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ABSTRACT

A method is presented for including the effects of viscosity in
the design of supersonic wiand tunnel nozzles, the effect being presented
in the form of a modification to the non-viscous, or perfect fluid,
nozzle shares. The modification essentielly consists of providing addi-
tional expansion area to compensate for the retarded flow near the wall,
and is estimated from considerations of possible boundary layer growth
along a heat insulated flat wall with a pressure gradient, when both
the vslocity profile and friction coefficient are assumed.

It is shown that the modification to the perfect fluid shape becomes
very pronounced for design Mach numbers above five and results in & shorter
nozzle length for a given test section size than that prediéted from
perfect £luid theory. At a Mach number of 10, this method results in a
nozzle length reduction of 50% indieating that the boundary layer occupies
this percentage of the test section for the shortened nozzle,

Design curves are presented from which the modification to a specific

perfect fluid nozzle shape may be computed for Mach numbers up to 10.
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PART I

INTRODUCTION AND ASSUMPTIONS

Supersouls nozzle design is concerned with the problem of producing
uniform parallsl flow of & compressible fluld at a desired velocity
exceeding that of sound in the medium. To attain this velocity, the
nozzle must consist of a contraction portion leading into the throat
where sonic velociby is reached, followsd by an expansion shape calculate
ed to produce uniform flow at the nozzle exit. Several papers exist
(References 1, 2, 3, 4) presenting grephical or exact analytical methods
for the design of supsrsonic nozzles for perfect, or nonviscous fluids,
but little information is available concerning the effects of viscosity
upon the nogzzle sxpansion shaps.

This lack of information is understandable, for the addition of
viscous and heat conduction terms to the equations of motion for a
compressible fluid introdwes such extreme mathematical conplications
that no general solutions have yet been obteined. Thus any sttempt to
consider viscous effects must utilize certain simplifying assumptions,

1,

which reduce the equations to forms which can be solved explicitly,
Foremost among these aimplifications is that due to Prandtl which lsads
to the concept of the boundary layer, Prandtl showed that, for fluids
of low viscosity (i.e., flows at high Reynolds number J, the effects of
viscoslty are esssntially confined within & thin layer of the fluid
adjacent to the solid boundariss of the flow fisld, while outside this
thin "boundary layer" the fluid can be conaidered as non=viscous,

Applying the boundary layer theory to flow in a nozzle, the actusl

flow field can be regarded as consisting of a central core of non=viscous

(&
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or potential flow surrcunded by a thin layer of retarded flow clinging
to the nozzle walls, The "effective nozzle wall" for the potential
flow field occurs inside the physical well at a distance known as the
displacement thickness of the boundery layer. Consequently, if the
displacement thickness for a given flow can be computed and the physical
we.ll displaced outward that much from the potentisl wall position, the
resultant channel should produce the same 'low exterior to the boundary
layer as the original potential nozzle. Utilizing this result of the
boundary layer assumpition, the problem of supersonic nozzle design for
viscous fluids is reduced to that of determining the rate of growth of
the boundary layer displacement thickness along the potential nozzle
length, together with the wall modification to the potential shavpe
which will just compensate for this growth.

However, the boundary layer equations for a compressible fluid with
8 pressure gradient are s till extremely difficult to solve, requiring
further assumptions and simplifications to render a solution possible.
Von Karman (Ref. B, introduced a simplification by showing that, if one
is willing to abandon efforts to obtain the exact flow configuration
within the boundary layer and instead satisfy the equations of motion
only in the mean, the resultant equations are much simpler, but still
give the boundary leyer thickness to a very close approximaticn. This
method determines the thickness by balencing the shear and pressure
forces against the rate of momentum loss within & boundary layer heving
an assumed velocity profile. He has shown that the resultent thickness
is relatively insensitive to moderate changes in the assumed velocity
profile, consequently any plsusible, simply defined profile may be

c o s ; . § .
utilizeds. Polhausen, in applying Karmen's momentum considerations to
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the incompressible case, utilized for the profile form & pelyromial
in powers of distence alomg the solid boundery, However, this leads
to extrems complications in the compressible csse, making & simpler
profile form highly desirable,

Puckett has shown thet, with the assumption of an irnveriant
profile shepe, the boundsry layer momentum reletions can be reduced
to & first order linear differential equation rslating the boundsry
leyer thickness with disteance along the nozzle. The irwarisnt
veloelty profile fixes the relation between the displscement thicknes:e
and the total thickness sz a funchtien of the frees stream Mach number,
whickh in turn debermines the well modifiecation to the potentisl noszle
shape to compenseate for the viscous effechs,

laving chosen & velecity profile, the resulting boundary layer
thickness becomes proportionsl to the wall friction coefficient, which

be estimested from Reynolds number and Mach number considerae

Wo

ust gt
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tionse However, by suitable choleces of tre veloelby profile ang
friction coeffliecient, this method is equally velid for lsminer or for
turbulent boundary leyers, & feature not possessed by the more rigorous
analysis based on the Navier«Stokes equationse

The assumptions inherent in this specislized application ef viscous
fluid thecry sre rather numerous and should be clearly recognizede For
that reagon, they are enumerated below:

le The sir obesys the perfect gas laws, where the ratio of

specific hests remoins constent at ¥ = 1,400,

2. Fleow is essentially one-dimensional, that is, wall curve=

ture is very small end

v ok P
4«1 s A
u ! ay’ oz
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Viscous effects are confined within the boundary layer
region heving a sharply defined edge; outside this
region, potential flow ccours,.

The beundary leyer veleocity profile does not vary with
position along the nozzle wall,

The nozzle wall is insulated and the Prandtl number hss
the value wnity, thus +the fluld st the wall recovers
ite stagration temperature.

For & turbulent boundery leyer, it is necessary to assume
no heat transfer takes place in order to justify stagnae

tion temperature recovery et the wall,



PART 1I

DETERI]
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x—)

TION OF BOUNDARY IAYER GROWIH

Ao Deriwetion of the Boundery lsyer Fquations

Follewing von Kérmén's methcd (Ref¢ 5, mementum consideraticns
in the mean are applied to a fixed infinritesimal slice of the boundary
layer on one parallel wall of an expanding two=dimensionsl channel,
The boundary layer is thus subjected te & pressure gradient due to the

veloelty gradient in the outer or potential flew in the channele An

energy halence for the slice re res that the time rate of chanps of
4 (=3

7]
s

momentum in the x-direction within this wedge=sheped element must jus
balence the resulbant component of the shear and pressure forces in
the seme dirsction on the faces of the olement,

Referring to the notation given in the Appendix and to Fig. 1,
showing the nozzle coordinste system for the boundery layer analysis,

the ferces acting on this element consist of:

i

phS

aj the force on the left face

Pz

b the force from the top face = PR 5Z=dx
Pl

¢} the force from the side face = /°59—x' ax

Hy
o
Q
&

4} the force on the right
&

:;_ij-j%(phg)dﬁ

where only first order terms have been retsineds The net pressure foros

the right is the sum of these four terms or
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- —-/;53‘%’—&6/& .

Note that the forces on the slanting faces cancel identically, leaving
as the only pressure force the term arising from the pressure gradient
acting on the rectilinear “core" of the boundsry lsyer slice.

The surface friction or shear on the bottom face contributes a

force in the x-directicn of
-k T, dx

while the tep face, being adjecent to the potential flow, hes no surface
friections The shear on the side of the slice can be neglected since

it is sn icherent sssumpticn of the boundary layer concept that the
thickness 5 is smell compered to the other physical dimensions.

Thus the net force tc the right is

_hT, dx - hS ;Pa/)( .

For steady flow, the momentum change within this fixe! slice is the
difference betwsen that carried in through the top end left feace, and
that carried ocut through the right face. This momentum chenge can be
more ersily obtained if, in anticipation of the integrals involved, the
momentum and displacement thicknesses are introduced et this point,

a3 defined respectively by

<°—( =)y (1)
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S*=f(5/—<aa, )y (2

<

The displecement thickness of the boundary layer has the physiecal
significance that the reduction in mass flew through the boundary layer
is equivalent to an inward shift or displacement of the wall by that
amounts Similarly, the momentum thickness might represent the wall
shift proportional to the percentege momentum loss in the boundary laver,
Bquetions (1) and (2 cen be manipulated to resemble the integrals arising

in the momentum derivation.

e 5
ré 3" =g[(€v“: —(0“)5/7 = (:,4,5 -ﬁuc/

or S
f(oua_/7= (%< (5-37) (3,
5 5 SZ
34’2/9 =[€a(a,—u)df = “ﬁ“c{j _o/(;u .
or that

5 *
fo<ty - (3-37-2) (+)

Returning now to & consideration of the momentun chenge within ths

element, the momentum carrisd in through the left face is

/L/(m puh (5-57-9)
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while the momentum carried out through the right face is
2 Z * )
T (5-508) « e o (5578
The net momentum change through these faces is then
o D Lo h (T-5%.9)
ox (o’ !

Similerly

v, the mass entering the left face is

S
/L/(,a,agu - pu h(5-3%)

and that leaving the right face is

ok (53 « e Taumh (5-39

From continmuity consideratiens, the mess inerement leavine the risht
a4 ) g &
face must have entersd through the tep of the element, and this mass

carries in with it a momentum equal to

2 *
L(' dxé—;— (,“,A(S-s ) .
The net momentum chanre from all faces becomss

_C/,(ajz_[(q “'ZA,(S—J*_/Q)} + w, Ax a‘-'% {(0, w h (I - 5*)}
] “"‘3;{6 w4 (5-5*.}-5+5*)§ -k (5-T%) T4 oy

- J, * e,
- ..Jxoé((,a/ A,Q) +<a,a,4_5c7:-(-—c(7k ‘€,é(,/l5 I dAx



Equating momentum change to forees and eliminating dx results
in the sgquation
9 (uh ) -puhS 2 e GuhT*I
ox & il ot G4 IxX

e
ho+hS S5 = (5)

9

The pressure term cen be eliminated by reference to the one-dimene

sional momentun relation

a,c/a, +3/£=0 )
so that cﬁﬂ cAZ,
o Gy :

With this substitution, equation (5] reduces to the basic equation for

the boundary layer
4 = —“( azﬁ,&) t ad kT Z
% = ax (@4 e ax

where total derivetives sre utilized, since the guantities considered

are functions only of z. Introduecing the relabicen
] 2 -
fo=2—Cf<4“, (7)

eguation (6) transfeorms into

2 '* a44
QF _(a a_zlL 57_-Qé‘“ A”Jz) «

1
or

,dﬂﬁ—/

2 A/a 6/4 ; ‘{“l
zZ%- dx (966 Ax Gq ) *

4 ax T a Ak (&)

Utilizing the one-=dimensiomal relation
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equation (8, becomes,

L L (oog) L H, 5,

=T o x| A dx & dx - ()

A% this peint, the assumpbtion of an invarient velecity profile is
introduced, where the velocity variation through the boundary layer is

given in the dimensionless form

1
ih

«d=I(q) 0 (10

« J
Z 1= %
Similarly, dimensionless functions of the momenbtum and displacement

thicknesses can be defined respectively by

&

S

5*)('
and B(M) = 5
where the notation indiesbtes their dependence only upon the Mach number
of the potential flow for an invarient velcclty profile. 11 subsequent
funetions of the boundary Byer will similarly be expressed in terms of
the Mach number of the potential flow,

Introducing these functions, equatien (9, becomas

5;)/:1 _&4(2 )a/a, 55 Ay, , A3 dh

1C
zZY¥ - “l ax A dx

a/x

or



c 0/5 J ANz opp® A7 S A
Z;—d)( AL, dx [(ZM)A+5+“' “,_7+/( X . (13

efinirng additional functions by

clu) = ;/ A(m) (14

n{M,) = (2 = % JAM) +B(M) + M), (15,

equation (13, becones

A5 D du, | 1 M ‘
za ~dx * S{Au ax +7Ta77§ (26)

which can be recognized as & First order limear differentisal squation,

and thus has the solution

aMHM) o L
5 - G(M,)H(M,) {[ Az O “St} W7

where

D(M) A,
AM) 4
G(m) = e (13
and
fdé
A
H(M) = & ] (19,
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The integrations indicated in equations (17, (18, and {19, are all
from the nozzle throat down to the station in question, and Ek
accordingly represents the boundery layer thickness at the throat,
In prectically all cases, *the fluld acceleration in the contracticn
sechbion shead of the throat is so high that 5; is very small and
can safely be neglected.

Inserting the limits of integration inte equation {19;, it is seen
thet H(M) can immediately be integrated 2s follows

(5
LR Lk
Hm)=e" = e‘yh = ‘/‘:: = ﬁ;(’”) , (20

with the result that H{M) represents simply the wall height ratic or,
in the case of one of the perallel walls of a two=dimensionel channel,
the ares ratio bebtween the station in question and the throate

Introducing this value of H(M) into equation (17), and neglecting

3,

e » the totel boundary layer thickness is given by

x

Sz__/___i"j __/_L____G(M)ga/x {21}

em) k| px Ay Z2

[-]
However, the total thickness is of importance only as & means of determine
. . * . : .
ing the displacement thickness, o , upon which the nozzle design is

baseds Remembering thet

S*¥-3.B(m) (12

the displecement thiclmess can be cbtained from

< . A Bm) (A CM c
x A GM) |k AM) = .



Equation (22, is still general to the extent that the friction
coefficient can be & funection of position along the rozsle lengthe
Howewer , insufficient information is svailable with which to predict
this variation of Cp with any accurscy, thus it is necessary here to
remove it from under the integral sign and sssign an average or effective
value for the nozzle as a wholee, It is hoped that sufficient experimental
results can be obtained to determine this effective Cp value as a funechtion
of Reynolds number and Mach number, From Reynolds number considerstions
alene, this value cen be expected to lie in the range from 0.001 to 0,003
for the usual supersonic wind btunnel size (Ref. €Jo

With this cliange, the final equation for the displacement thickness

is
x_ . Kk BM) [ 4 GH) 3
5}( -5 LG ) 5 A X ) (23,

. h : e s
It must be emphasized here that the factor — &ppedring in this
b
squation refsrs to the potential height ratic for the wall upon which
the boundary layer growth iz being celculated. That is, for two-cimen-
slenal channel heving parallel side wells, the factor B hes the value
hex

unity for the top and bottom wallss For the side wells,in this case,
the factor can be evaluated from the potential nozzle ordinatss; or

if more convenient, it can be taken as squal to the aree ratio corresponde

ing to the losal Mach number of the pobentisl flow,

3o

3 £ e ! 3 2 3 -
Equation (23, ls also valid for an sxially symmetriec nozzle so leng

23 the boundary layer thickness is small compared with the crossesection

radius. For an exially symmetric nozzle, the factor A can ve replaced
h*
by its equivelent L, resulting in
o
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x
*x . r Bm|[ r G(m
5,\ 2N + Gm) | P* A (M) X : (24 )

(]
The displecement thickness at any station along the rozzle length

can be found from equations (23, or (24 by & numericsl or graphieal

integration from the neszzle throet to the station in question, provided

— or jl, BQ?{ and G(M% are known functions of the nozzle lengthes These
we et G(M) AM

are known if either the centerline Mach number or well Mach number
variation with nozzle length is given. The difference of these two
Mach number variations is negligible in view of the other approximations
irherent in this anslyais.

If it is desired to incorporate a length of channel following the
nozzle exit in which the Mach number is held constant, the actusl channel
walls must diverge sufficiently to compensats for tle continued growth
of boundsry layer. With no sxial Mach number gradient, there iz of course
no veloelty nor pressure gradisnt, thus equation (8) reduces to the

exceedingly simple form

/ ’ J‘ﬂ
Y " ax . (25,

The %g term vanishes as well, since h refers to the potential wall height
rather than the actuml wall height, the difference in heights being due
to the boundary layer clinging to the top and bottom wallse Actually,
this simplicity is just a manifestation of the inherent simplicity of

the momentum approsch to the boundary layer, for equaticn (25, states

that, in the ebgence of a pressure gradient, the momentum lcss just
& & o

balancez the wall frictione



Introducing the displacement thickness, equation (25, becores

o dE A LT Am) AT
EY T 5 A5 dx B(m) dx
s¢ that
A%, BM0) \,

which is an indicstion of how much the physical walls must diverge in
order to maintain s wmiform potential shape and thus a constent Mech
numbere.

With no Mach number gradient in the x=direction, equation (23

will of course reducs to this ssme form:

x_ - 45BmM) [ A cM) )
=S & 2V | = 2L 7
729 G) ) wx A 7 \E5
[o]
A5 1o K B) D |k GM)
x ZF K Gm) x| 4* Am)
43" Lo K BM) A Gw)
Ix Z2 ) ) 1t Am
43" .. BM
IxZF Am) - (26

The sclubtions to equations (23), (24, or (26, provide the information
from which to determine the modification to the potential nozzle shepe,
but first the various functions invelved must be evaluateds this iz done

in the next twe sectlionse



8e Development of the Genersl Functicns

The functions A(M), B(M), Cc(¥), D(i, and G(M) can be expressed
in more convenient form if s normelized velocity "a" is utilized wherse
the theoreticel meximum velocity obtainable by iseutropiec expansion
into a vacuum is assigned the value unity. This dimwensionless norma=

lized velecity is related to the other velceltles in the fluid through

the expressionssz

2 VL T ( a,)z _ Y-t (ffg)z
ﬂ =(.Z_) o+l \a® zZ \ &

—i-ﬂz S r
2 oy -
M= == YR
(27
Y- 2
—x = (*
(-1

Due to the assumptions of no heat transfsr to the wall, ne pressure
gradient normal to the well, end s Prandtl number of unity, the density
variastion inversely ma‘ches the btempersture variation through the
boundary layer, and esch recovers its stegnation value st the walle
Consequently, the density vatio can be expressed in berms of n

2
T/?; /—(%—) _ /—n%

7 |
e 7 T/75 / ’(%)z /)P ® {26y

To(e) o
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I « - S
Am) = T:é.é_’:(,_é_:’g)o{y (/-r2) “)(/z;j)‘/ (29

Y
8m) = /- (’“’71)’[,_,,1“)1 O/z

(z0)

Utilizing the edditional relation

Adw _ «L _ x(,~n1_)
A M(/fti/}() M

the function C{M, can be written as

AA M, AA
C(M)=“,6'/—‘Z’ = Ay —— % d/’f,

or ) M a{q . ﬂ——a—_/’_q
- (/-—n‘) am, T dn

Wow

dM szg/ ”1)/0(, ) &/Zf

A W (1-c) * (=)
v L S =) *(’”)fcw —nmorf [



s ] S

oA ) .y r =G-m
;/;((/’_,7 ) A ( tEM ) ) (/+ ‘?"M"\z
A 2 *
o (1=77) = ~Or-) At (1-77)
oA d-w) 7 | e (=) (,_
a//»({/—n‘«)“ } (1 -~ )"

_d 2 AN zd 2y - _ _ z _”12
M(/ ﬂ“))—«);—ﬂ?(/—n)— (v-1) M (¢ )T .

Combinirg all these derivatives

o) LTV ,,z)f(lw ) ]

nt«/‘)

f 3
C(n1) = zn’L/[—:%-f;i)‘:i)c/? + (1= 0 (1-w) /7]

(1)

j{w(/w))(/-ﬂ‘«f‘) £ (1- ) (=) A
= 2R >y 2
(/ -rn*tw )
) 2”1/—4()(1—40)+a)(/—u})/71ﬂ11+2a)3(/~cd)-ﬂ"£d (1 -w) J
) (/-nlwt)




resulting in

'cd(/—ad)(cdz-l) A |
(/__”1.“)1.)7- (51)

C(m) -

Similarly

(z-m%)Am)

(z - ) (- n*ym”n(’w”) aéz

©

14
d(r-w)
k4 2
(z-m,") Am) = (2-777) 7:72)7—&/7 (32)
so that
D(M) = (2 =My, A (M) + B(M) + C(M) (33

D(m) = (2- ‘('n‘)J‘“)(’-“J) 0/7 !

1.“)7-

2 0 z “J(-u))(wt") e s
~(1-n*)| ——y + Z”a/(/:n‘«)‘)z /7 (35

end
N fD(M) Am
AM) « A) m(r+ ’—’Zi/w’)
G(m) = € = e (34)

Te obtain numerical velues of these funchions, it is nscessary te

have an explicit reletion betwsen «J and 1 s which defines the
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velocity profiles This choice of profile should be reasonebly close
to that expected to occur under the circumstances, and of course it
must be simple encugh to be integrable, These two considerations
greatly restrict the cholce of 2 velocity profiles As e result, only
two profiles heve been completely evaluateds

1, Linear velosity profile (0= 7 )
2/ Turbulent veloclity profile ( «d = z %)

Based on these two veleoclity profiles, numerical values of the boundsry

layer functions are cbtained in the next sectione

Ca Evaluation of Linear Velocity Profile Functions

The linear velocity profile represents the simplest form teo evaluate.
For this profile
W=y so that Aed) = 6/7 (35,

and the functions can essily be integrated.

A(m) = (1~ n")f‘d(’ “))du) (7- n) ,":}j::jz (r-»%) w'f:jt

> z /—/77' (—m% /+4
= Tont (7(/’” )« "7 23 <07/-’L
A(M) = [/+4:7,//f——M +1{m+l /:7(,5*11:’—/"1 -)r%:’Mi)] (36
Z



BM) = 1~ (1-7n7) _wdd ;;’:1@7(/-/7‘)

|- PRV

y-l,,2 ,
[+ ZzmM (37,

B(m) =

u]( w ) (w ~/) A
C(m) = zn* (,/_ = “ =

’ P "
(W - -t ) z +
c(m) Z”a ) Ld = ~ 2, ([’ ‘Iz‘ls*l;)

Considering emch of thess four integrals separstely

f 4z ' [
W ded (| WP dw ¢ | wWwrdw , -
.-l K e L s

I{ (/ z“J‘!-) /77- ,__”1_“/1— nlﬁ[_nzwt)L P (IS*‘LG)

o

I. appears in A(M) above so is already eveluated

“B
r 2 ’ 04") [
.IQ, = ““i——?)_:_z =—'l;.f Z.,2 "-'/-/ A =—£‘Z(I7+“Z;)
) (1= ) o) r-ntw (- ,,1“)‘)

| (—rd” zn 'Y 7oA

/+#

_ Al . L Al L /e
Ls =fm 2(1-n*) F ) mrTWT Cz(-Y) 4’7 Ji=a

4

P 14
Do (wdw [0 ((1,.T,)
Y MO G

IZ=



Again, I, appears in A(M) and has been evalusted.

L
uJo&/.) ~ / _ - /___(,_”‘2.) - 12

T, - - .
10 o(l_,_)z t}'L 2/77(,—41-) 27 th(/_nz) 2(,_,)7.)

L, - [(/~ 20")* - Lo

f (/-n’«) " Le

Combining all these integrals

c(m)= -‘2/73/;%.(;12—*'Jf; *—Z; - J:;j)"lfé *-1:;7]

T,

H
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which ean simplify C{M) still further to

c(m) = - a(m) - A(M) - B (M) +\

= (..z—fr-rgM?’—- !)A(M)—B(M)+ !



C(m) = - (3+ vM*-m*YAM) —g(m) +

(38)
D(Mm) = (2-M*) AM) + B(M) + C(m)
D(M) = [ — (1 +¥ym?) A(M)
(39)
) du, N AM
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G(M) = € =& . {1&@)

Of these linear profils fumetions, only G(M) reguires 2 numerieal
or graphiscal integration for its svaluation. Curves of these functions

are given in Pigures 2 to 1l.

De Evaluation of 1/7 Power Velocity Profile Punctions

If the velosity profile is ass:med o vary as the seventh rook of
S P
the distance from the wall, the dinensionlesg relation expressing
$ ks i
is
¥ 3 An = bo(u) 1
a):Z T so thak '{ = T (41)

and the sevaral functions become
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in which it is remembered that M is & funebtion of ne The evelustion of

A(M) in slozed form procesds as follows:
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Collscting these integrals

A(r) = 7(/"’77')(IM "Iza\
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This fora burns out to be inconvenient for computations, so an

5 P A 3 £ 2w § e RHPR. T ~
n can e develeoped In infinits serles lovrne
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alternatse expressis

P S Zye 2 E3 <
Broressing AM) again in the form
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the logarithnie terms can be sxpsnded in con
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Combining the inbtegrals
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A(M) = 7([—-/’71) Z(8+25,;(3+25)
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the acewrscy of the result depsnds upon the size of the rempiadsr, or
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Remembering that n Ly, An inequality for R can

be obtainasd as
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The function B{¥) can be evaluated in similiar fashions
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or in the alternate form
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The reduction of C{¥) rollows the same schemes
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dowevsr, thls expression ls not amensble %o accurate computation for

it requires the differencs of two large quantities for all values

¥

ne As befors, an alternsts infinite series form is developed.

Returning to the expression
o z 7
C(M) = Tr 9Isc -8L¢c — TLsc + Q’Iecz
each of thess integrals can be easily evaluated in infinite series

form, convergent for all values of the speed parameter n which, of

SOUrEs, can never resch the value unity.
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which eén be manipulated into s single frachion
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Some of thess coefPisients ars tabulatsl delow:

bs expressad in & somewhat simpler form in termsz of A{M o
¥ ¥ {

that

m

o 006871717 is 0.0145617
1 060750583 13 000133330
2 0.,0692303 17 G.0122822
5 0. 0807843 18 CeCl1l3092
4 00828748 13 0a0104821
5 0. 0456140 20 00087089
5 0,0386574 23 C.0078882
7 00348772 28 00087852
8 0.02305128 35 00044281
) 0.027C1384 38 00034954
10 00240838 43 00028238
i1 0.0215543 48 G 0023374
1z 001940731 53 C.0013830
13 C.0175587 58 0eN018717
14 0s0159573

c(m) = n
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it should be nobed here that, if A(M) is already known, C(M) can

Remembering
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Collecting these functions for the turbulent velossity profile
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c(m) = '4(/’4) + 7(r- n")Z-

Zs (a+zs)(3+zs) (55}

Curves of 'theas functions are given in Pigures 2 45 1ll,



PART ITI

APPLICATION OF THE BOUNDARY LAYER EQUATIONS

A, Modifications to the Potential Nozzle Shape.

Having determined the variation of displacement thickness in the
preceding sections, the next step is to obtain the modification of the
potential, or perfect fluid, nozzle shape based on this thickness.

The type of modification depends upon the purpose for which the nozzle
is intended, or upon the type of potential design utilized,

The simplest modification is that for an axially symmetric nozzlee
In this case, increasing the crossesection radius by an amount squal
to the displacement thickmess given by equation (24) will produce

& physical nozzls whose effective shape should clossly match the
poteutial nozzle shape, and thus can be expected to produse the sams
flow configuration. A drawing of this configuration is given in Fig, 18,
and identifisd as a Type I modification.

If the potential nozzle has been designed from twomdimensional
considerations with a rectangular crosswsection and parallel side walls,
(the usual practice in supersonic wind tunnels) the question then arises
as to the effect of the bYoundary layer in the corners, G. F. Carrier
(Refe 7) has determined the filleting effect of the boundary layer in
the incompressible case, and it seems reasonable to assume that the
effect will be much the seme in the compressibls cass., Based on his
results, it appears that the average radius of curvature of the displace=
ment thiékness fillst line is somewhat smaller than the thickness, and

thus adds only e small amount of displacement ares, In addition, another
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complication arises near the corners dus to the unegual boundary layer
growth on the side walls and on the tops At high Mach numbers, the
boundary layer on the side walls will be considerably thinner than that
on the top, due to the attenuation caused by the extreme side wall
height ratiocs A detailed analysis of the effects which this configurae
tion might have on the flow is extremely difficult and beyond the scope
of this paper, therefore the plausible assumption will be made here
that the net effect upon the displacement area due to corner interaction
is negligible,

Based on this assumption, the reduction in potential flow area
through the nozzle due to viscosity will be considered as equivalent
to the area contained in a sharp cornered displacement thickness ring
around the ¢ ross=section, as indicated in Fig., 16, With this simplifie
cation, the modification could consist of displacing each wall outward
by the displacement thickness for that wall, which makes the effectivs
shape the same as the original potential shape. The modification is
essentially the same as that in the axially symmetric case, and is also
called Type I,

However, this type of modification inbtroduces a curvature into
the side walls due to the non=linear rate of growth of boundary layer
along the nozzle length, & factor which is undesirable in wind tunnels,
both from the structural viewpoint and from considerations of flow
measurement techniques, It is usual practice to incorporate windows
in the tunnel side walls through which the flow configuration is
observed by Schlieren or other optical means, thus any side wall

curvature will introduce considerable distortion into these highly
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sengitive observations. A second type of modification without this
objection is that of lsaving the side walls parallel and providing a
sufficient area correction toc the top and bottom walls which will
compensate for the displacement thickness area on all four walls,
This Type II modification produces a different geometriec compli-
cation due to changing the width~height ratic of the potential nozzls
exit, which can be rectified by use of a suitabls seale change., For
example, if the design nozzle exit is square and must remmin so for
structural reasons, the height and length of the modified nozzle must
be reduced by & sultable scale factor so as to retain & square nozzle
exit or test section without distorting the two-dimensional expansion
shapees Referring to Fige 17, this problem consists of satisfying the

following geometric relations,

j:/l-l—A‘tL Ye = Ae W= (54
S VN Y |
FA A S E (55

where Ah is the additional height of the side walls to compensate for
the boundary layer on all four walls, The ratio An/:SS* can be found

as & function of four other ratios
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a - éé_ s the potential section aspect ratio, and
w
Sk . ;

Z = z s ‘the side~top wall displacement thickness ratio
5
<x

T = oz , the displacement thickness-width ratioc
w

- SF

A= =2 s ‘the displacement thickness=height ratio
k

Solving for ﬁ5/§3* from equation (56)

- _ — _ AT
sk Kbew-& _,, KE__, &°
3;& N w-3) /- <€
so that
~k b
— = ] + —
2 /— C (57)
I3

If the potential nozzle length and height have been reduced by the

scale factor s, the final ratio bheaomes

AIL -/ o+ sab (58 )
é;* [~ 5T

The scale factor s can be obteained from the geometricel requirement

thet &t the nozzle exit

\

—_ _ — SZ—g
\7=A.=/L+4/(,=SA.+S§-;</+]—-SE) (59,




where the exit subscript has DTeen omitted for clerity,

F(r-sc) - sh(1-52)+ 557 (1= 5€) + s~ 2 b 55
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s7( I:*-KE_S;E)—fs(K«rS_;—rEE) =0
Since RE-‘— ciTo :

s this becomes

(3—: E)sz~(l+§*+ﬁ€)s + h =0

zT 5f
- _ s , :
Intreducing 4 = —/L:' s this can be written as

.. (/+c+a/)—1}(/+c+a/)z-4<:0( (60,
zcd

When ¢ and 4 are very smell, the radical can be expanded as a power

series end combined with the other terms to give the simpler form

! (61)
/ +& A

S =

useful for ¢ < 0Ocl 8nd @ < O.l.

This scale factor iz plotted in Fig. 19 as & function of the two

ratics ¢ and 4,



St111 another type modificeticn occurs in the cese of an axially
symmetric nozszle for which the nozzle exit size must remein fixed,
In this Type 111 modifieation, a scsle reduction factor must slsc be

determined which will satisfy the relations at the nozzle exlt that

F gty -G ag) =r o
*
s-£_.r_ 35 .~ (65
Z F 5 a3 ’
This configuration is shown in Fige. 18 and is much simpler then the
Type Il modification, for only one ratic enterss:
e: S*z-:é—
Jg 9
Using this ratic and egquation (62, the scele fector can be found
immedietely as
J g ,«
se < _ . _=_ - ' __ __! (64)
J*23 g+ 1+ 22 /e
<

The Type III scale factor agrees formelly with that in the Type II
modification for the limiting omse where either ¢ or d vanishes 2nd thus
mey be conveniently obteined fram Fige 15 by considering ¢ = 0 and & = de

In the determinetion of the shrinksge factors for Type II and III
modifications, the effect which the reduction in Reynolds number has upon

the wall friction coefficient and thus the boundary layer thiclmess is of
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second order magnitude; subsequently it has been neglected in the
analysise

Be Applicstion to a Specific Neszzle.

As en illustration of the procedure, the methods developed in the
revicus secticns sre applied to the design of 8 twomdimensional wind
turnel nozzle having & square exit and @ design Mach number near ten.
The mejor steps in this applicstion consist of ¢
1} Obteining the initisl potentisl nozzle shapeo
2,) Determining the boundary layer growth on the top end side
wells of the potentiel rozzles
3, Computing the meodification to the potential shape to compe e
sate for the boundary layer growthe
The initiasl potentisl nozzle shape can best be obtained by anslyticsl
mearns (Refs. 2, 3, 4) for the graphical method is subject to considerable
error due to the smell Mach angles corresponding to the high Mach numbers
in the major portion of the nozzlee The procedurs utilized here is
Puckett's modification of Foelsch's method (Refe 2)o The general potential
nozzle configuration is shown in Fig. 20, where the wall ordinates g

h are given by the equations:

s A L o R S

- ,,;L%/’/:w %t:{,”,a-%)[]/;z—_n “tfe- ) F e,

Ae



where

Lt section aresa S{?* t
te exit arem  Se/8%  te ()

¥) = Prandtl-Meyer angle

Om = maximum wall expsnsion sngle.

The radius of curveture of the arc forming the wall shape frem the

throat to the maximum expansion point is obteined from

kRS ke 516m  Em _é_*% ,,
Et - [ — cos 6, [/~ €05 64, 6, te te (5?)
since
/l* B f* - _ s One  €m
Z; ) te Ae 6, te (68

The distance from the throst to the theoretical point source is given by

- B <in 6 he § L fm O E7 (65,
Xs € s - 5m = g}%” Z I~ cos Om e

while the distance from the source to the meximum expansion point is

found from

Sm__ C"Sé’ﬂi’”
he  Om te (70

The distance from point source to nozzle exit is obtained from

& (71



so that the total nozzle length is given by

. * )

Xe V4 l( . ‘fm)_ 5171 G i)_f Py (72}
/l /l 9m fe /= Cos Ops fe

The choiee of the three design parsmeters dfg, b, end @, uniquely

determines the initial potential nozzle size and shepe; for this exsmple,

their values have heen taken ss
%e = 102% (corresponding to M = 9,98
= , ¥
he = 10

G = 30°

With these velues, the initisl nozzle length and throat halfeheight are
found to be, respsctively,

Z = 117.4C" and Bix = 0,01974"

The cther wall ordinetes for the initial nozzle are tsbulated in the first
helf of Fig. Zie

The next design step is that of determining the boundary layer growth
along this initial potential noszzles The rate of growth as determined
by this method is a function only of two parameters, the well friection
coefficient, and the choice of velocity profile. Fach of these in turn
depends somewhat upon the Reynolds number of the flow, which can be
expressed in terms of the wind tunnel supply pressure and tempersture.

Choosing 1000 psi and 1¢0° F as typical supply values, the Reynolds number
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based on the throat height is 970,000; while that at the nozzle exit,
based on the exit height, is 8,600,000, These Reynoclds numbers are so
high thsat fully developed turbulent boundary lsyers can be expected
along the entire nozzle lengthe Consequently, the turbulent velocity
profile will be utilized here, and the average wall friction coefficient
will be taken as 0.002.

The growth of boundery layer displacement thickness along the side
walls of the initisl potentisl nozzle can now be obtained by a2 graphicel

or numerical irntegration of

* A A G(M) (23,
AL f h (MJ* A (M) i

while the displacement thickness on the top and bottom walls is found

from
g‘* N (M) G(M)
5 - 2 & GMm) ,q(M) (23a)

since h/h* has the wvalue unity for the latter walls, To reduce the amount
of computation necessary for the irtegration of equations (23) and (23a,,

curves of the gquantities

G ) B(m) L G(m) LT Bm)
Am) T em) C pFam) 4 e

are plotted in Pigs, 8 = 15 as fuﬁctions of free stream Mach mumber. To

h G{M) h* B(M)

enable the functions b B (M, and T " G(ﬁ) to be presented as a single

curve valid for all nozzles, the value of h/h* was tsken as equel to the

aree retic, $/8%, for the particular Mach number, &s given by
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— wl =z z(-) s vz8 M
S5 /+ SIm= (/+o.zM2)3 (78)

The results of these integrations are shown in Fige 21; in particular,

the displacement thicknesses at the nozzle exit ere found teo be
=% <%
o = 3.87" and D™ 813"

For this example, the boundary layer thickness on the side wall at the
nozzle exit is less than half the thickness on the top wall, due to the
extrene side wall height ratice

Having the boundary layer growth sleng the initisl potentisl nozzle,
the final design step is to compute the modificstion to the potential
shapss Since the nozzle exit should remasin twenty inches square, a Type
IT modification is called for, The velues of the displecement thickness
width ratio end displscement thicknesse=height ratio turn out to be

< %

Te - —=22 = 281 o 587
and _
*
- - 3e _ 8./3 _ a.8/3
O(e - 7 /0
e

so thet the nozzle scals reduction facter can be found from Fig. 19 and

has the value 0.488. The firel nozzle length is

Z = sk = (0,488)(117.40") = 57.6" .
Next, the well corrections, Ah, are obtained from

ah
g«— / -~

3

(58
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and added to the reduced potential nozzle ordinates to give the finsl

nozzle ordinates, where
j‘- = /((: £ AA‘: = Jéé - 5 AIL‘; (54,

The resulting nozzle ordirates are given in Fige 21, and the finel
nozzle shape ig drawn %o seale in Fige 22, Nobte that the boundary
layer correction amounts to slightly over 507 of the nozzle exit area
for this configuration; or, comversely, the potential flow core consists

of only 48,87 of the total exit eres.
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displacement thi
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obtainable by isenbry

cknesseswidth ratio

displacemsnt thicknessehelight ratl

hase of natural logarithms

normalized fluld

statis pressurs

physieal nozzle

\-3

sknesswradius rati

station radius

station halfwheig

veloclity

statieon radius

nozzie scals reduction factor

veloclty parallel to wall and nozzle axis

veloclty normal to wall
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ropic expansion



w potential nosgzle station half-width
x nozzle length ordinate
Xy distence from throst to point source
¥ physicel nozzle station half-height
z physicsl nozzle stetion helf-width
S . . i :
A = Ef- dimensionless momentum thickness
S*
B = TE— dimensionless displacement thickness
¢ =« AA
du,
To . e PO
Co &= T wall friction coefficient
e S

z2¢ «w,®

D2(2~}£§)A+8*C

D

A "«
G = e

JEL
. # k&
i = & -
/(:R

M Me ch number
R Reynolds number
Rt throat radius of curvature
s cross=~gectional arsa
T temperature

h‘

1.400 ratd

e
€3

of specific heats



) total boundary layer thickness

§; throat boundary layer thickness

3% boundery layer displacement thickness
*

52 side wall displacement thickness
bl

ZL top wall displacement thickness

(» imensionless ordinate normal fo wall

8 boundery laver momentum thickness

(Y

wall expension angle

distance from source along x axis

filuid density

3\&

Prandtl number
[ shearing stress at the wall

Prandtl-lMeyer angle

-

dimensional wvelceity within the boundary layer

Subseripts
( )o stegnetion conditions in the flow
( )1 low conditions ocutside the boundary layer, i.e. fres
Fa
stream conditions
( ) conditions at the nozzle exit



=53 e

( )i dimension at station ™i"
¢, conditions at maximum wall expansion angle
no subseript conditions within the boundary layer; or finsl nozzle
dimension
Superscripts
* , %
() conditions at My = 1 (except for 51 )

() initial nozzle dimension
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