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Abstract 

J. Interaction of Fast and Slow Waves in Problem.s with Two Time Scales. 

We consider certain symmetric, hyperbolic systems of nonlinear first-order 

partial difierential equations whose solutions vary on two time scales, a 'slow' 

scale t and a 'fast' scale t /e. The large ( O(e-1)) part of the spatial operator is 

assumed to have constant coefficients, but a nonlinear term multiplying the 

time derivatives (a 'symmetriser') is allowed. 

In physical applications, it is often the case that the fast scale motion is of 

little interest, and it is desired to calculate only the slow scale motion accu

rately. It is known that solutions with arbitrarily small amounts of fast scale 

motion can be obtained by careful choice of the initial data, and that an error of 

amplitude O(eP), where p =2 for one space dimension or p =3 for two or three 

space dimensions, in this choice is allowable, resulting in fast scale waves of 

amplitude O(~) in the solution. 

We investigate what happens when the initial data are not prepared 

correctly for the suppression of the fast scale motion, but contain errors of 

amplitude O(e). We show that then the perturbation in the solution will also be 

of amplitude O(e). Further, we show that if the large part of the spatial opera

tor is nonsingular in the sense that the number of large eigenvalues of the sym

bol, P(ic.>), of the spatial operator is independent of w, then the error introduced 

in the slow scale motion will be of amplitude O(e2), even though fast scale waves 

of amplitude O(e) will be present in the solution. If the symmetriser is a con

stant, this holds even if the spatial operator is singular, and further if an error 

O(eµ,) is made in the initial conditions, for anyµ> 0, the resulting error in the 

slow scale motion will be 0 ( e2µ,). 

Our proofs are based on energy estimates which show that spatial deriva

tives of the solutions are 0 ( 1 ), even if time derivatives are not, and the 
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development of the solutions in asymptotic expansions. 

II. A Numerical Experiment on the Structure of Two-Dimensional Turbulent 

Flow. 

Some previous theories and numerical calculations pertaining to the prob

lem of two-dimensional turburlence are reviewed, and a new numerical experi

ment is proposed. The purpose of the experiment is to test the hypothesis that 

narrow regions of concentrated vorticity are produced in two-dimensional flows 

by advection of vorticity towards dividing streamlines in regions where the local 

ft.ow is convergent. 

The numerical method to be used is described in detail. It integrates the 

inviscid Euier equations using a Fourier (pseudo-spectral) method for the space . 

derivatives, and a predictor-corrector method due to Hyman (1979) for time 

stepping. Dissipation is included, following Fernberg ( 1977), by a chopping of 

the amplitudes of the higher Fourier modes every few time-steps. This acts as a 

high-wavenumber energy sink, allowing very high Reynolds number flows to be 

simulated with relatively little computational effort. 
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Part I 

INTERACTIONS OF FAST AND SLOW WAVES 

IN PROBLEMS WITH TWO TIME SCALES 
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Chapter 1: HYPERBOUC SYSTEMS WITH TWO TIME SCALES 

1.1 Introduction 

This thesis is concerned with hyperbolic systems of partial differential 

equations which have solutions varying on two distinct time scales, a 'slow' scale 

t, and a 'fast' scale t I e, where e is some small parameter. That is, the linearised 

equations have (at least) two classes of normal mode solutions, one associated 

with each time scale. 

Such systems arise in the description of several physical systems, for exam

ple in meteorology, oceanography, acoustics or magnetohydrodynamics. 

Specific examples are given below. Often it is the case that the fast scale motion 

is absent from the actual physical system being modelled, or considered rela

tively unimportant therein, and, in a numerical model of the system, it is 

rlesired to compute only the slow scale motion accurately. 

Unfortunately, it has been observed that unless care is taken in choice of 

the initial data for the numerical model, large amplitude fast scale waves are 

excited early in the calculation, obscuring and possibly destroying the underly

ing slow scale motion. In particular, data obtained from measurement or obser

vation of a real physical system will excite fast waves not present physically, 

because of inevitable errors in the collection process. 

Various schemes for eliminating these spurious fast scale waves by an 

appropriate 'initialisation' have been proposed, mostly by meteorologists. Some 

of these schemes are mentioned in section 1.4 below. In this thesis, we are par

ticularly interested in the 'method of bounded derivatives', proposed by Kreiss 

[5.12,13], which is described in some detail in section 1.3 below, and ;vhich, for 

reasons outlined there, this author believes to be the most useful scheme so far 
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suggested. 

In brief, the bounded derivative method is based on the observation that 

time derivatives of the slow scale motion are 0(1), whereas those of the fast 

scale motion ""e-1. Thus, solutions in which the fast scale motion is of amplitude 

O(eP) must have p time derivatives bounded independently of eat all times, in 

particular at t =O. Kreiss has proven rigorously, for quite general systems, that 

if the initial data are adjusted to ensure that the solution and a number p of its 

time derivatives are 0( 1) at t =O, then they will remain so on some finite time 

interval [O,T], where T is independent of e, i.e. the fast scale motion present in 

the solution will have amplitude O(eP) on [O,T]. 

In nonlinear problems, p is required to be ~ [*n] + 2, where n is the 

number of space dimensions, and [r J is the largest integer less than or equal to 

r. In one space dimension, this means p~ 2, in two or three, p~ 3. However, 

numerical experiments in a two dimensional problem have found two to be 

sufficient [ 4]. 'T'his, and considerations concerning the convergence, as e~ 0, of 

solutions of the equations with e,,t 0 to solutions of the limiting system of equa-

t~ions at e=O [ 11 ], lead us to investigate in this thesis what happens if less than 

t.he required number of time derivatives are bounded initially. 

First, we consider a model symmetric hyperbolic system of partial 

differential equations containing two time scales, namely: 

1 
Ut = -AUz + [qi(U,V,x,t)]z 

e 

Vt= ['lt(U,V,x,t)]z 

U(x+2rr,t) = U(x,t) , V(x+2rr,t) = V(x,t) 

( 1.1) 

where A is a constant, non-singular, real, diagonal matrix, and qi and \}! are 

;::mooth, bounded, periodic functions. 



- 4 -

Our first result is that if the initial data for ( 1.1) are not chosen correctly 

for the suppression of the fast scale motion, but contain errors of amplitude 

O(eµ), 0< µ< 2, then fast scale motion of amplitude O(eµ) will be present in the 

solution, but the error in the slow scale motion resulting from interactions of 

this motion will be of amplitude O(e2µ) + O(eµ+l), again on some finite time inter-

vo.1 [O ,T]. 

Since the system (1.1) is nonlinear, it is possible that the O(~~)~ast scale 

motions co1Jldinteraet{''resonate")to produce an O(eµ) change in the slow ~sale 
-----· ·- ·- . '. - -· ' ~-- ------~~- -

motion. For example, in the O.D.E. system: 

the solution has: 

i. 
Vt= -µv 

e 

Wt = (uv )* 

t 

u (0) = eu 0 

V (0) = tVo 

w (0) = 0 

w(t) = e(u 0v 0 )* Jexp~Y,,e- 1 (>..+µ)T~ dT 
' 0 

( 1.2) 

(1.3) 

which is O(e2), unless A.+µ=O, when resonance occurs and w both is O(e) and 

varies on the slow time scale. Our result is that for the system ( 1.1) this does 

not happen. 

One consequence of our result is that the slow scale motion can be com-

puted with error O(e2) by choosing initial data so that only one time derivative is 

bounded at t =O, carrying the fast scale motion along in the computation, and 

tiltering it out at the end. However, this is probably not a practical method. 

A second and possiply more significant consequence is that if fast scale 

motions of amplitude O(e) are in fact present in the physical system being 

modelled, they can be omitted from the computed solution without introducing 
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o.n error greater than O(e2) in the slow scale motion. 

In atmo.spheric modelling, this could be significant, since fast scale motion 

of amplitude O(e) may in fact be present in the atmosphere, but there is little 

hope of forecasting it accurately. If our result were to extend to the full equa-

tions governing atmospheric motion, it would mean that this motion could be 

omitted entirely from numerical computations without introducing an error 

greater than O(e2) in the slow scale motion of interest. An error of this size is 

usually considered acceptable in present day weather prediction. 

Interestingly, in [7], it was found that in a simple shallow water equation 

model. the slow scale motion was relatively unaffected by the presence or 

o.bsence fast scale motion for periods of up to a day, although no number for 

the relative amplilude of the fast scale motion was given. 

We also consider systems of the form: 

D( 1)(U,V,x,t)Ut = L(AU:i: +CU)+ [<P(U,V,x,t)]:i: 
E: 

D(2)(U,V,x,t)vt = ['fr(U,V,x,t)]:i: (1.4) 

U(x+2rr,t) = U(x,t) , V(x+2rr,t) = V(x,t) 

where D(l) and D(2) are smooth, bounded, periodic, symmetric, positive-definite, 

non-singular matrices, C is a constant, real, anti-symmetric matrix, and all 

other symbols are as in (1.1). The system is again assumed to be symmetric 

hyperbolic. Again, examples of such systems are given in section 1.2. 

The matrix D = diag(D(ll,D(2)) often appears in physical applications 

because of the requirement of symmetry. Hence, in this thesis it will be called a 

symmetriser, and systems (1.1) and (1.4) will be referred to as 'without sym-

metriser' and 'with syrnmetriser' respectively. If Dis a constant, independent of 

( U, V,x,t ), then the system behaves as though D were the identity, i.e. like (1.1). 
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The system ( 1.4) falls into one of two categories, with regard to its behavior 

under perturbations of the initial data, according to whether the operator Po 

defined by: 

P 0w = Awx +Cw (1.5) 

is. o:- is not, singular on the space Sp of 2;r-periodic, once differentiable, square 

integrable functions of x. 

First, suppose P 0 is non-singular. Then we can prove a result similar to 

that for (1.1), namely that if the initial data for (1.4) are not prepared correctly 

for the suppression of the fast scale motion, but contain errors of amplitude 

O(e), then fast scale motion of amplitude O(e) will be present in the solution, 

but the resulting change in the slow scale motion will be of amplitude only 0 (e2). 

This result is less general than that for (1.1), in that the error iq. the initial 

data is not allowed to be of amplitude O(eµ) for µ,< 1. However, when µ,< 1, 

1J(1)( U. V,x,t) and D(2)( U. V.x.t) do not have even one time derivative bounded 

independently of e, in general. and so the solution itself may not be bounded 

independently of e, and one cannot expect a similar result to be generally true. 

Next, if P 0 is singular, for example if C=O, since then P 0w defines w only up 

to an arbitrary constant, the above result is not in general true, since any eigen

function of P 0 associated with the eigenvalue zero (in the example C=O, this is 

the mean value over x of w) can vary on the slow time scale and be of amplitude 

O(e). However, we can still show that if the initial data contain errors of ampli

t1_ide O(e), then the error introduced in the solution is also O(e) on some finite 

Lme interval independent of e, though it may vary at leading order on both slow 

and fast time scales. 

A third consequence of our results is that solutions of (1.1) or (1.4) for 

non-zero e converge as e--> 0 to a solution of the reduced system obtained by 
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taking e=O in the equations, provided the initial data are chosen to be of the 

form: 

( 1.6) 

whereµ> 0 for ( 1.1) and its generalisations, or/;;?! 1 for (1.4) and its generalisa

tions, and (Us, Vs) is a smooth solution. 

In [ 11], Klainerman and Majda address this question and prove some results 

for symmetric hyperbolic systems similar to those we consider. Their theorem 3 

on the "uniform stability" of solutions under perturbations of the initial data is 

similar to our result, but is derived under more restrictive assumptions on the 

coefficients. In particular, their system ( 4.34 ), which does not satisfy their 

structural conditions, and which they conjecture is not uniformly stable, does 

satisfy our conditions (provided a 1 (u 2)~ 6> 0 for some 6) and, although the large 

part of the spatial operator is in this case singular, our\theorem 5 ~hows that 

thi:::; system is in fact uniformly stable. 

The arguments used in the proofs of our results are quite simple. The cru

cial step is the demonstration that the x-derivatives of the solutions are 

bounded independently of e. This is easily shown for the system ( 1.1), but is 

more difficult to show for (1.4). Having shown this, the perturbation in the solu

tion resulting from the error in the initial conditions is found by an asymptotic 

exp.a._11;;Jon .. 

In chapter 2, systems without symmetrisers are considered. Theorem 1, for 

system ( 1.1), is stated in section 2.1, bounds on the x-derivatives and some 

other lemrnata are proven in section 2.2, the theorem is proved in section 2.3, 

a.nd the result generalised to other systems without syrnmetrisers in section 2.4. 

Chapter 3 follows the same outline for systems with symmetrisers, except that 

the singular and nonsingular cases are dealt with separately in sections 3.3 and 
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3.4 respectively. The crucial proof that the x-derivatives are bounded is given in 

section 3.2, and generalisations in section 3.5. 

The following notation is used throughout the paper: 

llw II = (w,w)* 
21T 

(w,y)=j w .. yd.x 
0 

I BI =sup! llBw II: llw II =1~ 

lw I"" =sup~ lw (x) I :O~ x~ 2rr~. 

That is, II II denotes the L 2-norm of a vector, I I is the induced matrix norm, 

and I I .. is the maximum norm of a vector. Also, the mean value over x of a 

periodic function is denoted by: 

1 21T 
<w(t)> = -J w(x,t) dt 

2rr 0 
(1.7) 

while [r] is used to denote the largest integer less than or equal to the real 

number r. 

Finally, a note on distinguishing fast and slow scale motion in a nonlinear 

~:ystem. A function that varies only on the slow time scale is characterised by 

having all its time derivatives bounded independently of e. An overbar - will 

sometimes be used to denote such a function. On the other hand, a function 

that 'oscillates on the fast time scale' can be characterised by the existence of 

some constant o, independent of e but withe<< o<< 1, such that for any (x,t ): 
~"' ~ -

t +6 

J w(x,T)dT=O(e) 
t-o 

(1.8) 

(where it is assumed the function is scaled so as to "'1 as e-> 0). A tilde "'will be 

used to denote such a function. 
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1.2 Examples of Hyperbolic Systems with Two Time Scales 

Many of the systems that stimulated the present work, and most of its 

references, are drawn from meteorology. There, some systems of equations 

used to describe atmospheric motions, such as the shallow water equations 

(scaled as in [ 4]): 

(1.9) 

are h)rperbolic systems having normal modes which fall into two classes. Physi-

cally, these are the Rossby modes, which vary on a time scale of a day or so, 0(1) 

in this scaling, and the inertia-gravity modes, which oscillate on a time scale of a 
3-

few hours, O(e- 12) in this scaling. Although both modes are present in the atmo-

sphere, the amplitude of the inertia-gravity modes is smaller than that of the 

Rossby modes by a factor of e or e2 , and it is believed they are of little imper-

tance in determining the weather. 

Following [ 4], the system (1.9) can be linearised about a basic (geostrophic, 

nondivergent) state (u,il, iO). and put into symmetric form: 

(1.10) 

where: 

r ii 0 e-%d rv 0 0 

A1= 0 u 0 A2 = 0 iJ e-%d 
e-'%d 0 u 0 e-%d if 

r 0 -e-1f 0 r 
Ao= [e-;f I u 0 0 + 0(1) z = 1 v 

0 0 e'2 d-1rp 
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and F is an 0(1) forcing function depending on the basic state. Here, 

d = (1 +t2~)1/a. 

While this does put the system in the symmetric form required by the 

theory, it does so only for the linearised case. To treat the full nonlinear equa-

tions (1.9), a symmetriser multiplying the time derivatives is needed, so this is 

really a system 'with symmetriser' rather than one 'without symmetriser' as 

might appear to be the case. 

Again following [ 4], the system ( 1.10) can be Fourier transformed in the 

space variables x and y (first 'freezing' the coefficients Ai(x,y)), to obtain: 

(1.11) 

where c..>1 and c..>2 are the wave numbers, and A denotes the Fourier coefficients. 

The eigenvalues of this system, i.e. of the matrix [ti 1-1(A 1ic..i1 + A2ic..i2 + A0 ), are 

given by: 

i\1 = 0(1) 

Since the general solution of ( i .11) is of the form: 

3 

Z = ~ ciexp[- [ti [>-.it ]ii ( 1.12) 
i =l 

Where the Cj are constants determined by the initial conditions, and the Zj are 

the eigenvectors of the system, it is clear that the eigenvalue A. 1 leads to the 

Rossby wave solutions, which oscillate on the slow time scale t,. and the other two 

eigenvalues lead to the inertia-gravity modes, which oscillate on a fast scale 

One final note about this system. If ~ = 0, then the eigenvalues reduce to 

those of A 0 , two of which are still large, though only O(e-1). Thus, the number of 
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large eigenvalues is independent of x, t and c:i. 

Other examples of hyperbolic systems with two time scales can be found in 

meteorology, for example the primitive equations, and oceanography. 

Also, such systems arise in plasma physics. For example, the 7x7 system 

governing the motion of a compressible, non-isentropic, magneto-fluid in three 

space dimensions: 

Pt +v·'i/p +p[-~pr
1

divv =o. 

Vt + ( V ·'i/ )v = _1_ YL + _1_ H x curlH 
M2 p Az p 

(1.13) 

Ht + ( v ·'l )H + H div v - H ·'i/ v = 0 , 

has two time scales in circumstances where the Alfven number A is large. These 

equations can be symmetrised by a simple transformation [ 11 ], and then have a 

diagonal. but nonlinear, symmetriser. 

In [9], a specific example is given describing a plasma surrounded by 

vacuum confined between two infinitely long cylindrical walls. The problem is 

assumed to be longitudinally uniform, so reduces to a one dimensional problem 

in the radial direction. The equations are: 

Pt + V Px + PVx = 0 

a.2 B 
Vt + -p Px + VVx + Bx = 0 

4rrµp 
(1.14) 

where p is the density, v the velocity, B the magnetic induction, a the sound 

speed, µ the permeability, and p the pressure, a given function of p. Analysis 

similar to that in [ 4], outlined above, is performed for this system in [9]. This 
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system also has two large eigenvalues, and a single 0(1) eigenvalue describing 

the motion of interest. This system can be put in symmetric form, even in the 

nonlinear case, without the use of a syrnrnetriser. 



- 13 -

1.3 Initialisation by the Bounded Derivati"Ve Method 

As noted above, a simple but very general initialisation scheme, called the 

bounded derivative method, has recently been proposed by Kreiss, based on the 

observation that the slow scale motion is characterised by having a number of 

time derivatives bounded independently of e. A solution having p time deriva

tives that are 0(1), but whose (p +l)th time derivative ""e-1 , must necessarily 

contain fast scale motion of amplitude ""eP. 

To restrict the amplitude of the fast scale motion to O(eP), it is therefore 

necessary to ensure that the solution and p of its time derivatives are 0(1) at 

t =O. This can be done by careful choice of the initial data. It remains to be 

shown that this is sufficient, that the solution will retain bounded time deriva

tives on some finite time interval [O,T], independent of e. 

In practice, it is not difficult to apply this principle. A constraint on the ini

tial data can be derived for each time derivative that is to be bounded, and 

these constraints essentially determine the variables associated with the fast 

scale motion in terms of those associated with the slow scale. It may require a 

projection in Fourier space to achieve this separation of variables [13]. In [ 4], 

the initialisation process for the primitive equations of meteorology, on both 

mid-latitude and equatorial ,6'-planes, is described in detail, and it is shown that 

there is more than one way of adjusting initial data obtained from measure

ments so that the required constraints are satisfied. 

This simplicity of application is one advantage of the bounded derivative 

method. Another is that the method can be applied to both bounded and 

unbounded regions with a wide variety of boundary conditions. Also, the basic 

idea of bounding time derivatives can be applied at boundaries to determine 

appropriate boundary co!lditions. 
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We now summarise the theory developed by Kreiss and others [5,12,13,18] 

which proves rigorously that this initialisation procedure is sufficient to control 

the amplitude of the fast scale motion. Basically, this theory consists of the 

derivation of energy estimates, independent of the fast time scale, of the form: 

ll
f: av~ (.,t)11~ Kpe<Xptllt av~ (.,0)11 
v=O at v=O at 

( 1.15) 

where KP and exp are constants independent of e. [For nonlinear systems such 

an estimate will in general hold only on finite time intervals, and the constants 

may depend on the initial data.] 

In physical problems, it is natural that such an estimate holds for p =O, for 

if not, the problem is not well-posed, and this probably reflects a deficiency in 

the model being used rather than a real feature of the actual physical system. 

Consider the symmetric hyperbolic system: 

(1.16) 

where x=(x1 •... ,Xn), Dis a bi;mnded, positive-definite, symmetric, non-singular 

matrix with bounded inverse, a smooth function of its arguments, and: 

( 1.1 7) 

where all the coefficients and their derivatives are bounded independently of e. 

Assume that the operators e-1 Po and P 1 are semi-bounded, i.e. there exist con-

stants Kand K, independent of e, such that: 

Real(w,Pow) ~ eKllw 11
2 Real(w,P1(u)w) ~ Kllw 11

2 (1.18) 
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for for any fixed u and all w satisfying the boundary conditions, which may be 

periodic, 'solid wall', or 'open', but in the last case must be dissipative. 

The bounds (1.18) lead to the basic (p =O) energy estimate: 

for all t,t 0 e[O,T] (1.19) 

for constants exo. K 0 and T, independent of e, and are therefore natural assump

tions. 

Finally, assume that the eigenvalues JC(2°>) of the symbol P 0 (.X,t,i2°>) fall into 

two sets, M1 and M2, given by: 

for all w ( 1.20) 

for all w 

where c is some strictly positive constant independent of e. Further, assume 

each eigenvalue belongs to the same set Mi for all x and t. This ensures that the 

large part of the operator is nonsingular and elliptic on the subspace spanned 

by the eigenfunctions associated with M 1, and precludes 'turning-point 

behaviour'. This is also a natural assumption, since in systems where the fast 

scale motion is oscillatory in nature, as here, turning-point behaviour is rare. 

In some systems of physical interest, the number of large eigenvalues can 

change at particular values of w. In particular, if C = 0 in (1.17), then all eigen

values of the symbol fall to zero at w=O. This is the 'singular case' mentioned in 

the introduction, and it can lead to genuine differences in the behavior of the 

system, but for many purposes the condition in (1.20) can be relaxed for C:, with 

I 2:i I::::;;; {3, for some constant {3 (independent of e, of course). 

For the case where the coefficients of P 0 and P 1 are constant, the problem 

can be reduced to a system of ordinary differential equations by Fourier 

transformation. Then, the theory developed in [12], in which one finds the 
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solution by a simple asymptotic expansion, can be applied to show the validity of 

the method. 

When the coefficients are not constant, one must derive energy estimates by 

the standard method of taking inner products of the various derivatives of the 

solution with their time derivatives obtained from derivatives of the original 

equation. When P 0 has constant coefficients, this is not difficult, since the terms 

involving e-1 always have the form: 

for some w, and, in view of ( 1.18), these terms are all 0(1). Thus the problem is 

essentially reduced to: 

(1.21) 

which is a standard problem. Estimates of the form (1.15) hold on some finite 

time interval (which may depend on the initial data), for any non-negative 

integer p if the system is linear, for any p ~ [ 1/zn J +2 if it is nonlinear. This 

requirement arises from the need to consider at least this many derivatives, in 

the nonlinear case, in order to obtain a closed system [5]. 

If P 0 has variable coefficients, terms apparently of amplitude "'e-1 appear in 

the estimates. For example, taking D=I. P 1= 0, and restricting to one space 

dimension for ease of exposition, if u =ut, then 

. 1 p . 1 p. 
Ut = - oU + - oU 

e e 
( 1.22) 

1 d II . 112 - L . P . ) L . P. ) 2 dt u - e \ u, ou + e \ u, ou ( 1.23) 

Here, of course: 



- 17 -

Po= f:At(x,t)-
8
8 + [1/zAzt(x,t) + Ci(x,t)] 

j=l Xj 

The first term on the right in (1.23) is 0(1), by (1.18), but to show that the 

second term is also 0(1) requires more work. Further suppose (following [12]) 

that the system has exactly two large eigenvalues, i.e. P 0 (x,t,ic.;) has exactly two 

. nonzero eigenvalues for all x, t and w. This is the case in many applications. 

Then, Kreiss [12] has shown that Po can be transformed into one of two normal 

forms, namely: 

P 0u = 1/z[A (x,t )uz + (A (x,t )u ):i;] + C(x,t )u ( 1.24) 

where either: 

_ [A11 OJ 
A - O O IA11I~0 (1.25a) 

_ [C11 OJ 
c - 0 0 (l.25b) 

or: 

_ [A11 OJ 
A - 0 0 a12~ 0 (1.26a) 

0 c 12 c 13 0 

-c12 0 0 

c = -c 13 0 0 C13~ 0 (l.26b) 

0 

The special structure of these normal forms can be used to show that the 

apparently large term in {l.23) is in fact 0(1). 
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In the first case. the fast and slow scale variables separate (to the approxi-

mation we have made). No e-1 terms appear in the equation for the slow scale 

variables, while the first two components u 1 of u form the fast scale variables, 

and satisfy: 

( 1.27) 

(l.28) 

Thus: 

B I A A-1 ·I = u + e llt 11 u ( 1.29) 

say. Hence: 

U. I _ 1 (Pl · I + B l) + A A -1 ·I e-- au u 11t i1U 
E: 

( 1.30) 

Now let u satisfy: 

Pbu + Bu1 = o (l.31) 

By the assumptions ( 1.20) on the eigenvalues of Pb. which ensure that it is a 

nonsingular elliptic operator, and the boundedness of B: 

Jiu II + Jluz II ~ const. JJu1 JJ (1.32) 

So, letting u{ = u1--1I: 

·I lpJ·I A AI·I Uit: - 0U1 + llt llU 
E: 

( 1.33) 
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for which an energy estimate is easily obtained. In this way the apparently large 

term has been eliminated. 

For the second normal form, the second and third equations may be 

written as: 

( 1.34) 

where f, g and h are functions of the other components of the solution and its 

time derivative. If f, g and h are assumed known, then this is an overdeter-

mined system for u (l), and it can be shown that if a solution exists it must 

satisfy: 

lluP) II + llu(ll 11 ~ e canst.( II/ II + Ilg II + llh II) 

~ e canst.( llu II + llu II) ( 1.35) 

This shows that u(l) is essentially O(e), and since the apparently large term: 

0 c 12 c 13 

1( . .P) 1 .• 
-c 12 0 0 

- u, 0u = -u -c 13 . 0 0 
u 

e e 
( 1.36) 

involves u(l) in every term. it is not hard to show now that it is in fact 0(1). 

In more space dimensions, there is only one normal form, the generalisa-

tion of the second form. If there are more than two large eigenvalues, as is the 

case in some magnetohyrodynamic situations for example, then Tadmor [ 18] 

has recently shown that there will always be an even number 2q of them, and 

that there are, in one space dimension, q +l normal forms, the two above plus 

q -1 intermediate forms. The same techniques can be used to show that the 
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solution and its derivatives are bounded in terms of their initial values in these 

cases also. 

Finally, in the case where the coefficients of P 0 are also nonlinear, Kreiss 

and Browning [5] show the theory still holds if Po has the rather special form: 

( 1.37) 

_ Bf -v _ ) ( ) . where fj - -.,,-. F - (f 2 ...... .f n , and f u is a smooth function of u with no 
OXj 

explicit x or t dependence, and similarly for g and h. 
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1.4 Other Initialisation Schemes 

In the past, several different schemes for choosing initial data to suppress 

the fast scale motion have been proposed. A brief summary of most of these 

schemes, anQ. remarks on their relative merits, may be found in [ 4]. At present 

there seem to be three basically different schemes in use, while earlier schemes 

are in general special cases of one of these three. 

The first scheme is called 'dynamic initialisation', see [15] or [16], in which 

the equations of motion are integrated forwards and backwards for a few time 

steps from the given initial data, with a small amount of dissipation added. This 

has the effect of damping out the fast scale waves in the initial data, and so 

arriving at suitably balanced initial data. This scheme is quite simple to apply, 

but there are questions concerning its effectiveness in weather prediction, par

ticularly in tropical latitudes. 

The second scheme is called 'normal mode initialisation', see [ 7] or [ 19], in 

which the given initial data are expanded as a series in the normal modes of the 

system. Then the fast scale modes can be removed by setting their coefficients 

to zero. These modes can return through nonlinear interactions at later times, 

but it can be shown, using the method of multiple time scales ('two-timing'), 

that if a suitably chosen small amount of fast scale motion is retained initially, 

the amplitude of the fast scale motion can be kept as small as is desired, see [ 1 ], 

[2] and [14]. The disadvantage of this scheme is that the normal modes of the 

system must be found. This is not difficult for, say, a whole-globe weather pred

iction model, but in limited area forecasting it is in general not possible. 

The third scheme is the 'method of bounded derivatives', described in detail 

in the previous section. This has none of the above-mentioned disadvantages of 

the previous two schemes, is simple to apply, and quite generally applicable. 
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Chapter 2: HYPERBOIJC SYSTE:ll.fS WITHOUT A SYMMETRISER 

2.1 Statement of the Problem 

Consider again the system (1.1): 

1 Ut = -AUz + [q,(u, V,x,t)]z e 

yt = [ '1' ( U ,V,x ,t) Jz 

U(x+2rr,t) = U(x,t) , V(x+2rr,t) = V(x,t) 

(2.1a) 

Assume that A=diag(>-.1,A.2 , ... , Xm), each A;" 1:::; j:::; m, being a non-zero real con-

stant, that q, and '1' are C"" functions of all their arguments, 2rr-periodic in x, 

having no explicit e dependence. Also assume that the system is symmetric 

hyperbolic, Le. the matrix [~A + q, '.J rp v] is real symmetric. 
'1' '.} 'It v 

From [5], solutions of (2.la) varying on only the slow time scale ('smooth 

solutions') exist. As discussed above, to obtain such a solution, the initial data 

must be chosen appropriately: in this case, V(x ,0) may be chosen arbitrarily, 

but then U(x ,0) is determined up to O(eP) for any p. In fact, U(x ,t) = O(e) in 
\--"'".,/\-~_/,, 

any smooth solution. 

Thus, suppose (tus(x,t),vs(x,t)) is a smooth solution of (2.la). Since we are 

interested in investigating the behavior of the solution under perturbations of 

the initial data, take: 

(2.1 b) 

V(x ,0) = Vs (x ,0) 

where O< µ<_2 and f (x) e C"" is 2rr-periodic and independent of e, with: 
"~~------.----- --
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27T 

ff (x)dx = 0 
0 

(2.lc) 

This condition is in fact not necessary for our results, as we shall show in sec-

tion 2.4, but we assume it here to simplify the proof of the theorem in this sec-

tion. 

Since the equation (2.la) is in conservation form, (2.lc) ensures that the 

perturbation in its solution resulting from (2.1 b) always has mean value zero. 

That is, the perturbation is restricted to a subspace (Sfl say) of Sp on which the 

large part of the spatial operator P 0 =A a~ is nonsingular, and in fact P 01 is 

then 0(1) in the sense that: 

Pow =f 

Jw loo:::;; 2rrjA-1 I I/ J .. 

Let u ,v be the perturbation in the solution: 

u(x,t) = U(x,t)-rus(x,t) 

v(x,t) = V(x,t) -v8 (x,t) 

The equations satisfied by u and v are: 

1 
Ut = -Auz + [B11(x ,t )u + B 12(x ,t )v ]z + [yo(u ,v ,x ,t )]z 

t; 

. 
Vt= [B21(x,t)u + B22(x,t)v]z + [-ip(u,v,x,t)]z 

u (x ,0) = rf"f (x) , v(x,O)=O 

. 
u(x+2rr~t) = u(x,t) , v(x+2rr,t) = v(x,t) 

(2.2) 

(2.3) 

where (B 11u + B 12v) is the linear part and rp the quadratic and higher part of: 



- 24 -

and (B 21u + B 22v) is the linear part and 1/1 the quadratic and higher part of: 

Each of Bii• i,j=1,2, is C"" in x and t, 2rr-periodic in x, and, together with all its 

x and t derivatives, is bounded independently of e. The same may be assumed 

of cp and 1/1. with bounds uniform in u and v, since such bounds are needed cnly 

in a neighborhood of the solution, and cp and 1/1 may be altered elsewhere without 

affecting the solution. 

The main result of this section is then: 

Theorem 1. If u ,v is the solution of system (2.3), the perturbation of the 

solution of (2.1) when (2.2) are used for the initial conditions. then there exist 

constants t 0 , K0 , K 1, 6 and T, independent oft, and strictly positive, such that: 

where: 

t +o 
u(x,t)=j u(x,T)d-r 

t -6 

for all t e [O,T] and all t ~ t 0 . 

Put another way, the solution of (2.3) has the form: 

;' ' 

u(x,t) = ~(x,t) + O(e2JJ.)+ O(r+J) 

v (x ,t) = O(e2~) + O(r~J) 

(2.4) 

(I 

on some 0(1) time interval, where U'is 0(1) and oscillates on the fast time scale. 
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2.2 Some Useful Lemmata. 

The first and most important lemma we need states that the x-derivatives 

of the solution are bounded independently of e, even if the t-derivatives are not. 

The lemma is stated here in more general form than is needed for theorem 1, 

since the more general form will be required in section 2.4. 

Lemma 2.1 Suppose w (x ,t) satisfies the symmetric hyperbolic system: 

1 
Wt= -(Awz +Cw)+ \t'(w,x,t)wz + 7(w,x,t)w 

e 

w(x,O) = f (x) , w(x+2rr,t) = w(x,t) 

(2.5) 

where A is constant and symmetric, C is constant and antisymmetric, \t' is sym-

metric, rp, ?' and f are periodic in x and C"° in all arguments, and there exist 

constants Pqrs• Qqrs and Rs. independent of e, such that: 

(2.6) 

for all w, all nonnegative r ,s and q 1 , ... , qm with q =q 1 + · · · +qm. 

Then there exist constants T, eo and Krs, independent of e, such that: 

(2.7) 

for all t e [O,T], all e ~ e0 , and all nonnegative r ,s. 
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Proof This is a standard result [5], but for completeness a proof is out-

lined here. It proceeds by estimating the growth of the L 2 norms of the solution 

and its x-derivatives. First then, from (2.5): 

1 d 2 dt (w,w) = (w,So(w,x,t)w:iJ + (w,7(w,x,t)w) 

since the symmetries of A and C imply that: 

(w,Cw) = 0 

for allw. Now, using the bounds (2.6): 

( w ;y( w ,x ,t )w) ~ Q000 II w 11 2 

where the subscript notation has been used to denote a partial derivative with 

respect to x only if all other arguments of the function are to be held constant, 

while a~ has been used when only t is to be held constant. Hence: 

Similarly, if y =w:i:: 

1 arp 1 a-r 1 
Yt = -(Ay:i; +Cy)+ rp(w,x,t)y:i: + 1(w,x,t)y +-;-:\a w,x,t)y +~a w,x,t)w 

e x x 

~ canst. ( llY 11 2 + llY 11llw11)(1 + lw:i: I..,) 
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Finally, if z =w=: 

1 ara 
Zt = -(Az:i; + Cz) + cp(w,x,t)z:i: +-y(w,x,t)z + z.::..:i;_a (w,x,t)z 

e x 

EL ~ a2-y + 2 a (w,x,t)y + 2 y + -'2W 
x ax ax ( •) 

Here, the inner product of z with all but the last two terms can be estimated as 

above, while: 

But: 

Ir. 

~ 2::(z,cpw
1
wjx:::Y) + (Po2o+mPllolwxloo+ 112m2P2oolwxl.;)llYll llz II 

j=l 

m m "' 2:: (z •Sow1WjxxY) = 2:: (z .r/';Y;Wzz) ~ mP1001 Y 1 .. 11 Z 11 llw:cx 11 
j=l j=l 

where the ikth component of Ji; is equal to the ijth component of Sow1c· Thus, this 

term can be bounded in terms of the L2 norms of w and its first two derivatives 

and the maximum norm of its first derivative. The last of these can in turn be 

bounded in terms of the first two. The point here is that by interchanging the 

positions of wxx and y =wx in this last term, reference to I Wxz I"° in the bound is 

avoided; this is necessary since I Wzz I"° cannot, in general, be bounded by L2 

norms without introducing the third derivative with respect to x, and if this 

were to appear, we would not have a closed system. 

The final term in ("') can also be estimated by the same means, so, collect-

ing everything together, it follows that: 

:t (z,z)~ const.!llz ll(llz ll+llY ll+llw 11)(1+lwxl ... ) + lwxl;llz ll(llY ll+llw ll)l 
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In view of Sobolevs inequality: 

lwz I ... ~ canst. ( IJwz II+ IJw:z;:z; II) 

the three inequalities we have derived form a closed system of nonlinear ordi-

nary differential equations in time for II w II . II y II and II z II . Further, the system 

is independent of e. Therefore, for any 0(1) initial data, it has a bounded solu-

tion on some finite time interval independent of e. On this time interval, which 

may depend on the initial data. the solution is bounded in terms of its initial 

value. The lemma now follows. 

Lemma 2.2 Suppose w (x ,t) satisfies: 

1 
Wt= -Awz + [B(x,t)w]z 

e 

w(x,O) =J(x) w (x +21i,t): w (x ,t) 

(2.8) 

where A is a constant, symmetric, nonsingular matrix, B is symmetric, both B 

and f are 2rr-periodic in x and C"' in their arguments, f satisfies (2.lc), i.e. it 

has mean value zero. and there exist constants Prs and Rs, independent o'f e, 

such that: 

for all nonnegative r ,s . 

Then there exist constants K1 , e0 and o, independent of e, such that: 

for all e ~ e0 , where: 

llw(.,t) II s; eK1 

t +6 

w(x,t) = J w(x,T) dT. 
t -6 

(2.9) 
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That is, w is oscillates on the.fast time scale. 

Proof By the previous lemma, Jw I .. is 0(1). Let: 

P 0w = Aw:z; + e[B(x,t)w]:r; 

As noted above, P 01 exists and is bounded independently of e on the subspace 

32. and w belongs to this space for all t since it does so initially and the equa-

tion has conservation form. Also, since A is constant, P 01 commutes with :t at 

leading order. Thus: 

1 
Wt= -P0w 

e 

Thus, for any t5 withe<< t5<< 1: 

t +6 r ] t +6 J w(x,T) d'i= elP01w + O(e2w) 
t-6 t -6 

~ 2e!P01 I lw I .. + O(e2w) = O(e) 

whence the result follows. 

Lemma 2.3 Suppose w (x ,t) satisfies: 

1 
Wt= -Aw:r; + [B(x,t)w]:r; + F(x,t) 

f; 

w(x,O)=O w(x+2rr,t) = w(x,t) 

(2.10) 

where A and B are as in lemma 2.2, Fis C"" in x and t and 2rr-periodic in x with: 

211" 

J F(x,t) dx = 0 
0 

(2.lla) 
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and there exist constants Q50 , independent of e, such that: 

s=0,1 (2.llb) 

for all t . Then: 

{i) if F va.ries only on the slow time scale at leading order, i.e. if there exist 

constants Qs 1, independent of e, such that: 

s =0,1 (2.11c) 

for all t, then for any fixed T, independent of e, there exist constants Kand e0 , 

independent of e, such that: 

II w (.,t) II -;:;, ~K (2.12) 

for all t e [O,T] and all e'5, e0 . 

{ii) if F oscillates on the fast time scale, in the sense of ( l.B), at leading 

order, i.e. if II F( .,t) II -;:;, d} for some constant Q and all t, then for any fixed T, 

independent of e, there exist constants K0 , K 1 and e0 , independent of e, such 

that: 

llw(.,t)il-;:;, Ko llw(.,t)JI-;:;, eK1 (2.13) 

for all t e [O,T] and all e'5, e0 . Here w(x,t) is the mean value of w(x,T) over the 

time interval [t-o,t +o], e<< o<< 1. Thus, w also oscillates on the fast time scale 

at leading order. 

F'roof (i) As in the proof of lemma 2.1, since A is constant and symmetric: 

1 d 2 dt llw il 2 = (w,(Bw)z) + (w,F) 
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~ consq II w 11 2 + II F 11 2 ~ 

Since II F II, II Ft II. w (x ,0) and Wt (x ,0) are bounded independently of e, it follows 

that II wt (.,t) II is also so bounded on any 0 ( 1) time interval [O,T]. Since F:r: is 

bounded independently of e, it can be shown in similar manner that II Wzt (.,t) II is 

also 0(1). Thus by Sobolevs inequality: 

lwt(.,t) [ .. ~ canst. = 0(1) 

on [O,T]. Thus, with Po as above: 

1 
Wt= -P0w + F 

e 

=;;> I w 1.., ~ econst. (I Wt I.., + IF I .. ) 

~ econst. (II Wt II+ II W:z:t II+ II F II+ II F:r: II) = O(e) 

whence the result follows. 

(ii) Here: 

t +6 t+6 

=;;> J w(x,T) dT= [eP0-
1w]f.::g + O(e2w)-P01 f F(x,T) dT+ O(eF) 

t~ t~ 

=;> llw II= O(el!w II)+ O(llFll) + O(ellFll) = O(e) 

as required. 
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Lemma 2.4 Suppose w (x ,t) satisfies: 

Wg = [B(x,t)wli: + [B 1(x,t).Ft(x,t)]:i: (2.14) 

w(x,O)=O w(x+21T',t) = w(x,t) 

where B and Fare as in the previous lemma (either case), except that (2.llb) 

must hold for s=0,1,2,3, i.e. F has three 0(1) space derivatives, and B 1 is C"' in 

x and t, 2rr-periodic in x, and, together with all its derivatives, is bounded 

independently of e. Then there exist constants M, T and e0 , independent of e, 

such that for ~ e0 and t e [ O,T]: 

I w (. ,t) I 00 ~ M (2.15) 

Note this is true whatever the magnitude of the time derivatives of F, which may 

be O(e-1). 

Proof Let w(l) satisfy: 

w/Il = [B 1(x,t).Ft(x,t)]:i: 

wCll(x ,0) = 0 wCll(x+27r,t) = w(ll(x,t) 

Then: 

w(l)(x ,t) = k~ 1 (x ,t )~, (x ~)dt), 

= ![B 1(x,t)F(x.t)]6 - ~Bit(x,t)F(x,t)c:ltL 

Thus, llwC1l II can be bounded in terms of llF II and llF:i: 11 (and norms of B 1 and 

its derivatives of course). Differentiating with respect to x. it follows that 

llwJ 1lll can be bounded in terms of llFll. llFxll and llF:i:xll. while llwz~lJlcan be 
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bounded in terms of these and 11 F =z II . By assumption, all these norms are 

0(1), so w(l) certainly satisfies a bound of the form (2.15). 

Let w(Z) = w-wCl): 

By Duhamels principle, and the bounds on B and its derivatives: 

and: 

on any 0( 1) time interval [O,T]. The result follows. 
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2.3 Proof of Theorem 1. 

In the system (2.3), we are hoping to show that v is an order in e smaller 

than u. Therefore, as a first approximation we neglect v. Neglecting also non-

linear terms, since u is expected to be O(ff"), let u 0 satisfy: 

1 
Uot = -AUoz + [B 11 (x,t)uoJ...& 

e 

uo(x ,0) = eµ,f (x) u 0 (x+2rr,t) = u 0(x,t) 

(2.16) 

By assumption. the bounds required in lemma 2. 1 and lemma 2.2 are satisfied 

by B 11 and f , so we may write: 

u 0 (x ,t) = ef4U0 (x ,t) (2.1 7) 

where u0 oscillates on the fast time scale, but, together with all its x-derivatives, 

is 0(1). Also, (2.16) may be written as: 

where P 0 differs from the P 0 in (2.2) only by an O(e) term. Thus: 

P -1 a (p-1 ) p-2p Uo : t 0 Uot : eat 0 Uo + t 0 01UO 

(2.18) 

since (2.2) still holds, and Pot = O(e): essentially P 0 and :t com-

mute at leading order. 

Next let a first approximation to v be v 1 satisfying: 

(2.19) 

v 1(x,O)=O 
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Using (2.1B), it can be seen that the linear forcing term in this equation is: 

(2.20) 

Thus, noting that P 0 1 is bounded, and from lemma 2.1 that the x-derivative is 

of no consequence, lemma 2.4 implies that this term makes a contribution to 

~he solution v 1 of amplitude O(run) = O(eµ,+ 1). Also, the nonlinear forcing term 

[1f(u 0 ,0,x,t)]:i; is of amplitude O(u@) = O(e2µ,); by Duhamels principle, it therefore 

makes a contribution to v 1 of amplitude O(e2µ,). Thus: 

v 1 (x ,t) = eµ,+lv f1) (x ,t) + t 2µ,v f2 ) (x ·\) (2.21) 

where v f1) and v 1(
2) are both bounded independently of e but may vary on both 

the fast and slow time scales at leading order. 

Now return to the u equation, and let u 1 satisfy: 

(2.22) 

By lemma 2.1, the x-derivatives are unimportant, so the forcing term in this sys-

tern has amplitude O(eµ,+l) + O(e2µ,). It may vary on both fast and slow time 

scales at these orders in epsilon, but, by lemma 2.3, terms that vary only on the 

slow time scale make a contribution to the solution that is smaller by a factor of 

e than the forcing itself. Thus it is sufficient to solve: 

where Sis the time-averaging operator, given by: 
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t+6 

Sw(t)=j w(1)d1 
t-6 

for some t5 with t<< o<< 1. This has solution: 

u 1 (.x, t) = Ef"+ 1uf1) (x ,t) + e2""12"f2l (.x ,t) + lower order terms (2.24) 

where both uP' and uf2l are 0( 1) and oscillate on the fast time scale. 

Also from (2.23), arguing as from (2.17): 

eult = Pou 1 + eG (say) 

(2.25) 

Here, G is O(e2µ.) + O(eµ.+ 1). Thus, the next approximation to the v equation: 

has solution which, by lemma 2.1, lemma 2.4, and Duhamels principle, is of the 

form: 

(2.27) 

This iteration between the two equations can be continued to obtain an 

asymptotic expansion of the solution to (2.3) to any desired order. All remain-

ing terms will be of the same order in e as v 2 , or smaller. This is so, because the 

remainder terms u -u0 -u 1 and v -v 1-v 2 satisfy a symmetric system, which is 

well-posed with a growth constant independent of e. Thus, by Duhamels 
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principle, this system will have solution of the same order in e as the forcing 

terms, and, by lemma 2.1, these are no larger than v 2 . 

All terms of amplitude ff", e2JJ. or f?+ 1 in the solution of (2.3) are thus given 

by the linear systems (2.16), (2.19) and (2.23). 
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2.4 Generalisations of Theorem 1 

In the proof of theorem 1. the essential features were that all x-derivatives 

of the solution were bounded independently of e, so that successive forcing 

terms in the iteration did indeed become smaller, and that the large part of the 

spatial operator, P 0 , was nonsingular, with inverse bounded independently of e. 

The result can be extended to any symmetric hyperbolic system for which these 

two properties remain true. 

(a) Undifferentiated Terms Suppose (2.1) is modified to have the form: 

1 
Ut = -AUz + [iI>(U,V,x,t)]z + r(U,V,x,t) 

e 

vt = ['f ( U, V,x ,t Hi: + 0 ( U,V,x ,t) 

U(x +2rr ,t) = U(x ,t) , V(x +2rr ,t) = V(x ,t) 

(2.28) 

where r and 0 are C'° functions of all their arguments, 2rr-periodic in x, 

bounded, together with their derivatives, independently of e, and all other sym-

bols are as before. 

Subtracting out a smooth solution, we obtain, analogously to (2.3): 

1 
Ut = -Auz + [B 11u + B12v + \P(u,v)]z + C11u + C12v + 1(u,v) 

e 

(2.29) 

say, with initial and boundary conditions as for (2.3). From lemma 2.1, the x-

derivatives of u and v will still be bounded independently of e, but the mean 

value < u > of u will no longer be zero for all time, so the spatial operator is not 

uniquely invertible. However, the mean value of u is a slow scale variable, i.e. it 

has at least one time derivative bounded independently of e, so it should really 

be grouped with the v variables rather than the other u variables. 
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A separate equation can be formed for < u> by averaging the first equation 

of (2.29): 

=< C11 > <u> + F(u,<u> ,v,<v>) (2.30) 

say. Subtracting this from the unaveraged equation, and writing u for u -< u > : 

-~<C11u> +<C12v> +<7(u+<u>.v)> +<C11 ><u>j (2.31) 

This replaces the first equation in (2.29), while the second equation in (2.29) is 

augmented by (2.30). 

Now the mean value of u is zero, and the proof can proceed as before. The 

first approximation to u, u 0 , is as before, being O(~). oscillating on the fast 

time scale, and satisfying (2.18) with slightly modified P 0 . (2.18) can now be 

used in the second equation of (2.29) as before, and also in (2.30), to show that 

both v and < u > ar·e at leading order 0(~+ 1 ) + 0(f:2.U). The rest of the iteration 

proceeds as before. 

{b) Large Undifferentiated Terms Suppose an undifferentiated term is 

added to the large part of the spatial operator in (2.1): 

1 Vi = - (A Uz + CU) + [ cp ( U ,V,x ,t) ]z 
f; 

Vt = [-¥( U, V,x ,t )]z (2.32) 

Then, provided C is constant and antisymmetric, so that the x-derivatives 

remain bounded, the proof goes through as before since the large part of the 

spatial operator P 0 =A a~ + C is nonsingular on~, provided any part of u that 
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is an eigenfunction of Po corresponding to eigenvalue zero is subtracted out, 

just as the mean value was in (a). 

{c) More Space .Dimensions a.nd Nonsepa.ra.tian a/ Scales As remarked in 

[5], lemma 2.1 applies also in more space dimensions, the proof being modified 

oniy to the extent that spatial derivatives of higher than second order must be 

considered before a closed system can be formed, since the Sobolev inequality 

for the maximum norm in terms of L 2 norms requires higher derivatives. This is 

not a serious diffl.culty. 

A difficulty that may arise in more space dimensions is that it may not be 

possible to separate time derivatives of the fast and slow scale variables into two 

different equations, as we assumed in (2.1). However, such a separation can be 

carried out in Fourier space, exactly as in [5], by means of a projection. For 

each fixed ti, the eigenvalues, IC, of the symbol, P 0(iti), of the large part of the 

spatial operator are assumed to fall into two classes: 

or 

(in the latter bound, 1 can be replaced by any o> 0 by redefining e). Then, for 

each C:." there exists a unitary matrix U(itJ) such that: 

~.. - [R(iti) OJ U (iti)P0(it>)U(iti) = o o (2.33) 

Then the projection R is defined by: 

Ru = ~eiti.z U(if:>) [1~ ~] O"(iC:,)u(w) 
!.J 

(2.34) 

where u(C:,) are the Fourier coefficients of u (x), and h is the unit matrix of the 

same dimension as R(i"t.>). SP can be written as the direct sum of: 
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sf,= RSp SJ/= (I-R)Sp (2.35) 

and then P 0u 11 = 0 for all u 11 e sf,1 and P 0 is nonsingular on sf, with inverse 

defined by: 

(2.36) 

In view of (2.33), I P 01 I ~ 1. 

Now, u 1 =Ru is the fast scale variable, u 11 = (I-R)u the slow scale vari-

able, and they satisfy equations of the form: 

u[ = .Lpo[_Eju1 + 
e a.x J 

u/1 = ... 

where the omitted terms are formally 0( 1). 

The remarks in (a), (b) and (c) may be collected together and expressed 

more formally in the following generalisation of theorem 1: 

Theorem 2 Consider the symmetric hyperbolic system: 

u(.X ,o) = Us (x .o) + e#'f (x) (2.37) 

u(.X+2rre1 .t) = u(x,t) 

where x=(x 1 , ...• xn), ei is the unit vector in the jth direction, U5 (x,t) is a 

smooth solution of the first and third equations, F is C"° in x and t, 2rr-periodic 

in x, and, together with all its derivatives, is bounded independently of E:, µ> 0, 

and: 
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[~ 
n a 

Pa .... =}.:A,-+ C ax j=l ax; 
(2.38) 

P 1[u.x,t,e. 
8_.j = f; ~aa 'll;(U,x.t,e)] + ~a(U,x,t,e) ax j=l X; 

where A;=Aj', 1~ j~ n, C=-c~. and if?;. O~ j~ n, is C"° in all arguments, 2rr-

periodic in x, and, together with its x and t derivatives, is bounded indepen-

dently of e. 

Further, we assume that each eigenvalue IC of the symbol Po(iw) is either 

zero for all C:, or satisfies: 

(2.39) 

for some positive constant A., independent of e, for all w, except possibly at a 

finite number of values where some of these eigenvalues may also be zero. 

Then, the result of theorem 1 applies, namely, there exist constants ea. Ka. 

K 1, o and T. independent of e, and strictly positive, such that: 

IJ(U - U8 )(.,t)!I ~ EP'Ka (2.40) 

for all t e [O,T] and all e ~ e0 , where: 

t +6 

(U - Us)(x,t) = J (U - Us)(x,r) dr 
t-6 

Put another way, the solution of (2.37) has the form: 

(2.41) 

where {tis O( 1) and oscillates on the fast time scale. 
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Chapter 3: HYPERBOIJC SYSTEMS WITH A SYMM.ETRISER 

3.1 Statement of the Problem 

In this chapter we follow the analysis of chapter 2 for the more general 

hyperbolic systems with symmetrisers. Thus, consider again the system (1.4): 

nC1)(U,V,x,t)Ut = 1-(AU:: +CU)+ [cii(U,V,x,t)l~ 
e 

nC2l( U,V,x ,t) Vi = ['11 ( U, V,x ,t )]z 

U(x+Zrr.t) = U(x,t) , V(x+Zrr,t) = V(x,t) 

(3.la) 

Assume that A =diag(A.i.A.2 , ... , Am), each A.;. 1~ j~ m, being a non-zero real con

stant, that C is a constant, real, anti-symmetric matrix, that cii, 'f, D(l) and nC2> 

are C"" functions of all their arguments, 2rr-periodic in x, and have no explicit e 

dependence, and that each nCi) is symmetric, positive-definite, non-singular and, 

together with its inverse, bounded uniformly in ( U ,V). Finally assume that the 

system is symmetric hyperbolic. 

Suppose (eus(x,t),vs(x,t)) is a smooth solution of (3.la), see [5]. Take ini-

tial conditions: 

U(x ,0) = eus (x ,0) + ef (x) (3.1 b) 

V(x ,0) = Vs(X ,0) 

where f (x) e C"" is 2rr-periodic and independent of e. 

Set: 

u (x ,t) = e-1 [ U(x ,t) - eus (x ,t)] (3.2) 

v(x,t) = e-1 [V(x,t) -vs(x,t)] 
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noting that the scaling differs from that in chapter 2. The equations satisfied by 

the scaled perturbations u and v are: 

HC 1>(u,v,x,t)ut = 1-pou + [B 11 (x,t)u + B 12(x,t)v]z + e[c;o(u,v,x,t)]z + eF1(u,v,x,t) 
t 

u(x,O) =f(x) , v(x,O)=O (3.3) 

u(x+2rr,t) = u(x,t) , v(x+Zrr,t) = v(x,t) 

a 
Here, Po = A ax + C, and: 

where DJil (x ,t) = n(J>(eus ,Vs ,x ,t) is bounded, symmetric and positive-definite 

with bounded inverse, while (Df{l +DH)) is the linear part and nJJ> the qua-

dratic and higher part of: 

Also, (B 11u + B 12v) is the linear part and rp the quadratic and higher part of: 

(B 21 u + B 22v) is the linear part and 'I/I the quadratic and higher part of: 

and: 
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Each Bii• i ,j =1.2. is C'° in x and t, 2rr-periodic in x, and, together with its x and 

t derivatives, is bounded independently of t. The same may be assumed of rp, 'ljl, 

Di)k) and F;. i.j_,k =1.2. since these bounds are needed only in a neighborhood of 

the solution, and these functions can be modified for other u ,v without 

affecting the solution. 

The main results of this chapter are then: 

Theorem 3 If v.,v is the solution of system (3.3), the scaled perturbation 

of the solution of (3.1), then there exist constants t 0 , Kand T, independent of e, 

and strictly positive, such that: 

llu(.,t)ll + IJv(.,t)ll ~ K (3.4) 

for all t t [O, T] and all e ~ t 0 . 

Theorem 4. Further, if P 0 is nonsingular on the space SP, there exist con-

stants K1 and o, independent of e, and strictly positive, such that: 

where: 

llu(.,t) II + llv (.,t) II~ eK1 

t +6 

u(x,t)=f u(x,1)d1 
t-6 

for all t e [D, T] and all e ~ e0 . 

Put another way, the solution of (3.3) has the form: 

u ( x It ) = u( x It ) + 0 ( e) 

v(x,t) = O(e) 

where u is 0( 1) and oscillates on the fast time scale. 

(3.5) 
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3.2 Boundedness of the x -derivatives. 

We again need to show that the x-derivatives of the solution to the system 

(3.3) are bounded independently of e, even if the t-derivatives are not. In this 

case, we need to consider both linearised equations, rather than just the u 

equation, since both u and v can be 0 ( 1) when the large part of the spatial 

operator is singular. 

Note that the coefficient of the x-derivative on the right hand side of (3.6) 

is assumed to be block-diagonal (i.e. no Vz appears in the Ut equation and vice 

versa). This is necessary for our proof to go through, but if 0( 1) off-diagonal 

blocks are present, they may always be transformed away, since the diagonal 

blocks differ in magnitude by an order in e. This is the purpose of the transfer-

mation performed at the beginning of section 3.4. 

Extra terms E 11 (x ,t )u and E 22 (x ,t )v can be added to the first and second 

equations in (3.6) respectively with no change in the result. They are omitted 

here to save writing, and because they do not appear in the transformed system 

to which we shall eventually apply the lemma. 

Lemma 3.1 Suppose w (x ,t) = (~ ~; :f?) satisfies the symmetric hyperbolic 

system: 

[D6 1l(x,t) + eDf1l(w,x,t)]ut = 1-(AUz +Cu)+ [B 11 (x,t)u]z + E12(x,t)v e 

u(x+2n,t) = u(x,t) 

v (x +2n ,t) = v (x ,t) 

(3.6) 

where A is a constant, symmetric, non-singular matrix, C is a constant, anti-

symmetric matrix, D6il is a bounded, positive-definite, symmetric matrix, C"" in 



- 47 -

x and t, 211-periodic in a:, non-singular with bounded inverse, B.;.;. Ei;• D[1) and f 

are C'° in their arguments and 2rr-periodic in x, .Bi; and DP' are symmetric, all 

quantities are real, and there exist constants Mrs, Nqrs• Prs and Qrs, independent 

of e, such that: 

(3.7) 

for all w, all non-negative q 1 , ... , qm ,r ,s, with q =q 1 + · · · +qm, and for all 

i,j =1,2. 

Then there exist constants T, Krs and Lrs, independent of e, such that: 

(3.8) 

for all t e[O,T], r ,s =0,1,2, ... , where p (s )=O for s =O and p (s )=s -1 for s > 0. 

Proof The key to the proof is that, using the fact that A is non-singular, 

the t-derivatives of u can be estimated independently of its x-derivatives from 

the first of (3.6). Then this equation can be used to estimate the x-derivatives 

of u. The second equation of (3.6) is of a more standard form, and estimates of 

the derivatives of v are easily obtained. 
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Note that (3.8) is satisfied at t =O (from the equations (3.6) and their 

derivatives at t=O). 

Let Hf1>(w) = D~1) + eDf1>(w). Since D~ 1 l is positive-definite and bounded 

above and below, and Df1> is bounded uniformly in w, there exist positive con-

stants t51, o2 , independent of e and w, such that: 

t51llYll 2 ~ (y,Hf1l(w)y)~ 0211Yll 2 for ally. (t) 

Now the first equation of (3.6) is: 

( *) 

so: 

= _§_(u,Au:i;) + _§_(u,Cu) + 2(u,(B 11u):i:) + 2(u,E12v) + (u,Hff)(u,v)u) 
e e 

where the fact that H f1l is real symmetric has been used. Now: 

(u ,Au~) = 0 (u,Cu)=O 

2(u,E12v) ~ 2Qoollu 11 llv II 

~ (Mo1 + eN001 + emN10olwt [ .. )/lu 11 2 

noting that w1t is a scalar, 1~ j~ m. Hence: 

(u,Hf1l (w)u)t ~ canst. [[u 11 2 [1 + e( lut I ... + [vt I .. )] (1) 
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Setting y =ut and differentiating (*) with respect to t: 

Hence: 

+ 2(y,E12Vt) + 2(y,E12tV) -(y,Hit(w)y) 

Note that: 

(y .E12tv) ~ Qo1 llY 11 llv II 

Thus: 

+ II y II (II u II+ II~ II+ II vt 11 +II v II)~ (2) 

Finally, setting z =utt and differentiating (**) with respect to t: 

+ 2E12tvt + E12ttV - 2Hf[l(w)z - Hfl}(w)y 

Now: 

. m 

(z ,H fil(w )y) = (z ,DJlly) + e(z ,Dflly) + 2e I; (z ,W5tDfl{u
1
y) 

j=l 
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m 
(z,HH/(w)y) = (z,DJl)y) + e(z,DfUy) + 2eI; (z,w;eDfl,1

1
y) 

j=l 

where: 

where: 

""' m anp>. 
(D (~.)' - " µ,1 y. y Jµ,v - ~ aw J 

3 =1 v 

I'D ( y) I ~ mN 100 I y I "" 

R~ emN100 IY I .. llz 11 2 

Since all other terms are easily estimated as before: 

~ canst. ! II z 11 2 
[ 1 + e( I Ut I .. + I Vt I .. )] + II z II ( II Y II + II Yx II + II u II + II U:z: II + II Vtt II + II Vt II + II v II ) 

(3) 

Similarly, in fact m·ore easily, one finds from the second equation of (3.6) 

that: 
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( v .D62>v )t ~ con.st. f 11 v 11 2 +11 u II 11 v 11 ~ ( 4) 

(v:z:,D62 )v:r:)t ~ const. f llv:r: 11 2 + llvz II ( llv II+ llUz II+ llu II)~ (5) 

(v=,D62>vz:1Jt ~ const. ~II Vzz 11 2 + II Vzz II (llvz II+ llv II+ llu= II+ lluz II+ Jiu II)~ (6) 

Next note Sobolev's inequality: 

for any wtSp. 

From(*): 

and from(**): 

lw I ... ~ canst. ~ llw II + llwx II~ 

= canst. ! II u II + e( II y II + II v II ) ~ 

(7) 

(8) 

~ llYz 11 ~ canst. ([1 +e2
( Jut I .. + lvt I .. )] llY II + t( llYt II+ lluz 11+llu11+Jlvt11+llv11)) 

~ canst. ( [ 1 +t2
( II Y II + II Yz II + II vtll + II Vzt Ii)] II Y 11 2 + e( II z II + II u II+ II Vt II + II v II)) 

using (7) and (8). Hence, provided llY II =a (t-2), as we shall show it is: 

Similarly: 
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II U:::z II ~ const · f II Uz II + E[ II Uzt II + II Ut II + II u II + II Vz II + II V II 

+e( luz I ... + lvz I ... ) llut llH 

~ const.fJluxll + e[llYxll+llY ll+llu ll+llvxll+llv II 

+e( II Uz II+ II Uzz II+ II Vz II +II V;:;:i; II) II Y II]~ 

=> lluzzl! ~ const.~lluxll +e[llYxll+llYll+llull+llvxll+llvll (10) 

+e( II Uz II + II Vz II+ II Vzz II) II Y II] l 

Directly from the Vt equation and its first x- and t-derivatives, one can 

similarly obtain the bounds: 

llvt II ~ const. ~ llv::: II+ llv II+ llu 11 l (11) 

llvxt II~ const. ~ llv::::i; II+ llv::: II+ llvt II+ llv II+ llUz II+ llu 11 l (12) 

II Vtt II ~ const · ~II Vzt II+ II Vt II+ II v II+ II Ut II+ II u 11 l ( 13) 

The six inequalities (B) - (13) enable us to eliminate the norms of Uz, Uzz• 

Uzt(=yz), Vt, Vtt and Vzt in favour of the norms of u, Ut(=y), utt(=z), v, Vz and 

Vzz· Thus, substitution of (B) - (13) in (1) - (6) yields (in view of (t)) a closed sys

tem of six nonlinear inequalities for the latter six quantities. Further, if these 

quantities are scaled by the factors of e suggested by (3.B), namely if: 

<"1 = llu 11 

t4 = llv II 

tz = ellut II 

then the system (1) - (6) becomes: 

(s = E2 llutt II 
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where 

Note that this system is regular as e-> 0. Also, the initial conditions are such that 

each t;1 is 0 ( 1) at t =O. Thus there exists some constant T, independent of e, 

such that this system has a finite, bounded, 0( 1) solution on the time interval 

LO,T]. Note that T may depend on the initial conditions. This proves that (3.8) 

holds for the six functions under consideration, i.e. there exist constants 

K00 , K 01 , K 02 , Laa. L 10 , L 2a. independent of e, but possibly dependent on the ini-

tial data, such that: 

for j =0,1,2. 
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Now it is easy to go back to the inequalities (8) - (13) and to show that (3.8) 

holds for all derivatives of u and v up to second order. For example, from (B): 

= K10 (say) on [O,T]. 

while from (11): 

llvt II~ canst. ~L10+Loo+Koo~ = Lo1 (say) on [O,T]. 

and so on. Higher derivatives can be estimated by similar methods. 
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3.3 Proof of Theorem 3. 

The proof of this theorem consists of a transformation of the system (3.3) 

which reduces the off-diagonal blocks in the coefficient matrix of the .x-

derivatives to O(e), and then the finding of an asymptotic expansion of the solu-

tion by an iteration. 

First write the system (3.3): 

+ eHC 1l-1
rll + eHC 1>-1 F '1" :z: 1 (3.9) 

+ eHC2)-11/l:z: + eHC2)-1F2 

Note that if: 

(3.10) 

then: 

Thus the transformation: 

(~) = (I+eT)[!] (3.11) 

substituted in (3.9) leads to: 
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(3.12) 

(3.13a) 

say, where: 

H(i)(u ,v ,x ,t) = HCil(u,v ,x ,t) 

is of similar structure to H(j), E 12(x ,t) and E 21 (x ,t) are bounded, C"" functions, 

periodic in x, and G1 and G2 are bounded, C"' functions of the indicated argu-

ments. The t-derivatives of fl and iJ appear as arguments because of the pres-

ence of the Te term in (3.12), but it is easy (though a little messy) to verify that 

they do indeed appear only when multiplied by e, as indicated. 

The initial conditions are now: 

[~(x,O)l = (I+eT)-1[f(x)] = [t1(x)] 
v(x,O) 0 efz(x) (say) (3. 13b) 
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Now we can take as a first approximation to (3.13) the system: 

(3.14) 

u 0(x ,0) = f 1(x ), v 0 (x ,0) = ef 2(.x) 

u 0 (x+2rr,t) = u 0(x,t) v 0 (x+2n,t) = v 0(x,t) 

where: 

Since 15fP and 15f P can be modified for large u 0 , v 0 to ensure that the 

bounds (3.7) are met, without the solution being altered, this system has the 

form (3.6). Thus, by lemma 3.1, there exist constants KJ,,0 > and T, independent of 

e, such that: 

(3.15a) 

11 
_ar_+s_v_o (. t) II~ g-P(s)K,(o) 
axr ats I TS 

(3.15b) 

for all t t[O,T], r ,s =0, 1,2, ... , where p (s )=O for s =O and p (s )=s-1 for s > 0, 
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Next let u 1, v 1 satisfy: 

(3.16) 

where Hf2l (u 0 ,v 0 ,.x ,t) = D62l (x ,t )+e15fil (u 0 ,.x ,t )+e.Drn) (v 0 ,.x ,t ). 

This system is linear in u 1 and v 1 , with coefficients and forcing terms of 

amplitude O(e) each satisfying bounds of the form (3.15a). Thus by Duhamel's 

principle, there exist constants KA1>, independent of e, such that: 

(3.17) 

for all te[O,T], r,s=0,1,2 ..... 

This iteration can be continued indefinitely, each time the correction to the 

solution being smaller by a factor of e. Let rip =u-(u 0 + · · · +Up-1) and 

eP=v-(v 0+ · · · +vp_1) be the remainders after p steps. The system satisfied by 

dp and eP has forcing terms of amplitude O(eP), and the initial data are such 

that dp and ep and all their derivatives up to second order are 0 (t!'-2 ) at t =O. 

Also, the coefficients in lhe homogeneous part of the system are 0(1), though 

they may vary on the fast time scale so their derivatives up to second order are 
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O(e-2). 

Now, Browning and Kreiss [5] have derived bounds on the solution of a 

hyperbolic system of this form in terms of the solution and its first two time 

derivatives at t =O. Their theorem 2.1 states that the norms of the solution and 

its first two time derivatives will be bounded by a constant times the sum of 

their initial values on some finite 0 ( 1) time interval. The value of this constant 

depends on the coefficients in the problem. They assumed the coefficients and 

their derivatives up to second order were 0(1 ), and this implied that the con

stant would also be 0( 1). In our case, where the second derivatives of the 

coefficients could be O(c2), the constant will be O(e-2). 

Thus, dP and eP and their derivatives up to second order will be O(eP-4 ) on 

some time interval [O,T], independent of e, so if p ~ q +5, the first q terms in the 

iteration will determine il and iJ to within O(eq) 

This completes the proof of theorem 3. 
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3.4 Proof of Theorem 4 (The Nonsingular Case). 

Note that the only 0(1) contribution to the solution of (3.3), or equivalently 

(3.13), comes from the solution u 0 , v 0 of (3.14). This follows from the proof of 

the previous theorem. Also, from (3.11 ): 

= v + O(e) = v 0 + O(e) 

and similarly: 

u = u 0 + O(e) 

so the theorem is proven if we can show that both v 0 and the mean value of u 0 

over a short. but 0(1), time interval are O(e). 

Now, (3. 14) is: 

(3.18) 

u 0 (x ,0) = f 1(x) v 0 (x,O) = ef 2 (x) 

u 0 (x+2rr,t) = u 0(x,t) v 0 (x+2rr,t) = v 0(x,t) 

where P0u 0 = P 0u 0 + e[B uuoli:· Since P 0 is non-singular, so is P0 , and so: 

(3.19) 

Note that: 

-(1) 
"'1-(1)( ) · -p"'-1LH(I)( ) J p"'-l BH1 (uo.vo) Po H1 Uo,Vo Uot - 0 7it1 1 Uo,Vo Uo - 0 at Uo 

(3.20) 
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since Po is independent of t at leading order, and so commutes with :t up to 

order e. Hence for any o with e<< o<< 1: 

t +6 

J ...... 1 
- e Po E12Vo dT + O(e) 

t-6 

= O(e) (3.21) 

since we already know, from the proof of the previous theorem, that u 0 , v 0 and 

aJN1l;at are 0(1). This means that u 0 oscillates on the fast time scale, so we 

write: 

ua(x ,t) = ua(x ,t) 

Also from (3.19) and (3.20): 

Let v 61l satisfy: 

Then: 

(2) (1) "'-1-(1) Do vot = eE21Po Hi (ua,vo)uot 

t 
· vJ1'(x,t) = ef DJ2l-1E 21 P01Hf1'(u 0 ,v 0)u 0t dT 

0 

t 

J r2> -1 a r "'-1 - (1) J = e 
0 

Do E21 atlP0 H 1 (u 0 ,v 0 )u 0 dT 

t BH (t) (u v ) 
JD (2)-lE p"'-1 1 O· 0 d + 0( 2) 

- t O Cl 21 O Bt Uo T e 

(3.22) 

(3.23) 
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t 8H (i) ( ) 

J D<2)-1E j5-1 1 uo,vo uo dr + O(e2) - e 
0 

o 21 o at 

= O(e) (3.24) 

since H f1> (u 0 ,v 0 ) has one O( 1) time derivative, and P01 , u 0 and all coefficients 

are 0(1). Similarly, since all x-derivatives of Hf1) (u0,v 0 ) and u 0 are 0(1): 

(3.25) 

(3.26) 

where: 

Since DJ2l is symmetric and bounded above and below, B 22 is symmetric, and 

E 21 Hf1)-l(u 0 ,v 0)E12 is bounded independently of e, the homogeneous problem is 

well-posed. Thus there exist 0( 1) constants K and a such that, by Duharnel's 

principle: 

[ [ 
e cxt _l l J llv~2 ) (.,t) II ~ K e II/ 2 /I ecxt + ~sup ~G(.,r):O~ ~ t l = O(e) (3.27) 

since, in view of (3.24) and (3.25), I/ G 11 = O(e). Thus: 

-llvoll = llv~l) II+ llv~2) II= O(e) (3.28) 
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3.5 Generalisations of the Theorems 3 and 4. 

Theorem 5. Suppose the system (3.1) is re:p_laced by the symmetric hyper-

belie system: 

D(U,X,t) u, = ~ Pa[ :x l u + P1[ U,X,t ·'·a~ l + F(X,t ,<) 

U(x,O) = Us(x,O) + ef (x) (3.29) 

l-5,jsn 

where x=(x1 .... ,Xn), ej is the unit vector in the jth direction, Us(x,t) is a 

smooth solution of the first and third equations, F is C"° in x and t, 2rr-periodic 

in x, and, together with all its derivatives, is bounded independently of e, D is a 

bounded, positive-definite, symmetric, non-singular matrix with bounded 

inverse, and: 

[kl n a 
Po ... = I;A1-8 -+ c ax j=l xj 

P 1[u:.x ,t ,e, ~ = f; ~aa. cIJ 1( u,.x ,t ,e)] + r( u . .x ,t ,s) 
ox'J j=l XJ 

where A1=A/, 1-::;;, js n, C=-c~. and r and each ifJ i is C"° in all arguments, 2rr-

periodic in x, and, together with its x and t derivatives, is bounded indepen-

dently of e provided U and its derivatives are. 

Further, we assume the each eigenvalue IC of the symbol P 0(ic.)) is either 

zero for all c.) or satisfies: 

.L 
IJC(c.))I ~ J..lc.)I = A(c.>f+ ... +c.>~) 2 (3.30) 

for all c.) and some positive constant A, except possibly at a finite number of 

values of c.) where some of these eigenvalues may also be zero (i.e. the large part 
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of the operator is elliptic). 

Then, the result of theorem 3 applies, namely, there exist constants k 1 and 

T, independent of e, such that: 

(3.31) 

for all t e [O,T]. 

Further, if all the eigenvalues in the second class are non-zero for all t> 

(including t>=O)! then the result of theorem 4 applies, and there exist constants 

k 2 and o, independent of e, such that: 

(3.32) 

for all t e [O,T]. In other words, the perturbation in the smooth solution is of 

amplitude only O(e2). 

Proof The proof given for theorems 3 and 4 generalises to this case. As 

noted in section 2.4, in more than one space dimension, the fast and slow scale 

variables cannot, in general, be separated into distinct equations coupled only 

through undifferentiated or nonlinear terms. However, such a separation can 

be achieved by a projection in Fourier space, similar to (2.34), though in fact in 

this case we require the slightly different projection: 

R'u = ~eiw.$ O(ic..i)[~ ~] O"(iC:,)u(w) 
(.) 

where U(ic..i) is as before. The difference here is that Iq is the identity matrix of 

dimension q, the number of eigenvalues in the second class, independent of t>. 

Thus, if some of these eigenvalues do go to zero at some values of t> (i e. if the 

number of large eigenvalues is not a constant), the large part of the spatial 
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operator will be singular on the space sf, ::: ~ R'u : u e Sp L while if none do, it 

will be nonsingul.ar on this space. 

Once the separation is done, the system has a form analogous to (3.13), so 

a first approximation analogous to (3.14) may be made. Lemma 3.1 applies to 

this system, since all terms in the generalised system have the form of one of 

the terms in the one-dimensional case, and the condition (3.30) ensures that the 

x -derivative of the 'fast' part of the solution can be bounded by the solution 

itself and e times its t -derivative. This enables its t-derivatives to be bounded 

independently of its x-derivatives. Thus the iteration of section 3.3 goes 

through as before, and (3.31) holds. 

In the case that the number of large eigenvalues is independent of i::>, the 

large part of the spatial operator is nonsingular, and this was all that was 

needed for the proof of theorem 4. Therefore, (3.32) holds. 
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Part II 

A NUMERICAL EXPERIMENT ON THE STRUCTURE 

OF TWO-DIMENSIONAL TURBULENT FLOW 

Big whirls have little whirls 

That feed on their velocity, 

Little whirls have lesser whirls, 

And so on 'till viscosity. - Richardson (attrib.). 
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1. Introduction. 

Despite the ubiquity and undoubted importance of turbulence in fluid flows, 

very little is understood about them from a theoretical viewpoint. Central ques-

tions such as how the viscosity acts to dissipate energy, how the rate of dissipa-

tion depends on the Reynolds number, or what the qualitative structure of the 

flow is, remain unanswered. 

The equations of motion, the Navier-Stokes equations (in two or three 

dimensions): 

... ( ...... ) ... 1 ... 2-+ 
Ut + U .'i/ U + - 'i/ p = V'i/ U 

p 

v:u=o ( 1.1) 

where i1 is the velocity, p the density, p the pressure and v the viscosity, are too 

difficult to solve, particularly for flows as complicated as turbulent ones. Also, 

equations for mean values of velocities and velocity correlations, which are the 

principle quantities of interest, always contain the mean of some other correla-

tion, so one can never obtain a closed system of equations. 

Many different ways of surmounting this difficulty have been proposed, each 

involving some assumption about the flow which enables one to arrive at a 

closed system. However, none of these assumptions appears to be based on par-

ticularly firm grounds, and all are open to objections of varying degrees of sever-

ity. Experimental testing of the consequences of these hypotheses is difficult, 

because the theory often assumes that the turbulence is homogeneous and iso-

tropic, idealisations which can be only poorly approximated in the laboratory. 

Also, numerical solution of the equations of motion in a setting appropriate 

for testing these theories is still beyond the range of currently available comput-

ers, although this may not be the case for much longer. In two space dimen-

sions however, numerical integration of the equations is feasible, and this 
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provides as good a reason as any to study turbulence in two dimensions. 

Unfortunately, 'turbulence' in two dimensions is qualitatively different from 

that in three in several respects; for example, in the absence of viscosity, both 

the enstrophy (mean square vorticity) and the energy of the flow are conserved, 

while in three dimensions only the energy is, and enstrophy is generated by the 

stretching of vortex lines and tubes. Also, in three dimensions, the rate of dissi

pation of energy appears to be independent of the viscosity, when it is 

sufficiently small, and in particular does not tend to zero as the viscosity does. 

This remarkable property is not shared by two dimensional flow. 

Mathematically too, there are differences. It has been known for some time 

that the two dimensional problem is well-posed, even when the viscosity is zero 

[26], so that if the initial data are smooth, the solution will be smooth on any 

finite time interval. In three dimensions, well-posedness has not yet been pro

ven, and it is well within the bounds of possibility that singularities may form in 

finite time from certain smooth initial conditions (as is the case with Burgers' 

equation in one dimension). 

However, in both cases, the governing equations have the same convective 

nonlinear terms, and appear to possess similar 'turbulent' solutions in which 

the nonlinearity is very important and in which the energy of the motion is 

spread over a very wide range of length scales. Thus it would seem reasonable to 

expect that the two dimensional case might serve as a useful model for the full 

problem [1]. 

This is particularly true for those theories, of which there are many, that 

make no reference to any properties intrinsic to the three dimensional equa

tions (indeed, some do not make reference to the equations of motion at all), so 

there is no reason a priori to assume that they would not apply equally well to 

the two dimensional case. 
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Practical applications of two dimensional turbulent flows are somewhat res

tricted. It has in the past been suggested that they may have some relevance to 

large-scale meteorology, where the relative shallowness of the atmosphere and 

the rotation of the earth restrict motion in the vertical direction, but this seems 

unlikely to be the case, since at 'small' scales of a few tens of kilometers these 

effects are unimportant. Another possible application is to magnetofiuid situa

tions, where motion in one direction may be inhibited by magnetic forces, with 

the result that the ft.ow is approximately two dimensional. 

In this thesis, it is intended to describe a numerical experiment on the 

structure of two dimensional turbulence (section 4). Several numerical studies 

of this problem have been performed before, and these are discussed in section 

3. The thrust of these previous studies has usually been to test one or other of 

the various theories as applied to the two dimensional case, usually by com

parison of the energy spectrum of the ft.ow with theoretical predictions. How

ever, as Saffman [2] has pointed out, the use of Fourier space may be a poor way 

to tackle the problem, and the present study follows Fornberg [3] in looking 

principally at the structure of the fl.ow in physical space. 

We also describe a new idea, due to Kreiss, concerning the structure of two 

dimensional flows, which the numerical experiment is designed to test. This idea 

and a few of the other well-known theories are outlined in section 2, but it is not 

intented to attempt to review all theoretical work on the subject. Reviews of 

some other theories may be found in the articles by Kraichnan and Montgomery 

[4] and Saffman [2]. 

Before proceeding, it is necessary to introduce some terminology. The velo

city correlations referred to above are quantities of the form: 
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where u is a solution of (1.1), and the angled brackets denote an average, techn-

ically an ensemble average over many realisations of flows with initial conditions 

randomly distributed over some appropriate space, in practice a temporal or 

spatial average for a single statistically steady or homogeneous flow. 

Of particular interest are the second and third order correlations: 

(1.2) 

(1.3) 

Correlation tensors can also be formed from the vorticity t> = if x u. which 

in two dimensions is a scalar: 

au2 au1 
e.>=-----

axl axz 
(1.4) 

Also frequently used are spectral tensors. the Fourier transforms of the 

correlation tensors. The most important is the energy spectrum tensor: 

(1.5) 

where n is the number of space dimensions, which gives the density of kinetic 

energy in wavenumber space, and allows an energy spectrum to be defined: 

(1.6) 

The total kinetic energy is then: 

*< u2> = f E(k) dk 
0 

(1. 7) 

Similarly, a spectrum tensor for the vorticity can be found, leading to a vorticity 

spectrum: 
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0 (k) = 2lc 2E(k) (1.B) 

so that the total enstrophy, by which is meant half the mean square vorticity, is 

given by: 

00 

*< t>2> = f k2E(k) dk 
0 

(1.9) 

The :flow can alternatively be described in terms of joint probability density 

functions (j.p.d.f.): 

P. ( -+ ( 1) -+ (m) -+ ... ) 
m u , ... , u ;x 1, ..• , Xm (1.10) 

giving the probability of finding velocities in the ranges duCl), ... ,du(m) in the 

neighborhoods dx 1 ,. .. ,dxm. The statistical properties, such as skewness and 

:flatness factors, of these distributions, particularly the second order one, are 

therefore of interest. 

Finally, a couple of remarks on the formulation of the problem. First, in 

two dimensions, the incompressibility condition means that a stream-function 1/J 

can be introduced with: 

u = 1/!y V = -1/Jz (1.11) 

Then, the vorticity equation becomes: 

(1.12a) 

where: 

(1.12b) 

Secondly, if the equations are nondimensionalised using a length scale L 

and a velocity scale U, the equations retain the same form with v replaced by 

the inverse of the Reynolds number, given by: 
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Re= UL 
l/ 

(1.13) 

There is some freedom in the choice of L and U. If the large scale flow is con-

strained by boundaries or periodicity, these usually determine L, while U may 

be taken as < Iii 12> 112
, or alternatively< r.>2> 112 L. Otherwise, following [16], L 

may be defined by: 

(1.14) 

The quantity appearing in the denominator here is the cube root of the total 

rate of dissipation of vorticity. Both these choices of L give a Reynolds number 

appropriate for the description of the large scale flow. A Reynolds number for 

the smale scale flow can also be defined. Foliowing [ 16] again, take: 

L = l (1.15) 
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2. Some Theories of Turbulence in Two Dimensions. 

Perhaps the simplest and best known theory of turbulence is the 'Universal 

Equilibrium Theory' of Kolmogorov [5]. He postulated that in turbulence at 

sufficiently high Reynolds number (i.e. when the fluid viscosity is sufficiently 

small), the smallest eddies in the fl.ow would become statistically independent of 

the larger scale eddies. In other words, the large scale motion would merely 

convect regions small compared with its own length scale, without affecting the 

relative motion therein. 

As a consequence, the small scale motion would be locally homogeneous 

and isotropic, and all its statistical properties would depend only on the viscos

ity, v, and the rate at which it is dissipating energy, e say. They should thus have 

universal functional forms, scaling by the length and velocity scales: 

l = [:(' (2.1) 

Also, these forms should apply whether or not the large scale turbulence is 

homogeneous or isotropic. 

To replace that continually being dissipated, energy would have to be 

transferred from the large scale eddies down to the small. This process is 

referred to as a 'cascade' of energy. For consistency, the rate of transfer, e, 

would have to be independent of v. If it is further assumed that this transfer is 

passively carried out by the 'intermediate' scales (provided the Reynolds 

number is large enough for them to exist), then all statistical properties in this 

range of scales would be determined solely by e. On dimensional grounds, the 

energy spectrum would have the form: 

(2.2) 

The range of wavenumbers over which (2.1) would apply, i.e. those corresponding 
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to length scales larger than the dissipation length but smaller than the scales at 

which the flow is significantly affected by external forcing or boundaries, is 

called the 'inertial subrange'. Much experimental and numerical effort has been 

put into looking for this subrange, and attempting to verify the power law (2.2), 

with mixed success. 

Unfortunately, there are many doubts concerning the validity of this theory 

[2,6,7 and others]. In particular, measurements of flatness factors of the velo

city derivatives are in contradiction with the theory [7], which predicts they 

should be independent of the Reynolds number. Also, observations of turbulent 

flows suggest that the small scale structure is not simply advected by the larger 

scale eddies, but rather that the stretching and thinning of the tangled vortex 

sheets characteristic of high Reynolds number flows by the larger eddies is sub

stantially responsible for the production of the fine structure, and hence that 

there is a major interaction between eddies of all length scales. 

Another objection is that the length scale l is not the natural length scale 

on which dissipation occurs, that being 0(1./12
). It is not clear than any physical 

process actually takes place on such a length scale, although interpretations for 

l have been found under rather speculative conditions [2]. 

Also, the theory makes no reference to the dimensionality of the problem, 

or to the nature of the equations of motion. Thus, one might expect it to apply 

as well to Burgers' equation: 

Ut + UUz =vu= (2.3) 

which was proposed by Burgers (unpublished) as a one-dimensional model for 

the Navier-Stokes equations, though it is of interest in several other applications 

also. However, Saffman [2] has pointed out that the Kolmogorov theory is wrong 

in this case, since the correct form of the energy spectrum for large k (before 
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the viscous cutoff) is known to be"' k-2 , rather than (2.2). 

In two dimensions, the situation is somewhat different. Here, both energy 

and enstrophy are conserved in the inviscid limit. This means that there are 

two possible 'inertial subranges', one in which energy would be 'cascaded' at a 

rate, e, independent of k, and one in which enstrophy would be 'cascaded', say at 

a rate 7J. Dimensional arguments can again be used to deduce the form of the 

energy spectrum, leading to: 

(2.4) 

for the energy cascade, and: 

(2.5) 

for the enstrophy cascade. 

Kraichnan [ B] has shown that there would be no net transfer of enstrophy 

in wavenumber in such an inertial subrange where energy is transferred, and 

vice versa. By consideration of interactions of triads of Fourier modes (it is not 

sufficient to consider pairwise interactions, since one such interaction cannot 

conserve both energy and enstrophy), he has also shown that in an energy cas

cade (2.4), the energy would be cascaded towards lower wavenumbers, in con

trast to the situation in three dimensions, while in an enstrophy cascade (2.5), 

the enstrophy would be cascaded to higher wavenumbers. 

Thus, in a quasi-steady turbulent flow at sufficiently high Reynolds number, 

driven at a range of wavenumbers near km, where km << kd, the dissipation 

range, and km>> k 0 , the lowest wavenumber allowed by the boundaries, the 

energy spectrum would consist of an energy inertial range, E "'k-% for 

k 0 << k << km, in which energy would be passed towards lower wavenumbers, 

gradually accumulating in the lowest modes, and an enstrophy inertial range, 
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with E ""k-3 , for km << k << ka, in which enstrophy would be passed towards 

higher wavenurnbers until it is dissipated by the action of viscosity. 

The above scenario is, of course, dependent on the assumption that the 

interactions between Fourier modes are in some sense local in wavenumber 

space. Immediately there is a difficulty, in that the k - 3 energy spectrum implies 

a k-1 enstrophy spectrum for large k, which diverges logarithmically as the 

upper limit tends to infinity. Thus, in the limit v-> 0, the total enstrophy would 

become infinite. In this situation, it is hard to imagine that nonlocal interac

tions would in fact be negligible. Logarithmic corrections to the spectrum have 

been proposed to circumvent this difficulty [8,9], but these do not appear to be 

based on any firm physical arguments. 

Since the purpose of some of the numerical studies described in the next 

section has been to test some other theories of turbulence, we mention a couple 

of these here. Kraichnan and his co-workers [8,9, 10] have developed a theory, 

the 'Direct Interaction Theory', based on consideration of direct interactions 

between triads of Fourier modes. In this theory, the equations for the Fourier 

coefficients of the solution are replaced by a simpler system in which some 

triple-interactions are neglected. Further mathematical assumptions are made 

which enable a linear equation for the second order correlation tensor to be 

found. The justification for several of the assumptions is not entirely clear, and 

their validity is hard to assess. 

The authors of the theory admit that it has several defects, and their later 

efforts have been directed towards eliminating some of these, at the expense of 

considerable complication. The 'Test Field Theory' [10], a more sophisticated 

version of the model, incorporates 'memory times' for the dynamical interac

tions, with a free parameter governing the length thereof. 
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The energy spectra predicted by the Test Field model are very close to those 

of the Kolmogorov model, although it is appears that this is partly by design, 

since the fact that the earlier model predicts an inertial range with a different 

power law seems to have been regarded as one of its defects. 

Another theory treats the problem from the point of view of statistical 

mechanics [ 4]. Unfortunately, it seems unlikely that a turbulent fiow is in any 

form of statistical equilibrium, since the time taken for the dependence on the 

initial conditions to be lost would appear to be of the same order as the time in 

which the turbulence is dissipated [2]. For the record, the equilibrium theory of 

statistical mechanics predicts an energy spectrum of the form: 

(2.6) 

where a and {3 are constants determined by the total energy and enstrophy, for 

a nonviscous formulation of the Navier-Stokes equations truncated to a finite 

number of Fourier modes [4,15]. 

An alternative approach to the problem, one that avoids the use of Fourier 

space, is given by Saffman [2,11]. The motivation for this approach comes from 

Burgers' equation (2.3), proposed, as noted above, as a one-dimensional model 

for the Navier-Stokes equation. Exact solutions of Burgers' equation are known, 

and can be used to predict the behavior of 'turbulent' solutions, i.e. solutions 

arising from random initial data. It is a property of these solutions that the 

rate at which energy is dissipated is independent of the viscosity v, so that this 

expected feature of turbulence is duplicated. 

For small v, solutions of Burgers' equation evolve quickly to a typical form 

consisting of 'shocks', regions of thickness: 

o = o[ ~] V = < u2> 1/2 (2.7) 
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across which u jumps by amounts of amplitude 0( V), separated by regions of 

average length L, say, determined by the initial data and independent of v, over 

which u varies smoothly. This type of structure is often referred to as 'intermit

tent'. 

In these solutions, the major contribution to the high wavenumber part of 

the spectrum comes from the shocks, whose local structure depends only on the 

viscosity, and their amplitudes (related to the rate of dissipation). Since, as 

noted above, the rate of dissipation is independent of v, the conditions for 

Kolmogorov's hypothesis to hold would appear to be satisfied. 

However, it can be shown [2] that the predictions of the Kolmogorov theory 

are incorrect. The small scale statistical properties, such as the velocity corre

lation ( 1.2) or the skewness of the two-point j.p.d.f. (1.10), are not functions of v 

and e alone, but take quite different forms. Also, the energy spectrum at large k 

is proportional to k-2 , rather thank-%. 

The reason for the failure of the theory appears to be that the 'cascade' 

process, which in this case corresponds to the formation and maintainance of 

the shock regions, is controlled by the large scale motion, rather than being 

independent of it, as is assumed in the theory. Analytically, the skewness of the 

two-point velocity j.p.d.f. (1.10), which must be a constant for the theory to hold, 

varies significantly. 

Of course, the failure of the theory in one dimension does not mean that it 

need fail in two or three dimensions as well. Indeed, there are several significant 

differences between the two cases. However, this failure does point to the need 

for a fuller justification of why the basic hypotheses should hold. 

There is a further point to note from the one dimensional problem. 

Because of the intermittent nature of the solutions, it is much easier to perform 

the analysis in physical space than it would be in Fourier space. There is a good 
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deal of physical evidence that two or three dimensional turbulence is also inter-

mittent in nature, and this would be expected mathematically from the singular 

nature of the limit tJ-) 0, in which the highest derivatives vanish from the equa-

tions. Since most of the theories so far proposed have relied heavily on argu-

ments in Fourier space, this may be one reason why they have met with such lit-

tle success. 

In two dimensions, there are no exact solutions to the equations of motion 

from which to construct turbulent solutions, but the following analogy may be 

drawn between the two cases. In one dimension, u is conserved following a fluid 

particle, and steep gradients arise because convection brings together particles 

with different values of u. In two dimensions, the vorticity c.> is conserved follow-

ing a fluid particle, and it seems reasonable to suppose that convection will 

again bring together fluid particles with different values of c.>. Of course, there 

are differences; for one, the characteristics in the two dimensional case do not 

cross, as they do in one dimension, but their separation can decay exponen-

tially. Thus, it does not seem unreasonable to assume that the vorticity field 

assumes a piecewise continuous form, with thin 'fronts' separating regions 

where the vorticity varies smoothly. 

Saffman [11] assumes then that the vorticity field contains discontinuities 

spaced randomly with mean spacing L and width: 

(2.8) 

(obtained by balancing the convection and diffusion terms). It follows that the 

asymptotic form of the energy spectrum would be: 

(2.9) 

(0-1 is the viscous cutoff scale). For there to be a range of wavenumbers where 
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this would hold, it must be that: 

(2.10) 

Hitherto, this has been the only theory of two dimensional turbulence that 

does not appeal to arguments about the Fourier modes, and also the only one 

that offers an energy spectrum significantly different from k-3 at large k. 

Unfortunately, as we shall see in the next section, there seems to be no numeri-

cal evidence that conclusively favours one form of the spectrum over the other. 

Kreiss has recently made a new suggestion concerning the physical struc-

ture of the flow, namely that the flow must contain regions of local convergence, 

i.e. flows locally resembling figure 15, and that these flows will sweep perturba-

tions in the vorticity into the narrow region corresponding to the neighborhood 

of the dividing streamline S of figure 15. Thus, the vorticity field would, during 

the initial stages of the flow, contain narrow regions where the vorticity is lay

' ered ('layered cakes'), rather than the 'fronts' of Saffman's theory. 

Under this hypothesis, the energy in the small scale flow would be swept 

very rapidly to higher wavenumbers, and so would be rapidly dissipated even if 

the viscosity were small. Also, the rate of dissipation would be almost indepen-

dent of the viscosity at small values thereof. The flow would also assume a fairly 

organised form quite rapidly. 

Some of these consequences are consistent ·V'rith the recent numerical study 

performed by Fornberg [3], described in the next section, and the numerical 

experiment described in section 4 has been designed to test this particular idea. 
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3. Previous Numerical Studies. 

In this section, some previous attempts at computing two dimensional tur

bulent flows are discussed. All these studies use the vorticity-stream-function 

formulation of the equations (1.12), since it is far more amenable to numerical 

treatment than the velocity-pressure equations. 

Herring et al. [16], have done a comparison of the effectiveness of two 

different numerical methods for integrating the equations ( 1.12), namely a 

second order accurate finite-difference scheme based on the Arakawa [ 1 7] 

energy- and enstrophy-conserving approximation to the nonlinear terms in the 

vorticity equation, and a pseudo-spectral, or Fourier method. Their results sug

gest that a finite difference scheme with 2nx2n grid points has about the same 

resolution as a Fourier method using only n xn modes. Also, they found that 

adequate resolution of the flow at a macroscopic Reynolds number (1.14) of 350 

required the use of a Fourier method with 128 modes in each direction. 

On the basis of this, it appears that the results of early numerical studies of 

the problem, by Lilly [12,13], and Deem and Zabusky [14], are untrustworthy, 

since they used schemes with no more resolution than the 128 mode Fourier 

scheme and Reynolds numbers greater than or equal to 350. 

Unfortunately, even with a 128 x 128 mode Fourier scheme, the Reynolds 

number cannot be made large enough for the inertial ranges (2.4) and (2.5) to 

have any chance of forming. This is because the viscosity, 1.1, must be chosen 

large enough that all up to the viscous cut-off are retained by the 

scheme, and in this case 1.1 is so large as to have a significant effect on almost all 

modes. Put another way, the enstrophy spectrum k 2E(k) and the dissipation 

spectrum k 4E'(k) will have a substantial region of overlap, while the inertial 

ranges cannot appear unless they are well separated. 
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Thus, the main thrust of the computations in [ 16] is to compare the accu

racy of the Direct Interaction Theory with its improved version, the Test Field 

Model, at the lower Reynolds numbers for which accurate computations can be 

performed. Their results are indeed in closer agreement with the latter model. 

It is interesting to note that in the highest Reynolds number experiment, the 

energy spectrum obtained (fig. 1) is quite close to the k-4 predicted by Saffman. 

Another feature of the results is that the dependence of the large scale 

features of the flow on Reynolds number appears to be weak. Figures 2-4, repro

duced from [16], show the vorticity contours calculated at a fixed time for runs 

with the same initial data, but with Reynolds numbers of 138, 349 and 1184 

respectively. The fl.ow fields are indeed quite similar. In [16] and [18], it is 

speculated that it may be possible to simulate quite accurately the larger scale 

features of flows at high Reynolds number, even if the small scale motion is not 

accurately resolved. 

Seyler et al. [15] performed a numerical integration of a truncated version 

of the inviscid equations in Fourier space, using up to 220 modes in each direc

tion. They found good agreement with the spectrum (2.6) predicted by statisti

cal mechanics for this system, which is surprising. Calculations by Fox and 

Orszag [19] and Fernberg [3] disagree with their results. 

Orszag [20] reports on the construction of a large numerical scheme for 

computation of flows, which can use up to 1024 Fourier modes in each direction. 

This should be adequate to test for the existence of inertial ranges in the energy 

spectrum. Unfortunately, few runs seem to have been performed with this code, 

interest having shifted to magneto-hydrodynamic situations. Two runs with 512 

x 512 modes are reported on in [20], one at Reynolds number 1100, correspond

ing to the highest Reynolds number run in [16] (fig. 1), and one at Reynolds 

number 25,000. An energy spectrum closer to k-3 , in accordance with the 
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inertial range prediction, is observed here for wavenumbers in the range 

10 ~ k ~ 50 (see fig. 5). The spectrum for higher wavenumbers (the model 

must go up to k = 250) is not shown. Also, the Reynolds number used would 

appear to be rather high, even for a model of this resolution, and it is a shame 

more results are not presented. 

An ingenious alternative to the use of high resolution numerical models has 

been proposed by Fernberg [3]. The viscosity term in the vorticity equation 

(1.12a) has the effect of multiplying each Fourier mode by a factor: 

(3.1) 

at each time step flt. The problem is that if the coefficient v is chosen large 

enough that all modes not resolved by the numerical scheme are sufficiently 

heavily damped, the modes retained by the model will also suffer significant 

viscous damping. This prevents any inertial ranges, which by hypothesis are 

unaffected by dissipation, from forming. 

Thus, Fernberg proposed applying dissipation in a different way, by omitting 

the viscosity term from ( 1.12a) and instead multiplying the Fourier components 

at each time step by a different factor, one more dependent on wave number. 

The factor used was actually: 

f (k) = ( ~ if k ~ kcut 

if k ;;::.: kcut 
(3.2) 

where kcut was adjustable, and the multiplication was performed only only after 

every n 1 time steps, n 1 also adjustable. 

The use of this form of dissipation allows the larger scale motion to evolve 

as if there were almost no viscosity, while the smaller scale motion may not be 

resolved but retains its function as an energy sink at the high end of the spec-

trum. Consequently, conditions for the formation of an inertial range would 
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appear to be satisfied, even with as few as 64 modes in each direction. 

Another advantage of this formulation is that the calculations can be car

ried for very long times, since the lower, energy-carrying modes are not damped 

at all, and the rate of dissipation from the system is very small. Thus, with rela

tively little expense, Fornberg was able to integrate the equations of motion for 

up to 5000 time steps (the time step scales with the amplitude of the solution, of 

course), without all the flow structure being dissipated away. Comparison of the 

flow fields predicted using this form of the dissipation were found to differ very 

little from those predicted using the 'proper' dissipation, with differences only in 

the fine scale structure. 

A typical series of flow pictures is reproduced from [3] in figures 6-12. The 

random initial vorticity distribution develops into stringlike patterns which per

sist for some time. Eventually the fiow organises itself into two opposite-signed 

'finite area vorticity regions' (FAVRs). In figures 8 and 9, the vorticity field can 

be seen to have areas of relatively smooth change, separated by fairly narrow 

regions of large gradients, as suggested by Saffman. However, not all these nar

row regions appear to be 'fronts', in the sense that w varies monotonically 

through them; in some the vorticity would appear to be 'layered', as suggested 

by Kreiss. Also, in the final pictures, the two-FAVR vorticity field does not exhibit 

particularly sharp gradients, though this might, in part, be owing to the rela

tively low resolution of the numerical scheme. 

The energy spectrum seems to develop in each run towards a decay some

where between k-3 and k-4 (fig. 13), perhaps starting nearer k-3 , and evolving to 

nearer k-4 . However, even runs with radically different initial forms of the spec

trum appear to develop this form quite quickly. In one particular run, the spec

trum initially conformed to that predicted by the statistical mechanics theory 

(2.6) (with which Seyler et al. [15] found good agreement), but rapidly departed 
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from this form. 

As noted in section 2, cascade arguments imply that energy should pro

pagate towards lower wavenumbers, enstrophy towards higher. This is 

confirmed by the fact that energy is conserved during the runs, suggesting that 

none propagates into the higher wavenumbers where it would be dissipated, 

while the total enstrophy did decay steadily, suggesting a steady tr an sf er into 

the higher modes. The initial exponential decay of enstrophy observed in some 

runs is consistent with Kreiss' suggestion. 

Another interesting observation made by Fernberg was that the relative 

phases of the Fourier modes seemed to be important in determining the struc

ture of the fl.ow field (these are of course neglected in most Fourier space 

models). At the end of one run (fig. 12), the phases of the Fourier modes were 

randomly redistributed without changing the amplitude of any mode. The fl.ow 

field changed dramatically (fig. 14), and a 'burst' of energy appears soon after

wards at the high end of the spectrum. Eventually though, the two FAVR pattern 

reappears, and the energy spectrum returns to normal. 

From this, Fernberg speculates that a k-s energy spectrum corresponds to 

flows in which the 'natural' correlations between the phases of the Fourier 

modes are not present. and that as these develop, and as the fl.ow takes on a 

more organised appearance, the spectrum changes to k-4. It is not clear, how

ever, that this latter form is the result of a vorticity field of the form suggested 

by Saffman. Indeed, Fernberg also suggests that the flow seems so well organ

ised that 'turbulent' is a misnomer; this again fits with Kreiss' suggestion. 
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4. A Proposed Numerical Investigation. 

As mentioned above, Kreiss has suggested that in a turbulent two

dimensional ftow, the vorticity field might contain regions of locally convergent 

ftow which would sweep variations in the vorticity into narrow regions, forming 

'layered' structures which would be rapidly dissipated by the action of viscosity. 

It is proposed to investigate whether this mechanism really could work as 

suggested. By good fortune, there is a steady solution of the inviscid Euler equa

tions: 

( 4.1) 

with periodic boundary conditions, representi.ng a converging flow. This solution 

is: 

(.J(x ,y) = (..)0 (x ,y) = sin (2rrx) sin (2rry) (4.2) 

'if;(x,y) = 'if/0 (x,y) = (8112)-1 sin(2rrx) sin(Zrry) 

and is depicted in figure 15. If Kreiss' hypothesis were correct, integration of 

the equations (4.1) with periodic boundary conditions, and initial conditions: 

(.J(x ,y ,0) = (.Jo(x ,y) + E: f (x ,y) (4.3) 

where e << 1, and f is an arbitrary function, would almost certainly lead to 

layering of the vorticity along the separating streamlines (denoted by Sin figure 

15). Failure of this to happen would be a strong indication that the hypothesis 

was not valid. 
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The numerical scheme that it is proposed to use closely follows that used by 

Fornberg [3]. It uses a Fourier (pseudo-spectral) method to evaluate spatial 

derivatives, since this is approximately twice as efficient as a finite-difference or 

spectral (Galerkin) method of comparable resolution [16,21,22]. Differentiation 

is done in Fourier space, multiplication of the nonlinear terms in physical space, 

so that both these operations are 'local'. Fast Fourier Transforms are used to 

move between the two spaces. Since the variables in physical space are real, 

only half the Fourier components need be used, and the FFT can be most 

efficiently implemented using the algorithms given in [23], which exploit this 

fact. 

The vorticity is advanced in time using one of a class of 'Iterative Multi-Step 

Methods' devised by Hyman [24]. Applied to a simple ordinary differential equa

tion of the form: 

Wt = G(w) . ( 4.4) 

the scheme consists of a predictor step, which is simply leap-frog: 

(4.5a) 

where the subscript n refers to the time level tn=nD.t, followed by a corrector 

step: 

(4.5b) 

The combined predictor-corrector scheme overcomes two disadvantages of 

the basic leap-frog scheme. These are the restricted stability region, and the 

tendency of alternate time levels to evolve separately, owing to the weak cou

pling between them. Additionally, the scheme is third order accurate, one order 

better than leap-frog. 
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The stability region of a scheme is defined as follows. Consider the linear 

problem, (4.4) with G(c..i) =: A.c..i, where lambda is a complex number. The stability 

region is that part of the complex plane in which A.6t must lie for the scheme to 

be stable. For leap-frog, the stability region consists solely of the segment of the 

imaginary axis between -i and i. This means that it is stable only for problems 

whose eigenvalues are purely imaginary, i.e. problems in which there is no dissi

pation. Any dissipation terms must be treated by a different scheme. As shown 

in figure 16, the stability region for the Hyman scheme extends further up the 

imaginary axis, allowing a longer time step to be taken in a problem with purely 

imaginary eigenvalues, and also covers a considerable region in the left half

plane, which means that problems with dissipation can be treated, or that dissi

pation may be added to the numerical scheme (this is often necessary, for 

example in shock calculations). 

Now comes the question of dissipation. Some is required for two reasons, 

firstly to stabilise the numerical method, and secondly because we wish to model 

flow at a high but finite Reynolds number. On the first reason, it has been 

observed that in nonlinear problems, the Fourier method as outlined above is 

unstable, although the calculation may run for some time before an instability 

develops. The addition of dissipation will prevent this 'nonlinear instability' 

from occurring. 

Since, following Fernberg [3], it is not always desired to include a dissipa

tion term of the form v'V 2 c..i, it is proposed to use some form of chopping of the 

higher Fourier modes. A variety of ways of doing this have been suggested, each 

with the motivation of stabilising the method. These fall into two classes, first 

those in which the amplitudes of the Fourier components are multiplied by a 

factor at each time step (or after every so many time steps). In this class come 

the sharp cutoff used by Fernberg (3.2) (not applied at every time step), and the 
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exponential cut-off: 

.... l 1 J (k) = -o.(k-k 2m) e cut 

if k :-::;:; kcut 

if k ~ kcut 
(4.6) 

a. and m to be chosen, for which Majda, McDonough and Osher [25] proved sta-

bility for linear hyperbolic problems. The second class of cut-off functions 

adjusts the amplitudes of the higher modes so that they are less than some 

bound depending on the amplitude of the solution. In [22], Kreiss and Oliger 

prove stability for the Fourier method (for a linear hyperbolic system) when the 

smoothing operator: 

( 

B(k) 

H B(k) = B(k) 
D II C<>1 II 
(2rrk )i 

B(k) 
I B(k) ! 

if k ~ Ni 

if k ~ N 
1 

and I B(k) I :-::;:; D II CJi II 
(2rrk )i 

otherwise 

(4.7) 

where N 1 = [ 1-~ l for some integer m, c.> 1 = I; B(k )e 211ik .~, j is an integer 
k..::.N1 

greater than 2, and D is a constant. 

Cut-offs of the first type are easier to program, and experience suggests 

that they are effective. Of course, if the results of the computation are to have 

any relevance, the exact form of the cut-off used should not be important, and it 

is an important test of the method that the results do not change significantly 

when the form is changed. Any form would appear to be satisfactory for the 

purpose of modelling an energy sink at high wavenumber. Comparisons should 

also be made "Vvith runs using the real form of the viscosity. 

The result of a preliminary run are presented in figures 1 7-22. In this run, 

the initial conditions used were: 
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c.>(x ,y ,0) = c.>0(x ,y) + .02 sin (8rry) . (4.8) 

Also, 64x64 Fourier modes, i.e. wavenumbers up to 31 in each direction, and a 

time-step flt = .0188 were used. The coefficient of viscosity 1.1 was taken to be 

zero, and the Fourier modes were chopped at each time-step by the linear fac-

tor: 

f (k) = 

1 
(kmax-k) 

(k max -kcut) 

0 

if k ~ kcut 

if kcut ..,:;; k ..,:;; kmax 

if k ;::::: kmax 

(4.9) 

with kmax = 31 and kcut = 23. In a separate run, kcut was taken to be 27, with no 

apparent difference in the results. 

In this run, a 'layering' is already present in the initial conditions. As can 

be seen from the plots (which are contour plots of c.>-c.>0 ), this layering is indeed 

increased initially, and a substantial amount of the enstrophy in the perturba-

tion is dissipated in the first 100 time-steps. Clearly, more runs with different 

initial conditions, different chopping or 'real' viscosity, and probably more 

wavenumbers are needed before any conclusions may be drawn. 
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Fig. 1: Spectrum k 4 E(k) at t=2 obtained by Herring 
et al. [ 16] using a 128x 128 spectral code (jagged 
line}, with v=.001 and initial large scale Reynolds 
number Re= 1184. Smooth lines are the predictions of 
the Test Field model. 



Fig. 3: As figure 2, but 
with v=.0025 and Re =349. 
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Fig. 2: Vorticity field 
obtained at t =2 by Her
ring et al. [ 16] with 
v=.005 and Re =138. 

Fig. 4: As figure 2, but 
with v=.001 and Re=ll84. 
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Fig. 5: Spectra of k 4E(k) at t =2 obtained by Orszag 
[20]. Lower line corresponds to the situation in 
figure 1, upper line to a run with the same initial 
data, but with v=.0001 and Re=25.500. A 512x512 
spectral code is used for the latter case. 
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Pig. 8: Vorticity {upper) and stream-Junction fields 
from a typical run by Fornberg [ 3]. Negative vorti
city contours are dotted, and spaced three times as 
far- apart as the positive contours. This is the initial 
field. 
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Fig. 7: As figure 6, but after 60 timesteps. 
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Fig. 8: As figure 6, but after 180 timesteps. 



- 102 -

-

Fig. 9: As figure 6, but after 360 timesteps. 
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Fig. 1 O· As ft . gure 6 b t ' u aft er 900 t' "'mesteps. 
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Fig. 11: As figure 6, but after 3060 timesteps. 
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Fig. 12: As figure 6, but after 5220 timesteps. 
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Fig. 13: Development of spectrum k 3 E(k) during flow 
depicted in figures 6-12. 
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Fig. 14: Vorticity and stream-function contours for 
the· flow obtained from that in figure 12 by randomly 
rearranging the phases of the Fourier components 
without altermg their amplitudes. 
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Pig. 15: The stea.d.y-state converging flow (4.2}. 
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Pig: UJ: Stability regions for leap-frog (i} and 
Hymans predictor-corrector method {ii}, from [24]. 
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Fig. 17: Contours of the vorticity perturbation after 
50 timesteps in the preliminary run described on 
pages 91-92. Lowest contour value = -.203 x 10-1, 

highest contour value= .803 x 10-1. 
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Fig. 18: As figure 1 7, but after 1 00 time-steps. Con
tour values ta ± .266x 10-1 . 

: 

J 



- ·- ....... 

- 111 -

--., 

Fig. 19: As figure 17, but after 150 time-steps. Con
tour values to ± .335x 10-1. 
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Fig. 20: As figure 17, but afte7' 200 time-steps. Con
tour values to ± .305x 10-1• 
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Fig. 21: As figure 17, but after 300 time-steps. Con
tour values to ± .276x 10-1. 
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Fig. 22: As figure 17, but after 400 time-steps. Con
tour values to ± .281X 10-1• 
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