds in lottery environments, for which the set of outcomes
is the set of probability measures over a set of pure outcomes. The structure
common to economic environments and lottery environments that makes them
especially tractable is that agents’ state-contingent utility functions are contin-
uous and, in a certain sense, monotonic: agent’s best outcomes, if they exist,
are extreme points of the set of outcomes. More to the point, the best outcomes
of any type of any agent can be approximated by outcomes that are best for no
type of any agent. Extended expected utility environments in which agents’ best
outcomes range over a Euclidean space of outcomes, as in the spatial political
model (Ordeshook, 1986), do not satisfy interiority. The results for economic
environments and lottery environments follow from a more general theorem for

continuous environments, defined next.

Definition 13 e* is ¢ continuous environment if it is an extended expected

utility environment, O is a topological space, each u;(.|t) is continuous, and

0" ={zeONieI,t €T Iy € O uylt) > uilalt)}

is dense in O.
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I next define best-element-private values for extended expected utility envi-
ronments with topological spaces of outcomes, which include the continuous
environments. Versions of the condition have appeared in the Bayesian im-
plementation literature, (see Palfrey and Srivastava, 1993) but for purposes of

comparison I also supply the more common condition of private values.

Definition 14 An environment e satisfies best-element-private values if
foralli € I, allt; € T;, and all k € Zy 4 there exists o non-empty open set

By, C O such that for allt_; € T_; and all x € By,
1
ui(z|t) > sup ui(ylt) — —.
yeo k

Definition 15 An environment e satisfies private values if for all i € I and
adlt,t' eT,

t; = t; implies u;(.|t) = w;i(L|t").

Roughly, best-element-private values requires that, given an agent and a type,
there exist open sets of outcomes that give the agent arbitrarily high utility,
independent of other agents’ types. Unlike its relatives in the literature, best-
element-private values does not require for each type of each agent the existence
of a best outcome independent of other agents’ types, but my version of the con-
dition relies on topological properties of the set of outcomes and is therefore not
strictly weaker. Private values requires simply that each agent’s state-contingent
utility function is independent of other agents’ types. For such environments, I

will write u;(.].) as a function of outcomes and ¢’s type only.
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Theorem 8 shows how the continuous environments satisfying private values

are related to those satisfying best-element-private values.

Theorem 8 Every continuous environment satisfies private values only if it

satisfies best-element-private values.

Proof: Take ¢ € I, t; € T;, and a positive integer k. By the definition of a
supremum, there exists z € O with u;(z|t;) > sup,eoui(y|t:) — 1/k. Since
O* is dense in O, there is a net {z,} in O* converging to z. Since u;(.[t;) is

continuous, there exists a such that

o

sup u;(ylt;) > ui(Talts) > sup ui(ylts) —
y€O y€0

Continuity of u;(.[t;) then implies that these inequalities hold for an open set
By C O owning z,. Since private values is satisfied, these inequalities are

independent of ¢_;. |

The next theorem shows how the continuous environments for which best-
element-private values is satisfied are related to those satisfying interiority. This
result, together with Theorems 6 and 7, yields as a corollary for these environ-

ments a full characterization of the implementation problems with solutions.

Theorem 9 If a continuous environment satisfies best-element-private values

then it satisfies interiority.
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Proof: Let O = O*. To see that O is an interior set of outcomes, take fheF
with /(T) C O,i €I, t; € T, and S C T with wr{S|t;) > 0. By the choice of

il, for all t € S there exists z; € O such that
’U,i(.’L'tlt) > 'U,l(il(t)lt)

Since u;{.|t) is continuous, for all ¢ € S there exists an open set B, C O such
that this inequality holds for every element of B;. Since O dense in O, each B
must contain an element of O. Using the axiom of choice, it is possible to define
the social choice function h such that, for all ¢ € S, h(t) is such an outcome.
Then, by Theorem 5

fIsh P (t:) f/sh,
as desired.

Now takei € I, #; € Ty, a € (T), S C T, and f1, f2, f3, f* € F such that
(Froa)/sf? Bi(t:) (fPoa)/sf*
Define v : T — R by

v(t) = wi(((f! 0 a)/sf) D) = wil((f* 0 @) /s ) (D))

for all t € T, and define vy : T — R by v (t) = v(t) — 1/k for all t € T. Note

that, forallt € Sand all k € Z 4,

e(t) =0(0) = . < suputylt) — wl £ - 1.
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Best-element-private values then implies that there exists an open set By C O

such that, for all z € By, and all t € S with ¢; = ¢;,
ui(z|t) — wi(f (1)) > vi(t),

and since By is open and O is dense, there exists 7 € O N By, for which this

inequality holds. From Theorem 5 it follows that, for all &,

/ (0 @) /ST O1) — w(F° 0 ) /s F) D)} dus (tE)
S / o (0) dp(tl)

and

/ Cfusl((F 0 @)/ — wl((FF 0 @)/ 5T} dus )
< / " o) dp(t]E),

where I write Z; for the constant social choice function that picks z, at every

state. These inequalities imply that, for all &,

[ s o)/ s — (0 @)/sF O} duatel
= [ (7 0 @)/ sF O = (0 @)/ sT DI} d )
> [ O ) — [ —unle) il
= [l easoN0
—us((£ 0 @)/ s £} dp ¢l
- [ e a0
~us(((f" 0 @)/} dpa(ilF) - 7
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where the last equality follows from Proposition 8. Since

(foa)/sf® PI(E:) (f° oa)/sf*,
it follows that

tim int [ (0 @)/ TN — (S 0 @)/ 5010 (1)
— [ 0 @)/s O = ul(( o @/ TN} (el

> 0.

In particular, this inequality holds for some z; € O. This establishes interiority.

Corollary 2 Assume e* is a continuous environment satisfying best-element-
private values. Then f is Bayesian implementable in €* if and only if (e*, f*)

satisfies incentive compatibility and extended Bayesian monotonicity for some

frelf]

The continuous environments, as the name suggests, include many environ-
ments of interest. I next give a general definition of economic environments
that encompasses private good production economies and mixed production
economies. Assuming free disposal, it also encompasses the pure public good
economies, which do not typically satisfy conflict-of-interest. The price of this
generality is, however, the complexity of the definition. Let R denote Eu-

clidean space with basis {e*|A € A}, where each e is a unit coordinate vector.
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For subsets O C RA and A; € A let O denote the projection of O onto the
subspace generated by {e*|A € A;}. For z € O, let 2% € O* denote the pro-
jection of z onto O%¢. For x,y € O, I write z > y if each component of 2% is
at least as great as the corresponding component of y*¢ with strict inequality

for some component.

Definition 16 e* is an economic environment if it is an eztended expected

utility environment such that
1. O is a conver subset of R* with |A] < oo;
2. each u;(.|t) is continuous on O;
3. for all i € I there exists A; C A such that 0 € OMi, OM 0 ]RL_ #0, and
A= UiEI Ay;
4. foralli,j el and all Z,% € O,
ui(2]t) > ui(Z[t) and w;(Z[t) < supu;(y|t)
M
is implied by & >4 # >4 0.

To see how this definition applies to private good economies, consider an ex-
tended expected utility environment with continuous utility functions over a set
O of outcomes with the following structure. There is a convex set X of techno-
logically feasible allocations of a finite set K of commodities, and each agent i’s
set of consumable allocations is C' = xex R, . Define O = X N x;¢;C* and let

O denote the projection of O onto C'. Assuming that O contains a strictly
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positive vector and that each agent 4 has strictly monotonic and selfish prefer-
ences with respect to O, items 1, 2, and 3 in Definition 16 are immediately
apparent. To see item 4, note that & >* 0 implies that agent 7 is consuming a
positive amount of some commodity at allocation Z, and because other agents
have monotonic preferences Z is maximal for none of them. Therefore, this is
an economic environment. Definition 16 applies to pure public good economies
by letting O = O foralli € I.

The next theorem shows how the economic environments are related to
the continuous environments. Once it is proved, corollaries for interiority and

Bayesian implementability follow immediately.
Theorem 10 Every economic environment is a continuous environment.

Proof: With the Euclidean topology on O, all that needs to be shown is that
O* is dense in O. Take z € O\ O*, so there exists ¢ € I such that at least
one component of £+ is greater than zero. Consider a sequence {yx} in O with
y,‘c\" = (1 —1/k)z?: for all k, which exists since O* is convex and owns zero. It
may not be that y, — z, so define the sequence {zx } in O by zi = (1—€x)z+e€rys
for all k£, where €;, > 0 is small enough to ensure ||z —z|| < 1/k. This is possible

since O is convex. Note that zx — x and, forallj € I,allt € T,and allk € Z, .,
z > g >80

implies u;(zk[t) < sup,co u;(y|t). Therefore, z; € O* for all k and it follows

that O is contained in the closure of O*. |
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Corollary 3 follows from Theorems 9 and 10. Then Corollary 4 follows from

Corollaries 2 and 3.

Corollary 3 If an economic environment satisfies best-element-private values

then it satisfies interiority.

Corollary 4 Assume e* is an economic environment satisfying best-element-
private values. Then f is Bayesian implementable in e* if and only if (e*, f*)

satisfies incentive compatibility and extended Bayesian monotonicity for some
frelfl

Another important type of environment is that for which the set of outcomes
is the set of probability measures over a measurable space of pure outcomes. 1
refer to these environments as lottery environments and offer a formal definition
next. For a measurable space (4, A), let A(A4, A) denote the set of probability
measures on (4, .4). I will write a for a generic element of A and z(X) for the

measure of the set X € A under the probability measure z € O.

Definition 17 e* is a lottery environment if it is an ertend expected utility
environment such that O = A(A4, A) for some measurable space (A, A), and
there exists a function v : I x A x T — R bounded in absolute value such that

each v;(.|t) is A-measurable and, for allx € O,
wilzlt) = / vi(alt) do(a).
A

Furthermore, there exists a (possibly finite) countable set {ar} C A such that

for alli € I and allt € T there exist K and L such that vi(axl|t) > vi(ar|t).
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The last requirement of a lottery environment, that there exist a countable set
over which no agent is indifferent at any state, is rather weak. It is satisfied,
for example, when A is a separable topological space, each v;(.[t) is continuous,
and no agent is indifferent over the entire set A of pure outcomes at any state.

The next theorem shows how the lottery environments are related to the
continuous environments. Again, corollaries for interiority and Bayesian imple-

mentability follow immediately once it is proved.
Theorem 11 Every lottery environment is a continuous environment.

Proof: Let T > 0 bound v in absolute value, and let W denote the set of
A-measurable functions w : A — R bounded in absolute value by 7. I will

construct a suitable topology on O by defining a metric dy : O X O — R. Let

oer)

for all z, ¥y € O. Non-negativity follows easily, and the triangle inequality follows

do(z,y) = sup {

Amwmw“Awm@m

since
do(z,y) = sup{l /A w(a) dz(a) — /A w(a) dy(a) lweW}
- sup{' /A w(a) dz(a) — /A w(a) d(a)
+ /A w(a) dz(a) - /A w(a) dy(a) weW}
< sun{| [ wys@) - [ wiaydsta)
+ }Aw(a)dz(a)—Lw(a)dy(a) ‘wEW}
< sup{l /A w(a) dz(a) - /A w(a) dz(a) lweW}
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+sup{ '/Aw(a) dz(a) —_/Aw(a) dy(a) )w € W}

= do(z,z) + do(z,y)

for all z,y,2 € O. Now suppose that z # y, so there exists X € A4 such that

z(X) # y(X). Define the function w € W by

7 ifteX
w(t) =
0 else

for all t € T. Then

= (X)) - y(X)|

]/Aw(a)dx(a) —-/Aw(a)dy(a)

> 0,

so do(z,y) > 0. This establishes that dp is indeed a metric.
That each u;(.|.) is bounded in absolute value follows since v is bounded in
absolute value by 7. To see that each u;(.|t) is continuous, take 1 € I, t € T,

and {zx} C O such that z;, — z, and note that v;(.|t) € W. Then

S d()(ﬁk,z) d 07

fusealt) — us(z]t)] = l /A el dox(a) - [ wialt) dso)

as desired.
To see that O* is dense in O, let y be an outcome that places positive
probability on every a; appearing in the definition of a lottery environment. If

{ax} is countably infinite, let
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for all X € A, and if {a} is finite then weight each pure outcome by 1/|{ax}|.

Let (1 — €)f @ eh denote the social choice function defined by
(1 —e)f ®eh)(H)(X) = (1 - ) f(#)(X) + eh(t)(X)

forallt € T and all X € A. Take z € O and consider the sequence {y,} defined
by

(1-1) el
for all k. Each element of this sequence is contained in O*, since no v;(.[t) is

constant on {a;} and each pure outcome ay has positive probability according

to yx. That ¥, — x follows since

do(ye,z) = sup{I/Aw(a) dyk(a)~—/Aw(a)dx(a)

wEW}

< sup{}—l— / w(a)dy(a) - ~ [ wia)ds(a)| |w e W}
kJa kJa
< 23
—_— k”)
so the closure of O* includes O. ]

Corollary 5 follows from Theorems 9 and 11. Then Corollary 6 follows from

Corollaries 2 and 5.

Corollary 5 If a lottery environment satisfies best-element-private values then

it satisfies interiority.

Corollary 6 Assume e* is a lottery environment satisfying invariance and best-

element-private values. Then f is Bayesian implementable in e* if and only if
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(e*, f*) satisfies incentive compatibility and extended Bayesian monotonicity for

some f* € [f].

3.4 Conclusion

In Section 2.3, I extended Jackson’s full characterization of Bayesian imple-
mentability for environments satisfying conflict-of-interest, and I argued that
the result has limited applicability when the set of states is uncountable due
to the restrictiveness of conflict-of-interest in these environments. In this chap-
ter, I offer an alternative, full characterization of Bayesian implementability for
environments satisfying invariance and interiority, and I show that this class
of environments is large, including many of those satisyfing conflict-of-interest.
Assuming best-element-private values, interiority is satisfied by the continuous
environments, which are extended utility environments with continuous pref-
erences and a dense set of outcomes that are best for no agent at any state.
Examples of continuous environments are private good economic environments,
which satisfy conflict-of-interest, and public good environments, which do not.
Other examples that will be of great importance in the next chapter are the
lottery environments, for which the set of outcomes is the set of probability
measures on a measurable space of pure outcomes. These are the environments
in which virtual implementability is usually considered, and the full characteri-

zation of Bayesian implementability proved in this chapter will be instrumental
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in proving a corresponding result for virtual Bayesian implementability.
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Chapter 4

A Full Characterization of
Virtual Bayesian
Implementability in Quite

General Environments

In Section 4.1, I add to the conceptual apparatus developed in Chapters 2 and 3.
In particular, I define value-distinguished types and strict'sTap'arability, and in the
context of lottery environments, I define virtual Bayesian implementability. In

Section 4.2, I use the full characterization of Bayesian implementability proved in

91
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Chapter 3 to show that, for lottery environments satisfying best-element-private
values and strict separability, a social choice function is virtually implementable
in an environment if and only if the corresponding implementation problem sat-
isfies incentive compatibility. In Section 4.3, I show that the class of lottery
environments satisfying strict separability is suitably large. It includes the lot-
tery environments satisfying private values and value-distinguished types when
the set of pure outcomes is finite, and it includes those when the set of pure
outcomes is a finite set crossed with an open set of allocations of a transferable

private good. Section 4.4 concludes the chapter.

4.1 Notation and Definitions

In Sections 4.2 and 4.3, I consider environments for which there exists a social
choice function that, in a sense, separates the types of each agent. More pre-
cisely, there must exist a social choice function such that each type of each agent
strictly prefers the outcomes determined using the agent’s true type to those
determined using any other type, regardless of which types of other agents are
used. I formally define this condition next for arbitrary environments, and in

Section 4.2, I offer an equivalent statement for lottery environments.

Definition 18 An environment e satisfies strict separability if there exists

h* € F such that for alli € I, all t; € T3, all @ € T(T) with a;(t;) # t;, all
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S CT with p(S|t:) >0, and all L € F,

h/s(h* o (1i,a—;)) Pi(t:) h/s(h* o ).

This is even stronger than requiring that truth be a strict dominant strategy of
the game induced by the mechanism (T, h*), for strict preference must hold not
only for S = {t;} x T_; but for all § with positive outer measure. Nonetheless,
I show in Section 4.3 that this condition is satisfied for a suitably large class of
environments.

In Chapters 2 and 3, I characterize the implementation problems with solu-
tions in the strong sense that there exist a mechanism with Bayesian equilibria
that coincide almost everywhere with the social choice function at hand. In any
practical implementation problem, however, the predictions of Bayesian equilib-
rium must be accepted as approximations of behavior, so this standard may be
unreasonably strong. It is therefore of interest to consider the implementation
problems for which there exist mechanisms with Bayesian equilibria that are
arbitrarily close to the social choice function at hand, or put differently. This is
the idea of virtual Bayesian implementability, formalized next. Let ¥ denote an
absolute upper bound of v, and let W denote the set of A-measurable functions

w : A — R bounded in absolute value by 7.

Definition 19 A social choice function f is e-virtually Bayesian implement-

able in e* if there exists h € F such that h is Bayesian implementable in e*,
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(e*, h) is incentive compatible, and

Vte T,w € W,a € S(T)

/w(a)df(a(t))(a)——/w(a)dh(a(t))(a) <e.
A A

f is virtually Bayesian implementable in e* if, for all e > 0, it is e-virtually

Bayesion implementable in e*.

In other words, f is virtually Bayesian implementable in e* if and only if there
exists a sequence {h*} in F such that each h* is Bayesian implementable in e*,

each (e*, h*) is incentive compatible, and k¥ — f in the metric d;, defined by

G ) = sup{[ [ w@ i )@ - [ wadr )

teT,weW,aeX(T)}

for all f1, f? € F. This metric represents a fairly strong notion of closeness of
social choice functions. It is straightforward to check that convergence in d;

implies convergence in the metric ds, defined by
d(f'f7) = swp{If X)) - POX) e T, X € A}

for all f1,f2 € F. And when A is finite, so A(4,.4) is a finite dimensional
simplex in Euclidean space, convergence in dy implies uniform convergence in
the Euclidean metric.

Note that the social choice function A in Definition 19 must be not only
Bayesian implementable in e*, but (e*, k) must be incentive compatible as well.

In environments with countable sets of states each with positive probability
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according to a common prior, the first condition implies the second, and the
qualification of incentive compatibility is redundant. Theorem 2 shows that,
in more complex environments, Bayesian implementability of A implies incen-
tive compatibility of (e*,h’) only for a p*-equivalent social choice function &’.
This weaker condition is not strong enough to prove the necessity of incentive
compatibility for virtual Bayesian implementability, stated in Theorem 12. The

qualification is therefore important when the set of states is uncountable.

4.2 Characterization Results

In this section, I use the results of Section 3.2 to improve the existing results on
virtual Bayesian implementability due to Abreu and Matsushima (1990b) and
Matsushima (1993), who offer partial characterizations relying on the assump-
tion that the set of states is finite. I first show that incentive compatibility of
an implementation problem must be satisfied whenever the social choice func-
tion at hand is virtually Bayesian implementable in a lottery environment. The
| intuition for this is straightforward. Suppose that f is virtually Bayesian imple-
mentable in e* but that truthful reporting is not a Bayesian equilibrium of the
mechanism (T, f). Then there exists an agent, a type, and a false report such
that the agent’s type strictly prefers the outcomes determined using the false
report to those determined using the truth. For a suitably specified metric, this

strict preference should hold for all social choice functions sufficiently close to
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f, but by virtual Bayesian implementability there exist arbitrarily close social
choice functions for which the strict preference does not hold. Therefore, (e*, f)
must satisfy incentive compatibility. The proof is not much more complicated
than this intuition but considerations of strict preference involve manipulations

of upper integrals, which must be treated carefully.

Theorem 12 Assume e* is a lottery environment. Then f is virtually Bayesian

implementable in e* only if (e*, f) satisfies incentive compatibility.

Proof: Assume that f is virtually Bayesian implementable in e*. Note that
(e*, f) satisfies incentive compatibility if and only if, for all i € I, all {; € T},

and all &; € 3;(T3),

fmmmm~MﬂMM¢mmwmm
~ [ @), t-010) — ws SO} ()

Since f is virtually Bayesian implementable in e*, for all k € Z, ; there exists

h* € F such that (e*, h*) is incentive compatible and

Vie T,w e W,a € L(T)

|/ @ da®)e) - [ weraw)ia) < ;.

Setting o = (&;,7—;) and, for each t € T, w = v;(.|t), this yields

Vi€ T |ui(f(@uti), t=i)|t) — wi(h¥(@(t:), t-)It)| <

| -
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and setting o = 7, it yields

VieT |ui(f)It) — wi(h*@)|t)]| <

??‘l“"

These inequalities together with Propositions 6 and 8 imply that, for all k,

[ 010 = w1 ds e
- [ (w0, ) = w1} duelf
= [ o - wE ol + uE o)
(B (alt), o)) + (B (G, £-0))
i (@a(te), ) 10)} du ()
~ [ (@0, £-00) = s ) -0
s (), t-)lt) — ws(A (D))

+ui(hE (1) — wi( F(O11)} dpua(t]E)

v

[t O  utt e, -0 - (e
~ [ ¥ st o)) = wshO)1)+ ) e
_ / “Cui(RE)1E) — ws(hE (@alte), t—o)l)} dus(tlEy)
— [ s st 1) = w0 (10 di ) - 7.
Therefore,
[ 01 — w0, -1 du )

/ fus(F Gs(te), =) lE) — wa FIE)} a2l
sup / {usRH(0)16) = wi(h* (@s(t:), £-0) 1)} dsa(21F:)
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Eeul IS

B /*{“i(hk(ai(ti), t_a)|t) — wi(R*(8)]8)} dpa(tfE:) —
> 0

poty Y

where the second inequality follows from the incentive compatibility of each

(e*, h*). This establishes that (e*, f) satisfies incentive compatibility. |

The proof of Theorem 13 relies on a formulation of strict separability that,
for lottery environments, is equivalent to the statement in Section 4.1. This
formulation is stated in the next proposition and the equivalence is proved in

the appendix.

Proposition 13 An extended expected utility environment satisfies strict sep-
arability if and only if there exists h* € F such that, for alli € I, all t; € T},

and all o € (T) with o;(t;) # £,
i ({t € Tlus((R* o (13, =) (B)[t) > us((R* 0 a)(B)|1)} |E:) = 1.

That is, strict separability is equivalent to the existence of a social choice func-
tion h* such that each agent i’s utility is strictly greater at p*-almost every
state when h* uses i’s true type rather than a false one. Recall that the nota-

tion (1 — €)f ® eh denotes the social choice function defined by
(1 -e)f @eh)(t)(X) = (1 - e)f(t)(X) + eh(t)(X)

for all t € T and all X € A. In lottery environments, each u;(z|t) is given by

the integral of v;(.|t) with respect to the probability measure z, and it follows
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from the linearity of the integral that

u(((1—e)f ®eh)()]) = (1 = ui(f()].) + eui(h()].)

for all f,h € F. The proof of Theorem 13 proceeds by showing that, when
strict separability is satisfied in a lottery environment e*, every social choice
function f for which (e*, f) is incentive compatible has arbitrarily close neigh-
bors h in the dj-metric such that (e*, h) satisfies incentive compatibility and
extended Bayesian monotonicity. It then follows from Theorem 7 that A is
Bayesian implementable, and that f is virtually Bayesian implementable in e*.
I construct the social choice functions h by augmenting f with the social choice
function h* appearing in the statement of strict separability. Specifically, I de-
fine h as (1 — 2¢)f @ eh* @ €7, where 7 is a constant social choice function that
places positive probability on each pure outcome a;, appearing in the Definition
17 at every state. Linearity of u;(.|t) is crucial in showing that the resulting
implementation problems (e*,h) satisfy incentive compatibility and extended
Bayesian monotonicity. Note that the proof of Theorem 13 relies on the axiom

of choice.

Theorem 13 Assume a lottery environment e* satisfies best-element-private
values and strict separability. Then f is virtually Bayesian implementable in e*

if (e*, f) satisfies incentive compatibility.
Proof: Take € > 0, and define h € F by

h=(1-2)f®ech* Dey
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for all t € T, where ¥ is the constant social choice function that chooses y at
every state and y places positive probability on every ay. If {ai} is countably
infinite, for example, ¥ may be defined by
1
y(X)= Y =
ar€X
for all X € A. If {as} is finite then the weights on each pure outcome can be
set at 1/|{ax}|. To see that h satisfies the conditions of 4ev-virtual Bayesian

implementability of f in e*, take t € T, w € W, and a € I(T"), and note that

| / w(a) df (at))(a) - / w(a) dh(a(t))(a)
A A

/ w(a) df (a(t))(a) — (1 - 2¢) / w(a) df (a(t))(a)
A A

—e /A w(a) dh*(a(t))(a) — € /A w(a) d(a)

< 2% /A w(a) df (a())(a)| + ¢ /A w(a) dh* (a(t))(a)
+€ /Aw(a)dﬂ(a)
< Aev.

1 have left to show only that (e*, h) is incentive compatible and that h is Bayesian
implementable in e*, since e may be chosen arbitrarily small.

To see that (e*,h) is incentive compatible, take 1 € I, t; € T;, and oy €
%;(Ti). If ai(f;) = & then invariance immediately implies that A R}(f;) h o
(o, 7—;), so assume that a;(f;) # £;, and let S denote the set of states ¢ such

that u;(R*(£)|t) > wi(h*(cu(t:),t—:)|t). Note that pf(S|t;) = 1 by Proposition
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13. Then

/ us((ho (s, ) ()18) — us(h()]E)) dyss 1)
- / @ = 29 Flaslt) b)) — w(F @)

+efui(h* (ats), t-0)|t) — us(h* (O)|11)]} dps (21E:)

/ 1 = 20 st to)l8) — ws (£
Fefus(f/s(h o (an ) O1) = wi((F/sh*) O]} dus (tlE)

IA

[ 10 = 20 (6, -010) = wil SO dal
= (1-29 [ fuilfas(t),t-Dl0) — w(FOI)} dustele
where the second equality follows from Proposition 5, the inequality follows

from Proposition 6, and the last equality follows from Proposition 9. A similar

argument uses Proposition 7 instead of Proposition 6 to show that

/*{ui(h(t)lt) —ui((h o (0, 7)) ()|t)} dpsi (t]2:)
> (1-2e¢) /*{ui(f(t)(t) — wi(fai(ts), t—:)|t)} dps(tlEs).

Then

[ twithanteo), -1t = w1} dustefc
— [ () = wlha(e), 010 (42

IA

(1-29 sty - )1t) — w018} duss(tlE)
~(1=20) [ 7O = wi (1), 1010} defe)

IA

0,
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where the second inequality follows since (e*, f) satisfies incentive compatibility.

Therefore, h R} (t;) h o (a;, 7—;), and (e*, h) satisfies incentive compatibility.
Corollary 6 shows that h is Bayesian implementable in e* if (e*, k) satisfies

extended Bayesian monotonicity in addition to incentive compatibility. For all

1 €1, let

= - L N® B ot
H, = {(1 2e)fo(tz,7'_,)€az+1h o (t;,7—3)

€z

EBZ-{—I

h*o(t],7—;) ®ey|ti, t! € Ti,z € Z+} ,

and let h(.[t;,t], z) denote the element of H; specified by the parameters t,t,
and z. To see that each H; C Fj, take i € Lt €T, a; € 2:(T3;), and
h(-|t;,t;, 2) € Hi. Ift; = t] = #; then invariance implies that h R} (£;) h(.|t}, t!, z)o
(@i, 7i), so assume that ¢} # #; or t/ # #;. Let S’ denote the set of states ¢ such
that u;(R*(£)|t) > ui((h* o (¢}, 7—:))()]t), let S” denote the set of states ¢ such
that u;(h*(¢)[t) > us((h* o (t/,7-:))(£)|t), and note that u (S’ U S”|t;) = 1 by

Proposition 13. Then

/ (s (t), il 2, 2I8) = ws(hDI)} dps (8Fs)
=[G - 20 -0l — w01

+3 i TPt t-0)lt) — wa(h” ()[1)]
s (8, - 9le) = i 1]} )

= [0 - 20 -0l - wit s

€

+z+1

[wi(f/sruse(h* o (t;, 7)) ()|t)
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—ui((f/srus h*)(@)[t)]

€z

z+1
—ui((f/sr0sh™)(B)[6)]} dpsa (t]E:)

+ [wi(f/srus (R o (], 7—))(t)]t)

IN

[ 10 =200 t-010) — wlFOI0]) dustele
= (1-20) [ /)l — w(FO) dmtif),
where the second equality follows from Proposition 5, the inequality follows

from Proposition 6, and the last equality follows from Proposition 9. A similar

argument uses Proposition 7 instead of Proposition 6 to show that

[ ushtoe) = wslheste), it 10}
> -2 [ sl FO1) — wa(F (8 I} dus(HIEs).

Then

/ fuslhlen(t), bl !, 2)1t) — uelh()]E)} duss(tfE)
- / s (R(O)1E) — i (haalts), bl 87, 2100} dps(ts)

IA

(1-20) [ (e t-0)8) = w7 20) (85
~1-20 | O — wi(F(t 1)} dus(elfs)
< 0,

where the second inequality follows since (e*, f) satisfies incentive compatibility.

Therefore, h R} (£;) h(.|ti, ¢!, 2)(cs, 7—;), and H; C F,.
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Take a € 5(T), Q = U;e; Qi x T—; with p*(Q\ Q1) = 0, and ¢ € I(H),

and assume that

Viel,t;eTi,heH,feF

(hoa)// (Wi ) RE(t:) (hoa)/qu.f-

To show that

(hoa)// g+ (wi,a) € [A],

1 will first establish that, for all ¢ € I and all ; € T; \ Qi, a:(¢;) = t;. To
see this, suppose there exists j € I and ¢; € T; \ Q; such that a;(¢;) # ;. 1
use the axiom of choice to define the social choice function f; as follows. Note
that y places positive probability on each pure outcome a;, in the statement of
strict separability, and that for every t € T there exist K(t) and L(t) such that
vi(ak @ lt) > vi(apwlt). Let f;(t) be the outcome that transfers the probability
on the pure outcome ay ;) to the pure outcome ag ;). That is, f;()({ax(y}) =
y({axw}Viary}), fi){arw}) =0, and f;(¢)({ar}) = y;({ax}) for all other

k. Clearly, forallt € T,

u; (f;())t) = /Avj(a!t) df;(t)(a) > /A'vj(alt) dy(a) = u;(ylt).
Now take a social choice function h; such that, for all i € I and all t € Q"

hy(t) = (1= 26)f o (th,as) @ ——h* o (th,ams)
—ht o (tam) @ f

EBz+1
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where h(.|t},t!, 2) = 9;(t;). In words, h; alters the outcome of each 9;(¢;)(a(t))

1Y)

only by transferring probability according to f; between the appropriate pure

outcomes, raising j’s payoff at every state in Q. I claim that
(h(la;j(E5),15,1) 0 @) /@y, hi Pi(E;) (ho )]/ g+ (i, a),

a contradiction. To see this, let S denote the set of states ¢t € {£;} xT_; such that
u;(h* (£, a—;(t—;))[t) > u;(h*(a(t))|t), and take any state ¢ € SN((T\Q)UQT).
Note that p3(SN((T'\ Q)UQ™)|t;) =1 by Proposition 13 and the assumption

that p*(Q\ Q") =0. Ift € SN(T\ Q) then
uj(het)lej(t5), 5, DIE) ~ uj(hlalt)lt)
= Sl as(t-))e) — wi (" (a()]1)]
+ efu; (f@)) — u;(ylt)]

> 0,

where the inequality follows since t € S and by the construction of f;. If

t € SNQ; for some i then

u;(hi(8)[t) = wi(a(t)(a®)lt) = e(u; (D) — u;(ylt)

> 0,

which follows by the construction of f;. Then, noting that p;(SN (T \ Q)U

QHE) =1,

[ ws((alas @8 1) 0 /ey, hs(0l0)
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—u;j((hoa)// g+ (Wi, a)(8)t)} du; (t]E;)
— [ uslho o/ fgp )0l
s (Al (E5), B, 1) 0 @)/ b5 (D)) s (1)

> 0,

follows by application of Propositions 5, 6, and 7, establishing the claim. There-
fore, a;(t;) = £;.

Next, I will show that, for all i € I and all t; € Q;, there exists z €
Z, such that ¥;(¢;) = h(.|t;,t;,2). To see this, suppose there exists j €
I and &; € Q; such that ¢;(f;) = h([t},t],2) with t; # &; or t] # ;.
Note that H;(Q;&j{{j) = 0, since p*(Q \ @) = 0. Consider the social choice
function A(.|t},%;,z + 1) € Hj, let S’ denote the set of states ¢ such that
ui(h* (&, a—j(t_;))|t) > u;(h*(t),a_;(t_;))|t), and let S” denote the set of
states ¢ such that u;(h*(£;,a—;(t—;))|t) > u;(h*(t],a—;(t—;))|t). Note that

wi(S' U S8"|t;) = 1. Then

/*{Uj(h(a(t)lt}, tf, 2+ D]t) — uj (M)t} 8], 2)|t) } dpe; (tlE;)

- /{;%uj(h*(t}:a—j(t—j))itwf6(;:21)

S0 (8 (IO = S (5D | dis ()

= [ {5t w0 Gans -l - ui b € ams(e )l

TEEDGE+2)

ui(h* (£, a5 (t-;))It)

fus(h* (t5, (L)) — uj(h*(t},a—j(t—j))lt)}} dpi(tlE;)

> 0,
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where the inequality follows by application of Propositions 5 and 7. A similar

argument uses Proposition 6 instead of Proposition 7 to show
/ {u;(Mla(t)[t;, ], 2)|t) — us(h(a(®)|t;, 1], z + 1))} du;(t]E;) <0,

which implies h(.|t},¢;, z+1) P;(%;) h(.|t}, 1}, z). This contradiction shows that
th =t = {;, as claimed.

Now take any t € (T\ Q)U Q™. Ift € T\ Q then a(t) = t and (h o
@)//g+{¥i,a)(t) = h(t). If t € QT then there is exactly one j € I such that

t€Qf. Then a_;(t_;) =t_; and

¥;(t;)(lt))

(hoa)// g+ (s, a)(t)

ha®)lt;, 17, 2)

h(t).

Since p*(Q \ Q1) = 0, this establishes that
(ho a)// g (¥, a) € [h].

Therefore, (e*,h) satisfies extended Bayesian monotonicity, and f is virtually

Bayesian implementable in e*. [ |

4.3 Strict Separability

Strict separability is, by all accounts, a strong condition. As noted above, it is

even stronger for an environment e* than the existence of a social choice function
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h* such that (e*, h*) satisfies strict dominant strategy incentive compatibility,
which would require for extended expected utility environments that, for all

iel, all{; € Ty, and all a € (T) with oy(E;) # &,

/ fusl(B* o (e, ) (D)) — ws(h 0 @)(2))} diss(tlEs)
-/ (b 0 @)1 — us((h* o (rsy a_)) (O} ds(tlEs) > .

Theorem 5 and Propositions 5 and 13 clearly show that this is implied by strict
separability. Of course, strict dominant strategy incentive compatibility is even
stronger than dominant strategy incentive compatibility, which is referred to as
strategy-proofness in a large literature founded by Gibbard (1973) and Satterth-
waite (1975) that seeks to characterize the implementation problems satisfying
this condition. The most powerful theorems in this area are due to Roberts
(1979) and Hylland (1980), who implicitly consider environments satisfying two
conditions that figure prominently in this section. One is private values, stated
in Section 3.3, and the other is value-distinguished types, stated next for an

extended expected utility environment.

Definition 20 An environment e satisfies value-distinguished types if for

alliel,dlt,t’' €T, allacR, andallbe R,
u;i(.Jt) = a + bu;(.|t') implies t; = ¢;.

Value-distinguished types is common in the literature (see Palfey and Srivas-

tava, 1993), requiring that no two of any agent’s types induce the same utility
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function over outcomes. The conjunction of value-distinguished types and pri-
vate values amounts to identifying each agent ’s types ¢; with unique, distinct
utility functions u;(.|t;) over outcomes. In lottery environments, these utility
functions correspond to distinct utility functions v;(.|t;) over pure outcomes.
Hylland considers lottery environments with a finite set of pure outcomes
satisfying an unrestricted strict domain condition. I next define a slightly larger

class of environments to which Theorem 14 applies.

Definition 21 e* is g finite lottery environment if it is a lottery environ-
ment with A finite and A = 24 such that for alli € I and allt € T there ezist

pure outcomes ay, a2 € A such that vi{ai|t) > vi(as|t).

Hylland shows that, assuming private values, value-distinguished types, and a
weak citizen sovereignty condition, an implementation problem satisfies dom-
inant strategy incentive compatibility if and only if the social choice function
at hand is a probability combination of dictatorial social choice functions, also
referred to as a random dictatorship. It follows that, for these environments,
random dictatorship is implied by strict dominant strategy incentive compati-
bility, but it is straightforward to check that these conditions are inconsistent.
That is, when e* is a finite lottery environment satisfying unrestricted domain,
there exists no social choice function A* such that (e*, h*) satisfies strict dom-
inant strategy incentive compatibility and citizen sovereignty. This appears to
contradict Theorem 14, which states that, assuming private values and value-

distinguished types, every finite lottery environment satisfies strict separability.
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Of course, there is not actually a contradiction here. For a lottery envi-
ronment e* satisfying private values and value-distinguished types, I construct
a social choice function h* such that (e*, h*) satisfies strict dominant strategy
incentive compatibility but fails citizen sovereignty. This condition is eminantly
reasonable for Hylland’s purposes but irrelevant, and in fact detrimental, for

mine.

Theorem 14 Assume e* is o finite lottery environment satisfying private val-

ues and value-distinguished types. Then e* satisfies strict separability.

Proof: Let A = {ay,...,ax}. Private values and value-distinguished types im-
ply the existence of a one-to-one correspondence between each agent i's types t;
and 4’s utility function u;(.[t;) over outcomes, which is given by v;(.|¢t;). More-
over, each v;(.|t;) can be viewed as a vector vi(t;) € R* with components
vi(t;) = vi(aglt:). I will therefore identify agent i’s type t; with the vector
vt = vi(t;), type t; with ¥° = v;(£;), and so on. It follows that each T} is a
subset of K + 1-dimensional Euclidean space.

Obviously, A is itself a countable set over which no agent is indifferent at any
state. By Proposition 13, to establish strict separability it suffices to exhibit a
social choice function h* such that, for all 4 € I, all #;,{; € T} such that &; # &;,

and all t_; € T_;,

wi (R (E, t_3)|8) > wi(h* (£, t=)IEs),
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or equivalently,
R (D07 > 0t R0, v,
Value-distinguished types implies that the normalization v : I x R4 — RA
defined by
V(iv) = vt — 'u(i,(l‘,...,l)
{otd]
is a one-to-one mapping, and it clearly does not affect the above inequalities. I
therefore assume without loss of generality that, for all ¢ € I and all v* € Ty,
vl =0 and {|v*]| = 1.

Define h* by

and, forall £ > 1,
ey 1
) =35+ g K
for all v € T. Note that, for all v € T, h*(v) € A(A, A). Then, for all i € I, all

7,0 €Ty, and all vt € T,

K
7 b (Do) = Thhg(8LvT) + D BRhi (8,07
k=1
B L T
- 2K  2nK onK
k=1 FES)
K 1'}"{)’
- [
- (Z 2nK>+C
k=1

where C is a term that does not depend on #'. Given ¢, clearly ¢ = #* is a

unique maximum of this expression, as desired. [ |
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The following corollary is an easy consequence of Theorems 8, 13, and 14.

Corollary 7 Assume e* is a finite lottery environment satisfying private values
and value-distinguished types. Then f is virtually Bayesian implementable in

e* if and only if (e*, f) satisfies incentive compatibility.

Hylland (1980) also considers lottery environments with infinite sets of pure
outcomes, which allows for the possibility of a finite environment with a trans-
ferable private good. I formally define this class of environments next. For a

subset @ of Euclidean space, let @p denote the Borel o-algebra on Q.

Definition 22 ¢e* is ¢ lottery environment with transfers if it is a lottery
environment with A = X x Q, where X is finite and Q is a non-empty open
subset of R, A =2XxQp, and for alli € I and allt; € T;, there exist functions
¢ T - R d;:T; » Rey, and w; : X X T; — R bounded in absolute value

such that, for all (z,q) € A, vi(zk, qlt:) = ci(t:) + di(t:)(wizilts) + ;).

In these environments, however, Hylland’s assumption of unrestricted domain
is untenable and his result has few ramifications for strict separability. Roberts
(1979) considers environments with sets of pure outcomes consisting of a finite
set crossed with a set of allocations of a transferable private good for which
agents have increasing, additively separable preferences, but he does not allow
for the possibility of randomizing over these pure outcomes. This possibility is,

of course, crucial for the proof of strict separability in the next theorem.
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Theorem 15 Assume e* is a lottery environment with transfers satisfying pri-

vate values and value-distinguished types. Then e* satisfies strict separability.

Proof: Let X = {z1,...,zx} and let ) be an open set of R’ with elements g =
(q1,---,4n). Private values and value-distinguished types imply the existence of
a one-to-one correspondence between each agent i’s types ¢; and #’s utility func-
tions u;(.[t;) over outcomes, which are given by v;(.[t;) = ¢;(t:) +di(t:)(wi(.}e:) +
;). Moreover, each v;(.[t;) can be viewed as a vector (v'(t:),d;(t:)) € Riyo
with first K + 1 components given by v} (t;) = ci(t:) + di(ti)w;(zelt:). 1 will
therefore identify each type t; with the vector (v,d;) = (vi(t;),di(t:)), each
type &; with the vector (#%,d;) = (v'(f;),d:(£:)), and so on. The normalization

v: I x RE+2 o RE+? defined by

vt —vi(1,...,1)
Hidlsl]

v(i,v') =
is a one-to-one mapping, and as in the proof of Theorem 14, I can therefore
assume without loss of generality that, for all i € I and all v* € T;, v§ = 0
and d; = 1. I will further identify each (v¢,1) with v, so each Tj is a subset of
K + 1-dimensional Euclidean space, as in the proof of Theorem 14. Note that
the components of the v* are uniformly bounded, since w is bounded, but that
it is not necessarily the case that [[v*|| = 1. It is for this reason that the social

choice function constructed in the proof of Theorem 14 is inadequate for lottery

environments with transfers.
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A countable set of pure outcomes over which no agent is indifferent at any
state is {(zo,q), (z0,q')}, where g; > ¢, for all i € I. By Proposition 13, to
establish strict separability it suffices to exhibit a social choice function A* such

that, forallz €1, all f,‘,ii € T; with EZ 75 fi, and all t_; € T_;,
Ui(h*(fi,t—i)wi) > ui(h*(fi,t_i)(fi).

I construct a social choice function that, for all ¢ € T', picks a probability mea-
sure on A with degenerate marginal probability on (). Letting p*(¢) represent
the allocation ¢ € @ such that A*(X x {¢}) = 1, and denoting the marginal
probability measure of h*(¢t) on X by ¢*(t), h* can be represented by the pair

(¢*, p*). Specifically,

h*(t)(4) = > ¢ (t)({=})

{z€X|(z,p*(t))EA'}

for all t € T and all A’ € A. It is straightforward to check that, for all 1 € [
and allt €T,

ui(R*(8)t:) = v - ¢* (1) + pi (¢).
Then to establish strict separability, it suffices to construct a social choice func-

tion h* such that, for all #,4%* € T; with ©¢ # 9* and for all v™* € T_;,
7 - ¢* (0,07 + pf(8',077) > B - ¢* (0%, 07 + p} (8, v7).

In defining such a social choice function, I initially assume that Q = R’. Once
this is done, I show how the construction can be easily adapted when Q is a

proper open subset of R!.
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Intuitively, h* initially allots to each agent 1/2nK probability for each zy,
k > 1. These allotments are then adjusted by positive or negative amounts
according to a specified cost function with all leftover probability placed on zy.

The cost function C : (—=1/2nK,1/2nK) — R is defined by

2
i ifpr 20
Clpr) = e o
pi
—2-_}'_;5'4;; else.

The important properties of C' are ¢'(0) =0,

li c’ =- 1l o = 00,
pk—-)llr/r;’nK (pk) pk—}—n;r}2nK (pk) o0

and C"(pi) > 0 for all p € (—=1/2nK,1/2nK). The adjustment to each agent’s

allotment is optimal given that agent’s type. That is, the h* solves

K
. ? p— C
pke(—1/2rrzr}3¥/2n1<)k21p v ; (px)
for all ¢ € I. Continuity of the objective function and boundedness of the T;

ensure that these problems have solutions, and strict concavity of C implies that

the solution is unique and given by
?711; = C'(pr)

for k > 1. h* then places, in addition to #’s initial allotment, probability
C'1(vi) on z4 at a cost of C(C'"1(vi)) for all k > 1. Note that this addi-

tional probability is negative if v} < 0, in which case i prefers zy over z; and

would pay to have probability alloted from z; to zg.
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Define (¢*,p*) as follows. I will write each ¢*(v) as the sum Y, , ¢¥*(v'),
where the function ¢* : RE+1 — RE+! is defined by

1

* 001 R 1—17.1
YL) = e+ O 0))
for £k > 1, and
1 & .
bo(v') =~ — > ).
k=1

Using the convention that n + 1 = 1, define p* = (p},..., p%) by

pi(v") ZO(C"l(vk +ZC(C' Ywith)).

k=1 k=1

Obviously, p* maps to Q = R/, and in fact p* is budget balancing. To see that

¢* maps to A(X,2%), note that

K
G = Zwsw">=(-};—~§jwz<vi>)
k=1

iel
_ 1‘ZZ(M c'~1(v;;))
i€l k=1
1 K
= 5-22. 070
€l k=1
S
2 27
and
. 1 -
i) = Tuie) =3z +oeh)
el el
s L1
2K 2K
Lastly,
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as claimed.

Now takei € I, #*,9* € T;, and v—* € T_;. Note that

54" (0, 0) + 1 (0, 07)

K
= vl (ka 2 ) (ZCC'“l(vk)>+Co

k=1

= (Z (—+0'1 ) i‘cc’l( >+co,

k=1

where Cy is a term that does not depend on %¢. Then
7 -7 ( 0,07 + pi (8,07 > T - ¢ (60,07 + pf (8,07

if and only if

K K
DGO - C(CTM @) > Y BRC TN (9h) — C(C'H(8E)).

k=1 k=1

This follows unless #¢ = ¢, since by construction
T = C(CH(B) > G — C(C™H(pr))

for all k > 1 and all pr # C'~1(#%). This establishes the desired result when
Q=R.

When Q is a proper open subset of R? the same social choice function works,
with some minor adaptations. Take ¢ € ) and € > 0 such that B.(q) C Q, and
let ¥ bound the absolute value of the components of all v € T. It follows that

each p} is bounded in absolute value by C = KC(C'~'(7)). Set 6 = ¢/C\/n.
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It is straightforward to check that the social choice function represented by the

pair ((1 — 8)To @ 6¢*, g + 6p*) satisfies the conditions of strict separability. N

The following corollary is an easy consequence of Theorems 8, 13, and 15.

Corollary 8 Assume €* is a lottery environment with transfers satisfying pri-
vate values and value distinguished types. Then f is virtually Bayesian imple-

mentable in e* if and only if (e*, f) satisfies incentive compatibility.

4.4 Conclusion

In this chapter, I weaken the requirements of Bayesian implementability in lot-
tery environments by considering the virtually Bayesian implementable social
choice functions, for which there exist arbitrarily close Bayesian implementable
neighbors. Since the predictions of Bayesian equilibrium must be accepted as ap-
proximations of behavior in any practical implementation problem, it should be
sufficient to implement something close to a given social choice function. Thus,
virtual Bayesian implementability is an acceptable standard. Surprisingly, it
is also much weaker than Bayesian implementability in environments satisfy-
ing best-element-private values and strict separability. While Corollary 6 shows
that incentive compatibility and extended Bayesian monotonicity are both nec-
essary for Bayesian implementability in such environments, Theorem 13 shows
that incentive compatibility is by itself sufficient for virtual implementability.

This result improves on the existing characterizations of virtual Bayesian im-
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plementability, which are partial in nature and rely on the assumption that the
set of states is finite.

The result also has an interpretation that sheds light on the condition of
extended Bayesian monotonicity. Rephrasing, it shows that, for lottery en-
vironments satisfying best-element-private values and strict separability, the
implementation problems satisfying extended Bayesian monotonicity are dense
(in the di-metric) in the set of implementation problems satisfying incentive
compatibility. This starkly contrasts the results of Muller and Satterthwaite
(1977) and Duggan and Schwartz (1993) for Nash environments, which show
that monotonicity is very restrictive.

Theorems 8 and 11 show that every lottery environment satisfying private
values, a rather weak condition, also satisfies best-element-private values. Strict
separability is, however, a strong condition not easily satisfied. Nonetheless, I
show that, assuming private values and value-distinguished types, it is satisfied
in finite lottery environments and in lottery environments with transfers. This
class includes many environments of interest and entails no restrictions on the

size of the set of states.



Appendix A

Proofs of Propositions

Proposition 1 p*(8) = 0; for all S*',8% C T, S' C S? implies u*(S') <

1*(S%); and for all S, S C T, p*(S* U 5?) < p*(S?) + p*(S2).
Proof: That p*(@) = 0 follows since u}(@|t;) =0 for all s € I and ¢; € T;. Take
§1,8% C T with §* C S%. Suppose that u*(S) > u*(S?). Then there exists
¢ € I and t; € T; such that uf(St;) > p*(S?). But then
BH(8%) 2 ui (S%|t:) > pi (S its) > p*(S?),

a contradiction. Now take S', 52 C T and suppose that u*(STUS?) > p*(S!) +
11*(S?). Then there exists i € I and ¢; € T; such that u}(S* US2|t;) > p*(S?) +
p*(S8?).

pi (ST U S2It:) < pi(SH6) + u*(S|t:) < w*(SY) + pu*(S?) < pi(S* U §2|t),
a contradiction. |

120
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Proposition 2 ~ is reflexive, symmetric, and transitive.

Proof: Reflexivity and symmetry are obvious. Now assume f! ~ f2 ~ f3 and

note that
{teTIf @) # FPY S {te TIFI M) # PO U{t € TIF@) # ().

Since p* is an outer measure and p*({t € T|f1(t) # f2(t)}) = p*({t € T|f3(¢) #

F3(®)}) = 0, it follows that
p({t e TIFHE) # P} U {t € TIF2(2) # F(H)}) =0,

which implies p*({t € T|f(t) # f3(t)}) = 0. Therefore, f' ~ f3. ]

Proposition 3 For alli € I, allt; € T;, and allv € V, [*v(t) du;(t|t;) ezists.

Proof: Let 7 be an upper bound of v. Note that the set {w € V|w > v,w T —

mble} contains the constant function with value ¥, and is therefore non-empty.

{ [ wte)dustety

is a set of real numbers bounded below by —7, and therefore has a unique

The set

w = v,wT—mble}

infimum. |

Proposition 4 For all 1 € I, allt; € T;, and all v € V, there exists a T -

measurable function w € V such that w > v and

[ w@dutiio = [ v amio
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Proof:  Consider following monotone decreasing sequence {wy } of 7-measurable

functions with integrals converging to

[ o dusteis).
By definition, for every positive integer k there exists a 7-measurable function

w;, such that wj, > v and
1 z : - 1
ka(t) dpi(tlts) — [ o(®) dpi(tts) <
Let w; = wj, and for all k > 1 define
wi(t) = min{wi—1(t), wi(t)}

for all t € T. Each wy is T-measurable, wy > wi4; > v, and their integrals
converge to the desired quantity. Set w = limg_,co wi. Then w is 7-measurable,

w > v, and by the monotone convergence theorem,
[ O dusteli = Jim [ wnte) dutefic) = [ vt duicai,
T k—oo Jp
as desired. |
Proposition 5 For alli € I, allt; € T;, and all vi,v2 € V, pt({t € T|vy(t) #
va(t)}E:) = 0 implies
[ @ dustelt = [ oty it

Proof:  Assume p}({t € T|vi(t) # v2(¢)}|£:) = 0. Let w; be an upper approxi-

mations of vy, and let

S§'={t € T|n(t) #v(t)}.
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It may be that §" ¢ 7, but there exists 5 € T such that S’ C S and u;(S|t;) = 0.

Define wy : T — R by
wi(t) ifteT\S

Wa (t) =
T ifte S

for all t € T. Then wq is 7-measurable, wy > v9, and
[ wduttiy = [ wdui
T
[ wa(t) dustef
T
/ va(t) d,ufi(tlii)-

I

v

A symmetric argument establishes the opposite inequality, and yields the desired

result. [ ]

Proposition 6 For alli€ I, allt; € T;, and all vi,v3 € V, vy > v implies

fmeMszmmmmm

Proof: Let wy be an upper approximation of vy, and note that wy > v;, which

immediately implies the desired inequality. |

Proposition 7 For alli € I, allt; € T;, all vy,v0 €V, and all S C T with
ui(SlEs) > 0,

vy = vy and YVt € S va(t) > v1(¢)
implies

/* vo(t) — v1(t) dﬂi(tlfi) >0.
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Proof: Assume vy > v; and, for all t € S, vy(t) > vi{t). Let w be an up-
per approximation of vy — v1, let St = {t € T|va(t) — v1(t) > 0}, and let
S~ = {t € Tlva(t) — v1(t) = 0}. Note that T = S+ U S~ and that § C S+
implies pf(S*|t;) > 0. Since w is an upper approximation, it must be that
w™((0,00)) € T and S* C w*((0, 00)), which implies that u;(w=1((0, 00))|%;)
> 0 and

[ o0 - w0 sty = [ v auiy >0,

as desired. I

Proposition 8 For alli € I, allt; € T;, allc € R, and all v € V such that

v+ceV,

*

/ "o(t) + cdui(tlfi) = c + [ oo dustaio.

Proof: Let w be an upper approximation of v + ¢, and note that w — ¢ is an

upper approximation of v. Therefore,

/* v(t)dﬂi(tﬁi) = /rw(t)"'Cdﬂ'i(tlEi)
= o+ /T w(t) dys(#1F)
= c+/ v(t) — cdpa(tlt:),

establishing the desired result. 1

Proposition 9 For alli €I, allt; € T;, all a,b € Ry, and all vy,v : T — R,

/ " av1(£) + bua(t) dps () < a / " on(8) dus(tlEs) + b / o) dus(tlFs).
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Proof: Let w be an upper approximation of av; + bvs, let wy be an upper
approximation of vy, and let wy be an upper approximation of vs. Clearly,

aw; + bws > avy + bvy, so

/ ' avy (t) + bua(t) dus(t|t;) < /T awr (t) + bws(t) du;(t|E:)

a/Twl(t)d;L,-(t{fi)-{—b/Twz(t) dﬂ'i(ti{i)

il

a/* vi(t) dui(t]t;) + b/* va(t) dps(t]E;),

establishing the desired result. |

Proposition 10 For alli €I, allt; € T;, and allv € V,

-/ o0 dua(ti) < [ —ol6) dutl)

Proof: By Proposition 9, it follows that

*

o=/ oft) = o(6) i) < [ o dustelf) + [ " _o(t) dus(tiEy),

which establishes the desired result. [ ]

Proposition 11 Foralli € I and all{; € T, if {vx} is a sequence of functions

in'V with vy = v €V then

/ " o(t) dps(tlf) < lim inf_ / o (t) dps(tlE).

Proof: Let {w;} denote a sequence of upper approximations of {vg}, and let

w = liminf;_,o wi. Then w is 7-measurable and

/T w(t) dus(tfEs) < lim inf /T wi(t) dps (1)



Bayesian Implementation 126

= lim inf / vk (t) dps(t)E:)
k~>00

where the first inequality follows from Fatou’s Lemma. To see that w > v, take
t € T and suppose that v(t) — w(t) =€ > 0. Take k such that v(t) — v () < €/2

and wy(t) — w(t) < €/2, which is possible since v (t) converges to v(¢). Then
v(t) —w(t) = (v(t) —vk(t)) + (ve(t) — wilt)) + (wi(t) — w(?t))
< €,

a contradiction. Therefore, w > v, and it follows that

/Um@mm§ﬁymwmm,

which establishes the desired result. [ ]

Proposition 12 For alli € I and allt; € T;, if {vi} is a sequence of functions

in V with vy — v € V uniformly then
[ o) > tim sup [ o0 st
k—o0
Proof: Let {wr} be a sequence of upper approximations of {vx}, let w =

lim sup,_, ., Wk, and let w’ be an upper approximation of v. Note that

lim sup /* vp(t) dps(tlt;) = lim sup/wk(t)dp,-(t‘f,-)

k00 k—>00

SLMMM%L
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where the inequality follows from a variant of Fatou’s Lemma, so it suffices to
show that
[ wOduteii) > [ w0 dutelf.
T T

If not, then S = {t € Tw(t) > w'(t)} € T and ui(S|t;) > 0. Note that
S = UZ€Z++ §;, where S, = {t € T'|w(t) > w'(t)+1/z}. By countable additivity
of ui(.|t:), there exists z € Z .4 such that p;(S,|¢;) > 0. Since v, — v uniformly,
there exists K such that, for all k > K and all t € S, |vi(t) — v(t)] < 1/32.

Now take any k > K and note that S¥ = {t € S, |wi(t) —vi(t) > 1/32} € T
has p;(.|t;)-measure zero, for otherwise the 7-measurable function w, €V

defined by

wi(t) — & ifte Sk

wi(t) =
wi(t) else

for all ¢ € T satisfies wj, > vy and
[ wk@) sl < [ wute) dul),
T T
Note also that Q% = {t € S.|wi(t) > w(t) — 1/3z} C S*, since

1 2 2 1
wi(t) > w(t) — 5> w'(t) + 35 > v(t) + 35 v;i(t) + Fw

for all t € Q%. Of course, Q% € 7, and it follows that u;(Q*|i;) = 0. But

5. C | ) @k,

k

et

which implies that u;(S.|f;) = 0. This contradiction establishes the desired

result. 1
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Proposition 13 An extended expected utility environment satisfies strict sep-
arability if and only if there exists h* € F such that, for alli € I, all t; € T},
and all a € (T) with oy(t;) # &,

pi ({t € Tlui((h* o (13, a-:))(D)]t) > wi((R” 0 @)()[1)}E:}) = 1.
Proof: First consider the necessity of this condition. Let S denote the set of
states at which the outcomes of h* o (7;,@_;) are preferred to the outcomes of
h* o . Suppose that u}(S|#;) < 1, so that u}(T \ S|t;) > 0. Then Proposition
6 implies

/* ui((h/T\s(h* o (15, 2-0)))(D)]t) — wi((h/T\s(h" 0 @))(t)|t) dpsi(t]E;) < O.

This implies, by Proposition 10 and the comments in Section 2.4, that

hfms(h* 0 @) Ri(E:) hjm\s(h” o (13, a-5)),
contradicting strict separability.

To see sufficiency, take S C T with p}(S|t;) > 0, and let §" = {t € T'|u;((h*o
(75, @—3))(8)]t) — uwi((A* 0 @)(#)|t)}. Note that u?(S'|E;) = ui(S|:) > 0. Then by
Propositions 5 and 7,

/* ui((h/s(h* o (1i,a)))(B)]E) — wi((h/s(R™ 0 @))(®)]t) dps(t|Es)

= / ui((h/s (R o (1, i)Y (B)[t) — wi((h/ 5 (R o a))(£)]t) dpss (t]2:)
> 0,

and by Propositions 5 and 6,

/* ui((h/s(h* 0 ))(®)]t) — ui((h/s(R" o (7i, a—i)))(D)It) dpsa (t]E:)
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= / u;i((h/ s (B 0 ))()]t) — ui((h/ s (R™ o (15, a—)))()]t) dps (t]i:)
< 0.

These two inequalities imply

/ Cusl(Bfs(h o (13, ) (O1E) — wi((h/s(h* 0 0))(B)]t) dus (tlEs)
_ / “wsl(h] s (h* 0 @))DI) — uil(h/s(h o (70 s D)) dpis(tlEs)

> 0,

so that h/g(h* o (1i,a—;)) PH(E:) h/s(h* 0 a). ]
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