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ABSTRACT

The lowest order electromagnetic radiative corrections to
electron-positron annihilation into neutrino and antineutrino and to
neutrino scattering by electrons are calculated. The pair annihilation
corrections are used to calculate the radiative corrections to stellar
neutrino 1uminosities in the temperature range in which the zero order
process gives the dominant contribution. The correctionsto the neutrino-
electron scattering cross section are those relevant to a proposed
experiment detecting scattered electrons with more than a minimum
recoil energy whether or not a bremsstrahlung photon is emitted.

The results depend logarithmically on an ultraviolet cut-off
in the same way as does the lowest order vacuum polarization diagram
of electrodynamics. When the cut-off is taken to be on the order of
the nucleon mass the luminosity is enhanced by as much as 10 percent
below T ~109 0K and depressed by ~ 1 percent for T > 109 °k. The
scattering cross section is depressed by~ 4 percent for the incident
neutripo energies ~ 8 - 14 MeV of the proposed experiment.

A characteristic distance, the neutrino charge radius, is
associated with a charge distribution of the neutrino and depends on
the cut-off. With thekcut-off at the nucleon mass the charge radius
of the elecﬁron neutrino is esfimated to be two orders of magnitude
smaller than the experimental limit. The possible effects of a
charge radius larger than the estimate are also considered. It is

found that interference between the electromagnetic and weak
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couplings could depress both the non-relativistic stellar luminosity and
the scattering cross section, but that if the scattering cross section

is found to be as large as expected, the luminosity must be also.
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I. INTRODUCTION

1y

The Feynman - Gell-Mann theory ° of the weak interactions pre-
dicts that electrons and electron neutrinos interact through the
square term

iy = B O, 19 G v, (L + vV, 7

+ -
in the interaction Hamiltonian-:]11 Ju , where

Jp— =i /j—? {(é v+ (n vp)+(ﬁ p) + }

Here, the gamma matrices are implicit and the remainder contains
currents of the other strongly interacting particles. The cross terms
in the product of currents seem to describe well B-decay, p-decay, and
n-capture, for example. Evidence for a parity violating term in the
Hamiltonian of nucleii, which the square terml§§ (p n) (n p) would
imply, has been detected in nuclear transitionsS). It appears
probable that the theory is essentially correct and that the neutrino-
electron interaction occurs as predicted.

The predicted interaction has been shown to have important

. 4,5,6
consequences for the cooling of massive stars ’7’ ).

ture of stellar material rises to »--4109 oK,_the photons in thermal

If the tempera-

equilibrium have enough energy to produce electron-positron pairs

- + s
through reactions like 2y e + e . Equilibrium between the radiation
and the pairs should be reached in less than a second, which is

much less than the time the star is expected to take to evolve from



one stage to another. In stars of mass » 10 M the density of the

©

hot core, where the pairs would be produced,can be sufficiently low
, . ' 7

that the production is not suppressed by degeneracy of the electrons).
The square term in the weak interaction Hamiltonian predicts that the
pairs can then annihilate into a neutrino and an antineutrino.

. Sy s et -20 _,
Although this mode of annihilation would occur only ~ 10 times as
frequently as annihilation into photons, the neutrinos have a mean

8,9)

free path several hundred times the stellar radii compared to the
photon mean free path of less than a centimeter, so the energy of the
neutrinos, but not that of the photons, is lost from the star.
The rate of energy loss from stellar material due to pair
annihilation to neutrinos and antineutrinos is on the order of
+ - 2, - | -
N N co)(2me™), where N is the number density of electrons or
2

positrons. Neglecting the residual electrons, for kT ~ mc the

number density of pairs given by the Fermi distribution is approximately

3
.2 (EZ) o~ 1030/cm3. With an annihilation cross section of

‘\he
NlO"44 cm2, %% ~ 5 x 1020 erg/(cm3sec), which could deplete the
star's thermal energy in less than a years). According to Fowler and
7)

Hoyle oxygen bufning could provide for the luminosity for about a
day and the burning of higher masé nucleii up to iron for a similar
length of time. Without the neutrino losses, this sequence of
events would apparently take aBout 107 years longer.

In the model of Fowler and Hoyle, after the core exhausts its

nuclear fuel the star can become a supernova and the heavy elements are

disseminated in the explosion. Fowler and Hoyle have argued that the
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neutrino losses predicted by the current-current theory are of the
right order of magnitude to give detailed agreement between the pre-

7)

dicted and observed abundances of elements '. However, the course of
. . 10,11
evolution of massive stars is controversial ’ ).
- + -
There are other processes besides e + e _>Ve + Ve which can
. e 12) .
produce neutrino luminosities in stars . A number of them involve
*
B-decay and e -capture and do not depend on the neutrino-electron
interaction. But they would be dominated by many orders of magnitude
by processes which do depend on it, if those occur as predicted. The
reaction y + e e + Ve + oe does not require the production of pairs
. . - + y 8 o
and is more important thane +e ¥E+-\gfor T<5x 10 K. For
very high densities, when the electrons become degenerate, the decay
of a plasmon is supposed to dominate. In this paper we calculate the
- + -

effect of the process e + e _>\é+-ve+ vy together with the radiative

, - + 3
corrections toe + e _>N;+ ve.

s , - + by
The radiative correctionsto e + e .>¥3+ gashould be of order
1 3

a = 137 smaller than the process with no photon involved, though
corrections of order 10 percent to some weak interaction cross sections
are known. When calculated in detail the amplitude to order & for
pair annihilation into neutrino and antineutrino depends on the charge
radius of the neutrino, which can only be estimated, since the field
theory calculations diverge. But with what are thought to be reasonable
estimates we find that the corrections indeed produce an effect of only

a few percent on the stellar neutrino luminosities in the tempera-

ture range of interest, from ~ 5 X 108 Kto ~ 7 x 109 °K.
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In Chapter II we calculate the necessary amplitudes and in
Chapter III the corrections to the annihilation cross section.
Radiative corrections to neutrino-electron scattering, Ve + e _>Ve + e,
including the emission of soft photons only, have been discussed by

ae 13,14) . .
Lee and Sirlin . We can use the crossing relations between the
scattering and annihilation processes to check the amplitudes involving
virtual photons and soft real photons. The high energy limit to the
radiative corrections can be checked against the general results of
. . 15) o .

Yennie, Frautschi, and Suura . The contributions of the diagrams
are unambiguous except for the one in which the photon interacts
with the charge distribution of the neutrino. If the weak interaction
is local or the mass of the intermediate boson is much greater than

)

the energies involved (as is the case for a boson of mass ™ >3 BeV16 ),
to lowest order the charge distribution is effectively due to a
virtual electron-positron pair. The amplitude for this diagram can
be calculated with a cut-off mass A, on which the dependence is only
logarithmic. The ambiguous term is proportional to the square of the
charge radius of the neutrino. We will take A of the order of the
mass of the nucleon as a reasonable estimate. In Chapter IV we give
the corrections to the neutrino luminosity to which the cross section
corrections give rise.

The neutrino-electron interaction could be detected in
neutrino.scattering by electrons in the laboratory. Reines and

17)

Kropp have proposed an experiment to look for this reaction.

The experiment will attempt to use as a neutrino source the decay of



B8 in the sun. Though the expected flux of 107/cm28ec from this decay,

8 8% + , . , .
B - Be + e + Ve, is too small to be important in the dynamics of

18)

the sun , the energy of up to ~~ 14 MeV makes these neutrinos

convenient for several detection experiments. The flux can be

measured independently in experiments which have been proposed using

v, + Cl37 ~;Ar37 + e 19,20)

v + pit sotl g e” 21)

or the reactions Ve + Li7 _>Be7 + e and
. In the scattering experiment the B8 neutrinos
could give the recoil electron more than the ~ 8 MeV of energy neces-
sary for it to be distinguished from background.

Experiment has not ruled out the possibility that the
neutrino charge radius is larger than expected from the estimates
with the cut-off. The choice of A on the order of the mass of
the nucleon gives a charge radius of ~ 5 x 10‘-17 cm as compared to the
present experimental limit of ~ 4 x 10“15 cm 22). A large charge
radius could give the neutrino an electromagnetic interaction with
electrons which could simulate the local weak interaction or
partially cancel it. The effects that such an electromagnetic inter-
action would have on the stellar neutrino luminosity and on the cross-
section for neutrino scattering by electrons are considered in
Chapter VI. We also discuss there the information that could be
obtéined about the charge radius from several processes which would

be expected to vanish if the neutrino had no electromagnetic coupling.



II. THE AMPLITUDES FOR THE RADIATIVE CORRECTIONS

A. The Basis of the Calculation

The Hamiltonian given by-Ju+Ju- for the weak interaction
between neutrinos and electrons can be put in the form
Hw = —,§§ (§e yu(l + YS)Ve)(é Yu(l + ys)e) with a Fierz transformation.
If there were a fundamental local interaction of neutral leptonic
currents or if the neutral currents (e e) and (oeve) were coupled to
a heavy neutral intermediate boson, the contribution to the effective
S matrix element would be of the same form and could possibly cancel
the term from the product of the charged currents. 3But if the coupling
GO of neutral leptonic currents to each other is not greater than their

coupling to neutral currents of strongly interacting particles, GO

appears to be much smaller than the coupling G of charged currents.

. . - 1 9)
The reaction Vu +p _>Vu + p gives the limit }GO\ < 10 1G[ . A
similar limit is obtained from the ratio of the KO _au+ + u- and

2
23) |

I I 1 .
, and a limit |GO| < 100 |G| from the branching

+  + .+ - + 0, + 24
ratio of XK o n +e 4+e toKR 7 +e + Ve )

+ o+
K »p + VvV decays
r
, when the ratios
2 .
are assumed to be proportional to (GO/G) ; this would be the case if
a neutral intermediate boson were coupled to the mesonic and leptonic
currents with about equal strengths.
The effect of an intermediate boson on electron-~-positron
. . . . . 4)
annihilation into neutrino and antineutrino has been given by Levine “.
The cross section for total center of mass energy ET and electron or

positron velocity B is
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4 | 6
ZI E E
e 2 2 1[17 2 2. 4 {5

g = ‘(ET - m, T B om o +m :] + 0 ( )

7B \ 4

mw

-~ (I1.1)
, . . . .. 16)
With m > 3 BeV according to the present experimental limit , the
correction due to finite boson mass would not be as large as the
expected correction due to electromagnetic effects for center-of-mass

T
energies less than ~ 300 MeV. Since szv-g MeV, where T, is the

12 9
. .90 . . i .
temperature in 10~ K, and the stars in which the annihilation
process should be significant would collapse before reaching
T9 ~ 10, the electrons and positrons will have average energies
< 1 MeV. 1In the proposed scattering experiments the momentum transfer
can only be on the order of 10 MeV. 1In both cases the electromagnetic
effects of order ¢ are larger than would be the effects of an inter-
mediate boson.
We calculate the electromagnetic correction using the inter-

a PR S 3 +H =--A.
action Hamiltonian Hw o where Hem ie (e Yue) - Although Hw
is not the basis of a renormalizable field theory, its use to first
order, including also first order radiative corrections, has appeared
to have some validity. In p-decay no ambiguities arise in the compu-

. - L 25) .
tation of the radiative corrections and the corrections to the elec~-

. ) . . 26)
tron spectrum are in agreement with experiment . In B-decay, when
the nucleons are considered as point particles, the divergent wave
function renormalization term appears in the result, though for an

ultraviolet cut-off of the order of the nucleon mass, the

divergent term does not give the main
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25,2
effect 25 7). The difference of a few percent between the f-decay and

p-decay vector coupling constants, which remains when the radiative
corrections are taken into account (with any reasonable choice of cut-
off), seems to be consistent with the Cabibbo theoryzs). The cut-off
procedure at least does not give rise to an obviously wrong effect.
It is argued that because of the low momentum transfer in P-decay the
effects on the radiative corrections of the structure of the strongly
interacting particles are smallzg). Corrections to decays like o
n -se + V, on the other hand, are complicated by the structure of
the pionBO). The diagramsfor the corrections to the neutrino-
electron processes, except for the contribution of the charge’distri—
bution of the neutrino, correspond to those for p-decay (with
appropriate reversal of particle lines). It seems plausible that at
least the effects corresponding to those of p-decay should be correct.
We assume that the neutrino charge is exactly zero and that the
two-component theory of the neutrino is correctzz). With the square
term in the current-current product the diagram in Fig. la is of
first order in G, whereas processes like those indicated in the
diagrams of Figs. 1b, lc, and 1d would be of second order in G. To
lowest order muon pairs would not contribute to the charge distribution
of the electron neutrino and the absence of neutfal currents would
rule out pion or nucleon pairs. If an intermediate boson exists the
diagrams in Fig. 1f and lg give the contributioﬁs of first order in G.

The electron loop is like the vacuum polarization of electro-

dynamics and the result contains the ultraviolet cut-off in a term
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2 . X
proportional to log A /mez. The neutrino form factor in a theory with

31).

intermediate bosons has been calculated by several authors The

diagram in Fig. 1f in which the photon interacts with the electron, is
finite and gives a term log mwz/mez which corresponds te the log Az/me2
from the electron loop. The diagram in Fig. lg,in which the photon
interacts with the boson, diverges and depends on the method of cut-off.
When terms of the order of mez/mw2 and qz/mw2 are neglected, the form
factor reduces to F(qz) = q2 f(qz), where f(qz) - £(0) is finite and

the same as given by the electron loop and f(0) depends on the

method of evaluation. The electron loop gives

2
G 4 A
f(0)=——~—[-—log——'—:l.
F 16:;{21\/_2' 3 me2

Lee and Bernstein argue that intermediate boson theory gives (with

anomolous moment K = 0)

2

fW(O) = G2 . l:% log —m‘—dE - -:-5)’- log a_l + 2:] .
16542

m
e

1.8 x 10-34cm2 [20.4] for A = m , and

Numerically f_(0)
F
£ (0) = 1.8 x 1072 cm® [20.4 - 3.3] for m_ = 3m_. As has been
W '
emphasizedBl), only an order of magnitude estimate of f(0) is
warranted. Electrodynamics has been checked only to distancescorres-
38
ponding to a mass of ~ % BeV ). The weak interaction would violate
unitarity unless damped before ~ 300 BeV, 1t therefore seems reasonable
te take A between % and 300 BeV. Because the dependence en A or M is

logarithmic, £(0) is not semnsitive to the particular values chosen. £f(0)

would be halved for A ~ 20 MeV and doubled for A~ 2 x 103 BeV.
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The self-energy and vertex diagrams in the intermediate
boson theory as in the Fermi theory would correspond to those of n-

. 32) . T
decay. Therefore, as in p-decay they should give a contribution
to the cross section for pair annihilation or neutrino-electron
scattering which can be written, after renormalization, as the sum

. . 2, 2
of the result of the Fermi theory, a part proportional to m lmw and
terms of higher. order. Except at high energies an intermediate boson
would make little difference to the radiative corrections just as it
would make little difference to the zero order process.

Before continuing to the details of the calculations for
electron neutrino interactions with electrons we comment that electron-
positron pairs could annihilate to a muon neutrino and antineutrino
as in the diagram in Fig. le through the charge distribution of the muon
neutrino. The cross section for that will contribute to the total cross
section for anmihilation into electron or muon neutrinos, which is the
relevant quantity for the luminosity calculations. However, if the
estimates of the charge radii are reasonable (for the muon neutrino the
estimated f(0) is about a factor of 10 smaller than for the electron

, | . 31)
neutrino and somewhat more dependent on the method of caleculation™ ),
. - + 5. 2.2
the cross section for e + e _;Vu + Vu is of order GO, an order
¢ smaller than the lowest order radiative corrections to

+ -
e +e — v o+ Vv
e e

B. The Contributions of Virtual Photons

We will keep only the electron loop contribution to the
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neutrino charge distribution. The diagrams which give the radiative
corrections of order & to the amplitude for e + e+ ~>¥i+ qaare shown
in Fig. 2, with the labelling of the momenta in the annihilation
channel. From the results for e-(p-) + e+(p+) _;Ve(k) + Qe(ﬁ), the
results for neutrino scatter ing by electrons
ve(k Y + e-(k ) **xgkz) + e-(pz) are obtained by the substitutions
3 _;k k- kl’ P - Pys and p+ ~ = Pye The results for anti-
neutrino scattering, Qe(il) + ei(pl) "’ae(ﬁz) + e-(pz) are obtained
by the substitutions k _>ﬁ2, k - - El’ p__apl, and p+ - = Py

The electron self energy and mass renormalization of the

diagrams in Figs. 2a. and 2a, give the amplitude

1 2
T = [:UI“V][ (U(Z(P)-Om)U:]
a; +a, kKu - ”j,p/"+m

(II.2)

where Tu = Yu(l + ys), and
- 2 d4r 1 1
mp ) = - de 272 2Wig-o +un "
(2n) T + A ipr-2) +m
(11.3)

om + [%;1 -1+ C(p-{] [é?//+ %J .

The photon has been given a small mass A to avoid the divergence
associated with the intermediate electron being on the mass shell in
the 1imit of low virtual photon energy. m is the physical mass of the
electron and Bm = m - my» where my is the bare mass. These corrections

are the same as in electrodynamics33). C(p-) = 0 for ;p; = m, so that
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- .5 |5 Al s ) -1
Ta1 + a, BN UkTuV_ :“:V;p+ Fp( D (z, 1)UP{J . (IL.4)

Expressing the bare field theory wave functions in terms of the wave
functions of the physical particles and including the self-energy and

mass renormalization diagrams for the positron line, we have

L T R
T, +*T, = -5 [Ukruv_k] ]:v_pgu E , 1£} Up.] :

(1I1.5)

The amplitude for the wvertex correction of Fig. 2b is

- .G |5 b s _+ -
TV Ukruv-k][v-p+ AP s )Up-] ; (11.6)

with

4
A (-p+ p-) _ iéjr d r 1 Y 1 - 1 v
’ - 4 2 2 'y o+ ‘noL - V.
P 2r)" 7+ i+ tm i@ - +w
(11.7)
. . . v, + - .
This function contains a vector part Au (-p ,p ) and an axial vector
A+ -
art A - arising from the or in T , respectively.
P g (Pop ) g Y, OF Y¥5 ? P y
AuV is the same as the vertex correction in electrodynamics and can
-1 vV, + -
be written as (Z] - l)yu + ApC (-p ,p ), where A:V is independent
of the cut~off necessary in calculation of Zl.
Rationalizing the electron propagators and combining

denominators, we have for general Fu,
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[+5] [2+] e o]
2 | 3 d4r
' - 91 . _
Au(p ,p) = 2ie dzl dzz dz3 (L - ¥ zi) A
1 (27)
0o 00 (11.8)

fy lm - i(#' - f)]Fu[m -1 - Oy

[(r - p'z, - pz)? + el

12 2

2
where between electron spinors p =p = -m,

_ 2, 2 2 2 2 . _
c=c@Q@) =m (1 - Zl) + A z, +Q 2,2, = 1e, Q=rp' - p,
and ¢ is a small positive number. The integration over r can be changed

9~ sz 35). Dropping the terms in

to integration over r' = r - p'z
the numerator linear in rﬁ, which by symmetry will not contribute,

we have
0 o] [+ ]

’ . 3 o (p'yp) - Y. ¥ T ¥ v.,]

o P 4 _p-? Vv
A (' P)=l—gf;12 dz, | dz 5(1-rz.>fdr '
MRy o3 ) 1) F2 ] L i (r? + )3

0 0 0

(II.9)

Ou(P',P) = Yv[m -ig'(1 - Zz) + i¢23][m - ip(l - 23) + i¢'z2]Yv,

(11.10)
is independent of rp. Again by symmetry the term yvf Pu ¥ Yy is
effectively 1/4 YVYmYuYXYx SKsz in the integral and the numerator is

2
effectively Ou(p',p) - 1/4 YyY, r Y Y\ E The term with r~ gives a

!
logarithmic divergence.
" For Auv(p',P) the divergent part is proportional to
-1
-1/4 y = - and gives the divergent part of (Z -1 .
Mo Y Y YT Y Y, giv gent p (74 )V,
By Ward's identity Z, = Z 36)

1 2 , 8o that the divergent contributions of

the electron self-energy and wave function renormalization cancel the
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-1
divergent integral in (Z1 - 1). Ward's identity is due to the relation

a -i = -i nl 'i
%, iF+m i 4m nip +m (11.11)
f too= which give
or Ip Yu: g s
9 .V
— S(p) = 1 A_ (p,p)- (11.12)
5pu B

For Pu = YuYS’ 5%— v(p) and AuA(p,p) are not related so simply, since
the relation (II.?l) does not hold. However, for large momenta rp in
the integral (I1.7) the mass m in the propagators can be neglected
and the Vs in ApA can be commuted to the right, so that the largest
part of AuA(p',p) should equal the largesF part of Auv(p',p) times s
In terms of the integral in the form (II1.9), for Fu = quS’

- 1/4 YVYKYuYSYnYV = - quS , so that we have the same result, that
the divergent part of AuA(p',p) is the same as that of (Z;1 - 1) YuYS
and the cancellation of divergences will occur in this case too.

For any other Pu the cancellation would not occur. The
amplitude contributed by the electron self-energy and the wave
function renormalization of (I1.4) holds for any Pu. But
- 1/4 nym(l’YS’OXu)YKYV = (-4, -4y5,0), so that the coefficient of

37)

(Z- - 1) Fu contributed by the vertex correction would not be 1 .

1
c - -

If the coupling in Hw = _E (Vee)(e Ve) is vector and axial,it must be

yp(l + ys) for only Yp and YuYS to appear between the electron

spinors in the Hamiltonian when it is put in the form (e e)(DeVe).

The cancellation would not occur for right-~handed neutrinos.

That the cancellation of divergent parts occurs for YuYS as well
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as for yu can be seen as a consequence of a Y invariance of the free
2
Lagrangian for a Dirac particle 9). If the masses of the two charged
fermions involved in the vertex are different, as in n-decay, the
vertex function is Au(pz,mz; pl,ml). Under the transformation
d - £ i = -y
wl _;stl and m, — - m, the free Lagranglanwz;ree wl(é + ml)w1 is
invariant and the vector and axial vector currents interchange, that
. - " A
is, wlprz ZzwlYuYSWZ. Thus, we should have Au (pz,mz;pl,ml) =
v . ,
Au (PZ’mZ’pl’-ml)' The divergent parts of Z] and 22 are independent of

m1 so that the cancellation should occur for both vector and axial

couplings.
Returning to the calculation of Ap(p',p), for $ = p' = im,
we have
0 (p,p) = - 2m2(l -4z + z z)y + 2m2(1 + z Z)Y Yo 2 (I1.13)
e’ 1 1 7' ’ 1 7'u's
and we obtain
A (p,p) = @ Y - D - & (I1.14)
u p’p 1 u Zﬂ YuYS‘ bl

There remains Au(p',p) - Ap(p,p) to determine, which we denote by

c , c .
A (p',p). The integrals over r in 1\u are convergent and give

[O (P )P) + /40 (P )P)
(p ,p) = QL dz J[QZ J

C(Q )
QZZZZBO (P’p) c 0
- 5 B - 27T log —i—l—z . (I1.15)
c(Q®) <(0) P @
Here z, =1 - 2z, - z, and
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v A
AOU (p',p) + AOU (p',p) = Ou(P|;P) - Op(P:P)J
where

v 2 2
20 "(p'sp) = [2°(1 - 2,)(z; +2,) - 4n" 2 (1 - zl)]v11

(11.16a)
- 2im z (1 - z. )5 + 2im {z, + z 2 z, - 2 2]Q
1 1 "n 2 2 3 3 ' n
and
20 2ty = 2051 - 2) (2, + 2 V.Y
! ? 27 71 275
+ 2im [1 - 2z, - 2z, 2z, + z 2 4. 2]Q Y
1 273 3 2 "tu's (11.16b)

. 2 2
+ 2im [23 - 23 - z2 + z2 ]szS 5

with = 'o- and 3 = '+ . Between spinors A ¢ can be
Qp (p p)}Jl n (p p)u P "

expressed in general as

(o] ' C C [ C
A = A + A + .
" (P',p) [u (8) a (PS)y + A (V)Y11 + A (A)vuvs, (I1.17)
where
A S8 = £18¢s, D)5 + 1%(s,Q) (I1.18a)
B - 2 Zu »Q Qu .18a
and
c c c
Ay (PS) = A°(PS, D)5, + 4 (®S,Q)Q, - (1I.18b)

AC(V), AC(A), AC(S,Z), ... are scalar functions of Q2 given by the
coefficients of the appropriate vector or axial vector in (11.15).
We will show later that AC(S,Q) and AC(PS,ZD must be zero.

Finally, the amplitude for the electron loop diagram in



- 17 -

Fig. 2c is given by

I I 1is -1 '
Tc = Ja [ka‘uV_k][V_p+YV 3 > HVu(Q) Up’]’ (I1.19)
Q + A
. oy . + -
where in the annihilation channel Q = - p =~ p .

4 Tr/y (m - ir‘)I‘ [m - l(!‘ - d)]\
I, (@ = Aﬁolf)d 7 : ©. (120

Jen® @)l - 9 +n’]
Since there is only the one vector,Qu,available, a pseudotensor cannot
be constructed, so the Y, Vs part of Pu cannot contribute. Then
mathematically HVp(Q) is the same as the contribution of the electron-
positron pair to the vacuum polarization tensor of electrodynamics.
The difference between the integral for fermion mass m and that for
mass A is finite and gauge invariant. The resu1t33)of

combining denominators and integrating over r is
1 2

ric ) 2t + 2(1 - 0% e

M, @ = - =2 (5,0" - QQ) [dz 2(1 - 2) log

7t
0

m2 + z(1 - z)QZ- ig

(11.21)
Conservation of the electron current is sufficient to imply that the
term proportional to QVQp does not contribute. If the cut-off mass A

2
is taken to be much greater thale |

vy -i T o [z, -1+ nc(Qz)], (11.22)
2 vu n
Q
where
o A2
Z3 -1 ~ - _:;E log m—z R (11.23)
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1

IC(QZ) = 2% dz z(1 - z)log [E - ie + Eil-lzélg{] < (I1.24)

m

are the same as in electrodynamics.

is

where

Including all the contributions the total amplitude to order ¢

T = UPV [v_ r + A” U 11.25
A/--v[ kK 1 ] +( }1) p..]) ( )

" = __Q c - + - . C 2
Ty = =g Yp¥s v A e ) iy 2y -1+ @D
(11.26)

12
Before calculating the sum over electron spins of ‘Tl , it is

convenient to note that AC(S,Q) and AC(PS,Z) of (I1.18) are

identically zero. For instance, from (II.15) and (II.16b),

Changing variables to x = 1 -~ =z

z,) -z, (1 - z.)
' c(QM)

1 and u given by z, = xU and

integrating over x, we are left with

__u)
AS(@s,x) = - lmo‘ =0,

+ Q u(l - u) -

since the integrand is antisymmetric about u = 1/2. The vanishing

of these functions follows from the invariance of Hw + Hem under time

reversal.

To first order in G the S matrix element for the process

V+e 5V +e' has the form
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se 5 = - 120" e, - 2 (v 5 vy (e 3 ey,
where
(v 13?1y = 1] 5 1,
and

(e[ 5e) = 1] & arer, +apel

Since HW + H 1is invariant under time reversal, the relation
em

y
Sf,i = STi,Tf must hold. Then the transformation property of Jé )

ot Doy g (9
it My = - g, Oy,

(e)
u

terms of the form Qu or ;ﬁYS' We also notice that the term

implies the same transformation property of J and Aru can have no

[G_p+ AC(PS,Q)QPV5 Up'] does not contribute when contracted with

AR

With these results the effective Fp can be written as

[Uk PuV_

AT =S5 +VY +A II.27
T ¥ Y, Y, Vs0 ( )
with
5. = 25¢s, ), (II.28a)
V=AW + 0z - 14 w31, (II.28b)
and

= - 2 ¢
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2
The sum over initial and final spins of !T‘ gives to first

order in ¢

| 2
Z |T|2 = % T§V)£Trée)+ a8,

spins
where

)

Tr =

Tr(

and

ATr(e) = Tr {Pu(m - i¢-)ifv(-m -

v
) T

(11.29)
e (P (-1 T (-iB)], (11.30)
rée) = 256 kep kp, (11.31)

187) + o0 @ - T (m - 38D)

(I1.32)
- 6\/4
In these expressions I',,= - (-) T, and
e * X *
APy == () Y4 =87 m, + Vv, + A vyv)
el " L) mavs ‘\1 A YVYS *
We find
Y - -
L Tr( )A Tr(e) =mIm S_ (25k 3k - 22 k*k)
64 by
- + 2 .
+ 2Re V(2 prkp 'k ~m k-k) (11.33)
- 4+ 2 =
+ 2Re A (2 p-kp *k +mk-k).

This will be used for the

sections for annihilation

virtual photon corrections to the cross

in Chapter III and for scattering in Chapter V.

C. The Contributions of Real Photons

The amplitude for

the bremsstrahlung diagrams in Fig. 3 is



b - - *
= - & [0,r v_:1[V_ +( - ed
N3k PAP @™ - d) +m
o+ i
+ ef n e T )U P (I1.34)
i(-f +d) +m WP
. 8
* ak _t P . .
where eB = (=) eB. T is invariant under the transformation
€ - ¢_ -+ q_  as required by gauge invariance.
n n B

Summation over fermion spins gives

2
:E: ITblz = EE e? Tr(V)Tr(eY), (11.35)
e spins
A%
where Tr( ) is given in (II.30) and

5} * 4 * - % *
@) Ly W@l - £ L (2 e )] o - 1]

Lot _on=. "
< [?V (2e.gq'P+dé) ¢ 2gq.§_+ £4) ?:} S G

The usual bremsstrahlung infrared divergence will occur for low
energy zero mass photons. The order ¢ corrections due to virtual
photons have meaning only together with the cross section for
emitting one photon, since any observable cross section will include
soft photons. Having cut off the infrared divergence in the elastic
cross section by giving the photon a finite mass, we must cut off the
divergence in the bremsstrahlung cross section in the same manner.

Hence we give the photon the small mass A. The term q2 = - A in
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the denominator of (II.36), however, can be neglected compared to
-q-p, which becomes M E, when i;l - 0.
Finally, we sum over the photon polarizations with the

. - 9.4
relation ji: c e, =90d ,+ B . The q q, term does not contribute
o B o L2 B

pol
because of current conservation. The result is

- , + 12
2 2.-1 ‘2 ‘ bj2 -+ ( p p \
128 G e T = -k k - -
( ) [T=p ke qp-  q-pt/
spins

- 4+ f 1 1 " - 4+ - -
+p-kp-k( + )+ PP (q-k p 'k + q-k p +k)

q'p~  q'pt) q.p-q-p
p-'ﬁ p--k p+-ﬁ +~k p: k k 2 + + k gk 2
R Rt TR @ ae) + BN @ - gD
(q:p) (g°p )
(11.37)

{2
This result checks with the ZE: IT' which Chin and Stabler6) give

- e spins
for y +e e + V +-\g,when we tarry out the sum over photon
e

. . +
polarizations and make the substitutions q — - q and p' - ~-p in

their expression.
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ITI. THE PAIR ANNIHILATION CROSS SECTIONS

To obtain the wvirtual photon corrections to the cross section

- + 5 . ) ) 2 .
for e + e ~>Ve + Ve we first write the correction to jg: lT‘ given

spins

by (I1.29) and (II.33) as

Azjgz \le - 32 ¢* k kM (I11.1)

' apap’
spins
where
_ 2 + - 2
Maﬁ =m Im SZ[Z ZazB ha SUB] + 2 Re V[2pa pB m O@B]
(I11.2)

+ 2 Re A[Zp;?é + m? 5]

does not depend on k or k, The correction to the cross section is

3. .3- ,
Ao = L d k d_k 64(p + p -k - k) LA :5; |T|2
2,\/'+24k1-{ 4
16(2r) AJ(p 'P ) - m spins
(III.3)
2 3, 3=
- G dkdk 4o otk - Bk k
2~/ T +2 4&J k K g Mop -
B w(p p) -m
Using
d3k d3k 4 1 2
s (-Q-k- k) k kB =¢ IZQQRB + 3, Q1 , (TI1.4)

we obtain

V]

Ag = —%E (m In S_(t - tm?) + Re V(t + 2m°) + Re A(t - 4m>)}. (III.5)
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2
Here t = - Q2 = - (p+ + p_)2 and B fh’E-:E&E— .

In Appendix A the functions SE’ V, and A are evaluated for a

2
photon of small mass N. For t > 4m the results give

2
Im S, = - 45;( a é B annt B, (III.6a)
c c, 2
Re V.= Re A (V) + (&3 - 1) + Re ' (Q"), (I1I.6b)
2
Re A = Re AC(V) + i—‘ ﬂ—-{-;—ﬁ—)- tanh™! B, (III.6c)
with
c a 1 + §2 -1 . m2 1 + Ez ﬂz
Re A (V) = PR 5 tanh = B - 1| log Vi + 8 -
(I11.6d)
2
- -1 1+B8 2V _ ;{28
2 + 3B tanh B + 78 L (1 " B) I,(l - B)] 3
and
2
Re 16(Q%) = - % - +28 |1+ —l—-;—-ﬁ—] tanh™t BY. (111.6e)

X

log (1 - t) . . 42) .
L(x) =] dt " is the Spence function - The limit A — 0 has

0
been taken except in the term in AC(V) in which the infrared divergence

appears.
Combining terms we have for the order o corrections to the

, - + -
cross section for e +e VvV + V

2 e
2 -1 2 2 2
G __ = 2y a) (LB -1y m_ , 1+B
(6nB) OHo = (B -m) o ( B tanh B 1) log xz + 78

E(2+L(—1—2-_%-§)- L(-i—z-_%—s-):l -2+ 3p tanh ! B
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-+ 3a m B tanh -1 B
T (111.7)

+ (t + 2m2) Zy - 1+ %ﬁ [} % + 32 + B(3 - Bz)tanh_lé}

The cross section for the annihilation with emission of a photon

* 3 3 3-
~ 4 - -
b _ 1 qudkkdkkﬁ(p et kE- 0
40
32(27) kp ‘P )
% ZE: ITblz. (1I11.8)
spins
Writing :5: lTb|2 k kB MPB, we have
spins
b _ ¢%a d3qd3kd?E84(K_k_k)kk o
g = 4J—+2 J, qu k BaB
2a) N *p) -m
(111.9)
K=+~0Q ~gqg, and
b + - p” pF )2
M =
PoP ( - q- p+)
-t
+-f 1 1 )
+ - + + ( +
PoP (Q'P q-pT q p q pT P qB qa?ﬂ (111.10)

P Pn p pr 1, P, E -
- = e BZ @ - qp) + (- qp).
4P Pt (qeph (qp)

The integrals over k and k give

2 3 - + 42
b G o 1]d’q Kz(Kz + nd) ( p. _ p )
)[ T 12 4 @eo’? B P’ aP
6raAl(p *p ) - m



- 26 -

2 Z(q-K)Z(K 2 mz)

+ 4K . (111.11)

- . +
q-p q'p
For soft photons the dominant contribution. comes from the
, - - + +,2 .
term proportional to (p /qp - p /q-p ) . The cross section for
emitting a soft photon of energy q in the range dq and solid angle dg

is approximately

' 2 ;- + \2
dosoft Y __Q 5 % q_dqdg ( ? _— ? +) P (I11.12)
(220 44 q-p q°‘p
where
2
N call 2
00 = 6 (t m) (I11.13)

is the total cross section of zero order in ¢ for pair annihilation
into neutrino and antineutrino. dGSOft Y describes the expected
classical bremsstrahlung due to the decceleration of the electron
and positron.

The total energy of frequency w per interval dw emitted into
solid angle d} for each annihilation is given in terms of the
Fourier transform qf the electric field radiated by accelerated
particles. ‘With the particle velocities ¢ §i and the unit vector a

from the region of acceleration to the observer
3 2

. . n x [(m - B.) x B.]
dIi(w) = —~—é%——— :E: e.det e TE — ; =
(210) “bmnc 1 * (1 - n-Bi) ret.l s

-

el s

(III.14)

where the velocities are evaluated at the retarded times and the
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39)

summation is over the particles of charge e, . For the electron
= %
and positron with velocities ¢ B before decceleration and zero

after the result can be written as

2z b N
dI(w) = 2 e :ZJ e W5 = - (1II.15)
(€2 I 8" 1 -n-B

The summation here is over the transverse polarizations of the

radiation in the direction n = a/qo. The quantity

- +
(¢ /ap - P+/Q‘P+)2 in do°°ft ¥ came from 25: E—Ej - ELBI .
y pol | 4P P
We may choose the radiation gauge. Then
1 ao®ofE Y o 2 55 'P o5y | 2 16
o, dqdq | (111.16)
0 q-p

We see that, with e fixed at the physical value eph while h - 0,

dI (w) _
dq a

. (III1.17)

ph
For the stellar neutrino luminosities it is the cross section

including the emission of photons of all possible energies which is
; . b .
of interest. The integration over the photon momentum for o 1is

done in Appendix C. We find the result

2 -1 2 2 2
(_G_ g) O’b = (t =- mz) (-1—-:;—-&— tanh-lB - ]_) log ;\-Ilz + (LF—L tanh_lB-l)

6nf = 2B
log EE
m
2 .
+ % tanh lg - & ZBB L(l + 3) -1 (l—é—ﬁ) - 2L(B) + 2L(-p)
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2
- (3t - 2m2) (l‘i;ﬁ— tanh_lﬁ - 9-+(§ + m2) % tanh—lﬁ - %.
B

(I1I.18)

From Ao in (III.7) and cb in (I1I.18), the total order ¢

cross section for pair amnihilation to meutrinos plus photons is

2 | — :
b_ G o i 2 28 -1 2
Ao+ 0 = 67p x (t mZ)[ﬁ + 4L(1 - B)+ 4 tanh "B log T+ P

~log 55 -2+ 2+ 38H) £ tanh'lé}

B —

m
2
+ 3m2 B tanh-IB - (3t - 2m2) (l‘%;ﬁ— tanh—lB - 1) (I11.19)

t 211 -1 t
+-(3 + m ) B tanh "B - 6

-1 2
+ (t + 2m2)[(%‘) (Zy - 1) - % + 53 + % Q3 - Bz)tanh-lé] .

The result has been somewhat simplified using the relations between
Spence functions in Appendix B. The infrared divergent terms pro-
portional to log m2/7\.2 have cancelled.

In the non-relativistic limit, in which B — 0, the total

cross section becomes

o
O’~'UO [} + 28 . (111.20)

The dominant correction comes from the Coulomb attraction between the
electron and positron, which at low energies the vertex diagram in
Fig. 2b represents. A non-relativistic approach gives the same result.

The non-relativistic electron and positron can be described by a
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Schradinger equation for the reduced mass and the relative coordinates
with the Coulomb potential -o/r. The cross section for the annihi-
lation into neutrinos through the local weak interaction should be
enhanced by the ratio of the density of the Coulomb wave at the origin

to that of a plane wave; we should have

g_‘wl Uc(o) 2 - = 2na/V (I11.21)
% u(0) ' *

e-ZﬂG/V -1

For relative velocities V not too small this can be expanded in
powers of o as 1 + n/V , which is the same as the non-relativistic
limit of our result, since in the limit, B —»V/2.
. . - + 2
For high energies, where - p .p > m , B - 1, and

-1 1 -2p " p"
tanh g - 7 log ‘*lljfl- . We find

A -2p".pt 2 1l et 1. -2t
Mo @ _l:log___P__L_ qlog,m__g(log_u_) 4 1L jop 222cp

m m
(I1II.22)

Yennie, Frautschi, and Suura in their treatment of radiative corrections

-1
at high energies write the factor = U hich is
& & i@ - +n Yvp ¥
contributed to an amplitude when an electron of momentum p emits a
photon of momentum k and polarization ¢y, as the sum of contributions

from a convection current and a magnetic interaction,

—{va - k\) -+ % [K,YV:' }
2 U -
p

(pr - k)2 + m

The contribution of the convection current is independent of spin and
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can be treated in general. According to their results the convection
currents of the electron and positron in our case should give a high

energy order ¢ contribution to AO/GO of

Q 27t m’ 1 —2pTept 1 2
200 Re B = - = {log log & + = log 2P _21. 10g &
7 2 2 2 2 2 2
m A m A
(I11.23)
We calculate that the magnetic terms should contribute
-+ -+
% log :gEELR— to the ratio. A contribution of %; log :227—2— comes
: o m

from the wvacuum-polarization-like diagram in Fig. 2c. The sum of
2 Re B and the contributions of the magnetic interaction and the
electron loop do give our result for the limit of AU/GO.

b
The contribution to o /00 of

s

3 - + 3\ 2
1 [g0ft Yy _ o 5 d’q ( B . P +) (I11.24)
°0 (2x) Eh) q

is what Yennie, Frautschi, and Suura call 2o B. In the electron-
positron center-of-momentum (c.m.) system our maximum photon energy
is isotropic. It is equal to the c.m. energy w of the electron or
positron. Yennie, Frautschi, and Suura give the high energy limit of
20 B for the scattéring of an electron in a potential when the maxi-
mum photon energy is isotropic and small. Our integrand is the same
with p+ in the place of Py- The only difference between 20 B in our
case and theirs is that our maximum photon energy is large at high
energies, whereas theirs is stipulated to be small. However, they
do not discard terms because of this requirement and we find

that with the appropriate substitutions the
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high-.energy limit of our result for l/Go.fédSOft Y = 20 ¥ checks with

their limit. The contribution at high energies is

a 2pTept w1 ~2p"ep" 21
= log —B—=B- - 1 log &5 + = [log =B~ .
s m2 2 2 m2 ]

A
Because our maximum photon energy is large at high energies

dGSOft Y does not give the only logarithmic contributioms. The

other parts of ob give to Ub/GO

o 11, =2 "
7 6 98 2 *

m

In this discussion we have dropped contributions to AU/GO and

db/co of order 1 and smaller. However, log -2p--p+/m2 is not of order
10 until the c.m. electron energy w is 2> 102 m and we will be

interested in the cross section at stellar temperatures corresponding

to lower emergies than that. Keeping terms of order 1 also, we obtain

for the total cross section the limit

G2 o 2 10 t
_ l T _
o~ et 1+ (Z3 1) + =3t 56 log Al (III.25)

We note that when all photons are included in the cross section there

are no double logarithm terms in the high-energy limit.
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IV. THE CORRECTIONS TO STELLAR NEUTRINO LUMINOSITIES

The neutrino luminosity of stellar material due to the process
-, o+ 5 . + ., -
e +e ~>Ve + Ve is given by du/dt =:§:ﬂD(E + E ), where the
summation is over initial electron and positron states, 93 is the
reaction rate per cubic centimeter from a given initial pair state,
and du/dt is calculated in the (lab) frame in which the star's
: G2 . o o
center of mass is at rest. y/ is an invariant given in the center-of-
s . +, -, oA A

momentum (c.m.) system for the initial pair by n (p )n (p )|v - v |o.

: S =
The positron and electron number densities n (p ) are the fourth

tact s
components of the four-vectors (n'v , in ) and o is an invariant,

- An - 4
so that B E |$+ - v | should be the invariant/j(p 'P+)2 - m4 which it

equals in the c.m. system. Then

3 + 3 - + + - - 3
d d -2 4 -
E% =~/ﬁ d p3 p3 n (i ) n (? ) n/(P+'p 32 0(E+ rEY,
(2)”  (2n) E E .

* at £
where now p- = (p , i E ) are the four-momenta in the lab system.
In the annihilation with bremsstrahlung, e + e+ —>Ve + De + v,
the energy of the photon is trapped in the star. For the total rate

of energy loss to neutrinos we will need

&P =fdcb(k0 + K, (1V.2)

b, . . .
where do is the cross section for producing a neutrino of energy ko

and an antineutrino of energy k. in the lab system. eb is the

0
fourth component of the four vector dcb(k + E)u. This is

dcb(p- + p+ - q)u by energy-momentum conservation. By Lorentz
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invariance
b - + - +
d = + + b - Iv.3
fcr q, = 2 (p p )11 € P )u’ ( )

where a and b are scalar fur .ons of p--p+. a and b are easily

4)

evaluated in the c.m. system . There dcbqo = a 2w and

dcqu = b 2p. These integrals contain no infrared divergence because
of the additional power of ¢. b is identically zero as shown in
Appendix C, since dcb it ven in x = (§+p ). That is, the photon has an
equal probability of being emitted at a given angle with respect to

the positron or electron in the c.m. system. The two situations are

related by a reversal of the sign of the current and a rotation.

The integration for a is straightforward. We have

tanh~ é] (IV.4a)
and
b=0 (IV.4Db)
Using (IV.4b),
b - -
~[;0 k+ By = o - aypt +p e (1V.5)

The total neutrino luminosity due to pair annihilation to order ¢ is

3+ 3 |
dufdpfdp n(i)n(p)l~/(p‘P—)2"m4 (GO+AG)

dt T ond ) e = E

Y+ £ +fdcrb(k0 + 120)
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34 3 - +, + - - : f
- dp?"{dp3n(2)n(l_3-),f(p+.1,‘)2_m4 E;O+Ac+cb-:|
2o ) @20° E E

&t e, (IV.6)

- + -
The average energy lost to neutrinos through both e + e -a“%+—Ve

-+
and e +e 5V +V + vy is
e e

[00 + Ao + ob - a.][E+ +E ]
= ‘ (IV.7)

[GO + Ao + cb]

mi

Physically, a must be positive. This is so for the expression

in (IV.5) (—é— tanh™'p = —;—B— log %—1}—% > 1) .

+,  *
The densities n (p~) for electrons and positrong in thermal

equilibrium are

nf ") = ——2 (1V.8)

Since the electron and positrons are in equilibrium with photons,

: +
their chemical potentials p must satisfy the relation

u+ +p =pn =0 43). (Iv.9)

3 - 3 +
N - N = —d—~°—3n'(p y - J—‘i—ﬂg 2ty = N, (1V.10)
(270) (270)
where NO is the number density of residual electrons associated with
*
the nucleii. (IV.8), (IV.9) and (IV.10) determine p .

7

According to Fowler and Hoyle ", the o,T paths of type II

presupernovae with mass M ~ 10 - 35 M_

©

lie in a p,T region in which the
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electrons and positrons are non-degenerate. The approximation that

the fermions are non-degenerate corresponds to assuming, that for

+
energies E° important in integrals over the distributions,

+ +
E_-p
kT
e >> 1. (Iv.11)
With this approximation
) E+ + E_
+ + -, - kT
npln(pl~dbe » (1v.12)

+
independent of p because of the condition (IV.9).
For low temperatures emphasizing non-relativistic electron

and positron energies the integrand in the integral for du/dt (IV.7) can

be expanded in powers of p+/m. In the non-relativistic limit, in
which p << 1,
b 2
HNo + o - = (o O)n cox [?B + C + O(BZ] (IV.13)
where
2 2
G m 2
== 11 +0 iv.14
(Go)n.r. 27B I: (Bﬂ (1v.14)
and
o -1 97
CO = 2(Z3 - 1) (;-) - 18 ° (Iv.15)
[2
From (II1.23), in terms of the cut-off A, 23 - 1==-%? log lf .
m
£ -4 2 o epT - ;
Recalling that B = o - [R"P & , we see that
. t - +
-p *'p t+m
Jeomo #2
. - - 2
(_p) =-p T 4. (IV.16)

B
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For non-relativistic energies this is 2m2 + = (p -p )2 + ..

Using (IV.12), (IV.13), and (IV.14) in (IV.6) for du/dt, we have

: J2mo p _tp 5
du _ 4 d3 d3 kT 2mkT 2 Gm
at B 3 T € 2
n.r (2x)
ot 0]
=y 2 2m. .
[1+T[B+ﬂCO:}m (IV.17)

. -1 0 .
In the order o correction both the B = and B terms can be kept since
the higher orders of the rest of the integrand would contribute
2
terms of order B~ times the lowest order. In the non-relativistic

lunlt'l- = (1 + 0(v2)).
2B > ~ 2
v, - v,

We obtain

o0 1
m | i
29 3 - =
du _Gm” (kT kT o + o2, -
(dt> 4 (m ) e 1+ C0 + a v, ﬂ_ dvjdx
n.r. Tt -1

} 2 2
. T 2+ v
times s (Iv.18)
@t -2

where x = $+-v . We rewrite (IV.18) as

du _ [du’ o} 1
(dt) - (dt) L G Fom <v> ’ (1v-19)
n.r. O,n.r.
where
2m
. 2 9 3 -
du =&n kT e kT is the luminosity with no photon
dt 4 m
O,n.r T

corrections found by Levine4) and by Chiu and Stabler6). In

Appendix D we find
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1 m
( ;.> = ,;EE . (1Iv.20)

Using (IV.15), (IV.19), and (IV.20), we haﬁe finally

d du | m _ a 97
u = 1 &u &k JL -
(dt) - (dt) 1+ o:JkT i RUETCIIE) (1V.21a)

n.r. O,n.r.

- (2—“) 1+ 203 g o3l . (IV.21b)
t
O,n.r. ’Tg
In the numerical result A = oy has been used.
(%%) in (IV.21) gives the corrected neutrino luminosity

okt Mt s ,

for —Er'<< 1 or T9 << 3. The non-relativistic energy loss is

-2
enhanced by about 30 percent for temperatures as low as Tg‘“’lo ;

the enhancement is due to the Coulomb attraction between the electron
and positron. As mentioned in Chapter III, in the non-relativistic
limit the ratio of the cross sections with and without the Coulomb

(-2na/v) 1.

interaction should be (-2na/v)/(e For temperatures

-2 . . .
lower than T9 ~ 10 © the expansion in powers of @, which gives to
. 1 . .
the energy loss the correction na ( 5 }s is not valid and the exact

expression for the cross section ratio should be used.

In the high energy limit appropriate for T9 >> 3,

b - al_ 1l £t ”
N+ o - a= (Oo)e-r. . [; 8 log =5 + C1 + lower orde%] ) (Iv.22)
m terms
where
GZ
(Go)e.r. = o t, (1v.23)

and
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_ oA e S v )
¢, = (Zy - 1) \:) + =+ 2 (IV.24)

+
With the approximation p >> m in (IV.7) and x = $+'ﬁ 3

e+ - 02

o 2p,p (1 - %)
[} +2¢ - LT 10g = m]. (1v.25)

1778 2
m
The integrals are done in Appendix D. They give
j ) 3
@) -2 G-dfeeZagosbe- L)
e.r 0,e.r. (1Iv.26)
; 2 9
where C =.5772 is Euler's constant, and du =128 ¢ (kT
dt 5
O0,e.r. T

6)

as found by LevineQ) and by Chiu and Stabler “. With C1 from (IV.24),

" N ’ 2 -
du _ (s J i o {:L 1, _12_3..1.]
(dt) = (dt) 11 2y - D AT C - T
e.r. 0,e.r.
_lig,, 2 |
4 g &

(99) 1 - 0.010 - 0.0064 lo 5
dt ' : ) & 9,97
0,e.r.

(Iv.27)

Again A = mN has been used in the numerical result.
In the region of T9A~'1, the radiative correction changes sign
and depresses the luminosity by a few percent. The Coulomb term
amn | % ) diminishes in importance at high energies, leaving the
(Z3 - 1) term dominant (if it is not much smaller than the estimates)
in the region 1 < T
3

Ty > 107

g < 10 and the log 2kT/m term dominant for
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V. NEUTRINO SCATTERING BY ELECTRONS

The radiative corrections for the cross section measured in
an experiment on the scattering reaction, Ve + e —aVe + e, depend on
how many of the events in which a bremsstrahlung photon is emitted would
contribute to the measured cross section. The experiment proposed by

17)

Reines and Kropp would measure for the elastic scattering the total
cross section for an electron to recoil with energy > E0'~’8 -~ 10 MeV.
In an experiment done with a liquid scintillator it appears that the
criterion for including in the count an event in which a bremsstrahlung
photon is emitted remains that the recoil electron have energy > EO.
The spectrum of B8 neutrinos ends at ~~ 14 MeV. Thus less than 14 MeV
would be available to a photon produced by a neutrino from 38 decay.

As the scintillator efficiency for comnverting gamma rays of such

42)

energies is low ', most of the bremsstrahlung photons would not
deposit energy in the detector.

The total cross section for the electron to recoil with

energy > EO’ including the cross section for emitting in the process
one photon of any kinematically allowed energy is
rE
L [m
oY >E) =] dg " -4 v.1)
2 0 2 L
dE
B 2
0

where EZL is the recoil electron energy in the lab system, in which
the initial electron is at rest, and Em is the maximum recoil ecnergy
kinematically available. (Em =k + ESE—EEEL , where k is the incident
neutrino energy in the lab,) With t = - (p2 - p1)2 = - 2m(E2L - m)’
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t

0
L - . do
O(E2 > EO) —J[ﬂdL T (Vv.2)

t
m

t0 = - 2m(EO - m) and tm = - 2m(Em - m). The total invariant

differential cross section is

do b

do _ 0  Ado , do

dt ~dc¢ fac  Tar ¢ v.3
dLGO G2 dg
— = -, A <= is the order & contribution of virtual photons.
dt e dt
dob
= is the contribution of V +e oV + e + vy,
dt e e

do o=
For EEQ +-§%g s :ZJ lTblz is given by (II.31) and (II1.33)

spins _ _ +
with the substitutions k - k,, k - - ki» P =Py and p - - Dy,

2
Using s = - (p1 + kl) s Q2 = (p2 - pl)2 and energy-momentum conservation,

we obtain

2
Zg: |72 - & Jeu(s - 02 + e M a8 (V. 4)
spins
where
%Z Tr(v) Amr(e) = - 2m Im SZ[(S - m2)2 - QZS]

+ Re V [(s - m2)2 - sz2 v.5)

+ Re A [(s - m2)2 + szz .

When V and A are expressed in terms of the contributions of the

vertex and electron loop diagrams in (II.28), this becomes
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2
%Z Tr(v)ATr(e) = 2 Re AC(V)(S - mz)2 ~ 2m Im 87 [(s - mz) - QZS]

+Re [ - 92"; + S - ANl - 12)2 + 0%n’]

2

+Re [25 - 1+ 1°@QH 1 s - mH)? - %), (V.6)

Since only AC(V),and not (AC(A) - AC(V)), contains an infrared diver-
gence, and gives a contribution proportional to the uncorrected cross
section,as does the soft photon bremsstrahlung, the cancellation of
the infrared divergence that occurred for the aanihilation will
occur for the crossed reactions.

The wirtual photon correction to the invariant differential

cross section is

3 3
d d'k
do 1 Py & %2 4 2
Bac T 2 fE o 0y kg - Py = K)B(E A (P - ) )
641 (-pl-kl) 2 2
1 2
ve 2l
spins
2
G«
= :— ;ﬁZ’ v.7)

where

oy =1

e —s (2) 7 e Oa . w6
64(s - m) T
Using the results of Appendix A and (V.6), )
_ m_ 2 4m_s 2
M=-16 ctonh 6 - %} log 5 " 3 sinh @ [} - 5 2 s1nhw{}
A (s - m")
4 2
2} 4m , L2 3 8 cosh @
'sinheE+ Zzslnh‘ﬂ'2+ sinh 0

(s -m)
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+ ctnh 6 [é (2 c;sh @) o i (2 c?zh @)]

e e (V.9)
Al 5 1 6 ' 1
+(9) (23—1)-§+—————-—+§ctnh0(1-—~———2—)
T 3 sinh @ 2 sinh™
2 2 . .2 A
Here t = - Q = - 4m sinh ¢ and 6 = 20. This is the same as the result

13)

of the Lee and Sirlin
The dominant terms of M, at high energies, which will be used

for the corrections relevant to the proposed experiment, can be chec-

ked with the results of Yennie, Frautschi, and Suura. For incident

neutrino energies k >> m, we can have - p1~p2 >> mz. Then

0 ~ log - 2p1-p2/m2. For 8 > 1,

2

m- 1.2 11
M~ (6 - 1) 1og>\2 -5 8+ 0. (V.10)

For an electron scattering in a potential, Yennie, Frautschi, and

Suura found

- a “2P1 Py o’ 1 2Py g n’
20 B~ - ; log —5— jlog 5 + 3 log 5 il log =5
A m

m A
(V.11)
[0 . o _zpl.p
;;N@is the sum of 2 B, the contribution ; log —7r— from the
. : L “2p1-Py
magnetic interaction, and the contribution 3 log — from the
m

electron loop. The contribution of the magnetic interaction to
doy

dg 0 . . . .
=~ / —— is the same in our case as for electron scattering in a

o dt dt

potential. The high energy part proportional to YuYS comes out to
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be the same as that for Yu. It would be different for other Fermi
couplings (which as mentioned in Chapter II are also different in
that the wave function and vertex renormalization constants do not
cancel). The contribution of the electron loop in our case is half
that of the wvacuum polarization in electron scattering in a
potential. Including only the electron loop correction the
amplitude is préportional to [ﬁk Yﬂ(l + y5)Uk ][ﬁp (yu(l + Y5) + ﬂYu)U 1

2 1 P2 B
where 7 contains the vacuum polarization-like effect. Then

:E: lleoC Tr(v>- (1 + n)zTr yu(m - iﬁl)Yv(m - i¢2) + Tr Y, Vs
spins

(m - i )vyyv (o - i)
+ (1 )Trly (- By - iB,)) + v v @ - 1F,)

Yv(m - i¢2)] .
At high energies,when m can be neglected relative to ¢i,the contri-

bution of a pure vector or a pure axial vector operator between the

electron spinors become the same and

Zg: ,leoﬂ Re(v) -1+ @+ n)z]Tr Yuﬁl yV¢2 + 21+ )
spins

' .12 ' 2
so that to first order in 1 , jg: IT' = (1+n :E: ITOI .
spins spins
This is to be compared to T = A U vy (1 + n)U_ which implies
H Py H Py
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ZE: |TI2 = (1 + 27) ZE: |T0i2 to first order in 7.
spiné spins

For the cross section for scattering with bremsstrahlung,

Ve + e _>Ve + e + vy, the appropriate momentum substitutions in

:E: ITblz of (II.37) give

spins
. 2
2 2.-1 b2 ) P1 _EEL-)
(128G7e%) Zg: |T |” = Py k1 Pyky (q'p1 B q°P,
spins
1 1 PPy
+ .k - - : : - ) )
py°ky Py kZ(q'pl q.pz) + q-p, 4P, (a7k; pyrky - @ kypyky)

Py kPyky  Pyrkypyck,  pykatk,

S - : - (m™ + q'p,)
1Py 172 (q'pz)2 2
P, k,q°k
2597 % 2
+ = (" - q'pl). (V.12)
(q'pl)

The cross section is
3
1

. 3

do’ d’p, d"q d'k, 2

& " 5 | & o Tk, ot ey mpp)
4o’ k) B2 % Ko

4 1 bl 2
& (p1 + kl - Py - kz - q) 3 :i: ’T ’ . (V.13)

spins
The integration can be carried out exactly. We sketch here
our procedure and in Appendix E give further details. First we do

the integrals over the final neutrino.and photon momenta in the

-

frame in which a + EZ = S + kl - Py = 0. Expressing the results of

1
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the invariant

3 .
3 d'k .
dg_ 2 64 - _ _ bl 2
J[Q. " (p1 + k1 Py k2 q) 1T|
0 2 ;
spins
in terms of the invariants which can be constructed from Pys kl’
and Pys We then do the integrals over the final electron momenta in
the c.m., system for the initial neutrino and electron. The integral
over ﬁl'ﬁz can be done with the delta function of t. The condition

A ) 2
that Iﬁl-p2| < 1, together with the condition - (pl + kl _ pz)z >

from the delta function of energy restrict the final integration over

C

E2 . We find
- c c Kz '
Ez <E, <E7 -7, (V.14)
s
where
E.” =E,° cosh 68 - p.© sinh @ (V.15)
2 1 Py : :

0 is defined as for the elastic reaction by t = - 4m2 sinh2 6/2.
When the integrals are done in this order the infrared divergence

c
appears in the integration over E_, at the upper limit; the photon

2
cannot have zero energy unless the electron satisfies the kinematics of
the elastic reaction.

do/dt can be expressed in terms of the two parameters s/m2
and ee. For an incident neutrino of 14 MeV energy in the lab,

s/m2 = 57, and for'EZL = 8 MeV, ee 2 32. Thus both parameters are

large compared to 1 for the energies relevant to the proposed
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experiment. Since log 57~ 4, the logarithms are not dominant over
the terms of order 1, though double logarithms can be of order 10.
We will neglect terms of lower order than 1, including terms like
@nz/Q(log s/mz)z, although the latter could give a 10 percent correction
to the terms of order 1.

For the contribution of M;to the high energy approximation
for do/dt we neéd to add the terms of order 1 to the limit given in

(V.10). With these included

n (o) 17 > 11, 0
M~ (1 - 9)log;§+(;) (g - 1) - C+5=+=20 - . (V.16)
2 -1 b
In Appendix E & 2 do_ is written as 7 + ¢, where ¥ =,7IR + ¥
6 s dt

andﬂf = Z ji. Here we give the high energy results for these parts.

We definé=1a = g/m and y =a - e . Then

2 2
IR m__ (3 Y _ oo - Y 1+y
T~ (8 - Diog 2 +(2 - 29) ~ -+ (0 - 1Dlog T + log >

2 ; \ 2 ;B 2
ylatedy ) (l+y _Le_)+L__1_ Y S DA a
8a 1-v a 2

(V.17)

IR . .

Whenl\é and 77 are added the infrared divergent terms cancel as they
should. For neutrino energies k such that (k - EO) >> m, the
approximation y >> 1 is good over most of the range of t, or EzL,
for which we need do/dt to compute O‘(EZL > EO). Making this

additional approximation
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-1
IR fa - _17 11 3 Y - Y
M+] (T) (z3 1) s 0 + (2 29) -+ (6 - log .

a + e9 eG ' ee
toSe L (“‘) - L(’ “)' (v-18)

The remaining contributions are

8

F
g~ -z—(1+1og Y), (V.19)
4
2 - 2 e . 20 -

- & ;[n_ e ) 2] 1 _ e
Zgi 2+26+La + 6 log a - 6 +210ga >
- 2a a
i=1

ee' 3 x

-[1--£Jlogy—z-a, (V.20)
and
L 2 26

o 1 a_ -e 1 a2 ) 2
Z ii 3 log v + 5 + 7922 I}Ba + 6 ae + 12 eﬁ. (v.21)
i=5 8a

We have calculated the limits for % by making the approximations
both before the integration over Ezc and after doing it exactly
and obtained the same results.

For y not large a correction to j amdg’,,v is necessary. The
approximation y >> 1 allowed the expansion log (1 * 1/y) ~ = 1/y + ...
If in the difference between the exact result and the above
approximations we use e6~ a except where a divergence results, we

obtain for the correction to%when Yy <1
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5 1,13
Zif -3z leg (L+3) +55 . (V.22)

\7F -0 as y - 0. ;7IR is given in (V.17) for all vy.

If only low energy photons were included in the cross section,
P P
1 2

the term i = pl'klpz'kz(gj;— " T
1 2

2
bi 2
) in ZE: IT I would dominate

spins_
over the rest, as the corresponding term did for e + e _;Ve + Ve + v.

For a maximum photon energy much less than the kinematic limit

we would have

b 2
do~ , G « ysoft y
Tt — = J 5 (v.23)
where jSOft Y is the approximation to\j obtained by neglecting the

photon energy and momentum in the delta functioms in;7.

,s0ft y _ 1 aq _ m? ) 2py P, ) n? "
J B Lo q (q.p )2 9 (V' )
0 1 q°P;4°Py (q-p,)

where Py satisfies the kinematics of the elastic reactionm,

Ve + e —>Ve + e. In the lab system for example, E2L = m cosh & and

§2~§1 =2 ; k tanh g . The azimuthal angle of 52 can be taken as

fixed in (V.24). For a maximum photon energy qa, isotropic in the 1lab

q450ft . . . .
system J Y gives the bremsstrahlung contribution which Lee and

13) 1soft Y

Sirlin use . corresponds to 2= B for the scattering of an

electron with small energy loss in the treatment by Yennie, Frautschi,

1
and Suura 5).

ty

The integral for_)SOf or 2x B in (V.24) is defined even if
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the integration over the photon momentum is extended to include all
photons kinematically allowed. The integral with the extended limits
on the photon integration is 2x B for our problem. With the correct
kinematics for the reaction Ve + e ~9Ve + e + vy, the factor pz-k2 in 1
is Pl'kl - q-(p1 + kl). The first term, pl-kl, gives the contribution
]' of photons with spectrum proportional to dq/q for small q. In two
cases of high energy and large momentum transfer we can find the
dominant (log and 1og2) terms of 2x B and compare them to the dominant
terms of J' from our results for dob/dt. The case which we will
discuss first is that of nearly maximum momentum transfer, when ee ~ a.
The second is that of momentum transfer large, yet far from the maximum,
when a >> ee >> 1. We find that in both cases the dominant terms of
\7' are the same as those of 2x B. In Appendix F we argue that the
correspondence between the high energy limits of 7' and 2ﬂ T should
obtain, so that the agreement of the results is a check on our calcula-
tion of dab/dt. Here we discuss the limits and the extent to which
the contributions of J'(or 2x E) dominate the other contributions to
dgb/dt.

In the limit of maximum momentum transfer the photon energy in

the lab cannot get larger than m/2 in any direction and no logarithmic

terms arise besides those that correspond to the limit of J7S°ft Y,
We find
, IR 2 2
7+f~] ~ (P - 1) logn'Lz-+logL . (V.25)
N a

In Appendix F we show that the photon energy is restricted to be less
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than my/2 in the forward direction, which is the direction the matrix
element emphasizes, and that the limit obtained from 27 B is the same
as the limit in (V.25) of the exact results. é! and.]F actually vanish
in the limit of maximum momentum transferj they contain no divergent
terms and the phase space for the situation vanishes. We note that when
the infrared divergent term (0 - 1) log m2/7\.2 is cancelled with that
ileL a logarithmic divergence is left in do/dt at maximum momentum
transfer. The electron can only have its maximum momentum transfer
by scattering without loss of emergy and the divergence reflects the
need to take into account the emission of more than one low energy
photon. Since the divergence is only logarithmic, it does not
invalidate neglect of the correction terms for e6 ~ a in the integra-
tion over t, or alternatively ee, to obtain G(EzL > EO).

In the second case, when a >> e6 >> 1, we find for the
logarithmic contributions

2 2
J o~ 5w 0 - Diog B+ - - 20, (v.26)
A

In this case the photon energy can be large, on the order of the
incident neutrino energy in the forward direction. The term - 20 in
(V.26) for J comes from the - q°P, term in Pz'kz' In Appendix F we
show that the limit of 2x B corroborates the term 92/2. Because
the photon can have a large energy, the contributions ofj{ are of
the same order as those of 7. For comparison, in this limit we

have

o1 oy e L
ﬁ 2 (® - 1)(log a - 9) + ) log a. (v.27)
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Finally, we turn to the integral over dg/dt for the energy
range relevant to the experiment proposed by Reines and Kropp. The

. . L . .
integration over E2 or t can be transformed to an integration over 8.

. , 0 = _
With Qm given by cosh " Em/m and 90 by cosh 90 Eo/mJ
9
L 2 G2
CI(E2 > EO) = 2m . dé sinh 9 1 +— E/&+j ﬂ (V.28)
60

In terms of the electron's minimum recoil energy EO and the incident

neutrino lab energy k, we obtain for the total cross section when

k -E, >m,

0
L 2G2 4
CS(E2 >E)=——@(k-E) 1+(Z-1)+ f(kE)} (V.29)
\
where
7k 2(k - EO) 2EO
f(k,EO) = a(k,EO) log - + b(k,EO) log — + c(k,EO)log —
E E 2k + E E
+d(k,E0)-L(I{-Q)-L(-k_OE)+ OL(l-f),
0 2(k - EO)
(V.30)
with
E
a(kE)=l+—g+log l-i)- (V.31a)
70 3 2k k )
E
=.8_20
b(k,E)) = - 5 - 73 (V.31b)
E
- .1 0 k_
c(k,EO) il S log 52 (V.31c)
0 0
and
E E ; E
~|1l,.0_ 3 .0 0 k_
d(k,EO) —[3 2k+210g (l kﬂ I log =

0 0
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2
E E

3_4 0.1 [0

8 72 k " 72 (k) . (v.31d)
For k = 14 MeV, f(k, 8 MeV) = - 6.4 and f(k, 12 MeV) = - 10.6.

\ -1

a - 1) = - 2 A - ' PR
(ﬂ:) (Z3 1) 3 log 0 5.1 for A m . Thus G(E2 > EO)

should be depressed by on the order of 3 - 4 percent. Curves of
f(k,EO) are given in Fig. 4.

The term (Z3 - 1) in G(EZL > EO) and a term - 1/2 contained in
f(k,Eo) would contribute a correction to neutrino scattering by
electrons for any energy and momentum transfer. For zero momentum
transfer the bremsstrahlung cross section vanishes. As pointed out
by Lee and Sirlin13), there would be a residual correction due mainly
to the neutrino charge radius. When & - 0 in the limit Q2 -0,
dob/dt — 0 exactly. The term corresponding to the classical
bremsstrahlung of an accelerated particle would be expected to
vanish. 1In this case the entire bremsstrahlung amplitude vanishes.
Furthermore the phase space for the configuration also goes to zero.
InpM, Ac(pl,pl) = 0 and HC(O) = 0 by definition and the only
remaining contributions come from (23 - 1) and the term -a/2n due
to the finite difference between the vector and axial vector
renormalization constants.

2 ——
do o, G - _ o
bt o0 |FTE D -5 (v.32)

Numerically, for A = mp the correction is about -~ 1.3 percent, about a
. L
third of the radiative corrections to G(E2 > EO) for the proposed

experiment.
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VI. THE DEPENDENCE ON THE NEUTRINO CHARGE RADIUS

We have given in Chapter IV the effect of radiative
corrections of order ¢ on stellar neutrino luminosities due to pair
annihilation. The pair annihilation is supposed to be the dominant

mechanism for cooling massive stars for T9 between 0.5 and 7. For A

on the order of the nucleon mass the corrections range from an

enhancement of ~ 8 percent at T, = 0.5 (IV.21b) to a depression of

9

9 ~ 7 (IV.27). At T9 ~ 1 the negative contribution

of (23 - 1) cancels the effect of the Coulomb enhancement; so the

~ 1 percent at T

radiative corrections in the temperature range of interest should be
very small.

In Chapter V we have given the corrections to the cross
section for neutrino scattering by electrons when a bremsstrahlung
photon of any energy is included. The corrections to antineutrino
scattering would be similar and could be obtained from the amplitudes
for neutrino scattering. For small momentum transfer there is a
residual correction which should decrease the cross section by
about 1.3 percent. As Lee and Sirlin have pointed outlB) this
correction to the differential cross section is the same for anti-
neutrinos. Thus it would be the correction affecting experiments
using reactor antineutrinos which have low energies. The corrections
for incident neutrino energy much greater than the electron mass are
given in (V.29). For B8 neutrinos of S'14 MeV the corrections

to U(EZL > EO) should be 3 - 4 percent. The dependence of the
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radiative correction to this cross section on k and EO is indicated

in Fig. 4. The form we have used for the electron loop contribution
assumes ]in << Az. For A N’MN the results would not need modification
for k g 103 BeV.

In conclusion we consider the effects there could be on the
annihilation and scattering if the estimates for £(0), or equivalently
the quantity we have called Z3 - 1, were incorrect. We do not know,
after all, how to calculate £(0).

In a Yg invariant neutrino theory there is only one form

factor. The matrix element of the electromagnetic current must be of

the form
(V']3,(0) V) =-ie F(q®) [0y v, (A +vdu ], (VI.1)

for F a scalar function of q2. Here q2 = (k' - k)2 for initial and
final neutrino momenta k and k'. A zero total charge for the
neutrino implies F(0) = 0. 1In a frame in which q2 is space-like it is
customary to define

& iq'r 2

o(r) = ——93 e'l e 7(q¢9), (VI.2)

(27

where it is assumed that F(qz) falls off sufficiently fast for (VI.2)

. 2
to exist. Assuming also that F(q ) can be written as

2
F(qz) = q2 f(qz), where £(0) = imgiﬂm)/qz -0 is finite,
q
1 2
£(0) = - 5 (r™), (VI.3)

with
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(rz) = éJ/;3r r2 o(r). (VI.4)

p(r) is called the charge distribution of the neutrino even though
2
there is no frame in which the neutrino is at rest andw ICr H
2
is called the charge radius even though (r ) can be negative. With the

electron loop in Fig. la giving the charge distribution,

(r2) e % log = . (VI.5)

(The F(qz) ci-qz[Z3 -1+ zc(qz)] which the electron loop contributes
does not fall off for large qz. But the expression is only valid for
qul < Az. The rationale for the cut-off is the expectation that
F(qz) decreases for quI Z’Az). For A = W (VI.5) gives
N l(rz)l ~5x 107" cm. 1In contrast with this estimated charge

radius for the electron neutrino, the experimental upper limit is

~ 4 x 10 > cm, which Bernstein, Ruderman, and Feinberg extracted
from the experiment of Reines and Cowan45) using reactor antineutrinos.
The limit implied by the preliminary experiment on Ve +e ~>Ve +e
by Reines and Kropp17) is about the same

With F(qz) ~ q2 £¢(0) = - _61_ qz(r2>, the amplitude for 2 neutrino

and an electron to interact through exchange of a photon differs

from the amplitude to interact through the local Fermi coupling only
in having yu rather than Ypys between the electron spinors when the

weak interaction Hamiltonian is put in the order (é e)(De Ve). The

cross section for annihilation due to the charge radius alone would be

4, 2.2 '
_ e {r ) 1 2
Gc.r. = 28 E:;' (t + 2m"), (VI.6)
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2 ey .

as compared to 00 =G gig (t - m2 ) for annihilation due to the
weak interaction. In the low and high energy limits the energy
dependence would be the same for the two cases. In the non-relativis-
tic 1imit the neutrino luminosity due to the charge radius ammihilation
would be the same as that which the weak interaction would give with
8 2 2.2

(x

2
the substitution G /x -3 @ »; in the extreme relativistic limit

the luminosity would be the same with the substitution
Gz/zt - ‘g'otz (r2>2. If the meutrino charge radius were actually as
large as the present limits on it, the neutrino luminosities would be

~ 103 times the prediction of the weak interaction. This appears
implausible on astrophysical grounds7). A charge radius of

~ 4 x 10_16 cm, about a factor of 10 smaller than the present limit,
would correspond to cross sections for e + e+ _;Ve + Ve and
Ve +e -aVe + e of the magnitude which the weak interaction is
expected to give.

A charge radius and weak interaction of the same order of

magnitude would give a cross section for pair amnihilation which can
be written as

9 2,212 2, 2
= L <G G ,e{r) _ 2 2l {6, e (rT)
° T B [2+(ﬁ+ 6 ).](t m)+3m\:(,f2"+ 5 )

-
G
- —E:I . (VI.6)

2
G and (r" )} are real if the weak Hamiltonian and the electromagnetic

2

current are Hermitian operators. At high energies the interference

can only decrease the cross section by a factor of 2 from 9y This

occurs when the charge radius amplitude just cancels the wvector part
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of the weak interaction. At low energies the axial vector interaction
R . s 2
by itself gives a cross section vanishing as (t - 4m”). (We recall
|
that in this reaction in the c.m. system., t is the total energy.)

This would lead to a luminosity for t << 3 of

d d 1,2 2.2
(;1‘%) = (g‘f) z (v, -v)7)
n.T. 4

O,n.r.
dy' 51“
(E'E) ( m) . (Vi.7)
O,n.r

(du/dt)0 .r here is the uncorrected luminosity as in Chapter IV.
,Tl.

For T9 = 1 the cancellation would decrease the luminosity by a factor
of ~ 6.
The cross section for scattering due to a charge radius and

a weak interaction of the same order of magnitude would be, for

k >> E. >> m,

0
2,2 2 4, 2.2 E.y2
L _1 G e (r ) e (r ) _ 0 _
G(E2 > EO) » (2 43 + 3 ) + 7108 (1 X ) J]n(k EO).

(VI.8)
For EO > 1/2 k the function;l form would be close to that for a pure
weak interaction unless Ei%—lfv -,%% ; in which case, the cross section
could be very small. For this special choice of the charge radius,

the luminosity would be exactly the same as for the weak interaction

alone. The behavior of G(EzL > EO) and (du/dt)n .. 88 functions of

2: Zf :
. 6r //§?| is sketched in Fig. 5. For,’l(r2>| ~ 5x 10'16 cm

both the scattering and the luminosity could be small. There is a

range of (r2) for which the cross section could be smaller than
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expected, but the luminosity larger . In this model the opposite
situation of a small luminosity but a large cross section could not
occur.

Experiments on neutrino processes which, in the lack of weak
neutral current couplings, should occur only through an electromagnetic
coupling of the neutrino are most feasible for the muon neutrinos
produced by accelerators. The present limit on the cross section for
muon neutrino scattering by protons can be used to obtain an upper
limit on the muon neutrino charge radius, as well as on a weak
coupling of neutral currents. Electron neutrinos from nuclear
B-decay could give the proton only a very small recoil encrgy. Limits
could also be obtained for the muon neutrino charge radius from
processes involving the interaction of muon neutrinos with electroms.

The exchange of a photon between a muon neutrino and a proton

would give

) 4
do _ 1 1e F(t)
Ef"n( ” ) J: (t) - -——F(t)JI:1+

ol

(s-m)
: 2
+I.F (t) + F (t)—]z——-—t———— , (VI.9)
Lt 2 2,2
(s ~ mp
. 2 2 .
with s = - (k1 + pl) and t = - (p2 - Pl) . F(t) is the muon mneutrino

form factor. Fl(t) and Fz(t) are the proton clectromagnetic form

' 2
factors. Except for the factor F(t), a factor of 2 because of the
two-component theory, and a factor of 2 because of the spinology,this is

the same as the Rosenbluth formula. For F(t) = t/6 (r2> and
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T x 10-15 cm,

46)

incident neutrinos of ~ 2 BeV we find ~, with r

5 =107 <?2)2 cm>. (VI.10)

The limit on this cross section for neutrinos of a few BeV energy is
~ 10_40 cm2 47). ThenA/,(rz)l < 2x 10—16 cm. This limit is better

than the 10-15 cm which Bernstein, Ruderman, and Feinbergzz) obtained
for the muon neutrino from the comparison Vu +p —aVu +p + KO

and e + p e + p + no. However, if a muon loop model, as in

Fig. le, and the estimated charge radius of '~-10-'17 cm are correct,
the cross section would not be as large as (VI.10) for o would

imply. The variation in £(t) given by the muon loop would reduce the

cross section by a factor of ~ 10-4 to ~ 10_49 cmz. 48).

The cross section for the scattering of muon neutrinos by

electrons should be for k >> E

0’
4 2,22
o~ 55 O (r™)" m(k - EO). (VI.1l1)
For k~ 1 BeV >> EO
agr~5x 10-42<¥2)2 cmz. (V1.12)

An electromagnetic interaction between muon neutrinos and electroms
would lead to electron-positron production in the field of a

nucleus by muon neutrinos. Czyz and Waleckahg) calculated the cross
sections for Vc + Z _>Ve +Z4+e + e+. Their result for an incident

-45 chmz

neutrino of energy .. 1 BeV in a cross section o~ 3 x 10 s
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for production off a nucleus of atomic number Z. Assuming that the
difference in the matrix element for the charge radius ‘interaction and
the weak interaction at high energies leads only to a reduction of the
cross section by a factor of ~ 2, the corresponding charge radius

cross section would be

43 ~2.2 2 2
(r”)

o~ 10 T Z7cm . (VI.13)

If the form factor of the muon neutrino can be investigated
and the estimate given by the muon loop with a cut-off on the order of
thenucleon mass is correct, it would be plausible that the electron
loop with cut-off gives a correct estimate for the form factor of the
electron neutrino. If the estimate is correct, the radiative correc-
tions to stellar neutrino luminosities are those we have given in
Chapter IV and the corrections to the scattering cross section are
thosegiven in Chapter V. A neutrino charge radius ~ 10 times
larger than the estimate, would have effects of the same order as
the weak interaction, rather than give a correction of a few percent.
If the cross section for electron neutrino scattering by electrons is
found to be small, it is possible that the leptonic square term in
the product Ju+Ju- does not occur or does not give a valid first order
matrix element for the process. It would also be possible that the
neutrino charge radius partially cancels the square term. In the
latter case, since the cancellation cannot be complete, the process
would be found to occur in other experiments, for instance, in the

scattering of low energy antineutrinos by electrons. Data on the charge
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radius of the muon neutrino would be helpful in deciding the

likelihood of large charge radius effects for the electron neutrino.
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APPENDIX A. THE FUNCTIONS S, V, AND A

From (II.15), (II.16a), and (II.28a)

1 1-zl
o ) e [-Zimzl(l - Zl)]
= . 2 ( A.l
4ﬂjdzlj d22 ) (A.1)
0 0

S
2 ¢ (@)

where

C(Qz) = mz(l - Zl)z +'7\-zzl + szz(l -z, - 22) - ie. (A.2)

1

It is convenient to transform the wvariables z, and z, to x and

1
u given by
x =1 - z1 (A.3a)
XU = Z,. (A.3Db)
1 1-z 11
s ;1 ;
Thenf dzlj dz2 =fdufx dx, and we can write
0 0 0 O
2 2 2
c@) = [n® +Q° u( - w - iel x° +221 - x). (A.4)

In SZ no divergence occurs in the limit N - 0. The integra-

tion over z gives

iom du i (A.5)

S =
. 2
Z’k -0 b m + Qzu(l - u) - ie

The integral over u will be required for V and A also. It is
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K =‘/f du - 1
0 m2 + Q2u(1 -u) - ic A/QZ(QZ + 4m’)

2 2 [2, 2 2. . Aqu=1
log -2Q°u + Q7 - NQT(Q  + 4m7) + ieQ . (A.6)
2 2
~2Q2u + Q2 +»JQ2(Q2 +4m) - ieQ ju =0

where we have used the consideration that in the regions of physical
2. 2 2
interest Q (Q + 4m ) > 0. For scattering of either neutrinos or

antineutrinos by electrons this follows from the fact that

Q2 = (P2 - P1)2 = 2p12(1 --61~$2) > 0. 1In pair annihilationm,
C 'm.

Q2 = (p+ + p-)2 = - 4w2, so that Q2(Q2 + 4m2)c = 16w2p2 > 0 again.
¢.m. e

For the scattering reactions it is convenient to define © and O by

Q2 = 4m2 sinh2 0) (A.73)

6 = 29. (A.7b)

For the annihilation we will use the center-of-momentum (c.m.) electron

energy w and velocity B. Then from (A.6)

. 2
_{ _E_Q—_—_ Q >0 {A.8a)
m sinh 6
)\ - "%— tanh-lﬁ - i%:] Q2 < - hmz. (A.8b)
w B
Using (A.8)
‘ig 0 Q%> 0 (A.9a)
4mm sinh 6
S =
Z s ’ - : 2 2
- 2B | anh 13 - EQ;] Q < - 4m . (A.9b)
2 2
Gyw™ B -
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For V and A we need AC(V) and AC(A). Again from (II.15) and

(11.16)
1 1-z
1 2 2
c g 2Q7(1 - 22)(21 + zz) - 4m zl(l - zl)
AV = -=—|dz_ | dz
by 1 2 2
c(QM)
0 o
. 2m2Q222(1 -z - 22)(1 - 421 + zlz)
2
c(0) ¢(@Q)
- 2 log ELQ%—— ) (A.10)
c(@)
and
1 1-% ;
A1 2 2 2 2
mz (1 - z) sz(l-z-z)(l-z)l
AC(A)=AC(V)—%[dzl dz,, . 2 ~ = L
J c(Q?) c(0) c(Q) J
0 0
(A.11)
AC(A) - AC(V) contains no divergence in the limit A — 0.
We obtain

_a 2

AS8) - 25V =52 {1 - m K
_{a 26 2
1 oox [} sinh é] Q >0 (A.12a)
om” A1 ixy 2 )
Q. [1 + -2~ (tanh "B - ﬂﬂq < - 4m°. (A.12b)
25 2 2
w B
For AC(V) in (A.10) we need
1 1
1--z1 9
dz. [dz, log @ .1 du log [; + L u(l - vu) - ie
1 2 2 2 2
c(Q) m

0

;1
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0 coshzf 2
fl - ——Qsinh 5 Q° >0 (A.13a)
L i -1 ij{"‘ 2 2
1-pltanh 8 -1 Q <-dm. (A.13b)

In terms of x and u the remaining integral for AC(V) is

! L2 2 2
fdufx dx{zq + x[ 29 2(- 1+ xu(l - u) -4m (1 - x)] (A1)
' (@9 2 202q(1 - w)x?[-2 + x(2 + x)] .
c(0) c(@%)

In the first term of (A.14) 2 powers of x prevent divergence, in the

second term 4 powers. The part containing no divergence when A —» 0

1 .
J/;u - 2(Q +m ) + 6Q u(l - u)‘
m +Q u(l - u) - ie J
0

8 cosh2 2
6 - g ZLMO Q> >0 (A.152)
6 - 88 |tanht B - 2| Q% < - 4n”. (A.15b)

2

There remain two integrals which we will call K1 and K2, in

which the limit A - 0 produces a divergence

11 _
2
= 2 i X
% de“fdx 2 . 2 -2 .2
(™ 4+ Qu(l - u) - iedx” + A (1 - x)
0, O
1
: 2 2
2 N
= Q eru 5 5 L log m +Q u(é u) Le (A.16)
m- + Qu(l - u) - ie N
0 1

2)[ 1
+ A jdx
0 (m2 + Qzu(l -u) - ie)x2 + Az(l - x)
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The contribution of the second term in Kl vanishes in the limit

}\- —)00

]

Before doing the u integration we reduce K

1

”~

9 similarly.

1

Fad

x3u(1 - u)

2.2
- z”“Q,/dude[ %2070 - 0ll@ + Q% - w-igx” +220 - 0]

-4m du

2

2 2

0
1
1 1
dx x+ -
f m x4 A (1 - x) (mz-l-Qzu(l - u)-ie)x2+?\2(l - x)
0

du

m 1
2 - (A.17)

m2 -+ Qzu(l -u) - ie

/Ll g
2

1 m2 + Qzu(l - u) - ieL
og 5 s
A J

where only the contributions to the integral over x which contribute

in the limit A — 0 have been kept as for K

1
1
2 2 2 1
K1+K2=-21ogm—2+(Q + 2m)[ du 5
1N m + Qu(l - u) - ie
2 2 ]
log L u(; —w - ie (A.18)
A
2 o2 2 2 2
For @ = 4m sinh @, 1+%u(1 - u) = 4 sinh cp(u+-u)(u -u),
m
where u,_ = JD/(Z sinh @©). Then
L *
2 2 .
k, =|du— > 1 log T +Qu(12-u)—1e
m +Qu(l -u - ie m
0 1 (A.19)
1 1 2
= du - - logbsinh p(u, - wW(u - u ).
4m2sinh2cp ,[ (u+ u) (u u_) +

in (A.16). Together

0.

1
J
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The integral can be done in terms of the Spence function

X
L(x) ={dt E_g%l_’_tl . Using (B.7) the result can be written as
0
KL= 1 ‘:I: (2 ccz(sh CQ)_ i(Z cosh QE’ (A.202)
m sinh O e ¥ eCP
where
X
I-.(x) = (dt Qg—‘—i‘———tl- . Then for Q2 > 0, using (A.8) and (A.20a) in
J
0

(A.18) we have

2 - -
K, + K, = [=2 + 26 ctnh 6] log M-+ 2 ctnh 0 {? (g_ESEQLﬂZ>_i(2_99§B_Q)}

L 2 }\.2 e-q) ecP
(A.213)
In thecase of Q2 = -4 w2 < - 4m2,
42 4
1-—%—u(1-u)-is= 2(u-u)(u-u),with
+ -
m 1 -8B
-1 + + i
u, =3 (1 £ B) £ ie. Now
1 Bz b 1 4
= — du log (v ~-u)(u-u)
KL 4mZ (u - u+)(u -u) 1 - B2 + -
0
2 u-u
= -1——-£—L Klog 4 2) log —— u+ +-él- (log(u - u_,_))2
4m B 1 -8 -
u=1
-%(1og(u —u_))Z:\
u=20

1

1
log(u - u_) " log(u u+)
+ldy ————— - | du ——m———7—
J (u - u+) (u - u_

0 0

c
'



1
2 ' o1 -
- 1__'513_ - log ; log(—i—_—-ﬁ e"lr[) +jdu og(u 1)1_)
4m B 1 -8 B (v - jt?
1 0
log(u - u+)
-{ du -_(1;—-_17 . (A.22)
0
1 1 u_
i log(u - u)) =ﬁu log(u - [u_[+ ic) ~ gy log(t + B + ic)
(u - u+)_ u - |u+' - ic ' l t - ie
0 0 -lu
+
: u , u | u
= log B (log — e1ﬂ> + L (— L—:L) - L([B+' - ié}
N B
(A.233)
Similarly
L 1 | i“+l
log(u - u,) log(u -~ {u - ic) _ s
du + =eru I +| : =.jrdt log(t - B - i<
u - u u -{u + ie .
- 0 l -I o t + i¢
0 -|u.]

1 (_ J_u_'l) . (A.23b)

Using (A.23) in (A.22) and simplifying the result with the help of

(B.8), (B.6a), and (B.7) we obtain

K, = -;——;—&2 L (—fiLB-) - L(l—'%-%)+ 2in E;anh'lﬁ - %1} (A.20b)
m B -

With (A.8) and (A.20b) in (A.18) we have for Q2 < = 4m2
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" 2 ) -
K, + K, = [—- 2 + -z‘fl—-_é'ﬁu(tanh-lﬁ - 525):1

=
N

____E_ [: (1 £ B) - L(E:%EE) + 2igx (tanh B - ——:] (A.21b)

Gathering the contributions to AC(V) from (A.13), (A.15) and

(A.21), we have

c o [ :| m2 o ;(2 cosh rp)
./\(V)="2—jt @ ctnh ¢ - 1 log;\—z'l-?;[' Ctnhe[L—e—q-)-—
{ - 2
_ 7 [2cosh ] _ 36 cosh 2
A e ARERS - & ) (a.250)
2, N 2
AC(V)=-O‘—[LLB— tanh~lp - -—l log B
2% B 2 x2
+ g_Jl +p° [L 28 ) -1 (=2 4 2iq (;tanhnll3 - ﬂ)]
2% Lzs \1+ ) 1-p 2
S, iz 2 2
- 2+ 38 ltanh "B - —5/ Q" < - 4m". (A.24D)

From (A.12) and (II.28c)

.99 2
.  Sinh O Q >0 (A.25a)
A=AV -
2 .
en_. (tanh“ls - —1—) Q2 < - tm?, (A.25Db)
T B 2

The AS(V) computed here is the same for Q2 > 0 as occurs in
, c
the vertex correction to electron scattering in a potential. SZ’ A (V),

and A for Q2 > 0 agree with the results of Behrends, Finklestein,

. o1: 40 . : .
and Sirlin ), for the corrections to n-decay, when we put m, =m, in

2
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their results.
41)

We include here the results for HC(Q ) which we use in V.

fd =(L [-24—L—ycoshof, 1 )ej Q% >0
3 3 sinhzm sinh 9 2 sinhZT
v (A.26a)
2y .
?—j, [— % - (1 - 6% + 28 (1 + 1—;‘[3—-/(tanh-l[3 - *]‘—;')]Qz < - b’

(A.26D)
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APPENDIX B. SPENCE FUNCTIONSAZ)

We define
L(x) =fd—§ log(l - t). (8.1)

For |x| < 1, L(x) has the power series expansion

oo}
R
L(x) = -L 5—2- . (.2)
n
1
The special values
Tr2
L(1) = - g— s (B.3)
and
TT2
L(-1) = TE' (B.4)

are useful. The function L(x) has a cut for real x > 1. We define

x
]:(X) =/ dt .ng._%_-il- , (B.5)
0
Then for real x > 1,
2.4
L(x - ig) = (dt log(l ; £+ ie) _ i(x) + ix log x (B.6a)
0 J

and X

L(x + i¢g) :J[‘Q% log(l - t - ie) = L(x) - in log =. (B.6b)

' 0

i(x) is the average of the values above and below the cut. For

real x < 1, L(x) = L(x). The following relations are useful
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~ - {1 5(2 1 2
L(x)+L(;> = ‘3—+§'(10g x)" x>0 (B.7)
2
. 2
L(x)+L(l) =é‘—+%(1og x| )7 x<o. (B.8)
X/
2
L(l-x)+L(x)=-—g—+10gxlog(1-x)ng_<_1 (B.9)
1 2
L(x) + L(—x)=EL(X) -<x< 1. (B.10)
2 1 2
L(l-x)-L(-X)=-11L2'-1ogxlog(1+x)+EL(1—x)
0<xg2 (B.11)
! cz 1 x2
3 - 1 _ . S
L(l_x)-L(x)— 3 210g|l x| log| -X‘ x> 1, (8.12)
1+x1 _ l—x‘) =11l 4 x
2[L(x) - L(-x)] - [ ( 5 ) L( 5 /] (———1X)
(B.13)
-L‘l_x) + log +12 1o ————-————“1'Xzo<x<1
1+ Bl -x BT 2 =
¢ X
P
-A(atanhada=i(2—%§£—cﬁ)-i(2—ﬁ_’%]lﬁ). (B.14)
_j e’ e

0
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- + ‘
APPENDIX C. INTEGRALS FOR e + e _>Ve + Ve + v

In the integrand for Gb in (III.11), K = p+ +p -q. We
do the remaining integrations over the photon variables in the center-
of -momentum system, keeping a mass A for the photon wherever a
divergence would arise in the limit N - 0. p and w are the momentum

A A 2
and energy of the electrom and p = p e - Then KW = - t + 2‘/3 q
- -2

and q°K = -dt q, with t = - (p+ +9p)

b
For ¢ we neced

r 3 - + oy 2 2,2 2
I=j-d-—-‘l KZ(K2+m2) (—P——_ -—-P—) + 4x? - 2 K)_(K _"'_m)
d a’p  qp’ ap qp

(C.1)

The second and third terms are finite for N = 0 and give

2
1'_4,ffdqudq{2(t+2,~f-‘ )+t(ter ;%q»/?) , (C.2)
- 0

w -px)
where x = % ~a. We obtain
, | ] ) 1
' = Q%ﬂ W4 1 (1og %4t—§) [} + éﬂ?:} - 17 . (€.3)
B - B bw J
For the first term
2 2 2 2
__P..__ _L _ 48 (1 -v'x") 4
2 22227 (€.4)
q* P q’ P

qO (1 -V B )
with v = g/qo, and
K2(K2 + m2) = £(t - m2) + 2q € (-2t + m2) + 4t q2.  (C.5)

. 2,.2 2
The contributions due to the terms in K (K™ 4+ m”) proportional to gq

are finite for A = 0. They give
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I""323‘El:6w +m-][1+1+8 1o if—%] (C.6)

There remains
2 2 2
zﬂdef —-g'—t(t-m2) 48 (1;‘2”2‘)2 - 8n8% e(t - md) I, (C.7)
(1 -vBgx)
for 2
]._f W ) 1 vm=l_>\'...___
J = |dx qqu (1 "VX) dx f v2dy 2w 1 -vzxz
J 3 2222 J 2 22 2.2 "
9 (1 - v'B™x) 1 -v (1 - v B™x)
-1 0 -1 0
(C.8)
v Vi
2.2, _ vzdv 1 -v2x2 1 -vzxz
R(B =) = 2 2222 J 2,2 2
1 -v (1 -vpx) G(Bx) 1-v (1 - v Bx)
0
1—x2 2w L1~B X
= ——————>p log — + =
2
(1_32 2) N 2 B (1_B2x2)2
1+l52 :! 1081+§x
(1 - Bzxz) 1-Bx
2
"'1_2L 12 (c.9)
2B (1 - 87x)
1[1+EE 1+8 _, 2w 1 1+ B 1+ g
J == log - 1‘] log == + 523 log -
g2 L 28 1-p - » 2B 1 - 85>
(10g 4 2) ( log %—%—%)
1 -8
2 ’ . . ;.~
4p \ "‘J



- 75 -

From (C.2), (C.6), (C.7), (C.10) and (III.11), we obtain the result
for db in (II1.18).

If we multiply the integrand in (C.1) by q, = qx, we see from
(€.2), (C.4), and (C.5) that the new integrand is odd in x, so that
the integral vanishes. For a in Chapter IV the integrand in (C.1) is

multiplied by 95° We have done first the q and second the X integration

to obtain (IV.4a).
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APPENDIX D. INTEGRALS FOR THE LUMINOSITY CORRECTIONS

For non-relativistic electrons and positrons in thermal

equilibrium with radiation

;T m(v+2 + V-z)
1 f 2kT
(v) = (‘—————L—-——— ) = kT dl +2dvojv dv / x R
a2 -2
A - v_) el JQV - )
(D.1)
© AT oA . . .
where x = v *v . The integration over x gives
-3 > 2 _ m(v+2 + v-z) _ .
- - + -2 -2
( % (55\ J[ vdv e 2kT E@v + v )2 - /(v+ -v )J.
0
(D.2)
Let y = v+ +v and z = v+ - v . Then v+ = X—g—é, v = X_%_E 3
and dv+ dv = % dydz. Making the transformation of variables,
v =3
1, 1 E’E)
<) —x(m/ I, (D.3)
where >
< b m + z
1 2 2
I=3 dyjdze (v -2 - lz)),
0 -y (D.4)
o Yy
1 o2 + 2
=Zdyf (y Z)(y -z7)(y - 2),
0
with a = m/4kT. We need
y
az? 2 2
Jl = | dz e (y~ - z7), (D.5a)
0

and



y
' 2
J2 =/dz e 8% (y2 - zz)z. (D.6a)
0
; A
2 2
Jl = (yz + 3 )mj e 3% dz = (y2 + é— ) L J[ dt e-t
da 'f'a!
0 0
R G2 r ey’
= (y + = ) qu eerfE’y) = Z(aﬁf - 2a3/2 erf(J_; y) + 95 ©
) (D.5b)
y
2
Jz = %[dt (y2 - t)e-at = % [e-ay -+ (ay2 - 1)] . (D.6Db)
2a
0
From (D.4), (D.5), and (D.6)
1 | -3 2 | NED 2 2 _ 1 -ay?
I=7 dy e 27 3/2 (v°a - 1/2) erf(ld v) + Léz*-g——l '
2a 2a
0
1 [ KT 5/2 [ -uzf- 2 1 2 ~u2
= 4Jf; ( ) du e  {u(u - 1/2) erf(u) + = (U™ - 1) (e - 1y
/o J 1 .
(D.7)

The first term of the integral in (D.7) can be done by parts and the

second is straightforward. We find

o]

—u2 2 3
J du e u(u’ - 1/2)erf(u) = w5 (D.8)
0]
and 00
' 2 2
1 . -u 2 -u 1 3
;T;’/;u e (u - 1) (e - 1) = P (D.9)

0
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With (D.8) and (D.9), we have

=J;'(k_1

my

2

and finally substituting (D.10) in (D.3)

() /%?

In the extreme relativistic limit, from (IV.25)

[oe) o0 + ...1
4 16 2 ¢°+? 3 b _+Dp
G +[- . - 1
(E%) = A P dp Jp dp e kT dx(1l - x)
e (27) 3=x
0 0 -1
' 11 o 2pp (01 -3%)
e _LL O
[} + ~°1 8 log m2

1
_ + -
(dx(l-x)z[A-Blogzpp(;-X)_%
o m

-1

wloo

3
Using (D.13) in (D.12),

2

du =_____8G , @ 11l o (VA 9
(dt)er 3 ((1+T[ Lt I{)3.4.(1@)

_1!-_ & 1 5 ' b X
- T8 [%.(kT) J3 + 31(kT) Ja:lj )

where

4p.p
( A+ B/3 - 8 B log L 2) .

.10)

(D.11)

(D.12)

(D.13)

(D.14)
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~ - B
(.3 2p KT _ 2kT | 11 _
J3 ij.p dp log o © = 6 [}og o + o q] s (D.15)
0
and
e
4 2 " & T 2K 25
= 2p kT - 2kT 25 )
J4 ~jrp dp log m e 24 [}og o + 12 é] 5 (D.16)
0

with Euler's constant G = ,5772 . From (D.1l4), (D.15), and (D.16),

the result (IV.26) follows.
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APPENDIX E. INTEGRALS FOR v+ e SV, + e + vy

We write the bremsstrahlung cross section as the sum of

two parts,

2 |
do _ G ¢
il [j 4—5{}, (E.1)

where iny/ no divergence occurs when A — 0

3 A 3
J7 "d”p r 3 a’k
1 2 2.[d’q 2 4
= %t + (@, -p)) o 0y tk -py-ky-q)
d?ﬁ (250) E, 99 2
i\
1
—_— / P (E.2)
('Pl’kl) ]
where
P p 2
. 1 P2
i=1p, kl Py k2 (——Q'P ——q-p ) (E.3)
1 2
and
P,.P
. . 1 _ 1 1:°2 ) v .
j=pik pyky (q'Pl q'P2> + 3P, 4P, (Pyky 9k, - pyok; qrky)
Py kypy -k, PyrkyPyrk, pyckjack, Py ky -k
+ - - 5 (@ + q-pz) e
9Py q°P, (q-p,) (q-py)
2
(m™- q'pl)- (E.4)

As discussed in Chapter V

£ S - 2\2/umm

N-l=

(E.5)
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where

1\, 3 d3k L1
il B e S S S T
3 2 9 ky 1 1 2 2 (-p1 kl) 3,
1 q 1 i
= = dg ————0rt . E.6
25t eJ( Qq (-py k) 3 (E.6)

The last form in (E.6) holds in the a + ﬁz = 0 frame with

E1 ; in (E.5) are the initial and
2

final electron energies in the c.m. system of the initial neutrino and

2
€ = El + kl - E2 and q = (" - KZYZe.

electron.

We do first the integration for I. We have

2 . ' 2 2. -p
1=2-9ay 5,4 +E )J B - L2
2nc) a2 ) @y - 5@ @ty - Do d) (Eray - By
2% " Py 299 T P ¥ 19y T Pyvd
2
n
- a a2
(E1qy - Pyd) J
1 1
: A
2 (_ of Gt [;X (E, + p, D%
T 2 2
Ly
E + p2 x
+ 2m cosh 6 dr s (E.7)
E q9 - P, qX)
0 -1

where pn =P, + ’q(p2 - pl). Completing the angular integration

SE_ 2 '2E2€_ 1 1 E2q‘0 + qu
T=29"m |3 72 77 - 3 log
EZ qO - Pz q qu Ezqo - pzq
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A, >

A s F
' PPy PP
2 [?(Ez 4127071 1 _P17Pa

2 2 2 2 2 32

) E1qo+'p1‘1:]
og ————=—
Bidp = P14
1, ) a Y E b AN
2 ’ Po Pyrd™y 1 PPy
+ 2m cosh@/dnl}(Ez-}- > E22_.22-23
o q pn n 9 Pn q q Pq
+ p q I
log (E.8)
- P q

The integral over n can be simplified. Using the relation

PPy _a (n.)
3 dnip /2
Py 1
b D + E.q. +
P,°P q p_q q P.4
hj dn —=—=1 1og 00 " L, -10 1
Py Enqo - Pd 1 B9y = P9
0 1 dE_ dp_.
2 —1 _ g 1
N 1y | Py n dn_]
oAy L2 2 _ 22 ’ (E.9)
o M 1 % Py 4
with which we obtain for the 7 integral in (E.8)
1
E.q. + p,q €E
L jog 10 L _ o4y qz ; 21 — - (F.10)
4P E499 - P4 ETl 49 " Py q

To do the remaining integration it is necessary to express the
E- 9 =
variables of the q + k2 = 0 frame in terms of invariants and those in

terms of the c.m. variables. The following relations will be used, in
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which several new variables are defined.

2
€= - (py Tk - p) =25 & - E,

where x = E, - E2 P

2

m
=
"

Cc
-(pl+k1—p2)p2—JsT'E2 -m

/ 2 2 _ c
€ E2 -m = Mg“pz ’

= c 2 2
1 = (P]. + kl - pz) .Pl _I\/'S-‘ Pl - 2m sinh o= y1,

=y, =J§(P1c - x)

m
=

)
I

M
=
1l

e:JElz - m2 =z, (E.11)

M
o

Y
]

E.q, +p.4
The terms in I proportional to log E_E____—_— have no
i

- p,9

divergence when A — 0. They contribute

2
F m £ 1 1 c 2 .
] = df(s,@) t 3143 04§'p1 + m sinh 0)

248 Pq 24§‘p1 m
E log —0 1ogy_1_i_z_q:|
0 v 2 2 1 Yy 2
1 c 2 2 2
+ ZIZJ; Py + 2m cosh™ ¢ - 4m cosh é] [}1 log 5 )
y, + z°
- 2z, log -—]"—_—;9-] . (E.12)
17 %
' c 2 . s , .
Here zy = dg‘pl - m sinh 9. (This can be negative, in contrast to

€Pq3 the integration gives a function invariant under the transforma-

tion (e pl)o - - (e Pl)O’ so that we can take Zg instead of the

correct (e PI)O = ]zol.)
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Als,0) = L( 55 ) + L(1) - i(ee) - 1.(§§ e’OJ. (E.13)
m

m

The remainder of I, which contains the infrared divergence, is

2 s -
AR 9F  wlq? [, P1Patoh 1
p 2.2 _ 22 € 2 2 e 2 2 2 2
ZqO qu plq 1q0 'qu
: 2
" 4m” cosh 0 ¢ E2
+j e e T (E.14)
. E -
; a(E gy - P q)

R 2
It is convenient to use the variable x, which ranges from A /248

to x = Elc - Ez—. For )\.z/m2 << 1, the first term in (E.1l4) is
c
2 sx(p - %)
k2 . - L , (E.15)
sx +;l'§ [s(plc - x)2 - mznlé'{l
m
and contributes
jIRZ Xm o Xm
== - log i (E.16)
Py Py

Similarly, we obtain the contributions of the second and third terms

of IIR in (E.14),

IR X mx &8 (sp €2 _ mésinhz@ y
1 o9, m + 1 1o 1
c Y Yy &

2p 4m” ¥3p,© “0

(E.17)

2 2

and
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l

c
;R12 2 cosh 1 p]_

2]
Jdﬂ 5 - X +T
]:1 + 47(1l - n)sinh ¢ :’ n

2 2 L2
m xm s l-l + 414(1l - 1)sinh cp‘]
2
A2 E\/E' plc - 2‘qm2 sinh’ cp:}

Finally, the integral over 1 gives

log (E.18)

IR12 xm m x 1
= 26 cosh 69 - — + log + D) log (2 cosh o)
1 Py A pl
2 : l
% log [ - Zm " sinhch (1 + )_l
A p]_ ' 2“/—‘ Pl -
J R 3 o\ J
e e - -
+ ctnh 6 1 E(Z ppvy CP) ~ L (2 Py CPH !_E(oz+) L(x )
+ E(c) - L(CQ]} , (E.19)
where
2 - ) B
a, = - sinh ¢ e ¥ Ll + s sinh g e ﬂ,
T Ay A p,
m2 2 -
§+ = p sinh @ e CP/ [ - sinh o eqj .
T NE'py s P1

For the computation of% s wWe write j Z _7, to which

6
i=1
Z J. corresponds. The Ji are as follows:

i=1
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. 1 1
J = p ck P ok (——_ - __)
1~ P17%1 Py . )
Z\ap; q'p,
i P1'Py _
727 a'p; a'p, E’z'kz Tk TPk q'kzj g
Py'ky Pytky  pytky ook,
jqa = R - -
3 q9°pq 9P,

2

2
PO s W Ml

‘ (app)” ’
a'p,

2
m p2'k2 q'k:L

j - s
)’
q+pq
Pk, g°k
i, = - —2-—-2——1- (E.20)
6 9°P4
From these the following Ji are obtained;
LY - E - - E
PPy By 2 TPy PyoPpfyi\ B tpy
J1=-1+———2-+—-10gE—":——'-E2+ 5 5 1gE_ s
p,” P2 2 " P P, 1 1~ P
- -
2 2 E E, +p ‘P4 °P
J2=-mcoshc8 249 (57, - 43 5,5 - 210gE2_ 2_2(122_1)
248 Py m sinh 6 2 2" Py Py
- 2F 2(c+E, -8) -NFp.%E E. +
2  (MleET R, T § Py By 17 P
+ + 3 log E - R
Py Py 1 %1

E E. +p E E, +p
J3=1--—llogF1_ 1+ L C[@Ezc-mzcoshﬂ[—glogigﬁg—ﬂ,
Py 1 7Py % py Py 2~ P2
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E,+p
S 2
J, =— 2 + == log
4 2p2 E, - Py
2g E, + 5 b
m P, PP
1 2 1 1 72 2
J. = E,(e + E,) log + l:(y +m)
5 o, 2 2’ " 2p, E, - Py 2 1
(e + E)m’ E. +p
} 1 log =L 1:\
Py 17 P
& S 2 2
C170p) -2, 2 Em  Ete
- A E1 +m - log o
p 1 1P
1
n2 l: : )ZJ [ E . E, + pl‘}
+ =z 1P, 0P PP - og - P
o 4 | P1 P2 1 P2 2p, E| - Py
1
E (c + E E, + . p
e ple T Eyp) P P1Py
36 = p log B - 2E2 + 5
448 p, P1 SRS Py
¢ E E, +p :
( 5 1 log 1 L. Ze)
1 E1 - p1
G, 5.)°  [E E, +p, -
1’ P2 1 17 P,
' 5 Ep\p, 8 E -5
Py Py 1 "1
2 E, +p 1
> m 1 1
Py 1 1 1

(E.21)

c
The integration over E, can be done exactly, but as we do not use

the exact results and they are very long, tabulating them here does

not seem warranted.
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APPENDIX F. THE HIGH ENERGY CONTRIBUTION OF B FOR Ve + e —ave +et+y

In the lab system, when the integrations over P, and k2 have

been done first,

1 qmquk
h 1 2 Zp 'p
1 P2
J = Lm dxk q d‘f’zll'ﬂ__CL (' 7 " T e

q 0 i} (q.pl) q pl q P2
2
- ——_——2-) * (F.l)
(q°p,)

X = A-ﬁ =5.°q d =P % I ! is given by th
gk = UKys %o = PyTdy and xp = pycky. In 70X, 15 glven by the

conservation of energy and momentum for specified qu,q, and Py

(We have taken mq = 0.) The criterion that Xop be real restricts the
range of the subsequent integrations, @, to some interval R contained
in the interval [é,Zn:] and q to be < qm(qu),when the order of the
next integration is as specified in (F.1l).

We wish to compare J' with

L (X )Zﬂ
- qm » 2 2p.*p 2
B = -—1 d: u {1 d - o - L 2 - &
2 B bt qu q ~ q)q‘ 2 2}’
- . - . .
3 ; 0 (@'ppP”  a'py APy (a°py)

(F.2)
where Py is fixed by the elastic kinematics, E2L = m cosh 6, and
o =(m + k)/k tanh 8/2. (The arbitrarily choasen P, = 0 here is inter-~
changeable with qh.) Correspondence of the dominant terms at high

energy and large momentum transfer of \7' and 2x B means that the

restriction of the o integration in \7', the phase space factor
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-1

' % §;~g , and the dependence on q in x,, in J' do not affect
the logarlthmic terms.

First let us demonstrate the correspondence for the two
cases discussed in Chapter V. The limits of \7' are given there.
We meed to compute the appropriate qm(qu) and the dominant terms of
27 B. Yennie, Frautschi, and Suura give the limit of 2x B for 9, isotro-
pic when the initial and final electron have the same energy.

In the lab system, in which the initial electron is at rest,

most of the integrations in 2x B can be done for general qm(.Q ). We

Py > "

let § = » v =% , and x = v-B. Then we have
£ 9o
25§ = (dg laq 8701 - v'x) (F.3)
“rf 4] o - vpo”
0

If the q integration is transformed to integration over v, this

N 2001 - 22
2x B = dg B S YE (F.4)
1 - v (1 - va)

2
where ¢ = A /Zqi , N being the small photon mass. For the integral

becomes

over v we have

1-¢
A l]f vdv 1 - vzx2
J(Bx) 5 1 v2 (1 - vBx)
2
2 | 2 2 2
= % (1og' qg ) L - x 5 + [% (log 2) 1 - x 7 - (1-x) 55
(1 - Bx) (1 + Bx) (1 -Bx)(1 -Bx)
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+ 15 (1 + 7 -IBX) + ; log (L - Bxi] . (F.35)
B B x _
Then
2 ] q 2
27 B = g; dg (1og —%)-——L—:;ﬁ—i + C, (F.6)
d (1 - Bx)
where in terms of 9 defined by t = - 4m2sinh2 6/2 and using (B.13) to

simplify the expression,

C=0C@) =1-21og2+ (2 tanh 0) Hi(?® - 1™ 2%

+ 20 |:1 - 2 log (sinh 9):\} (F.7)
This is the result Lee and Sirlinls) give for C in JSOft Y (= 2¢ %3.
For 0 > 1
2
C(B) ~ 6 + 26 log 2 - 67, (F.8)
The remaining integral is
2
[% ctnh 6 - i} log LU 7
2 0
- N
where .
o, 2 q 2
JO = %fdgq (1og f)————l = 5 (F.9)
: (1 - Bx)
Altogether
~ | m2 ’
20 B = [? ctnh 6 - £] log - + Jg + C(6). (F.10)
A

We found it easiest to compute qm(qu) from the conditions
set by the delta functions when the Py and k2 integrations are done in

the frame in which 52 + EZ = 0. The delta functions of energy,
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B(E1 + k1 -4 - E2 - kz), and of t, &(t - (p2

N a
integrations over the q momenta to leave, in the P, + kz = 0 frame,

- p1)2) restrict the

E-m +k -

1 1 4, >m (F.1lla)

and

|§1"132} <1, (F.11b)

In terms of invariants these conditions become

- (pl + k]_ - q)z > m2 (F.12a)
and
] , I3 |
a2 +/Z 2 _ 24 cosh 6 + ngsinhze <0, (F.12b)
4 1 ( 2 1/ 2 -
where

2 2
A - - 5 . _ iy _E-+m”
d%& Pl (pl + kl Q) andj?; = 5 .

In terms of the lab system variable (photon energy q, incident

A A
neutrino energy k, qu = q*k), the conditions are

mk
g <
m + k(1 - qu) (F.13a)
and
- k(1 - x.) mte
¢ -
—En sinh @ e - -——2—3‘—1 l:q - q{lb - q] <0, (F.13b)
where

* _m e+ sinh @[k +m e+ Cpsinh @J
q 7o k(1 - x k) '
me sinh © * —__—Zf—iL__

(F.14)
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The conditions are satisfied for 0 < q < qm(qu), where

q+(x ) x . <x
- gk’ “qk = 70
dpy (g ) (F.15)
4 (qu) ¥ = qu’
with

2 o

2 2
Xy = 1 - —i—' sinh" o/ |k - 2mzsinh2cp . (F.16)

+ - . .
q (XO) = q (xo) is the maximum photon energy at any angle and corres-
ponds to the final neutrino having zero energy.

In the limit a >> 1 and vy << 1 for high energy and maximum

momentum transfer, the maximum lab photon energy is

m
5 qugxo—-1+2y
qm(qu)~.
m 3 -
———1—1 y qu %0 1+2y < qu. (F.17)

In the c.m. system even more than in the lab system, qm(qu) is

eaked at x , = - 1.
P , 1
T 3 r}'{O + 2 -
2 { do ' g (x,) 1 - x,. q (x )"
j SN A dx log ak B 4 [ax (10g —“_q'k_)
0o 2 2z | qk m 2 qk m
- q XO
2
1 - X2
_CL.2 . (F.18)
1 - .
( szq)
Here
2 2
2q = qu X2k + Jl - qu Jl - Xy cOS Cpq,
and



- 93 -

The contribution of the first integral in jg vanishes as y — 0.

Taking the limit vy — 0 for fixed large a, x

that
) ok -1 and x2q _;qu, so tha
2 1 . 2
7 B ( Y ) 1 - x
¥ dx |\log .
0 2 1+ x (- BX)Z.
-1
1 (F.19)
1 1+ 1 - %
= (6 ctnh 8 - 1) log Z— +.§ dx(log 5 X) - X .
- (1 - BX)
-1

The last term can contribute no logarithmic terms when p — 1 for
0 ~ log a >> 1. With C(8) from (F.8) and (F.10) for Za’ﬁ we have
in this limit

2

2
2728 - (6 - 1) 1ogm§+(9—1) 1ogz—'+6+26 log 2 - O
A

2

2 2
= (8 -1) |log EE + log XLE}, (F.20)
N a_l

which is the same as (V.25) for .J'.

0
Turning to the case where not only a >> 1 and e >> 1, but also

0
a -e >>1, we have, with X, -1,

m
—B x . <x
1 -x gk = 70
q_(x_.) qk
“n gk - (F.21)
2 %o s Xk

This maximum photon energy distribution, peaked in the forward direc-
tion, corresponds to an isotropic distribution in the center-of-
momentum (c.m.) system of the initial neutrino and electron. In the

c.m. system the maximum photon energy would be #8/2, which is the
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c ., i .
same as E1 in the limit a >> 1. With this value the results of

Yennie, Frautschi, and Suura give

2 2

25 B ~ (6 - 1) log —m—z+-§— . (F.22)
A

This is the same as the contribution of /' to J in (v.26).
The dominant terms of]0 can also be found in the lab system for this
case and with the other contributions to 2x B give (¥.22).

In these limits J' corresponds to 2= B because over most of
the important range of integration the high energy and very forward
electron is little influenced by the kinematic restrictions due to

the presence of the photon. The @2 integration in,]' begins to be

= 1 to be possible.

restricted when q(qu) is large enough for Ko

(This can be seen graphically.) The restrictions begin for

q'(x.) = m sinh @ e-®[k - m sinh ewj
gk

)

m sinh @ e © + k - m251nh 0 (1 - x

gk
]
Here, as before, @ = 6/2. For a >> e >> 1, q'(qu) —aqm(qu).
For a A,ee > 1, q'(qu) —aqm(l). Because of the matrix element it
Y
is the forward direction (about parallel to pz) which is important.
Thus, in these limits, over most of the q range, %, is unrestricted.

The restriction of $2 corresponds to the fact that for q(qu) >q'(x k)

ox, . -1 q
—2q

the phase space factor 1 - k.axzk

has a singularity at the
boundary of the allowed ¢y variables. But for ¢ S,q' the phase
space is about that of a photon indpendent of the final electron and

neutrino. In the matrix element the dependence of xzq on q is small
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a -
for q approximately parallel to p, and the integration over 9,

tends to average out the difference.
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Figure 2

\ , . - + by
Diagrams for the virtual photon corrections to e + e —aVe + Ve.

Figure 3

. : . - +
Diagrams for the bremsstrahlung corrections toe +e - + V.
e
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— — — total correction to O (E‘é>Eo)
18
16 |-
14 -
"o
L
< 12
L
1
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8 b
6 -
_— k=100 MeV
%) EE TR TN N N N M M B
6 8 10 12 14 16
Eg (MeV)

Figure 4

Radiative corrections to U(EZL > EO) for Ve + e —aVe + e. f(k,EO)
needs modification when k - E0‘~ m. The percent total correction

is for A -mN.
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8 L
. L k=14 MeV
—_— (52>Eo)/00 (E3>Eo) f°'{Eo=8MeV

[0 (%)n.r./(%)o,n.r. for Tg~1

7 - e2<r?> /6
6 € /vz
5.._
f
4 /
I
]
|
3 !
I
I
|
2 !
I

| | ]

]
0
Ui
6 4 0 4 6
1<r2>1 (107! e¢m)

Figure 5

The dependence of G(EZL > EO) and (du/dt)n L, ot the neutrino charge
radius.,
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