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Abstract

Coordination in networked multi-agent systems attracts significant interest in the realm

of engineering. Typical examples include formations of unmanned aerial vehicles, auto-

mated highway systems, and sensor networks. One common feature for these systems is

that coordinated behaviors are exhibited by interactions among agents where information

exchange and manipulation are necessary. In this work, three relevant issues are investi-

gated in detail: uniform strategy for multi-agent formation control, fast-converging con-

sensus protocols, and packet-based state estimation over communication networks.

Formation control of multi-agent systems involves harmony among local controller de-

sign, interaction topology analysis, and objective agreement among networked agents. We

propose a novel control strategy so that each agent responds to neighbors’ behaviors as

well as acts towards the global goal. Thus, information flows for local interactions and

global objective synchronization are studied separately. Using the tools from signal flow

graphs and algebraic graph theory, we show that this new strategy eases the design of local

controllers by relaxing stabilizing conditions. Robustness against the link failure and scal-

able disturbance resistance are also discussed based on small-gain theory. Experimental

results on the Caltech multi-vehicle wireless testbed are provided to verify the feasibility

and efficiency of this control strategy.

Consensus protocols over communication networks are used to achieve agreement among

agents. One important issue is the convergence speed. We propose multi-hop relay proto-

cols for fast consensus seeking. Without physically changing the topology of the commu-

nication network, this type of distributed protocol increases the algebraic connectivity by

employing multi-hop paths in the network. We also investigate the convergence behaviors

of consensus protocols with communication delays. It is interesting that, the faster the pro-
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tocol converges, the more sensitive it is to the delay. This tradeoff is identified when we

investigate delay margins of multi-hop relay protocols using the frequency sweep method.

Efficiently estimating the states of other agents over communication links is also dis-

cussed in this work. When information flows in the network, packet-based data is normally

not retransmitted in order to satisfy real-time requirements. Thus, packet drops and random

delays are inevitable. In this context, observation data that the estimator can receive is inter-

mittent. In order to decrease the chance of losing packets and efficiently using the limited

bandwidth, we introduce multiple description source codes to manipulate the data before

transmission. Using modified algebraic Riccati equations, we show that multiple descrip-

tion codes improve the performance of Kalman filters over a large set of packet-dropping

scenarios. This problem is also generalized to the case where observation data has an in-

dependent and identical static distribution over a finite set of observation noise. Moreover,

Kalman filtering with bursty packet drops is also discussed based on the two-state Markov

chain model.
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Chapter 1

Introduction

1.1 Background and Motivation

As an engineering discipline, automatic control theory is always tied to practical prob-

lems encountered in human history. Classical control theory relies on transform methods in

the frequency domain to deal with single-input-single-output (SISO) systems. Starting in

1960’s, the state-space method has been used for multiple-input-multiple-output (MIMO)

systems. Efficient algorithms for solving matrix equations and advanced microprocessors

for data processing popularize this time-domain approach. However, for large scale con-

trol objects, such as electric power grids or large oil refineries, thousands of signals and

variables need to be sensed and calculated. The lack of full sensor information and limited

computation capability make the conventional centralized methods fail.

K1 KnK2

P

K

P

K1 KnK2

P1 P2 Pn

DECENTRALIZED DISTRIBUTEDCENTRALIZED

Interconnection

Figure 1.1: Architectures for centralized, decentralized, and distributed control architec-
tures

This crisis was realized by the systems and control community in the 1970’s and numer-
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ous efforts has been made [1]. Three different control architectures for large scale systems

are shown in Figure 1.1. For the first architecture, a centralized controller K is used to con-

trol a dynamic system P. One direct way to solve the complexity crisis is model reduction

(or model simplification) [2, 3, 4]. This approach tries to reduce the order of state space

by simplifying the system structure so that the complexity of the central controller can be

moderated.

The second architecture in Figure 1.1 decentralizes the feedback controller. Instead

of using one centralized controller, which requires full (or controllable) state feedback,

spatially separated controllers {K1,K2, · · · ,Kn} are introduced. Generally, each controller

only accesses part of the system states and there are no information exchanges among

the controllers. The most definitive results on decentralized stabilization can be found in

[5, 6]. Note that the term “decentralization” refers to controller implementation and the

control law is designed in a centralized mode.

The third architecture is a distributed control architecture where control object is com-

posed of multiple decoupled subsystems {P1, P2, . . . , Pn}. Each subsystem is equipped with

a local controller. Interconnection exists among these controllers so that information can be

exchanged and subsystems can interact with each other. Thus, distributed control laws are

generated according to not only the local feedback, but also the messages from other con-

trollers. Cooperative and coordinated control for networked multi-agent systems belongs

to this structure.

If we use ordinary differential equations (ODEs) to describe dynamical systems, quali-

tative analysis for large scale systems can be studied under the framework of interconnected

systems. A huge amount of related work has been reported in the literature. By assuming

that each subsystem is stable when isolated, [7] and [8] summarize the early research and

provide details on how to use the vector Lyapunov method and weighted-sum method to

test the stability of interconnected systems. The interpretation of their results is that if the

gain of the local feedback loop is smaller than 1 and the coupling between subsystems

is weak enough, then the overall system is stable. These tests are only successful when

the coupling among subsystems is weak. Moreover, the concept of input-output stability

for interconnected systems is proposed in [9] and several exciting results are presented in
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[10, 11, 12].

During the last few decades, cooperative and coordinated control for multi-agent sys-

tems has received significant attention. Dramatic developments in communication and

computation technology relax the restrictions on information exchanges between spatially

distributed agents. The possibility has been identified that simple and inexpensive agents

can carry out complicated tasks through collaboration that may be too difficult for single

agent. Advantages include simple structure, low cost, enhanced functionality, and the flex-

ibility in fault tolerance. Applications of cooperative and coordinated multi-agent systems

can be found in space exploration [13, 14, 15, 16, 17, 18, 19], automated highway sys-

tems [20, 21, 22, 23, 24, 25], autonomous combat systems [26, 27, 28], oceanographic

sampling [29, 30, 31], air traffic control [32, 33], congestion control on the internet [34],

and sensor networks [35, 36, 37]. An agent can represent a spaceship, an airplane, a

ground/underwater vehicle, an internet router, a cellular phone, or even a smart sensor

with microprocessors. Among these applications, a couple of issues have not yet been well

answered:

• Interactions among agents make the dynamics of multi-agent systems more compli-

cated than single agent. Practical design and implementation needs more constructive

insights from qualitative analysis on stability and performance issues with respective

to nontrivial agent dynamics and interaction topology.

• Agents are physically decoupled. But their behaviors are coupled though a certain

task that they try to accomplish. Task decomposition and assignment are traditionally

solved in a centralized manner. Their counterparts in distributed systems, which can

avoid the complexity crisis, are still not fully addressed.

• Data links between different agents are not perfect. Even though current commu-

nication networks provide affordable platforms for information exchange, limited

bandwidth, random transmission delay/packet drops, and uncertainty in connectiv-

ity topology violate conventional assumptions in automatic control theory. How this

questionable fidelity impacts control theory is not well understood yet.
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In order to conquer these challenges, developing new tools and techniques from the

interdisciplinary territory of control, computation, and communications is necessary [38].

A short survey of recent related work is provided in the next section, which obviously is

bounded by author’s ignorance and biases. But, it is clear that control theory can definitely

benefit from other closely related disciplines, such as graph theory, distributed computa-

tion, information theory, and networking analysis. This work is dedicated to presenting

our recent work on coordinated control for networked multi-agent systems, which can be

roughly divided into three topics: coordinated control strategy for networked multi-agent

systems, multi-hop relay protocols that boost the process of consensus seeking, and packet-

based state estimation over lossy communication networks.

1.2 Previous Work

1.2.1 Multi-Agent Formation Control

Formation control is a popular topic for multi-agent systems. The control objective is

letting agents maintain certain geometric formation by autonomously responding to other

agents and the environment. Formation control has been extensively investigated in nu-

merous applications such as coordination of multiple robots [39, 40, 41, 42, 43], control of

ground vehicle platoons [22, 23, 25], formation flight of unmanned aerial vehicles (UAVs)

[26, 27, 28, 44], fleets of autonomous underwater vehicles (AUVs) [30, 31, 45], and satel-

lite clusters [15, 16, 19]. Even though each application shows unique characteristics and

challenges, there exist common features. In most of the applications, agents have identical

dynamics and similar local controller structure. Also, communication and computation ca-

pacity for each agent is limited. Last, formation configurations are consistent with the third

architecture in Figure 1.1, and the interaction topology plays an important role.

Various approaches for formation control have been proposed and they can be roughly

categorized as the leader-follower approach, the virtual structure approach, and the behavior-

based approach.

• In the leader-follower approach, one agent acts as the leader and other agents are
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followers who try to follow the leader’s behavior by reacting to their nearest neigh-

bors. This approach is naturally implemented in a distributed pattern since each agent

only needs to react to its local environment. However, there exist a couple of short-

comings. For example, the approach heavily depends on the leader status and the

whole formation will fail if the leader fails. Also, the stability of single agent does

not necessarily indicate the stability of the formation [46]. Thus, more critical stable

conditions have to be posed on the local controller. Moreover, nontrivial agent dy-

namics results in disturbance accumulation, which is unscalable with respect to the

number of agents [23].

• The virtual structure approach is commonly used in the robotics community [47, 39,

45, 48, 49]. The unique feather is that a “virtual” agent is synthesized based on all

agents. The formation is treated as a rigid body and this fictitious agent acts as the

reference. The position and trajectory of each other agent is calculated explicitly

based on the reference and formation configuration. It is easy to describe the whole

group and maintain accurate formation. However, this approach is only practical for

small groups because centralized data collection and processing are needed. Recent

attempts on distributed implementation are reported in [18, 50].

• In the behavior-based approach, the control law of each agent is defined by a combi-

nation of pre-defined control actions corresponding to all possible agent status. Even

through this approach is distributed, it is difficult to analyze quantitatively. Limited

applications for this approach are reported in [40, 51].

Obviously, formation control belongs to the distributed architecture. For agent Pi, we

can present its dynamics as

ẋi = f
(
xi, ui(xi, xneighbor)

)
, (1.1)

where xneighbor is the information collected from the neighbors and determined by the in-

teraction topology. The local controller Ki generates the control law ui(xi, xneighbor). When

agents have identical dynamics and local controllers, the interaction topology is the key for

formation control. One powerful tool to study the interaction topology is graph theory [52],
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a mathematic theory on the properties of graphs. The objects of graph theory are a set of

vertices and the edges between them. The idea of using graphs to interpret the interaction

topologies can be found as early as in [53], where the input-output stability is decomposed

into the stability of a hierarchy of strongly connected subsystems. For formation control,

each agent can be abstracted as a vertex, and edges are used to present the existence of

interactions. In [39, 40], graphs are used for the virtual structure of mobile robots. In [41],

a triplet of leader robot, formation shape variable, and control graph is introduced for path

planning and formation control of nonholonomic robots. Specific graphs, such as strings,

are used in coordinated control for vehicle platoons [22]. In these literatures, stability of the

formation is straightforward either because of the trivial agent dynamics or the simplicity

of the graph.

For interaction topologies with loops, formation stability becomes tricky. A branch of

graph theory, algebraic graph theory, is especially beneficial because of its fruitful results

on graphs in connection with linear algebra. In [54, 55], spectrum analysis of the Laplacian

matrix, a subject in algebraic graph theory, is shown to be important for the synchroniza-

tion of coupled oscillators. Lyapunov stability analysis in terms of the eigenvalues of the

Laplacian matrix is reported in [56] for nonlinear systems. A more precise statement on

formation stability with linear dynamics is presented in [46]. It has been shown that the

formation stability is equivalent to the stability of a sequence of decoupled inhomogeneous

subsystems.

Another issue for formation control is the disturbance accumulation phenomenon. A

disturbance signal can be amplified when it propagates to other agents through interactions.

This subject is identified as the “string stability” problem in [22, 23] where formation con-

trol of vehicle platoons is discussed. In order to bound this amplification, numerous designs

for interaction topology are proposed. The results are extended to vehicle formation with

mesh topologies [25]. The point is to weaken the coupling among vehicles so that the gain

of the disturbance is less than 1.

Interactions in multi-agent systems can be explained by local information flows among

agents. On-board sensing and wireless communication links are common physical imple-

mentations for information exchange. In the aforementioned literature, local information
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flow has been widely used and well understood. However, because of the ignorance of the

global objective, coordination between agents is often naive and undirected. With popular-

ization of affordable wireless communication networks, it is possible to process and spread

the global information in a distributed fashion using collective protocols. Thus, a uniform

framework is needed to fully understand the formation control of networked multi-agent

systems under the influence of local and global information flow.

1.2.2 Collective Behaviors and Consensus Seeking

Self-organizing features in animal groups, such as flocking, swarming, and schooling

[57, 58], provide important insights for coordinated control in multi-agent systems. Theo-

retical discussions can be found in [59] for the self-driven particles alignment problem, in

[60] where a continuum mechanics approach is used, and in [61] for rotating swarms with

all-to-all interactions.

As we mentioned in the previous section, the traditional architecture for global infor-

mation processing normally involves centralized information collection and computation.

Surprisingly, collective algorithms provide possible distributed solutions for the same prob-

lem. A good example is average consensus seeking. Driving the states of all agents to a

common value by distributed protocols based on a communication network is called the

consensus problem. A popular discrete-time consensus protocol is proposed in [62] based

on stochastic matrix theory [63]. Suppose xi is the state of agent i and the protocol can be

summarized as

xi(k + 1) =
∑

j∈N(i)∪{i}
αi j(k)x j(k) (1.2)

where N(i) represents the set of agents whose state is available to agent i at step k. We

assume αi j ≥ 0 and
∑

j αi j(k) = 1. In other words, agent state is updated as the weighted

average of its current value and its neighbors’. Correspondingly, a continuous-time con-

sensus protocol can be found in [64, 65] as

ẋi(t) = −
∑
j∈N(i)

βi j(t)
(
xi(t) − x j(t)

)
(1.3)
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where βi j(t) denotes the positive weight. We say the system has achieved a consensus if

‖xi − x j‖ converges to zero as t → ∞ for any i � j. More specifically, it is called average

consensus when xi → ∑
xi(0)/n as t → ∞ for any i where n is the number of agents.

Suppose the topology of the communication network is time-invariant. The necessary

and sufficient condition for consensus protocol (1.2) and (1.3) to reach a consensus is that

there exists a spanning tree in the topology [66, 67]. For average consensus seeking, the

topology must be at least strongly connected and balanced [64]. When the topology is time-

variant, such as in an ad-hoc wireless network, it has been shown that consensus protocols

are still valid under switching topologies given the condition that at least one topology is

strongly connected [65] or there exists a spanning tree [67] in each uniformly bounded

time interval. The impact of communication delays on consensus seeking are also studied

in [64, 68] where upper bounds of the delay margin are given for a fixed communication

topology with uniform delay.

Consensus protocols has been employed in many engineering problems. For coordi-

nated control, consensus schemes have been applied to achieve vehicle formations [66]. In

rendezvous problems, consensus seeking is applied to control agents arrive at a certain lo-

cation simultaneously [69]. Other applications include spacecraft attitude alignment [51],

distributed decision making [70], asynchronous peer-to-peer networks [71], and robot syn-

chronization [72]. All of these applications rely on the assumption that the convergence

speed of consensus seeking is fast enough. A couple of methods have been reported to

improve the convergence speed, such as finding the optimal weights associated with every

communication link [37] or using random rewiring to change the topology [73], but they

all face difficulties in practical implementation.

1.2.3 Control and Estimation over Networks

A unique feature of networked control systems (NCS) is that communication networks

are employed to close the loops between system components such as sensors, controllers,

and actuators. Figure 1.2 shows a typical diagram for NCS. A networked multi-agent

system can be considered as a special case of NCS.
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Dynamic System

Network 1
Communication

State Estimator

Encoder

DecoderController

Communication
Network 2

Encoder

Decoder Observer

Figure 1.2: Diagram of a typical networked control system

In the structure of the NCS, a couple of fundamental assumptions for conventional

control theory are not valid anymore due to the “imperfect” data links. For example:

• Infinite bandwidth. The communication channel can only transmit the data with cer-

tain precision under the constraint of limited bandwidth. Quantization and distortion

must be considered for system design and analysis.

• Reliable connections. Sampled signals are transmitted in data packets that suffers

from unreliability issues such as unpredictable transmission delays and random packet

drops.

• Static structure. For networked multi-agent systems, dynamic routing and ad-hoc

connectivity of modern communication networks makes the interaction topology

time-variant and the coupling among agents may change as well.

Several of related research threads exist to accommodate these issues. One thread is

designing communication protocols and algorithms that minimize the probability of net-

work congestion and packet drops [74]. Another one is treating these issues as additional

constraints. For example, the maximum allowable transfer interval is discussed in [75]

for desired stability and performance. Methods to compensate for network-induced delays

are presented in [76]. In [77], a “recursive state estimator” is used to generate minimum

variance estimates in the presence of irregular communication delays.

During the last decade, there has been a surge of interest in combining tools from in-

formation and communication theory to solve “control problems with communication con-
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straints.” Under the framework of NCS, many significant results are reported. The esti-

mation and stabilization problem of a closed-loop dynamic system over a communication

channel with finite bandwidth is first discussed in [78, 79]. The necessity of a unified ap-

proach to control, communication, and computation is emphasized in [80]. Quantization

issues are discussed in [81]. In [82], an optimal algorithm quantizer, the “logarithmic quan-

tizer”, is introduced in order to minimize the transmission bits. After that, a lower bound

of the channel capacity needed to stabilize a linear time-invariant (LTI) system is given

in [83]. Also, simple time-variant coding schemes are proposed for noiseless and noisy

channels in [83] and [84], respectively. In [85], a concept of anytime capacity is proposed

to deal with the real-time issue in NCS. Moreover, the authors for [86] try to address the

stability of NCS in a stochastic way by introducing the concept of “almost-sure stability.”

For the model-based estimation problem, a popular method for linear systems is Kalman

filtering [87, 88]. For a nonlinear system, an extended Kalman filter is a natural choice. In

recent years, the moving horizon estimation approach [89] has become another promising

method by transferring the estimation problem to a nonlinear optimization problem within

a finite horizon time interval and solving it on-line. In NCS, the input data of estimator

is disordered or intermittent because of the transmission delays or packet drops. Studies

on filtering with intermittent observations can be tracked back to [90] and [91]. Other

researchers try to model the Kalman filter with missing observations as jump linear sys-

tems (JLS), which are stochastic hybrid systems with linear dynamics and discrete Markov

chains. Certain convergence criteria are given for expected estimation error covariance

[92, 93].

More recently, the general case for Kalman filtering with intermittent observations has

been studied in [94], where stochastic equations for error covariance are derived based

on the i.i.d. Bernoulli packet-dropping model. A detailed analysis for the solutions of

the modified algebraic Riccati equation is presented and statistical convergence properties

are discussed. This work formally shows a phase transition phenomenon for the expected

value of error covariance with respect to the packet-dropping rate. A similar approach is

used in [95] to investigate state estimation problem with partial observation loss over sensor

networks.
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1.3 Statement of Contributions

Contributions of this work are briefly stated in following paragraphs, which are sorted

by chapter and provide an outline of the thesis.

Chapter 2 In this chapter, we review some basic concepts and ideas from algebraic graph

theory. Preliminary results about the spectrum and infinity norm of the Laplacian

matrix are also listed. Moreover, a brief description and common notations for quan-

tization and distortion theory are given. Last, two stochastic models for random

packet drops on packet-based communication networks are introduced in prepara-

tion for our discussion in Chapter 5.

Chapter 3 In this chapter, we propose a novel control strategy for networked multi-agent

formation control. In this scheme, every agent adjusts its behavior according to its

neighbors as well as the global objective. Conditions on formation stability are dis-

cussed based on the connectivity of the interaction topology. This strategy is robust

against the data link failure and greatly eases the design of local controllers. More-

over, the performance of disturbance resistance can be uniformly bounded indepen-

dent of the size of the formation. Simulation and experimental results on the Caltech

multi-vehicle wireless testbed are also given to verify the feasibility and advantages

of this strategy.

Chapter 4 In this chapter, we focus on the continuous model of consensus protocols in

networked multi-agent systems. Based on the connectivity properties of the commu-

nication network, convergence conditions and final consensus values are presented.

A new type of consensus protocol, the multi-hop relay protocol, is proposed. Without

physically changing the topology of the network, this protocol generally increases the

convergence speed. At the same time, time delays in communication networks are

considered and a tradeoff between convergence speed and delay margin is discussed.

Chapter 5 In this chapter, the problem of state estimation over a packet-based communi-

cation network is studied in which efficiency and reliability of the network are critical

issues. The presence of packet drops and communication delays impair our ability to
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measure and predict a dynamic process. Multiple description (MD) codes, a type of

network source code, are used to compensate for packet drops. The benefits of MD

codes include efficient bandwidth utilization and convergence of error covariance

over a large set of packet-dropping rates, which are explicitly shown for two packet-

dropping models: the i.i.d. model and the Markov chain model. Moreover, solutions

of the generalized modified algebraic Riccati equation (MARE) are discussed and

simulation results are presented.

Chapter 6 In the last chapter, we summarize the results in this work and point out connec-

tions to other related areas. Future extensions and possible research directions are

provided.
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Chapter 2

Preliminaries

Basic concepts, notions, and mathematical tools that will be used through out this work

are covered in this chapter. Several preliminary results are also listed. In order to be concise

and consistent, we focus on those that are necessary for a clear understanding of following

chapters. Readers who are familiar with graph theory and communication networks can

skip this chapter safely.

Section 2.1 states basic ideas from algebraic graph theory that have been commonly

used in computer science and communication networks, but may be unfamiliar to some

potential readers. The spectrum of the Laplacian matrix and the infinity norm for the adja-

cency matrix are discussed as well. Results and properties in this section contribute to the

results in Chapter 3 and 4.

Section 2.2 introduces concepts from rate distortion theory. General performance mea-

surements for quantizers are introduced. The section provides necessary knowledge for

readers to follow Chapter 5.

Section 2.3 gives two commonly used mathematical models for packet loss in modern

digital communication networks. Both of them try to catch the stochastic characteristics

for random packet drops. More details and model verifications can be found in [96, 97, 98].
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2.1 Algebraic Graph Theory

2.1.1 Basic Concepts

A directed graph G = (V,E) is composed by a finite vertex set V and an edge set E ⊆
V2. Suppose there are n vertices inV, each vertex is labelled by an integer i ∈ {1, 2, · · · , n}
and n is the order of the graph. Each edge can be denoted by a pair of distinct vertices

(vi, v j) where vi is the head and v j is the tail. If (vi, v j) ∈ E ⇔ (v j, vi) ∈ E, the graph is

called symmetric or undirected. A graph G is said to be complete if every possible edge

exists.

For directed graph G, the number of edges whose head is vi is called the out-degree of

node vi. The number of edges whose tail is vi is called the in-degree of node vi. If edge

(vi, v j) ∈ E, then v j is one of the neighbors of vi. The set of neighbors of vi is denoted by

N(i) = {v j ∈ V : (vi, v j) ∈ E}.
A strong path in a directed graph is a sequence of distinct vertices [v0, · · · , vr] where

(vi−1, vi) ∈ E for any i ∈ {1, . . . , r − 1} and r is called the length. A weak path is also a

sequence of distinct vertices [v0, · · · , vr] as long as either (vi−1, vi) or (vi, vi−1) belongs to E.

Directed graphs over a vertex set can be categorized according to their connectivity

properties. A directed graph is weakly connected if any two ordered vertices in the graph

can be joined by a weak path, and is strongly connected if any two ordered vertices can

be joined by a strong path. If a strongly connected directed graph is symmetric, then it

is called connected and symmetric. If a directed graph is not weakly connected, then it is

disconnected. Figure 2.1 reveals the relationship among these concepts.

A directed graph G is called acyclic if it does not contain any edge cycles. In a directed

acyclic graph, there exists at least one vertex that has zero out-degree. A rooted directed

spanning tree for directed graph G is a subgraph Gr = (V,Er) where Er is a subset of E
that connects, without any cycle, all vertices in G so that each vertex, except the root, has

one and only one outcoming edge. (Some literature defines this concept in the opposite

direction, i.e., each vertex, except the root, has one and only one incoming edge.) Thus,

a rooted directed spanning tree is acyclic. A strong component of directed graph G is an

induced subgraph that is maximal, subject to being strongly connected. Since a vertex is
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Strongly connected

Weakly connected

Disconnected

Disconnected & symmetric Connected & symmetric

Figure 2.1: Classification for directed graphs

strongly connected, it follows that each vertex lies in a strong component. It can be shown

that edges between any two strong components, if any, are uniformly directional, i.e., the

heads of these edges belong to one component and tails belong to another. Otherwise, these

two strong components compose a bigger strong component.

2.1.2 Matrices in Algebraic Graph Theory

Algebraic graph theory studies graphs in connection with linear algebra. Various ma-

trices are naturally associated with the vertices and edges in a directed graph. Properties of

graphs can be reflected in the algebraic analysis of these matrices. A couple of important

matrices are introduced below.

An adjacency matrix A = {ai j} of a directed graph G with order n is an n × n matrix

that is defined as

ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, (vi, v j) ∈ E;

0, otherwise.
(2.1)

Thus,A is symmetric when G is symmetric.

An out-degree matrix D = {di j} of a directed graph G with order n is an n × n diagonal

matrix as

dii =
∑
j�i

ai j. (2.2)

It is clear that every diagonal element in D equals the out-degree of the corresponding

vertex. When G is symmetric, the out-degree for each vertex equals the in-degree andD is
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also called the degree matrix.

Generally, a weighted adjacency matrixA = {ai j} is defined as

ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wi j, (vi, v j) ∈ E;

0, otherwise
(2.3)

where wi j is the positive weight associated with edge (vi, v j). Then, the out-degree of node

vi is the sum of the weights of the edges whose head is vi. The in-degree of node vi is the

sum of the weights of the edges whose tail is vi. So the aforementioned adjacency matrix

can be treated as a specific case of weighted adjacency matrix where all weights equal to 1.

A Laplacian matrix L of a directed graph G with order n is an n × n matrix that is

defined as

L = D−A. (2.4)

If we normalize each row of adjacency matrix by corresponding out-degree, we get the

normalized adjacency matrix as

Ā = D−1A. (2.5)

In order to complete the definition, we set d−1
ii = 0 if a vertex vi has zero out-degree.

Moreover, we define the normalized Laplacian matrix as

L̄ = D−1L. (2.6)

Other concepts include the nonnegative matrix if each element is nonnegative. Square

matrix A is reducible if there exists a permutation matrix P such that PAPT is block upper

triangular as

PAPT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 0

A21 A22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.7)

where A11 and A22 are square matrices.

A directed graph with seven vertices is shown in Figure 2.2 Part (a). It is clear that this

directed graph is weakly connected. The associated adjacency matrix, out-degree matrix
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(a) (b)

1
2

4
3
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5
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1

3

4

6

5

7

Figure 2.2: An example: directed graph with seven vertices

and Laplacian matrix are listed below:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 1 0

0 0 0 1 1 0 1

0 0 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

1

0

1

2

3

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 −1 0 0 0

−1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 −1 0 1 0 0 0

−1 0 0 0 2 −1 0

0 0 0 −1 −1 3 −1

0 0 −1 0 −1 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The associated normalized adjacency matrix and normalized Laplacian matrix are

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1/2 1/2 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

1/2 0 0 0 0 1/2 0

0 0 0 1/3 1/3 0 1/3

0 0 1/2 0 1/2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

L̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1/2 −1/2 0 0 0

−1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 −1 0 1 0 0 0

−1/2 0 0 0 1 −1/2 0

0 0 0 −1/3 −1/3 1 −1/3

0 0 −1/2 0 −1/2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We change the vertex indices, as in part (b), and it is clear that there are three strongly

components, composed by vertices sets {1}, {2, 3, 4}, and {5, 6, 7}. The reducible adjacency

matrix can be presented as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

1 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11

A21 A22

A31 A32 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whereA11 is a scalar, andA22 andA33 are 3 × 3 square matrices.
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Next, we list some results about the rank and spectrum of the adjacency matrix and

Laplacian matrix. Let 1n and 0n ∈ Rn denote the vectors with all ones and all zeros,

respectively. We start with strongly connected graphs.

Corollary 2.1.1. Given a directed graph G and its adjacency matrix A, G is strongly

connected if and only ifA is irreducible.

This corollary is a direct result based on the properties of nonnegative matrices in [63].

Theorem 2.1.1. Suppose the order of directed graph G is n and the Laplacian matrix is L.

If G is strongly connected, then rank(L) = n − 1.

The theorem states the connection between the connectivity of G and the rank of L.

The converse of this theorem is not true. However, when G is symmetric, the condition

becomes necessary and sufficient. An extension is stated below:

Corollary 2.1.2. A symmetric graph G is connected if and only if rank(L) = N − 1.

Since the adjacency matrix is nonnegative, one fundamental theory for spectrum analy-

sis is the Perron-Frobenius theorem [63]. It states that the spectral radius of a nonnegative

and irreducible matrix is an algebraically simple eigenvalue, known as the Perron root. The

eigenspace associated with the Perron root is one-dimensional. The unique positive eigen-

vector associated with the Perron root is called the Perron vector. The following properties

that are collected from [99, 64, 66, 67, 100, 101] state features of the spectrum of adjacency

matrix and Laplacian matrix.

Property 2.1.2. Zero is an eigenvalue of L, and 1n is the associated right eigenvector.

Property 2.1.3. Given a directed graph G and the associated Laplacian matrix L:

• If G is strongly connected, the zero eigenvalue of L is simple;

• If G is connected and symmetric, L is symmetric and positive semi-definite. All

eigenvalues are real and nonnegative, which can be written as

0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L).
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Property 2.1.4. For a strongly connected graph G with normalized adjacency matrix Ā
and normalized Laplacian L̄,

• λ(L̄) = 1 − λ(Ā).

• λ(L̄) lies on a disk of radius 1 that is centered at the point 1 + 0 j in the complex

plane.

For weakly connected graphs, we can reduce them by replacing each strong component

with a vertex. Edges inside each component are discarded and edges between any two

components are replaced by one single edge. So if G is strongly connected, it can be

reduced to a single vertex. If G is weakly connected, it can be reduced to either a directed

tree with a single root or a forest with multiple roots. If a strong component can be reduced

to a root, then it is called a root strong component. For example, the directed graph in Figure

2.2 can be reduced to a directed tree, shown in Figure 2.3, and the root strong component

has only one vertex.

2

1

3

4

6

5

7

[1]
[2,3,4]

[5,6,7]

Figure 2.3: Reduction of a directed graph

According to the definition of D̄−1, L̄ = I − Ā if and only if every vertex has nonzero

out-degree. However, there exists at least one vertex with zero out-degree whenG is weakly

connected. So we have the following result as the counterpart of Property 2.1.4 for weakly

connected graphs.

Lemma 2.1.1. Suppose G is weakly connected where vertices {v1, · · · , vr} have zero out-

degree, then
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• λ(Ā) still lies on the unit disk centered at the origin and λ(L̄) is on a unit disk

centered at the point 1 + 0 j in the complex plane.

• The first r eigenvalues of both of Ā and L̄ are zeros.

• For other n − r eigenvalues,

λ(L̄) = 1 − λ(Ā).

Proof The first item is a directed extension based on the Geršgorin disk theorem. For

others, we can rewrite Ā and L̄ by separating these zero out-degree vertices from others.

Suppose vertices {v1, · · · , vr} have zero out-degree, then

Ā =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

Ā21 Ā22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Ā22 is (n − r) × (n − r), and

L̄ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

−Ā21 I − Ā22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Thus, the eigenvalues of L̄ are divided into two parts: the first r zeros and the left n − r

from 1 − λ(Ā). Then, the result follows. �

2.1.3 Infinity Norm of Normalized Adjacency Matrix

In this subsection, we discuss upper and lower bounds of the infinity norm of normal-

ized adjacency matrix Ā. The infinity norm is defined by

‖Ā‖∞ = max
x�0

‖Āx‖∞
‖x‖∞ = max

1≤i≤n

n∑
j=1

|āi j|.

Lemma 2.1.2. If directed graph G is strongly connected, then

‖Ām‖∞ = 1 (2.8)
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for any positive integer m.

Proof Since G is strongly connected, for every row in Ā = {āi j}, ∑
j āi j = 1. When

m = 2, the sum of the first row of Ā2 is

[ā11, ā12, · · · , ā1n] ·
(
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā11

ā21

...

ān1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā12

ā22

...

ān2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ · · · +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā1n

ā2n

...

ānn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)
= [ā11, ā12, · · · , ā1n] · 1n = 1.

This is true for any other row as well. With the induction to other m, the result follows. �

In most leader-follower cases, the leader’s behavior normally is not affected by other

followers, i.e., the out-degree of the leader is zero. Thus, the interaction topology is weakly

connected and the “leader” is the unique root strong component of the graph. The following

lemma gives out more precise bounds for ‖Ām‖∞ in that case:

Lemma 2.1.3. SupposeG is weakly connected with a single vertex as the unique root strong

component; for any given ε > 0, there exists a constant C such that

ρm(Ā) ≤ ‖Ām‖∞ ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, m < n

C · (ρ(Ā) + ε
)m−n+1

, m ≥ n
(2.9)

for any positive integer m, where n is the order of G and ρ(Ā) is the spectral radius of Ā.

Proof According to Geršgorin disk theorem [63], all eigenvalues of Ā are located in

the unit disk, i.e.,

|λi| ≤ 1,∀i ∈ {1, 2, · · · , n}.

Then,

ρ(Ā) ≤ 1 = ‖Ā‖∞.

Since ρ(Ām) = ρm(Ā), we have

ρm(Ā) = ρ(Ām) ≤ ‖Ām‖∞.
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Thus, the left half of inequality (2.9) is true.

For the right half, we have

‖Ām‖∞ ≤ ‖Ā‖m∞ ≤ 1

according to the definition of the norm. So one is an upper bound. What we need to do

next is look for a tighter upper bound.

If the graph is acyclic, there exists an indexing method so that Ā is a lower triangular

matrix and all diagonal elements are zeros, i.e., ρ(Ā) = 0. Moreover, Ān = 0 because the

length of the largest strong path is n − 1. So we have

‖Ām‖∞ = 0 = ρm−n+1(Ā)

if m ≥ n. In other words, the infinity norm jumps from 1 to 0 when m increases from n − 1

to n.

If the graph is not acyclic, any loop in the graph can generate path with infinite length.

In any loop, there exists at least one vertex whose out-degree is bigger than 1 because G
is weakly connected and the unique root strong component is a single vertex. Since every

element in Ām is the gain of paths between certain pair of vertices with length m, all of the

gains converge to zero as m→ ∞, so

lim
m→∞ Ā

m = 0. (2.10)

According to [101], it is true that equation (2.10) holds if and only if all eigenvalues of Ā
are inside the unit circle in the complex plane. Thus, ρ(Ā) < 1.

Since matrix Â = (ρ(Ā) + ε)−1Ā has spectral radius strictly less than 1, Âm → 0 as

m → ∞ and the elements of sequence {Âm} should be bounded by a certain constant K.

Then for m ≥ n, we get

‖Ām‖∞ = maxi
∑n

j=1 |(Ām)i j|
≤ nK

(
ρ(Ā) + ε

)m

≤ C
(
ρ(Ā) + ε

)m−n+1

and complete the proof. �
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Figure 2.4: Bounds of normalized adjacency matrix norm

Figure 2.4 shows an example of the bounds of Ā of a leader-follower formation with

weakly connected topology. With properly chosen parameters, the upper bound given in

Lemma 2.1.3 is much tighter than the upper bound 1.

2.2 Quantization and Distortion

A simple model of quantizer usually consists of two parts: encoder and decoder. The

encoder has a set of partitions {V1,V2, · · · ,VM}, which are called quantization cells, over

the state space Rm. The number of cells M is countable. Also, Vi ∩ Vj = ∅ for any i, j ∈
{1, 2, · · · ,M} with i � j, and

⋃N
i=1 Vi = Rm. For any x ∈ Rm as the input, the output of the

encoder is an integer called the quantization index, which represents the quantization cell

which x belongs to. So the encoder can be presented by a function as

q(x) = i if x ∈ Vi. (2.11)
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The decoder has a codebook which defines a value ci ∈ Rm for every quantization index i,

i.e.,

r(i) = ci. (2.12)

The quantization rule of a quantizer is the composite function

r ◦ q(x) = ci = x̂ if x ∈ Vi (2.13)

where x̂ is the quantized representation of x.

Apparently, quantization is a lossy process since part of the data resolution will be

lost. For example, for any x1, x2 ∈ Vi and x1 � x2, we have r ◦ q(x1) = r ◦ q(x2) = ci.

Thus, a distortion function d(x, x̂) : Rm × Rm → R+ is defined as a measure of the cost of

representing x by x̂. One popular distortion function used for continuous state space is the

squared error distortion defined on a value-by-value basis as

d(x, x̂) = (x − x̂)2. (2.14)

If x is a random variable with the probability density function f (·) over Rm, the average

distortion is given by

E[d(x, x̂)] =
∫
Rm

d(x, x̂) f (x)dx =
∑

i

∫
Vi

d(x, x̂) f (x)dx. (2.15)

The bits per source sample (bpss) of a quantizer is the number of average binary bits

used to transmit a quantization index from encoder to decoder. When a fixed-length coding

scheme is used, the bpss equals to R = �log2 M�. When a variable-length coding scheme is

employed, the probability of each index i is pi =
∫

Vi
f (x)dx and the average bpss is given

by the entropy as

R = −
M∑

i=1

pi log2 pi. (2.16)

A typical example of a variable-length code is the Huffman code [102].

The performance of a quantizer is evaluated by its average bpss and its distortion. Op-
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timizing a quantizer involves minimizing both of these. For a fixed-length coding scheme,

optimizing performance reduces to minimizing quantizer distortion and two conditions

must be satisfied [103]:

• The nearest neighbor condition. A source sample must be mapped to the closest ci;

• The centroid condition. The value of ci should be the centroid of cell Vi, i.e., the

expected value of the source sample given that it lies in the cell.

For a variable-rate coding scheme, the centroid condition is still necessary for the quantizer

to be optimal.

Moreover, a quantizer is called a vector quantizer when m > 1 and is called a scalar

quantizer when m = 1. The most popular quantizer is the uniform scalar quantizer where

all cells are of equal size. The quantization rule of such a quantizer is characterized by

three parameters: the size of its cells, which is often called the step size and denoted by Δ,

the number of the cells, and an offset between zero and Δ that is used to locate partitions.

The average distortion for uniform scalar quantizer with small step size is approximately

Δ2/12.

2.3 Modeling for Packet Drops

For modern communication networks with high bit rates, packet drops can be caused

by signal degradation over the medium (signal to noise ratio is too small), over-saturated

network links (congestion in the network), faulty networking hardware, etc. A rich litera-

ture about packet drops can be found and many mathematic models have been proposed. In

this section, two popular models that are mathematically simple yet sophisticated enough

to capture the characteristics of packet drops in large scale networks are presented.

Bernoulli Packet-Dropping Model - As shown in Figure 2.5 part(a), the network is

treated as a switch. A sequence of Bernoulli random variable γk is used to indicate whether

the switch is on or off at time step k, i.e., packet k is transmitted through the communication

network successfully or not. If it is on, γk = 1, otherwise, γk = 0. Those random variables
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are independent and identically distributed (i.i.d.). This model is characterized by a single

parameter λ that has the probability of γk being 1. So the model can be presented by

γk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 with probability λ

0 with probability 1 − λ
(2.17)

Network
Good Bad

(b)(a)

Figure 2.5: Models of packet drops: (a) i.i.d. Bernoulli model; (b) two-state Markov chain
model

Gilbert-Elliot Channel Model - Sometimes packet drops occur in bursts due to the

memory effect of the network. This bursty error behavior can be represented by a discrete

Markov chain. The simplest one is the Gilbert-Elliot channel model [96, 97], or the two-

state Markov chain model, which is shown in Figure 2.5, part (b). In this model, the

network jumps between two possible states: “good” and “bad.” In the good state, the

packet is transferred successfully; while in the bad state, the packet is dropped. The current

network state, Xk, depends only on the previous state Xk−1. Assuming that 1 means the

good state and 0 means the bad state, the transition probabilities are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q01 = P[Xk = 0|Xk−1 = 1]

q11 = 1 − q01

q10 = P[Xk = 1|Xk−1 = 0]

q00 = 1 − q01

(2.18)

where qi j is the transition probability from the previous state j to the current state i. Thus,

the transition probability matrix Q is given by

Q =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q00 q01

q10 q11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.19)
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Clearly, the network has one-step “memory.” In order to capture a larger variety of temporal

dependencies, a class of Markov processes with more states can be employed. However,

for simplicity and without loss of generality, we use the two-state model in this work.
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Chapter 3

Double-Graph Control Strategy for
Formation Control

3.1 Formulation of Double-Graph Control Strategy

In this section, we formulate the problem of formation control for multi-agent systems

and investigate the stability of the formation with respect to agent dynamics as well as the

interaction topology.

3.1.1 Gain Matrix in Signal Flow Graphs

1 2 3 6

4

a b

d c

e

f g5

Figure 3.1: A signal flow graph

Suppose that each agent is a SISO system. One way to think about the interaction

among agents is using linear signal flows [104]. A linear signal flow graph is treated as a

weighted directed graph G. The directions of edges indicate the directions of signals. The
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weight associated with each edge represents the gain by which the signal is multiplied when

passing the edge. Using Mason’s gain formula, we can find out the actual gain from any

input vertex to any output vertex. For multi-agent systems, we need to analyze all possible

gains between any two vertices.

Let us start with a simple signal flow graph with six vertices as shown in Figure 3.1.

Weights are listed along edges. By Mason’s gain formula, we get the gain from vertex 1 to

vertex 6 as

g16 =
abe + a f g

1 − bcd
.

The following lemma introduces a square gain matrix G = {gi j} where each element gi j

represents the gain from vertex vi to vertex v j.

Lemma 3.1.1. For a signal flow graph G, the gain matrix is

G = (I −A)−1 (3.1)

whereA is the weighted adjacency matrix associated with the signal flow graph.

Proof With a little abuse of notation, we use Ai j to indicate the elements in A. It is

well known that elements in Am actually describe the sum of the gains of all paths with

length m between any two vertices. For example, A23 = b indicates there is only one path

with length 1 between vertex 2 and 3 and the gain is b. A2
26 = be + f g indicates there exist

two paths with length 2 between vertex 2 and 6 and the gains are be and f g.

If the signal flow graph doesn’t include any loops, then An = 0 since the longest pos-

sible path has length n − 1. Otherwise, A is not nilpotent. In Figure 3.1, the graph has

a loop as 2 → 3 → 4 → 2. For the gain matrix G, it’s true that G6 � 0. For example,

(1, 2, 3, 4, 2, 3, 4, 2, 3, 6) is a path from vertex 1 to 6 with length 9 and path gain ab3c2d2e.

Then, we write the gain matrix as

G = I +A +A2 +A3 + · · · (3.2)
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by listing the gains of all possible paths. Since

(I −A) ·G = (I −A) · (I +A +A2 +A3 + · · · )
= (I +A +A2 +A3 + · · · )
−(A +A2 +A3 + · · · )

= I,

we have

Q = (I −A)−1.

�

Thus, we easily get the weighted adjacency matrix of Figure 3.1 and the gain matrix as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a 0 0 0 0

0 0 b 0 f 0

0 0 0 c 0 0

0 d 0 0 0 0

0 0 0 0 0 g

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a
1−bcd

ab
1−bcd

abc
1−bcd

a f
1−bcd

abe+a f g
1−bcd

0 1
1−bcd

b
1−bcd

bc
1−bcd

f
1−bcd

be+ f g
1−bcd

0 cd
1−bcd

1
1−bcd

c
1−bcd

cd f
1−bcd

e+ f gdc
1−bcd

0 d
1−bcd

bd
1−bcd

1
1−bcd

d f
1−bcd

bde+ f dg
1−bcd

0 0 0 0 1 g

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

by the lemma. When we consider a multi-agent system, we treat it as a MIMO system and

it is natural to analyze the gain matrix, i.e., the transfer function matrix. Suppose the input

signal at vertex vi is ui. The outputs for the graph can be represented by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= GT ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.3)

This lemma requires that I − A is not singular. Otherwise, at least one element in G

is unbounded and the signal gain from vi to v j is infinite. For a multi-agent system, that

means the formation is unstable.



32

3.1.2 Nyquist Criterion for Formation Stability

Suppose for a multi-agent system, there are n agents with identical linear dynamics

denoted by

ẋi = Axi + Bui,

where i is the agent index. Each agent can get observations as

yi = C1xi

zi j = C2(xi − x j − Li j)

where j ∈ N(i) and Li j is the static offset based on the formation configuration. Based on

the signals yi and zi j, designing a local controller with identical structure for each agent is a

common distributed control strategy. A directed graph G is used to represent the interaction

topology. Each vertex represents one agent. If agent i can get the state of agent j, then there

exists an edge (vi, v j) in G. The directions of the edges are important. Usually, the errors

for relative state measurements are synthesized into a single signal zi with equal weights as

zi =
1
dii

∑
zi j, j ∈ N(i)

where dii is the out-degree of vertex vi.

According to [99], a local controller stabilizes the whole formation if and only if it

simultaneously stabilizes the following n subsystems:

ẋ = Ax + Bu

y = C1x

z = λi(L̄)C2x

where λi(L̄) are the eigenvalues of the normalized Laplacian L̄.

However, it is difficult to get clear insights from these decoupled heterogeneous sub-

systems in the time domain when eigenvalues are complex. Another explanation for the

stability criterion in the frequency domain are given below. Suppose each individual agent

is a SISO system with local loop composed of a local controller C(s) and a plant model
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P(s). The transfer function for a single agent is

H(s) =
P(s)C(s)

1 + P(s)C(s)
. (3.4)

We can treat a multi-agent system as a signal flow graph with the inputs and outputs

of each agent as signals. Figure 3.2 shows the interaction topology of a leader-follower

multi-agent system where vertex 1 is the leader. The associated single flow graph is on the

right side where yi is the output of agent i. In the signal flow graph, the weight associated

with edge (vi, v j) is H(s)/dj j. Please note that directions of edges are changed in order to

represent the directions of signals. It is easy to tell that the normalized adjacency matrices

of these two graph are transposed, i.e., Āinteraction = Ā = ĀT
signal.

Assuming that the input of agent 1 is signal u1(s). By Lemma 3.1.1, we get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(s)

y2(s)
...

yn(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (I − H(s) · ĀT

signal)
−1 · H(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1(s)

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (I − H(s) · Ā)−1 · H(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1(s)

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.5)

In the general case, we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(s)

y2(s)
...

yn(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (I − H(s) · Ā)−1 · H(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1(s)

u2(s)
...

un(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.6)

Obviously, the multi-agent system is stable if and only if all of the transfer functions in

Equation 3.6 are stable and H(s) is stable.
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Figure 3.2: Interaction topology and the corresponding signal flow graph

Lemma 3.1.2. The multi-agent system (3.6) is stable if and only if the net encirclement of

the critical points −(1 − λi(Ā))−1 by the Nyquist plot of P(s)C(s) is zero.

Proof We need the common denominator polynomial of the transfer function matrix to

analyze the stability. According to the Schur decomposition theorem, there exists a unitary

matrix T such that U = T−1ĀT is upper triangular with the eigenvalues of Ā along the

diagonal. The determinant of I − H(s) · Ā is

det(I − H(s) · Ā) = det
(
T · (I − H(s)U) · T−1)

= det(I − H(s)U)

=
∏n

i=1(1 − λi(Ā)H(s)).

Remember that the local closed-loop transfer function is

H(s) =
P(s)C(s)

1 + P(s)C(s)
,

then

det(I − H(s) · Ā) =
∏n

i=1
1+(1−λi(Ā))P(s)C(s)

1+P(s)C(s) .

So the common denominator polynomial is

n∏
i=1

(
1 + (1 − λi(Ā))P(s)C(s)

)
. (3.7)
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According to the Nyquist criterion, the critical point −1 is changed to n critical points

−(1 − λi(Ā))−1. �

When G is strongly connected, 1 − λ(Ā)i are the eigenvalues of L̄ and the lemma

is consistent with the results in [99]. Distribution patterns of the critical points can be

summarized as:

• Suppose z is a critical point, then Re(z) ≤ −1/2. In other words, all the critical points

are located on the left side of the axis of −1/2. This is a directed extension from

Property 2.1.4.

• Since 1 is an eigenvalue of Ā, then one of the critical points is at −∞.

• If G is symmetric, all critical points are real and no larger than −1/2.

• When G is complete, all critical points except −∞ are located at −(n − 1)/n coinci-

dentally.

Intuitively, loops in G introduce periodic forces among agents and jeopardize the formation

stability. The bigger these loops are, the more separated these critical points are, and the

harder the design of the local controller is.

When G is weakly connected, the distribution patterns for the critical points are:

• For any critical point z, it is still true that Re(z) ≤ −1/2.

• According to Lemma 2.1.3, at least one eigenvalue of Ā is zero. So −1 is one of

the critical points. Thus, stabilizing a single agent becomes a necessary condition for

stabilizing the formation.

• IfG is acyclic, all critical points locate at −1 coincidentally since all eigenvalues of Ā
are 0. In that case, stabilizing a single agent is the necessary and sufficient condition

for stabilizing the formation.

3.1.3 Double-Graph Control Strategy

Most previous strategies for multi-agent formation control rely on direct agent interac-

tions. Each agent adjusts its behavior according to its neighbors. This distributed approach
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is inspired by on-board sensing technology and eases the collision avoidance issue because,

most likely, neighbors in interaction topology are consistent with those agents within short

geometric distance.

One difficulty of this strategy is that the formation stability is sensitive to the interaction

topology when agent dynamics is nontrivial. According to Lemma 3.1.2, when the interac-

tion topology changes, local controllers may destabilize the formation. A good example is

given in [46] where an additional interaction link will destabilize the whole formation. In

other words, we need to know the global knowledge of the interaction topology to design

stabilizing local controllers. Another shortage is the poor disturbance resistance perfor-

mance with respect to the size of the formation. Disturbance signals introduced at one

agent can be magnified when they propagate to other coupled agents. That makes it im-

practicable to maintain a larger size formation. This effect is noticed in acyclic topologies

at first and numerous works have been written on how to bound this accumulation, such as

the “string stability” problem in vehicle platoons [22, 23, 105] and the “mesh stability” for

“look-ahead” systems in [25]. However, a uniform approach to obtain good disturbance

resistance for arbitrary interaction topology and general agent dynamics is unclear.

Due to incredible developments in communication technology, the ratio of the cost to

the communication bandwidth has dropped dramatically in the recent couple of decades.

It is possible to equip each agent with communication devices at low cost. Then a com-

munication network is formed and information can be passed around over it, which gives

more flexibility and possibility to coordinated control for multi-agent systems. Based on

this thought, we propose the double-graph control strategy as follows.

Suppose a coordinated multi-agent system has n identical agents. As shown in Figure

3.3, a directed graph G1 is employed to describe the global coordination topology that is

used for global objective seeking and distribution. Suppose the global objective is Oglobal

and the local copy of the global objective in agent i is Oi, then these local copies need to

be synchronized over G1, i.e., O1 = O2 = · · · = On = Oglobal. For formation control, static

geometrical offsets need to be considered as well. Another directed graph G2 is used to

describe the local interaction topology where the dynamics of each agent is coupled with

its neighbors.
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The global coordination topology, G1, actually describes the topology of the commu-

nication network over agents. Each agent can “talk” and “listen.” Every edge in G1 de-

notes a communication link between two agents. When the global objective Oglobal is

pre-established, the most direct way for synchronization is broadcasting Oglobal over G1.

One typical situation is the leader-follower formation control where the reference of the

leader is a good choice of Oglobal. On the other hand, if the global objective is not clear be-

forehand, distributed collective protocols are used over G1 to achieve the synchronization

without centralized data collection and processing. Consensus protocols in [59, 64, 66],

for instance, can be used for seeking Oglobal as a “virtual” reference of the formation struc-

ture. Currently, general approaches for collective protocol design and analysis attract many

researchers.
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Figure 3.3: Double-graph control strategy for multi-agent systems

Based on the local interaction topology, G2, local controllers of the double-graph con-

trol strategy have identical structure shown in Figure 3.4. The dynamics for each agent

is

Yi(s) = H1(s) · Oi(s) + H2(s) ·∑ j∈N(i) Yi j(s) (3.8)

where H1(s) and H2(s) are transfer functions, Oi(s) is the error signal based on the global

objective, and Yi j(s) is the outputs of agent i’s neighbors. In order to simplify the analysis,

we choose transfer functions as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1(s) = α · H(s)

H2(s) = (1 − α)/dii · H(s)
(3.9)
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where dii is the out-degree of vertex i in graph G2 and 0 ≤ α ≤ 1. Thus,

Yi(s) = H(s)
(
αOi(s) +

1 − α
dii

∑
j

Yi j(s)
)
. (3.10)

That means the inputs of each agent based on G1 and G2 are weighted by coefficients α and

1 − α, respectively.

Plant

Controller 1

Controller 2

Global objective

Neighbor states
+

+

Figure 3.4: Diagram of the local control strategy

When dii = 0, i.e., there is no interaction between agent i and other agents, we choose

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1(s) = H(s)

H2(s) = 0.
(3.11)

Then,

Yi(s) = H(s)Oi(s). (3.12)

Previous equations describe the structures of local controllers in double-graph control

strategy. We will discuss the stability and performance in following sections.

3.2 Stability Analysis for Double-Graph Control Strategy

Let us start this section by a simple example. Suppose there are twelve agents in a

leader-follower system. Vertex v1 is the leader and the others are followers. The agent

dynamics is P(s) = 1/(s2+ s+4) and the local controller is C(s) = (800s+2000)/(s+40). It

can be shown that C(s) is a stabilizing controller for a single agent. However, the formation

is not stable with the interaction topology in Figure 3.5 because there are two critical points
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Figure 3.5: Interaction topology of a leader-follower system with twelve agents

encircled by the Nyquist plot of C(s)P(s) (shown in Figure 3.6).

According to our discussion in Section 3.1.2, the interaction topology determines the

location of critical points. Thus, we may improve the formation stability using the follow-

ing two methods:

• First, all the critical points are actually located in the left side of axis Re(x) = −1/2.

If the Nyquist plot of P(s)C(s) stays in the right side of the axis Re(x) = −1/2,

the formation is stable for any interactive topologies. However, that means that the

infinity norm of transfer function H(s) is not bigger than 1 for any s = jω. Since the

followers are tracking the leader with constant offsets, for general agent dynamics

P(s), this constraint is too strict to achieve due to the limitations of linear controller

C(s) [105, 106].

• Second, a set of “stabilized” interaction topologies can be found for a certain local

controller C(s) by limiting the eigenvalues of Ā. Actual interaction topology must

belong to this graph set to make the formation stable. Of course, this method is not

robust to link failures. Also, each vehicle must be aware of the global structure of the

interaction topology.

If we employ the double-graph control strategy, we can avoid these problems. For

double-graph control strategy, the formation stability includes two parts: the collective

protocol stability over G1 if Oglobal is not pre-established, and interaction stability over G2.

In this chapter, we assume that synchronization of Oi is accomplished and focus on the

interaction stability over G2.
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Figure 3.6: Nyquist plot and critical points

According to Equation (3.11) and (3.10), the transfer function matrix of a multi-agent

system based on double-graph control strategy is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(s)
...

yr(s)

yr+1(s)
...

yn(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (I − (1 − α) · H(s) · Ā2)−1 · H(s) ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O1(s)
...

Ors

α · Or+1(s)
...

α · On(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

where Ā2 is the normalized adjacency matrix ofG2 and the out-degrees of vertices v1, · · · , vr

are zeros. Using the same reasoning as in Lemma 3.1.2, the common denominator polyno-

mial for the transfer function matrix in Equation (3.13) is

n∏
i=1

(
1 +

(
1 − (1 − α)λi(Ā)

)
P(s)C(s)

)
. (3.14)
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Figure 3.7: Mapping for critical points

Thus, the critical points are −1/(1 − λi(Ā2) · (1 − α)). So the double-graph control strat-

egy actually moves original critical points, which are −1/(1 − λi(Ā2)), to new locations

according to the mapping z→ z/(1 − αz − α).

Actually, this mapping transfers the whole area on the left side of axis Re(x) = −1/2

into a smaller ellipse. Figure 3.7 gives a geometric view of this mapping. The size of the

ellipse can be adjusted by turning the value of α. Figure 3.8 shows a couple of ellipses and

the value of each corresponding α. When α changes from 0 to 1, the ellipse shrinks from

the half complex plane to the single point −1+ 0 · j. The bigger α is, the smaller the ellipse

is. This is reasonable since α is bigger. Each agent more likely follows Oglobal and is less

affected by its neighbors.

In the previous example, when the double-graph control strategy is used with α = 0.5,

the formation becomes stable with the same local controller. Figure 3.9 shows and the new

locations of the critical points. It is clear that all critical points are located inside the ellipse

and not encircled by the Nyquist plot.

Theorem 3.2.1. For double-graph control strategy, the formation is stable if the local

closed-loop transfer function H(s) satisfies the following conditions:

• H(s) is stable;

• ‖H(s)‖∞ < 1
1−α if G2 is not acyclic.
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Figure 3.8: Ellipses for critical points with different α
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Figure 3.9: Nyquist plot and critical points for double-graph control strategy
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Proof Since the formation dynamics is presented by Equation (3.13), then (I − (1−α) ·
H(s) · Ā2) must be nonsingular for any s = jω and H(s) must be stable in order to make

the system stable.

The determinant of (I − (1 − α) · H(s) · Ā2) is

n∏
i=1

(
1 − (1 − α) · λi(Ā)H(s)

)
.

When G2 is acyclic, λi(Ā) = 0 and the first condition is sufficient to stable the for-

mation. When G2 is not acyclic, we know that |λi(Ā)| ≤ 1. For any λi(Ā) � 0, if

‖(1 − α) · H(s)‖∞ < 1, then 1 − (1 − α) · λi(Ā)H(s) � 0 for any ω. �

This theorem gives the sufficient stabilizing conditions for double-graph control strat-

egy. If G2 is not acyclic, the conditions are conservative. The ellipses in Figure 3.8 are

actually “M-curves” for the Nyquist plot [107] that is directly related to ‖H(s)‖∞. When

‖H(s)‖∞ < 1/(1−α), the Nyquist plot stays outside the ellipse. When ‖H(s)‖∞ = 1/(1−α),

the Nyquist plot coincides with the boundary of the ellipse at some points but never goes

inside the ellipse. When ‖H(s)‖∞ > 1/(1 − α), the Nyquist plot cuts through the ellipse.

Moreover, this conservativeness can be treated as a robustness to the interaction topol-

ogyG2. For double-graph control strategy, whenG2 changes, locations of the critical points

change, but they are still inside the ellipse (refer to Lemma 2.1.3 and the mapping in Figure

3.7). So as long as the Nyquist plot stays outside, changes of G2 do not affect the stability

of the formation at all. This result is especially useful for coordinated formation control

among mobile agents.

3.3 Performance for Double-Graph Control Strategy

In this section, we discuss the performance of disturbance resistance. Upper bounds

of the disturbance output signals are given according to the connectivity of the interaction

topology G2.
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Figure 3.10: Disturbance for single agent

3.3.1 Disturbance Resistance with Acyclic Interaction Topologies

Suppose a disturbance signal e(s) is introduced at one agent i as shown in Figure 3.10.

The output is ψ(s) = e(s)/(1 + P(s)C(s)) = e(s) · S (s) where S (s) is the transfer function

from e(s) to ψ(s). In multi-agent systems, this diminished disturbance ψ(s) acts as inputs

for other directly coupled agents and flows through the formation. When the interaction

topology is weakly connected and acyclic, the following lemma gives an upper bound to

quantify this disturbance signal over the whole formation.

Lemma 3.3.1. For double-graph control strategy, assume G2 is weakly connected and

acyclic. The disturbance signal on any agent i is bounded by

‖ψi(s)‖∞ ≤ ‖S (s) · e(s)‖∞

for any i ∈ {1, · · · , n} if ‖H(s)‖∞ < 1/(1 − α).

Proof Since G2 is acyclic, Ā2 is nilpotent with Ā2
n
= 0. Also the matrix M = Ā+Ā2+

· · ·+ Ān−1 is lower triangular with zero diagonal elements if we label the vertices properly.

Next, we show that any nonzero element in M is no larger than 1. In order to make this

point clear, we assign positive weight dj j (the out-degree of v j) to edge (vi, v j) in G2. The

value of Mi j is the sum of the gains of all possible paths from vi to v j. If there exists an

element Mi j > 1, then for k ∈ N(i), there exists at least one M(k j) > 1 since

Mi j = 1/dii

∑
k∈N(i)

M(k j).
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We choose the biggest Mk j and repeat the searching. Because G2 is acyclic, the searching

process reaches the final stage after at most n − 1 rounds and there exists at least a Ml j > 1

where vertices vl and v j are adjacent. That is against the definition of Ā.

Now, we are ready to get the upper bound. According to Lemma 3.1.1, the transfer

function matrix for the disturbance signal is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(s)
...

ψi(s)
...

ψn(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(
I + (1 − α)H(s)Ā + · · · + (

(1 − α)H(s)Ā)n−1
)
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0

S (s) · e(s)

0
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So for any agent j � i, the infinity norm of the disturbance is

‖ψ j(s)‖∞ ≤
(
‖(1 − α)H(s)Ā ji‖∞
+‖(1 − α)2H(s)2Ā2

ji‖∞ + · · ·
+‖(1 − α)n−1H(s)n−1Ān−1

ji ‖∞
)
· ‖S (s)e(s)‖∞

≤ (Ā ji + · · · + Ān−1
ji

) · ‖(1 − α)H(s)‖∞ · ‖S (s)e(s)‖∞
= Mji · ‖(1 − α)H(s)‖∞ · ‖S (s)e(s)‖∞
≤ ‖S (s)e(s)‖∞.

For agent i, it is true that ‖ψi(s)‖∞ = ‖S (s)e(s)‖∞. �

This lemma states that, by using double-graph control strategy, the infinity norm of

the disturbance signal generated on any other agent is not amplified. This result is inde-

pendent of the number of agents in the formation. Thus, error accumulation phenomena

reported in [22, 25] are completely eliminated due to the relative “weak” coupling through

the interaction topology.

3.3.2 Disturbance Resistance with Arbitrary Interaction Topologies

For arbitrary interaction topology, the problem is generalized to disturbance resistance

in a MIMO system where any agent can introduce a disturbance signal. The problem is



46

formulated as

Ψ(s) = (I − (1 − α)H(s) · Ā2)−1 · S (s) · E(s) (3.15)

where

Ψ(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(s)

ψ2(s)
...

ψn(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and E(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1(s)

e2(s)
...

en(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The infinity norm is used to measure signal vectors as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖Ψ(s)‖∞ = maxn

i=1 ‖ψi(s)‖∞
‖E(s)‖∞ = maxn

i=1 ‖ei(s)‖∞.

Theorem 3.3.1. For double-graph control strategy with stable local transfer function H(s),

suppose ‖(1 − α) · H(s)‖∞ = W < 1. Then

‖Ψ(s)‖∞
‖E(s)‖∞ ≤

1
1 −W

· ‖S (s)‖∞.

Proof According to Theorem 3.2.1, ‖(1 − α) · H(s)‖∞ < 1 means the transfer function

matrix in Equation (3.15) is stable. Rewrite ‖(I − (1 − α)HĀ2)−1‖∞ as

‖I + (1 − α)H(s)Ā2 + (1 − α)2H(s)2Ā2
2 + · · · ‖∞

≤ ‖I‖∞ + ‖(1 − α)H(s)‖∞ · ‖Ā2‖∞ + ‖(1 − α)H(s)‖2∞ · ‖Ā2
2‖∞ + · · ·

≤ 1 +W‖Ā2‖∞ +W2‖Ā2
2‖∞ + · · · .

(3.16)

As we discuss in Lemma 2.1.1 and 2.1.2, the upper bound of ‖Ām
2 ‖∞ is 1 for any con-

nected interaction topology. So the infinity norm of the transfer function matrix is upper

bounded by 1/(1 −W). �

As we mentioned in Chapter 2, in the leader-follower case with a unique leader, the

infinity norm of Ām
2 converges to zero since ρ(Ā2) < 1. Thus, the discussion for ‖Ām

2 ‖∞
given in Lemma 2.1.2 results in a tighter upper bound for the infinity norm of disturbance

signals.
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Corollary 3.3.1. When the interaction topologyG2 is weakly connected with a single vertex

as the unique root strong component, the upper bound in Theorem 3.3.1 changes to

‖Ψ(s)‖∞
‖E(s)‖∞ ≤

(1 −Wn

1 −W
+

C · (ρ(Ā2) + ε)Wn

1 − (ρ(Ā2) + ε)W

)
· ‖S (s)‖∞.

Proof According to Lemma 2.1.2, the sum of the first n term in Inequality (3.16) is no

larger than
1 −Wn

1 −W
.

The rest terms composes the left part in the upper bound

C · (ρ(Ā2) + ε)Wn

1 − (ρ(Ā2) + ε)W
.

Then, the upper bound follows. �

3.3.3 Other Performance Issues

Other than the disturbance resistance, two more performance issues related to the double-

graph control strategy are listed below:

Collision Avoidance: In formation control, interactions between nearby agents provide

“separation” and “cohesion” feedbacks that keep the formation in shape. When α becomes

bigger, these interactions become weaker. Thus, each agent is less capable of reacting to

the changes in its local environment and formation maintenance relies more on the syn-

chronization of the global objective.

In tight formations, these direct interactions between agents are very important for col-

lision avoidance. When α approaches to 0, the coupling between agents is “strong,” which

generates quick responses to neighbors’ unwanted movements, but the disturbance gain

(1−α)H(s) becomes larger. On the other hand, if α goes to 1, each agent adjusts its behav-

ior according to the local copy Oi and pays less attention to its neighbors. It is clear that

there exists a tradeoff between the disturbance resistance and collision avoidance. Coeffi-

cient α is an indicator of this tradeoff. Detailed quantitative analysis is out of the scope of

this work.
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Time Delays: We classify time delays in formation control into three types.

• The first type is the delay inside the local control loop. This delay can be treated as

part of the model of the single agent. So it will show in the local transfer function

H(s) and be handled by conventional methods.

• The second type is in the interaction topology G2. Each agent accesses its neighbors’

states with delays. Each edge can be replaced by a transfer function as e−τi j s. Suppose

all τi j are identical and equal to τ̂, then the transfer function matrix changes to

(
I − (1 − α) · H(s) · e−τ̂s · Ā2

)−1 (3.17)

and

det(I − (1 − α) · H(s) · e−τ̂s · Ā2) =
n∏

i=1

(1 − (1 − α) · λi(Ā2)H(s) · e−τ̂s).

When ‖(1 − α)H(s)‖∞ < 1, we know that ‖e−τ̂s‖∞ = 1 and the determinant cannot be

zero. Thus, the transfer function matrix is stable for any τ̂. So, uniform delays in G2

do not affect the formation stability.

• The third type is the communication delays in the global coordination topology G1.

Those delays only appear in the input term in Equation (3.13) and do not affect the

stability either. However, the synchronization of Oi is difficult to achieve. We will

discuss this issue in Chapter 4.

3.4 Simulation and Experimental Results

3.4.1 Multi-Vehicle Wireless Testbed

The Caltech Multi-Vehicle Wireless Testbed (MVWT) [108] is an experimental plat-

form for validating theoretical advances in multi-agent coordinated and cooperative control.

It consists of eight fan-driven vehicles that glide on low-friction omni-directional casters.

Each vehicle is equipped with an on-board computer, local sensors, and a wireless card.
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Figure 3.11: Schematic plot of MVWT vehicle.

Vehicles can communicate with each other over a local wireless network. A “hat” is put

on the top of each vehicle so that the MVWT lab positioning system (LPS) can locate its

position. A unique feature of this testbed is that the vehicles are under-actuated and exhibit

nontrivial dynamics. This forces us to actively stabilize the vehicles while also trying to

accomplish cooperative and coordinated tasks.

The simplified dynamics (assuming perfect sensing and actuation, no delays, no distur-

bances, and linear friction) for the vehicle are listed below. They are derived by observa-

tions from the simple schematic of the vehicle shown in Figure 3.11.

mẍ = −μẋ + (FR + FL) cos θ

mÿ = −μẏ + (FR + FL) sin θ

Jθ̈ = −ψθ̇ + (FR − FL)r f .

(3.18)

These equations include four physical parameters: the mass m, the mass moment of

inertia J, and the linear and rotational viscous friction coefficients μ and ψ. The geometric

parameter r f is the distance between the center of mass of the vehicle and each fan axis.

The coordinate frame is inertial and the forces FL and FR are applied at the fan axes. We

take ẋe, ye, ẏe, θe, θ̇e as state variables and linearize the dynamics at the equilibrium point

[C, 0, 0, 0, 0]. The linearized error dynamics is:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍe

ẏe

ÿe

θ̇e

θ̈e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− μ

m 0 0 0 0

0 0 1 0 0

0 0 − μ

m
Cμ
m 0

0 0 0 0 1

0 0 0 0 −ψJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋe

ye

ẏe

θe

θ̇e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m 0

0 0

0 0

0 0

0 r f

J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1

u2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

where u1 = FR + FL − N and u2 = FR − FL are control laws, N = Cμ is the feed-forward

signal, which maintains the constant speed. We also get the transfer functions as

ẋe(s)
u1(s)

=
1

ms + μ
,

ye(e)
θ(s)

=
Cμ

ms2 + μs
,

θe(s)
u2(s)

=
r f

Js2 + ψs
.

Please note that ẋe and u1 are decoupled from ye, θ̇e, and u2. Thus, we treat this system

as two parts:

• Speed dynamics. The speed ẋe is controlled by u1. This is a first-order dynamics.

• Lateral dynamics. The lateral ye is effected by θe, which is driven by u2.

A PI controller, Cv = 8 + 5/s, is used to control the speed. Figure 3.12 shows the two-

layer control diagram for the lateral dynamics. In order to make the inner layer response

much faster than the outer layer, we design the controllers separately as

Cin = 60(s + 2)/(s + 25),

Cout = (40/C) · (s + 0.5)/(s + 30).

3.4.2 Simulation Results

Simulation results based on the vehicle model are listed below. There are five vehicles

in the formation. Vehicle 1 is the leader and the others are followers. Thus, the global
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Figure 3.12: Control diagram for lateral dynamics.
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Figure 3.13: Three interaction topologies of vehicle formation

objective is the reference input of vehicle 1. For the interaction topology, there are three

different choices listed in Figure 3.13. The leader keeps constant speed and changes its

lateral position from 0 to 1 at time t = 15.

Since the speed dynamics is trivial, we just list the simulation results on the lateral

dynamics. For random initial positions and orientations, Figure 3.15 shows how the lateral

errors evolve with different α values for double-graph control strategy. For α = 0, vehicle

formation with topology 1 is stable because it is acyclic. The top left plot shows that the

formation is stable. However, the over-shoots of followers become larger and larger from

vehicle 2 to vehicle 5. When α increases, this accumulation disappears as shown in the

second and third plots on the left. For the topology 2 and 3, when α = 0, the formation is

actually unstable due to the nonlinearity in vehicle dynamics and small stable margins. By

increasing the value of α, stable margins become larger and the effect of the nonlinearity

becomes smaller. As shown in the central and right plots, the formation becomes stable.

Furthermore, we notice that, when α is 0.5, vehicle formations with different topologies

have almost same convergence behaviors shown in the bottom row in Figure 3.15. This

can be explained due to the fact that, when critical points are moved into a small ellipse,

the difference among these points generated by different topologies is negligible. Thus,
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double-graph control strategy is robust to the interaction topology.

3.4.3 Experimental Results

In the experiments on the MVWT, vehicles are assigned to tracking a circle at certain

speeds to overcome the space limitation. Figure 3.14 shows the result of a single-vehicle

experiment. The center of the circle is at (3.0, 3.5), the radius is 1.6 meter and the reference

speed is 0.8 m/sec.

The experiment for vehicle formation on the MVWT involves four vehicles. In the

double-graph control strategy, vehicle 1 is the leader. Other vehicles try to follow the

leader on the same circle trajectory with same speed. The topology for G1 and interaction

topology G2 are shown in Figure 3.16. The graph coefficient α is 0.5. The position offsets

are defined by −0.6 radian angle offset with respect to the circle trajectory.

According to Theorem 3.2.1, the whole formation is stable and has good performance

because ‖(1 − α)H(s)‖∞ = 0.5 < 1. We change the radius and speed of the leader and

observe how each follower adjusts its movement. Figure 3.18 shows the radius changes and

the speed changes of these four vehicles. The speeds of the followers are vibrating around

the leader’s speed and need much longer time to stabilize. This is because of the uncertainty

in vehicle model, the noise introduced in the LPS, and the vulnerability of package loss in

the wireless communication network (normally the package dropping rate is 7% – 10% for

a four-vehicle formation). These experimental results verified the efficiency and robustness

of the double-graph control strategy in critical environments.
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Figure 3.14: Top view of a single vehicle experiment
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Figure 3.16: Topologies in double-graph control strategy of the MVWT experiment
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Figure 3.17: Top view of vehicle formation experiment
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Chapter 4

Consensus Protocols in Networked
Multi-Agent Systems

One of the essential assumptions for double-graph control strategy of multi-agent sys-

tems is the global objective synchronization. In order to avoiding centralized data collec-

tion and processing, distributed collective protocols over the communication network are

needed where each agent updates its local copy of the global objective based on certain sim-

ple rules. One of the popular collective protocols is the consensus protocol. In this chapter,

we focus on the continuous consensus protocol and discuss its convergence behavior based

on the connectivity of the communication network. Also, a new type of consensus protocol

is proposed and the performance tradeoffs are discussed.

4.1 Consensus Seeking for Multi-Agent Systems

Suppose in a networked multi-agent system, xi denotes the local objective variable in

agent i. A directed graphG is used to represent the topology of the communication network.

For each agent, xi is updated according to the distributed rule

ẋi = −
∑
j∈N(i)

wi j(xi − x j) (4.1)
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Table 4.1: Possible left eigenvectors for L associated with λ(L) = 0

No zero elements Including zero elements
Uniform signs type 1 type 2

Nonuniform signs type 3 type 4

where wi j is the positive weight associated with edge (vi, vi). Thus, the dynamics of the

synchronization process can be presented by

Ẋ = −LX (4.2)

where X = [x1, · · · , xn]T and L is the Laplacian matrix. We say that the system in Equation

(4.2) reaches a consensus if xi = x j for any i � j. This common value is called the

consensus state, which is depicted by η.

Lemma 4.1.1. Let G be strongly connected. There exists a positive left eigenvector b =

[b1, · · · , bn]T for L associated with the eigenvalue zero.

Proof Since 0 is a simple eigenvalue of L, then there exists a left eigenvector b so that

bT · L = 0. Since −b is also a left eigenvector, we actually need to prove that all elements

in b are nonzero and have the same signs. Table 4.1 lists the four possible types of b and

we will show that only type 1 is possible.

First, Let us prove that type 2 is impossible. Assume that there is only one zero element

in b. Without losing generality, we assume that bn = 0 and let ln denotes the last column

of L. According to the definition, off-diagonal elements of L are nonnegative. So the first

n − 1 elements of ln must be zeros in order to satisfy the equation bln = 0. However, that

means the in-degree of node vn is zero, which violates the strongly connected definition.

Then we assume that there are k zeros in b where 1 < k < n. Using a similar argument,

we can show that there exists a subgraph composed of k nodes where there are no edges

connecting other nodes to this subgraph. That is also impossible for a strongly connected

graph.

Second, we prove that type 3 is impossible. Suppose there exist k negative elements

and n− k positive elements in b. By reindexing vertices, we can move all positive elements
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in b and get b = [bT
+, b

T
−]T where b+ is a positive vector with n − k elements and b− is a

negative vector with k elements. We have

bT · L = [bT
+, b

T
−]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
L11 L12

L21 L22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[
bT
+ · L11 + bT

− · L21, b
T
+ · L12 + bT

− · L22

]
= 0T

n .

It is obvious that bT
− · L21 has n − k nonpositive elements and bT

+ · L12 has k nonnegative

elements. Because G is strongly connected, then the sum of all elements in b− · L21 is

negative and the sum of all elements in b+ · L12 is positive since they cannot all be zeros.

Moreover, the sum of all elements in b− · L21 and b− · L22 is zero since all rows of L are

zero-sum. Then the sum of elements in b− · L22 is positive. However, since the sum of all

elements in b+ · L12 and b− · L22 should be zero, then the sum of elements in b− · L22 is

negative. That results in a contradiction and b cannot be type 3.

By combining previous arguments, it is easy to show that b cannot be type 4 either. �

It is known that protocol (4.1) can achieve a consensus when the topology is strongly

connected [64, 67]. However, it is unclear that where this consensus state is. The following

theorem explicitly states the equilibrium point of the system (4.2).

Theorem 4.1.1. AssumingG is strongly connected, for any initial value X(0), the final state

of Equation (4.2) satisfies

lim
t→∞ X = η · 1n

where

η =
bT X(0)∑

i bi
.

Proof For system (4.2), the state vector X can be reorganized as

Z = V−1X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1 [b2, · · · , bn]

1n−1 −In−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
bixi

x1 − x2

...

x1 − xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3)
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Suppose b1 = 1, we present V explicitly based on the property of block matrices:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
∑

bi)−1 [b2, · · · , bn] · (1n−1 · [b2, · · · , bn] + In−1)−1

(
∑

bi)−11n−1 −(1n−1 · [b2, · · · , bn] + In−1)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (
∑

bi)−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 b2 · · · bn

1 (b2 −∑
bi) · · · bn

...
...

...
...

1 b2 · · · (bn −∑
bi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.4)

With little effort, we have

V−1LV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0n−1

0n−1 L̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.5)

where L̂ is a full-rank (n − 1)-by-(n − 1) matrix and all the eigenvalues of L̂ are also

eigenvalues of L.

According to Chapter 2, all eigenvalues of L̂ have positive real parts. Thus, all zi except

z1 converge to zero. This means that xi converge to a common final value η. Because

ż1 =
∑

bi ẋi = 0, we have
∑

bixi(t) =
∑

biη =
∑

bixi(0), i.e.,

η =

∑
i bixi(0)∑

i bi
=

bT X(0)∑
i bi

.

�

This theorem gives a formula to calculate the final consensus value. If the directed

graph G is connected and symmetric, L is symmetric and b = 1n. Thus, η =
∑

xi(0)/n

and this synchronization process is called “average consensus seeking” because the final

state of each agent is the average value of the initial states. A sufficient condition for

average consensus seeking with the protocol in Equation (4.1) is that the directed graph G
is balanced, i.e., for any vertex, the in-degree equals the out-degree [64].

We list another lemma that is useful for consensus seeking over weakly connected

graphs.
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Lemma 4.1.2. For a strongly connected graph and P = diag([1, 0, 0, · · · ]),

rank(P +L) = n.

Proof We use the same transformation as in Theorem 4.1.1 and get the following equa-

tion:
V−1(P +L)V = V−1PV + V−1LV

= 1∑
bi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 · · · bn

...
...

...

b1 · · · bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0

0 L̂22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(4.6)

The rank of the first matrix is 1 and the rank of the second matrix is n − 1. However,

[b1, · · · , bn] is linear independent of the row space of the second matrix since b1 � 0. So

P +L is fullrank. �

For other diagonal matrix P with diagonal elements are nonnegative and at least one is

nonzero, it can be shown that L + P is full rank based on Lemma 4.1.2.

When the graph is not strongly connected, the protocol cannot guarantee that all xi

converges to a consensus from any initial conditions. However, Reducing the graph based

on strongly connected components can give us more insights.

Lemma 4.1.3. If G is weakly connected with q root strong components, rank(L) = N − q.

Proof First of all, L is reducible since G is weakly connected. Suppose there are u

strong components in G, then L can be described in the following form when we change

the vertex index properly:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1

. . .

lq

∗ ∗ ∗ lq+1

∗ ∗ ∗ ∗ . . .

∗ ∗ ∗ ∗ ∗ lu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.7)
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Thus,

rank(L) =
∑

i

rank(li).

The first q diagonal blocks are Laplacian matrices of the q root strong components. For

the last u−q diagonal blocks, any one of them can be written as the linear combination of a

Laplacian matrix of the corresponding strong component and a diagonal matrix with non-

negative diagonal elements. According to Lemma 4.1.2, they are full rank and the result

follows. �

Theorem 4.1.2. Protocol (4.1) can reach a consensus from any initial value if and only if

G has a unique root strong component, i.e., rank(L) = n − 1.

Proof When G has a unique root strong component, it can be reduced to a root directed

tree and L can be written as a block lower triangular matrix as in Equation (4.7) where l1 is

the Laplacian matrix of the root strong component. Any other diagonal block li is fullrank

and all the eigenvalues have positive real parts. So rank(L) = n − 1 and 0 is a simple

eigenvalue.

suppose the root strong component has n1 vertices and [b1, · · · , bn1] is a left eigenvector

of l1 associated with zero eigenvalue. Using the same trick as in Theorem 4.1.1, the state

vector X can be reorganized as

Z = V−1X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 [b2, · · · , bn1] 0

1n1−1 −In1−1 0

1n−n1 0 −In−n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n1
i=1 bixi

x1 − x2

...

x1 − xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.8)

and we have

Ż = −V−1LVZ, (4.9)

where

V−1LV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0

0 L̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.10)
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Since −L̂ is stable, the system converges to a consensus and

η =

n1∑
i=1

bixi(0)/
n1∑
i=1

bi.

�

4.2 Multi-Hop Replay Protocols for Consensus Seeking

In this section, we discuss the convergence speed for average consensus seeking whenG
is connected and symmetric. Since G is symmetric, eigenvalues of L are real and denoted

by 0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L). Thus, the convergence speed is bounded by the

second smallest eigenvalue λ2(L) that is called “algebraic connectivity” [101]. Intuitively,

the more links there are in the graph, the bigger the algebraic connectivity is, and the faster

the convergence should be. An upper bound of the convergence speed can be found for the

consensus protocol (4.1).

Lemma 4.2.1. The maximum value of the second-smallest eigenvalue λ2 of L for a sym-

metric and connected directed graph G with n vertices is
∑

i� j wi j/(n − 1).

Proof For L, we have

(n − 1)λ2(L) ≤
n∑

i=1

λi(L) = tr(L) ≤
∑
i� j

wi j

where tr(L) is the trace of L. Thus,

λ2(L) ≤
∑
i� j

wi j/(n − 1).

�

The equation holds only when G is complete and all weights wi j are identical. Thus,

consensus protocol (4.1) reaches its maximum convergence speed if we configure the topol-

ogy to be a complete graph with uniform weights.
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Many applications of consensus protocols, such as peer-to-peer networks, sensor net-

works, and distributed Kalman filtering, require fast converge speeds. In [109], a consensus

process over a symmetric network is treated as an optimal linear iteration problem and the

convergence speed can be increased by finding the optimal weights associated with each

edge. But the global structure of the network must be known beforehand. In [73], a “ran-

dom rewiring” procedure is proposed to boost the convergence speed for large scale graphs.

However, in many applications, physically changing the topology is difficult. A new type

of consensus protocol is introduced in following subsections in order to get a better con-

vergence speed without changing the topology and edge weights.

4.2.1 Two-Hop Relay Protocol

The distributed two-hop relay protocol is described as

ẋi = −
∑
j∈N(i)

wi j

(
(xi − x j) +

∑
k∈N( j)

wjk(xi − xk)
)
. (4.11)

In this protocol, what vertex v j sends to vi is not only its own state value, but also a

collection of its instantaneous neighbors’ states. It is equivalent to adding virtual “two-

hop” paths to the original graph G. We define the two-hop directed graph Ĝ = (V, Ê) as

the graph that has the same vertex set, and all the edges are “two-hop” paths of G. Figure

4.1 shows an example of the two-hop directed graph.

Original graph Two−hop graph

Figure 4.1: A directed graph and its two-hop directed graph

There may exist self-loops in two-hop graph Ĝ, i.e., the head and tail of an edge are
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the same. This is common when G is symmetric. However, according to the relay protocol

(4.11), these self-loops have no contributions to the dynamics. So, these self-loops are

omitted. Moreover, multiple two-hop paths may exist between a pair of vertices. In Ĝ, we

consider them as one edge and its weight equals the sum of the two-hop paths. Thus, the

adjacency matrix Â = {âik} of Ĝ is

âik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

j wi jw jk, (vi, vk) ∈ Ê
0, otherwise.

The corresponding out-degree diagonal and Laplacian matrices in Ĝ are denoted by D̂ and

L̂, respectively. For a directed graph G with two-hop relay protocol (4.11), consider the

joint graph G̃ = G⋃ Ĝ = (V,E⋃ Ê), and it is obvious that the two-hop relay protocol is a

consensus protocol of G̃. Thus, the dynamics of the whole system is described as

Ẋ = −L̃X (4.12)

where L̃ = L + L̂.

The two-hop relay protocol needs extra communication bandwidth. Assuming that the

graph is static, we rewrite the protocol (4.1) as

ẋi = −xi

∑
j∈N(i)

wi j +
∑
j∈N(i)

wi jx j (4.13)

and the two-hop relay protocol (4.11) as

ẋi = −xi
∑

j∈N(i) wi j(1 +
∑

k∈N( j) wjk)

+
∑

j∈N(i) wi j
(
x j +

∑
k∈N( j) wjkxk

)
.

(4.14)

For protocol (4.1), what link (vi, v j) transmits is the value of x j. For protocol (4.11), what

link (vi, v j) transmits is the value of x j,
∑

wjkxk, and
∑

wjk. However, for a static graph,∑
wjk is constant and only needs to be transmitted once. Thus, the two-hop relay proto-

col needs twice the communication bandwidth as protocol (4.1) needs except at the very

beginning.
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4.2.2 Convergence Speed of Two-Hop Relay Protocol

When G is connected and symmetric, the two-hop graph Ĝ is symmetric, and the joint

graph G̃ is also symmetric and connected.

Theorem 4.2.1. If the original graph G is connected and symmetric, then

λ2(L) ≤ λ2(L̃). (4.15)

Proof For any vector x, it is true that

xT L̃x = xTLx + xT L̂x

=
∑

(i, j)∈E w2
i j(xi − x j)2

+
∑

(i, j)∈Ê w2
i j(xi − x j)2.

We pick a unit vector x and let it be orthogonal to 1n, then

xTLx
xT x

=

∑
(vi,v j)∈E(xi − x j)2

∑
vi∈V x2

i

≥ λ2(L)

and the equation holds only when x is an eigenvector associated with λ2(L).

Combining these two results, if we take x to be a unit eigenvector of L̃, orthogonal to

1n, associated with eigenvalue λ2(L̃), then we have

λ2(L̃) =
xT L̃x
xT x

=
xT (L + L̂)x

xT x
≥ λ2(L) +

xT L̂x
xT x

. � (4.16)

Theorem 4.1.1 shows that the two-hop relay protocol increases the convergence speed.

The improvement depends on the topology of Ĝ. It can be shown that the edge set of Ĝ is

not empty if the original graph has more than two vertices. Furthermore, if Ĝ is connected,

we have

λ2(L̃) ≥ λ2(L) + λ2(L̂). (4.17)

since xT L̂x/xT x ≥ λ2(L̂) > 0. Thus, two-hop relay protocol improves the algebraic con-

nectivity at least by λ2(L̂).
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However, it is not true that Ĝ is always connected. Figure 4.2 shows a simple example.

The original graph on the left is symmetric and connected, but the two-hop graph on the

right is composed of two disconnected subgraphs.

Figure 4.2: An example of disconnected two-hop directed graph

4.2.3 Multi-Hop Relay Protocol

It is possible to extend the two-hop relay protocol to the multi-hop relay protocol. The

protocol for m-hop relay protocol can be written as

ẋi = −
∑

j

wi j
(
(xi − x j) +

∑
k

w jk((xi − xk) + · · · ))
︸��������������������������������������������������︷︷��������������������������������������������������︸

m layers

. (4.18)

Clearly it adds more virtual edges to the original graph and enforces the convergence speed.

There are three drawbacks. First, the worst case computation complexity of the m-hop

relay protocol on each agent is O(nm−1). For large scale networks, it is not scalable and

quickly becomes infeasible as m increases. Second, m-times communication bandwidth

are needed. Third, communication delays will accumulate along m-hop paths and that

makes the protocol very sensitive to communication latency.

4.3 Two-Hop Relay Protocols with Time Delays

For communication delays, we consider the transfer function associated with edge

(vi, v j) with latency τi j is e−τi j s. Delays will be accumulated along two-hop paths. We
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study the simplest case where all delays are identical, i.e., τi j = τ for any (vi, v j) ∈ E, and

the graph G is connected and symmetric with uniform edge weights. The protocol (4.1)

can be written as

ẋi = −
∑
j∈N(i)

wi j(xi(t − τ) − x j(t − τ)) (4.19)

and the two-hop relay protocol is

ẋi = −∑
j∈N(i) wi j

(
(xi(t − τ) − x j(t − τ))

+
∑

k∈N( j) wjk(xi(t − 2τ) − xk(t − 2τ))
)
.

(4.20)

Equation (4.2) and (4.12) change to

Ẋ = −L · X(t − τ) (4.21)

and

Ẋ = −L · X(t − τ) − L̂ · X(t − 2τ), (4.22)

respectively.

Let Z = V−1X where

V−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1

1 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.23)

For the two-hop relay protocol, we have to

Ż = −V−1LVZ(t − τ) − V−1L̂VZ(t − 2τ). (4.24)

Note that

V−1LV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0n−1

0n−1 L22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and V−1L̂V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0n−1

0n−1 L̂22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Assume that X(t) = 0 for any t < 0. Taking the Laplace transform of Equation (4.24), all

states except z1 of this autonomous system asymptotically converge to 0, i.e., xi converges
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to η =
∑

xi(0)/n, if and only if the following characteristic polynomial

p22(s, e−τs) = det
(
sI +L22e

−τs + L̂22e
−2τs) (4.25)

has no zero in the closed right half plane (RHP). This condition is equivalent to the case

that the characteristic polynomial

p(s, e−τs) = det
(
sI +Le−τs + L̂e−2τs) (4.26)

has no zero in the closed RHP except the simple zero at the origin. In [110], p22(s, e−τs)

and p(s, e−τs) are called real quasipolynomials of s. In the rest of this chapter, we will

consistently use this name. A similar quasipolynomial for (4.21) is

p(s, e−τs) = det
(
sI +Le−τs). (4.27)

One essential property of quasipolynomials is the continuity of the zeros with respect

to time delay. In other words, when τ increases, zeros in the left half plane (LHP) move to

RHP. Time delay does not affect the zero s = 0. We need to find the minimum value of τ

such that the first stable zero crosses the imaginary axis. Besides, the conjugate symmetry

property of quasipolynomials makes it possible to calculate the critical value of the time

delay and the corresponding crossing frequency.

Definition 4.3.1. Given initial value X(0) and assumption X(t) = 0 for t < 0, the smallest

value of τ such that the system cannot converge to a consensus is determined as

τ∗ = min{τ > 0 | p( jω, e− jτω) = 0 and ω � 0}, (4.28)

which is called the delay margin of the consensus protocol.

It is true that, for any τ ∈ [0, τ∗), the system of (4.21) or (4.22) converges to an average

consensus.

Lemma 4.3.1. Let τ∗ and τ̃∗ indicate the delay margin of (4.21) and (4.22), respectively.

Then τ∗ ≥ τ̃∗.
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Proof First, let us find τ∗. Based on Schur theorem, there exists a unitary matrix T

such that U = T−1LT is upper triangular with the eigenvalues along the diagonal. The

quasipolynomial (4.27) is

det(sI +Le−τs) = det(T (sI + Ue−τs)T−1)

= s · Πn
i=2(s + λi(L)e−τs).

We need to find the smallest τ > 0 such that the first stable zero reaches the imaginary

axis. Let s = jω and we have

jω = −eτ jωλi(L). (4.29)

Solving this equation gives us

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω = λi(L) � 0

τ = π/2λi(L).
(4.30)

So the delay margin

τ∗ = min
π

2λi(L)
= π/2λn(L). (4.31)

Next, we consider τ̃∗. The above approach fails for the quasipolynomial det(sI+Le−τs+

L̂e−2τs). However, it is obvious that τ̃∗ should be no bigger than the delay margin for

det(sI + (L+ L̂)e−τs), which is π/2λn(L̃). Moreover, λn(L̃) ≥ λn(L) according to [101]. So

we have

τ∗ = π/(2λn(L)) ≥ π/(2λn(L̃)) ≥ τ̃∗. �

This lemma just shows us that the delay sensitivity of the two-hop relay protocol is no

better than protocol (4.1). The following theorem gives us explicit results on τ̃∗ by using

the frequency-sweeping method.

Theorem 4.3.1. For system (4.22), define

τ̄i = min
1≤k≤n−1

θi
k/ω

i
k
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when the generalized eigenvalues λi(G(s),H) satisfy the following equation:

λi(G( jωi
k),H) = e− jθi

k

for some ωi
k ∈ (0,∞) and θi

k ∈ [0, 2π), where

G(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 I

−sI −L22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I 0

0 L̂22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Then the consensus delay margin of (4.22) is

τ̃∗ = min
1≤i≤2(n−1)

τ̄i.

Re

Im

0

Re

Im

0

Figure 4.3: Locus of the zero of the quasipolynomial and the generalized eigenvalue

Proof Generalized eigenvalue for matrix pair (A, B) is defined as λ(A, B) that satisfies

Ay = λ(A, B)·By for an nonzero vector y. The vector y is called the generalized eigenvector.

When B = I, λ(A, B) = λ(A). It is a well-known fact that the number of finite generalized

eigenvalues for (A, B) is at most equal to rank(B). Also, if rank(B) is constant, λ(A, B) is

continuous with respect to the elements of A.

Based on the aforementioned similarity transform, system (4.22) converges to a con-
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sensus if the following system

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ż2

...

żn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −L22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2(t − τ)
...

zn(t − τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− L̂22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2(t − 2τ)
...

zn(t − 2τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.32)

is stable. According to the Schur determinant complement,

det
( ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B

C D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
)
= det(A) · det(D −CA−1B).

Thus, we have

det
(
sI +L22e−τs + L̂22e−2τs) = det(e−τsI) det(L̂22e−τs +L22 + sI · eτs)

= det
( ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I · e−τs −I

sI L̂22e−τs +L22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
)

= det
(
e−τs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I

L̂22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I

−sI −L22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
)
.

(4.33)

Now the quasipolynomial with two delay terms transfers to a new quasipolynomial with a

single delay term as

det
(
sI +L22e

−τs + L̂22e
−2τs) = (−1)2n−2 det(G(s) − e−τsH) (4.34)

where

G(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 I

−sI −L22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I 0

0 L̂22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.35)

Since τ ∈ R, whenever a zero is located on the imaginary axis, there exists s = jω so

that e− jωτ is a generalized eigenvalue of (G(s),H) with magnitude 1. Figure 4.3 shows this

correspondence by plotting the zero locus of the quasipolynomial and the eigenvalue locus.

Thus, we can transfer the problem of finding a τ so that the quasipolynomial has zeros

with pure imaginary parts to the problem of finding a ω so that (G(s),H) has a generalized
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eigenvalue with magnitude 1.

Since rank(H) = 2(n−1), there are at most 2(n−1) generalized eigenvalues of (G(s),H).

When s moves along the imaginary axis from 0 to j∞, there exists at most n − 1 frequency

ωi
k so that ‖λi(G( jωi

k),H)‖2 = ‖e− jθi
k‖2 = 1. So the delay margin τ̃∗ is the minimum value of

all possible τ̄i
k = θ

i
k/ω

i
k. �

Because there exist many efficient algorithms for generalized eigenvalue searching, it

is much easier for us to find λ(G(s),H) than to solve the quasipolynomial. However, for

large scale graphs, it is still a difficult problem due to the sizes of G and H.

4.4 Examples and Simulation Results

In order to verify the efficiency of the two-hop relay consensus protocol, we test it

on three different topologies in Figure 4.4, denoted as G1, G2, and G3 from left to right.

Topology G1 is a 2-regular graph, G2 is a net in which each vertex connects to the vertices

located inside a certain range, and G3 is a complete graph. All of them have ten vertices.

They are all symmetric and connected. Each pair of edges with same vertices, i.e., (vi, v j)

and (v j, vi), is denoted by a single link. For simplicity, we assume that wi j = 1 for any edge.

Figure 4.4: Three different topologies: G1, G2, and G3

Figure 4.5 to Figure 4.8 show the simulation results of G2 with the same initial condi-

tions and different delays. Note that, even though the system can become unstable, the sum

of the states keeps constant. Table 4.2 shows the algebraic connectivities and delay margins

for all three graphs with or without two-hop relay protocols. Delay margins without relays

are calculated according to Equation (4.31). Delay margins for two-hop relay protocols are

computed using frequency sweep method mentioned in Theorem 4.3.1. Note that the mag-
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Table 4.2: Performance vs. robustness for relay protocols

Algebraic connectivity λ2 Delay margin τ∗

Without relay With relay Without relay With relay

G1 0.382 1.7639 0.3927 0.1796

G2 0.9118 7.3846 0.2167 0.0396

G3 10 90 0.1571 0.0095

nitudes of generalized eigenvalues inevitably exceed 1 after a certain ω. The computation

needs to be done only over a finite frequency interval. We actually run the computation

twice. The first time we try to find an appropriate frequency interval using big frequency

steps. The second time we use much smaller frequency steps over the interval in order to

find an accurate value of the delay margin.

For each graph, the relay protocol improves the convergence speed. However, time-

delay robustness is impaired due to the delay accumulation along two-hop paths. More-

over, along the columns of the table, we can tell that algebraic connectivity increases and

delay margin decreases when the graph includes more links. We put these data in Figure

4.9. For each bar, the right lower point corresponds to protocol (4.1) and the left upper

point corresponds to the two-hop relay protocol. It is true that relay protocols actually

boost convergence speed by increasing the algebraic connectivity and sacrificing the delay

margin.
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Figure 4.5: States of graph G2 with no delay
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Figure 4.6: States of graph G2 with delay τ = 0.038
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Figure 4.7: States of graph G2 with delay τ = 0.05
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Figure 4.8: States of graph G2 with delay τ = 0.25
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Chapter 5

Packet-Based State Estimation Using
Multiple Description Codes

In conventional model-based state estimation theory, one standard assumption is that

observation data can be transmitted from observer to state estimator continually. The data

may be corrupted by noise, but it is transmitted with infinite precision. That means we

need reliable communication channels with infinite bandwidth. However, all practical com-

munication networks have limited channel capacities and data packets may be delayed or

dropped during the transmission. There is an increasing attention in the systems and con-

trol community on studying the effects of finite bandwidth and stochastic packet losses on

networked control systems (NCS). In this chapter, we investigate the following questions:

how does the unreliability of the communication network affect state estimation and what

can we do to compensate for this unreliability?

Most modern communication networks use packet-based protocols to transfer data.

Transmission control protocol (TCP) is one of the standard protocols that controls re-

transmission of lost packets and guarantees reliable delivery. In TCP, the module at the

far end sends back an acknowledgement for packets that have been successfully received.

A timer at the sending module causes a timeout if an acknowledgement is not received

within a reasonable round-trip time and the packet will then be retransmitted. For state

estimation problem, this retransmission scheme faces challenges to satisfy the real-time

demands because of the unpredictable large transmission delays. User datagram protocol

(UDP) is another common protocol that is faster and more efficient for time-sensitive pur-
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poses because it does not retransmit lost packets [111]. In this chapter, we assume that

the communication network delivers data packets based on an “UDP-like” mechanism and

we focus on the packet-based state estimation problem with the presence of random packet

drops. This work has immediate applications in the aforementioned networked multi-agent

systems where it is important that each agent be able to estimate the states of others.

We focus on investigating the convergence behavior of discrete-time Kalman filters.

Multiple description (MD) codes, a type of network source code, are used to compen-

sate for packet loss. MD codes have been studied in information theory for over 30 years

and successfully used in transmission of real-time speech and audio/video signals. The

efficiency of MD codes has been proved in situations where data can be used at various res-

olution levels. However, this is the first time that MD codes are used for the state estimation

problem. As mentioned in Chapter 2, packet drops are described by two mathematic mod-

els, the i.i.d. Bernoulli model and the Gilbert-Elliot model. We compare the performance

of a Kalman filter with and without using MD codes. The improved bounds of expected

value of error covariance of the Kalman filter over a large set of packet loss scenarios are

given and verified by simulation results.

5.1 Formulation and Assumptions for Packet-Based State

Estimation

A diagram of the open-loop packet-based state estimation problem is shown in Figure

5.1. The data link from observer to state estimator is not modelled as a single, exclusive

communication channel, but rather as a possible path through a large, complex communica-

tion network shared with many other users. Also the channel encoder and channel decoder

are omitted.

We assume that the dynamic system in Figure 5.1 is presented by a discrete-time linear

dynamic system:

xk+1 = Axk + wk

yk = Cxk + vk

(5.1)
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Dynamic System Observer

Source Encoder

Communication
Network

Source Decoder

State Estimator

Figure 5.1: Diagram of packet-based state estimation

where xk ∈ Rn is the state vector, yk ∈ Rm is the output vector, wk and vk are Gaussian white

noise vectors with zero mean, and covariance matrices are Q ≥ 0 and G > 0, respectively.

Suppose that A is unstable. A standard discrete-time Kalman filter is used as the estimator.

It is well known that if the pair (A,Q
1
2 ) is controllable, the pair (A,C) is detectable, and

no measurement is lost, the estimation error covariance of the Kalman filter converges to a

unique value from any initial condition.

For the system in Figure 5.1, there are several assumptions for the communication

network we need in order to simplify the problem:

• We ignore channel coding and assume that the data packet is either received and

decoded successfully or totally lost.

• The estimator does not have a memory of the previous packets it has received. Only

the new, “real-time” data is used by the state estimator in each update cycle. If a

packet arrives too late (after the update cycle), it is discarded and treated as a dropped

packet. The dropped packets will not be retransmitted.

• The network does not provide preferential treatment to any packet. In other words,

the network treats each single packet equally without inspecting its content. Thus a
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multiple resolution code or a layered source code is not a good choice for us since

they mark packets with different priorities according to the contents.

• There is no feedback link from estimator to observer.

• We assume that each data packet is relatively large and the network is running at a

high bit rate scenario.

As a quick reminder, we assume that packets are dropped randomly according following

models:

• Bernoulli Packet-Dropping Model. A Bernoulli random variable γk indicates whether

the packet k is received correctly. If it goes through the network successfully, then

γk = 1, otherwise, γk = 0. The sequence γk is i.i.d. with probability distribution

P(γk = 1) = λ and P(γk = 0) = (1 − λ).

• Two-state Markov Chain Model. This model considers the network as a discrete-

time Markov chain with two possible states: “good” and “bad.” In the “good” state,

the packet is received correctly, and in the “bad” state, the packet is dropped. The

network jumps between these two states with transition probability matrix Q as

Q =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q00 q01

q10 q11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5.2)

where 1 is the good state, 0 is the bad state, and qi j is the probability from the previous

state j to the next state i.

5.2 Multiple Description Source Codes

The traditional source encoder for the dynamic system in Figure 5.1 is actually a fixed-

rate uniform scalar quantizer with N reconstruction levels. We assume that the initial state

of the dynamic system is uniformly distributed on a state space with length L. The optimal
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rate-distortion function for single description source codes is

D(R) ≥ L2

12
· 2−2R (5.3)

where R = log2(N) is the bits per source sample (bpss). For other state distributions, we

have similar rate-distortion functions that all decay at speed 2−2R.

MD source codes are designed to achieve good rate-distortion performance over lossy

links. The unique feature of MD codes is that instead of using one single description to

represent one source sample, MD codes use two or more descriptions. So at the end of

the data link, the decoder has much less chance of losing all descriptions. There are two

simplest cases to generate an MD code:

• For each source sample, all descriptions are identical to the traditional source cod-

ing description. Thus, the decoder can rebuild the source sample even if only one

description is received. This case is actually equivalent to sending the same packet

multiple times. The cost of the high reliability is the high redundancy and the high

demand of the channel bandwidth.

• Divide a traditional source coding description into couple of non-overlapping incre-

ments. Each increment is treated as an independent description. This method alle-

viates the demand of channel bandwidth, but the average distortion at the decoder is

greatly increased even if only one description is lost.

Designing useful MD codes requires achieving a balance between the efficiency of the

bandwidth and the robustness to the packet loss. In order to keep the total bpss small, the

redundancy between the descriptions should be as little as possible. On the other hand,

the distortion of the decoder depends on how many descriptions it receives. Normally, the

more descriptions the decoder receives for one source sample, the more accurate the output

should be. Thus, the fundamental tradeoff in MD coding is finding descriptions that are

individually good and sufficiently different at the same time. Also MD codes need to be

nonhierarchical so that the receiving order of descriptions is not important.
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5.2.1 Theoretical Limits of Multiple Description Codes

In this subsection, we introduce some theoretical limits about the bpss and average

distortion for two-description MD codes. Suppose the input of the MD encoder is a se-

quence of source sample values {Xk}. The descriptions are {ik, jk} and the number of bits

for descriptions are Ri and Rj, respectively. There exist three cases according to which

descriptions are received:

• At step k, the decoder receives none of the descriptions. We call this the “broken

link” case and will discuss it in Section 5.3.

• At step k, the decoder receives both {ik} and { jk}. We call it the “central decoder”

case and the average distortion is denoted by Dc.

• At step k, the decoder only receives either {ik} or { jk}. We call it the “side decoder”

case. The average distortions are denoted by Di and Dj, respectively.

The main theoretical problem of MD coding is to determine the boundary of the achiev-

able quintuple (Ri,Rj,Dc,Di,Dj). If Ri = Rj and Di ≈ Dj, the two-description MD code

is called balanced. According to [112], the achievable rate-distortion region of a two-

description MD code for a memoryless unit variance Gaussian source is

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Di ≥ 2−2Ri

Dj ≥ 2−2Rj

Dc ≥ 2−2(Ri+Rj) · γ(Di,Dj,Ri,Rj)

(5.4)

where

γ =
1

1 −
( √

(1 − Di)(1 − Dj) −
√

DiDj − 2−2(Ri+Rj)
)2

for Di + Dj < 1 + 2−2(Ri+Rj) and γ = 1 otherwise.
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For packet-based state estimation, balanced two-description MD codes are employed.

Assume that Ri = Rj = R � 1 and Di = Dj = 2−2R(1−α) � 1 with 0 < α < 1, we have

1
γ
= 1 −

(
(1 − Di) −

√
D2

i − 2−4R
)2

≈ 1 − ((1 − Di) − Di)2 ≈ 4Di.

Thus,

Dc · Di �
1
4

2−4R. (5.5)

The inequality (5.5) shows a tradeoff between central and side distortions. Compared with

inequality (5.3), it is clear that the penalty in the exponential rate of decay of Di is exactly

the increase in the rate of decay of Dc. A complete discussion of the rate-distortion region

for other types of description codes is outside the scope of this work.

5.2.2 Multiple Description Scalar Quantizer

The multiple description scalar quantizer (MDSQ) is used to generate two descriptions

for each source sample. This method was proposed and popularized by [113]. Figure 5.2

shows the diagram of a two-description MDSQ:

• Step one: Select a uniform quantizer with an appropriate number of step levels N. A

source sample Y is quantized by rounding off to the nearest multiple of a step size Δ

and the index output is n that satisfies 0 < n ≤ N.

• Step two: A pair of indices (i, j) is assigned to the index n by using an index mapping

matrix. Those two indices are the corresponding descriptions for the source sample

Y .

• Step three: The descriptions i and j are encapsulated into two separate data packets.

The index mapping problem in step two is the main part of MDSQ. A
√

M × √M

matrix is constructed where M ≥ N. We arrange all the numbers from 1 to N into the

cells in the matrix. Each cell holds one number at most, so each index n gets a pair of

matrix indices (i, j) according to its location where i is the row number and j is the column
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Observer Uniform Quantizer Index Mapping

Packetization

Packetization

i

j

for Description 1

for Description 2

X Y n

Step two Step threeStep one

P1 P2
Dynamic

System

Figure 5.2: Diagram of two-description MD source encoder

number. Using this index mapping matrix, step two transfers each single description n into

two descriptions i and j. For a properly designed index mapping matrix (refer to Appendix

A for more details), we get

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dc ≈ C02−2R(1+α)

Di ≈ Dj ≈ C12−2R(1−α)
(5.6)

where C0 and C1 are constants. Parameter α ∈ [0, 1] is a pre-defined parameter that in-

dicates the tradeoff between the decay speeds of Dc and Di. It is clear that the average

distortion of the “central decoder” equals the distortion of the uniform quantizer in step

one.

The index mapping method can be extended to other MD codes. Table 5.1 lists the

values of the average distortions and bpss for some MD codes defined on [−5, 5]. The

first part of Table 5.1 shows examples of average distortions for different description loss

cases when we keep Dc constant, in which a larger bpss is needed when the number of

descriptions increases. The second part shows that, if we keep bpss constant, the distortion

increases when the number of descriptions increases. In the table, “lost k” means k de-

scriptions have been lost and “N/A” means not available. Apparently, balanced MD codes

can provide various distortion levels corresponding to how many descriptions the decoder

receives.
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Table 5.1: Average distortion for different MD codes

Coding type No loss Lost 1 Lost 2 Lost 3 Total bpss

single description 8.33 × 10−6 N/A N/A N/A 10
2-description 8.33 × 10−6 1.56 N/A N/A 12
3-description 8.33 × 10−6 4.41 × 10−3 1.53 N/A 15
4-description 8.33 × 10−6 7.46 × 10−3 1.34 × 10−2 2.61 20

Coding type No loss Lost 1 Lost 2 Lost 3 Total bpss

single description 4.97 × 10−7 N/A N/A N/A 12
2-description 8.33 × 10−6 1.56 N/A N/A 12
3-description 9.87 × 10−5 1.97 × 10−2 2.15 N/A 12
4-description 9.32 × 10−4 8.04 × 10−2 0.113 2.18 12

5.2.3 Quantization Noise of MD codes

As discussed in [114], quantization noise of a uniform scalar quantizer with assump-

tions of small partition cells, reproduction values at cell’s midpoints, and large support

region can be approximately modelled as an additive uncorrelated white noise to the quan-

tizer input, which is presented in Figure 5.3.

Uniform Scalar
Quantizer

X Y

X Y

N

Figure 5.3: Additive noise model of uniform scalar quantization

For balanced MD codes, the central decoder case actually is a uniform scalar quantizer

with midpoint outputs and the average distortion is Dc ≈ Δ2/12. For the side decoder case,

index mapping introduces a slight asymmetry between two side distortions. However, for

large bpss, this asymmetry asymptotically disappears. According to previous analysis, we
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have

Di ≈ Dj ≈ C1 · ( 1
12C0

) 1−α
1+α · (Δ 1−α

1+α
)2
.

For a balanced two-description MD code, α is a constant and Di will be asymptotically

negligible relative to
(
Δ

1−α
1+α

)2. So as long as the bpss Ri(= Rj) is big enough, the additive

noise model is still a good approximation to represent the quantization noise in the side

decoder case. From now on, we model the MD quantization noise as Gaussian white noise

with zero mean and covariance Dc for the central decoder case and Di for the side decoder

case.

5.3 Kalman Filtering Utilizing MD Codes

5.3.1 Kalman Filtering with i.i.d. Packet Drops

We consider the discrete-time linear dynamical system described by Equation (5.1) and

assume that packet drops are described by an i.i.d. Bernoulli random process. Quantitative

analysis of the convergence behavior of Kalman filtering was reported in [94]. In this

section, we extend this result to the case with MD codes. Two-description balanced MD

codes are used so that each yl
k in the measurement output Yk = [y1

k , · · · , ym
k ] is encoded

by two descriptions {ilk, jlk}. We organize these descriptions into 2 description vectors as

{Ik, Jk} and put them into two different packets. The independent random variables γI,k and

γJ,k are used to indicate whether the description vectors Ik and Jk are received correctly.

If Ik is received correctly, then γI,k = 1, otherwise, γI,k = 0, and similarly for γJ,k. We

assume that both {γI,k} and {γJ,k} are i.i.d. Bernoulli random variable sequences with the

same probability distribution P(γI,k = 1) = P(γJ,k = 1) = λ.

Since γI,k and γJ,k are independent, we have three measurement rebuilding scenarios.

First, we may receive both the descriptions correctly. In this case, the measurement noise

is the white noise vk plus the central distortion noise. We use G0 = G + Dc to indicate

the covariance where G is the observation noise covariance defined in (5.1) and Dc is the

central distortion covariance. Second, we may receive only one description correctly and

the measurement noise is G1 = G+Di where Di is the side distortion covariance. Third, we
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may receive none of the descriptions correctly. In this case, we assume the measurement is

corrupted by an infinitely large noise. This corresponds to the “broken link” case in Section

5.2. At step k, covariance G(k) for the noise after the decoder is

G(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G0 with probability λ2

G1 with probability 2(1 − λ)λ

σ2I with probability (1 − λ)2

(5.7)

where σ→ ∞.

Let γk = [γI,k, γJ,k]T , γk
0 = {γ0, γ1, · · · , γk}, and yk

0 = {y0, y1, · · · , yk}. We define the

following variables:

x̂k|k � E[xk|yk
0, γ

k
0],

Pk|k � E[(xk − x̂k|k)(xk − x̂k|k)T |yk
0, γ

k
0],

x̂k+1|k � E[xk+1|yk
0, γ

k
0],

Pk+1|k � E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |yk
0, γ

k
0].

In the time update of the Kalman filter, we have

x̂k+1|k = Ax̂k|k,

Pk+1|k = APk|kAT + Q,

which are independent of observation data and transmission status at time k + 1.

The measurement update of the Kalman filter becomes stochastic and depends on the

random variables γI,k and γJ,k. When γI,k = 1 and γJ,k = 1, it is true that

x̂k+1|k+1 = x̂k+1|k + Pk+1|kCT (CPk+1|kCT +G0)−1(yk+1 −Cx̂k+1|k),

Pk+1|k+1 = Pk+1|k − Pk+1|kCT (CPk+1|kCT +G0)−1CPk+1|k.

When γI,k = 1 and γJ,k = 0, or γI,k = 0 and γJ,k = 1, only one description is received
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and the covariance of measurement noise is G1. The corresponding measurement update is

x̂k+1|k+1 = x̂k+1|k + Pk+1|kCT (CPk+1|kCT +G1)−1(yk+1 −Cx̂k+1|k),

Pk+1|k+1 = Pk+1|k − Pk+1|kCT (CPk+1|kCT +G1)−1CPk+1|k.

When γI,k = 0 and γJ,k = 0, there is no measurement update since no descriptions are

received. Thus,

x̂k+1|k+1 = x̂k+1|k,

Pk+1|k+1 = Pk+1|k.

Combining these three cases, the measurement update process can be rewritten as

x̂k+1|k+1 = x̂k+1|k + γI,kγJ,kPk+1|kCT (CPk+1|kCT +G0)−1(yk+1 −Cx̂k+1|k)

+(1 − γI,k)γJ,kPk+1|kCT (CPk+1|kCT +G1)−1(yk+1 −Cx̂k+1|k)

+γI,k(1 − γJ,k)Pk+1|kCT (CPk+1|kCT +G1)−1(yk+1 −Cx̂k+1|k),

Pk+1|k+1 = Pk+1|k − γI,kγJ,kPk+1|kCT (CPk+1|kCT +G0)−1CPk+1|k

−(1 − γI,k)γJ,kPk+1|kCT (CPk+1|kCT +G1)−1CPk+1|k

−γI,k(1 − γJ,k)Pk+1|kCT (CPk+1|kCT +G1)−1CPk+1|k.

We simplify the notation and let Pk = Pk|k−1. The Kalman filter recursion thus becomes

stochastic and the error covariance evolves as

Pk+1 = APkAT + Q

−γI,kγJ,kAPkCT [CPkCT +G0]−1CPkAT

−(1 − γI,k)γJ,kAPkCT [CPkCT +G1]−1CPkAT

−γI,k(1 − γJ,k)APkCT [CPkCT +G1]−1CPkAT .

(5.8)

Thus, the sequence of the error covariance P∞k=0 is a random process for any given initial

value. In order to study the expected value E
[
Pk

]
, we define the modified algebraic Riccati
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equation (MARE) for Kalman filters using balanced two-description MD codes as

gλ(X) = AXAT + Q

−λ2AXCT (CXCT +G0)−1CXAT

−2(1 − λ)λAXCT (CXCT +G1)−1CXAT

(5.9)

and the expected value of error covariance matrix E
[
Pk

]
evolves according to this MARE.

The following lemmas are used to conduct the theorems in this chapter, and their proofs

can be found in Appendix B.

Lemma 5.3.1. Consider operator

φ(K0,K1, X) = (1 − λ)2(AXAT + Q) + λ2(F0XFT
0 + V0)

+2(1 − λ)λ(F1XFT
1 + V1)

where F0 = A + K0C, F1 = A + K1C, V0 = Q + K0G0KT
0 , and V1 = Q + K1G1KT

1 . Assume

X ∈ {S ∈ Rn×n|S ≥ 0}, G0 > 0, G1 > 0, Q > 0, and (A,Q
1
2 ) is controllable. Then the

following facts are true:

(a) With Kx0 = −AXCT (CXCT + G0)−1 and Kx1 = −AXCT (CXCT + G1)−1, gλ(X) =

φ(Kx0,Kx1, X);

(b) gλ(X) = min(K0,K1) φ(K0,K1, X) ≤ φ(K0,K1, X) for any (K0,K1);

(c) If X ≤ Y, then gλ(X) ≤ gλ(Y);

(d) If λ1 ≤ λ2, then gλ1(X) ≥ gλ2(X);

(e) If α ∈ [0, 1], then gλ(αX + (1 − α)Y) ≥ αgλ(X) + (1 − α)gλ(Y);

(f) gλ(X) ≥ (1 − λ)2AXAT + Q;

(g) If X̄ ≥ gλ(X̄), then X̄ ≥ 0;

(h) If X is a random variable, then (1 − λ)2AE[X]AT + Q ≤ E[gλ(X)] ≤ gλ(E[X]).
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Lemma 5.3.2. Let Xk+1 = h(Xk) and Yk+1 = h(Yk). If h(X) is a monotonically increasing

function, then:

X1 ≥ X0 ⇒ Xk+1 ≥ Xk,∀k ≥ 0;

X1 ≤ X0 ⇒ Xk+1 ≤ Xk,∀k ≥ 0;

X0 ≤ Y0 ⇒ Xk ≤ Yk,∀k ≥ 0.

Lemma 5.3.3. Define the linear operator L(Y) = (1−λ)2AYAT+λ2F0YFT
0 +2(1−λ)λF1YFT

1

and suppose there exists Ȳ > 0 such that Ȳ > L(Ȳ).

(a) For all W ≥ 0, limk→∞ Lk(W) = 0;

(b) Let V ≥ 0 and consider the linear system Yk+1 = L(Yk) + V initial at Y0, then the

sequence {Yk} is bounded.

Lemma 5.3.4. Suppose there exists K̄0, K̄1, and P̄ > 0 such that

P̄ > φ(K̄0, K̄1, P̄),

then for any initial value P0, the sequence Pk = gk
λ(P0) is bounded, i.e., there exists MP0 ≥ 0

dependent of P0 such that

Pk ≤ MP0 ,∀k.

The first theorem listed below states the uniqueness of the MARE solution if it exists.

Theorem 5.3.1. Consider the operator

φ(K0,K1, X) = (1 − λ)2(AXAT + Q)

+λ2(F0XFT
0 + V0)

+2(1 − λ)λ(F1XFT
1 + V1)

(5.10)

where F0 = A + K0C, F1 = A + K1C, V0 = Q + K0G0KT
0 , and V1 = Q + K1G1KT

1 . Suppose

there exist K0, K1, and P > 0 such that P > φ(K0,K1, P). Then, for any initial condition

P0 ≥ 0, the iteration Pk+1 = gλ(Pk) converges to the unique positive semi-definite solution

P̄ of MARE (5.9), i.e.,

lim
k→∞

Pk = lim
k→∞

gk
λ(P0) = P̄ ≥ 0
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where P̄ = gλ(P̄).

Proof First, we show that the MARE converges with initial value Q0 = 0. Let Qk =

gλ(Qk−1) = gk
λ(Q0), then Q1 ≥ Q0 = 0 and

Q1 = gλ(Q0) ≤ gλ(Q1) = Q2.

By induction, we know that the sequence {Qk} is nondecreasing. Also by Lemma 5.3.4,

{Qk} is bounded and there exists an MQ0 such that Qk ≤ MQ0 for any k. Therefore, the

sequence converges and

lim
k→∞

Qk = P̄ ≥ 0

where P̄ is a fixed point of the iteration P̄ = gλ(P̄).

Next we show that the iteration Ḡk = gk
λ(Ḡ0) initialized at G0 ≥ P̄ also converges to P̄.

Since G1 = gλ(G0) ≥ gλ(P̄) = P̄, Gk ≥ P̄ for any k. Also

0 ≤ Gk+1 − P̄ = gλ(Gk) − gλ(P̄)

= φ(KGk0,KGk1,Gk) − φ(KP̄0,KP̄1, P̄)

≤ φ(KP̄0,KP̄1,Gk) − φ(KP̄0,KP̄1, P̄)

= L̂(Gk − P̄)

where L̂ has a similar form as the operator L in Lemma 5.3.3. Note that

P̄ = gλ(P̄) > L̂(P̄),

thus, L̂ meets all the conditions in Lemma 5.3.3. Using the same argument, we have, for

any Y ≥ 0,

lim
k→∞

L̂k(Y) = 0.

So we get 0 ≤ limk→∞(Gk − P̄) = 0, i.e., the sequence Gk converges to P̄.

As the last part, we show that, for any initial condition P0 ≥ 0, the iteration Pk = gk
λ(P0)

converges to P̄. Let G0 = P0 + P̄ ≥ P̄, then 0 ≤ Q0 ≤ P0 ≤ G0, by induction, we have

0 ≤ Qk ≤ Pk ≤ Gk. Since {Qk} and {Gk} converges to P̄, {Pk} also converges to P̄ and the
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result follows. �

The second theorem states the conditions for MARE convergence.

Theorem 5.3.2. If (A,Q
1
2 ) is controllable, (A,C) is detectable, and A is unstable, then there

exists a λc ∈ [0, 1) such that

(a) For 0 ≤ λ ≤ λc, there exists some initial condition P0 ≥ 0 such that E[Pk]

diverges when k → +∞, i.e., there does not exist a matrix MP0 such that E[Pk] ≤ MP0

for any k > 0;

(b) For λc < λ ≤ 1, E[Pk] ≤ MP0 for any k > 0 and any initial condition P0 ≥ 0;

where MP0 > 0 depends on the initial condition P0.

Proof Obviously there are two special cases:

• When λ = 1, the MARE reduces to the standard Algebraic Riccati Equation (ARE)

and it converges to a unique positive semi-definite solution.

• When λ = 0, all the packets are lost. Since A is unstable, the covariance matrix

diverges for some initial values.

Next, we need to show that there exists a single point of transition between the two cases.

Suppose for 0 < λ1 ≤ 1, Eλ1[Pk] is bounded for any initial values. Then for any λ2 > λ1,

we have

Eλ1[Pk] = E[gλ1(Pk)] ≥ E[gλ2(Pk)] = Eλ2[Pk].

So Eλ2[Pk] is also bounded. Now we can choose

λc = {inf λ∗ : λ > λ∗ ⇒ Eλ[Pk] is bounded for any initial value P0 ≥ 0}

and finish the proof. �

This theorem claims that there exists a critical value λc of the packet receiving prob-

ability. If λ is smaller than λc, MARE (5.9) does not converge and the expected value of

error covariance matrix will diverge.
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Theorem 5.3.3. Let

λ = arg infλ[∃Ŝ ≥ 0 | Ŝ = (1 − λ)2AŜ AT + Q] = 1 − 1
a

λ = arg infλ[∃X̂ ≥ 0 | X̂ > gλ(X̂)]

= arg infλ[∃(K̂0, K̂1, X̂ ≥ 0)|X̂ > φ(K̂0, K̂1, X̂)]

where a = ρ(A) is the spectral radius of A. Then

λ ≤ λc ≤ λ. (5.11)

Proof For the lower bound of λc, we define the Lyapunov operatorM(X) = ĀXĀT + Q

where Ā = (1 − λ)A. If (A,Q
1
2 ) is controllable, (Ā,Q

1
2 ) is also controllable. Then the

Ŝ =M(Ŝ ) has a unique strictly positive definite solution Ŝ if and only if maxi |σi(Ā)| < 1,

so we get λ = 1− 1
a . Consider the iteration S t+1 =M(S t) for any λ > λ, it converges. While

for λ ≤ λ, it is unstable and S k tends to infinity for any initial values.

For the mean value of the error covariance matrix E[Pk] initialized at E[P0] ≥ 0, con-

sider 0 = S 0 ≤ E[P0], it’s easy to show that

S k ≤ E[Pk]⇒ S k+1 = M(S k)

≤ (1 − λ)2AE[Pk]AT + Q

≤ E[gλ(Pk)] = E[Pk+1].

By induction, it is obvious that when λ < λ, limk→∞ E[Pk] ≥ limk→∞ S k = ∞. This implies

that for any initial condition E[Pk] is unbounded for λ < λ, therefore λ ≤ λc.

For the upper bound of λc, consider the sequence Vk+1 = gλ(Vk) and V0 = E[P0] ≥ 0,

we have
E[Pk] ≤ Vk ⇒ E[Pk+1] = E[gλ(Pk)]

≤ gλ(E[Pk])

≤ gλ(Vk) = Vk+1.

A simple induction shows that for any k, Vk ≥ E[Pk]. So for λ > λ, according to Lemma

5.3.1 part (g), there exists X̄ > 0. Therefore all conditions of Lemma 5.3.4 are satisfied and
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we have

E[Pk] ≤ Vk ≤ MV0

for any k. This shows that λc ≤ λ. �

This theorem states the upper and lower bounds for λc. The lower bound is in a closed

form. According to the next theorem, we can reformulate the computation of λ as an linear

matrix inequalities (LMI) feasible problem.

Theorem 5.3.4. Assume that (A,Q
1
2 ) is controllable and (A,C) is detectable, then the fol-

lowing statements are equivalent:

(a) ∃X̄ > 0 such that X̄ > gλ(X̄);

(b) ∃ K̄0, K̄1, and X̄ > 0 such that X̄ > φ(K̄0, K̄1, X̄);

(c) ∃Z̄0, Z̄1 and 0 < Ȳ ≤ I such that

Ψλ(Ȳ , Z̄0, Z̄1) > 0

where

Ψλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y Δ(Y,Z1) Ω(Y,Z0) Π(Y)

Δ(Y,Z1)T Y 0 0

Ω(Y,Z0)T 0 Y 0

Π(Y)T 0 0 Y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Δ(Y,Z1) =
√

2(1 − λ)λ(YA + Z1C), Ω(Y,Z0) = λ(YA + Z0C), and Π(Y) = (1 − λ)YA.

Proof Using Lemma 5.3.1, it is easy to show that if there exists an X̄ > 0 such that

X̄ > gλ(X̄), X̄ > gλ(X̄) = φ(KX̄0,KX̄1, X̄). Also it is obvious that X̄ > φ(K0,K1, X̄) ≥ gλ(X̄),

so (a) is equivalent to (b). The only trick we need for the remaining proof is to use Schur
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complement decomposition to obtain the function Ψλ. Please note that

φ(K0,K1, X) = (1 − λ)2(AXAT + Q) + λ2(F0XFT
0 + V0)

+2(1 − λ)λ(F1XFT
1 + V1)

= (1 − λ)2AXAT + Q + λ2F0XFT
0

+2(1 − λ)λF1XFT
1 + λ

2K0G0KT
0

+2(1 − λ)λK1G1KT
1 .

The part (b) is equivalent to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
X − (1 − λ)2AXAT + λ2F0XFT

0

√
2(1 − λ)λF1

√
2(1 − λ)λFT

1 X−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ > 0.

Using Schur complement decomposition two more times we obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
√

2(1 − λ)λF1 λF0 (1 − λ)A
√

2(1 − λ)λFT
1 X−1 0 0

λFT
0 0 X−1 0

(1 − λ)AT 0 0 X−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0.

Let Y = X−1, Z1 = X−1K1, and Z1 = X−1K1, we get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y
√

2(1 − λ)λI1 λI0 (1 − λ)YA
√

2(1 − λ)λIT
1 Y 0 0

λIT
0 0 Y 0

(1 − λ)AT Y 0 0 Y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0

where I1 = YA+ Z1C and I0 = YA+ Z0C, and this is what we define as Ψλ(Y,Z0,Z1). Since

Ψλ(aY,Z0,Z1) = aΨλ(Y,Z0,Z1), so Y can be restricted to 0 < Y ≤ I. �

When C is invertible, we choose K0 = K1 = −AC−1 to make F0 = F1 = 0 and the LMI

in Theorem 5.3.4 is equivalent to

X − (1 − λ)2AXAT > 0.
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Since the solution X ≥ 0 exists if and only if (1 − λ)A is stable, i.e., all the magnitudes of

eigenvalues of (1 − λ)A are smaller than 1, we obtain λ = λ = 1 − 1
a . This value is smaller

than the critical value 1 − 1
a2 discussed in [94] where single description codes are used. So

using MD codes pushes λc to a smaller value and guarantees the convergence over a larger

packet-dropping scenario.

The following theorem gives the upper and lower bounds on the expected value of er-

ror covariance matrix when the MARE converges. The lower bound S can be computed by

standard Lyapunov equation solvers and the upper bound V can be either computed via iter-

ating Vt+1 = gλ(Vt) from any initial condition or transferred to a semi-definite programming

(SDP) problem.

Theorem 5.3.5. Assume (A,Q
1
2 ) is controllable, (A,C) is detectable, and λ < λ, then for

any initial condition E[P0] ≥ 0,

0 ≤ S ≤ lim
k→∞

E[Pk] ≤ V

where S and V are solutions of the equations S = (1 − λ)2AS AT + Q and V = gλ(V),

respectively.

Proof Let S k+1 =M(S k) = (1−λ)2AS kAT +Q and Vk+1 = gλ(Vk) with initial conditions

S 0 = 0 and V0 = E[P0] ≥ 0. By Theorem 5.3.3, we obtain

S k ≤ E[Pk] ≤ Vk

for any k. According to Theorem 5.3.1, limk→∞ Vk = V where V = gλ(V). Also since

(A,Q
1
2 ) is controllable and all the magnitudes of the eigenvalues of (1 − λ)A are smaller

than 1, the sequence of the Lyapunov iteration converges to the strictly positive definite

solution of the Lyapunov function, i.e., limk→∞ S k = S > 0. Therefore we can conclude

that

0 < S = lim
k→∞

S k ≤ lim
k→∞

E[Pk] ≤ lim
k→∞

Vk = V . �



98

5.3.2 Discussion for Generalized MARE

The MARE for Kalman filters can be generalized to other i.i.d. random processes.

Suppose that the estimator can access observation data according to a random variable γk

that has the distribution {p1, · · · , pm} over the set {1, · · · ,m}. The covariance G(k) for the

observation noise is dependent on γk as

G(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1 with probability p1,

G2 with probability p2,
...

Gm with probability pm.

(5.12)

Then, the generalized MARE for the expected error covariance is

g(X) = AXAT + Q

−∑m
i=1 pi · AXCT (CXCT +Gi)−1CXAT .

(5.13)

For an unstable A, the term AXAT + Q enlarges the value of X during the iteration. On

the other hand, the term −∑
i pi · AXCT (CXCT + Gi)−1CXAT reduces X. When the two

effects reach a balance, we obtain the solution of the generalised MARE (5.13). If all of the

covariances Gi are bounded, the solution of MARE is bounded, i.e., the error covariance of

the Kalman filter does not diverge since

g(X) ≤ AXAT + Q − AXCT (CXCT +max
i

(Gi))
−1CXAT . (5.14)

However, if there exists a Gi = ∞ · I, then the solution may diverge with respective to pi.

From that perspective, MARE (5.9) discussed in previous subsection is a special case with

G3 = ∞ · I and p3 = (1 − λ)2.

Without loss of generality, we assume Gi are bounded except that Gm = ∞·I in Equation

(5.12) and we have the following theorems for the generalized MARE (5.13).
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Theorem 5.3.6. Consider the operator

φ(K1, · · · ,Km−1, X) = pm · (AXAT + Q)

+
∑m−1

i=1 pi · (FiXFT
i + Vi)

(5.15)

where Fi = A + KiC and Vi = Q + KiGiKT
i . Suppose there exist {K0, · · · ,Km−1}, and P > 0

such that P > φ(K1, · · · ,Km−1, P). Then, for any initial condition P0 ≥ 0, the iteration

Pk+1 = g(Pk) converges to the unique positive semi-definite solution P̄ of MARE (5.13), i.e.,

lim
k→∞

Pk = lim
k→∞

gk(P0) = P̄ ≥ 0

where P̄ = gλ(P̄).

Proof All the results in Lemma 5.3.1, 5.3.3, and 5.3.4 hold for the new operator (5.15).

Therefore, it is straightforward to get the result using a similar argument as in Theorem

5.3.1. �

Theorem 5.3.7. If (A,Q
1
2 ) is controllable, (A,C) is detectable, and A is unstable, then there

exists a pc ∈ (0, 1) such that

(a) For pm ≥ pc, there exists some initial condition P0 ≥ 0 such that E[Pk] diverges

when k → +∞;

(b) For pm < pc, E[Pk] is bounded for any k > 0 and any initial condition P0 ≥ 0.

Moreover, let

p = arg supp[∃Ŝ ≥ 0 | Ŝ = p · AŜ AT + Q] = 1
a2

p = arg supp[∃X̂ ≥ 0 | X̂ > g(X̂)]

where a = ρ(A) is the spectral radius of A. Then

p ≤ pc ≤ p. (5.16)

Proof With a similar argument as in Theorem 5.3.3, we define the Lyapunov operator

asM(X) = ĀXĀT + Q where Ā =
√

pmA for the upper bound of pm. For the lower bound,

we use the sequence Vk+1 = g(Vk) and V0 = E[P0] ≥ 0. �
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Theorem 5.3.8. Assume (A,Q
1
2 ) is controllable, (A,C) is detectable, and pm < p, then for

any initial condition E[P0] ≥ 0,

0 ≤ S ≤ lim
k→∞

E[Pk] ≤ V

where S and V are solutions of the equations S = pm ·AS AT+Q and V = g(V), respectively.

Proof Let S k+1 = pm · AS kAT + Q and Vk+1 = g(Vk). According to the discussion in

previous subsection, we have S k ≤ E[Pk] ≤ Vk. Since S k converges to S and Vk converges

to V , it is true that

S ≤ lim
k→

E[Pk] ≤ V .

�

For a generalized MARE, the convergence of the solution relays on the probability as-

sociated with the infinite noise. For the packet-based state estimation, this probability is

equivalent to the chance that estimator does not receive any information about the obser-

vation. Balanced two-description MD codes actually reduce the chance by sending two

small packets for each observation. Also, MD codes efficiently utilize the communication

bandwidth. The performance of Kalman filters with other MD codes can be quantitatively

analyzed similarly as long as the probability distribution and corresponding noises is deter-

mined.

5.3.3 Kalman Filtering with Bursty Packet Drops

As mentioned in Chapter 2, bursty packet drops can be modelled as a two-state Markov

chain with transition probability matrix Q given by Equation (5.2). For the case of using

balanced two-description MD codes, we are interested in a four-state Markov chain where

the states correspond to both packets lost, only the description Ik is lost, only the description

Jk is lost, and no packet is lost. 1 The transition probability matrix of this chain is given as

1This is a joint work with Vijay Gupta.
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QMD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q2
00 q2

00 q01q00 q01q00

q01q10 q01q10 q11q01 q11q01

q10q00 q10q00 q01q10 q01q10

q10q11 q10q11 q2
11 q2

11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.17)

Note that the state in which both description packets are lost is equivalent to no observation

coming through, while the other states correspond to the system being observed.

If the Markov chain is stationary, state probabilities tend to form a stationary distri-

bution as k → ∞. However, we normally cannot study the problem using the generalized

MARE over this stationary distribution because the explicit evaluation of the expected value

of the ARE is intractable [115]. However, this problem is mathematically equivalent to the

random sensor scheduling problem in sensor networks. Consider the system

xk+1 = Axk + wk

being observed through n sensors with the ith sensor of the form

yi
k = Cixk + vi

k. (5.18)

Suppose only one sensor can be active at any time instant and the choice of the sensor is

done according to a Markov chain. We denote the Ricatti update in error covariance by

fi (.) when the ith sensor is used and denote

f k
i (.) = fi ( fi (· · · (.) · · · ))︸��������������︷︷��������������︸

k times

.

The expected error covariance at time step k is denoted by E [Pk]. Probability of the net-

work in Markov state j at time k is denoted by π j
k and qi j is the probability of the network

state is i at time k + 1 given the network state is j at time k.

Lemma 5.3.5. For any Ricatti update operator fi(P), we have

(a) fi(P) ≥ Q;
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(b) If X < Y, then fi(X) ≤ fi(Y);

(c) fi(P) is concave with respect to P.

With single-description codes, according to Equation (5.18), packet-dropping can be

treated as the observation jumps between two sensors that have the same Ci matrices and

different Gaussian noises with covariance G0 and ∞ · I, respectively. The Kalman filter

error covariance updates are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f0(P) = APAT + Q

f1(P) = APAT + Q − APCT (CPCT +G0)−1CPAT .

Similar to the i.i.d. Bernoulli model, we discuss the conditions and the upper/lower bounds

for expected values of estimation error covariances converging.

Theorem 5.3.9. When using a single-description code and with the Markov probability

transition matrix given by Equation (5.2), the lower bound for E [Pk] is Yk where

Yk = qk
00π

0
0 f k

0 (P0) + π1
k f1(Q)

+
∑k−1

i=1 qi
00

(
π0

k+1−i − q00 · π0
k−i

)
f i
0 (Q) .

(5.19)

The upper bound is Xk where

Xk =

1∑
j=0

1∑
i=0

f j

(
Xi

k−1

)
qjiπ

i
k−1 (5.20)

and Xi
k−1 = E[Xk−1|state is i at time (k − 2)].

Proof Suppose k starts from 1, and for any k, we define event Ei, which means that the

last packet was received at time k − i where i ∈ [0, · · · , k]. So the probability of Ei is

pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk
00π

0
0 i = k

qi−1
00 q01π

1
k−i 0 < i < k

π1
k i = 0
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and the error covariance Pk if Ei happens is

Pk|Ei =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f k
0 (P0) i = k

f i
0( f1(Pk−i)) 0 < i < k

f1(Pk) i = 0.

So

E[Pk] =
∑k

i=0 pi · Pk|Ei

= qk
00π

0
0 f k

0 (P0) +
∑k−1

i=1 qi
00q01π

1
k−i f

i
0( f1(Pk−i))

+π1
k f1(Pk).

According to Lemma 5.3.5, f1(Pk−1) ≥ Q, so

E[Pk] ≥ qk
00π

0
0 f k

0 (P0) + π1
k f1(Q)

+
∑k−1

i=1 qi
00q01π

1
k−i f

i
0(Q)

= qk
00π

0
0 f k

0 (P0) + π1
k f1(Q)

+
∑k−1

i=1 qi
00

(
π0

k+1−i − q00 · π0
k−i

)
f i
0 (Q) .

For the upper bound, let us denote S k is the network state at time k. For a single-description

code, S k ∈ [0, 1]. Then E[Pk] =
∑1

j=0 π
j
k · E[Pk|S k = j]. Also

π
j
k · E[Pk|S k = j]

= π
j
k

∑1
i=0 E[Pk|S k = j, S k−1 = i] · p(S k−1 = i|S k = j)

=
∑1

i=0 E[ f j(Pk−1)|S k−1 = i]qjiπ
i
k−1

≤ ∑1
i=0 f j([Pk−1|S k−1 = i])qjiπ

i
k−1

since f j(·) is concave. �

Proposition 5.3.10. A sufficient condition for divergence of expected error covariance is

q00 · a2 > 1, (5.21)

where a = ρ(A).
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Using a balanced two-MD code, the corresponding sensor selection problem has four

sensors that have the same C matrices, and noise covariances are G0, G1, G1, and ∞ · I,

respectively. The Ricatti updates are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(P) = APAT + Q

f1(P) = APAT + Q − APCT (CPCT +G1)−1CPAT

f2(P) = f1(P)

f3(P) = APAT + Q − APCT (CPCT +G0)−1CPAT .

Using the same approach, we get

Proposition 5.3.11. When using a two-description code and with the underlying Markov

probability transition matrix given by (5.2), the lower bound for E [Pk] is Yk where

Yk = q2k
00π

0
0 f k

0 (P0) +
∑3

j=1 π
j
k f j(Q)

+
∑k−1

i=1 q2i
00

(
π0

k+1−i − q2
00 · π0

k−i

)
f i
0 (Q) .

(5.22)

The upper bound is Xk where

Xk =

3∑
j=0

3∑
i=0

f j

(
Xi

k−1

)
qjiπ

i
k−1 (5.23)

and Xi
k−1 = E[Xk−1|state is i at time (k − 2)].

A sufficient condition for divergence of expected error covariance is

q00 · a > 1. (5.24)

The equations for lower and upper bounds are pretty messy but they can be calculated

iteratively. Also, these bounds are dependent on the value of q11 and initial distribution of

packet-dropping πi
0.
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5.4 Simulation Results

In this section, simulation results are provided to verify the advantages of MD codes.

We choose the discrete-time LTI system with A = −1.25 and C = 1. Gaussian noises wk

and vk have zero means and covariances G = 2.5 and Q = 1, respectively. A balanced

two-description MD code is designed such that the central distortion D0 ≈ 8.33 × 10−6 and

the side distortion D1 ≈ 1.56. The bpss of the MD code is 12 bits. At the same time, we

choose a single description code as the counterpart with the same average distortion and

the bpss is 10 bits.
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Figure 5.4: Simulation results of expected error covariances with theoretical upper and
lower bounds

We start with the Bernoulli packet-dropping model. Figure 5.4 shows the simulation

results of the expected error covariance. The theoretical upper and lower bounds with or

without MD codes are calculated according to Theorem 5.3.5 and reference [94], respec-

tively. The simulations are run 1000 times and each simulation is run 2000 time steps. We

use the average value E[P2000] as the expected error covariance. The asymptote λc is 0.36
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for the single-description code and is 0.2 for the balanced two-description MD code. It is

clear that convergence properties of error covariance at a high packet loss rate region are

improved dramatically. Note that when λ is close to the asymptote, some of the simulated

error covariances values are below the lower bound. The reason is that we only take limited

time steps for the simulation, and a residual effect of the initial conditions remains.
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Figure 5.5: Mean values of error covariance with same central distortions

Figure 5.5 shows the different simulation results with different source codes. The center

of the error bar is the mean value and 95% of the simulation results are located inside the

error bars. It shows that, if we use a balanced three-description MD code, the critical value

λc is even smaller since the choice of losing all descriptions of one observation is smaller,

which is consistent with the results on the generalized MARE. So the benefits of using MD

codes are clear and the cost we need to pay is more bits for each source sample. When

we keep the bpss constant, as shown in Figure 5.6, we get larger quantization noise as the

number of descriptions increases, but there are no obvious differences due to the relative

high bpss in this example.
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Figure 5.6: Mean values of error covariance with same bpss
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Figure 5.7: Mean values of error covariance with low dropping rate
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Actually, the packet-dropping rate of a practical communication network is fairly small.

Figure 5.7 shows the expected error covariance when the packet-dropping rate is low and

MD codes give much better performance than the single-description code. Note that the

two-description MD code achieves as good performance as sending the single-description

code twice but saves up to 40% of the bandwidth.

Next, we use the two-state Markov chain model for packet drops. In Figure 5.8 we

plot the theoretical bounds and simulation data for the error variance as a function of q10

under the conditions as q11 = 0.95 and uniform distribution of πi
0. The lowering of the

bounds is indicative of the performance getting better with MD codes. The simulation

results with parameters q11 = 0.05 and q11 = 0.95 with different coding schemes are shown

in Figure 5.9.
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Figure 5.8: Theoretical upper and lower bounds for burst packet-dropping case with q11 =

95%

In the Markov chain model, q01 = 1−q11 is a measure of how often the bursty dropping

happens while q00 = 1 − q10 indicates how large the burst dropping is. According to
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Figure 5.9: Simulation results for burst packet-dropping case

simulation results, expected error covariance diverges more quickly with higher q01. This

makes sense since if the error bursts happen more often, the estimated error covariance is

expected to diverge more easily. It is seen from the figures that the system diverges around

q10 = 0.36 with the single-description code case and diverges around q10 = 0.2 with the

two-description MD code. Thus the stability margin is enlarged if we use MD codes. Also,

for the same q10, using MD codes greatly decreases the expected error covariance.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Main Contributions

In this work, we study coordinated control and state estimation of networked multi-

agent systems. A novel distributed formation control strategy, the double-graph control

strategy, is proposed where objective synchronization is processed in global coordination

topology and directed interactions among agents are presented in local interaction topology.

Using this strategy, each agent adjusts its behavior according to the global objective and

the local environment (neighbors) simultaneously. A single parameter α is used to balance

these two incentives.

Suppose that all agents are synchronized on the coordination objective, the advantages

of the double-graph control strategy are addressed from two aspects:

• For the stability issue, with identical local controller structure, Nyquist critical points

are moved into an ellipse and the stable margin is enlarged. When the interaction

topology is acyclic, the stability of a single agent implies the stability of the whole

system. When it is not, the system is guaranteed to be stable as long as the infinity

norm of the local transfer function is bounded where the upper bound relies on the

size of the ellipse. Moreover, the stable condition is robust against the interaction

topology.

• For the performance issue, we focus on disturbance resistance. It has been shown

that the disturbance introduced at any agent will not be amplified when it propagates
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through the formation. An upper bound for the amount of disturbance resistance,

which is independent of the number of the agents, is given. When the interaction

topology has one vertex as the leader, a more precise upper bound is given. Collision

avoidance and time delays in interaction topology are also briefly discussed.

In the global coordination topology, we focus on the consensus protocol for objective

synchronization. Based on the graph reduction on strong components, necessary and suffi-

cient conditions for consensus seeking are given. This approach gives us more insights for

this collective dynamics and the value of final consensus state is also presented explicitly.

Also, multi-hop relay protocols are proposed for fast consensus seeking. We emphasize the

two-hop relay protocol over connected and symmetric topologies for average consensus

seeking. It has been shown that using relay protocols can efficiently improve the conver-

gence speed without physically changing the topology. But the cost we need to pay is the

extra communication bandwidth. Furthermore, a trade off between the convergence per-

formance and robustness against communication time delays is identified. The more edges

the graph includes, the faster the convergence speed is, while the more sensitive the proto-

col is to the time delay. We use the frequency sweep method to efficiently find the delay

margin for two-hop relay protocols and verify this tradeoff on three typical communication

topologies.

For packet-based state estimation in networked multi-agent systems, we use multiple

description coding scheme to counteract the effect of packet drops. The accuracy of ob-

servation data received at the estimator only depends on how many descriptions are suc-

cessfully transmitted. We considered two typical network packet drops models: the i.i.d.

Bernoulli model and the Markov chain model. For the i.i.d. Bernoulli model, the expected

value of error covariance is formulated as the solution of the MARE. Using MD codes,

the convergence region of the estimation error covariance is much larger than using a tradi-

tional single-description code because the chance of losing all descriptions is much smaller.

Boundaries for expected error covariance are also given. For the two-state Markov chain

model, similar benefits are also shown in analytic results. Besides, MD codes are optimal

codes that save considerably more bandwidth than sending duplicated packets. Thus, the

impact of communication constraints can be understood from another angle: In high bit-
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rate scenario and with large, complex communication networks, we compensate the packet

loss and satisfy the real-time demands by using elegant coding schemes.

6.2 Future Directions and Possible Extensions

There are several directions and possible related research areas in which we can carry

out future work.

Optimal configuration for double-graph control strategy. Design choices of double-

graph control strategy include adjusting the value of α and choosing appropriate transfer

functions for a given interaction topology. For different applications, the double-graph

strategy provides more flexibility and redundancy than previous approaches. Searching for

the optimal configuration can be the next interesting research topic.

Another possible extension is the stability of interaction topology switching. This is

useful for formation splitting/merging in order to overcome big obstacles or go through

small open areas. Even though the formation is stable for each individual topology, inap-

propriate switching sequence may result instability. Necessary conditions for smooth and

safe topology switching need to be specified.

Robustness of Consensus Protocols. Besides communication delays, there exist a

couple of other issues related to the robustness of consensus protocols. For example, if

there exist malicious agents among a networked multi-agent system who keeps sending out

wrong messages, the consensus protocol may not be able to converge or converge to an

unexpected value. It will be very useful if we can have an efficient mechanism to identify

and isolate these “bad” agents so that we can synchronize other “healthy” agents.

Another interesting problem is studying consensus protocols with packet loss. It has

been shown that those protocols still work when the network switches its topology as long

as the union of these “infinity often” topologies contains a spanning tree strongly connected

[62, 67]. Thus, we can expect that, with packet loss, consensus protocols still achieve

the consensus, but need longer time to converge. The quantitative analysis needs to be

investigated carefully.

Collective protocols for networked multi-agent systems. For coordination and coop-
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eration in networked multi-agent systems, generalized distributed decision-making meth-

ods still remain unknown. The decision-making mechanism depends on the substance of

the global objective. One possible formulation for this process is the following generalized

discrete-time protocol

xi(k + 1) = f (xi(k), x j(k))

where j ∈ N(i) and the function f (·) is a selected collective function. When the output

of f (·) is the average of the inputs, this protocol is the discrete-time consensus protocol.

Another simple example for collective functions is max(·).
The connection between simple collective functions and a final group decision can be

studied with respect to the connectivity of the communication topology. New mathemat-

ical tools are needed to formulate this connection. Given a communication topology and

global objective, designing a collective function should be an interesting project. Similar

to the consensus protocol, common performance issues include the convergence speeds,

robustness against the topology, and the sensitivity to communication delays.

Except for the objective synchronization in formation control, coordination/cooperation

tasks that can be solved by this framework include role section among connected groups

and complex task assignment for nonhomogeneous robots/UAVs/underwater vehicles. More

generally, this formation can be useful for self-organizing or self-assembling systems in

physics, biology, and sociology.

Packet-based state estimation for nonlinear dynamical systems. A natural extension

for packet-based estimation is estimating nonlinear systems. There exist some popular

strategies for on-line nonlinear estimation, such as the extended Kalman filter (EKF) and

moving horizon estimation (MHE). In today’s networked environment, it is important to

understand the performance of nonlinear estimation schemes with intermittent observation.

For EKF, the implementation is easy by linearizing the system. It has been used widely

in chemical engineering. Theoretical properties of EKF have been explored extensively.

With packet drops, stochastic convergence behaviors for error covariance should depend

on the packet drop rate as well as Lipschitz constants for the nonlinear dynamics.

On the other hand, MHE is an approach for online state estimation problem with non-



114

linear discrete-time dynamics, constrained variables, and nonquadratic cost. Thus, it has

more applications than EKF. If the arrival cost is known exactly, then MHE provides the

optimal Bayesian estimate. In practice, the arrival cost is difficult to compute and must be

approximated. Thus, the optimality cannot be guaranteed so far. Packet drops will affect

the formulation of the constraints in MHE. Thus, finding the best scheme for rearranging

observation constraints within a given window size should help to improve MHE.

Overall, MD codes should be able to improve the estimation even with nonlinear dy-

namics as well. Quantitative analysis needs to be conducted carefully to verify this conjec-

ture.
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Appendix A

Index Assignment Method for MDSQ

The “modified nested” index assignment method in [113] is a tractable and systematical

method for designing balanced MDSQ index mapping matrices. From 1 to N, the index n is

placed on the main diagonal and the 2k diagonals that lie closest to the main diagonal, from

left-upper corner to right-lower corner. Note that 0 < k <
√

M, let ki = min(k,
√

M − i).

Define the action Ei as putting index n into the sequence of matrix cells (i, i), (i, i + 1),

(i + 1, i), (i, i + 2), (i + 2, i), · · · , (i, i + ki), (i + ki, i) and the action S i as putting index n

into the sequence of matrix cells (i, i), (i + 1, i), (i, i + 1), (i + 2, i), (i, i + 2), · · · , (i + ki, i),

(i, i + ki). Figure A.1 shows these two different actions where part (a) is the action Ei and

part (b) is the action S i. From n = 1 and matrix cell (i, i) = (1, 1), we repeat action Ei k

times, then repeat action S i k times, then switch to action Ei for k times again and continue

this process until we reach the cell (
√

M,
√

M). Then we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N = (2k + 1)
√

M − k(k + 1)

R = Ri = Rj = log2(
√

M)

Rc = log2(N)

(A.1)

where Rc is the bpss of the uniform quantizer in step one. Figure A.2 shows two simple

examples of index mapping. In part (a), M = 64 and k = 1; while in part (b), M = 64 and

k = 2.

For given k and R, we use MN(R, k) to denote the MD code. Let
√

M = k1/α where

0 < α < 1. When M and N is large, i.e., at high bit rate, we can get these relationships
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i i+k

i

i+k

(a)

i i+k

i

i+k

(b)

Figure A.1: Two actions to fill the index mapping matrix

about the central and side distortion:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dc ≈ C02−2R(1+α)

Di ≈ C12−2R(1−α)
(A.2)

where C0 and C1 are constants. There exist two extreme cases:

• When α approaches 1, Dc decreases at the maximum rate of 2−4R while both Di and

Dj exhibit zero decay rates. In this case, the matrix is almost full and M ≈ N;

• When α approaches 0, Dc, Di and Dj decay at the same rate of 2−2R. In this case, the

matrix is only filled in the main diagonal.

(a) (b)

1

3

2

4

5

6

7

9

8
10

11

12

13 14
15 16 18

17 19 20

21

1 2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
23

24
26 27 29

30 32 3422

22

33312825

Figure A.2: Examples of index mapping

Intermediate rates can be achieved by selecting other values of α. When designing

MD codes, we need to make sure that there are enough cells in these diagonals to hold the
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outputs of the quantizer. We adjust the values of
√

M and k to control α. For the simulation

in Chapter 5, we choose MN(log2(40), 15) as the balanced two-description code.
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Appendix B

Additional Proofs

Proof of Lemma 5.3.1

Part (a) According to the assumptions, we have

KX0 = −AXCT (CXCT +G0)−1

⇒ (A + KX0C)XCT + KX0G0 = 0

⇒ FX0XCT + KX0G0 = 0.

Using the same reasoning, we get

KX1 = −AXCT (CXCT +G1)−1

⇒ FX1XCT + KX1G1 = 0.

Now the operator is

φ(KX0,KX1, X) = (1 − λ)2(AXAT + Q) + λ2(F0XFT
0 + V0) + 2(1 − λ)λ(F1XFT

1 + V1)

= (1 − λ)2(AXAT + Q) + λ2(F0XFT
0 + KX0G0KT

X0 + Q)

+2(1 − λ)λ(F1XFT
1 + KX1G1KT

X1 + Q)

= (1 − λ)2(AXAT + Q) + λ2(F0XAT + F0XCT KT
X0 + KX0G0KT

X0 + Q)

+2(1 − λ)λ(F1XAT + F1XCT KT
X1 + KX1G1KT

X1 + Q)
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Recalling the equations of KX0 and KX1, we have

φ(KX0,KX1, X) = (1 − λ)2(AXAT + Q) + λ2(F0XAT + Q) + 2(1 − λ)λ(F1XAT + Q)

= (1 − λ)2(AXAT + Q) + λ2((A + KX0)XAT + Q)

+2(1 − λ)λ((A + KX1)XAT + Q).

Reorganizing the right side of the equation, we can simplify it as

φ(KX0,KX1, X) = (1 − λ)2(AXAT + Q) + λ2(AXAT + Q) − λ2AXCT (CXCT +G0)−1CXAT

+2(1 − λ)λ(AXAT + Q) − 2(1 − λ)λAXCT (CXCT +G1)−1CXAT

= AXAT + Q − λ2AXCT (CXCT +G0)−1CXAT

−2(1 − λ)λAXCT (CXCT +G1)−1CXAT

= gλ(X).

Part (b) The operator has three positive terms. The second one is a function of K0 and

the third one is a function of K1. Thus, if K0 minimizes the second term and K1 minimizes

the third term, then (K0,K1) minimizes the whole function. We differentiate the second

term and let it equal to zero.

2(A + K0C)XCT + 2K0G0 = 0

⇒ K0 = −AXCT (CXCT +G0)−1 = KX0.

Using the same method, we have

K1 = −AXCT (CXCT +G1)−1 = KX1.

According to part (a), it is true that

gλ(X) = φ(KX0,KX1, X) = min
(K0,K1)

φ(K0,K1, X).

Part (c)

gλ(X) = φ(KX0,KX1, X) ≤ φ(KX0,KX1,Y) ≤ φ(Ky0,Ky1, y) = gλ(Y).
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Part (d) Since AXCT (CXCT + G0)−1CXAT ≥ 0 and AXCT (CXCT + G1)−1CXAT ≥ 0,

so if λ1 ≤ λ2, glambda1(X) ≥ glambda2(X).

Part (e) Let Z = αX + (1 − α)Y , we have

gλ(Z) = φ(KZ0,KZ1,Z)

= α · φ(KZ0,KZ1, X) + (1 − α)φ(KZ0,KZ1,Y)

≥ α · φ(KX0,KX1, X) + (1 − α)φ(KY0,KY1,Y)

= α · gλ(X) + (1 − α) · gλ(Y).

This result shows that gλ(X) is a concave function of X as long as X > 0.

Part (f)

gλ(X) = φ(KX0,KX1, X)

= (1 − λ)2(AXAT + Q) + λ2(FX0XFT
X0 + V0)

+2(1 − λ)λ(FX1XFT
X1 + V1)

= (1 − λ)2AXAT + Q + λ2(FX0XFT
X0 + KX0G0KT

X0)

+2(1 − λ)λ(FX1XFT
X1 + KX1G1KT

X1)

≥ (1 − λ)2AXAT + Q.

Part (g) Let X̂ is the solution of the Lyapunov equation, i.e., X̂ = (1−λ)AX̂(1−λ)AT+Q,

then X̂ > 0 and

X̄ − X̂ ≥ (1 − λ)2A(X̄ − X̂)AT ≥ 0.

Part (h) Since X is a random variable, then (1−λ)2AE[X]AT+Q ≤ E[gλ(X)] ≤ gλ(E[X])

where the first inequality comes from part (f) and the second one comes from part(e).

Proof of Lemma 5.3.2

Please refer to [94] for details.

Proof of Lemma 5.3.3

Part (a)First of all, we show that for all W ≥ 0, L(W) ≥ 0. Also, if W1 ≤ W2, then
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L(W1) ≤ L(W2). Choose 0 ≤ r < 1 so that L(Ȳ) < rȲ and 0 ≤ m so that W ≤ mȲ . Thus,

0 ≤ Lk(W) ≤ mLk(Ȳ) ≤ mrkȲ .

When we take the limit k → ∞, the result follows.

Part (b) The linear iteration is

Yk = Lk(Y0) +
∑k−1

i=0 Li(V)

≤
(
mY0 · rk +

∑k−1
i=0 mVri

)
Ȳ

≤
(
mY0 · rk + mV

1−r

)
Ȳ

=
(
mY0 +

mV

1−r

)
Ȳ .

Proof of Lemma 5.3.4

First, we define the matrices F0 = A + K0C and F1 = A + K1C. Consider the linear

operator

L(Y) = (1 − λ)2AYAT + λ2F0YFT
0 + 2(1 − λ)λF1YFT

1 ,

and observe that

P̄ > φ(K̄0, K̄1, P̄) = L(P̄) + Q + λ2K0G0KT
0 + 2λ(1 − λ)K1G1KT

1 ≥ Ł(P̄).

Also, we have

Pk+1 = gλ(Pk) ≤ φ(K̄0, K̄1, Pt) = L(Pt) + V

where V = Q+ λ2K0G0KT
0 + 2λ(1− λ)K1G1KT

1 . Based on Lemma 5.3.3, the sequence Pt is

bounded.


