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Abstract
I. Interoction of Fast ond Slow Waves in Problems with Two Time Scales,

We consider certain symmetric, hyperbolic systems of nonlinear first-order
partial differential equations whose solutions vary on two time scales, a 'slow’
scale ¢t and a 'fast’ scale t/. The large (O(z7!)) part of the spatial operator is
assumed to have constant coefficients, but a nonlinear term multiplying the
time derivatives (a 'symmetriser’) is allowed.

In physical applications, it is often the case that the fast scale motion is of
little interest, and it is desired to calculate only the slow scale motion accu-
rately. It is known that solutions with arbitrarily small amounts of fast scale
motion can be obtained by careful choice of the initial data, and that an error of
amplitude O(g?), where p =2 for one space dimension or p=3 for two or three
space dimensions, in this choice is allowable, resulting in fast scale waves of
amplitude O(¢”) in the solution.

We investigate what happens when the initial data are not prepared
correctly for the suppression of the fast scale motion, but contain errors of
amplitude O(g). We show that then the perturbation in the solution will also be
of amplitude O(g). Further, we show that if the large part of the spatial opera-
tor is nonsingular in the sense that the number of large eigenvalues of the sym-
bol, P(iw), of the spatial operator is independent of w, then the error introduced
in the slow scale motion will be of amplitude O(&?), even though fast scale waves
of amplitude O(¢) will be present in the solution. If the symmetriser is a con-
stant, this holds even if the spatial operator is singular, and further if an error
O(e#) is made in the initial conditions, for any w> 0, the resulting error in the
slow scale motion will be 0(g%),

Our proofs are based on energy estimates which show that spatial deriva-

tives of the solutions are 0(1), even if time derivatives are not, and the
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development of the solutions in asymptotic expansions.

II. A Numerical Fzperiment on the Structure of Two-Dimensional Turbulent
Flow.

Some previous theories and numerical calculations pertaining to the prob-
lem of two-dimensional turburlence are reviewed, and a new numerical experi-
ment is proposed. The purpose of the experiment is to test the hypothesis that
narrow regions of concentrated vorticity are produced in two-dimensional flows
by advection of vorticity towards dividing streamlines in regions where t]ﬁe local
flow is convergent.

The numerical methed to be used is described in detail. It integrates the
inviscid Euler equations using a Fourier (pseudo-spectral) method for the space -
derivatives, and a predictor-corrector méthod due to Hyman (1979) for time
stepping. Dissipation is included, following Fornberg (1977), by a chopping of
the amplitudes of the higher Fourier modes every few time-steps. This acts as a
high-wavenumber energy sink, allowing very high Reynolds number flows to be

simulated with relatively little computational effort.
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Part 1
INTERACTIONS OF FAST AND SLOW WAVES

IN PROBLEMS WITH TWO TIME SCALES



Chapter 1: HYPERBOLIC SYSTEMS WITH TWO TIME SCALES

1.1 Introduction

This thesis is concerned with hyperbolic systems of partial differential
equations which have solutions varying on two distinct time scales, a 'slow’ scale
t, and a 'fast’ scale { /&, where ¢ is some small parameter. That is, the linearised
equations have {at least) two classes of normal mode solutions, one associated
with each time scale.

Such systems arise in the description of several physical systems, for exam-
ple in meteorology, oceanography, acoustics or magnetohydrodynamics.
Specific examples are given below. Often it is the case that the fast scale motion
is absent from the actual physical systermn being modelled, or considered rela-
tively unimportant therein, and, in a numerical model of the system, it is
desired to compute only the slow scale motion accurately.

Unfortunately, it has been observed that unless care is taken in choice of
the initial data for the numerical model, large amplitude fast scale waves are
excited early in the calculatioﬁ. obscuring and possibly destroying the underly-
ing slow scale motion. In particular, data obtained from measurement or obser-
vation of a real physical system will excite fast waves not present physically,
because of inevitable errors in the collection process.

Various schemes for eliminating these spurious fast scale waves by an
appropriate 'initialisation’ have been proposed, mostly by meteorclogists. Some
of these schemes are mentioned in section 1.4 below. In this thesis, we are par-
ticularly interested in the 'method of bounded derivatives’, proposed by Kreiss
[5.12,13], which is described in some detail in section 1.3 below, and which, for

reasons outlined there, this author believes to be the most useful scheme so far



suggested.

In brief, the bounded derivative method is based on the observation that
time derivatives of the slow scale motion are O(l1), whereas those of the fast
scale motion ~g7!. Thus, sclutions in which the fast scale motion is of amplitude
0(eP) must have p time derivatives bounded independently of £ at all times, in
particular at £=0. Kreiss has proven rigorously, for quite general systems, that
if the initial data are adjusted to ensure that the solution and a number p of its
time derivatives are 0(1) at £=0, then they will remain so on some finite time
interval [0,T], where T is independent of &, i.e. the fast scale motion present in
the solution will have amplitude O(£?) on [0,T].

In nonlinear problems, p is required to be = [¥n]+ 2, where n is the
number of space dimensions, and [7] is the largest integer less than or equal to
r. In one space dimension, this means p=2, in two or three, p=3. However,
numerical experiments in a two dimensional problem have found two to be
sufficient [4]. This, and considerations concerning the convergence, as £- 0, of
solutions of the equations with £# 0 to solutions of the limiting system of equa-
tions at £=0 [11], lead us to investigate in this thesis what happens if less than
the required number of time dérivatives are bounded initially.

First, we consider a model symmetric hyperbolic system of partial

differential equations containing two time scales, namely:
Ui = -4U, + [8(U.Vz0).

Vi = [¥(UVzt)], (1.1)

Ulz+2mw.t) = Ulz,t) , V(z+2mt)

it

V{z,t)

where 4 is a constant, non-singular, real, diagonal matrix, and ¢ and ¥ are

smooth, bounded, periodic functions.
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Our first result is that if the initial data for (1.1) are not chosen correctly
for thé suppression of the fast scale motion, but contain errors of amplitude
O(=#*), 0< u< 2, then fast scale motion of amplitude O(&*) will be present in the
golution, but the error in the slow scale motion resulting from interactions of
this motion will be of amplitude O(£?#) + O(g#**!), again on some finite time inter-
val [0,T].

Since the system (1.1) is nonlinear, it is possible that the O(¢*) fast scale

_motions could interaet-("resonate”) to.produce an O(#*) change in the slow scale

motion. For example, in the O0.D.E. system:

u = %Au w(0) = gugq
v = z—pfu v {(0) = sug (1.2)
wy = (uw)# w(0)=0
the solution has:
tv
w(t) = s(uovo)%j expie A+l dT (1.3)
‘ 0

which is O(g*), unless A+u=0, when resonance occurs and w both is O(g) and
varies on the slow time scale. Our result is that for the system (1.1) this does
not happen.

One consequence of our result is that the slow scale motion can be com-
puted with error O(z®) by choosing initial data so that only one time derivative is
bounded at £=0, carrying the fast scale motion along in the computation, and
filtering it out at the end. However, this is probably not a practical method.

A second and possibly more significant consequence is that if fast scale

motions of amplitude O(g) are in fact present in the physical system being

modelled, they can be omitted from the computed solution without introducing
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an error greater than O(g?) in the slow scale motion.

In atmospheric modelling, this could be significant, since fast scale motion
of amplitude O(¢) may in fact be present in the atmosphere, but there is little
hope of forecasting it accurately. If our result were to extend to the full equa-
tions goverﬁing atmospheric motion, it would mean that this motion could be
omitted entirely from numerical computations without introducing an error
greater than 0(82) in the slow scale motion of interest., An error of this size is
usually considered acceptable in present day weather prediction.

Interestingly, in [7], it was found that in a simple shallow water equation
model, the slow scale motion was relatively unaffected by the presence or
absgence fast scale motion for periods of up to a day, although no number for
tne relative amplitude of the fast scale motion was given.

We also consider systems of the form:
DUVt U, = i—(AU; + CU) + [8(U,V.x,t)];

DU Vzt)V;, = [¥(UVz.t)]; (1.4)
Uz +2m,t) = Ulz,t) . Vi{iz+2mt)= V(zt)

where D) and D® are smooth, bounded, periodic, symmetric, positive-definite,
non-singular matrices, C is a constant, real, anti-symmetric matrix, and all
other symbols are as in (1.1). The system is again assumed to be symmetric
hyperbolic. Again, examples of such systems are given in section 1.2.

The matrix D = diag(D(),D®) often appears in physical applications
because of the requirement of symmetry. Hence, in this thesis it will be called a
symmetriser, and systems (1.1) and (1.4) will be referred to as 'without sym-
metriser’ and 'with symrﬁetriser’ respectively. If Dis a constant, independent of

(U, V.z,t), then the system behaves as though D were the identity, i.e. like (1.1).
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The system (1.4) falls into one of two categories, with regard to its behavior
under perturbations of the initial data, according to whether the operator Py

defined by:
Pow = Aw, + Cw (1.5)

is, or is not, singular on the space S, of 2n-periodic, once differentiable, square
integrable functions of z.

First, suppoese Py is non-singular. Then we can prove a result similar to
that for (1.1), namely that if the initial data for (1.4) are not prepared correc\tly
for the suppression of the fast scale motion, but contain errors of amplitude
0(g), then fast scale motion of amplitude O(g) will be present in the solution,
but the resulting change in the slow scale motion will be of amplitude only 0(&?).

This result is less general than that for (1.1), in that the error in the initial
data is not allowed to be of amplitude O(e*) for u< 1. However, when u<1,
DN U Vzt) and D®(U,V.z.t) do not have even one time derivative bounded
independently of g, in general, and so the soluticon itself may not be bounded
independently of &, and one cannot expect a similar result to be generally true.

Next, if Py is sin‘gular. for ‘example if =0, since then Pqw defines w only up
to an arbitrary constant, the above result is not in general true, since any eigen-
function of Py associated with the eigenvalue zero (in the example C=0, this is
the mean value over z of w) can vary on the slow time scale and be of amplitude
0O(g). However, we can still show that if the initial data contain errors of ampli-
tade O(g), then the error introduced in the solution is also O(g) on some finite
time interval independent of ¢, though it may vary at leading order on both slow
and fast time scales.

A third consequence of our results is that solutions of (1.1) or (1.4) for

nen-zero & converge as £¢»0 to a solution of the reduced system obtained by
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taking £=0 in the equations, provided the initial data are chosen to be of the

form:
(va)lt=0=(Us’Vs)]t=0+ O(E‘u') (1'6)

where u> 0 for (1.1) and its generalisations, or =1 for (1.4) and its generalisa-
tions, and (U, V) is a smooth solution.

In [11], Klainerman and Majda address this question and prove some results
for symmetric hyperbolic systems similar to those we consider. Their theorem 3
on the "uniform stability” of solutions under perturbations of the initial data is
similar to our result, but is derived under more restrictive assumptions on the
coefficients. In particular, their system (4.34), which does not satisfy their
structural conditions, and which they conjecture is not uniformly stable, does
satis{y our conditions (provided a,{uz)= 6> 0 for some 6) and, although the large
part of the spatial operator is in this case singular, ourk"‘;theo’r"gx:r’l‘7k5\\"s;hows that
this system is in fact uniformly stable. -

The arguments used in the proofs of our results are quite simple. The cru-
cial step is the demonstration that the z-derivatives of the solutions are
bounded independently of & .This is easily shown for the system (1.1), but is
more difficult to show for (1.4). .‘Eiayirng shown this, the perturbation in the solu-
tion resulting ’f’ro‘m the error in the initial conditions is found by an asymptotic

7 eigggsﬂionh .

In chapter 2, systems without symmetrisers are considered. Theorem 1, for
system (1.1), is stated in section 2.1, bounds on the z-derivatives and some
other lemmata are proven in section 2.2, the theorem is proved in section 23
and the result generalised to other systems without symmetrisers in section 2.4.

Chapter 3 follows the same outline for systems with symmetrisers, except that

the singular and nonsingular cases are dealt with separately in sections 3.3 and
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3.4 respectively. The crucial proof that the z-derivatives are bounded is given in
section 3.2, and generalisations in section 3.5.
The following notation is used throughout the paper:
en
lwll = (ww)k . (wy) = { w ‘ydzx
|B| = supl|Bw |:|w =1}

lw | = supf|w(z)|:.0<zx=<2n].

That is, | || denotes the Lpz-norm of a vector, | | is the induced matrix norm,
and | | is the maximum norm of a vector. Also, the mean value over z of a

periodic function is denoted by:
1 2w
t = — t)dt .
<w(t)> zn‘{;w(x, ) (1.7)

while [r] is used to denote the largest integer less than or equal to the real
number 7.

Finally, a note on distinguishing fast and slow scale motion in a nonlinear
cystem. A function that varies only on the slow time scale is characterised by
Mk}l;‘a‘vinﬁguall its time derivatives bounded independently of &. An overbar ~ will
sometimes be used to denote such a function. On the other hand, a function
‘thit"os’é’:illates' on the fast time scale’ can be characterised by the existence of

some constant ¢, independent of £ but with £<<6<< 1, such that for any (z.t):

t+6

f w(z, 7) dT = 0(g) (1.8)

t-6

{where it is assumed the function is scaled so as to ~1 as ¢~ 0). A tilde ™ will be

uscd to denote such a function.



1.2 Examples of Hyperbolic Systems with Two Time Scales

Many of the systems that stimulated the present work, and most of its
references, are drawn from meteorology. There, some systems of equations
used to describe atmospheric motions, such as the shallow water equations

(scaled as in [4]):
4u, +uu, +vuy, + 5 g, - fu) =0
v+ U, + vy, + £ g, + fu) =0 (1.9)
P + UGy FUPy + 8 Uy +uy) =0

are hyperbolic systems having normal modes which fall into two classes. Physi-
cally, these are the Rossby modes, which vary on a time scale of a day or so, 0(1)
in this scaling, and the inertia-gravity modes, which oscillate on a time scale of a
few hours, O(s‘s’é) in this scaling. Although both modes are present in the atmo-
sphere, the amplitude of the inertia-gravity modes is smaller than that of the
Rossby modes by a factor of £ or £° and it is believed they are of little impor-
tance in determining the weather,

Following [4], the system .(1,9) can be linearised about a basic (geostrophic,

nondivergent) state (Z,7. ¢), and put into symmetric form:

) P ) _ )
at+Alax+Azay+A°Z+F"0 (1.10)
where:
T 0 e %d 7 o 0
A= 0 @ 0 , A, =10 T &4
ey 0 @ 0 & %d ©
0 -&lf O o,
Ao = e"f 0 0| +0(1) . Z=|, v
0 0 o0 e®d 7y
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and F is an O(1) forcing function depending on the basic state. Here,
d = (1+82§)1/2.

While this does put the system in the symmetric form required by the
theory, it does so only for the linearised case. To treat the full nonlinear equa-
tions (1.9), a symmetriser multiplying the time derivatives is needed, so this is
really a System 'with symmetriser’ rather than one 'without symmetriser’ as
might appear to be the case.

Again following [4], the system (1.10) can be Fourier transformed in the
space variables z and y (first 'freezing’ the coefficients 4;(z,y)), to obtain:

5F+f11iwl+Agi&)g + Ag f"l‘f—"-g (l.ll)

where w; and w, are the wave numbers, and ™ denotes the Fourier coefficients.
The eigenvalues of this system, i.e. of the matrix |&| M (A4iw, + Agiws + 4y), are

given by:
A, =0 _ . _3/2 2 + 1 -2 p2 1/2
1= 0(1) v Agg = i (R +e|DTFFE) P+ 0(1)

Since the general solution of (1.11) is of the form:
Z =), cjexpl—|d| Nt 1Z; (1.12)
=1

where the c¢; are constants determined by the initial conditions, and the Z are

the eigenvectors of the system, it is clear that the eiger}yaLue Ay leads to the
Rossby wave solutions, which osc@late on krthﬂe/ks’lczw tim? ’sgr;;lwefari,‘,_~ and the éfher two
4eigrenva71ues 1eéd ’to the inertia-gravity modes, which oscillate on a’L‘fast scale
£~ 72t |

One final note about this system. If &= 0, then the elgenvalues reduce to

those of Ay, two of which are still large, though only O(¢7!). Thus, the number of
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large eigenvalues’ is independent of z, t and &.
" Other examples of hyperbolic systems with two time scales can be found in
meteorology, for example the primitive equations, and oceanography.
Also, such systems arise in plasma physics. For example, the 7X7 system

governing the motion of a compressible, non-isentropic, magneto-fluid in three

-1
0 N
5}% divvy =0,

1 Vp 1 HxcurlH
— +— — 1.13
o Ve P (1.13)

space dimensions:

Pt +uVp +p

v+ (v'V v =

Hy +(vV)H + Hdivv —H Vv =0,

has two time scales in circumstances where the Alfven number A is large. These
equations can be symmetrised by a simple transformation [11], and then have a
diagonal, but nonlinear, symmetriser.

In [9] a specific example is given describing a plasma surrounded by
vacuum ccnfined between two infinitely long cylindrical walls. The problem is
assumed to be longitudinally uniform, so reduces to a one dimensional problem

in the radial direction. The equations are:
Pt +Upg +puUy, =0

a? B
- "
Vg + ———p, + VU + ) B, =0 (1.14)

By + Bug +vB, =0

where p is the density, v the velocity, £ the magnetic induction, e the sound
speed, x4 the permeability, and p the pressure, a given function of p. Analysis

similar to that in [4], outlined above, is performed for this system in [8]. This
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system also has two large eigenvalues, and a single O(1) eigenvalue describing
the motion of interest. This system can be put in symmetric form, even in the

nonlinear case, without the use of a symmetriser.
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1.3 Initialisation by the Bounded Derivative Method

As noted above, a simple but very general initialisation scheme, called the
bounded derivative method, has recently been proposed by Kreiss, based on the
observation that the slow scale motion is characterised by having a number of
time derivatives bounded independently of & A solution having p time deriva-
tives that are O(1), but whose (p +1)* time derivative ~g™!, must necessarily
contain fast scale motion of amplitude ~&?.

To restrict the amplitude of the fast scale motion to O(gP), it is therefore
necessary to ensure that the solution and p of its time derivatives are 0(1) at
t =0. This can be done by careful choice of the initial data. It remains to be
shown that this is sufficient, that the scolution will retain bounded time deriva-
tives on some finite time interval [0,T], independent of &.

In practice, it is not difficult te apply this principle. A constraint on the ini-
tial data can be derived for each time derivative that is to be bounded, and
these constraints essentially determine the variables associated with the fast
scale motion in terms of those associated with the slow scale. It may require a
projection in Fourier space to achieve this separation of variables [13]. In [4].
the initialisation process for the primitive equations of meteorology, on both
mid-latitude and equatorial 8-planes, is described in detail, and it is shown that
there is more than one way of adjusting initial data obtained from measure-
ments so that the required consiraints are satisfied.

This simplicity of application is one advantage of the bounded derivative
method. Another is that the method can be applied to both bounded and
unbounded regions with a wide variety of boundary conditions. Also, the basic
idea of bounding time derivatives can be applied at boundaries to determine

appropriate boundary conditions.
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We now summarise the theory developed by Kreiss and others [5,12,183,18]
which proves rigorously that this initialisation procedure is sufficient to control
the amplitude of the fast scale motion. Basically, this theory consists of the
derivation of energy estimates, independent of the fast time scale, of the form:

Y1

= K Phe
— BtY P

(2)

'u
V—OEF,‘(..O) “ (1.15)

where K, and o, are constants independent of e. [For nonlinear systems such
an estimate will in general hold only on finite time intervals, and the constants
may depend on the initial data.]

Iﬁ physical problems, it is natural that such an estimate holds for p =0, for
if not, the problem is not well-posed, and this probably reflects a deficiency in

the model being used rather than a real feature of the actual physical system.
Consider the symmetric hyperbolic system:

D{uZ t)u, = —1--P0 Zt, 6_, u + P,|u,Zt, 6* U (1.18)
€ 8z oz

where Z=(z,, .. .,Zp), Dis a bounded, positive-definite, symmetric, non-singular

matrix with bounded inverse, a smoeoth function of its arguments, and:

Py

-, 0O o o - o
x.t,a—f-}u = l/ajgl{Aj(x't)uzf + (A,-(x,t)u)zj] + C(Z.t)u (1.17)

n —_— — —
Pl [uii’tl %]u = llz Z {AJ (ul£>t )UZj + (Aj(ul‘:f:t)u).tj] + C(u‘i't)u
P j=1

where all the coefficients and their derivatives are bounded independently of &.
Assume that the operators £ 1Py and P; are semi-bounded, i.e, there exist con-

stants K and X, independent of &, such that:

Real(w,Pow) = K |w |[? , Real(w, P(u)w) < K|wl|?® (1.18)
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for for any fixed © and all w satisfying the boundary conditions, which may be
periodic, 'solid wall’, or 'open’, but in the last case must be dissipative.

The bounds (1.1B) lead to the basic (p =0) energy estimate:
lw(.t)] = Koe®™E ™ u( to)] for all £,£0e[0,T] (1.19)

for constants ag, Ky and 7, independent of g, and are therefore natural assump-
tions.
Finally, assume that the eigenvalues &(2) of the symbol Py(Z,£,1%) fall into

two sets, M, and M, given by:
K(D)eM, <=> kiR and |k(D)]| = c(]w|+1) for all & (1.20)
K(D)eMqs <=> k(D)=0 for all &

where ¢ is some strictly positive constant independent of &, Further, assume
each eigenvalue belongs to the same set #; for all Z and £. This ensures that the
large part of the operator is nonsingular and elliptic on the subspace spanned
by the eigenfunctions associated with M,;, and precludes ‘turning-point
behaviour’. This is also a natgral assumption, since in systems where the fast
scale motion is oscillatory in nature, as here, turning-point‘behaviour is rare.

In some systems of physical interest, the number of large eigenvalues can
change at particular values of &. In particular, if C = 0 in (1.17), then all eigen-
values of the symbol fall to zero at ’5=6. This is the 'singular case’ mentioned in
the introduction, and it can lead to genuine differences in the behavior of the
system, but for many purposes the condition in (1.20) can be relaxed for & with
& |=< B, for some constant 8 (independent of g, of course).

For the case where the coeflicients of Py and P, are constant, the problem
can be reduced to a system of ordinary differential equations by Fourier

transformation. Then, the theory developed in [12], in which one finds the



- 18 -

solution by a simple asymptotic expansion, can be applied to show the validity of
the method.

When the coefficients are not constant, one must derive energy estimates by
the standard method of taking inner products of the various derivatives of the
solution with their time derivatives obtained from derivatives of the original
equation. When Py has constant coefficients, this is not difficult, since the terms

involving 7! always have the form:
£~ w, Pow)

for some w, and, in view of (1.1B), these terms are all 0(1). Thus the problem is

essentially reduced to:

D(uzt)u, = P, u,i’f,t.%u (1.21)
Z

which is a standard problem. Estimates of the form (1.15) hold on some finite
time interval (which may depend on the initial data), for any non-negative
integer p if the system is linear, for any p=["%n]+2 if it is nonlinear. This
requirement arises from the need to consider at least this many derivatives, in
the nonlinear case, in order to obtain a closed system [5].

If Py has variable coefficients, terms apparently of amplitude ~&™! appear in
the estimates. For example, taking D=J, P;=0, and restricting to one space

dimension for ease of exposition, if w=u;, then
o1 : 1 .
U = ‘E—Pou + ‘;‘Pou (122)

a

P N I |
o 1@ l® = HwPoi) + “Hu,Pou) (1.23)

1
= 5

Here, of course;
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. n N a R .
Pg = EA:(:E,t)-——ax' + [Yedy (B8) + Ci(2,8)]
J

Jj=1

The first term on the right in (1.28) is O(1), by (1.18), but to show that the

second term is also O(1) requires more work. Further suppose (following [12])

that the system has exactly two large eigenvalues, i.e. Py(z,t,iw) has exactly two

_nonzero éigenvalues for all z, £ and w. This is the case in many applications.

Then, Kreiss [12] has shown that Py can be transformed into one of two normal

forms, namely:

Pou = %R[A(z,t)u, + (Alz.t)u),] + Clz,t)u

where either:

Ay O Gy T2
“lo o . An = Q2 g ' |A11]#0
i1 O 0 ¢y
or:
Ay O @ i
= 0 o} ' All = @,z 0 , Elz#:o
0 cip c13 O ]
~Cig 0 o]
C= ~C13 0 o s Cls?go
o

(1.24)

(1.25a)

(1.25b)

(1.28a)

(1.26Db)

The special structure of these normal forms can be used to show that the

apparently large term in {1.23) is in fact O(1).
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In the first case, the fast and slow scale variables separate (to the approxi-
mation we have made). No ¢! terms appear in the equation for the slow scale

variables, while the first two components u/ of w form the fast scale variables,

and satisfy:
uf = %{Auuif + (YA + Ciu’ (1.27)

= ul = -Aff (A1 + Cr)ul + sAfuf (1.28)
Thus:
Pou = Apgul + (% Apyg + Cipg)u!

= =A11¢ ATt (YA + Cr)ul + (%A1 + Crul + sd pATiud

= Bul + ed  Ariu! (1.29)
say. Hence:
ul = —i—»(Péuf + Bul) + Ay Aniu! (1.30)
Now let 7 satisfy:
Plz + Bul=0 (1.31)

By the assumptions (1.20) on the eigenvalues of P{, which ensure that it is a

nonsingular elliptic operator, and the boundedness of 5;

lz | + 2, || = const.|u’] (1.32)

So, letting u! = u'—m:

! 1 , 1 .
ul, = —E—Pgu{ + A Arta? (1.33)
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for which an energy estimate is easily obtained. In this way the apparently large
term has been eliminated.
For the second normal form, the second and third equations may be

written as:
Yo(apuf?) + (a2u),) + cppu = ¢f
c1gul) = 2(gs + 1) (1.34)

where f, g and A are functions of the other components of the solution and its
time derivative. If f, g and h are assumed known, then this is an overdeter-
mined system for u{) and it can be shown that if a solution exists it must

satisfy:
lud ] + |u®] = econst.(|7 ] + llgll + I~ 1)
< gconst.(||u] + ||[w]) (1.35)

This shows that «(!) is essentially O(¢). and since the apparently large term:

0 Ciz2 Ci13 -

1 =P _ 1 ’.—C.lz D O .
. (w,Pou) = s, 0 0 |® (1.38)

involves u{! in every term, it is not hard to show now that it is in fact O(1).

In more space dimensions, there is only one normal form, the generalisa-
tion of the second form. If there are more than two large eigenvalues, as is the
case in some magnetohyrodynamic situations for example, then Tadmor [18]
has recently shown that there will always be an even number 2q of them, and
that there are, in one sphce dimension, g +1 normal forms, the two above plus

g -1 intermediate forms. The same techniques can be used to show that the
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solution and its derivatives are bounded in terms of their initial values in these
cases also.
Finally, in the case where the coeflicients of Py are also nonlinear, Kreiss

and Browning [5] show the theory still holds if Py has the rather special form:

L4

I
"’)-—[ (1.37)

Polug) =1F o

where f; = -?I-— F'=(fa....fn). and f(u) is a smooth function of u with no

explicit z or { dependence, and similarly for g and h.
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1.4 Other Initialisation Schemes

In the past, several different schemes for choosing initial data to suppress
the fast scale motion have been proposed. A brief summary of most of these
schemes, and remarks on their relative merits, may be found in [4]. At present
there seem to be three basically different schemes in use, while earlier schemes
are in general special cases of one of these three.

The first scheme is called 'dynamic initialisation’, see [15] or [16], in which
the equations of motion are integrated forwards and backwards for a few time
steps from the given initial data, with a small amount of dissipation added. This
has the effect of damping out the fast scale waves in the initial data, and so
arriving at suitably balanced initial data. This scheme is quite simple to apply,
but there are questions concerning its effectiveness in weather prediction, par-
ticularly in tropical latitudes.

The second scheme is called 'normal mode initialisation’, see [7] or [19], in
which the given initial data are expanded as a series in the normal modes of the
system. Then the fast scale modes can be removed by setting their coefficients
to zero. These modes can return through nonlinear interactions at later times,
but it can be shown, using the method of multiple time scales (‘two-timing’),
that if a suitably chosen small amount of fast scale motion is retained initially,
the amplitude of the fast scale motion can be kept as small as is desired, see [1],
[2] and [14]. The disadvantage of this scheme is that the normal modes of the
system must be found. This is not difficult for, say, a whole-globe weather pred-
iction model, but in limited area forecasting it is in general not possible.

The third scheme is the 'method of bounded derivatives’, described in detail
in the previous section. This has none of the above-mentioned disadvantages of

the previous two schemeé, is simple to apply, and quite generally applicable.
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Chapter 2: HYPERBOLIC SYSTEMS WITHOUT A SYMMETRISER

2.1 Statement of the Problem

Consider again the system (1.1):
U, = %—AU, F[B(UVz )]

Ve = [¥(UV.x.t)]; (2.1a)
Ulz+2m.t) = U(z.t) , V(z+2mt)= V(z.t)

Assume that A=diag(X\;. Az, . . . . Ay ), each Aj, 1= j=m, being a non-zero real con-
stant, that & and ¥ are C” functions of all their arguments, 2m-periodic in z,

having no explicit £ dependence. Also assume that the system is symmetric

1
hyperbolic, i.e. the matrix £ Atoy oy is real symmetric.

¥y ¥y
From [5], solutions of (2.1a) varying on only the slow time scale ("smooth
solutions’) exist. As discussed above, to obtain such a solution, the initial data
must be chosen appropriately: in this case, V(z,0) may be chosen arbitrarily,
but then U(z.0) is determined up to O(¢?) for any p. In fact, U(z,t) = O(e) in

(U

any smooth solution.
Thus, suppose (gug(z .t),vs(z.t)) is a smooth solution of (2.1a). Since we are
interested in investigating the behavior of the solution under perturbations of

the initial data, take:

| U(2.0) = suy(2.0) +e:“f () (2.1b)

V(z,0) = vs(z,0)

{

where 0< < 2 and f (z) ¢ C” is 2m-periodic and independent of &, with:
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{;?x)dz =0 (2.10)

This condition is in fact not necessary for our results, as we shall show in sec-

tion 2.4, but we assume it here to simplify the proof of the theorem in this sec-

tion.

Since the equation (2.1a) is in conservation form, (2.1c) ensures that the
perturbation in its solution resulting from (R.1b) always has mean value zero.

That is, the perturbation is restricted to a subspace (SI? say) of S, on which the
large part of the spatial operator Py =4 -aa?is nonsingular, and in fact Pg! is

then O(1) in the sense that:
Pow = f , w e S;;’
= lwle=Rr|A7 S | (.2)
Let v, v be the perturbation in the solution:
u(z.t) = U(z.t) —sus(z,t)
v(z.t) = V(z.t) —vg(z.t)
The equations satisfied by u and v are:

= S huy + [Bra(mt)u + Bz il + [pluv.z.t)],
v = [Bar(z bt u + Boglz £)v], + [Wluw.,z.6)]a
u(z,0) = ef (z) . w(z,0)=0 (2.3)
u(z+2mt) = ulzt) ., v(z+emt) = v(z.t)

where (B;u + Bpv) is the linear part and ¢ the quadratic and higher part of:
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[®(sus+u vst+v .z ,t) — & (su,us.2,L)] ,

and (Bz1u + Bgev) is the linear part and 4 the quadratic and higher part of:

(¥ (sus+u vetv ,z.t) = ¥ (eus vs.2.t)] .

Each of B, 1,=1.2,1is C* in z and {, 2m-periodic in z, and, together with all its

z and t derivatives, is bounded independently of . The same may be assumed

of ¢ and ¥, with bounds uniform in © and v, since such bounds are needed cnly

in a neighborhood of the solution, and ¢ and ¥ may be altered elsewhere without

affecting the solution.

The main result of this section is then:

Theorem 1. If uw,v is the solution of system (2.3), the perturbation of the

solution of {2.1) when (2.2) are used for the initial conditions, then there exist

constants g, Ko, K, 6 and T, independent of &, and strictly positive, such that:

lu(.0)] = &Ko
Tz + lv()] = (3 + e# DK,

where:

forallt £[0,T] and all £ = &.

Put another way, the solution of (2.3) has the form:
g

u(z.t) = a:"i'zﬁ.“(xt) + O(EEH)}"' O(emtty

v(z.t) = O(s2) + O(s+Y)

(2.4)

on some O{1) time interval, where 7' is O(1) and oscillates on the fast time scale.
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2.2 Some Useful lemmata

The first and most important lemma we need states that the z-derivatives
of the solution are bounded independently of ¢, even if the £-derivatives are not.
The lemma is”stated here in more general form than is needed for theorem 1,

since the more general form will be required in section 2.4.

Lemma 2.1 Suppose w(z,t) satisfies the symmetric hyperbolic system:
wy = -i—-(A'w, + Cw) + p(w,z tw, + y(w,z t)w (R.5)

w(z,0)=f(z) , w+mt)= w(z,t)

where 4 is constant and symmetrie, C is constant and antisymmetric, ¢ is sym-
metric, ¢, ¥ and f are pericedic in z and C® in all arguments, and there exist

constants Pgrs, @grs and K, independent of &, such that:

petT s @ ,
91, .. Im g7 s\w"'t) = qus
dw, ow,, ™oz ot
aq+7‘+s
Z (W, t) | £ Qpre (2.8)
pw, ! Bw,, BT BES
L |
gxs ||~ °
for all w, all nonnegativer,s and g1, . .. , gy With g=g+ - - +gq,.

Then there exist constants T, g5 and K5, independent of g, such that:

6T+sw
oxTots

1) “ < 25Ky (2.7)

for allt £[0,T], all ¢ < &y and all nonnegative r s.
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Proof This is a standard result [5], but for completeness a proof is out-
lined here. It proceeds by estimating the growth of the L norms of the selution

and its z-derivatives. First then, from (2.5):

i 2

T (ww) = (w,plw.z t)w) + (w,y(wz.t)w) '

L
2
since the symmetries of 4 and C imply that:
(w,Awz) = 0 . (w,Cw) =0

for all w. Now, using the bounds (2.6):

(wy(wz.t)w)=< Qogolw |?

(w,plw,z,t)w;) = ——é—[w,%ﬁ—w] = - é‘fl(w-ﬁoijjzw) - -é—(w,;a,w)
j=

< "% |w |[*(Powo + mProo|ws | =)

where the subscript notation has been used to denote a partial derivative with

respect to =z only if all other arguments of the function are to be held constant,

while -a%—has been used when only ¢ is to be held constant. Hence:

d
a—t—-(fw,w) < const. |w ||?*(1 + |wy|w)

Similarly, if ¥y =w;:
1 ol 8
Y; = E—(Ay‘” + Cy) + plw,z t)y, +y(w.z by + b—%—(w,x,t)y + é%(w,x,t)w

& E W)= Qoo HePaiotmPoolws ) 1y 12 + (Quigtm o ) 1y 11w

< const. ([ly [® + [y [ lwID(L + |wz]s)
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Finally, if 2 =wg;:

(Azz + Cz) + p(w z.t)z, +v(w,z t)z + Z—L(w z.t)z

.‘3
m‘|—~

2 2
09 y+ T2y (")

Lo 28
+ 26.7: (w,z.t)y + Pyt o?

Here, the inner product of z with all but the last two terms can be estimated as

above, while:

S

62 !2
Z, 522 ] (= 'v'pijﬂzy) + 2 z G”wtijwwjzy) + Z '§0wjzwjzy) + (2 922y )
j=1 1.j=1 F=1

7
Z 2 P, Wizz¥ ) + (PozotMP 110 | W; | +¥emPPogg|w, [2) [y Il [ 2 |

But:

5 (= puywiey) = 1 (7.97052) S mProly |- 2 | e |
i= j=

where the ik** component of ¢, is equal to the ij®* component of Pw,. Thus, this

term can be bounded in terms of the Lg norms of w and its first two derivatives
and the maximum norm of its first derivative._ The last of these can in turn be
bounded in terms of the first two. The point here is that by interchanging the
positions of w,, and y =w, in this last term, reference to |w,; |. in the bound is
avoided; this is necessary since |w;; |~ cannot, in general, be bounded by L,
norms without introdﬁcing the third derivative with respect to z, and if this
were to appear, we would not have a closed system.

The final term in (*) can also be estimated by the same means, so, collect-

ing everything together, it follows that:

gg—(zz)é const. tllz [(llz [+l [+ w D(1+|ws =) + [we [z 1 (ly [ +]lw )3
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In view of Sobolevs inequality:
lwz |w = const. ([lwg ||+ 1wz ||)

the three inequalities we have derived form a closed system of nonlinear ordi-

nary differential equations in time for [|w |, ||y | and ||z |. Further, the system
is indepevndent of £&. Therefore, for any O(1) initial data, it has a bounded solu-
tion on some finite time interval independent of &. On this time interval, which

may depend on the initial data, the solution is bounded in terms of its initial

value. The lemma now follows,

Lemma 2.2 Suppose w(z,t) satisfies:
w, = -i—sz + [Blz.t)w], (2.8)

w(zx,0) = f(z) . wlz+2mt) = w(x.t)

where A is a constant, symmetric, nonsingular matrix, B is symmetric, both 5
and f are 2m-pericdic in z and C® in their arguments, f satisfles (2.1c), i.e. it

has mean value zero, and there exist constants Py and K., independent of ¢,

such that:
6T+S B aS’f
dxT oS ("t)}s Frs ' 5z | = e

for all nonnegative r ,s.

Then there exist constants K, g5 and §, independent of g, such that:
lw(.t) | < ek, (2.9)

for all £ = gy, where:

t+6§
E(m.t)=f6 w(z,7)dT.
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Proof By the previous lemma, |w |. is O(1). Let:
Pow = Aw; + g[B(z.t)w];

As noted above, Pyl exists and is bounded independently of ¢ on the subspace
sg, and w belongs to this space for all £ since it does so initially and the equa-

tion has conservation form. Also, since 4 is constant, Pg! commutes with g—t—at

leading order. Thus:

W = ’];'Pgw
= w = gPylw = sgaz—Pg‘lw + 0(fw)
Thus, for any ¢ with e<< d<< 1:
t+6 [ t+8
f w(r,7)dT= slPo‘lwt 6+0(szw)
t—¢ -

< Re| Pt | |w |o + 0(Pw) = O(e)
whence the result follows.

Lemma 2.3 Suppose w(z,t) satisfies:
w; = %—sz +[Blzt)w], + Flz.t) (2.10)

w(z,0) =0 . w(z+2mt) = wixz,t)

where A and B are as in lemma 2.2, F' is C7 in z and ¢ and 2n-periodic in z with:

29

fo Flz t)dz =0 (2.11a)
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and there exist constants @, independent of g such that:

o F -
"a';?'(.,t) < Gsg s=0,1 (2.11b)

for allf. Then:
(i) if £ varies only on the slow time scale at leading order, i.e. if there exist

constants &s;, independent of g, such that:

< @, s=0,1 (2.11¢)

as+1F |
~——{ L
dxSot >|

for all £, then for any fixed T, independent of & there exist constants X and &g,

independent of g, such that:

lw(.E) ] =

M

K , (2.12)

it

for all ¢ £[0,T] and all &< &.
(ii) if F oscillates on the fast time scale, in the sense of (1.B), at leading

order, ie. if [|[F(.£)| = £ for some constant @ and all ¢, then for any fixed T,

independent of g there exist constants K5, X, and &, independent of & such

that:
lw(.t)ll= K . [@LE)] = ek, (2.13)

for all t £ [0,T] and all &< g5. Here @W{z,t) is the mean value of w(z,7) over the
time interval [t —6.t +6], £<< §<< 1. Thus, w also oscillates on the fast time scale

at leading order.
Proof (i) As in the proof of lemma 2.1, since 4 is constant and symmetric:

> 1w ? = (w.(Bw)z) + (w.F)
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< const{|w|?+ |F|3

L |2 = (wp. (Bwe)s) + (we(Bew)s) + (wp Fy)

< const {flwg [|* + |wl? + |7 |®)

Since |F|. | F¢||, w{z,0) and w;(z,0) are bounded independently of &, it follows
that [|w;(.,£)] is also so bounded on any O(1) time interval [0,T]. Since F, is
bounded independently of &, it can be shown in similar manner that [wg(.,£)] is

also 0(1). Thus by Sobolevs inequality:
[w () |w = const. = 0(1)
on [0,T]. Thus, with Pq as above:
w; = %—Pgw + F
= w = ePyt{w, - F)
= W |w = sconst. {| Wi |e + | Fla)
< econst. ([we [ +[[wy [+ F I +]Fz ) = 0(e)

whence the result follows,

(ii) Here:
w = sPd’l('wt "‘F)
t+6 i t+6
= fﬂs wiz,7) dr = [ePglw ] + 0(2w) —Po-lf6 Flz,7)dT+ O(eF)
¢ -~
= lw | =0(ellwl) + OCIF ) + O(e| FI) = O(e)

as required,
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Lemma 2.4 Suppose w(z ,t) satisfies:
wy = [B(z t)w]s + [Buz.L).Fi(z.t)]z (2.14)
w(z,0) =0 , w(z+2mt) = w(z,t)

where B and F are as in the previous lemma (either case), except that (2.11b)
must hold for §=0,1,2,3, i.e. F has three O(1) space derivatives, and B, is C™ in
r and ¢, 2m-periodic in x, and, together with all its derivatives, is bounded
independently of . Then there exist constants #, T and &, independent of e,

such that for e< gy and ¢ £ [0,T]:
(w(t)]w< M (2.15)

Note this is true whatever the magnitude of the time derivatives of ¥, which may

be O(e7h).
Proof Let w) satisly:
w = [By(z .t).Fy(z.t)],

wilz,0) =0 , w(z+2mt) = wiiz,t)

g

Then:

w(z t) = { El(z,tm(x,“t)dt]

z

= {[El(z,t)}"’(x,t)]é —ftBlt(x,t)F(x,t)dt}
0

z

Thus, ||w(?|| can be bounded in terms of |7 | and |F,| (and norms of B, and

its derivatives of course). Differentiating with respect to =z, it follows that

|lwil] can be bounded in terms of [F |, |F;| and ||Fyz |, while [|w Dlcan be
z z |
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bounded in terms of these and ||Fi.||. By assumption, all these norms are
0(1), so wV certainly satisfies a bound of the form (2.15).

Let w® = w—-w);
wl® = [B(z H)w®], + [B(z t)w],
w®(z 0)=0 , w®(z+2mt) = wB(z t)
By Duhamels principle, and the bounds on B and its derivatives:

lw@(.4)] = const sup {lw®(.7) |+ wi(.7)3

and:

|wB(.8) | = const sup {[wI (D) +]wi7) [+l D3

on any O(1) time interval {0,T]. The result follows.
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2.3 Proof of Theorem 1.
In the system (2.3), we are hoping to show that v is an order in & smaller

than «. Therefore, as a first approximation we neglect v. Neglecting also non-

linear terms, since u is expected to be O(&*), let uq satisfy:
1
ugr = —Augz + [Bu(z.t)ugls (R.18)

ug{z,0) = #f (z) . uglz +2m.t) = ug(z.t)

By assumption, the bounds required in lemma 2.1 and lemma 2.2 are satisfied

by By, and f, so we may write:
uglz t) = sfigz L) (2.17)

where @ oscillates on the fast time scale, but, together with all its z -derivatives,

is 0(1). Also, (2.18) may be written as:
gUg; = Poug
where Pq differs from the Py in (2.2) only by an O(g) term. Thus:

- d - -
Ug = ePglug = eop (Fo o) + ePg Py, ug

= sg-t-—(Po‘luo) + O(gPu,) (2.18)

since (2.2) still holds, and Pg = 0(g); essentially Py and égt— com-

mute at leading order.

Next let a first approximation to v be v, satisfying:
Uy = [Beg(z vy ] + [Bai(z )uele + [Y(uo02.t)]; (R.19)

v, (z,0) =0 . vi(z+Rmt) = v(z t)
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' Using (2.18), it can be seen that the linear forcing term in this equation is:
[Bai(z t)ugly = e[Bai(z t).(Pglug)ils + O(sfug) (R.20)

Thus, noting that Pg! is bounded, and from lemma 2.1 that the z-derivative is
of no consequence, lemma 2.4 implies that this term makes a contribution to
the sol}utvion v, of amplitude O(su,) = O(e#*!). Also, the nonlinear forcing term
[¥(uq,0,z .t)]; is of amplitude O(ug) = O(£**); by Duhamels principle, it therefore

makes a contribution to v, of amplitude O(s*#). Thus:
vilz.t) = e*lu(z t) + Py 1(2)(:2:,() (2.21)

where v{!? and v{?) are both bounded independently of £ but may vary on both
the fast and slow time scales at leading order,

Now return to the v equation, and let u, satisfy:
1
Uy = ';‘Aum + [Bulz.t)uy ]z + [Bip(z t)u]s + [e(uo0.2.t)]; (R.22)

u{z.,0) =0 : wi{z+2mt) = uw(z,t)

By lemma 2.1, the z-derivatives are unimportant, so the forcing term in this sys-
tem has amplitude O(e**!) + 0(¢?¥). It may vary on both fast and slow time
scales at these'order‘s in epsilori, but, by lemma 2.3, terms that vary only on the
slow time scale make a confiribution to the solution that is smaller by a factor of

£ than the forcing itself. Thus it is sufficient Lo solve:
1
Uy = AU+ [Bulz t)u,]z + (I-S)[Bia(z t)vy + p(ue,0.2,)], (R.23)

u,(z,0) =0 , w(x+2mt) = u,(z.1)

where Sis the time-averaging operator, given by:
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t+6
Sw(t)=f w(T)dT
t—6
for some & with £<< << 1, This has solution:
wy(z,t) = #T (2 ) + 0P (z,t) + lower order terms (R.24)

where both 7Z{" and @® are 0(1) and oscillate on the fast time scale.

Also from (R.23), arguing as from (2.17):
guy; = Pou, + &G (say)

= wy = ePiluy - PG
= s%—-(FJlug) — PG + O(sPuy) (2.25)

Here, G is O(£%#) + O(£**1). Thus, the next approximation to the v equation:
var = [Boalz £)vele + [Balz . tlurle + [Y(uetuy vz t) —P(ue0,z,.t)](2.26)
va(z,0) =0 . volzx +2m.t) = valx t)

has solution which, by lemma 2.1, lemma 2.4, and Duhamels principle, is of the

form:
va(z t) = O(su,) + O(sG) + O(uolu;+v,))
= O(e#*?) +’ O(e*#*1) + O(&%%) (2.27)

This iteration between the two equations can be continued to obtain an
asymptotic expansion of the solution to (2.3) to any desired order. All remain-
ing terms will be of the same order in £ as vy, or smaller. This is so, because the
remainder terms u—uo;dztl and v —v,~v, satisfy a symmetric system, which is

well-posed with a growth constant independent of & Thus, by Duhamels
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principle, this system will have solution of the same order in ¢ as the forcing
terms, and, by lemmma 2.1, these are no larger than v,.
All terms of amplitude &4, £ or #*! in the solution of (2.3) are thus given

by the linear systems (2.16), (2.19) and (2.23).
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2.4 Generalisations of Theorem 1

In the proof of theorem 1, the essential features were that all z-derivatives
of the solution were bounded independently of g so that successive forcing
terms in the iteration did indeed become smaller, and that the large part of the
spatial operator, Py, was nonsingular, with inverse bounded independently of &
The result can be extended to any symmetric hyperbolic system for which these
two properties remain true.

(a) Undifferentiated Terms Suppose (2.1) is modified to have the form:
U, = %AU,, +[8(U, V2 .t)], + T(U.V.z.t)

V, = [Y (U Vzt)], + QU V.x.t) (2.28)
Ulz+2mt)= Ulz,t) , V(iz+2mt)= Viz,t)

where [' and (0 are C” functions of all their arguments, 2m-periodic in =z,
bounded, together with their derivatives, independently of £, and all other sym-

bols are as before.

Subtracting out a smooth solution, we obtain, analogously to (2.3):
U = -i—Auz +[Byu + B +p(u,w)]y + Criw + Cipv + y(uwv)

Ve = [Bogv + Boyu + Y(u,v)]; + Cosv + Coyue + w{uw) (2.29)

say, with initial and boundary conditions as for (2.3). From lemma 2.1, the z-
derivatives of u and v will still be bounded independently of & but the mean
value <u> of u will no longer be zero for all time, so the spatial operator is not
uniquely invertible. However, the mean value of » is a slow scale variable, ie. it
has at least one time defivative bounded independently of g, so it should really

be grouped with the v variables rather than the other u variables.
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A separate equation can be formed for <u> by averaging the first equation

of (2.29):
<u>; =< Cpu> + <Cu> + <y(uv)>
=< C><u> + Flu,<u>v,<v>) (2.30)

say. Subtracting this from the unaveraged equation, and writing v foru—<u>:
U = i—Au, +[Byuw + Bpv +e(uw)], + Criw + Cigv +y(u+<u> v) + C1<u>

< Cu> + < Cigu> + <y(u+<u>v)> +<Cp><u>]  (2.31)

This replaces the first equation in (2.29), while the second equation in (2.29) is
augmented by (2.30).

Now the mean value of . is zero, and the proof can proceed as before, The
first approximation to u, ug, is as before, being O(&*), oscillating on the fast
time scale, and satisfying (2.18) with slightly modified Py. (2.18) can now be
used in the second equation of (2.29) as before, and also in (2.30), to show that
both v and <u> are at leading order O(&#*!) + O(£®). The rest of the iteration

proceeds as before,

(b) Large Undifferentiated Terms Suppose an undifferentiated term is

added to the large part of the spatial operator in (2.1):
U, = -i—(AUz + CUY + [8(U,V.z.t)]:

V, = [¥(U.V.z.t)], (2.32)

Then, provided C is constant and antisymmetric, so that the z-derivatives

remain bounded, the proof goes through as before since the large part of the

spatial operator Py = 4 5_65;—+ C is nonsingular on 5,, provided any part of u that
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is an eigenfunction of Py corresponding to eigenvalue zero is subtracted out,

just as the mean value was in (a).

(c) More Spoce Dimensions and Nonseparation of Scales As remarked in
[5] lemma 2.1 applies also in more space dimensions, the proof being modified
oniy to the extent that spatial derivatives of higher than second order must be
considered before a closed system can be formed, since the Sobolev inequality
for the maximum norm in terms of L, norms requires higher derivatives. This is
not a serious difficulty.

A difficulty that may arise in more space dim‘ensions is that it may not be
possible to separate time derivatives of the fast and slow scale variabies into two
different equations, as we assumed in (2.1). However, such a separation can be
carried out in Fourier space, exactly as in [5], by means of a projection. For
each fixed &, the eigenvalues, x, of the symbol, Py(id), of the large part of the

spatial operator are assumed to fall into two classes:
k=0 or el = 1

(in the latter bound, 1 can be replaced by any 6> 0 by redefining £). Then, for

each &, there exists a unitary matrix U(i®) such that:

TE s\ T ¥ ﬁ(ia) O =1
U(iD)Polid)U (i) = 0o o (Rl =1 (2.33)
Then the projection ¥ is defined by:
A 12) O o~
Ru = e 06n)| § ol U7 (10)2(D) (2.34)

where % (®) are the Fourier coefficients of w (%), and [ is the unit matrix of the

same dimension as £(id). S, can be written as the direct sum of:
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S{=RS, . S{=(U-R)S, (2.35)

and then Pou¥ =0 for all u” £¢S¥ and P; is nonsingular on Sf with inverse

defined by:

EYid) 0

o ol U Gd)E (@) (2.38)

po—-luI - Zeia,i (,7(1,5)
]

In view of (2.33), |Pgl| = 1.
Now, u/ = Ru is the fast scale variable, v = (/—R)u the slow scale vari-

able, and they satisfy equations of the form:

'u;—}-—Po 4 ul + -
& 8z
ufl =

where the omitted terms are formally 0(1).
The remarks in (a), (b) and (c) may be collected together and expressed

more formally in the following generalisation of theorem 1:

Theorem 2 Consider the symmetric hyperbolic system:

U = 1P, —@;]U + P, U,E,t,s,pr] + F(Z t.8)
€ 0z oz
U(Z,0) = Us(i:',o) + 41 (2) (2.37)
U(Z +2mé;t) = U(Z.t) 1€j<n
where Z=(z;, ..., Zn), &; is the unit vector in the jth direction, Uy(Z.t) is a

smooth solution of the first and third equations, F is C* in Z and ¢, 2n-periodic
in Z, and, together with all its derivatives, is bounded independently of &, u> 0,

and:
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5 Z 0
P = ;——+ C 2.38
o[‘}ai ;'§=31A7 oz, (2.38)

ki3
FI[U,.?:.t,s‘ 01 =9 L 1s (U 2..0)] +&o(UZ1.5)
6:7: i=1 a‘rj

where A;=4;, 1<j<n, C=-C* and %,;, 0<j<n, is C* in all arguments, 27-
periodic in Z, and, together with its Z and ¢t derivatives, is bounded indepen-
dently of &.

Further, we assume that each eigenvalue k of the symbol B(i®) is either

zero for all & or satisfies:
(@) = A (2.39)

for some positive constant A, independent of & for all &, except possibly at a
finite number of values where some of these eigenvalues may also be zero.
Then, the result of theorem 1 applies, namely, there exist constants g, Kj,

K,, 6 and T, independent of ¢, and strictly positive, such that:
U = U)t) | = &K, (2.40)

ITT =T (L) = (2 + e#* VK,

forallt £ [0,7T] and all £ £ &, where:

t+6

iU—Us5(3‘~:,t)=f (U~-U)ZETdT .
£~
Put another way, the solution of (2.37) has the form:

UE L) = U (Z ) + HT(E £) + O(%) + 0(e#1)) (2.41)

where 7" is 0(1) and oscillates on the fast time scale.



Chapter 3: HYPERBOLIC SYSTEMS WITH A SYMMETRISER

3.1 Statement of the Problem
In this chapter we follow the analysis of chapter 2 for the more general

hyperbolic systems with symmetrisers. Thus, consider again the system (1.4);
DU Vz t)U, = -i—(AU, +CU) + [8(U,Viz.t)].

DU V)V, =[¥ (U Vz.t)], (3.1a)
Ulz+2mt)= U(z,t) , Viz+Rmt)= Viz.t)

Assume that A=diag(A; A, . . . . Ap), each A;, 1= j< m, being a non-zero real con-
stant, that C is a constant, real, anti-symmetric matrix, that &, ¥, D! and D®
are C* functions of all their drguments, 27-periodic in z, and have no explicit ¢
dependence, and that each DU) is symmetric, positive-definite, nen-singular and,
together with its inverse, bounded uniformly in (U,V). Finally assume that the
systerﬁ is symmetric hyperbolic.

Suppose (sug(z,t)vs(x .t)) is a smooth solution of (3.1a), see [5]. Take ini-

tial conditions:
U(z,0) = sus(z,0) + ef (z) (3.1b)
V{z,0) = vg(z.0)

where f (z) ¢ C* is 2m-periodic and independent of .

Set:
w(z,t) = [Ulz,t) — sug(z,t)] (3.2)

viz,t) =t [V(z,t) —vs(x t)]
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noting that the scaling differs from that in chapter 2. The equations satisfied by

the scaled perturbations v and v are:
HW oy v,z t)uy = -i——Pou +[Bylzt)u + Bz t)v]; + gle(u v,z b)) + eF(uv.z,t)

H®u vzt v, = [Boy(z . t)u + Bog(z tv], + e[ylu v,z t)], + eFpluv.z.t)
u(z,0) = f(z) , v{z,0)=0 (3.3)

u(z+2mt) = u(z.t) . v(z+Rmt) = v(z,t)
Here, Py = A—'?-—+ C, and:
O0x

Hilu vz t) =D (zt)+eDP (uzt) +eDH (vzt)+ EDYP) (uwwz,t)

where D (z t) = DY) (eug,vg,z,t) is bounded, symmetric and positive-definite
with bounded inverse, while (D{{) + D{#)) is the linear part and D§) the qua-

dratic and higher part of:
DN sug+eu wg+sv 2 £) — DN eug,ug,z 1) .

Also, (B1,u + Bpv) is the linear part and ¢ the quadratic and higher part of:
£l [® (eug+eu vs vz, t) — & (sug,ve,2,8)],

(Bg1u + Bgpu) is the linear part and ¥ the quadratic and higher part of:
el [V (eus +ou vg+eu 2 ,t) — ¥ (susvs,2,t )],

and:

FO(u,w,2,8) = =57 ugy [DO(sug +eu vs+ev,2,8) = DD (sug vg.2.£)]

FO vz t) = —elug [D®(eug+eu vg+ev,z t) — DP(sug,us,2,£)] .
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Fach By, 1,=1.2,is C* in z and f, 2m-periodic in z, and, together with its z and
t derivatives, is bounded independently of &, The same may be assumed of g, ¥,
D) and Fy, i.j.k=12, since these bounds are needed only in a neighborhood of
the solution, and these functions can be modified for other w,» without
affecting the solution.

The main results of this chapter are then:

Theorem 3 If u,v is the solution of system (3.3), the scaled perturbation
of the solution of (3.1), then there exist constants g, X and 7, independent of &,

and strictly positive, such that:
luC) + v(E) = K - (B
forallf ¢[0, 7] and all £ = .
Theorem 4. Further, if Pq is nonsingular on the space S;, there exist con-
stants K, and 4, independent of g, and strictly positive, such that:
IZCa) I+ v ()] = ek, (3.5)

where:

forallt ¢[0,T] and all e < &

Put another way, the solution of (3.3) has the form:
w(z,t) =3a(x t) + 0(g)
v(z,t) = O(g)

where 7 is 0(1) and oscillates on the fast time scale.
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3.2 Boundedness of the x-derivatives.

We again need to show that the z-derivatives of the solution to the system
(3.3) are bounded independently of &, even if the t-derivatives are not. In this
case, we need to consider both linearised equations, rather than just the u
equation, since both w and v can be O(1) when the large part of the spatial
operator is singular.

Note that the coeflicient of the z-derivative on the right hand side of (3.8)
is assumed to be block-diagonal (i.e. no v, appears in the u; equation and vice
versa). This is necessary for our proof to go through, but if 0(1) off-diagonal
blocks are present, they may always be transformed away, since the diagonal
blocks differ in magnitude by an order in &. This is the purpose of the transfor-
mation performed at the beginning of section 3.4.

Extra terms F;(z.t)u and Fgx(z .t)v can be added to the first and second
equations in (3.6) respectively with no change in the result. They are omitted
here to save writing, and because they do not appear in the transformed system

to which we shall eventually apply the lemma.

z,t

- t;) satisfies the symmetric hyperbolic

Lemma 3.1 Suppose w(zt) = [:fg

system:

[(DEY (2 t) + DV (w .z t)Jug = -tl:—-(Au, +0u) + [Bylzt)uly + Biplz t)v

D) (z t)vy = (Baa(z £)0)s + Eaa(z t)u (3.6)
wu(z,0) = fi{z) . ulz+2mt)= u(z.t)
v({z,0) = falz) , v(z+2mt)= vz t)

where A is a constant, symmetric, non-singular matrix, C is a constant, anti-

symmetric matrix, D{f) is a bounded, positive-definite, symmetric matrix, C* in
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z and t, 2m-periodic in z, non-singular with bounded inverse, B;;, £y, D" and f

are C™ in their arguments and 2n-periodic in z, B;; and D{! are symmetric, all

quantities are real, and there exist constants My, Ngrg, Prs and &, independent

of &, such that:

for all w, all non-negative g4, ...

ij=1,2.

Then there exist constants T, K5 and L., independent of g, such that:

for all ££[0,T], r,s=0,1,2,..., where p(s)=0 for s=0 and p(s)=s -1 for s> 0.

grs D(Sj)

BxTats < s

e +rEs Dl(l)

(W,.£)| < Ngs

pw,?t - Bw,, mozTots
ar+3£ij 6r+slﬂj
az7ots | Prs 9z70t° | rs

7 +s
.é____'z‘_‘_.(_’t)

677 0t° = £

6r+8

_.,,__’U_.(”t)

PP < g-p(S)Lm
X

(3.7)

gm,T,S, with g=g,+ - +9,, and for all

(3.8)

Proof The key to the proof is that, using the fact that 4 is non-singular,

the f-derivatives of © can be estimated independently of its x-derivatives from

the first of (3.8). Then this equation can be used to estimate the z-derivatives

of uw. The second equation of (3.6) is of a more standard form, and estimates of

the derivatives of v are easily obtained.
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Note that (3.8B) is satisfied at =0 (from the equations (3.8) and their
derivatives at £ =0).

Let H(w) = DY + eD{V(w). Since D! is positive-definite and bounded
above and below, and Dl(l) is bounded uniformly in w, there exist positive con-

stants d;, §;, independent of £ and w, such that:

& lly 2= (A (w)y) = &y ||? forally. (1)

Now the first equation of (3.8) is:
H{D (w)uy = HAug + Cu) + [Byuls + Erpv | ("

SO

(w, HM (wu), = 20w, H{Y (w)u,) + (uw,H{Pwu)

i
™ ll\)

(. dug) + Z(u.Cu) + 20w (Bryw)s) + 2w Frgv) + (w HiPw w)u)

where the fact that H,(I) is real symmetric has been used. Now:
(u,Au,) =0 , (u,0u) =o'
Rlu (Byu):) = (w.Byu) < Pllu ”2
R(u Epv) < RQoollu |l v ]

oD (w)
u C———
7 at u

oDy
ot

ul + &

b243
(uw H{P(w)u) = ['u,, + SZ (u,wjtﬂl(,ﬂ?ju)

i=1
< (Moy + eNooy + emNgo|we ) |u |2
noting that wy is a scalar, 1< j<m. Hence:

(w D (wu)s < const. [ul? [1 +e(|w]a + [ve]w)] (1)
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Setting vy =u; and differentiating (*) with respect to ¢:
Hy(w)ye = Ay + Cy) + [Buy + Buenls + Bxve + Fraw = HPw)y (+*)
Hence:
(v H(w)y)e = 2 (y 4y2) + Z(y.09) + 2(5.(Buy)a) + 209 (Bruw)e)
+ 2y Eigur) + 2y Eraev) — (¥ Hu(w)y)
Note that:
(y.(Biw)s) = (. Braw) + (¥ Breu)s Pully | lul + Polly ||
(y.Erev) < Quolly |l |
(v Erzev) < Quilly | v |
Thus:
(y D (w)y)e < const. {ly 12 [1+e([ue |t |2 |2)]
ey N [ T T (2)
Finally, setting z =uy and differentiating (**) with respect to £:

1
H{Y (w)z, = -E-—(Az, + C2) + Bz + 28111y + Bruwlz + Eipuy

+ 2F 2vt + Erauv — 2H{P(w)z — Hilj(w)y

Now:

(2 HRw)Y) = (2. D8y) + o(z.DRy) + 253, (2 wye DIk )

i=1
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(z Hi{}(w)y) = (z.D§}y) + e(z .D{Ry) + zs_‘ZI(z ws D{thy)
=

F1) 7%
+£, (stjtwktijw,,y) +e),(z -wjttij'y)
Jk=1 j=1

= (Moz + eNgoz + REN g1 |y | + eMPNago|w; |E) 2z | |y | + R

where:
m bt
R =5} (2 wp Diy) = oz Dy )we)
i=1

where:

m 9D {L)

S _ 17 .
(D(y))ﬂV_JZI awv yJ
e D(y)| = mNigoly =
= R=< emNiply |-z [|?

Since all other terms are easily estimated as before:
(2. Hi(w)z)y < (Pyo + 3Mo1 + 3eNgp; + 5emNgo|we [=) |2 [|*
+ [4Po1 |yz | + (4P 11 + 2Moe + ReNgoz + 46mN g1 | Wy |+ REMPN 00 |w; [7) [|Y ||
+ 2Pz lluz | +2Pizlull +2Qoolve | + 4Qo1lve | +RQoz v 1]z ]
< const. {2 |2 [1+e(|u w+|ve )] + N2 [y [+ lye |+ 1w |+ lug |+ v |+ o+ v )
+e(|ut lot vt u lot (v [5) Yy | 2 113 (3)

Similarly, in fact more easily, one finds from the second equation of {3.8)

that:
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(.08, < const. (v |2+ ]|w | v |3 (4)

(ve. DfPwz)e = comst. vz |2 + [z [ (o ||+ e | + ]l )3 (5)

(Voo DPz)s < const. {flugs |2 + e | (vs [+ |1+ utas | +us [+ 1w 1) (8)
Next note Sobolev’s inequality:

w o < const. (] + Juws 3 | G

for any weS;.

From (*):
u, = (A+eB1) H=Cu + e(H{V (W) = Bypau — E1qu)}
= luz il < comst. {llu | +e(lluell + v )
= const. {{lul +e(lly ] + [v])3 (8)

and from {**):

Yy = (A*‘EBU)_I[“C?! + e[H{M(w)ys =Br1zy —(B114%)z —E12vy —Er1aev +H§})'(w)y]}
= llyz | = const. [[1"'82( lug lot Ve ) ]y | + e(llye |+l [+ wl +]ve ]l +]v ”)}

= const-{[l‘rsz( ly I+ lys T+ v T+ vz DIy 12 + eCllz [+ T i+ vy [+ v H)]

using (7) and (B). Hence, provided |y || = 0(27®), as we shall show it is:
lyz | = const. [[Hsz( Iy I+ Foe ll+ vz DIy 112+ eCllz [+ e ||+ e ||+ 1w H)} (9)

Similarly:
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Uz = (4 '*'5311)‘1{—0’1: + e[ HM (w)yy —2B112Uz —B11z5u —E1guz —F1,v +H{P(w)y]

=> Iz | = comst. lug || + el uge |+ lue |+ | +]lvg [ +]v |
te({ug |t vz o) [ue 113
= const. {lug || + elllyz [+ly I+]u | +]ve [ +]v ]
+e(lug [+l gz |+ vz |+ llvee Dy 113
= luzz | = const. {lluz || + elllyz I+ lly [ +1ul+lvI+]w]  (10)

so(lluy | +lve 1+ 10e 1D 19 I3

Directly from the v, equation and its first z- and f-derivatives, one can

similarly obtain the bounds:

lvug || = const. {flug [ +]lv |+ w3 (11)
vz | = const. {lvge |+ vz | +llwe [+ llw [ + [z |+ 2 13 (12)
v | = comst. §lva |+ v [ +]w 1+ e 1+ I3 (13)

The six inequalities (B) - (13) enable us to eliminate the norms of ug, Ugs,
Ug (ZY2), Vi, Uyt and vy in favour of the norms of u, w;(=y), ug(=2), v, v, and
Uy, Thus, substitution of (8) - (13) in (1) - (8) yields (in view of ()) a closed sys-
tem of six nonlinear inequalities for the latter six quantities. Further, if these

quantities are scaled by the factors of ¢ suggested by (3.8), namely if:
a=lull . G=elu] . &= uyl
G=lvl o &=l o G= veell

then the system (1) - (6) becomes:
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(¢8)e = comst. EF[1+G1(8)+£Ga(8)] + &rta)
(&8 = const. {81+ G1()+£Ga(8)] + s&a(¢1+8u+s)3
(B = const. (E[1+G1(Q)+eGa(8)] + sta[battats(ér+latlot ot tB)+6°6Ga(9)]
-+ PRGN (GGt tee) + [6G1(O)+62Ga(8) +(Gr () +8Ga()) ]eatsl
(¢)e = comst. {¢F+&aty)
(¢8)e = const. (B +&(G1+Ea+en)]
(¢8)e = comst. (8 +&s[G1+atEatbatbateta(batéstiate(titetatGa(O)]
where
G1(8) = Gots + (G +datls) + 888 + 2G(G+at st e)
Ga(d) = (Er+Eattatin+is)

Note that this system is regular as - 0. Also, the initial conditions are such that
each ¢; is O(1) at t=0. Thus there exists some constant T, independent of &,
such that this system has a ﬁnite, bounded, O(1) solution on the time interval
{0,T]. Note that T may depend on the initial conditions. This proves that (3.8)
holds for the six functions under consideration, i.e. there exist constants
Koo Ko1v Kog, Loos Lo Lo, independent of & but possibly dependent on the ini-

tial data, such that:

Bju . -
Yy .,i)I}S £ Koj
vy

!a:‘r"-” < Lo

for 7=0,1,2.
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Now it is easy to go back to the inequalities (8) - (13) and to show that (3.8)

holds for all derivatives of © and v up to second order. For example, from (8):
luz | = const. (Koo + &(e7 Kgy+Loo)3
= Ko (say) on[0,T].
while from (11):
lve ]l = const. {Lig+Loo+ Kool = Loy (say) on[O0T].

and so on. Higher derivatives can be estimated by similar methods,
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3.3 Proof of Theorem 3.

The proof of this theorem consists of a transformation of the system (3.3)
which reduces the off-diagonal blocks in the coefficient matrix of the z-
derivatives to O(e), and then the finding of an asymptotic expansion of the solu-
tion by an iteration. |

First write the system (3.3):
u =t HOY(A+eB)u, + HOTIB o, + 67 HOYC+eB 1, )u + HV1B 50
+eHM 1y, + eg-1p, (3.9)
vy = A Byu, + HO ' Boou, + HR B, ou + HO 1B, 4
+ eH®ly, + eHE 1 p,

Note that if:

0 "'A‘IB 12
T= H(z)_lBglA—lH(l) 0 (310)
then:
L |ETHO T (AveBy) BT, eery o e HD (4 +eB,;) 0
(/+&T) H®-1g, HO g, (I+£T) = 0 H®-1pg,, +0(g).
Thus the transformation:
¥ = q+em) fjf] (3.11)

substituted in (3.9) leads to:
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) - eyt e lHW (4 +eBy;) HVTIB, ;
v, "'( +& ) 1;](2)-1821 H(E)—IBzz ( +€T)

u
v

+eT,
k4

7

et HWY(C+eB,,,) HUIB,,,

* (I+8T)—1 H(z)_IBZIz H(z)-lezz

(3.12)

H(l)—l(?’z"'Fl)

— e(I+eT) 7 T, ([+eT) HR(y +F,)

'l'Z
v

+ s(1+sT)‘1[

<=> gy = g7t HO YAz +0u) + HOY(B,7), - HVT'CA™IB o0 + e HV Iy

Uy = H(z)—l(BEE'U)z + H(z)—lgzm(['h‘l_l C)’E + EH(z)—le
— Az 5.z .t)a = -1;(,417,+m) + (B1&)g + Byt

+ Gy (T T Uy, Ty £y ,£T; ) (3.13a)
BT 0)0, = (Boal)y + EorT + £Go(W,0 iy, Uy, 0 ,£T;)
say, where:
Bz gzt)= H(uw.z.t)
= DEN(z.t) + D) @,z t) + eDE (T .z t) + 2D (@, 7 = t)

is of similar structure to HY), Ei5(z,t) and Ep,(z.t) are bounded, €™ tunctions,
periodic in z, and G, and Gy are bounded, C* functions of the indicated argu-
ments. The {-derivatives of @ and ¥ appear as arguments because of the pres-
ence of the T; term in (3.12), but it is easy (though a little messy) to verify that
they do indeed appear only when multiplied by £, as indicated.

The initial conditions are now:

z,0)
z,0)

S gl

SN

= (r+e7) [/ &) = [Ef}lz((zx))] (say) (3.13b)
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Now we can take as a first approximation to (3.13) the system:

1
H{Y (uovoz.t)ug = —E—(Aug,+0ug) + (Br(z.t)ug), + Era(z.t)ug

DNz t)vor = (Bza(z £)uo)z + Eai(z.t)ug (3.14)
uo(x,0) = f1(z), - vo(z.0) = &f 2(z)
ug(z +2m,t) = ug(z . t) , volz +2m,t) = volz .t)

where:

B (uguoz.t) = DV (z,t) + eD 3 (uog,z t) + eDF (voz.t).

Since EH) and Dm can be modified for large ug, vg to ensure that the
bounds (3.7) are met, without the solution being altered, this system has the

form (3.6). Thus, by lemma 3.1, there exist constants X% and T, independent of

g, such that:

gresq,
——( B = s‘SK“’) (3.15a)

rats

a‘r +s

-——-(t)

—or < g PO (3.15b)

for all ££[0,T], r,s=0,1,2,..., where p(s)=0 for s =0 and p(s)=s -1 for s> 0.
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Next let u;, v, satisfy:

- 1
B (wowox tuy = ""(Aulz"'ou'l) + (Brlz.tluy)s + Bz f)u,

— D (uyz £)ug — eDP (1.2t ug — 82 D5 (o vo.z it Jug
+ Gy (Uo Vo Loz Yoz B0t EV 0t ) (3.18)
H® (ugvoz t)vie = (Baa(z £)v1)z + Ear(z.t)uy — eDF) (wo.z,t vy
— eD{& (vo,x t)vgs + £Gp(Uo Vo Loz oz Elhos Vot )
u(z,0) =0, . vy{z,0) =0
wi(z+mt) = u(z.t) . vz +Rm.t) = vz )

where F® (wovoz.t) = D (z £)+eD P (wo,z £ ) +eD B (o, t).
This system is linear in u, and v,;, with coefficients and forcing terms of
amplitude O(g) each satisfying bounds of the form (3.15a). Thus by Duhamel’s

principle, there exist constants K1), independent of &, such that:

6T+Sul . T+S,U1
prroyen UL Il wreren CLO EE £ KD (3.17)

for all t¢[0,T], 7,8=0,1,2.....

This iteration can be continued indefinitely, each time the correction to the
solution being smaller by a factor of & Let dp=Z—(ug+ ' +u,-;) and
ep=U—(vg+ ' - +vp_;) be the remainders after p steps. The system satisfied by
d, and e, has forcing terms of amplitude O(¢?), and the initial data are such
that d, and g, and all their derivatives up to second order are O(e?®) at t=0.
Also, the coefficients in the homogeneous part of the systeni are 0(1), though

they may vary on the fast time scale so their derivatives up to second order are
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0(72).

Now, Browning and Kreiss [5] have derived bounds on the solution of a
hyperbolic system of this form in terms of the solution and its first two time
derivatives at £ =0. Their theorem 2.1 states that the norms of the solution and
its first two time derivatives will be bounded by a constant times the sum of
their iniﬁial values on some finite O(1) time interval. The value of this constant
depends on the coefficients in the problem. They assumed the coefficients and
their derivatives up to second order were 0(1), and this implied that the con-
stant would also be O(1). In our case, where the second derivatives of the
coefficients could be 0(¢7?), the constant will be 0{7?).

Thus, d, and e, and their derivatives up to second order will be O(&f™*) on
some time interval [0,T], independent of &, so if p = g +5, the first g terms in the
iteration will determine & and ¥ to within 0(g?)

This completes the proof of thecrem 3.
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3.4 Proof of Theorem 4 (The Nonsingular Case).
Note that the only O(1) contribution to the solution of (3.3), or equivalently
(3.13), comes from the solution ug, vy of (3.14). This follows from the proof of

the previous theorem. Also, from (3.11):
v=0+eHR B, 471 g
=7 + 0(g) =vg + 0(g)
and similarly:
u =ug+ 0(g)

so the theorem is proven if we can show that both vy and the mean value of 1g
over a short, but 0(1), time interval are O(g).

Now, (3.14) is:
=1 1
HiV (wovg)ug = ;‘Poun + Eypuyg

Do = (Bpaug): + Eayug (3.18)
ug(z.0) = fi(z) . wolz.0) =&f(z)
uo(z+2mt) = ug(z,t) . wvolz+2m,t) = volz t)
where Pyug = Pyug + [ 5 uq],. Since Py is non-singular, so is Py, and so:
ug = 8P H M (ugwo)ug — P5lE v, (3.19)

Note that:

af—jl(l) (uo,’v 0)

5137 SR Qe i
ParHM (wowe)ug = Pgt gt‘{Hlm (wovo)ugl — Pyt 37 Ug
~ ~ BF D (ugu
= aﬁDO‘IHl(l) (ugwo)ug — Pyt _1_._£_°_£)_u0 + 0(g) (3.20)

ot
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since ﬁg is independent of ¢ at leading order, and so comrmmutes with —a—up to

ot
order £. Hence for any § with << d<< 1:
t+6 ~ t 46 t+6 ~ aE M (1Lg,v )
J uplzmdr= a{ ngl(”(ug,vo)uo]t_d —-ef Pyt — Py 0 % ugdT
t-6 t—8
s
“Sf Po_lElz'Ug dT+O(E)
t-5
= O(g) (3.21)

since we already know, from the proof of the previous theorem, that ug, vy and
AV /8t are 0(1). This means that ug oscillates on the fast time scale, so we

write:
uglz t) = Tolz 1)
Also from (3.19) and (3.20):
Doy = (Bazuo)z + 821 P H (wowo)ug, — 852, P5 Erpug (3.22)
Let vV satisfy:
DY = eE Py HM (wowg)ues (3.23)
vV (z,0) =0 , wfM(z+2mt) = vV (z,t)
Then:

¢
‘i (z.t) = s{ DT EL PO HY (ugvg)ug dT
¢
_ 8 [ 315
=g DPRIE PIHW (wovg)ug| dT
j; § e1g 150 A1 (o ug)ug

-1 ajil(l) (UOxUO)

i
- 8{062)_1E21P0 ot Ug dT + 0(82)
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= E{Déz)_lEmﬁo—lH—§1) (uc"uc)uo] Ef ——[Déz) 1E21] HM (uowoug dr
t oy O (uq,
—ef D Ep Pyt T é;“’"“) wo d7 + O(%)
0
= 0(s) (3.24)

since H{\'l) (ug.vg) has one O(1) time derivative, and ﬁ'g'l. uwg and all coefficients

are O(1). Similarly, since all z-derivatives of H{! (wqvg) and ug are O(1):

vz t) = 0(s). (3.25)
Next, if vo® = vg—vgl?) :
Do, ® = [Bagu ], = eBp H{V Nuouo)Ergvd® + Glzt)  (3.26)
v (z0) =efa(z) ., v (z+2mt)= v (z.t)

where:

G(z,t) = [BapuoM]y — eBa BV Huquo)Eypud?

Since Dég) is symmetric and bounded above and below, By is symmetric, and
EoH{Y Y ugwo)E 2 is bounded independently of & the homogeneous problem is

well-posed. Thus there exist O(1) constants A and o such that, by Duhamel's

g_‘%—_l% sup {G{.,7): 0= 1<t} = O(g) (3.27)

since, in view of (3.24) and (3.25), | G| = 0(¢). Thus:

principle:

o8] = K{slllele‘“ v

Nwell = lwé i + 108 || = 0(e) (3.28)
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3.5 Generalisations of the Theorems 3 and 4.

Theorem 5. Suppose the system (3.1) is replaced by the symmetric hyper-

U,:'z:".t.a.—a;} + F(Z.t,¢)
0z

bolic system:

D(UZ ), = -—Pg[-%— U+ P,
oz

U(Z,0) = Us(2.0) + &f (2) (3.29)
U(Z+2ne;t) = U(Z.t) 1=sj=n
where Z=(zy,...,Zp), &; is the unit vector in the jth direction, U,(Z.t) is a

smooth solution of the first and third equations, F is C* in # and ¢, 2m-periodic
in Z, and, together with all its derivatives, is bounded independently of &, D is a

bounded, positive-definite, symmetric, non-singular matrix with bounded

SO

PI[U:.%',t,a, - Z J(UZ )] +T(U2Z e

inverse, and:

where AJ-=AJ~’. l=j=n, C=-C* and [' and each &; is C” in all arguments, 27~
periodic in Z, and, together with its Z and ¢ derivatives, is bounded indepen-
dently of ¢ provided UV and its derivatives are.

Further, we assume the each eigenvalue k& of the symbol Py(id) is either

zero for all © or satisfies:

L
2

il

(@) ] = AlS] (3.30)

Mo+ +w?)

for all & and some positive constant A, except possibly at a finite number of

values of © where some of these eigenvalues may also be zero (i.e. the large part
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of the operator is elliptic).
Then, the result of theorem 3 applies, namely, there exist constants &, and

T, independent of g such that:

lU(2.t) - Us(Z.8)| = ek, (3.31)

for allt ¢ [0,T].
Further, if all the eigenvalues in the second class are non-zero for all &
(including ©=0), then the result of theorem 4 applies, and there exist constants

k; and §, independent of g such that:
| e _
TR AN P (3.32)
t -6

for all t £[0,T]. In other words, the perturbation in the smooth solution is of

amplitude only O(&?).

Proof The proof given for theorems 3 and 4 generalises to this case. As
noted in section 2.4, in more than one space dimension, the fast and slow scale
variables cannot, in general, be separated into distinct equations coupled only
through undifferentiated or nonlinear terms. However, such a separation can
be achieved by a projection in Fourier space, similar to (2.34), though in fact in

this case we require the slightly different projection:

where ﬁ(iw) is as before. The difference here is that /; is the identity matrix of
dimension g, the number of eigenvalues in the second class, independent of &.
Thus, if some of these eigenvalues do go to zero at some values of & (i e. if the

number of large eigenvalues is not a constant), the large part of the spatial
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operator will be singular on the space s;,’ ={R'u :u &S, |, while if none do, it
will be nonsingular on this space.

Once the separation is done, the system has a form analogous to (3.13), so
a first approximation analogous to (3.14) may be made. Lemma 3.1 applies to
this system, since all terms in the generalised system have the form of one of
the terms in the one-dimensional case, and the condition (3.30) ensures that the
z-derivative of the 'fast’ part of the solution can be bounded by the sclution
itself and & times its f-derivative. This enables its t-derivatives to be bounded
independently of its z-derivatives. Thus the iteration of section 3.3 goes
through as before, and (3.31) holds.

In the case that the number of large eigenvalues is independent of &, the
large part of the spatial operator is nonsingular, and this was all that was

needed for the proof of theorem 4. Therefore, {3.32) holds.
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Part II
A NUMERICAL EXPERIMENT ON THE STRUCTURE

OF TWO-DIMENSIONAL TURBULENT FLOW

Big whirls have little whirls
That feed on their velocity,
Little whirls have lesser whirls,

And so on ‘'till viscosity. - Richardson {(attrib.).
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1. Introduction.

Despite the ubiquity and undoubted importance of turbulence in fluid flows,
very little is understood about them from a theoretical viewpoint. Central ques-
tions such as how the viscosity acts to dissipate energy, how the rate of dissipa-
tion depends on the Reynolds number, or what the qualitative structure of the
flow is, remain unanswered.

The equations of motion, the Navier-Stokes equations (in two or three

dimensions):
Ty + (BV)D +
V=0 (1.1)

where 7 is the velocity, p the density, p the pressure and v the viscosity, are too
difficult to solve, particularly for flows as complicated as turbulent ones. Also,
equations for mean values of velocities and velocity correlations, which are the
principle quantities of interest, always contain the mean of some other correla-
tion, so one can never obtain a closed system of equations.

Many different ways of surmounting this difficulty have been proposed, each
involving some assumption about the flow which enables one to arrive at a
closed system. However, none of these assumptions appears to be based on par-
ticularly firm grounds, and all are open to objections of varying degrees of sever-
ity. Experimental testing of the consequences of these hypotheses is difficult,
because the theory often assumes that the turbulence is homogeneous and iso-
tropic, idealisations which can be only poorly approximated in the laboratery.

Also, numerical sclution of the equations of motion in a setting appropriate
for testing these theories is still beyond the range of currently available comput-
ers, although this may not be the case for much longer. In two space dimen-

sions however, numerical integration of the equations is feasible, and this
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provides as good a reason as any to study turbulence in two dimensions.

Unfortunately, ‘turbulence’ in two dimensions is qualitatively different from
that in three in several respects; for example, in the absence of viscosity, both
the enstrophy (mean square vorticity) and the energy of the flow are conserved,
while in three dimensions only the energy is, and enstrophy is generated by the
stretching of vortex lines and tubes. Also, in three dimensions, the rate of dissi-
paticn of energy appears to be independent of the viscosity, when it is
sufficiently small, and in particular dees not tend to zero as the viscosity does.
This remarkable property is not shared by two dimensional flow.

Mathematically too, there are differences. It has been known for some time
that the two dimensional preblem is well-posed, even when the viscosity is zero
[26], so that if the initial data are smooth, the solution will be smooth on any
finite time interval. In three dimensions, well-posedness has not yet been pro-
ven, and it is well within the bounds of possibility that singularities may form in
finite time from certain smooth initial conditions (as is the case with Burgers’
equation in one dimension).

However, in both cases, the governing equations have the same convective
nonlinear terms, and appear to possess similar ‘turbulent’ solutions in which
the nonlinearity is very important and in which the energy of the motion is
spread over a very wide range of length scales. Thus it would seem reasonable to
expect that the two dimensional case might serve as a useful model for the full
problem [1].

This is particularly true for those theories, of which there are many, that
make no reference to any properties intrinsic to the three dimensional equa-
tions (indeed, some do not make reference to the equations of motion at all), so
there is no reason o priori to assume that they Wéuld not apply equally well to

the two dimensional case,
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Practical applications of two dimensional turbulent flows are somewhat res-
tricted. It has in the past been suggested that they may have some relevance to
large-scale meteorology, where the relative shallowness of the atmosphere and
the rotation of the earth restrict motion in the vertical direction, but this seems
unlikely to be the case, since at ‘small’ scales of a few tens of kilometers these
effects are unimportant. Another possible application is to magnetofluid situa-
tions, where motion in one direction may be inhibited by magnetic forces, with
the result that the flow is approximately two dimensional.

In this thesis, it is intended to describe a numerical experiment on fhe
structure of two dimensional turbulence (section 4). Several numerical studies
of this problem have been performed before, and these are discussed in section
3. The thrust of these previous studies has usually been to i%est one or other of
the various theories as applied to the two dimensional case, usually by com-
parison of the energy spectrum of the flow with theoretical predictions. How-
ever, as Saffman [2] has pointed out, the use of Fourier space may be a poor way
to tackle the problem, and the present study follows Fornberg [3] in looking
principally at the structure of the flow in physical space.

We also describe a new idea, due to Kreiss, concerning the structure of two
dimensional flows, which the numerical experiment is designed to test. This idea
and a few of ;che other well-known theories are outlined in section 2, but it is not
intented to attempt to review all theoretical work on the subject. Reviews of
some other theories may be found in the articles by Kraichnan and Montgomery
[4] and Safiman [R].

Before proceeding, it is necessary to introduce some terminology. The velo-

city correlations referred to above are quantities of the form:

<T£~il(§1,t1) ..... 'u-,"z(fém,tm)>
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where i is a solution of (1.1), and the angled brackets denote an average, techn-
ically an ensemble average over many realisations of flows with initial conditions
randomly distributed over some appropriate space, in practice a temporal or
spatial average for a single statistically steady or homogeneous flow,

Of particular interest are the second and third order correlations:
Ry (#.8) = <uy(Z £ )u(Z+7F,6)> (1.2)
e (T E) = <wug (@8 )u; (B0 )u (Z+7F,£)> (1.8)

Correlation tensors can also be formed from the vorticity & = V x i, which

in two dimensions is a scalar:

_ 3'11,2 aul
- 53’:1 - axg (1'4)

Also frequently used are spectral tensors, the Fourier transforms of the

correlation tensors. The most important is the energy spectrum tensor:

1
(Rm)™

oK) = [ Ry(#)e %% g (1.5)

where n is the number of space dimensions, which gives the density of kinetic

energy in wavenumber space, and allows an energy spectrum to be defined:
EE) =k [,  ealf) dA(E) (1.6)
The total kinetic energy is then:
B u?> =i15(k) dk (1.7)

Similarly, a spectrum tensor for the vorticity can be found, leading to a vorticity

spectrum:
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O (k) =2kE(k) (1.8)

so that the total enstrophy, by which is meant half the mean square vorticity, is

given by:
Y<2®> = [kPE(k) dk (1.9)
4

The flow can alternatively be described in terms of joint probability density

functions (j.p.d.f.):
Pp(@® o atmhz o 20 (1.10)

giving the probability of finding velocities in the ranges di( . di™) in the
neighborhoods dZ,,....d%,. The statistical properties, such as skewness and
fiatnegs factors, of these distributions, particularly the second order one, are
therefore of interest.

Finally, a couple of remarks on the formulation of the problem. First, in
two dimensions, the incompressibility condition means that a stream-function ¢

can be introduce’d with:
u=g, . V= (1.11)
Then, the vorticily equation becomes:
W + PYytog — Yo, = VV P (1.12a)
where:
Vo= = . (1.12Db)

Secondly, if the equations are nondimensionalised using a length scale L
and a velocity scale U, the equations retain the same form with v replaced by

the inverse of the Reynolds number, given by:



Re = — . _ (1.13)

There is some freedom in the choice of L and U. If the large scale flow is con-

strained by boundaries or periodicily, these usually determine L, while U may
13 1/2 . o l/g . .

be taken as < |24 [*> 7%, or alternatively < w*> "® L. Otherwise, following [16], L

may be defined by

1
__<ut>"
- & 1y

(v< |V w|3>)"

(1.14)

The quantity appearing in the denominator here is the cube root of the total
rate of dissipation of vorticity. Both these choices of L give a Reynolds number
appropriate for the description of the large scale flow. A Reynolds number for

the smale scale flow can also be defined. Following [16] again, take:

<C\)2>1/2 1
L=12W . U=<w> "1, (1.15)
w
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2. Some Theories of Turbulence in Two Dimensions.

Perhaps the simplest and best known theory of turbulence is the ‘Universal
Equilibrium Theory’ of Kolmogorov [5]. He postulated that in turbulence at
sufficiently high Reynolds number (i.e. when the fluid viscosity is sufficiently
small), the smallest eddies in the flow would become statistically independent of
the larger scale eddies. In other words, the large scale motion would merely
convect regions small compared with its own length scale, without affecting the
relative motion therein.

As a consequence, the small scale motion would be locally homogeneous
and isotropic, and all its statistical properties would depend only on the viscos-
ity, v, and the rate at which it is dissipating energy, £ say. They should thus have

universal functional forms, scaling by the length and velocity scales:

Yy,
”[‘Vai] L v=() (2.1)

Also, these forms should apply whether or not the large scale turbulence is
homogeneous or isotropic.

To replace that continually being dissipated, energy would have to be
transferred from the large scale eddies down to the small. This process is
referred to as a ‘cascade’ of energy. For consistency, the rate of transfer, &,
would have to be independent of v. If it is further assumed that this transfer is
passively carried out by the ‘intermediate’ scales (provided the Reynolds
number is large enough for them to exist), then all statistical properties in this
range of scales would be determined solely by £ On dimensional grounds, the

energy spectrum would have the form:
(k) ~ %t~ (2.2)

The range of wavenumbers over which (2.1) would apply, i.e. those corresponding
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to Iength scales larger than the dissipation length but smaller than the scales at
which the flow is significantly affected by external forcing or boundaries, is
called the ‘inertial subrange’. Much experimental and numerical effort has been
put into looking for this subrange, and attempting to verify the power law (2.2),
with mixed success.

Unfortunately, there are many doubts concerning the validity of this theory
[2.8,7 and others]. In particular, measurements of flatness factors of the velo-
city derivatives are in contradiction with the theory [7], which predicts they
should be independent of the Reynolds number. Also, observations of turbulent
flows suggest that the small scale structure is not simply advected by the larger
scale eddies, but rather that the stretching and thinning of the tangled vortex
sheets characteristic of high Reynolds number flows by the larger eddies is sub-
stantially responsible for the production of the fine structure, and hence that
there is a major interaction between eddies of all length scales.

Another objection is that the length scale { is not the natural length scale
on which dissipation occurs, that being 0(!/1/2). It is not clear than any physical
process actually takes place on such a length scale, although interpretations for
! have been found under rather speculative conditions [2].

Also, the theory makes no reference to the dimensionality of the problem,
or to the nature of the equations of motion. Thus, one might expect it to apply

as well to Burgers’ equation:
Up + ULy = Vg, (2.3)

which was proposed by Burgers (unpublished) as a one-dimensional model for
the Navier-Stokes equations, though it is of interest in several other applications
also. However, Saffman [2] has pointed out that the Kolmogorov theory is wrong

in this case, since the correct form of the energy spectrum for large & (before
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the viscous cutoff) is known to be ~ k2, rather than (2.2).

In two dimensions, the situation is somewhat different. Here, both energy
and enstrophy are conserved in the inviscid limit. This means that there are
two possible ‘inertial subranges’, one in which energy would be ‘cascaded’ at a
rate, g, independent of k£, and one in which enstrophy would be ‘cascaded’, say at
a rate . Dimensional arguments can again be used to deduce the form of the

energy spectrum, leading to:

E(k) ~ &5~ (2.4)
for the energy cascade, and:

E(k)~n7r3 (2.5)

for the enstrophy cascade.

Kraichnan [B8] has shown that there would be no net transfer of enstrophy
in wavenumber in such an inertial subrange where energy is transferred, and
vice versa. By consideration of interactions of triads of Fourier modes (it is not
sufficient to consider pairwise interactions, since one such interaction cannot
conserve both energy and enstrophy), he has also shown that in an energy cas-
cade (R.4), the energy would be cascaded towards lower wavenumbers, in con-
trast to the situation in three dimensions, while in an enstrophy cascade (2.5),
the enstrophy would be cascaded to higher wavenumbers.

Thus, in a quasi-steady turbulent flow at sufficiently high Reynolds number,
driven al a range of wavenumbers near k,, where k, << kg, the dissipation
range, and k., >> kg, the lowest wavenumber allowed by the boundaries, the
energy spectrum would consist of an energy inertial range, £ ~ P for
kg << k << k,,, in which energy would be passed towards lower wavenumbers,

gradually accumulating in the lowest modes, and an enstrophy inertial range,



-78 -

with £ ~ k73, for k,, << k << kg, in which enstrophy would be passed towards
higher wavenumbers until it is dissipated by the action of viscesity.

The above scenario is, of course, dependent on the assumption that the
interactions between Fourier modes are in some sense local in wavenumber
space. Immediately there is a difficulty, in that the k% energy spectrum implies
a k7! enstrophy spectrum for large k, which diverges logarithmically as the
upper limit tends to infinity. Thus, in the limit v- 0, the total enstrophy would
become infinite. In this situation, it is hard to imagine that nonlocal interac-
tions would in fact be negligible. Logarithmic corrections to the spectrum have
been proposed to circumvent this difficulty [B8,9], but these do not appear to be

based on any firm physical arguments.

Since the purpose of some of the numerical studies described in the next
section has been to test some other theories of turbulence, we mention a couple
of these here. Kraichnan and his co-workers [8,9,10] have developed a theory,
the ‘Direct Interaction Theory', based on consideration of direct interactions
between triads of Fourier modes. In this theory, the equations for the Fourier
coeflicients of the solution are replaced by a simpler system in which some
triple-interactions are neglected. Further mathematical assumptions are made
which enable a linear equation for the second order correlation tensor to be
found. The justification for several of the assumptions is not entirely clear, and
their validity is hard to assess,

The authors of the theory admit that it has several defects, and their later
efforts have been directed towards eliminating some of these, at the expense of
considerable complication. The ‘Test Field Theory' [10], a more sophisticated
version of the model, incorporates ‘memory times’ for the dynamical interac-

tions, with a free parameter governing the length thereof.



-79 -

The energy spectra predicted by the Test Field model are very close to those
of the Kelmogorov model, although it is appears that this is partly by design,
since the fact that the earlier model predicts an inertial range with a different
power law seems to have been regarded as one of its defects.

Another theory treats the problem from the point of view of statistical
mechanics [4]. Unfortunately, it seems unlikely that a turbulent flow is in any
form of statistical equilibrium, since the time taken for the dependence on the
initial conditions to be lost would appear to be of the same order as the time in
which the turbulence is dissipated [2]. For the record, the equilibrium theory of
statistical mechanics predicts an energy spectrum of the form:

k

@ =

E(k)~

where o and £ are constants determined by the total energy and enstrophy, for
a nonviscous formulation of the Navier-Stokes equations truncated to a finite

number of Fourier modes [4,15].

An alternative approach to the problemn, one that avoids the use of Fourier
space, is given by Saffman [2,11]. The motivation for this approach comes from
Burgers’ equation (2.3}, proposed, as noted above, as a one-dimensional model
for the Navier-Stokes equation. Exact solutions of Burgers' equation are known,
and can be used to predict the behavior of ‘turbulent’ solutions, i.e. solutions
arising from random initial data. It is a property of these solutions that the
rate at which energy is dissipated is independent of the viscosity v, so that this
expected feature of turbulence is duplicated.

For small v, solutions of Burgers’ equation evolve quickly to a typical form

consisting of ‘shocks’, regions of thickness:

. V=cu?>? (2.7)
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across which # jumps by amounts of amplitude O(V), separated by regions of
average length L, say, determined by the initial data and independent of v, over
which u varies smoothly. This type of structure is often referred to as ‘intermit-
tent’.

In these solutions, the major contribution to the high wavenumber part of
the spectrum comes from the shocks, whose local structure depends only on the
viscosity, and their amplitudes (related to the rate of dissipation). Since, as
noted above, the rate of dissipation is independent of v, the conditions for
Kolmogorov's hypothesis to hold would appear to be satisfied,

However, it can be shown [2] that the predictions of the Kolmogorov theory
are incorrect. The small scale statistical properties, such as the velocity corre-
lation (1.R) or the skewness of the two-point j.p.d.f. {1.10), are not functions of v
and ¢ alone, but take quite different forms. Also, the energy spectrum at large &
is proportional to k ®, rather than k=,

The reason for the failure of the theory appears to be that the ‘cascade’
process, which in this case corresponds to the formation and maintainance of
the shock regions, is controlled by the large scale motion, rather than being
independent of it, as is assumed in the theory. Analylically, the skewness of the
two-point velocity j.p.d.f. (1.10), which must be a constant for the theory to hold,
varies significantly.

Of course, the failure of the theory in one dimension does not mean that it
need fail in two or three dimensions as well. Indeed, there are several significant
differences between the two cases. However, this failure does point to the need
for a fuller justification of why the basic hypotheses should hold.

There is a further point to note from the one dimensional problem.
Because of the intermittent nature of the solutions, it is much easier to perform

the analysis in physical space than it would be in Fourier space. There is a good
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deal of physical evidence that two or three dimensional turbulence is also inter-
mittent in nature, and this would be expected mathematically from the singular
nature of the limit v-» 0, in which the highest derivatives vanish from the equa-
tions. Since most of the theories so far proposed have relied heavily on argu-
ments in F‘ouri’er space, this may be one reason why they have met with such lit-
tle success.

In two dimensions, there are no exact solutions to the equations of motion
from which to construct turbulent solutions, but the following analogy may be
drawn between the two cases. In one dimension, v is conserved following a fluid
particle, and steep gradients arise because convection brings together particles
with different values of w. In two dimensions, the vorticity w is conserved follow-
ing a fluid particle, and it seems reascnable tec suppose that convection will
again bring together fluid particles with different values of w. Of course, there
are differences; for one, the characteristics in the two dimensional case do not
cross, as they do in one dimension, but their separation can decay exponen-
tially. Thus, it does not seem unreasonable to assume that the vorticity field
assumes a piecewise continuous form, with thin ‘fronts’ separating regions
where the vorticity varies smoothly.

Saffman [11] assumes then that the vorticity field contains discontinuities

spaced randomly with mean spacing L and width:

1/3
vl
7
<>

™~

(2.8)

(obtained by balancing the convection and diffusion terms). It follows that the

asymptotic form of the energy spectrum would be:

Elk)~E™ , L << k<< 67! (2.9)

(67! is the viscous cutoff scale). For there to be a range of wavenumbers where
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this would hoeld, it must be that:

1/3

2, %2
S_@_.?_‘é'_ >> 1 (2_10)

%4

i
Re® =

Hitherto, this has been the only theory of two dimensional turbulence that
does not appeal to arguments about the Fourier modes, and also the only one
that offers an energy spectrum significantly different from k3 at large k.
Unfortunately, as we shall see in the next section, there seems to be no numeri-
cal evidence that conclusively favours one form of the spectrum over the other.

Kreiss has recently made a new suggestion concerning the physical struc-
ture of the flow, namely that the flow must contain regions of local convergence,
i.e. flows locally resembling figure 15, and that these flows will sweep perturba-
tions in the vorticity into the narrow region corresponding to the neighborhoed
of the dividing streamline S of figure 15. Thus, the vorticity field would, during
the initial stages of the flow, contain narrow regions where the vorticity is lay-
ered (‘layered oalzes’), rather than the ‘fronts’ of Saffman’s theory,

Under this hypothesis, the energy in the small scale flow would be swept
very rapidly to higher wavenumbers, and so would be rapidly dissipated even if
the viscosity were small. Also, the rate of dissipation would be almost indepen-
dent of the viscosity at small values thereof. The flow would also assume a fairly
organised form quite rapidly.

Some of these consequences are consistent with the recent numerical study
performed by Fornberg [3], described in the next section, and the numerical

experiment described in section 4 has been designed to test this particular idea.
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3. Previous Numerical Studies.

In this section, some previous attempts at computing two dimensional tur-
bulent flows are discussed. All these studies use the vorticity-stream-function
formulation of the equations (1.12), since it is far more amenable to numerical
treatment than the velocity-pressure equations.

Herring et al. [18], have done a comparison of the effectiveness of two
different numerical methods for integrating the equations (1.12), namely a
second order accurate finite-difference scheme based on the Arakawa [17]
energy- and enstrophy-conserving approximation to the nonlinear terms in the
vorticity equation, and a pseudo-spectral, or Fourier method. Their results sug-
gest that a finite difference scheme with 2nx2n grid points has about the same
resolution as a Fourier method using only nxn modes. Also, they found that
adequate resolution of the flow at a macroscopic Reynolds number (1.14) of 350
required the use of a Fourier method with 128 modes in each direction.

On the basis of this, it appears that the results of early numerical studies of
the problem, by Lilly [12,13], and Deem and Zabusky [14], are untrustworthy,
since they used schemes with no more resclution than the 128 mode Fourier
scheme and Reynolds numbers greater than or equal to 350,

Unfortunately, even with a 128 x 128 mode Fourier scheme, the Reynolds
number cannot be made large enough for the inertial ranges (2.4) and (2.5) to
have any chance of forming. This is because the viscosity, v, must be chosen
large enough that all modes up to the viscous cut-off are retained by the
scheme, and in this case v is so large as to have a significant effect on almost all
modes. Put another way, the enstrophy spectrum k*E(k) and the dissipation
spectrum k*E(k) will have a substantial region of overlap, while the inertial

ranges cannot appear unless they are well separated.
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Thus, the main thrust of the computations in [16] is to compare the accu-
racy of the Direct Interaction Theory with its improved version, the Test Field
Model, at the lower Reynolds numbers for which accurate computations can be
performed. Their results are indeed in closer agreement with the latter model.
It is interesting to note that in the highest Reynolds number experiment, the
energy spectrﬁm obtained (fig. 1) is quite close to the ¥ predicted by Saffman.

Another feature of the results is that the dependence of the large scale
features of the flow on Reynolds number appears to be weak. Figures 2-4, repro-
duced from [18], show the vorticity contours calculated at a fixed time for runs
with the same initial data, but with Reynolds numbers of 138, 349 and 1184
respectively. The flow flelds are indeed quite similar. In [16] and [18], it is
speculated that it may be possible to simulate quite accurately the larger scale
features of flows at high Reynolds number, even if the small scale motion is not
accurately resolved.

Seyler ef al. [15] performed a numerical integration of a truncated version
of the inviscid equations in Fourier space, using up to 220 modes in each direc-
tion. They found good agreement with the spectrum (2.8) predicted by statisti-
cal mechanics for this system, which is surprising. Calculations by Fox and
Orszag [19] and Fornberg [3] disagree with their results.

Orszag [20] reports on the construction of a large numerical scheme for
computation of flows, which can use up to 1024 Fourier modes in each direction.
This should be adequate to test for the existence of inertial ranges in the energy
spectrum. Unfortunately, few runs seem to have been performed with this code,
interest having shifted to magneto-hydrodynamic situations. Two runs with 512
x 512 modes are reported on in [20], one at Reynolds number 1100, correspond-
ing to the highest Reynolds number run in [16] (fig. 1), and one at Reynolds

number 25,000. An energy spectrum closer to k728, in accordance with the
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inertial range prediction, is observed here for wavenumbers in the range
10=< k& < 50 (see fig. 5). The spectrum for higher wavenumbers (the model
must go up to & = 250) is not shown. Also, the Reynolds number used would
appear to be rather high, even for a model of this resolution, and it is a shame
more results are not presented.

An ingenious alternative to the use of high resolution numerical models has
been proposed by Fornberg [3]. The viscosity term in the vorticity equation

(1.12a) has the effect of multiplying each Fourier mode by a factor:

—4n 2k 12 +k 22 1:1

flk)=e (3.1)

at each time step Af. The problem is that if the coefficient v is chosen large
enough that all modes not resolved by the numerical scheme are sufficiently
heavily damped, the modes retained by the model will also suffer significant
viscous damping. This prevents any inertial ranges, which by hypothesis are
unaffected by dissipation, from forming.

Thus, Fornberg proposed applying dissipation in a different way, by omitting
the viscosity term from (1.12a) and instead multiplying the Fourier components
at each time step by a different factor, one more dependent on wave number.

The factor used was actually:

ik < k
oy 41 cut
;)= {o k> Ry (3.2)

where kg, was adjustable, and the multiplication was performed only only after
every n; time steps, n, also adjustable.

The use of this form of dissipation allows the larger scale motion to evolve
as if there were almost no viscosity, while the smaller scale motion may not be
resolved but retains its function as an energy sink at the high end of the spec-

trum. Consequently, conditions for the formation of an inertial range would
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appear to be satisfied, even with as few as 64 modes in each direction.

Another advantage of this formulation is that the calculations can be car-
ried for very long times, since the lower, energy-carrying modes are not darmnped
at all, and the rate of dissipation from the system is very small. Thus, with rela-
tively little exp.ense, Fornberg was able to integrate the equations of motion for
up to 5000 time steps (the time step scales with the amplitude of the solution, of
course), without all the flow structure being dissipated away. Comparison of the
flow fields predicted using this form of the dissipation were found to differ very
little from those predicted using the ‘proper’ dissipation, with differences only in
the fine scale structure.

A typical series of flow pictures is reproduced from [3] in figures 6-12. The
random initial vorticity distribution develops into stringlike patterns which per-
sist for some time. Eventually the flow organises itself into two oppoesite-signed
‘finite area vorticity regions’ (FAVRs). In figures B and 9, the vorticity field can
be seen to have areas of relatively smooth change, separated by fairly narrow
regions of large gradients, as suggested by Saffman. However, not all these nar-
row regions appear to be ‘fronts’, in the sense that w varies monotonically
through them; in some the vorticity would appear to be ‘layered’, as suggested
by Kreiss. Also, in the final pictures, the two-FAVR vorticity field does not exhibit
particularly sharp gradients, though this might, in part, be owing to the rela-
tively low resolution of the numerical scheme,

The energy spectrum seems to develep in each run towards a decay some-
where between k3 and k™* (fig. 13), perhaps starting nearer £~3, and evolving to
nearer k™% However, even runs with radically different initial forms of the spec-
trum appear to develop this form quite quickly. In one particular run, the spec-
trum initially conformed to that predicted by the statistical mechanics theory

(2.8) {with which Seyler et al. [15] found good agreement), but rapidly departed
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from this forrﬁ.

As noted in section 2, cascade arguments imply that energy should pro-
pagate towards lower wavenumbers, enstrophy towards higher. This is
confirmed by the fact that energy is conserved during the runs, suggesting that
none propagates into the higher wavenumbers where it would be dissipated,
while the total enstrophy did decay steadily, suggesting a steady transfer into
the higher modes. The initial exponential decay of enstrophy observed in some
runs is consistent with Kreiss’ suggestion.

Another interesting observation made by Fornberg was that the relative
phases of the Fourier modes seemed to be important in determining the strue-
ture of the flow field (these are of course neglected in most Fourier space
models). At the end of one run (fig. 12), the phases of the Fourier modes were
randomly redistributed without changing the amplitude of any mode. The flow
field changed dramatically (fig. 14), and a ‘burst’ of energy appears soon after-
wards at the high end of the spectrum. Eventually though, the two FAVR pattern
reappears, and the energy spectrum returns to normal.

From this, Fornberg speculates that a k3 energy spectrum corresponds to
flows in which the ‘natural’ correlations between the phases of the Fourier
modes are not present, and that as these develop, and as the flow takes on a
more organised appearance, the spectrum changes to k™% It is not clear, how-
ever, that this latter form is the result of a vorticity field of the form suggested
by Safiman. Indeed, Fornberg also suggests that the flow seems so well organ-

ised that ‘turbulent’ is a misnomer; this again fits with Kreiss’ suggestion.
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4. A Proposed Numerical Investigation.

As mentioned above, Kreiss has suggested that in a turbulent two-
dimensional flow, the vorticity field might contain regions of locally convergent
flow which would sweep variations in the vorticity into narrow regions, forming
‘layered’ structures which would be rapidly dissipated by the action of viscosity.

It is proposed to investigate whether this mechanism really could work as
suggested. By good fortune, there is a steady sclution of the inviscid Euler equa-

tions:
O + Yytoz — Yy =0
VRy= —w (4.1)

with periodic boundary conditions, representing a converging flow. This solution

is:

w(zy) = welz,y) = sin(Rrz) sin(Rry) (4.2)

Yz .y) = Ylzy) = (Br®)7 sin(2nz) sin (Rmy)

and is depicted in figure 15. If Kreiss' hypothesis were correct, integration of

the equations (4.1) with periodic boundary conditions, and initial conditions:

w(z.y.0) = wlzy) +ef(zy) (4.3)

where £<< 1, and f is an arbitrary function, would almost certainly lead to
layering of the vorticity along the separating streamlines (denoted by S in figure
15). Failure of this to happen would be a strong indication that the hypothesis

was not valid.
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The numerical scheme that it is proposed to use closely follows that used by
Fornberg [3]. It uses a Fourier {pseudo-spectral) method to evaluate spatial
derivatives, since this is approximately twice as efficient as a finite-difference or
spectral (Galerkin) method of comparable resolution [16,21,22]. Differentiation
is done in Fourier space, multiplication of the nonlinear terms in physical space,
so that both these operations are ‘local’. Fast Fourier Transforms are used to
move between the two spaces. Since the variables in physical space are real,
only half the Fourier components need be used, and the FI'T can be most
efficiently implemented using the algorithms given in [R3], which exploit this
fact.

The vorticity is advanced in time using one of a class of ‘Iterative Multi-Step
Methods’ devised by Hyman [24]. Applied to a simple ordinary differential equa-

tion of the form:
w; = Glw) . (4.4)
the scheme consists of a predictor step, which is simply leap-frog:
Ont1 = Wpq + BAEG () (4.5a)

where the subscript n refers to the time level {,=nAf, followed by a corrector

step:
On+1 = -é—%ﬂ:wn + Wpo1 + AAEG(wn) + 2ALG(wn 1)} {4.5b)

The combined predictor-corrector scheme overcomes two disadvantages of
the basic leap-frog scheme. These are the restricted stability region, and the
tendency of alternate time levels to evolve separately, owing to the weak cou-
pling between them. Additionally, the scheme is third order accurate, one order

better than leap-frog.
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The stability region of a scheme is defined as follows. Consider the linear
problem, (4.4) with G(®) = Aw, where lambda is a complex number. The stability
region is that part of the complex plane in which AAf must lie for the scheme to
be stable. For leap-frog, the stability region consists solely of the segment of the
imaginary axis between —i and i. This means that it is stable only for problems
whose eigenvalues are purely imaginary, i.e. problems in which there is no dissi-
pation. Any dissipation terms must be treated by a different scheme. As shown
in figure 18, the stability region for the Hyman scheme extends further up the
imaginary axis, allowing a longer time step to be taken in a problem with purely
imaginary eigenvalues, and also covers a considerable region in the left half-
plane, which means that problems with dissipation can be treated, or that dissi-
pation may be added to the numerical scheme (this is often necessary, for
example in shock calculations).

Now comes the question of dissipation. Some is required for two reasons,
firstly to stabilise the numerical method, and secondly because we wish to model
flow at a high but finite Reynolds number. On the first reason, it has been
observed that in nonlinear problems, the Fourier method as outlined above is
unstable, although the calculation may run for some time before an instability
develops. The addition of dissipation will prevent this ‘nonlinear instability’
from occurring.

Since, following Fornberg [3], it is not always desired to include a dissipa-
tion term of the form 1V ®w, it is proposed to use some form of chopping of the
higher Fourier modes. A variety of ways of doing this have been suggested, each
with the motivation of stabilising the method. These fall into two classes, first
those in which the amplitudes of the Fourier components are rmultiplied by a
factor at each time step {or after every so many time steps). In this class come

the sharp cutoff used by Fornberg (3.2) (not applied at every time step), and the
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exponential cut-off:

A

1 if &

- kcut
J k)= e"a(k R H) if k=

4.6
kcut ( )

o and m to be chosen, for which Majda, McDonough and Osher [25] proved sta-
bility for linear hyperbolic problems. The second class of cut-off functions
adjusts the amplitudes of the higher modes so that they are less than some
bound depending on the amplitude of the solution. In [R2], Kreiss and Oliger
prove stability for the Fourier method (for a linear hyperbolic system) when the

smoothing operalor:

- itk =< N,
o() Do,
HoE) = | 8(8) itk > N,and |8k)] £ —— (4.7
Dlwl o) . ()
(Znk )]. | 5{}2) | otherwise

where N, = {1———H for some integer m, w; = 3 S(k)e?*2 4 is an integer
k= N,

greater than 2, and D is a constant.

Cut-offs of the first type are easier to program, and experience suggests
that they are effective. Of course, if the results of the computation are to have
any relevance, the exact form of the cut-off used should not be important, and it
is an important test of the method that the results do not change significantly
when the form is changed. Any form would appear to be satisfactory for the
purpose of modelling an energy sink at high wavenumber. Comparisons should
also be made with runs using the real form of the viscosity.

The result of a preliminary run are presented in figures 17-22. In this run,

the initial conditions used were:
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w{zy,0) = welz,y) + .02 sin(Bry) . (4.8)

Also, 64x684 Fourier modes, i.e. wavenumbers up to 31 in each direction, and a
time-step Af = .0188 were used. The coefficient of viscosity v was taken to be
zero, and the Fourier modes were chopped at each time-step by the linear fac-

tor:

L itk = kew
2N (kmax"k) P
f &)= ————-————<k ) if ket < k € Epax (4.9)
max cut X
ifk = kmeax

0

with knax = 31 and kg, = 23. In a separate run, k., was taken to be 27, with no
apparent differerice in the results.

In this run, a ‘layering’ is already present in the initial conditions. As can
be seen from the plots (which are contour plots of w—tyg), this layering is indeed
increased initially, and a substantial amount of the enstrophy in the perturba-
tion is dissipated in the first 100 time-steps. Clearly, more runs with different
initial conditions, different chopping or ‘real’ viscosity, and probably more

wavenumbers are needed before any conclusions may be drawn,
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Fig. 1: Spectrum k*E (k) at t =2 obtained by Herring
et al. [16] using a 12Bx12B spectral code (jagged
line), with v=.001 and initial large scale Feynolds
number Re=1184. Smooth lines are the predictions of
the Test Field model.



Fig. 2: Vorticily [field
obtawined at {=2 by Her-
ring et al. [16] with
v=.005 and Re=138.

Fig. 3: 4s figure 2, but Fig. 4: 4s figure 2, but
with v=.0025 and Re =349, with v=.001 and Re=1184.
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Fig. 5: Spectra of k*E (k) at t =2 obtained by Orszag
[20]. Lower line corresponds to the situation in
figure 1, upper line to o Tun with the same initial
doto, but with v=.0001 and Re=25.500. A4 512x512
spectral code is used for the lalter case.
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: /
Fig. 6: Vorticity (upper) and stream-function fields
Jrom a typical run by Fornberyg [3]. Negative vorti-
city conlours are dotted, and spaced three times as

far-apart as the positive contours. This is the initial
field.
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Fig. 7: As figure 8, buf after 60 timesieps.
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Fig. 8: As figure 6, but after 180 timesteps.
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Fig. 9: As figure 6, but after 360 timesteps.
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Fig. 10: As figure 6, but after 900 timesteps.
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Fig. 13: Development of spectrum k3E (k) during flow
depicied in figures 6-12.
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Fig. 14: Vorticity and stream-function contours for
the flow obtained from that in figure 12 by randomly
rearranging the phases of the Fourier components
without altering their amplitudes.
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Fig. 15: The steady-state converging flow (4.2),
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Fig: 16: Stability regions for leap-frog (i) and
Hymans predictor-corrector method (ii), from [24].
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Fig. 17: Contours of the vorticily perturbotion after
50 timesteps in the preliminory run described on
pages 91-92. Lowest conlfour value = - 203 x 1071,
highest contour value = 203z 1071,
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As figure 17, but aofler 100 time-steps, Con-

tour values fo £ .268%x 1071,

ig. 18
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Coni-

after 150 time-steps.

: As figure 17, but
tour values fo + .335x 1071,

Fig, 189
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20: As figure 17, but after 200 time-s
four volues fo + .305% 1071,

Fig.
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As figure 17, but after 300 time-steps,

tour volues to + .276x 107,

21

Fig.

et e
-
v

\
..IW/ 4
-




-114-

Con-

teps.

rme-s

.

1

As figure 17, but after 400 ¢

ig. 22
tour values fo + 281x10



