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ABSTRACT

The absorption and emission of electromagnetic waves by a hot
bounded plasma can be greatly influenced by the collective behavior of
the plasma. A homogeneous slab model of a hot plasma is used in a
theoretical study of these collective effects. A boundary-value
problem is solved to find the fields in the plasma when a plane wave
is incident on the plasma boundary. Power is found to be absorbed from
the incident wave because of the Landau damping of longitudinal plasma
waves excited in the plasms. If the incident wave fregquency is close
to one of the plasma wave resonance frequencies, the absorption may be
suhstantial, but orly if the Tandan damping rate is approximately eqnal
to the radiation damping rate, i.e. if the plasma is "matched" to the
radiation field. The width.of an absorption line is the sum of the
Landau damping and radiation damping widths. Electromagnetic noise
radiation is emitted from a collisionless plasma because of the coupl=~
ing of the field fiuctuations in the plasma to the external radiation
field at the plasma boundary. Plasma wave fluctuations are excited
by fast electrons in the plasma and asre reinforced by the collective
response of the plasma at the resonance frequencies. Emission and
absorption are related by Kirchhoff's law for a thermal plasma. For a
nonthermal plasma the emission may be enhanced if there are many

electrons in a high-energy tail of the distribution function.
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I. INTRODUCTION

A plasma is & quasi-neutral collection of electrically charged
particles. As such, it interacts strongly with electromagnetic fields.
By observing the interaction of a plasma with electromagnetic waves, it
is ‘possivle to learn something about the behavior of this collection of
particles. Of particular interest in this investigation is the collec-
tive behavior, in wnich large anunbers of particles participate, which
results in the propagation of longitudinal waves with frequencies close
to the plasma frequency Qp . These waves may be coupled to the elec-
tromagnetic waves if the plasma has boundaries. The existence of such
longitudinal plasma waves may be manifested in peaks in the amount of
energy absorbed from an incident electromagnetic wave, as a function of
frequency. At these resonance frequencies, the amount of energy scat-
tered, or reflected, by the plasma may also have maxima.

These properties have been observed experimentally in gaseous
discharge plasmas (1). The positions of the resonance frequencies have
been calculated, in'good agreement with experiment, by Parker, Nickel,
and Gould (2), but the mechanism of power abserption has not been fully
explained. Also observed, in microwave experiments by Kerzar and
Weissglas (3), and by Gould (4), are similar peaks in the noise emis-
sion, Whiéh are not completely understood.

The purpose of this investigation is to show how the power
absorption at the resonance frequencies of a bounded plasma is related
to Landau damping (5), and to discuss the corresponding noise emission
mechanism. Expressions for the absorption coefficient and the emissi-

vity are derived theoretically for a bounded plasma which is not
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necessarily in thermal equilibrium. In the special case of thermal
equilibrium the expression for the_emissivity agrees with the result
obtained from Kirchhoff's law using the expression for the absorption
coefficient.

The type of plasma which is of most interest here is the nearly
collisioniess hot plasma. The mean kinetic energy of the particles is
assumed to be much larger than their mean potential energy due to the
Couiomb forces between them. In a thermal equilibrium plasma this may

be expressed as

KT 2/3
—EJE;Z; A >> 1
n ' e

Hi

which is satisfied in most cases of interest. The basis of the theo-
retical description is then the quasi—free motions of the charged
particles in the macroscopic electric field of the plasma, with particle
encounters treated as small perturbations. This contrasts with the
fluid description which is often used, and which is usually justified
(in the absence of & strong magnetic field) only if collisions are very
frequent (6).

We. are concerned here with observable quantities, which might be
measured in & laboratory experiment. Since the plasma must be produced
in the laboratory, it is necessarily bounded in spatial extent. This
feature is quite important Ffor the electromagnetic properties of the
plasma, but only a few problems involving hot bounded plasmas have been
solved. Most of the theoretical work on hot plasmas is concerned with
tne case where there are no boundaries (infinite plasma) or where

boundary effects are not of primary importance. One problem which has
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been solved, however, and which 1s closely related to the problems con-
sidered in this investigation, is the "plasma capacitor" problem (7).
A plasma of uniform density is contained between the plates of an
infinite plane capacitor, and the particles of the plasma are supposed
to ﬁndergo specular reflection at the plates. The problem is to find
the specific impedance of the capacitor, i.e., the voltage drop across
the plates divided by the dispiacement current per unit area as a func-
tion of frequency. The solution shows that there are resonances in the
impedance, at the natural frequencies of standing waves in the plasma.
A similar model of the plasma is used in this investigation,
mainly to obtain a tractable mathematical problem. The plasma is again
supposed to be homogeneous and contained hetween two parallel planes,
the boundaries of the "plasma slab". It is the interaction with elec-
tromagnetic waves, propagating at an angle to the slab normal, which is
of interest here, so this is not a one-dimensional problem in contrast
to the "plasma capacitor'. The electrons are again supposed to be
confined to the slab by specular reflection at the slab boundaries.
This can be thought of as due to a large static clcctric field very
near the boundaries, similar to the boundary sheath field in a labora-
tory discharge plasma. The ions can be supposed motionless; they
simply provide a uniform neulralizing background of charge on the time
scale of interest (the plasma oscillation period, 2n/mn). Because of
the quasi-neutrality of the plasma, there is no static electric field
in the plasma except very near the boundaries. The electrons, there-

fore, travel on trajectories which are very nearly straight lines until
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they are specularly reflected at the boundaries, being slightly per-
turbed by the electric fields of plasma waves and by particle
encounters.

An essential point in the present calculation of the absorption
and emission from the plasma slab is that a boundary-value problem has
been solved for the electromagnetic fields. The usual method of calcu-
lating emission from a plasma makes use of the radiative transfer
equation (8), which is based upon the geometrical opties approximatioﬁ.
In the case of most interest in this investigation, the thickness of
the plasma slab is less than tne wavelength of the electromagnetic
waves. Hence, the approximation of geometrical optiecs is invalid and
the radiative transfer equation cannot be used. Alsc, the reflection
of waves at the boundaries of-a plasma cannot be correctly accounted
for in the usual approach unless the waves lose phase information at
each reflection. Furthermore, there is implicit in the radiative
transfér approach the assumption of small damping. The solution of the
boundary-value problem used here has none of these shortcomings.

In Part II the boundary-value problem for the plasma slab is
solved. The self-consistent electric field in the plasma is cbtained
in terms of the boundary values of the tangential component of
magnetic field. Maxwell's equations are Fourier analyzed in Section A
and the particle equations of motion solved approximately in Section B.
Then the Fourier cbefficients of the current density are obtained in
Section C,in terms of the electric field in the plasma, from the par-

ticle motions. In Section D the self-consistent field is solved for.
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This is the field_which causes the particles to produce a current
density which generates the same field, through the solution of
Maxwell's equations. The steps in Sections B and C are usually carried
out by means of the Vlasov equation in most thecretical treatments of
the self-consistent field in a hot plasma (9). The treatment given
here brings out more clearly the physical content of the theory and
expresses the assumptions and approximations involved in terms of the
particle trajectories, rather than the distribution function. Tnis
method is equivalent to the usual method, however, because the differ-
entlal equations for the particle trajectories are the same as the
Lagrangian subsidiary equations, or characteristics, of the Vliasov
equation (10). |

The solﬁtion of the boundary-value problem is used in Part IIT
to find the absorption coefficient of the plasma slab, i.e., the
fraction of the power in an incident electromagnetic wave which is
absorbed. The wave is assumed to be polarized with E in the plane
of incidence so that it excites longitudinal plasma waves in the slab.
In Section A the concept of surface impedance is introduced which is a
ratio of fields at the surface of the plasma and 1s obtained from the
solution of the boundary-value problem. The absorption coefficient is
related to it in Section B and, therefore, to the properties of the
plasma. The general expression for the absorption coefficient, eqﬁa;
tion 3.24, is intefpreted in terms of Landau damping of plasma waves.
If the frequency of the incident wave is close to the natural frequency.
for a longitudinal plasma wave with an integral number of half-

wavelengths between the siab boundaries, then such a standing wave can
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be excited in the plasma by the incident wave. Because the plasma wave
is Landau-~damped, the plasma absorbs energy from the incldent wave.
Under some conditions, discussed in Section C, the absorption is
appreciable but only for frequencies very near these "normal mode"
tfrequencies. ‘''he absorption spectrum then contains narrow lines at
these frequencies, with Loreﬁtzian shapes. The reflectivity of the
plasma slab, i.e. the fraction of power in the incident wave which is
retlected, also has resonances at these Irequencies. 1In Section D the
notion of Landau damping in the plasma slab is discussed critically,
as well as the conditions under which it can be the primary mechanism
for power absorption in a steady state.

In Part IV the statistical properties of the noise radiation
from a plasma slab are calculated. In Section A the surface emissivity
is defined, and related to the autocorrelation funection of the radia-
tion field. It is then shown to be related to the Laplace transform
of the radiation field which is more easily obtained than the time-
dependent field and which is related to the Laplace transform of the
field fluctuations at the plasma boundary. These boundary values are
determined in Section B by the solution of a boundary-value problem for
the electric field fluctuations in the plasma. The results of Part II
are simply carried over, with a reinterpretation of some of the vari-
ables. The field fluctuations are produced by "dressed test particles"
i.e., individual charged particles and thelir screenling clouds, which
are assumed to be statistically independent. The general expression
for the emissivity, equation_h.lB, is then derived in a straightforward

way. The radiation from the slab is Just a result of continuing the
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field fluctuations in the plasma into the region external to the plasma
by requiring continuity of the fields at the ooundary. The emission
mechanism is therefore the excitation of electric field fluctuations
by the motions of the individual charged particles. Emission lines
may occur, under some conditions, at the plasma wave resonance fre-
guencies, the emissivity being proportional to the number of particles
with velocities close to the phase velocities of the waves. The
enhancement of emission linés, caused by an increase in the number of
fast electrons over a thermal equilibrium distribution, is discussed
in Section C. The effect of particle encounters, or collisions, is
examined briefly in Section D.

Finally, the results are summarized in Part V and compared with
the experimental results on microwave scattering, sbsorption, and

‘emission by gaseous discharge plasmas.
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II. BSELF-CONSISTENT SOLUTION OF MAXWELL'S EQUATIONS AND
THE PARTICLE EQUATTIONS OF MOTION

A. TFourier Analysis of Maxwell's Equations

As & first step in the self-consistent solution of the differen-
tial equations for the eiectromagnetic fields and the charged particles,
we suppose the current density gkx,t) to be known; the electrcomagne-

tic fields are then determined by the solution of Maxwell's equations;

= Ym -~ 1 3B

curl B = i+ T (2.1)
= 138

curl E = - = . (2.2)

The soliution of these equations in the plasma volume V. for all times
t >0 can be made unique (llj by specifying (in addition to the cur-
rent density in V for t 2 0) the tangential components of B on the
surface S of the plasma voiume, for + =2 0 , and the initial values
(st t=0) of E and B at all points of V whose distances from
the observation point are £ ct .

Althbugh we have to solve an initial boundary?value problem in
principlé, we are most interested in the dependence of the solution
upon the boundary values of tangential B . This is because we are
interested in steady-state, or time-stationary phenomena, for which
the initial values have no effect. TFor simpiicity we will assume that
curl E and B are zero everywhere in V at t =0 . The initial

value of div B is determined by the charge density p at t =0

by the relation div §'= Yrnp ., which we assume is satisfied at t = O.
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Laplace transforms of the fleld variables with respect to time

may be introduced as follows:

— 1 L W §

B(x;w = fdt e B(X,t)
¢

and similarly for B , where the usual Laplace transform variable s

is replaced by -iw , and we take Im w >0 to insure convergence of

the integral. Laplace transforming Maxwell's equations yields the

following equations for the transforms of the field variables:

curl B = %(hﬁ; - E(0)) - ik;ﬁ (2.3)
S .
curl E = ikOB (2.14)
where Ko = w/c , and E(0) = EX;;t=O) is the initial condition on

the electric field.
Now the plasma volume V will be chosen, for simplicity, to be
a slab of thickness L , described by rectangular coordinates x,y,z
in the reange 0 £ x €L , -° <y <w, -» < g <o, Tt is convenient
to use Fourier integral representations of tine field variables with
respect to y and 3z , and Fourier series representations with respect

to x in the above interval. For the variables Ex’ By’ BZ, and jx

we use a sine-series representation, e.g.,

Tax o oax ey +Xkz) 5 @ N
Ex(x,y,z;m) = f’—E%- J — e T ) Exs(kn’w)Sin k x
- n=i

~—

-0

—

where k_ = (x ,k ,k ) and kX = nn/L . For the variables E_, E_ ,
n n’>y>z n v® Tz
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B, jy’ jZ and p , we use a cosine series representation, e.g.,

T ax 7 ax, i(Kyy *x2) , ®,
Ey(x,y,z;m) = J—lzﬁ f 5 e T 20 yc(k sw)cos k x

where the prime oan the summation means the n = 0 term is multiplied

by %-. The Fourier coefficients of the variables are obtained by

integrating over the slab volume, e.g.

s aw;L < —i(kyy + kzz)

dy J dz e
(k aw)J

Eade el

- . .
Ex(x;m)51n K X
dx

—

Ey(x;w)cos k x

O—

Introduction of these Fourier representations into the x,y and z

components of equation 2.k yields the following equations:

k E - k K = kB
y zZc z ye o Xxc

ik B + kK E = ik B
XS n zc o ys

~-X B - ik E = ik B
nyec y X8 o zs

Similarly, from the x component of equation 2.3 we obtain
KB  -ik B =hgj -E (0)) - ik E .
c Xs XS 0" x8

If the y and 2z components of equation 2.3 are multiplied by

-'I(ky+k7.) _
e y cos knx and integrated over the slab volume, the deri-

vatives can be transformed by integration by psarts. We obtain, in this

way, the following equations:
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ikB -kXB +B - (-1)"B (0)) - ik E
Z XC n Zs 20 Z Q

1 .
L c(hﬂayc - B ye

ye

It

k B -1k B ~B__ + (-1)"B
n ~ys v ox

1 _ o oan
¢ Tyo yL c<hWch Ezc(o)) lKoE

ac

where B = BZ(O;ky,kZ,m) end B ; = BZ(L;ky,ﬂZ,w) are the Fourier
transforms with respect to y and =z of the boundary values of Bz
at x =0 and x =L . The occurrence of these boundary terms is a
result of integration by parts in the term containing the derivative.

9B

2
9x

a—

The Fourier coefficients of B may ve eliminatved from the above
six equations. The resulting three equations for the Fourier coeffi-
cients of E can be written as follows (where we consider only the

k, =0 componernts):

ik

2 2 . = _ o) . _ -
(ko - Ky) Exs + 1KnKyEyc - (hwdxs Exs(o)) (2.5)
2 2 ikn
—1knkyEXS + (ko - kn)Eyc = - ‘E"(““ch “hyc(o))
. jo)
+ 1kO[BZO- (-1) BZL] (2.6)
2 2 2 iko n
p - 1 1 E = - e — 3 ) —
[KO (Kn + Ky)} ze - hnjzc , 1ko[Byo (-1) ByL]
(2.7)

The last equation is uncoupled from the first two by the choice
kz = 0, which means simply that the fieids do not vary in the z
direction. Also, EZC(O) = 0 in that case.

If the Fourier coefflcients of 3' were known, then the solution

of these equations for E__, E and = would give the Fourier
L xs’ Tyec zC
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representation of the electric field inside the slab in terms of the
boundary values of tangential B at the surface. But the current
density is determined by the motions of the charged particles of the
plasﬁa, which are influenced by the electric field in the plasma.
Therefore, the next step in the self-consistent determination of <he

-—

field is to find the current density J produced by a known field E..

B. Perturbation Analysis of the Particle Equations of Motion

Before the current density can be found, the motions of the
—
charged particies in & known field E must be determined. The posi-

—
tion r(t) of a particle with ({charge/mass) = n in an electric field

—_—

E(x,t) is determined by the solution of the differential eguation of

motion: .
—
r

= 0 E(r(t),t) (2.8)

The solution is made unique by specifying initial conditions:

r0) =7, 7(0) = v (2.9)

We assume the electric field to be given by

B(x,t) = Eo(x,t) + El(x,t)

so that

—

r(t) = n B (F(),3) + n By (7(e),8) (2.10)

where n El is a small perturbation in the equation of motion.

Because this differential equation is nonlinear, we need to use
approximation methods. The solution may be obtained as o perturbation

series:
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) = 7))+ 3 4 L. (2.11)
where ;(O)(t) is the solution of the equation of motion with nf&
neglected:

2 0) = nE )0 . (2.12)

Y
For simplicity we require that r(o)(t) have the same initial condi-
tions (equation 2.9) as r(t), so that the other terms in the perturba-
tion series satisfy zero initial conditions, e.g.

Moy =0 , My =0 (2.13)

The solution of the nonlinear equation 2.12 with initial conditions
2.9 is assumed to be a known function. For definiteness we denote this

function as follows:
. W -t —
r Gy = Refr, 5 ,0) (2.1k)

where the initial conditions are indicated explicitly.

At this point we digress to discuss in some detail the trajcctory
function §' for a particular case to which the analysis will be applied.
We will deal with a model of a nearly-collisionless hot plasma confined
to a slab with boundary planes x = 0 and x = L . The ions can be
supposed nearly motioniess (on the time scales of interest) and the

[
electrons confined by an equilibrium static field Eo(x) given by

== - dQO(x) 2,71X
n Eo(x) = X where ¢o(x) = ¢Ocot (1%:)

and n = -e/me for electrons.  The potential energy/unit mass ¢O(x)
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has the form of a well, with sides which become infinitely high as the
boundaries are approached from inside the slab.

Since the electrons are not confined in the and 2 directions
3

the trajectory function may be written
R(tlro,vO,O) = [X(tlxo,vxo,O), Yo ¥ Vyols %o * v, k1 . (2.15)

The function X may be obtained from the energy integral,

QJ vi 2,7X vio 2, ™o
' = -—-2— + ¢Ocot (-—L— = —é— + ¢OCOt ('—"L_") . (2.16)

It is given explicitly by

L -1 Trxo
X(t]xo,vxo,o) = = cos cas( T ) cos Qt

— 1 2,6,

t T g - eos ( = )sin Qt (2.17)
o/U

where Q%) = /5.%-(Z(+ ¢O)l/2 is the fundamental oscillation frequency

in the potential well, as a function of energy, and U is given in

terms of x_ and Vv __ Dy equation 2.16. The value of the inverse

cosine is chosen to lie always between 0O and 7 , and the upper

(lower) sign in front of the square root is taken for Voo ” 0

(vxo < 0).

We will treat only the limiting case ¢O+ 0 for which the poten-
tial approaches a square well, and the oscillation frequency becomes

Q= %}vxo! . Then equation 2.17 becomes, in this limit,



-15-

_ & -1 I
X(t[xo,vxo,o) = = cos {cos I (xo + vxot)} . (2.18)

Since the confining field acting on the particle is negligible except
very near the boundaries, the particle moves on a straight-line
trajectory with a constant speed until it reaches one of the boundary
surfaces, where it is specularly reflected. The x component of velocity
appears to change sign discontinuously in this limit, since differen-
tiation of equation 2.18 gives

sin E{x + v %)
L' 7o X0

0 = v (2.19)

X(tlxo,vx -
sin E{xo+ vkot)
Whenever a continuous fuanction is needed to justify the analysis below,
we can always return, in principle, to equation 2.17 with QO/% << 1 .
Returning now to the discussion of the particle equation of motion
including the small perturbation n Ei , we substitute the perturbation
series 2.11 into equation 2.10. After expanding E&(;]t),t) in a

-t e .
Taylor series about r(t) = r(o)(t) , we find that r(l)(t) satisfies

the following equation (in Cartvesian tensor notation):

Wiy = nw @+,

~(1) =(0) ..

r /' (t) - n v, Eou(r (t),t) r 1w
(2.20)

[The higher order terms in the perturbation series satisfy linear 4if-

ferential equations like 2.20, but with right-hand sides of

correspondingly higher order in nq El 3 these will not be considered

here. ]
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The solution of equation 2.20 with zero initial conditions can be

written in the form

t
ey =g J gkt T

¢ FO gy 00y .  (2.21)
0

(t,t'") E

uB 18

The tensor 'I‘u is assumed to satisfy the differential equation

B

{ﬁuﬁ(t’t') -0, Eou(?(O)(t),t) TaB(t,t') = 0 (2.22)

(where dots indicate differentiation with respect to t) and the

initial conditions
T =0, T =3 at t =t' . (2.23)

E . N
Now we recall that the trajectory function R(t|r',v',t') satisfies

the differential equation

—

Ru - Eou(R,t) = 0 (2.24)

and the initial conditions Ru = rﬁ . Ru = v& at t =1t' . Differen-

tiating with respect to vé gives the differential equation 2.22 and

the initial condivions 2.23. Hence TUB is given explicitly in terms

of the known trajectory function ﬁ' by

T (t,t') = =5 R (|7, V' ,t") . (2.25)
up BVB 5

=

We have assumed, of coursé, that r' = ;(0)(t’), v! =';(O)(t'), so that

Rs|7 7,00 = 70
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Thus the solution of the linearized equation of motion 2.20 for
the deviation of the particle trajectory from the unperturoved trajec-
tory r(o)(t) is given by equations 2.21 and 2.25 as an integral of

—cn
the perturbation n El. experienced by a particle which moves along the

unperturbed trajectory from time O to t . How much the trajectory
—
is deviated oy a given vaiue of n El is determined by thne influence

wensor TUB’ which is determined by the unperturbed trajectory. For

the example considered above, we have

o
o

m 1y = S . 1 o1 41
lXB(t,t ) GXB Bvi X{(t|x ,vx,t )

sin %{x' + v;(t—t'))
§ (t=t') . (2.26)

xB o
|sin T{x' + V;(t't')”

If the particle undergoes an even number of reflections at the bounda-
ries between times t' and t , then a positive perturbation

(1)(4) but if the

n Elx(;},t') causes a positive coptribution to x
number of reflections is odd, the éontribution is negative.

Finally, a few remarks are necessary concerning the linearization
of the particie equations of motion. The electric field perturbation
Ei will be interpreted as a wave with frequency close to the plasma
frequency wp . in order that collective behavior with this character-
istie frequency be correctly described by the linearized eguations, the
wave amplitude must be small enough that the particles are not deviated
appreciably from their unperturbed trajectories during a time interval

of many plasma oscillation periods. Furthermore, close-range encoun-

ters between particles must be assumed to occur infrequently enough,
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and the cumulative effect of long-range encounters assumed slow enough
that the unperturbed trajectories provide a good description of the
motion of a particle for many piasma periods. A rough criterion is
thaﬁ wptc >> 1 , where tc is the collisional relaxation time (see
Section IV,D.) On the other hand, the collision rate must be suffi-
ciently high to prevent the invalidation of the linearized equations
due to particle trapping. This will De discﬁssed further in Section

IIT,D.

C. Fourier Coefficients of the Current Density

The current density due to the electrons is

FEe) = 0 {1 V0 & -7 60) (2.27)
J

where ;S(t) and ;S(t) are the position and velocity of the jth
particlef The ensemble average, indicated by the angular brackets, is
taken because we are interested here in the macroscopic current pro-
duced by a known fieid E , and not in the fluctuations due to particle
discreteness. Hence, the positions and velocities of the particles at
time t are treated as random variables with a known Jjoint probability
distribution, and the brackets indicate that we use the statistical

mean over all possible positions and velocities of all particles.

The Fourier coefficients of the current density are given by
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. o Sk oy + kzz) L jx(fft>81n knx
j(kn,t) = [ dy f dz e J dx jy(x t)cos k X
c®  —® 0 j (x,t)cos k x

Using equation 2.27 this may bc written

35t = (-e) <§ vy (8) By (7 (8),K)
where o = 0 for a#u and
gxx(x’kn) = e sin knx
. for k=0
- N -ik y Z
g y(x’kn) = gZZ(X,kn) = e cos k x

Now the perturbation series of the previous section can be used
- ,
r

for ;S(t) and $:(t) = J.(t) , and if we retain terms up to first

J

order in nEl » We have approximately

RCIR: <Z (1) 6,75+ v ) g (IO B

a n’ Ho g n

+ ég)(t) r(Y)(t) v, gua(?EO)(t),in)}> (2.28)

The first term on the right-hand side of this equation is a current

density Fourier component for particles unperturbed by the fieid nEl

3(0) %

and may be denoted dy J k ,t)

30006 1) = (Z i) g 00K )>
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The second and third terms contain the perturbation in the posi-

tion and velocity due to the field ﬁi . From equations 2.21 and 2.25

these perturbation gquantities are

t
(L) oy - P (Topry B Py et
v (£) = n | at’ B (r',t") 577 Ru(tlr RN
0 B
and £
vy = g et E (B ,4') =2 R (t]7', 7 ,t")
1B ov! U >
0
where r' = R(t'IrO,vO,O) , V' = R(t"ro,vo,O) (2.29)

are the unperturbed position and velocity at time ' . (The particle
index J has been dropped for simplicity). The second term in equation

2.28 may ve written as follows:

t
V) 6, FO@E) = 0 [ a5, e
0

a—f;g R (]F0,7,87) g, (Rl[T 7 60) k)
(2.30)
The argument of the functions g o is ;{O)(t) = ﬁktl;‘,;“,t') where
t!' is the integration variable. Note that the value of ﬁ(tl;w,;“,t')
is constant (for t fixed) and does nol change with +' as long as
Py and ' are given by equation 2.29. The value of the integral is
therefore not altered by formally including the functions gua , with
the above argument under the integration. The third term in equation
2.28 may be treated similarly, and combined with the second term by

identifying the derivative of a product. The result is
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v ) 6 (2D« vV Sy v g G0k

T
=n | at'E (¥',¢") ——B——[R (t]70,7,6") g (R(t|7',v",t"),k )] (2.31)
16 E] 8V' u H ] u@ 9 ] 3 L .
0 B
When equation 2.31 is used in equation 2.28, we sum over all par-
ticlec and aversge over positions and velocitiee at time t' . We can
use the probability density of unperturbed positions and velocities,
-— -
fo(r',v',t') , to first order in n B, To make the prooability den-
sity properly normalized we must also divide by V , the voliume of
plasma under consideraticn; the sum runs over the N particles in this
volume. Since the particles are all identical, the ensemble average of
the sum is Jjust N times the ensemvle average for any one particle.

Passing to the limit N+ ® ,V > o , N/V = nO (finite), we obtain

the following from equation 2.28:

n e2 +
= _ .(0) > o .
I (e 5t) = 3 7 (k) + — at'| ar'| av' £ (r',v',t")
0
T(E 1) O }
lh1B(r ") dv! [ A
B
¢ Y s JEC N ¥ -
where [ }= {Ru(t|r LV, E) gua(R(tlr ,V',T ),Kn)] (2.32)

The same result can be obtained from the linearized Vliasov equa-

tion (9)by integrating along unperturbed trajectories, integrating over

-

e -t
velocity v to get J , integrating over position r +to get the

Fourier coefficients, making a change of integration variables from

—

— .
r,v to r,v' and integrating by parts with respect to ?' . The
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method used above is somewhat more direct, however, and brings out the
physical meaning of the linearization process, in terms of particle
trajectories, more clearliy.

To proceed further it is necessary to make some further assump-
tions about the equilibrium state of the plasma. The model which will
be used here is that of a homogeneous slab, with a time-~independent
equilibrium state. Then the particle position ¥' is distributed
(statistically) uniformly within the slab volume, and its probability

density is independent of time: N
fo(v’) , O€x'£1L

£, (r v ,t') = .
0 , otherwise
The trajectory functioﬁ depends only on the difference between the
initial and final times: ‘ﬁ(tl;“,;w,t') = ﬁ(t - t'l;w;;',O) and is
given explicitly by equations 2.15 and 2.18 for the square well con-
fining potential. Using these equations and equation 2.19 the compon-
ents of the square bracket in equation 2.32 (except for the factor

-ik (y'+ v'1)
e v )} can be written as follows:

= 1 ot : - = ! ai t 1
o = X component X(t|x" vy ,0)sin an(tlx .V .0) v, sin k (x'+ vir)

= v! {sin k x' cos k vit+cos k x'sin k V'T} R
X n I1 X n Il X
vhere 1T =1t -t' , and

- . ! - = 1! .
o = y component vy cos an(T[X ,VX,O) vy cos kn(x VXT)

= v! {cos k x'cos k v't - sin k x'sin k V'T}
y n nx n nx

(and similarly for the o = z component, with v& replaced by ‘vé J)
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Now the square bracket in equation 2.32 is differentiated with respect
to the B component of ;', multiplieda by fo(;'), and integrated over
all ;". Assuming fo to be a function of the magnitude of ;W only
{(i.e., isatropic in velocity space), the terms which are odd functions
of Vs Vy or v, will drop out upon integration. The surviving
terms are proporticnal to either sin knx‘ or cos knx' , and so the
integration over ;H in equation 2.32 transforms the components of

—

El into its Fourier coefficients. We obtain, finally

t
. g _ (0) ' = ' e '
Ja(kn,t) =, (kn,t)+ dt cas(kn,t-t )ElB(kn,t) (2.33)
0
where
5 , (l-iknvxr) k v T 0
N N —i(knvx+kyvy)r y
[OGB(KH;T)] =T J dvio(v)e —KnvyT (1—1kyvyr) 0
0 G 1

The fact that the Fourier coefficients of the current density are

linearly related to those of the eliectric fiéld, with the same wave

—

vector kn , 18 & result of the choicc of o. homogcneous plasma modcl,
with simple specularly reflecting trajectories.

The Laplace transform of equation 2.33 can be obtained by using

s

the convolubion Lleovrem; usiug E (kn,w) fur the Laplace btransform of

B

.Y
ElB(xn,t) , we have

30 ) = 30 G ) + o gl Lu) B(K Le) (2.34)

where
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N w-k v ik v 0
T (V) y vy y X
-k i _ L — O - . _
v[oas(kn,w)} _Eﬁ ) av ) 5 lknvy w-k v 0
(w - k v - ﬂyvy)

0 w-k v =k v
nx vy

(2.35)
for Imw > Q0 .
This is the frequency and wave vector dependent conductivity tensor of
the homogenecus plasma slab.

Using the assumed isotropy of f(;), the following relations are

easily derived from equation 2.35:

Gxx + o = cl-kot s ny = _ny . knax - ik ny =k 02 ,
ik + k = 1ix_0©
y vy n xy y &
where R L _ fo (.1.;)
o, (k ,0) = —% J du —>=, (2.36)
L {w-k * u)
n
and
. . w? o1 () -
o (k_,0) =0 (k ,0)=—= J du —IT (2.37)
t' ' n zZ  n hw (=X * u)

are the "longitudinal" and "transverse" conductivities. In the limit
(In w) > 0 , both Ot anc 02 have real parts, which are obtained by

using the Dirac relavion 1/x+ie = P i-— ind(x) for & = O .

The above relations can be transformed into the following:
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g = g+ 62 g__ = 320 + a’
xx = %% % vy % %
Oy = “Oyx = 1a8(cz - ct) ,
(2.38)
where kn K

o
K° o+ %2 k2 + k2
n" y n "y

Oxx oxy
These are equivalent to the statement that the matrix o o

= I
can be diagonalized by a unitary transformation defined by
the equations

E = oBE + i BE
2 Xs ye
(2.39)

E, = 1B EXS + uEyc

its eigenvalues being 02 and Note that these eigenvalues are

Op *
not purely imaginary; the matrix is not anti-hermitian, as it would be
for a dissipationless medium.

It is convenient to make the following approximation:

a (k :w) = . (2'1‘())
ton HE A

Thie approximation can be Juetified in the following way. The denomi-
nator in the integrand of equation 2.37 can be expanded, for smaili
E;-EVN . Since fo(ﬁ) is isotropic, <;;> = 0 , and the terms neg-
lected are of order lf£‘2¢<v2:>/m2 . For large n such that
[ﬁ;(z n w2/<fv2) , the approximation 2.40 is not valid, but then

Lri 2

= 2,2 2 , 02 2
Imnl kg v e/ (vE)>> 1, and |1+ — Utl $1 for w2l Hence
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. -2 /.2 Lori -1 . . .
- o —

the expression [Ikn!///io (1 " Ot)] in which o, will
always occur, can be well approximated by using 2.40 for all n .

Although we will be interested in frequencies fairly close to the
plasma frequency, it 1s interesting to note that for very low frequen-

f 2
2 s W e
cies, m2 N 5&72 m2 , Wwe have ‘l + bui o] n = o |k If//£2 for
P w w2 n

Cd T 0

|E;l2 " w2/<v2) , and so the approximation 2.40 cannot be used for all
n . For frequencies this low, particles can pass through the layer

of widtn c/wp near the boundaries, where the field is not zero, in
one period of the field variation or less. The result is that

absorption of energy can occur in collisionless plasmas which corres-

ponds to the anomalous skin effect in metals (12).

D. Self—Consistent Solution of the Boundary Value Problem

The reguirement that the electric fieid in the plasma be deter-
mined self-consistently means that the field--determined by equations
2.5, 2.6 and 2.7 in terms of the current density, the initial condi-
tions, and tne boundary conditions--must bé the same field which
produces the currenl density by eguation 2.34. Eliminating the
Fourier components of the current density from these equations, we

obtain the following:

5 5 zmiko zmiko
(x5 - k_ + c JE + (ikkx + o) E =
o) ¥y c XX’ X8 ny c Xy’ “yc
, bo (o) 1
- 1k0( s A EXS(O)) (2.541)
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ik - hﬂiko

-1 + -
( ik k oyx) E _+ (ko kot aw) Eyc

. by (o) 2 _ n (2.k2)

- lko( ¢ dye T ¢ Eyc«n Biot (~1) BzL)

hrik

2 .2 o _ v thm L (0) n
(ko T T cSzz) Fac 1ko( c dze t Ryo- (1) ByL)

(2.43)

The last equation can be solved immediately for Ezc' Using the

approximation 2.40 for 9, (= ot) we have
P o= oo phnlo) g g (2.4%)
ze 2.2 ¢ Yze yo yL ’
1\.n lkp R
.2 2 2, 2y 2 L
where Ky = ko(l - wp/w ) - ky (2.45)

(o)

We recall that jzc is the Fourier component of the z component of the
macroscopic current density which would exist in the absence of the
field disturbance in the plasma, due to particles moving on their
unperturbed trajectories. We will assume that this is zero in problems
involving excitation of macroscopic waves by boundary fields.

We now multiply by {(2/L) cos k x and sum over all n , leaving

ky fixed, to get

2 ocl ey -
Ez(x,ky,m) = = nzo Ezc(kn,m)cos k x =

2ik
o
L

, (B~ (-1)nBy

0 Ko - x4
n~ %p

L)cos knx

fe—18

n
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This is the TFourier transform with respect to y and =z (with wave
numbers ky and kz = 0) of the Laplace transform of the field Ez
at x . This Fourier series can be summed by complex variable tech-
nigques (13) with the resull
. -1k, | .
Ez(x;xy,m) = ;f;;;~;—; [Byocos kp(x - L) - Bchos pr ] (2.46)
P b

This result could have been obtained without the use of Fourier series
methods by assuming that an electric field which is polarized perpendi-
cular to the plane of incidence (the xy plane) propagates as though it

were in a dielectric medium with index of refraction.,/l —-wi/wE .

This result is based on the approximation 2.40 and is therefore not
valid for very low ffequencies;

Equation 2.46 cannot be used when ka is close to 7w +times an
integer, because of the sin ka in the denominator. These combina-
ticns of w and ky correspond to electromagnetic standing wave modes
in the slab, such that a nonzero field can exist in the slab with zero
boundary values. The response to given nonzerc boundary values then

).

becomes very large, in general, as k L »> mr7 (unless B__ = (-1)"B
p yo yL
It is limited only by dissipative effects which have been neglected in
the approximations leading to equation 2.46,
The z-component of the electric field will not bve considered
further, because it does nct couple to the longitudinal plasma waves
which are of primary interest.

We now return to the task of solving equations 2.41 and 2.L2.

Using the reiations 2.38 and the approximation 2.40, the determinant
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of the system of two equations can be shown to be

where ki is given by equation 2.45. It is again necessary to require
that k§ # ki so that the determinant is not zero; the solution is
then straightforward. Defining the longitudinal dielectric function

e= 1+ E%L 02 , we obtain the following:

(o)

(lHT/c)'iBjt lnrkvl péo)
Exs/iko = 2 2 N 2 } 2 -
kKT -k ik (x° + x°) e(k_,w)
n o) o' n y n
n._. 1 1
+ 1aB(B_ -~ (-1) B_.) [ — + J (2.47)
20 e B ) B
n n o)
~(r/e) 0580 ume o0
. < v e
Byo/ik, = N
n P o''n v/ ENfpow
n [ 82 a2
+ (B, - (-1)"B_.) — - ] (2.48)
20 e T I B
o n n
where (o) = 1B j(o) + aj(o) o and B are defined in eguation
v xs yo
2.38 and péo) is the Fourier coefficient of a charge density for

particles unperturbed by the electric field disturbance. We have used

the continuity equation for this charge density

. (o)
aiv j(o) + 2 -0, or knj(

o) . .. (o) . (o)
ot Xs * 1knyc - 1wpc - pc(O) =0,

the initial condition divE - 4mp =0 at t=0 , or
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kE (0) + ik E (0) - hwp (0) = O and the initial condition
n xs ¥ yc c

curlE=0 at t =0, 0or kE (0)+ik E (0) =0 .
n ye v XS
(o) (o)

and 'p are zerc. The Fourier

We now assume that jt o

series for a fixed value of ky are then

ok » k (B - (-1)"B _) sin k. x
. _ n "zo zL n
E (x3k_,w) = - —Xk ) T % =
y o- n=1 (k% + k) e(k ,0)
n v n
; - n ,
2ky&o kn(BZO— (-1} BzL) sin k x
- T 21 @ r 12 (52 - 1) (2.49)
= + -
n n Yy n b
2 n
2ik_ =, (B - (~1)"B _) cos k x
E (x1k _,w) = —::{-‘E' z ZZO > AZL S
J J o n=0 (k- + k7)) ek ,0)
n v n

. - o2 0
, dlko kn(BZO— (=1) BzL) cos Knx
-1 ] 2 2, .2 .2 (2.50)
n=l (k~ + k~)} (¥~ - k°)
n Yy L P

The second infinite series in the expression for _Ey can be summed so

that
2 n
2ik" e, (B - (-1)"B_.) cos X X
E (x3k ,0) = _3;%5 zog . zLﬁ n
¥ Y o n=0 (ke + ky) e(k,,w)
ik B cosh k (L-x) - B _cosh k x
X 7.0 : v zL N
ko (1 - wz/wz)sinh k L
Y J
ik Bzocos k (L-x) - BZLcos k x _
+ =2 R E (2.51)

k 2, 2\ .
o] 1l -~ w /w )sin k L
( P/ ) .
The infinite series of terms involving the longitudinal dielec-

triec function e(ih,w) represents the field due to the longitudinal

plasma waves which are coupled to the electromagnetic field polarized
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with E in the xy plane. For frequencies close to the plasma frequency
these waves are important, and are the main feature of interest here.
In the result of the linearized calculation of the self-consistent
electric field, the dielectric function e(ig,w) appears in the denom-

inator. The field is therefore enhanced due to the collective behavior

of the plasma under those conditions for which E(E;,w) is small.

The last two terms in equation 2.51 were obtained by summing the
infinite series of modes of the "transverse' part of the electric field
(the divergence-free part). The characteristic lengths for the varia-
tion of these terms are comparable with or greater than the wavelength
of clectromagnctic waves in vacuum. Their effective phase velocities
are comparable with or greatef than that of light, and hence much
greater than that of the parﬁicles in the plasma,'so they are not
greatly affected by the thermal motions of the particles.

In summary, we have obtained the self-consistent electric fieid
in a homogeneous plasma slab in terms of the boundary values of the
tangential components of the magnetic [leld at the surfaces of the
slab. The Laplace transforms with respect to time and Fourier trans-
forms with respéct to the y and 2z coordinates (with k= 0) are
given by equations 2.46, 2.49Y and 2.51. The dependence of the soilution
on the initial conditions has been discarded;'énly the part of the
current density proportional to the field disturbance El has been
kept, and this has been assumed to be a small perturbation to the par-

ticle motions.
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IIT. COLLISIONLESS ABSORPTION IN A PLASMA SLAB

A. Surface Impedance

In the previous section the solution to a boundary value problem
was obtained, giving the electric field in a plasma siab in terms of
the boundary values of the tangential magnetic field. Tn practical
applications these boundary values are unknown, however, and must be
goived for. The procedure which must be used is to assume the form of
the field solution outside the plasma, and match it to the solution
inside the plasma by requiring that the tangential electric and mag-
netic fields be continucus at the boundary. To avoid carrying an
unimportant multiplicetive constant in this procedure, it is convenient
to match the ratic of field components, e.g., Ey/Bz , at the boundary.
The parameters in the field sdlution outside the plasma can then be
related to the properties of the plasma.

Suppose we assume the fields outside the plasma to be those
appropriate to a plane, monochromatic wave incident on the plasma at
angle © , polarized with the electric vector 1in the plane of incildence
(the xy plane), with corresponding reflected and transmitted waves.
Strictly speaking, the amplitudes of these plane waves should be
regarded as Fourier transforms with respect to y and 2z , and
Laplace transforms with respect to time, of arbitrary fields satisfying
Maxwell's equatiOns in vacuum. To insure convergence of the integral
defining the Laplace transform, it is necessary to require that
Im w > 0 . The results for a nearly monochromatic wave (not exactly

monochromatic because it was turned on at some time in the past) can



~-33-

be obtained at the end of the calculation by passing to the limit
(Im w) » 0 .

The fields of the incident and reflected waves on one side of
the slab, and the transmitted wave on the other side, may be written
as follows (except for an unimportant multiplicative factor and the

i(k y=-owt)
factor e Y ):

By = ik (x-L) (3.1)

ik x -ik x
X X

B, = ikx(X—L) | (3.2)

Te , X =21

where k =k sin® , k =k cos & .
v o] X o]

The ratio Ey/Bz at the boundary x =1L 1is equal to cos & ,
with the assumed field solution for x = L . Using this boundary con-
dition the ratio Ey/Bz at the boundary x = 0 can be determined

from the field solution in the plasma slab. Denoting this ratio by

7 , the surface impedance, the continuity condition at x = 0 takes

the form {1 -R) cos 8 _
1+ R

Hence, the reflection coefficient R is given in terms of the plasma

properties (contained in the surface impedance} by

R = 1l - Z2/cos 8
T 1+ Z/cos ©

Although the above procedure is fairly simple in principle, it

can become algebraically complicated. An alternate procedure can be
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useG, which takes advantage of the symmetry of the slab with respect to
reflection through its midplane x = ./2 . TIn this procedure we consi=
der plane waves incident on the plasma slab from both sides, with the
same amplitude and angle of incidence, so that the ratio ]Ey] /18,| is
the same at both boundaries. If the phage and polarization (E' in the
plane of incidence) are specified for one wave, there are two possibi-
lities for the other wave. We call the resulting field configurations
"gymmetric", or "antisymmetric", according to whether the ratio

/B is +1 or -1 . In the symmetric case the fields may be

Eyo YL
written as follows:

r oo

_J

1, % T
E-(e ~ RS e Jecos 8 , x££ 0
(s) _
Ey - 1 ik (L-x) —ikx(L—x) (3.3)
= (e -R e Jeos 8, x =1L
2 s
1 ik x -ik x
(s) E—(e +R e ) X%0 \
B, " = i ik (L-x) ~ik (L-x) (3.4)
- E-(e +R e )o x =1L

The amplitude RS of the scattered wave relative to the incident wave
is the same on both.sides of the slab, by symmetry. It is related to

the surface impedance ZS defined by

)

SR VL (3.5)

s y 'Yz “x=0

as follows:
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1 - Zs/cos o]

Rs = . (3.6)
1+ ZS/cos o)

In the antisymmetric case the fields may be written

1 ik x -1k x
E-(e x Rae “Yeos 8 , x=0
(a) _
TN, ik (Lx) ~ik_(L-x) (3.7)
-3 (e - Rae Jeos 6, x B L
1 ikxx -ikxx
B(a) E-(e + Re )y s x%0 (5.8)
z | ik (L-x) -ik_(L-x)
Y (e + Rae ), x =1L

The scattering coefficient Ra is related to the surface impedance

Za , defined by

- (a), . (a) - (a) ,,(a)
Za B [Ey /Bza ]x=0 -7 [Ey /Bza 1x=L
as follows:
1- Za/cos e
R, = : (3.9)

1+ % Joos 8
a

The fields in these symmetric and antisymmetric cases are the

same as the symmetric and antisymmetric parts of the unsymmetric fields

3.1 and 3.2:

2 = Hm () + B )], B ) - 3

y(X) - Ey(L—X)]

(and similarly for Bz) provided we make the identifications

R =R-T, Ra =R+ T . That is, the fields for the unsymmetric case,
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equations 3.1 and 3.2, can be considered as the superposition of the

symmetric and antisymmetric fields:

. ola) (s) . gla) (s) .
Ey = Ey + Ey . B,= B, ' +B, (see Figure 1)
wheré
R = ;(R + R ) and T = l{R - R ) (3.10)
2 a S 2 a8 s

Hence, the scattering coefficients R and T are related to Za and
Z, Yy equations 3.10, 3.9 and 3.6.

The surface impedances Za and Zs for a homogeneous plasma
slab can be obtained from the solution for the field in the plaéma,
given by equation 2.51. In the "symmetric" case we have B__ = =B . ,

2L z0

so we obtain, by setting x =0 in 2.51:

hik , ik cosh k. L + 1
2y = R 1 2 l2 = ky 2 Z }
s L - .
o~ neven (kn + ky> e(kn,w) okl (1- wp/w Ysinh kyL
ik cos k L + 1
+ 5 (3.11)
oL(l -~ w /w ¥sin k. L
Y P

Siﬁilarly, in the "anticymmetrie" case we have B . =

zL BZO » 8¢
2 ,
4ik 7 ik cosh k L -1
2, = ) 5 5. = - 55 o
a k&‘nmm(k + kK )elk ,w) obL(l-w/w)sinh k L
n y n P y

ikp cos knL -1
T } (3.12)
o]

2, 2 .
1l- sin k L
( mp/w ) .
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In equations 3.11 and 3.12, kp = ko \/;0529 - wi/w2 . and
k =k sin 8 .
Yy o}

The last two terms in each of equations 3.11 and 3.12 appear to
become infinite for w = wp , but the infinite parts of the two terms
cancel. That is, the sum of the last two terms has a finite limit
for w ~ mp . It will be sufficient in the following to approximate

equations 3.11 and 3.12 by replacing the last two terms by their

limiting values for w + w

2

P wag

ik

-—
s koL n even (k2 + k2) e(k_,w)
n ¥y n

/ 1

[my]
I

i(koL)(cosh kyL + 1)(sinh kyL/kyL - 1)

- 5 (3.13)
2 sinh//k L
y
[e]
Lik“® 1
2e * XTI ) 5 2. o~
o- noad (x° + k) e(k_,w)
n Y n
i (k L hk L - 1)(sinh k L/k L + 1
i i( o Y (cos - Y(sin v / S )
2 sinh® kL | (3.14)

These approximations are wvalid for frequencies close to the plasma
frequency, which is the case of most interest. In the n = 0 tern
in equation 3.13, the dielectric function is real, €(§ky,w)

2

=
1 - wp w2 , since fo(u) =0 for uy = o/sin 8 in 2.3A: no particles

can travel faster than light.
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B. The Absorption Coefficient of a Collisionless Plasma Slab

The absorption coefficient o of a plaéma slab is defined as
the ratio of power absorbed to power flow into the slab in the incident
wave. For the fields given by equations 3.1 and 3.2 the fraction of

the incident power which is reflected is ]Ri2 , and the fraction

transmitted is |T|2 s, 50 the fraction absorbed is o = 1- ]Rlz— |T|2.
Using equation 3.10 this can be written as
- 1 2 1 2
a =1-3[R[|"-3[R |7 (3.15)

where Rs and Ra are the refiection coefficients for the symmetric
and antisymmetric cases considered in the last section. For these

cases there is no powver flow_across the midplane of the slab because
the x-component of the Poynting vector is zerc there: BZ = 0 1in the
symmetric case, and Ey = 0 in the antisymmetric case, at x = L/2 .

Hence, the absorption coefficients in these cases are

and o =1- |R (3.16)

Combining equations 3.15 and 3.16 gives a = %{us + aa) . (3.17)

Hence, the fraction of power absorbed from the wave is half the sum
of the fractions which would be absorbed from the symmetric and anti-~

symmetric parts of tne fields separsately.

Using equations 3.6 and 3.9, equations 3.16 may be written
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L Re Z /cos © 4 Re Z /cos &
s a
o, = 5 , o, = S (3.18)
]l+-ZS/cos 8] ]l+-Za/cos 9

which, with 3.17, gives the absorption coefficient o in terms of the
symmetric and antisymmetric surface impedances.

The real parts of the surface impedances which determine the
absorption coefficients by equations 3.18 are obtained using the expres-

sions 3.13 and 3.14 for ZS and Za :

Efi Im e(zn,w)
Re Z = (3.19)
8 kUL =24, - I-}:n|2‘€(-1:n,w)l 2
4K2  m e('ﬁn,w)
Re 2_ = gé% (3.20)

o n=1,3, [E, |% [e(x 0l ®

Using equation 2.36, the explicit formula for the longitudinal

dielectric function is

—A. -
= hpi = 2 (U fo(u)
elkou) =1+ —=0 (k,0)=1-u | 333
v P (w=-k _+u)
n
for Im w > O . Paseing to the limit (Im w) - O , and integrating

over the two components of velocity perpendicular to the direction of

- .
kn » We obtain

2 ®
[Y)
Re E(E;,w) =1 - = % 4y F(fi 5 (3.21)
12 L -/ [E ]
.and
In e(k u) = - —;?—5 F' (== (3.22)
k| |k |
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where
L i‘n- "
F(v) = [ du £_(u) 8(v--% )
K
n

is the one~dimensional velocity distribution, i.e., the function

fo(z) intégrated over the two components of velocity perpendicular to
E; . But from the assumed isotropy of fo(;) , F(v) does not depend
upon the direction of E; . In equation 3.21 the principal part is
taken with respect to the pole in the integrand. The integral in
equation 3.22 gives the result of integrating around a small semi-

circle, passing below the pole in the complex v plane. It is pro-

portional to the derivative of the one-dimensional probability density

for the component of velocity in the direction of propagation of the
nbbB normal mode of the slab, evaluated at its phase velocity.

Combining equations 3.18, 3.20 and 3.22, we have

~F'(—2— )
_ 161 !knl

%, ~ L = L
c cos 6 |1+ Za/cos G|2 n=l,3,‘°.|kn| Ie(Kn,m

2 . 2
sin 9
w wp

(3.23)
)2

ag is given by a similar expression, with Za replaced by ZS , and

the summation being over n=2,4,6,-++ . Finally, the general expres-

sion for the absorption coefficient is given, according to equation

3.17, as follows:

. -F' (=)
1 w w_ sin"@ 8y = (kn£
o =>a+a )= =
2's a ccos & L 2 2 = b = 2
1+7_/cos gl " Je® Lw)]
(3.2L4)
Z_ , n even
where Zn = (3.25)
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The absorption coefficient is given as an infinite series, cor-
responding to the infinite number of normal modes of the plasma slab.
The n'"? term determines the damping of the plasma waves excited in the
slab by the incident electromagnetic waves in the nD mode. The damp-
ing of this mode is due to electrons whose velocities happen to be
nearly the same as the phase velocity df the mode, and is proportional
to the derivative of the velocity distribution at this phase velocity.
This type of damping was first discussed by Landau (5) in conncction
with the initial-value problem for plasma waves in an infinite homo-
geneous medium. It will be discussed in more detail in connection
with the present boundary-value problen in Section D.

For any given.frequency w all plasma wave modes will be
present in the slab. As indicéted by equation 3.24, the damping of all
these modes contributes to the power absorption from the external
fields. It is interesting to note that particles contribute to the
collisionless absorption if they belong to any one of a large number
of velocity classes. This is characteristic df bounded or inhomo-
geneous plasmas.

Esch plasma wave mode has a definite wavelength. If the fre-
quency is chosen to be the natural frequency for plasma waves with one
of these wavelengths, then that particular mode will be strongly
excited. Thus there is a sequence of freguencies {wn} at which the
response of the plasma to the incident wave may be quite large, and
‘the power absorption may bc cxpceted to be correspondingly large.

These natural frequencies are defined by the condition that
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Ie(ih,mn){ ¥ 0 , which is the dispersion relation for longitudinal
plasma waves. Although Im e , given by equation 3.22, cannot be zero
in general for w/li£| finite, it can ve very small for w/ligl much
larger than the electron mean thermal speed. (This assumes that the
derivative of the electron velocity distribution function goes to zero
reasonably fast for large velocities.)

Aséuming w/ti#l to be large, the following asymptotic expres-

sion for Re ¢ can be obtained from equation 3.21:

2
w

R ﬁ &% <>
Re e(kn,w) 1 - wz [l + 33— }

X |2 <v2>/w2) << 1 , where <y2:> = J av veF(v) . The fre-

for (| o

-C0

guencies {wn} may then be determined approximately by setting

Re € = 0 which gives
2 2 - 2,2 .
W, g+ 3lkn| <vE) . (3.26)

Assuming that Im e(Qg,wn) << 1 , we have [e(i;,wn)l << 1. It
follows that the amplitude of the ntl mode of the electric field Ex
(equation 2.49), which varies like sin knx , is quite large at the
frequency w = woo. This is oecause of the e(ig,w) in the
denominator of the nth term in the first series in equation 2.49. The
plasma wave with wavelength corresponding to the n®h mode of the slab

has been assumed to be only slightly damped, so that its amplitude may

be guite large when it 1s driven by external fields at its natural
frequency. It follows also that the real part of the surface impedance

ZS or Za may be quite large at the frequency w = wo o because of
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the ]e(E£,w)|2 in the denominator of the n®! term of equation 3.19 for
n even, or 3.20 for n odd. The absorption coefficient given by equa-
tion 3.24 might also be expected to be large at the frequencies {mn} .
but there are further conditions that this be so, which are discussed
in Section C.

The above discussion is based on the assumption that the plasma
wave modes have small damping. This can only be true if the mode num-
ber n 1is not too large. This can be made more precise by considering
the important special case of a Maxwellian electron velocity distribu-
tion 5 o

1 e /ve

Flu) = 75— ¢ (3.27)
™ v

e

The mean~square velocity in one direction is
2 1 2
= - = T /m
<u > > Ve p e/

and the natural frequency of the nth made of the slab vis given by

Lu2 = w2 [l +--—3-:—i}4for ?;2 >> 1, (3.28)
n P 2 n
2g
n
where
5 w2 LS 2 v2 5 -1
£ = ——t =) 2 ) + —= sin“@ {3.29)
n ~ 2 2 L c2
|7 v
n e
2\1/2 _ :
and A = (KTe/hnne ) is the Debye length. With the wave-vector

and frequency of the nth mode, the imaginary part of the dielectric

function has a value given approximately by
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_ 2
1/z Cj e-j/a e *n (3.30)

In e(kn,mn) > 27

i

Therefore, the n®h mode will have small damping, i.e. Im g(kn,wn) << 1
if n << (L//EwrxD) . We will assume that the slab thickness is many

Debye lengths: L/}\D >> 1 so that there will be several modes whose

A

damping is small. As a numerical example, if n

(0.3)(L/v27ay)

say, then Im e(gg,mn) 20.04 . TFor (L/#@RTAD) 20, this condition

. . . v
is satisfied for n < 6 . Larger values of n correspond to wave-

lengths comparable to the Debye length, which have more Landau damping.

C. Absorption Lines and Scattering Resonances

The behavior of the absorption coefficient, as a function of
frequency, is not immediately apparent from equation 3.2k. If we go
hack to equation 3.18 we havé

L Re Za/cos-Q

a, = 5 5 (3.31)
(1 + Re Za/cos 9)°+ (Im Za/cos 8)

and a similar expression for a - t is true that Re Za may be
quite large at the natural frequencies {wn} ‘'of the plasma wave
normal modes, and its frequency behayiof may take the form of narrow
resonance lines at these frequencies if the wave damping is small (see
Figure 2). But the denominator of equation 3.3 contains Re Za to a
higher power than the numerator, so the behavior of o, near the
resonance frequencies is not clear.

To determine the behavior of the absorption coefficient for w
in the vicinity of W o it is convenient to use the following approxi-

mation to the dielectric function:
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n=l 3 5 7

Re Zq(w) /Kol

9
[ )luJ i
0.8 1.0 1.2 w/wp
Im Zglw) /Kol \]
| I
. 1.0 1.2
0.8 (.U/(UP

Figure 2: REAL AND IMAGINARY PARTS OF NORMALIZED
ANTISYMMETRIC SURFACE IMPEDANCE Zq (w)/kol FOR A
"THIN"PLASMA SLAB (k,L<<I).THE VERTICAL SCALE IN THE
UPPER CURVE IS MAGNIFIED BY A FACTOR OF ABOUT 45
COMPARED WITH THE LOWER CURVE. SLAB THICKNESS:
L/v/27\p =20. ANGLE OF INCIDENCE:8=45° [BASED ON
NUMERICAL CALCULATIONS BY R.W. GOULD, FOR THE
"PLASMA CAPACITOR" PROBLEM,]
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E(I{‘n,w) =2[(w/w_-1) +is8] . (3.32)

This 1s valid for w = W provided Gr << 1 , where

i

1 = ) _
§. =3 Im g(kn,wn = Yn/wn . (3.33)
(Yr is the Landau damping rate of the n®! mode).
. th . . . . '
Now using only the n~~ term in equation 3.14 (where n is o0dd)
we have
4K .
Re Za(w) = 2y 5 Im.[-—j:-—-], for w = W
k Lk + ky) e(kn,w)

The other terms in the series can be neglected for w = W, . ‘Using

equation 3.32 and setting ky = kosin & , we have

r &
Re Z (w)/cos & = LU , for w = w (3.34)
a 2 2 n
(w/wn - 1) + 8,

where
2(kOL) sin29
r = (3.35)

cos G(n2n2+ k§L2sin29)

is a measure of thc strength of coupling bctween the nth mode and the
electromagnetic field. Equation 3.34 expresses the fact that, near
the resonance frequency «_ , Re Za(w) can be approximated by a
narrow Lorentzien, providcd the relative width Sn is omall compared
with unity.

Now equations 3.14 and 3.32 may be used to obtain an approxi-

mate expression for Im Za(w) , for w = W Let us assume at first,
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that n 1is odd but not equal to one, i.e. n = 3,5,°++ . From Figure
2 one sees that both the first and the nth terms in the series in equa~
tion 3.1L4 are equally important numerically. The first term varies
relatively slowly with frequency near Wy s so it can be replaced by

its value at w = mn . We fiud Lhat

rn(w/wn- 1)

Im Za(w)/cos 9 = o 1)2+ 52 *e s for wo=w (3.36)
mwn n
where
- rl(wn/ml— 1) i (koL)(cosh kyh* 1)(sinh kyL/kyL+-l) (3.37)
n 2 2 . .2 ‘
(mn/wl - 1)+ 8, 2 cos 8 sinh kyL

The restriction that' n # 1 can now be removed. These expressions
can also be used for n = 1 Dbecause the first term in the expression
for <, is zero then, as it should be.

Now equations 3.34 and 3.36 can be substituted into equation

3.31 to give an approximate expression for a, - After some algebra

we find that (for o = wn)

o
hénrn/(l + cn)

o (w) = (3.38)
a (m/w -1 + .r:.r_l.cll._)z.,. A2
o l+c
Il
r »
where A =8 + . (3.39)
nm (l+ci)

Thus the abéorption coefficient a as a function of frequency
has a Lorentzian line shape near the frequency w oo But two new fea-

tures are present in equations 3.38 and 3.39. TFirst, the relative
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width of the line 'An is the sum of the Landau damping width Gn and

a "radiation damping width" rn/(l+ ci) which is the energy radiated

th
by the n mode in one period of the wave divided by kbn +times the

energy stored. Seconda there is a relative shift of —rncn/(l+ci) in

the resonance frequency because of the radiation damping and because of

the effective coupling to the transverse modes of the electromagnetic
field and (for n # 1) to the =n=1 mode.

The absorption coefficlent aa(m) will be very small for all
frequencies, because én << 1 , unless r << 1 alsc. Thus, & sharp
line structure in Re Za(m) does not lead to a similar structure for
aa(w) unless the radiation damping is as small as the Landau damping.
This Wili be true, for a given value of 8 , only* if the slab thick-
ness is small compared with the wavelength of the electromagnetic
waves: ROL << 1 . In this case ci and rncn can be neglected, com-
pared with unity, and we have (for w =~ w_)

n

hr &
nn

o (w) = , if k L << 1 (3.50)
8 (w/wn— l)2+ (6n+ rn)2 ©

From eguation 3.35 it is clear that r ‘is also small for a thick
slab (koL >> 1} . But in that case the resonance freguencies of
the first N modes are all approximately equal to w_ , where

N kOL , 50 these should be considered together, as a single
resonance. The effective coupling parameter for this combined
resonance is about N times the value of r for a single one, and
is of order unity. Hence, the radiation damping cannot be made as

small as the Landau damping, and the absorption is negligible.
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The absorption coefficient a, will then consist of the sum of several

3° ws, *++* , For

large values of n , the lines will blend into each other when their

such narrow lines, centered at the frequencies Wys W

widths exceed their spacing.

The absorption line given by equation 3.40 has a peak value of
hrnén/(5n+ rn)2 whose maximum with respect to r_ is equal to one,
when r = 6n . For a given value of n , i.e. a given line, this
maximum can be obtained by changing either 8 or koT' , 80 that the
radiation damping is matched to the Landau damping for that line. This

is the condition for maximum power transfer from the incident wave to

the plasma.

Now recall that dn ingreases with n , while r decreases.

If ry = Gl , then the peak value of the n=1 line will be greater
than that of the others, and the peak values will decrease monotoni-
cally with n . But if the matching condition r = Gn is more
nearly satisfied for an odd value of n not egual to one, the peak
values of the lines will not decrease monotonically with n .

One of the sharp resonances in the real part of the gymmetric
surface impedance Zs can be analyzed in a similar way, to determine
the behavior of o in the vicinity of one of the symmetric resonance
frequencies. The constant term corresponding to . in equation 3.36
must contain the n=0 term in Im Z_ evaluated at w (n # 0),
wnich is proportional to (kOL)-l.' The reactive part of 2 thus

increases as koL decreases, s0 the gymmetric absorption coefficient

o cannot be made large enbugh to be observable by making the slab
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thin. In fact, for a thin slab (kOL << 1) we have Re zs <1,
Im Zs >> 1 , so from 3.18 1L follows that as << 1 .

Since o is negligible for a thin slab, we have, from equation
3.17, o = %-ua . This result can be understood by regarding half the
poﬁer in the incident wave to be carried by the symmetric parts of the
fields, and half by the antisymmetric parts. The symmetric parts are

not absorbed, so the absorption coefficient o is just half of the

fraction of the power absorbed from the antisymmetric parts. In parti-

cular, since the maximum value of o is 1, the maximum value of g
is _1/2 .

For a thin slab it follows from equation 3.6 that RS o
because Re Zs <1, Im Zs >> 1 . For symmetric excitation of a thin
slab, the magnetic fields of fhe incident waves tend to cancel, while
the tangential electric fields tend to add. This causes the reactive
part of ZS to be very large, and most of the power is reflected.
Using equation 3.10, the fraction of the power reflected in the

unsymmetric case, i.e. the reflectivity, is given by

A 2
2 R - 1.2 o |2, /cos 8|
fRi = o ‘ s O !R, = 2
|1+ Z_/cos 9]
a
using 3.9.
Using equations 3.3% and 3.36, the reflectivity for o = Wy
corresponding to the absorption line 3.40 is found to be
r2
2 n .
|IR(w)|© = » if kL <<1 (3.41)

(m/mn~ 1)2+ (5n+ rn)2

This represents a scattering resonance with a Lorentzian profile, at
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the same resonance frequency as the corresponding absorption line, and
‘with the same line width. The peak value is ri/(sn+ rn)z , which
decreases monotonically with increaﬁing n . Its value is 1/4 when
the radiation damping is matched to the Landau damping, i.e. r = 8,
The abgorption coefficient o then hac ites maximum valuc of i/2 at
the center of the iine, so the half of the power in the antisymmetric
part of the incident fields is completely absorbed. The other half, in
the symmetric part, is scattered by the plasma, symmetrically to either
side. Hence one would observe 1/4 of the incident power to be reflected
and 1/4 to be transmitted.

These scattering resonances are due to the excitation of plasma
waves in the slab, at their resonance fregquencies. They are accom-
panied by absorption lines at fhe same frequencies for the following
reason. The ratio of power dissipated to energy stored by a given
plasma wave mode is fixed. When one of the modes is excited to a
larger amplitude at its resonance frequency, it stores more energy
and must therefore absorb correspondingly more power from the incident

wave.

D. Landau Damping in a Bounded Plasma
In this section we attempt to expiain the physical mechanism by

which energy is absorbed in a plasma slab.' Consider a single.normal
mode of the slab, with electric field EX proportional to elk Y

sin knx . Inserting the time factor e-iwt and taking the real part,
we may represent the field as

E_=E_ sin k x cos{wt - kyy) .
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But the wavelength in the y direction is much longer than the distance
the particles can travel during one period of the wave, so we may
neglect kyy compared to wt « The field can be written as the sum of
two traveling waves, with phase velocities equal in magnitude but oppo-

site in direction:

E

E = -—Z— [sin(k x - wt) + sin(k x +ut)] (3.42)

The particles which are responsible for the damping are, accord-
ing to equation 3.22, those with velocities about equal to w/kn .« A
particle traveling in a certain direction is essentially affected only
by the wave traveling in the same direction, i.e. one or the other of
the terms in equation 3.42. If its velocity is nearly equal to w/kn s
its unperturbed trajectory kegps in step with one of the traveling
waves until it is reflected, with the other until it is reflected
again, and with the first until the next reflection, etc. The phase
relalions are preserved, on alternate reflections from the boundaries,
if the oscillation freguency of the particle Q 1s approximately
equal to w/n , where w is the frequency of tﬁe incident wave and
L 1s the mode number. The mechanism of collisionless damping in a
plasma slab can therefore be discussed in much the same way as for an
infinite plasma. The theory of this damping in an infinite plasma
will be reviewed oriefly.

If there is a sinusoidai disturbance in the electron density
at some time, then there will be a coherent wave propagating through
the plasma at later times. The linearized theory (5) predicts that

the wave will be damped, and its energy is transferred to those
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particles with nearly the same velocity as the wave. Some of the par-~
ticles are accelerated by the electric field of the wave, and some are
decelerated, according to their positions relative to the field maxims
and minima in the wave. This causes a slow rearrangement, or flow, of
the particles in phase space (1h).

Because there are more particies traveling slightly slower than
the wave than are traveling slightly faster, this flow in phase space
results in a net transfer of energy to the resonant particles.

Of course, this can only be true for a time which is short com-
pared to the "trapping time". The periods of oscillation of the
resonant particles which are trapped in the potential energy minima
in & coordinate system moving-with the wave, are greater than or equal
to the "trapping time",

m >1/2

ee k
nn

T = ( )

where €, is the amplitude of the wave. TFor times comparable to
Teps the net effect of the wave on the resonant particles cannot be
considered a small perturbation, and the linearized theory becomes
invalid (1k4).

If close-range encounters with other particles are frequent
enough, however, the electrons will be scattered out of the potential
wells of the wave before the linearized theory becomes invalid. Then
the initial-value problem for the motion of a particle may be consi=-
dered to be started over again after each scattering encounter. Also,
if the cumulative effect of long-range encounters is rapid enough,

the energy taken from the wave by the regonant eleectrons during the
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first half of their oscillation periods in the potential wells, will
be shared with the other electrons before it can be returned coherently
to the wave in the second half of their oscillation periods. Thus the
presence of some colliéions, or dynamical frictlon, is necessary to
maké the linearized theory uniformly valid for all times.

In order that the linearized theory be valid in a steady state,

where power is supplied by sources external to the plasma, we must
assume that the mean collision rate is much larger than the "trapping

rate", or thr>> 1 . This places an upper limit on the amplitudes
of the normal modes in the plasma, in order that the linearized theory
of power absarption bhe wvalid.

It should be clear from this discussion that the so-called
"collisionless" absorption mechanism is really an indirect mechanism
by which the plasma ahsorbs energy from an incident electromagnetic
wave and converts it into heat. It is indirect because the energy is
first transferred to groups of resonant particles and then to the plasma
as a whole. It can be much more efficient than the direct collisional
mechanism when longitudinal waves are excited in the plasma, especi-
ally if there are appreciable numbers of particles with nearly the
same velocities as the longitudinal waves.

If the nearly collisionless theory i1s to provide a good Ges-
cription of the damping, the Landau damping rate must be much larger
than the mean collision rate. We must therefore assume the following

- ~1

double inequality to hold: Ty >> v >> i, - The effects of col-

lisions will be discussed further in Section 1IVD.
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IV. COLLISIOFLESS NOISE RADIATION FROM A PLASMA SLAB

A. Surface Emissivity

A bounded plasma contains charged particles in motion, which are
éccelerated by their interactions with each other and with the confin-
ingffields and which therefore emit electromagnetic radiation. The
radiation fields of different electrons have no definite phase rela-
tions between them, so the total radiation field of the plasma has a
noise~like character. Although the radiation intensity can be
cbtained from Kirchbhoff's law if the plasma is in thermal equilibrium
(this will be done in Section C), we are concerned here with the more
general case.

The radiation fields are determined by the current density in
the plasma, which is due to the motions of the charged particles, and
these in turn depend upon the initial conditions of all of the parti-
cles at some instant of time. But the initial conditions for this
extremely large number of particles are unknown. The best that can
be done 1s to assume the joint probability distribution of these
initial conditions to be known. Then the statistical properties of
the radiétion field can be determined by averaging over the initial
conditions of the particles. This procedure will be carried out in
Section B.

In this section the relation between the surface emissivity of
a plasma slab and the Laplace transforms of the radiation field and
the field at the plasma boundary will be derived.

A guantity which might be measured in an idealized experiment

gurfoce emiscivity J(@

Y . Let J{Q,u) 490 dw Dbe defined

[
W g Ll Q) DB Ol 11iell
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as the power radiated in a direction making an angle © with the slab
normal, within solid angle d4dQ , in frequency interval dw , per unit
surface area of the slab. Only the‘single polarization with electric
vector in the plane of the radiation direction and the slab normal is
counted, because it is the only one which is coupled to the longitudi-
nal fields in the plasma. The emissivity 1s closely related to the
spectral flux density of the radiation field, which will now be defined.

The Puynting vector of the electromagnetic field outside the
plasma is

S(r,t) = - 6B(r,t) x 6B(r,t)

where the notation for the electric and magnetic fieids is meant to
emphasize that these are flﬁctuation gquantities having zero expecta-
tion values. The expected vélue of the component of the Poynting

. . . ~ 2 \
vector in the direction r (per cm of surface area) is

l ~ - ~ — — - —
T i - Blryn) )y = E%A_ {7 - 8E(r,t) x 8B(T,t))
= J dw 8(w) (k.1)
0
which defines the spectral flux density S(w) . The total surface

area of the plasma slab is A = V/L , where V 1is the volume and L
the width. ({(The limit V » = will be taken later.)

Suppose the direction r makes an angle O with the slab
normal, and the fields 6@;65 are radiation fields propagating in
the direction r , with the polarization of interest. Then S{w)dI dw
is the power radiated in frequency interval dw in a direction making

an angle @ with the slab normal which crosses an area d4dI at the
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—
observation point. r with its normal in the direction of propagation

~

r per unit surface area of the slab. Because 4I = r2dQ , Where 4
is the solid angle subtended by the area d4dI at a distance r , the
relation between the surface emissivity and the spectral flux density
is’

J = I‘ZS(m) (b.2)

The spectral flux density is (except for a constant factor) the
Fourier transform of the radiation field autocorrelation function.

Hence,

[e]

2

7= r°5(w) = (—f—?——) J ar eTTGE(T,t) SE(r.t + 1)) (4.3)
T V

- o
Now J can also be obtained directly from the Laplace trans-—

form of the radiation field as a function of time:

2 o -
7= () 1im 2yeE(T,w + 1y) 6B(Thw + 1y)) (k)
e Vy->20
where  SE(T,u) = J at 9% sm(¥,t) . (4.5)
o)

To prove 4.4, substitute the definition 4.5 of the Laplace transform
into the right-hand side of equation 4.L. After interchanging the

order of integrations over time and the statistical average, we have

- -
<%E(r,—w + iy) S8E(r,w + iy)>>
o] =]
o e Ner N
= J gt ef(Terivlt J atret(wriv)t éE(r,t) GE(r,t')>
0 0



,.59_

Now we replace the integration variable +' by T =+t' -t , and

change the order of integration in the double integral over t and

T . Then we obtain
<5E(?,—m+iy) SE(T ,u+iy) > =

f gt oL (wriv)T f at e BTt <5E("£,t) 6E(?,t+T)>
0

0
O -]

+ J ar elwriv)e J at e 2t <5E(}',t) SE(T,t+1) > .
00 =T

Assuming that the radiation field is a stationary random function, the
autocorrelation function is a function of the time difference only,
i.e. <6E(r,t) 6E(r,t+r):> is a function of 1 only (15). The

integrals over t can therefore be carried out, with the result that

SE(T =utiv) SE(r,uriv) » =

5%— J ar eiuT e"Y|T‘<5E(?,t) 5E(?,~b+r)>

Hence

1im 2y (SE(T,~w+iY) aE(?,w+iY)> = de ' (oE(T 1) SE(T,t41) )
Y > o0

0
and.using 4,3 wc obtain the required relation, L.lL.

The surface emissivity can now be obtained from equation L.h if
the Laplace transform of the radiation field is given. This can be
related to the Laplace transform of the field fluctuation dEy at

the slab boundary, which in turn is related to the plasma properties
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through the solution of the boundary value problem for the field fluc-
tuations. If we are interested in the radiation field in the region
Xx <0, i.e., to the left of the slab, we first Fourier analyze the

field GEy(;;m) at the boundary x = 0 :

éEy(O,y,Z,w) = on —a- €

) oz .
A, pdk, Ak v ko2) on o0y L (U6)
o yo vz

These field fluctuations must now be '

'analytically continued" away from
the surface of the plasma.

The radiation field in vacuum which is a solution of
2 2 -~
(v + k) GEy(r,m) =0 , for x<0O ,
which has the boundary values given by equation 4.6 at x = 0 , and

which represents waves traveling away from the plasma for x - - ,

is given by

. T ak o &k, ikorf(ky,kz)
SEy(r,w) = f ——-X-h J 5= e SEyo(ky,kZ,w) (L.7)
-0 w00
where
kxx + k vy k 5 5
£(k ok ) = ==L gin o + /l—(k/k)-(k/k) cos & .
v’z kor ko y "o z' "o

The observation point ; has been chosen to be in the x-y plane at a
distance r from the origin: ;'= (-r cos 8, r sin 6,0) . If we
assume this distance is many wavelengths away from the origin, so that
kor >> 1 , then thé radiation field éEy given by equation 4.7 can be
approximated by a spherical wave propagating out from the origin.

To show this we evaluate the double integral in 4.7 approximately,

using the stationary phase approximation. Because of the exponential
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factor in the integrand, which oscillates rapidly as a function of k
and kz , there is no significant contribution from most of the region
of integration. Only the region .near the stationary phase point
(kys’kzs) wﬁere af/Bky = Bflakz = 0 needs to be considered, because
the -exponential factor oscillates most slowly in that region. Assuming
that 6Eyo(ky,kz,w) is a slowly varying function of ky and ko it
can be replaced by its value at the stationary phase point. The expon-
ential factor can be integrated approximately by expanding f(ky,kz) in
a Taylor series about the stationary phase point, which is found to be
k = kosin 8 , kX =0, The stationary phase approximation to the

¥s Zs

double integral in 4.7 is found to be

. ik r
- -1ko e ©
= g = % si >> L,
SEy(?,w) 5o o8 ” GEyo(ﬂos n 8,0} , for kor 1 (4.8)
where the argument kz = 0 is to be understood. This represents a

spherical wave going out from the origin whose amplitude is propor-

tional to the Fourier coefficient of the plane wave component in 4.7
which propagates in the direction from the origin to the observation
point .

Thus result can be expressed in terms of SE(;,m) , the component
perpendicular to the direction of propagaltlion, since §Ey = SE cos @ .
By substituting the result into equation 4.k, the surface emissivity
can be obtained from the Tield fluctuations at the plasma boundary,'as

follows:
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2
cko L 1
J(6,uw) = (—;6-;,;) Vylimo2y <6Eyo(-kosn.n 8,~w+iy) dEyo(koSIH Q,w+1~()>

(4.9)

B. Electric Field Fluctuations in a Plasma Slab

Since the emissivity of a plasma slab is determined by the bound-
ary values of the field fluctuation 6Ey , 1t is necessary to determine
these boundary values in terms of the plasma properties. This can be
done by using the solution of the boundary value problem which was
derived in Part II. Although we interpreted all of the fields as
ensembie average, or macroscopic fields, an alternate interpretation is
possible and is necessary to find the field fluctuations. In the per-
turbation analysis of the particle equations of motion (Section II.B),

-

El is now to be interpreted as the fluctuation of the field from its

- - .
ensemble average value E_ ={E ):

8 = E-<E> . (4.10)
No macroscopic disturbances, such as the plasms waves considered in
Sections II and III, are to be present.

The current density calculated in Section II.C is then due to
particles moving nearly on their unperturbved trajectories in the con-
fining field of the slab, being slig?tly perturbed by the field
fluctuation OF . ‘The "unperturbed part" of the current density should
not be averaged as in equation 2.31, since it represents the source of

the field fluctuations:
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gy . (4.11)

700G = q § T s@ o
; 9 J

The ensemble average can be used, however, for that part of the
current density fluctualion 63' which 1s caused by the field GE.,
with the condition that 6E(X,t) is a given function. This conditional
expectation still has a fluctuation nature because SE is to be deter-
mined by solving Maxwell's equations wilh the current density fluctua=
tion 63' as the source. The neglect of higher-order fluctuation
gquantities (16) in this procedure is justified if there are many
particles per Debye sphere: nxg >> 1 + The fluctuation 53 is then

(o)

given by equation 2.32 with jio) replaced by 5Ju and ElB by

GEB .

The part ol &; due to Lhe perturbation of the particle trajec-
tories, caused by the field Gﬁ', represents the linearized response
of the plasma to the superposition of the fields of all the individual
particles. The response is calculated as though these individual
particles moved independently on trajectories determined by the confin-
ing fields of the slab and their initial conditions. It is the
response of & dielectric medium having the average properties of the
collection of charged particles which is the plasma, and it tends to
shield the filelds of the individual charges.

The field fluctuation Sﬁ can therefore be thought of as being
produced by non—inﬁeracting, independent quasi-particles, i.e. the

individual charged particles with their associated shielding cliouds.

This is the principle of superposition of the fields of "dressed test

particles", first discussed by Hubbard (17). Rostoker showed that the
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use of these statistically independent quasi-particles is equivalent to
a correct treatment of particle correlations (18).

After making the other assumptions and approximations discussed
in Section II.C, the electric field fluctuations can be solved for,
self-consistently as in Section II.D. The result, corresponding to

equation 2.51, is as follows:

2ik2 o ! cos knx { N
§E_(x3k_w) = —L ] /- 5B, - (-1)" &B
y y kOL h=0 lknla e(kn,w) Z0 zL
Mk (i/k ) 6Bzocosh ky(p—x)— deLcosh ny
S NN C) e S - M Y
kP n’Y 2, 2, \y
y ¢ (1- w_/w) sinh k_L
b ¥y
_GBZocos k1L = 6BzL
+ k|- = ] . (k.12)
P sin k L
P

The "unperturbed charge density fluctuations" SQéO) cannot be neg-
lected because they are now the source of the field fluctuations. We

(O)/c in comparison with Gp(o)

have neglected Sjt o

, Since the unper-
turbed particle trajectories have velocities which are much smaller
than c¢ . This is consistent with the neglect of Re o, in the
approximation 2.40.

In addition to the fields induced in the pliasma by the fields at
the boundary, there are the fields induced by the particle discreteness.
Tne screening effect of the plasma is indicated in equation 4.12, where

Spgo) is divided by the

the charge density of the "bare" particles
dielectric function a(ig,w) to obtain the charge density of the

"dressed" particles.
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The boundary values of the tangential magnetic field are deter-
mined by the condition that the fields 5Ey, GBZ be continuous at the
boundary. These fields must therefore have the same ratio as the
fields outside the plasma which represent outgoing plane waves. This
is the radiation condition, which takes the form

6 . 8 8 = -
GEyO/ B, cos @ ) EyL/ BZL cos O (Lh.13)

These reletbions can be substituted into equation k.12, but ©OE
and GEyL must still be solved for. DBy setting x =0 and x =1L in
equation L.12, we obtain two simultaneocus algebraic equations for

GEyO and SE . The solution of these gives

yL
Gy ® k60t (% Lu) (4.14)
§E,_(k_,w) = :—%i ) - L. s d-nz -
yoo ¥ n=0 [1+7 /cos 61l kn| e (k_,0)

where Zn is given by equation 3.25. A similar expression is obtained

for §F but with the n° term in the series multiplied by (-1)"

vyL °

The electric field fluctuation 6Ey in the plasma can now be cobtained
by substituting these expressions, and the relations 4,13, into equa-
tion L.12.

Equation L4.lL expresses the basic test-particle property of the
plasma slaba The electric field fluctuations are due to the discrete-
ness of the individual charges, and are modified by the collective
behavior of the Dlaéma, as indicated by the dielectric function
e(zg,w) in the denominator. They are also modified by the coupling

with the radiation field outside the plasma, as indicated by the

presence of the surface impedances. The symmetric surface impedance
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ZS appears with the symmetric modes of the charge density fluctuation

(even n), and the antisymmetric surface impedance Z& with the anti~

symmetric modes {odd n).

Using équation L.1L, the emissivity given by equation 4.9 can be

written as follows:

hckg sinEG , ,

J(8,uw) = 5 )
T L m=0 n=0
1 -, (o), = . (o) > .
v Yli?02v<§pc (—kn,—m+1Y) 6pc (km,w+1Yi>

(1+2_/cos 8)(1+7Z /cos Q)Ikn} [k | e (k ,0) e(k ,w)
(4.15)
N .
where kn = (am/L, kosin 6,0) . The emissivity is thus finally related
to the statistical properties of the unperturbed part of the charge
density:
—i(kyy + kzz)

ap£°)(§;,m) = f at eIt f dy f dz e
0 ) -0
L
x J dx cos knx Gp(o)(;,t)
3 .

J

(O) -~ N - - G - IS .

where &p' ‘(x,t) = q z §(x - R(ter,vj,O)) , and R(t[rj,v ,0) is
3=1 v

the unperturbed trajectory function discussed in Section II.B. Carry-

ing out the indicated integration we have (for k= 0)
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(o), N -ik y. i(w—kyvyj)cos knxj+ knvx.sin anj
60 % kw)=q )] e YV J (4.16)
c n . 2. .2 2
J=1 (w -~ kv )=k v,
| Yyl n xJ

Since the effcet of particle correlations ieg included in equation
4.15 through the use of the dielectric function e(in,w) , the initial

conditions {r ,;.} for all the particles must now be assumed to be

J
N
independent random variables. Bach of the initial positions r, is

y

assumed to be uniformly distributed within the plasma volume, so that

the probability density for T, is constant within the slab and zero

J

outside. The initial velocities are assumed to be identically distri-
buted with probability demsity f_(v_,v_ ) . We then find, in the limit

x

N,V + o, §/V = n, > that

§ <ot (E ) 002 ) Y

n e2 % * (w'=k v Yok v ) + k2v2
e Yy ¥ N A o X
” 26nm(dvadeo(vx’v) 2 202 2 22
J v y [(w'-k v ) =x"vT [(w~k v )=k v_]
—® - vy n x vy nx
for n# 0 with an additional factor of 2 for n = 0 .
We now replace w' by w-1y and w by wt iy . After some

algebraic simplification we multiply by 2y and take the limit vy - O,

making use of the formal relation

Y , ons(x) .
> 3
x +y

The result can be expressed as follows:
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)
o - n_e
%- lim 2y<<6p(o)(-k ymwtiy) 60 °) (% ,w+iy):>= S— 5 F(~=2—)
o4 n c m nm
y > 0 . |k, | e, |

(4.17)

for n# 0, with an additional factor of 2 for n = 0 , where F(u)
is the one-dimensional velocity distribution.
Combining equations 4.15 and L4.17, we have the following general

expression for the emissivity:

—
hneezmhsin29 o F(|E£|)
nle n=l |1+ % /cos 6|7 |k |7 |e(k |
n n n

(The n=0 term has been dropped, since F( ) must be zero; par-

C
sin ©
ticles cannot travel at the speed of light or faster.) This is one
of the primary results of this investigation. Under some conditions,
which are discussed in the next section, the emissivity is large at

-—
those frequencies for which the dielectric function s(kn,w) is
small. These are the natural frequencies of standing waves in the
slab, which ars excited by the motions of the charged particles. The

fast electrons with velocities close to the phase velocity of a plasma

wave are responsible for its excitation. Hence the nth term in the

emissivity expression is proportional to F(—%—) , the number of
thlkn
electrons with the phase velocity of the n plasma wave.
Now recall that the absorption coefficient is given in general

by a very similar expression (equation 3.24), but the n"® term is

proportional to F'(i%.l) » the derivative of the one-dimensional
n

velocity distribution function. This is because the absorption is due
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to Landau damping. In a thermal equilibrium plasma there is a relation
between F and F' . Hence, there is also a relation between the
emissivity and the avsorption coefficient, which agrees with Kirchhoff's
law. This is discussed in the next section.

Since the emissivity corresponding to a given plasma wave is
proportional to the number of electrons with the same velocity, the
emissivity can be enhanced if the number of such electrons is increased.
The enhancement of emission lines caused by a non-thermal high-energy
tail in the one-dimensional distribution function F 1is discussed in

the next section.

C. Enhancement of Emission Lines in Non-Thermal Plasmas

For purposes of comparison we first discuss the case of thermal
equilibrium. If a plasma slab is in thermal equilibrium at temperature
'I‘e , the electron velocity distribution is a Maiwellian distribution,
equation 3.27, and so

-kT
e

mu

Flu) = F'(u) (4.19)

Equation Lh.18 for the emissivity can therefore be written as follows

for the case of thermal equilibrium:

. W
w2 W3sin®e(xr ) F (TirTﬁ (L.20)
= —B e n _
J(gam) - > 3 z ’ =T, — 5
L c n=1 |1+ Zn/cos 8| |kn| |€(kn,w)|

It is of interest to compare this result with the emissivity
calculated by using Kirchhoff's law (19). Let us imagine the plasma

slab to be enclosed in a large cavity, and to be in thermal equilibrium

with the walls of the cavity which are at temperature Te'. The
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radiation intensity at any point in the cavity external to the slab
must have the black~-body value in every direction. In particular, the
power (ergs/sec) in the radiation field which flows away from the

slab in a direction making an angle & with the slab normal, per unit
solid angle per unit frequency interval per unit surface area, must be

2

- W
IBB cos © , where IBB = : 35
T e

in the Rayleigh~Jeans limit (fiw << KTe) for the single polarization

KTe . This is the black-body intensity

of interest.
If we neglect incoherent scamtering* this intensity is due to
the radiation from the plasma, and the reflection and transmission of

the black-body radiation incident on the slab:

J + (IRI2 + |T|2) I._ cos &= I__ cos @ .

BB BB

Since the absorption coefficient of the slab is a = l-IRIQ-ITIZ, the
emissivity must be
J=algcos8= o w o8 9 p . (k.21)

2
8r° ¢ ©
With the expression for a given by equation 3.2L4, equation 4.21
becomes identical with L.20.
Thus the emissivity calcuiated by using the thermal equilibrium
argument is the same as that obtained from the more general expression

.18 for the emissivity in the special case where the electron velocity

*The intensity due to incoherent (Thomson) scattering is smaller than
that due to the processes considered by many orders of magnitude. If
it were not negligible, the detailed balance argument given here
would be invalid, because the incoherent scattering of electromagnetic
waves can change the angle 8 and the frequency w . v
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distribution is Maxwellian. It should be clear that these two methods
for obtaining the emissivity in thermal eguilibrium are essentially
independent, so that the comparison provides a consistency check on the
more general method, which leads to eguation 4.18.

Also, it is worth pointing out that the assumption of "thermal
equilibrium at temperature Te" really involves the electron distribu-
tion function only. The radiation, at frequencles as high as the plasma
frequency, is not affected by the motion of the ions, so no assumption
is necessary about the ion distribution function.

Because the emissivity J 1is proportional to the absorption
coefficient o in thermal equilibrium, we expect that J will have a
line structure as a function of frequency, under the same conditions
that o has such a line structure. For a thin slab (koL << 1), the
emissivity is given in the vicinity of the nth line (w = wn) s by
equation 4.21, where o = 1/2 a, » and o is given by equation 3.40.
The emission lines have Lorentzian shapes, provided they are narrow,
and their widths are determined by the Landau damping and the radiation
damping of the respective plasma wave modes. It should be emphasized
that these are not modes of the macroscopic charge density of the plasna,
but of the microscopic density fluctuations which are responsible for
the noise radiation. One can speak of the same dispersion relation and
damping mechanisms as for macroscopic waves, however.

If the radiation damping is matched to the Landau damping for
the nth emission line, then the emiséivity from a thermal equilibrium

plasma is 1/2 of the black-body value at the center of the line.
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[Recall from Section III.C that the maximum value of the absorption
coefficient o for a thin slab is 1/2.] Otherwise, the emissivity is
less than this value. There is no éuch restriction on the emissivity
of a nonthermal plasma. It is therefore of interest to investigate
the properties of the emission lines from nonthermal plasmas.

The emission lines can be discussed within the framework of the
discussion of absorption lines in Section III.C. The emissivity
formula 4.18 can be written in a form which is formally simiiar to the

thermal equilibrium expression L4.20 by using the following relation:

F(u) = :gﬁﬂl F'(u) (k.22)

which defines the function ©(u) . If the distribution function is
Maxwellian, then e(u) = KTe , the temperature of the electrons (in
energy units), and is independent of u . If the distribution function
is not Maxwellian, then @(u) is a function of u , and is not a tem-
perature. It can be thought of as a "pseudo-temperature" which
charscterizes the distribution funection F(u). It gives the tempera-
ture for that Maxwellian distribution which would have the same
logarithmic derivative at that value of u .

An emission line is obtained from the corresponding absorption

line [equation 3.40 for aa] for e nonthermal plasme as follows:

o (w) w2cos e o )

o(

J(w) = =
8rs & |k |
n

. (4.23)

=

The emissivity depends on the velocity distribution function F and

is not restricted to be less than half a black-body value (which has a
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meaning only in thermal equilibrium.)
As an example of a nonthermal distribution function, suppose

F(u) has the following properties:

P
L e € < v
/2 > B3 Ve
n v
e
Fl{u) = 5 2 (L.2h}
1 -u /v
—_— Crcu™, uss v
1/2 >
T v

%—mvi for low velocities.

For high velocities there is, in addition, a power-law distribution

This is a Maxwellian with temperature KTe

which gives the distribution function a "high-energy tail". The cor-

respondihg "pseudo-temperature"” has the following properties:

o(u) = (4.25)

(We assumed both the magnitude and slope of the Maxwellian part to be
much smaller than for the power law part of the distribution function
for high velocities.)

The emission lines which correspond to mcdes with very large
phase velocities will be enhanced because of the presence of the high-
energy tail. The emissivity of the nth such line will be multiplied

by the enhancement factor

£ o= 0(—
" k|
n

)/KTe (4.26)

Tnis factor is much larger than unity in the example considered above
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[with @{u) given by equation 4.25] if the phase velocity is much
larger than the thermal velocity Vg oo and s 1is of order unity. In
this example the Landau damping is also increased by the high-energy
tail. Hence, the emission line is widened and the value of radiation
damping for matching to the radistion field is increased. To gain an
understanding of this enhancement, it is necessary to discuss the
mechanism of the emission.

The collective response of the plasma tends to screen out tke
field of a charged particle for distances greater than a Debye length,
if the speed of the particle is less than the mean thermal speed. For
a faster particle the effective sereening distance is somewhat larger
than a Debye length and, in addition, collective oscillations are
excited in its wake (20). This excitation of plasma waves is similar
to the Cerenkov radiation caused by a fast electron in a dielectric
material. The more fast electrons there are, with the phase velocity
of a given plasma wave mode, the greater will be the amplitude to which
this mode is excited. Since the electromagnetic radiation from this
mode is simply a result of continuing the electric field fluctuations
into the region outside the plasma, it is clear why the corresponding
emissivity should be proportional to the expected number of electrons
with the phaée velocity of the plasma waves, i.e. the distribution
function evaluated at that velocity.

Although there is a relationship between the emissivity and the
absorption coefficient for a thermal equilibrium plasma corresponding
to the relation hetween the.distribution function and its derivative,

there is no such relationship for a nonthermal plasma. Since the
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emissivity is determined only Dy the electron veliocity distribution,
it can be enhanced over the thermal equilibrium value by high-velocity

electrons in the tail of the distribution.

D. The Effect of Collisions on "Coilisionless" Absorption and Emission

We have been concerned in this investigation with plasmas which
can be considered nearly collisionless. We pointed out in Section III.D
that some collisions are necessary to justify the use of the linearized
theory of plasma waves. Therefore, the effects of collisions should be
investigated.

Encounters between many charged particles take place simuitane-
ously in a plasma, because of. the long-range nature of the Coulomb
force. The resulting electric field fluctuations cause the trajectory
of each particle to undergo an almost continuous series of small deflec-
tions. The fraction of close encounters which cause large deflectlons
is of order (e2/KT)3n z A-E, in a thermal equilibrium plasma, and is
very small for temperatures and densities of most gaseous plasmas. The
parameter A 1is about ten times the number of particles in a sphere
whose radius is the Debye length AD = (KT/hnnez)l/z. Assuming A to
be very large, the vast majority of particle encounters are distant_
encounters, which produce very small deflectilons.

The result is that a particle exhibits a Brownian motion, or dif-
fusion, in velocity space and tends to slow down because of the
effective frictional forces acting on it. The time scale for a sub-
stantial deviation of the particle trajectory because of particle

encounters is the collision time tc s Where



-76~

- A
c w_ An A
1Y

Therefore, in a plasma where the parameter A is large, the collision
time is many plasma wave periods, so the effect oif collisions upon the
plasma waves is small.

Particle encounters, or collisions, tend to randomize any coherent
wave motions in the plasma and to transform the energy of the waves into
heat. The information about the location of the energy is thus lost,
.and we say that the energy has been absorbed by the plasma. The colli-
sional absorption in a fully-ionized plasma can be attributed basically
to dynamical friction. Because of the electric field fluctuations and
the polarization force exerted on a particle by its screening cloud,
the particle tends to slow down. More precisely, its expecteda velocity
decreases in time from a given initial value. Because the diffusion is
slow, the position of a particle remains fairly close to its expected
position for many plasma periods. The theory of Brownian motion (21)

indicates that in equations 2.108 and 2.19 we should replace x gt v b

—vt)

by x _+ on(l - e / Vv , and multiply the right-hand side of 2.19

-vt - . -
by e where v 1is an average collision frequency. For long wave-

lengths the approximate effect of collisions can be obtained by

. Y
multiplying RY in equation 2.32 by e v(t-t')

, which replaces w in
equation 2.35 by w + iv .
For partially-ionized gases, electron-neutral collisions must

also be considered. These can be treated correctly by using the Boltz-

mann equation. The result is again to replace w by ot ivm , Where
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Y is the momentum-transfer coilision frequency (22). The approxi-

mate results for a fully-ionized plasma can therefore be applied to a

—_— ——

partially ionized gas by replacing v by v+ Vp ot

When collisions are taken into account, the approximation 2.40

must be modified; assuming v << w , we have

wz(iw +‘;)

2

-

a (kn,m)

t by w

[A more rigorous derivation of this result, and the expression for 3-,
was given by Chang (23)]. The "transverse conductivity" therefore has
a real part and so the divergence-free part of the electric field can
be dissipated. The corresponding modification in the surface impedance
and the absorption coefficient o of the slab shows that energy can be
absorbed from an incident wave by this process.

The modification of the "longitudinal conductivity" o, due to
collisions introduces the collisional damping of longitudinal plasma
waves. This process is important for high phase-velocity waves, when

the Landau damping rate is small. The approximate effect is then to

add ?v/w to the right-hand side of equation 3.22 and to replace the

Landau damping rate Y, in eguation 3.33 by Yn+ V . The relative
width Gn is therefore determined by the collisional damping rate v
when the Landan damping rate is very small. The widths of the absorp-
tion and emission lines of the plasma slab, which are associated with
the plasma wave modes, are increased by the effects of collisions.

Also, the value of the "radiation damping width" T for which the

plasma is "matched" to the radiation field, is increased, since it is
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now the sum of the Landau damping width and the collisional damping
width. These are the modifications which are introduced by collisions;
the main results of the previous work remain the same for absorption
or for emission in thermal equilibrium.

om a nontherm plasma cannot he discussed guite
as simply. The test-particle model of Section B can be used to calcu-
late the emission directly, without using Kirchhoff's law. To include
the effects of collisions, however, the sideways deflections must be
included, as well as the slowing down of the mean velocity. This cor-

responds to acceleration of a particle because of encounters with other

particles, and results in radiation. If these accelerations are

(o)

& which can then not be neglected in equation k4.12,

included in 4]
the emissivity will have a contribution due to the bremsstrahlung emis-
sion into Lhe b;ansverse field., If the accelerations are included iﬁ
Bpio) in equation 4.12 as well, there is emission due to collisional
excitation of plasma waves.

This procedure has been carried out by Birmingham, Dawson and

Obermar. for an infinite homogeneous plasma (24). They found that,

although the longitudinal emission is restricted to the frequency

range W, £y < 1.4 vy s the emissivity in this range is much larger

than that for transverse waves by a factor of order c3/v3 . For

e

higher freguencies, where longitudinal waves do not propagate readiiy
because of Lancau damping, the usual transverse bremsstrahlung should
be the dominant radiation process.

The excitation of plasma waves by electron~ion collisions may be

more important than.the "collisionless" excitation by fast electrons
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for very large phase velocities. ©Since collisional effects are mainly
due to particles of average energy, their effect on the emission is
substantially the same for a nonthermal velocity distribution as for a
Maxwellian, with the same mean thermal energy (25). The collisional
contribution to the emissivity can therefore be calculated by using
Kirchhoff's law. The result is that, in addition to the distribution
function F in the numerator of each term of equation 4.18, there
should be a term proportional to the mean collision frequency. If the
collisional excitation and damping of plasma waves are more important
than the excitation by fast electrons and Landau damping, then the
emissivity has the thermal equilibrium value. It can be enhanced by
nonthermal electrons, however, if the latter processes are more impor-

tant than the former.
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V. SUMMARY AND CONCLUSIONS

The effect of collective behavior on absorption and emission of
electromagnetic radiation by a bounded plasma has been investigated. A
boundary-value problem has been solved in order to determine the proper-
ties of the absorption coefficient and the reflectivity near the collec-
tive resonance frequencies. The statistical properties of the noise
emission near these same frequencies have also been determined by
reinterpreting the solution of the boundary-value problem in terms of
fluctuation quantities.

The model which has been used to represent a bounded plasma is
that of a plane slab with uniform electron and ion densities. The
electron velocity distributidn is supposed known and independent. of
time. The electrons are specularly reflected when they strike the

boundaries of the slab, which provides the means of contalning the -
plasma. On the short time scales which are characteristic of plasma
waves, the ions are supposed motionless.

The main assumptions which have been made are as follows:

(1) The plasma is nearly collisionless: wptc >> 1

(2) Tne collective oscillations are only small perturbations

on the particle trajectories, so linearization is valid

-
(3) The distribution function is isotropic: f_ = fo({v!)

(4) The plasma is non-relativistic: <fv2> << c2

(5) The slab thickness is many Debye lengths: L/AD >> 1

(6) The mean collision rate is much smaller than the Landau

damping rate, but much larger than the trapping rate:

~1
>> >>
Yn v Ttr
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(7) Fluctuation quantities of higher order than those kept
in the dressed test particle approaech are negligible.

The specific results which have been obtained are the following.
If a plane electromagnetic wave is incident on the plasma slab at an
angle @ # 0 , and is polarized with the electric field in the plane of
“incidence, then it can be partially absorbed by Landau damping of the
plasma waves which 1t excites. If the incident wave frequency is close
to one of the plasma resonance frequencies, the absorption may be sub-
stantial, but only if the slab is thin compared with the electromagnetic
wavelength: kOL << 1 . The width of the absorption line is the sum of
the widths due to Landau damping and radiation damping. If the radia-
tion damping is equal to the ;andau damping for one of the lines, then
the piasma is matched to the radiation field in that line, and the
absorption coefficient has its maximum value of 1/2 at the center of
that line. The half of the incident power in the antisymmetric part of
the field 1s totally absorbed at that fregquency, and the other half in
the symmetric part of the field is scattered symmetrically to either
side (if the slab is thin: kOL << 1), The peak values of the absorption
lines do not necessarily decrease monotonically with n . The reflec-
tivity also has resonance lines gt the same frequencies as the
absorption lines, and with the same linewidths. The peak values of
these scattering resonance lines decrease monctonically with n . When
collislons are taken into account, the Landau damping rate Yn which
appears in the theoretical results for the nth resonance must be

replaced by Yn + G', where ;. is the mean collision frequency.
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Furthermore, a nearly-collisionless plasma slab emits noise
radiation which is polarized with the electric vector in the plane of
the slab normal and the direction of propagation. The emissivity
depends on the angle © Dbetween these two directions, and goes to zero
like’ sin29 for © > 0 . Emission lines occur under the same condi-
tions as absorption lines and at the same resonance frequencies. In
thermal equilibrium the emissivity is related to the absorption coeffi-
cient by Kirchhoff's law. If the plasma is also matched to the
radiation field in one of the lines, then (for a thin sliab) the emissi-
vity at the center of that line is 1/2 of the black-body value. The
noise radiation results from continuation of the electric field fluc-
tuations away from the plasma, as a solution of the wave equation in
free space. The fluctuations arise in the plasma because of the
motions of the electrons, which can be treated using the "dressed test
particle" approach. Emission lines occur at those frequencies for which
the fluctuations are reinforced by the collective behavior of the
plasma. The emissivity in a given line is proportional to the number
of electrons with velocities about egual to the phase velocity of the
plasma wave which is resonant at that frequency. The emissivity can
therefore be enhanced for a nonthermal plasma with many such electrons
in a high-energy tail of the distribution function. The collisional
excitation of plasma waves may be the dominant mechanism for very lérge
phase velocities. |

Although high-frequency fluctuations can be observed in a plasma

by incoherent scatitering téchniques, the scattering cross section is
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very small and it may be easier to observe them using noise emission
measuremenbs from g bounded plasma. In general, one would expect that
the properties of the radiation from any bounded plasms wouid be strongly
influenced by the spectrum of collective wave motions in the plasma.

The comparison of the above theoretical results with the results
of the microwave experiments which were mentioned in the Introduction
can be of a qualitative natufe only. This is because of the differences
velween Lhe discharge plasmas used in the experiments and the idecalized
plasma model used in the theoretical calculation. The most important
difference is that the discharge plasma is inhomogeneous, so that the
electron density 1s not coastant in the plasma. The standing wave
normal modes are reflected against the density gradient and exist only
in a thin region near the plasma boundary. Since this reduces the
effective width of the plasma, tlhie separation of the rescnances in
frequency is considerably larger than it would be for a homogeneous
plasma of the same actual width, as used in the theoretical calculation.
Another difference is that the discharge plasmas are usually circular
cylinders, while the theory has been worked out for a plane slab.
However, the experimental resuits and the above theoretical results have
the following features in common:

(1) The frequencies of the emission lines are approximately
the same as the frequencies of the corresponding scattering resonances.

(2) The widtns of Lhe emission lines and of the corresponding
scattering resonances are also approximately the same.

(3) The scattering maxima decrease monotonically with increasing

mode number n (or with increasing frequency wn) .
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(L) The emission maxima do not necessarily decrease monotonically,

depending on the size of the plasma.

For the larger of the two discharge tubes used by Kerzar and
Weissglas (3), the emission maximum of the second resonance iine is the
largest, while for the smaller tube it is the first (or main) resonance
line which has the largest peak value. This is understandable in terms
of matching of the radiation damping to the internal damping of the
plasma, since the radiation damping decreases with increasing mode
number n , but increases with the size of the plasma.

The observed line widths decrease with increasing mode number
similar to the behavior of the radiation damping. 3But the internal
damping rate must be of the same order of magnitude as the radiation
damping rate, in order that the plaéma be approximately matched in the
. first or sceond line. Hence the internal damping rate must be approxi-
mately independent of mode number. If we knew that the Landau damping
rate for an inhomogeneous plasma increases sharply with mode nurmber as
it does for a homogeneous plasma, then we could conclude theat the
internal damping is not Landau damping, and must be collisional. A
better reason for this conclusion is that the absorption and emission
in the experimenis of Kerzar and Weissglad increase in proportionh to
the neutral gas density. Therefore, the primary dissipative mechanism
in these discharge plasmas must be electron-neutral collisions. Thé
corresponding radiation mechanism 1s probably Lhe excilalion of plasma
waves by these collisions, which is consistent with the fact that the

experimental absorption and emission spectra are very similar.
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The theory of "collisionless' absorption and emission of electro-
magnetic waves is therefore not entirely applicable to the experiments
mentioned above. The theory cannot be completely confirmed until

similar experiments are carried out with nearly-collisionless plasmas.
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