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ABSTRACT

Several interesting and practically important types of ioniza~
tion phenomena which occur in a plasma that is composed of thermi=-
onically-emitting particles and an ionized gas, have been investigated.
There are many interactions that can take place between the particles
and the gas which are able to alter the electron density of the plasma
appreciably from what it would be in the absence of the particles.
Several of these interactions have been explored. Throughout all of
the analyeis, the emphasis has been placed on gaining a physical un~
derstanding of the basic phenomena which are involved.

In order to determine the nature of the potential and charge
distributions which exist in a gas - particle plasma, the problem in
which there is no gaseous ionization and equilibrium prevails has first
been thoroughly investigated. Using a family of numerical solutions
to Poisson's equation, it has been shown that these distributions can
be divided into iwo characteristic regimes and that a simple algebraic
expression, whichhas been derived, is a good approximation to the po-
tential distribution in one of them. A readily applied method of calcu~-
lation of the electron density in the plasma and a study of the depend-
ence of this densily on the initial parameters which enter the problem
have been presented.

The relations which are required in order to analyze non-
equilibrium ionization phenomena in a gas - particle plasma have becen
formulated and then applied to various special cases. The case which

has received the major emphasis is that in which the particles are
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hotter than the gas and an enhancement in the gaseous ionization re-
sults. It has been shown that this enhancement could be quite large.
Electron absorption by the particles, particle quenching of the gase-
ous ionization, and the supression of either particle or gas ionization,

due to the presence of the other, have also been investigated.
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I. INTRODUCTION

A. Background

At present, there is a considerable amount of interest in the
academic, military, and commercial fields in the physics of plas=
mas. This interest centers on the capability of a plasma, a gas with
high concentrations of clcctrically-charged spccies, to interact with
an electromagnetic field. The attention is usually directed towards
either the action of the electromagnetic field on the plasmaj as in a
plasma accelerator, a plasma power generator, or the modification
of re-~entry flow fields; or the attenuation and scattering of the field
by the plasma, as in signal transmission through a plasma structure,
radar tracking and discrimination of re-entry bodies, or micro-
wave diagnostics. In all cases, the strength of the interaction is
largely determined by the magnitude of the electron density in the
plasma, and any phenomenon which could appreciably alter this den~
sity is worth considerable attention.

Several such phenomena arise directly from the fact that the
degree of ionization of a slightly-ionized gas in equilibrium varies

“V/IKT G here V is the ionization potential, k

approximately as e
is Boltzmann's constant, and T is the temperature. Variations in
the temperature of the entire system, variations in just the electron
temperature (produced by the'application of an electrogmanetic field)
or changes in the effective ionization potential (produced by seeding

with an alkali metal vapor) are all able to produce relatively large

changes in the electron density. Recently, attention has been
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directed towards phenomena arising in plasmas that are composed of
two states of matter, gas-solid or gas-liquid, in which the non~
gascous statc is in the form of small particles, 107 6 10”3 cm in
sizel. The primary consideration here is the magnitude of the elec-
tron density existing in this type of heterogeneous plasma relative to
that which would exist in a pure gaseous plasma. In many situations,
some in which the thermionic emission frorﬁ the particles is of im=~
portance and others in which it is not, the electron density may be
considerably altered due to the presence of the particles. The anal-
ysis of ionization phenomena in a gas~particle plasma is the subject
of this investigation.

Gas~particle plasmas arise in many areas in which the inter-
action with an electromagnetic fleld is, or could be, of large im-
portance. Several of these areas are mentioned below.

1. The combustion products of a solid rocket motor contain
alumina particles approximately 10"‘4 c¢m in diameter. The detec=~
tion and communication difficulties associated with the high electron
densities in the exhaust plume are well known.

2. In MHD power generators which employ an alkali metal
vapor as the working fluid, condensation of a fraction of the gas into
liquid particles can occur in the nozzle used to accelerate the gas in-

to the electrode section. The problem here is with the alteration of

the electrical conductivity of the plasma due to the presence of these

1 The word "particle' will always be used here to denote particles
of this magnitude rather than those of atomic dimensions.
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particles.

3. In fuel-rich hydrocarbon flames, the unusually large
electron concentrations observed have been attributed in some cases
to the thermionically-emitting carbon particles that were formed
during combustion.

4. In astrophysical investigations of interstellar matter, the
interaction between small dust particles (~10-'5 cm) and free elec-
trons has been considered.

5. The electron density in wakes of re-entry bodies may be
influenced by the presence of particles.

One of the first studies which examined an interaction be~
tween charged particles and an electron gas was done by Spitzer
[references 1 and 2, 1941 and 1947, respectively]z, who was con=-
cerned with the physical properties of the interstellar medium, in
particular, those which are influenced by the presence of small dust
particles. In the course of this work, he calculated a kinetic-theory
capture cross section, taking a ' sticking factor'' into account, for the
electron-charged particle collision.

In 1949, Parker and Wolfhard [3] investigated the formation
of carbon particles in hydrocarbon diffusion flames and found them to

6 ., 5x107° cm. Sug~-

be of graphitic structure with diameters of 107
den and Thrush [4] experimentally investigated the unusually high

electron density in fuel~rich hydrocarbon flames and attributed it to

The references indicated are listed at the end of the text.
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thermionic emission from the carbon particles formed. They noted
that an additional term should be added to the thermionic work func-
tion to account for the positive potential built up on the particle due
to its loss of electrons. Shuler and Weber [57] also measured the
electron density in flames containing carbon particles and attributed
their findings to thermionic emission. However, in their analysis
they erroneously assumed that the energy for an electron to escape
a particle was a constant; that is, that the charge of the particle
could be neglected.

In 1956, Einbinder [67] pointed out that in a system of ther-
mionically-emitting particles, even if all particles are identical, the
charge on any two particles need not be the same, and he calculated
the equilibrium statistical distribution of particles over the '"ionized
states". Unfortunately though, in his analysis he neglected the pos~-
sibility of electron absorption by a particle, which was in essence a
neglect of all of the ''megatively ionized states'. Smith [7,8] cor~
rected this oversight, made a more rational definition of the first
ionization potential of a particle, and greatly simplified the statisti-
cal calculation of the electron density. He showed that the distribu~
tion of particles over the ionized states is a Gaussian and also
derived a relation for the electron density in a system in which both
thermionically-emitting particles and an ionized gas are present.
Millikan [9] measured the gas and particle temperatures in an at-
mospheric pressure,premixed ethylene~air flame and found that,

within experimental accuracy, they were almost the same. He thus
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concludedthat the radiant-energyloss from the particles and the energy
transferred to the particles by surface reactions were not large
enough to displace the gas and particles far from thermal equilibri-
um. Also, from electron microscope pictures of the particles, one
of which is displayed in his paper [97], he obtained particle sizes of
10"‘6 to 4X 10"6 c¢m. From the picture presented, it is seen that the
particles were approximately spherical in shape.

Sodha [10, 117 used a kinetic theory approach to analyze the
thermal and photoelectric ionization of a system of solid particles
and studied the propagation of electromagnetic waves through such a
medium. Rosen [127 has proposed that in a plasma composed of an
ionized gas and particles which do not thermionically emit, itis pos-
sible for the particles to absorb or capture an appreciable fraction of
the total number of electrons produced by gaseous ionization and
thereby greatly reduce the electron density below the value it would
assume if the particles were not present. However, Allport and
Rigby [13] have pointed out that, in practice, it is extremely diffi-
cult to find particles which could act as electron absorbers in a
high-temperature gas plasma (~3OOOOK) because, at high tempera~
tures, most ma.térials become good thermionic emitters or introduce
metal vapors into the system which ionize and actually augment the
electron density. Soo [14, 15] has recognized that, in many situa-
tions, the potential around a particle cannot be assumed to vary
simply as 1/r and that, when the electron distribution outside the
particles can be assumed to be continuous, the potential distribution

should really be found by treating the situation as a shielding problem.
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In addition, he considered the interesting and practically-important
problems of electron~density variation due to initially-charged par~
ticles, the electrical conductivity of a gas-particle medium, and the
time for the equilibrium-charge distribution to be reached. However,
there are several fundamental errors in his work; a major one is
found in equation 1.1 in reference 15. This error is discussed in
Appendix B.

Carlson [167] has experimentally demonstrated that in a gas~-
particle nozzle flow, an appreciable lag may exist between the parti~
cle temperature and the gas temperature, the latter of which is
changing rapidly. Spokes and co-workers [177] have been studying in
detail the degree of particle ionization to be expected in a gas-alumina
particle plasma which is formed by the combustion products of a solid
rocket engine.

The capability of the particles to alter the electron density of
the gaseous medium is not the only interaction of importance in a
gas=~particle plasma. When a system’s temperature and momentum
are changing in time, as in the case of nozzle flow, the changes in
the particle properties will lag those of the gas,and the transfer of
energy between random thermal motion and directed motion will be
modified. Extensive studies on this type of gas-particle interaction
have been carricd out by Kliegel [18], Hogland [197, Rannie [20],
and Marble [21, 227]. However, in all of the analytical studies so far
mentioned on the level of ionization in a gas~particle plasma, it has

been assumed that fluid=meachanical interactions of this type and in~-
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teractions directly affecting the ionization are uncoupled so that the
temperatures and densities of the particles and the gas are consid~
ered to be known parameters. This assumption will be discussed

in Part I1.

B. Objective of this Investigation

The main objective of this investigation is to develop both
qualitative and quantitative understanding of ionization phenomena in
a gas~particle plasma. Of special interest are those phenomena in
which the electron density of the plasma may be appreciably altered
due to the presence of the particles.

In Part II, the physical phenomena of primary importance
are discussed. Part III considers the special case in which the par=-
ticles are ionized by thermidnic emission but where there is no gas~
eous ionization. In addition to developing a means by which the level
of ionization can readily be determined, a great deal of emphasis is
placed on understanding the nature of the potential and charge distri~
butions which surround a particle. In Part IV, the sensitivity of the
level of ionization, in the special case just considered, to variations
in the parameters of the system is investigated. The parameters
which are considered are the thermionic work function, the tempera-
ture, the particle size, and the particle number density.

The special case in which there is no gaseous ionization is one
of two extreme cases, the other being that in which Lhere is no ther~-
mionic emission from the particles and only the gas is ionized. In

Part V, the additional relations which are required to analyze this
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second limiting case, as well as several other interesting cases lying
between the two extremes, are introduced. This formulation is di=-
rected primarily towards the analysis of a gas=-particle interaction
by which the electron density in the plasma may be made much larger
than that which would be expected from esither pure gas or pure par=
ticle ionization alone. That is, when the thermionically~emitting
particles are hotter than the gas, the electron temperature is also
higher than that of the gas, and the gaseous ionization is enhanced.
The assumptions and model used to investigate this phenomenon will
first be discussed. Then, the calculation of the electron number and
energy fluxes to and from a particle, a problem interesting in its own
right, will be investigated. In Part VI, the relationships which have
just been derived and discussed will be employed to analyze several
special cases of interest, including that of gaseous-ionization en~
hancement as well as two others in which the electron density may
be severely reduced by the presence of the particles.

In order that this investigation be limited to a tractable length
and scope, the gas=-particle plasma is treated as a closed system.
That is, lonization phenomena which arise due to the action of out-
side influences are neglected. Interesting interactions thus excluded
are photoionization of the gas, photoelectric ionization of the parti-
cles, and enhanced gaseous ionization through electron heating with
an electromagnetic fleld. An attempt has been made to carry out a
realistic investigation and, at the same time, to keep the formulation
of each problem simple in order that greé,ter physical understanding

may be obtained from the results.
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II. PHYSICAL PHENOMENA OF PRIMARY IMPORTANCE

In order to further introduce the problems which are to be
investigated, several of the more important physical phenomena en-
countered in analyzing the ionization in a gas-particle plasma will be
considered. The discussion will be directed mainly toward the prob-
lem in which only particle ionization is important. The additional

effects of gaseous ionization will be considered more fully in Part V.

A. Thermionic Emission

Thermionic emission may be pictured crudely as a '""boiling
out' of electrons from within a solid or liquid. Due to their thermal
motion, a certain fraction of the electrons in the conduction band will
have sufficient energy to penetrate the potential barrier existing at
the surface of the material and will escape,.

The methods of statistical mechanics may be applied to the
calculation of the electron density immediately outside the surface of
a conducting material; however, four main assumptions are involved.
birst, complete thermodynamic equilibrium is assumed. Second,
the interelectronic forces are ignored, and the electrons are regard-
ed as a free electron gas in which each electron has three transla~
tional degreecs of freedom. Third, the electrons are treated as
Fermi particles so that the Pauli exclusion principle is applicable.
Only two electrons may be in the same quantum state, and these
must have anti-parallel spin vectors. T.ast, each quantum state oc-
cupies an extension or volume in phase space equal to 1/h3 . The

calculation of the electron density immediately outside of a
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thermionically-emitting surface, N s is now straightforward [see

reference 23, pp. 18-227, and yields

(th) _ 2amkT 3/2 - e?/kT
= 2 —— e

n (2. 1)
E h
where
(th) . . .
np = theoretical value of electron density resulting from
thermionic emission,
m = electron mass,
h = Planck's constant,
ed = thermionic work function.

It is seen that the density of electrons outside the surface is propor=-

tional to the Boltzmann factor, oo/ kT

y» even though the electrons
inside the material have a Fermi-Dirac energy distribution. This
arises from the fact that the high-energy tail of the Fermi-Dirac
distribution is nearly equivalent to a Maxwellian distribution in its

B/kT >> 1, those electrons which

energy dependence and, since e®
escape are from this high~energy tail.

Several objections may be raised to the direct application of
this formula.

1) Some electrons which classically have enough energy to
escape will be reflected by the potential barrier.

2) There will be some anisotropy of electron motion intro-
duced due to crystal lattice effects.

3) In many cases, surface contamination and surface irregu-

larities exist.

4) The work function is found to be temperature dependent.
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Despite these objections, an equation having the general form of
equation (2. 1) is found to be valid, for most metals and many non-
metals, within temperature increments large enough to be useful;
however, the work function and multiplicative constant must be found

from experiment. Thus, the experimental.value of n_, is given by

E

o (ex) _ éex) T?J/Zc---e@/k']f‘

- (2.2)

where B(ex)

and e? are experimental values.
The experiments which are carried out measure the satura-
tion current due to thermionic emission from a flat, clean surface.

Theoretically;

e
J= g0 C s (2. 3)

where J is the saturation value of the current density, e is the

electron charge, Cfe is the mean electron speed, and N is the

electron density for the full distribution which is assumed to be iso~

tropic. Hence, n,, is directly proportional to J, and from

E
J(ex) _ A(ex) TZ e—e@/kT (2. 4)

B(ex) may be determined:

glex) _ ale®) (th) (2. 5)
= —W)—A - . .
Relatively small errors will be introduced in this indirect solution for
B(ex) because, in practice, the velocity distribution is noE isotropic

2
and the mean electron speed is not exactly equal to (%) » usually

due to a deficiency in low-energy electrons [reference 23, p. 17].

In applying equation (2. 2) to emission from particles in a
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gaseous medium, several additional factors must be considered.
First, when there is a net loss of electrons from a particle
due to thermionic emission, the number of electrons in the conduc~
tion band will be decreased. It will be assumed here that this loss
is negligible. That is,

g << a3 ne(c:ond)

(2.6)
where

Z = net number of elecirons lost from the initially
neutral particle,

a = particle radius,

n (cond)

e electron density in the conduction band of the

particle material.

(cond) _ 1019 4

Assuming that n_ cm™> for an insulator and a = 10”
cm, the loss from the conduction band will be negligible if z is very
much less than 107 s, a condition which is always well satisfied. How=
ever, in the case of very small particles at high degrees of ionization,
this assumption should be re-~examined.

Second, the surface charge on a particle will affect its emis~
sion properties. But, if the number of charges is much less than the
number of atoms at the particle surface, this effect will be negligible,
That is, if

z << (a./d)z R (2.7)
where d is the interatomic spacing, the work function will be unal-
tered due to this effect. For d= 10“8 cm and a = 10-4 cm , this

requires that z be much less than 108, a requirement that, as in

the previous consideration, is easily satisfied. The means by which
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the emission properties are changed is through the alteration of the
indlvidual short-range atomic forces acting on the electron as it
passes through the surface. However, the surface charge, when
acting as a uniform continuous layer, would not alter the work func-
tion because the potential across a single layer of charge is continu-
ous.

Third, if a gas is absorbed on the particle surface, the work
function may be altered by the formation of a dipole layer, across
which the potential is not continuous. At high temperatures, it would
be expected that gas absorption would be small, but further investi~
gation of this point for each gas-particle system is required.

Last, ngp has been defined as the electron density "immedi~
ately outside'' the surface. To what degree may Lhe lung~range polen=-
tial contributing to the work function, the mirror-image potential, be
separated from the potential which arises due to the net charge on
the particle so that this definition is physically meaningful ? To gain
an estimate of the magnitudes involved, the characteristic length of
the mirror~image potential will be compared with the particle radius.
The distance from the surface at which the mirror-image potential
falls off to .1 ev is calculated to be 3.6 X 10“7 cm. In most cases,
the particle potential will be much larger than .1 volt, so that when
the characteristic length of the potential sheath around the particle is
much larger than 10"7 cm, a distinct separation of the two fields may
be made. In Part III, it will be shown that the characteristic length

of the potential sheath around very small particles is usually the

particle radius. This point is further investigated in Appendix F.
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From this discussion, it is seen that the calculation of the
density of electrons being thermionically emitted from a surfacc may
be complicated by many factors, and in some cases, because of the
lack of complete knowledge of the phenomena involved, the results
are only speculative. Thus, it may appear that the results of an an~
alysis, which predicts the value of the electron density in the plasma

using n as an input parameter, would be open to serious question.
P "y

E
However, it will be shown that, due to the shielding of the particles,
the value of the mean electron density is usually very insensitive to
£ SO that errors made in the calculation of N will

introduce only relatively small errors in the estimation of the degree

the value of n

of particle ionization in the system.

B. Equilibrium

When complete thermodynamic equilibrium exists in the gas-
particle plasma, the value of the local electron density outside of a
particle will be proportional to the Boltzmann factor, eeé/kT ’
where ¢ 1is the local value of the electrostatic potential. In theory,
the establishment of a Maxwellian energy distribution for the elec-
trons is not dependent upon electron-electron collisions outside of a
particle because the energy distribution of the electrons thermioni-
cally emitted from the particles is already Maxwellian and will not
change as long as the gas is in thermodynamic equilibrium at the
particle fe.mperature. Also, the velocity distribution at the particle

surface will be isotropic because the half-Maxwellian distribution of

the emitted electrons will be complemented by the half-Maxwellian
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of the electrons which reach the surface from the gas.

C. DPotential and Electron Charge Distribution

The potential and electron charge distribution within a gas-
particle plasma are closely coupled to one another. The existence
of a charge distribution automatically implies the existence of a po=-
tential distribution. Also, because the electrons are free to con-
tinually interchange their translational and potential energies, the
charge distribution will be directly related to the potential distribu-
tion} in the case of equilibrium, this relation is given by the Boltz-
mann factor. Thus, in order to describe the properties of a gas-
particle plasma, the potential and charge distributions must be
determined simultaneously.

In the actual physical situation, the potential and charge dis-
tributions are likely to be quite complex in nature because the prop-
erties of the particles themselves are, to some degree, random
(size, shape, spatial distribution, and composition). In general,
there are twao distinct approaches to the problem of describing the
properties of plasmas, each of which idealizes the actual situation to
some extent.

The statistical approach makes use of the fact that, when
there is a very large number of particles in any one system, a sta-
tistical distribution of particles over the possible "ionized states"
can be determined. The electron density is then found by adding up
the number of electrons contributed by each particle in a unit volume.

The possible ionized states must include negative as well as positive
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degrees of ionization since electrons may attach themselves to parti-
cles as well as be thermionically emitted from them. In the statisti-
cal approach, no assumptions about the distribution of the particles
in space need be made. Also, the size, shape, and composition of
the particles do not have to be uniform; however, it is reasonable as
a first approach to assume that all the particles are identical in these
respects. Thus, the ionization of a system of thermionically-
emitting particles may be treated in the same way as the ionization of
a system of atoms in a gaseous state which can be multiply ionized,
both positively and negatively.

The major difficulty encountered in the statistical approach is
that the ionization potential for each degree of ionization must be
known. If it is assumed that each electron which is external to a par-
ticle is effectively an infinite distance away from it, these potentials
may be easily determined. However, in the actual situation, the free
electrons may be considered to be at most an interparticle distance
away and, in some cases, there could be an appreciable fraction of
the net total number of electrons emitted by a particle located very
close to the particle's surface. This last situation would be analogous
to a multiply—ionized atom in which there were many more electrons
in the '"'excited states' than in the ionized state. It follows that if the
statistical approach is to be used in a rigorous way to calculate the
electron density in a system of thermionically-emitting particles, the
continuum of energy 1evelé and the corresponding statistical weights
must first be known. The difficulty encountered here is traced di-

rectly back to the coupling which exists between the potential and the
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charge distributions.

The second approach to the problem is one which begins with
the examination of a one-particle system. That is, each particle in
the plasma is assumsad to be identical to all the others in every re-
spect (size, shape, composition, and degree of ionization) , and the
particles are assumed to be uniformly distributed throughout the
plasma so that a volume equal to one over the number density may be
allotted to each particle. In this approach, once the propertiee of a
particle are assumed to be known and the volume allotted to it is
given, the degree of ionization is considered to be determined. There
is no statistical distribution over the available ionized states taken
into account; that is, the ionization is assumed to be uniform. How=
ever, non-uniformities in the particle properties may be introduced,
but each particle is still assumed to be ionized to the degree specified
by its own individual properties. The one characteristic which all
particles will have in common, however, is the electron density at the
"adjoining surfaces' of their allotted volumes.

The advantage of the uniform ionization approach is that the
coupling which exists between the potential and charge distribution
can be treated in an accurate and straightforward manner by finding
the solution to Poisson's equation. It is reasonable to first assume
that the ionization per particle is large with respect to unity so that
the charge distribution can be treated as a continuum. In the analysis
to be carried out here, the results of this uniform ionization - contin-

uous charge approach will be compared with the statistical approach
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in a regime in which they should agree. This will indicate what re-
striction, if any, should be placed on the magnitude of the degree of
particle ionization with respect to unity so that the continuum approx-
imation is valid.

The examination of a one-particle system under the assump-
tions of a continuous charge distribution and spherical symmetry
should clarify several points. First, it should point out under what
conditions the potential around a spherical particle is given only by a
1/r field arising from the net positive charge on the particle, and
when the divergence introduced into the electric field by the electron
charge is also of importance. Second, it should indicate when it is
safe to equéte the mean electron density to that which exists far away
from a particle, and,when a significant fraction of the total number of
emitted electrons is packed close to the particle's surface at relative-
ly high densities. A detailed examination of this one-particle system
will be carried out in Part III. However, before the problem is ap-
proached in a formal way, it is informative to see what general
statements may be made about the type of sclution to be expected.

Initially, it may be anticipated that the nature of the potential
distribution existing in this one-particle system could be divided into
two distinctly different regimes, depending upon the relative magni-
tudes of the particle radius, a, and the Debye shielding distance,

defined by the properties at the surface of the particle, )‘Da.

ol

~ (T/n) (2. 8)

AD

When
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a>>kDa, (2. 9)

the curvature of the particle should have little effect on the potential
distribution close to the particle’s surface, and the potential sheath
will be one~dimensional in nature. That is, the characteristic length

of the potential sheath will be A

Da
When

a<<ipy, (2. 10)

the effects of the spherical geometry will be dominant, and the poten~
tial close to the particle will vary approximately as 1/r . If the par~-
ticle radius is also very much smaller than the interparticle distance,
most of the potential drop between the particle and the plasma will oc~-
cur within the first few radii away from the particle, and the potential
of the particle will be given approximately by

ez/(4ne a), (2.11)

where z is the number of positive charges on the particle. z, in
turn, is given by

z = n /N, (2.12)

where —1'1'; is the mean electron density of the plasma and N is the
particle density.

When the potential varies approximately as 1/r close to the
particle, the electric field will vary approximately as 1/r2 , and it
would be inconsistent to expect that the number of electrons located
within a few radii away from the particle could be an appreciable
fraction of z . Therefore, the mean electron density of the plasma

will a.pproxima.tely equal the electron density far from the particle.
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Hence, using the Boltzmann factor,

- (eTi)/(4me aNkT)
n_ = npe € ° , (2. 13)

where ne is the electron density at the surface of the particle due
to thermionic emission. Thus, in the special case in which the par-
ticle radius is very much less than both the Debye shielding distance
defined at the surface of the particle and the interparticle distance,

the potential distribution becomes uncoupled from the charge distri~
bution, because of the dominance of geometrical effects, and the ap-

proximate value of the electron density in the plasma may be readily

determined.

D. Characteristic Times

If the particles and gas are not in thermodynamic equilibrium
and the characteristic time for charge redistribution is very much
shorter than the characteristic times for particle and gas tempera~
ture changes, the electron charge distribution will follow the changes
in the gas and particle temperatures with negligible lag. The as-
sumption that this lag is zero is, in essence, the application of the
adiabatic or quasi~steady state approximation to this system; the
system is analyzed assuming the particle and gas temperatures to be
external parameters that are unchanging in time. In order to deter-
mine the validity of this application of the adiabatic approximation,
six characteristic times must be examined.

1) Time for Charge Redistribution -~ When gaseous ionization

is negligible, an upper bound on the charge redistribution time is

readily estimated. If it is assumed that most of the free electrons
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are well outside the high-potential region around each particle and
that these high-potential regions are collisionless, kinetic theory can
be used to show that the rate at which electrons escape the particles

per unit volume is

o (escape)
e

el
(4'rra2N)(%:— FNC (L + ﬁ:‘_) (2. 14)
where Ce is the mean electron speed, and LPa. is the potential dif-
ference between the particle and the plasma. The first three terms
on the right correspond to those which would be calculated for the
analogous onc-dimecnsional case; (total surface area) X zli(number
density outside sheath) X (mean electron speed). The last factor

arises because of the spherical geometry and will be discussed in

Part V-C. The characteristic time for charge redistribution will be

defined by
"
L R (escape) (2.15)
n
e
Hence,
0 -1
~ AN *“a
T, = [(ﬂa NCe)(l +T<T>} (2.16)

Numerical values will be calculated for this and the other
characteristic times using values which are representative of the con~
ditions found in the exhaust nozzle of a solid rocket motor. The time
rates of change of gas properties in this system are of the samc mag-
nitude or much larger than those encountered in most problems of
engineering interest. Thus, the relative magnitude of the values cal~

culated for the characteristic times should give a pessimistic estimate
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of the applicability of the adiabatic approximation to most physical
situations of engineering interest.

When a = 10“4 cm, N-= 108 cmm3 , C—e = 3% 10'7 cm/sec ,
and (e@a)/kT = 10, the time for charge redistribution is T, =
Ix 10"9 sec. It is shown in the following paragraphs that this time is
very much smaller than the characteristic times calculated for the

gas or particle temperature changes.

2} Time for Gas Temperature Change ~ In a high-velocity

flow system, the characteristic time for gas temperature change may
be defined by

T, = L/v, (2.17)

where L. is a characteristic length of the system, and v is a char-
acteristic gas speed. For the rocket nozzle flow, assume L =1 ft,
and v = 1()4 fps . Thus, Ty = 10-4 sec ; a time which is larger by a
factor of 105 than the representative value of T just calculated.

3) Time for Particle Thermal Equilibration - Before an es-

timate of the characteristic time for the particle temperature change
is made, it will be assumed that the temperature distribution within a
particle is uniform. This is a valid assumption if the time for the
establishment of a uniform temperature is very much shorter than the
time in which appreciable changes in the particle temperature can oc~
cur. The characteristic time for the establishment of particle tem~

perature uniformity is

2
T, = atlag, (2.18)

where a is the particle radius and a,, is the thermal diffusivity of

T
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the particle material. The following table gives estimates of T3

for various particle sizes and materials.

TABLE I
Time for Establishment of Particle Temperature Uniformity
CLT a 'I'3
: 2 =1

Material cm /sec cm sec
graphite .01 1076 1x 10”10
alumina . 003 1074 3 x 107°
aluminum «3 10“‘4 3 X 10-'8

It will be seen that these times are small relative to the times for
particle temperature change.

4) Time for Particle Temperature Change - The temperature

change of a particle will usually be due to the direct energy exchange
between it and the gas. The radiative energy loss of a particle, ex-
cept in a high temperature - low gas density system, is relatively
small. Also, the net energy transported by the electron gas to or
from a particle may be neglected except under some conditions which
will be discussed. Therefore, the characteristic time for gas tem-
perature change should serve as a lower limit on the time for particle
temperature change. Since it has been shown that T >> T for the
flow system investigated, it may be concluded that the time for parti-
cle temperé.ture change will also be much larger than the time for
charge redistribution in most engineering applications.

It is also of interest to explore the characteristic time for
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particle temperature change in a system through which a shock wave
has been passed; that is, in a system in which the gas éxperiences a
step~-function change in temperature. Of importance here, in analyz~
ing the conditions behind the shock, is the time for particle-gas ther=~
mal equilibration. If this time is very much larger than the time for
charge redistribution, the adiabatic approximation is still applicable.

Marble [21] has shown that when Stokes' drag law correctly
describes the gas-particle interaction force, the gas-particle ther-
mal equilibration time, for most gases and metal particles, is

given by
2
2 4P
T,y i)(%_) , (2.19)
Pc" Vo
where Py and PG are the mass densities of the particle malerial

and the gas, respectively, and vy . is the kinematic viscosity of the

G

gas. From a simplified kinetic theory description of the transport
processes [247], it is seen that

1 -
= 2.20
va = 3% *ca (2.20)
where C—G is the mean speed of a gas molecule and ‘oo is its

T

mean free path. Thus,
2
_ 2 May/"s a
T4 T f(ﬁ‘é)(?;éxma ; ) (2.21)
G "GG
where m and n, are the mass and number density of the atoms in

the particle, and m_, and n, are the corresponding quantities for

G G
. _ 22 -3 ~
the gas. If it is assumed that ms/mG =1, n =10""cem ~, ne =
1018 cm‘-3 , a= 10'”4 ecm, C, .= 104 cm/sec—l . and X =

G GG
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10-4 cm , then equation (2. 21) yields T4 = ;‘ X 10“4 sec. This time
is very much shorter than the previous estimates made for T and
T3 but approximately equal to the estimate made for T
If the gas mean free path is very much larger than the particle

radius, the characleristic time for the particle-gas thermal equili-
bration may be obtained from the energy equation for a single parti-
cle derived from kinetic theory considerations. When it is assumed
that the specific heat per unit volume of the particle material is

3nsk and the accommodation coefficient for the thermal energy equi=-

libration is unity, the rate of thermal energy change of a particle is
(4'rra.3)(3n kKT ) = (waz')(u C M2k T ~.-T_) - (2.22)
3 s Tp G~ G G °p

The characteristic time for particle-gas thermal equilibration is

defined by
Ty = (TgT M, (2. 23)
Thus,
g a
Ty = z(l_l.c.}.x___c_ ) : (2. 24)
G
. -4 = 4 -1
If it is assumed that a=10 “cm, Cg,= 10" cm/sec n =
1022 cm—3 , and ne = 1018 cm‘3 , equation (2.24) yields Tg =

2% 10-4 sec, approximately the same value obtained for Ta using the
same densities and particle radius.

The characteristic timé for particle=electron gas thermal
equilibration, Tg » May be calculated in a similar manner. When it
is assumed that the electron mean free path is much larger than the

particle radius, the particle potential is much larger than kT,
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most of the free electrons are outside the potential sheath, and the

accommodation coefficient is unity, it may be shown that (see Section

V-C):
. %
(§Ha3)(3nskTp) = (4ma’)( 3 H )(Ce)(ﬁi>(kTe-kTp) . (2. 25)

Defining T6 by
Ty = (Te-'I‘P)/Tp s

it is seen that

n kT
s\f a p
T, = 4 (. ) : (2.26)
e e
-4 - 7 -1
When a=10 "cm, C_=3x10 cm/sec (kTp)/(ed)a) =.1,
n_ = 1022 cm-3 , and n, = 1010 cm-3 , equation (2. 26) yields Te =

1.3 sec. Thus, for the numerical example considered here, the elec=-
trons will transport a negligible amount of thermal energy relative to
that which is transported by the gas.

A lower limit on the value of E; at which the electron energy
transport becomes of relative importance is obtained by setting

T. =T, . Thus, the "break even' point will occur when
5776 P

n_ C kT
()

(2. 27)
(~10"2 o 107%)

In most engineering problems, unless the gas pressure is low,
n_e/nG will rarely be this large. Also, if the gas pressure is low,
the radiative energy loss of a particle may be of major importance.

From this discussion of the characteristic times to be found

in a gas~particle plasma, several general statements, applicable to
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most of the current problems of engineering interest, can be made.

1. The electron density will always follow the changes in the
gas and particle temperatures with negligible lag. In the rocket ex-
haust system numerically investigated, the ratio of the characteristic
time for charge redistribution to the characteristic times for gas or
particle temperature changes was 10“5 . Itis felt that the use of a
rocket exhaust system for the numerical examples should give an
estimate of the upper limit on this ratio for most situations of inter-
est. Even if this estimate is a factor of 102 or 103 too low, the
adiabatic approximation is still applicable.

2. The temperature distribution within a particle will be
uniform.

3. Relative to the gas, the electrons will rarely be effective

in changing the thermal energy of the particles.
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III. EQUILIBRIUM PARTICLE IONIZATION

A. Introduction

The first problem to be investigated is that of equilibrium
particle ionization. The gas and particles are assumed to be in
thermal equilibrium, and the gaseous ionization is assumed to be
negligible; all of the existing free-electron charge is the result of
thermionic emission from the particles.

In the Fundamental Shielding Problem, the system to be in~-
vestigated will be reduced to a one~particle, spherically-symmetrical
system by the assumption that all of the particles are spherical and
identical in all respects. Also, it will be assumed initially that the
net number of electrons emitted from a particle is large with respect
to unity. The coupling which exists between the potential and charge
distributions is taken directly into account by finding the solution to
Poisson's equation.

This approach to the problem will clarify several points.
First, it will indicate under what conditions the potential around a
spherical particle is given only by a 1/r field arising from the net
positive charge on the particle and when the divergence of the electric
field produced by the electron charge is of relative importance. Sec-
ond, it will determine what fraction of the total number of emitted
electrons is packed close to the particle at relatively high densities
over a wide range of initial parameters. In addition to yielding a
qualitative understanding of the shielding phenomena, the solution to

the one-particle problem will provide a means by which the degree of
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equilibrium particle ionization can be readily calculated.

In the Comparison with the Statistical Method, the results of
the two approaches to the problem of particle ionization will be com~
pared. The requirement, if any, which must be placed on the degree
of particle ionization, in order for the continuous charge approxima-

tion to be valid, will be determined.

B. Fundamental Shielding Problem

1) Assumptions and Model - The assumptions which define

the model to be used in this problem will now be stated. The motiva-
tions and justifications for these assumptions have been previously
discussed in Part II, Physical Phenomena of Primary Importance.

(2) Uniform particle properties. The assumption is made

that all of the parameters which determine the degree of particle
ionization in the gas-particle plasma are the same for all particles.
These parameters are the temperature of the system, T ; the parti-
cle radius, a ; and the electron density at the surface of the particle,
n__ .

ea

{b) Uniform particle ionization. It is assumed that the

particle ionization is uniform. That is, the net number of electrons
emitted from an initially uncharged particle, z , is the same for all
particles.

(¢} Negligible gas ionization. The contribution of gaseous

ionization to the electron density of the system is assumed to be
negligible.

(d) Spherical symmetry. It is assumed that the particles
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are spherical and that the surrounding potential and charge distribu-
tions are spherically symmetric.

The problem has now been reduced to the investigation of a
one-particle system of inner radius a , the particle radius, and
outer radius b, the radius of the spherical volume in which the total
net charge is zero. Here, b is defined by

4 1

3
Fm = & (3.1)

where N is the particle number density. From Gauss! law, it fol-
lows that the electric field at r = b is zero.
(e) Equilibrium. The system is assumed to be in thermo-
dyvnamic equilibrium. Therefore, the electron density at radius r
is given by
eg(r)

~ kT
ne(r) = n, e s (3.2)

where n_, is the electron density at r = b, ¢ is the electrostatic
potential, k is Boltzmann's constant, and ¢(b) has been set equal
to zero.

(f) Electron density at the particle surface. It is assumed

that the electron density at the particle's surface is known; later, it
will be equated to the electron density due to thermionic emission.

2) Mathematical Statement of the Problem - The relation

which determines the potential is Poisson's equation:

v = = n, (3.3)

o
For a spherically-symmetric problem it becomes, with the aid of

equation (3. 2),



e
i d 2d¢, _ e kT
2T T T e © (3. 4)
T O
wlth the boundary conditions
$=0 and d¢ . at  r=Db

Once T, N,y 3y and b are specified, the problem'is determined.
In order to reduce the number of parameters required to define the

solution, the variables are made non-dimensional.

- &9 = X
Y = T and x = ¢ (3. 5)
Hence
2
1 4 2 dy b v
— e [ ] = e’ ; (3. 6)
XZ dx dx (}LDb)
_ dy _ . =
vy = 0 and 95 = 0 at x=1
where .
e kT 2
\pp = ( 7y . (3.7)
e n
eb

the Debye shielding distance at r =b .
The solution is now defined by the two ratios b/a and b/?\Db .
Since '

Hya/,z
A.Db e ¥ (3' 8)

‘pa T
b/a and b/)\Da might equally well be used. It is the latter two ratios
which are known at thé outset of the problem and are therefore prefer-
able to use in plotting the interesting quantities arising from the solu-

tion.

3) Method of Solution -~ Equation (3.6) is a transcendental
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egquation of the Emden type3 and no solutions are known to the author.
Therefore, an lBM 7090 was used to integrate this equation and tc ob-
tain a family of curves for twenty differert values of 'b/)\Db between
0.1 and 2.0. In order to use equally-spaced increments in b/r , it
was found convenient to change the independent variable to £ = 1/x

and to solve the following differential equation:

.2 2

dy . (2 y L.y (3. 9)
a2 (KDb) T

y=0 and dy/df =0 at £ =1,
The integration was run between the limits 1 £ b/r £ 10° or 0% y £
18. 5, whichever limit was reached first. Therefore, each curve
gave the solution to all problems kaving the corresponding value of
b/ka and b/a between 1 and the limiting value. Further details of
the method of solution are given ir Appendix D.

4) Approximate Solution - By examining the nature of the so-

lution, it is possible to divide this shielding problem into twe charac-
teristic regime s and to obtain an approximate solution which is very
good in one of them. This approximate solution will facilitate further
analytical investigation of the problem.

The manrer in which an approximate solution arises for this

problem may be understood by rewriting and examining equatior (3, 6):

2 2 .
dy b y 2dy
L = e’ - — - . {3. 10)
dx& (;\Db> x dx

Equation (3. 6) may be written in the form of a first-order equation.
(see Appendix C). For a further discussionr of this type of equation,
see reference 25.
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The relative magnitude of the two terms onthe righthand side of this
equation will determine the nature of the solution, and it is therefore

informative to examine the ratio

(3.11)

When x iscloseto 1, RZ0 and eV =21, As x decreases, R

y

becomes very much larger than 1 before e’ changes appreciably

from 1 for the range of b/) investigated. This suggests that an
| g bh g gg

approximate solution is found by solving the equation

(?\ ) -—)2—{‘ dx (3.12)

v=0 and dy/dx=0 at =x=1,

the solution of which is
5 (=

As x decreases further, R will continue to increase until the ex-

(b3 2
’\Db) 2-3 E(%)] L (3. 13)

ponential behavior of the solution becomes significant, and it will
then decrease and pass again through unity. The above solution will
be a good approximation up to the latter point. For low values of
b/}‘Db ; R becomes very large and the approximate solution is ex~
tremely accurate. (For example, for b/)\Db = ,1, R reaches a

8 at b/r = 900.) When the approximale

maximum value of 2,5x10
solution is valid, the potential at the surface of the particle is easily

determined. From @quations {3. 8) and (3 13},

¥
vae o = I()\; ){ +—(--) b (3.14)
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Also, the ratio of n to n can be found from
eb ea

G - GAEE -39 . e

5} Prominent Features of the Solution - The numerical solu-

tions to equation (3. 6),in which no approximation is made,are pre-
sented in Figure 1 as a plot of the quantity y , normalized by
2
1
3&(1—13——- ., versus (b/r). It is noted that the curves coincide with
Db
b 3

the function {-1-: -3

curves having lower values of b/)‘T)b correspond to higher limiting

+%~ (’%)2} up to limiting values of b/r j the

values of b/r . In Figure 2, - (dy)/d(r/b) + normalized by
-% (b/?\Db_)z + is plotted as a function of b/r . Itis seen that there is
also agreement, but to a lesser degree, between the derivatives of the
exact and approximate solutions. In Figure 3, the range of b/XDb
and b/a in which the approximate solution is valid is shown; this re—
gion has been termed the "weak shielding' regime, for reasons which
will soon become clear.

Physically, the approximate solution may be derived from the

concept of a "

sea'' of electrons of almost constant density around the
particles. In moving in toward the particle from r =b, most of the
electron charge is passed before the electron density has changed ap-
preciably, because of the geometrical or r3 effect. When the elec~
tron density is no longer constant, the field is determined almost

‘entirely by the large positive charge on the particle. For bfr>>1,
this is the dominant effect and ¢ ~ 1/r which may be' seen by re-

writing the approximation solution [equation (3. 13}]
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Regimes in the (E . TE— ) Plane.
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_ © neB 1 3 &) + 1 (r)3 ' 3. 16
¢—(4ﬁeor§N{__?:B“ AU (3. 16)

One point about the weak shielding regime, which may appear
inconsistent at first,is that the inter -electron distance may be on the
order of the particle radiue, and the abstraction to a continucue
charge distribution close to the particle is therefore not possible.
However, in this region the potential is determined by the geometrical
effect or the strong field arising from the positive charge on the par-
ticle and not by the shielding of the electrons.

The weak shielding approximation is no longer valid when the
effect of the shielding is larger than that of the geometry and a sig-
nificant fraction of the emitted electrons ai'e close to the particle. To

clarify this, consider the guantity
b
Z{r) = f4ﬂ1‘21le(r)dr . {3.17)

r
Problems falling into what is appropriately termed the "strong shield-
ing regime” would have the following qualitative features, shown in

the following diagram.

2(r) A
Z e —

a b .

Figure 4. Total Electron Charge Outside r for a Problem in the
Strong Shielding Regime.



This physical interpretation suggests that a quantity that may
be used in differentiating the strong and weak shielding regimes is the

ratio

c = - ' (3.18)

. where '1'1: is the mean electron density defined by

'ﬁ; = zN, (3. 19)

When © is close to unity, most of the electrdns are in the regions of
nearly zero potential and the problem is characterized by weak
shielding. When o is appreciably larger than unity, the reverse is
true. From Figure 5, it is seen that the divisions between the two
types of shielding regimes defined by R and o are essentially the
same.

The requirement, for the weak shielding approximation to be
valid, may be stated in fairly simple terms. Using Gauss' law,

- 2 d¢
eZ(r) = - 4wr € dr? (3. 20)

R(r) may be written as
Z(r)

Rir) = 3
2wr ne(r)

(3. 21)

Therefore, for the approximation to be valid, it is necessary that

z > 2va°n . (3.22)
ea

Also, from Figure 5, the line dividing the strong and weak shielding

regimes by the requirement R = 1 may be approximated by
b

: [R=1] = 5.0(b/a) . (3. 23)
Da

Therefore, the approximation is valid if
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a
)\Da

<5 . - {3.24)

This confirms the idea that, in the weak shielding regime, the solution
is cieterm-ined primarily by geometrical rather than shielding effects.
The shielding that is present is primarily due to a widespread sea of
electrons of almost constant density rather than a thin, high-density
sheath of electrons of thickness kDa. .at the particle's surface,

It should also be made clear that the weak shielding approxi-
mation does not place any restriction on v, that is, y, may be very
much larger than unity,

Since the property of this problem that makes the approximation
possible is the spherical geometry; it ils to be expected that the same
a.iaproxima.tion may be made in the case of cylindrical geometry. This
case corresponds to the problem of finding the potential around a
thermionically~emitting wire of radius a for which the potential and
electric field are set equal to zero at the radius b . The analogous

approximation leads to

2
) e neb('rrb)

2
$ (n2-301-6) 1) (3. 25)

211'6:0

Again, a conservative criterion for the validity of this approximation
is that a should be much less than i, .

When the geometrical effects are small, that is, in the region
of strong shielding, the spherical and cylindrical cases become one-

diménsional in nature, and

) e - | (3. 26)
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A general feature of many shielding problems, including the one
studied heré, may be illustrated by inspection of the solution to the
above one-dimensional problem. 4 Here, the distance from the wall
is r and the potential and electric fields are zeroat r=b . The

solution is 5

;= [ (V_l?x;; ] | (3.27)

As the potential at the wall becomes large, b/(ﬁ )LDb) approaches

w/2 and n has the limiting value

eb
%(%) E-%k’l’ ) (3. 28)
(<]

Therefore, once SN has reached a value close to the limiting one, it

is very insensitive to changes in the electron density at the wall.
Changes in the potential at the wall accompany the changes in the
electron density and the net variation of N is small,

This same type of behavior is to be expected in the strong
shielding regime of particle ionization. In the strong shielding re-
gime, it has been found that, over a wide range of values for the ini-
tial parameters (b/a and b/ Kba. ), the value of b/)._Db is always
on the order of unity. That is, the electron charge distribution will

adjust itself so that is approximately equal to b. Thus, an

Db
approximate upper limit on Do 2 for the range of initial parameters
investigated here, may be obtained. If an upper limit on b/th of

two 1s assumed, the maximum value of oy is

4 For a more complete discussion of the problem, see reference 23,
pp. 18-22.

See Appendix E,



{max) 46:okT .
neb = ?;2— . (3. 29)
When T = 2900°K and N=10° (b= 1.34x10"> cm), equation (3. 29)
yields HEb(max) =3.1x 1011 cm'3 . Hence, once the strong shielding

regime s encountered, large increases in n.y, can only be accom=
plished by decreasing b ; that is, by increasing the particle number
density, N.

6} Utilization of the Numerical Solution - As stated previ-

ously, once the ratios b/xDa and b/a have .been specified, the so-
lution is defined. Hence, all of the quantities which describe the
ionization of the particulate system may be plotted as functions of
these two ratios only.

v, the non-dimensional potential at the surface of the parti-

a

cle, is plotted in Figures 6a, 6b, and bc. The mean electron density,
—1—1'6_ s divided by n_. is i)lotted in Figures 7a and 7b. From this and
equation (3. 19), the degree of ionization of a particle is easily founrd.
Figure 8 shows the dependence of 0, the shielding ratio, on b/)\Da
and b/a. In Figure 9, where o is 'plotte.d as a function of b/}‘Db
and b/a , the sharpness of the transition between the weak and strong
shielding regimes is illustrated. The electric field may be found irom

Figure 2, and

_ kT d
E = m—eﬁfm] . (3.39)
If the electric field at the surface of the particle is desired, it may be

calculated more accurately from
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E = —SZ._ (3.31)

4«3032

In order to specify the ratios b/lDa and b/a for a system
of particles, the four quantities no the electron density at the
surface of a particle; T, the temperature of the sysiem; a , the par=-
ticle radius; and N, the particle rumber density, must be known,
T, a, and N are usually calculated or measured in accordance with
the defails of a particular systern. On the other hand, for all sys-
tems, n_. is given by Dpo s the value of the electron density due to
thermionic emission at the surface of the particles. Hence, an ex~

tension of the discussion of the method of estimating n,. found in

E
Section II-A is appropriate.

The experimental value of Ay may be found conveniently

from
ng @) unE(th) (3.32)
where
ated (3.33)
= i 3.33
NER

The value of A(th) » the theoretical value of the constant coefficient
in the Richardson-Dushman equation, is 120 amps/cmZ—OK . Two

good sourceg of values for A(ex) are reference 23, page 175, and

reference 26, page 109, Reference 23 also lists many other sources.

nE(th) may be calculated from

(th) 3/2 -e#/kT -3

. (4.83%x 10'°) T

n (3.34)

N ' o]
where T is in K.
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In Figures 10a and 10b, nE(th) is plotted as a function of e}

for the range of temperatures between 1500°K and 3500°K. Given

the value of n _, is found from
ea Da
_ 1/2
ADa = 6. 90 (T/nea) cm (3.35)
where T isin °K and n is in crn-3. Since n _=n tex) in tkis
ea ea E
case, the corresponding experimental value of )“Da is
(ex) _ i (th)
A a = (1/u)® Ap, . (3.36)
(th)

In Figure 11, is also plotied as a function of e? for the

lDa.
temperature range of 1500°K to 3500°K,

7} Hlustration - In order to demonstrate the method of cal-
culation and to illustrate the main features of the weak shielding re-

gime, a system composed of alumina particles will be considered.

The parameters chosen for computation are: T = 2900°K, a =

10_4 cm, N= 108 cm"3 . From reference 26, page 109,

e =3.77ev , w=1.17Tx10"2
Using the figures and relations just discussed i Section II-B-6, the
following are obtained:

2.35% m12 cm'3 = 2,42% 10"4 cin

Rea )‘Da.

b/a = 13.4 b/lDa. = 5,52

g = 3.58 /e = 3.1x10°°

a e’ ea g

o= 7.29%x10'0 ¢m=3 n. = 6.53x10°% cm™3
e eb

g = l.11 z = T29

b/)\Db = ,921 a’”“Da = , 413
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The approximate solution for Y, 0 equation (3. 14), is v, =
3. 33 . The requirement for the validity of the approximate solution,
% > Z'n'a.3nea » is well satisfied since

14.8 << 729

1}

Zwa3n
ea

Alsq,

a/)\_Da = .413 << b5,

In Figure 12, the variables of interest, normalized by thelr
values at r = a, are plotted as functions of r/a. The important
fcature to note is that almost all of the electrons arc in the region of
zero potential and constant density. Thatis, Z/g, the fraction of
total electron charge outside a given radius, is at a value of . 90,

;vhﬂe da}t’pa is as low as .12, and n, is only 1.5 tirmes its value at
r =b . Thus, the approximation of a uniform density sea of electrons,

for this case, 1s a good one.

C. Comparison with the Statistical Method

At the beginning of the Fundamental Shielding Problem, it was
explicitly assumed that the particle ionization was uniform. However,
in an actual system, there will be a distribution of ionized states over
the particles even though the particle parameters (T, e , and =z}
are uniform. It is instructive, therefore, to see what effect this dis-
tribution has on the determination of 'ﬁ'; . Also, when the majority of
particles are not ionized many times, the assumption of charge con~
tinuity breaks down and the statistical approach is the one which must
be used. Smith [7, 8] has shown that for sma’l degrees of ionization,

the Saha equation in which the work function assumes the role of the
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Figure 12, Spatial Distribution of the Potential, Electron Density,

and Total Electron Charge Cutside r for an Ilustrative
Problem in the Weak Shielding Regime.
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ionization potential of the particle is not valid, as might have been

anticipated. Rather, due to the attachment of electrons to particles,

(th)

the maximum value of T o >

b that may be obtained is n the
saturation electron density.

In the treatment of this problem by Einbindex [6] and Smith
[7,8], several assumptions have been made. They are:

(1} All of the electrons which are external to the particles
are at wero potential. Hence, c = 1.0, and the caleculations are con~
fined to the weak shielding regimese.

(2) The particle parameters (T, e¥ , and a ) are uniform.

{(3) The statistical weight of a particle is independent of its
degree of ionization. This is a valid assumption because the parti-
cles are macroscopic in size,

(4) In order to obtain numerical results, the capacitance of
the isolated particle, ze/@a , must be assumed. Einbinder and
Smith, by treating each free electron as though it were an infinite
distance away from a particle, have implicitly assumed d/a>>1.

If this is assumed, the capacitance of a spherical particle is given by

C = 4‘11‘302.. {3.37)

The starting point of the statistical analysis is the expression
of the equilibrium constant for the reaction:

P{,-l_‘"_: P{‘-f'r: - [edr] . (3.38)

P, denotes a particle which is ionized 1 times, and e¢, iz the in-

crease in the potential energy of the one-particle system. The equi-

librium constant defined by
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K, = N, n /N, _, . (3.39)

where N,  is the number density of particles ionized 1 times, is

£

given by the ratio of the appropriate partition functions,

K = (FLFe)/F{— {3. 40}

< 1

Ihe partition function for the electron is the translational partition
function times a factor of 2 resulting from the degeneracy of the elec~
tron spin.

3/2

F_ = 2[27mkT/h°] (3. 41)

The ratio of the particle partition functions is given by

F -0, [kT
T . = e . {3. 42}

Here, ech is the sum of the energy required for the electrons to
penetrate the potential barrier at the surface, the work function, and
the energy required to move the electron from a position just outside
the particle to one of zero potential. The latter is the change in the

energy in the electrostatic field surrounding the particle. Hence

2
e, = e@«l—({,—%}%—-. (3. 43}
Equations (3.39) to (3. 43) combine ta give
2
N, (ag™) L b S
—_— = —— . 3. '4:4)
N n ¢ ¢
o} eh .
; j=1

6 An alternate derivation of this total 'escape energy" is given in Ap~

pendix I, where the eifect of the curvature of the surface on the long-
range mirror-image potential of the work function is investigzated.
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The values of Y, and z which correspond to the assumption of

uniform jionization are

{th)
Ile‘
Vo © {,n—n——-' (3. 45)
eb
2
= = y, CkT/e (3. 46)

Using these relations, equation (3.44) may be written in the form

2
N Hzy_ )2 -{_/2z)(L~z)
ﬁf& e 72t Va X (3. 47)

The distribution of ionized states is seen to be a Gaussian function
which is peaked at the value of 4 corresponding to uniform ioniza-

tion. In addition, the width of the distribution is given by

L
8L = (a/y,)? (3. 48)
and
1
_.._,_._%6{’ = (lfzya)a . (3. 49)
peak

Hence, as zy, becomes large, the relative width of the distribution
approaches zero, and the ionization becomes eésentially uniform.
Also, according to Smith, the diffefence between =z and the actual
mean value of the distribution is negligible when

e%/(2ckT) <3 . - (3. 50)
For spherical particles with a/b << 1 and at a temperature of
ZOOOOK, the above requirement means that a must be larger than
14 R » & requirement that, practically speaking, is not very restric-
tive. It is to he noted that this requirement does not depend upon the
magnitude of z . That is, even though z 1is on the order of unity,

the uniform ionization and continuous charge approximations lead to



-61-
the correct value of ny -

This discussion has pointed out the following facts.

(1) In the weak shielding regime, the values of n_, pre-
dicted by the uniform ionization - continuous charge approach and the
statistical approach are in good agreement, except for ext‘remely
small particles,

(2) When v, % >> 1, the relative width of the Gaussian distri-
bution of the particles over the ionized states is very much less than
unityj that is, the ionization is essentially uniform. Using the values
of v, and z calculated for the alumina-particle system studied in

eak

Section IlI-B-7, the relative half-width is found to be GJ(’,/{,p =

. 020 and hence the distribution curve is very sharply peaked.
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IV. DEPENDENCE OF THE ELECTRON DENSITY

ON THE INITIAL PARAMETERS

A. Introduction

Two primary objectives of an investigation of the ionization in
a gas-particle plasma are first, to arrive at a prediction of the elec~
tron density, and second, to obtain an estimate of the extent to which
the level of this electron density may be controlled. Hence, it is
profitable to determine the dependence of the electron density on the
parameters which define the solution for the particle ionization prob-
lem which has been studied in Part III.

Since an approximate solution for the potential distribution is
known, it is possible to carry out a detailed investigation for problems
which fall into the weak shielding regime. However, rough estimates
of what will occur for problems that fall into the strong shielding re=~

gime can also be made.

B. Strong Shielding Regime

In the strong shielding regime, there are two electron densi-
ties of interest. One is the "free'' electron density, or the density
outside the charge sheath around cach particle, n.p - These elec-
trons are not bound close to a parﬁicle's surface by strong fields and

are relatively free to move throughout the plasma. The second den-

sity, which may be of interest, is —1:1; . This density is representative
of the degree of particle ionization (z = ﬁ;/N ). These two densities

will now be briefly considered.
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It has previously been pointed out (see Section IlI-B-5) that,
once the strong shielding regime is encountered, the Debye shielding
distance far from a particle, A Db ? will always adjust itself to a value
which is approximately equal to b . Hence, from equation (3. 7), |

 T/b%
TN3/Z (4. 1)

Peb

That is, as long as the shielding remains in the strong-~shielding re-

gime, n will be insensitive to changes in a or n__  but will be

directly proportional to TNZ/3 . If the total content of liquid or solid

eb

phase remains the same in the plasma, but the size of the particles is
varied,

Na3 = const, (4. 2)
and

2
ny ~ T/a"™ . (4. 3)

Therefore, the electron density outside the sheath may most efficiently
be increased by dividing the non~gaseous phase into finer particles.

If it is assumed that the situation of interest is well into the
strong shielding regime (o >> 1), then the value of the mean electron
density, ?1; , will be approximately equal to the number of electrons
packed close to a particle in its charge sheath times the number den~
sity of particles. Since the characteristic distance which the sheath
extends from the surface of a particle is *Da the mean electron

density is given by
— 2 _
g ~ 2 )‘Da “ea N

) (4. 4)

L

~ a®N(Tn
ea



b4

n o °

Hence, ?{; will be an exponential function of T and e? because itis
1 —_—
directly proportional to nea2 . In addition, n, may also be in-~

creased by dividing the non-gaseous material into finer particles.

C. Weak Shielding Regime

The dependence of the electron density on the initial parame-
ters for the problems which fall into the weak shielding regime is of
interest for two reasons. First, for the majority of the current en-
gineering problems, the condition, a/)‘Da <5, is satisfied and the
weak shielding regime is therefore primarily the one of practical in-
terest. Second, the existence of the shielding tends to nullify the
strong dependence of the electron density on emission phenomena and,
since an approximate solution is known for the potential distribution,
this effect can be readily analyzed.

The main objective here is to determine the sensitivity of the
electron density of the plasma, neb » to variation in the parameters of
the system. These parameters are taken to be ed , the thermionic
work function of the particle material; T, the temperature; a , the
particle radius; and N, the particle number density. The variations
of ng alone are done in essence by the variations of ed .

Variations in the parameters will take two forms. Each pa-
rameter will be assumed to be uniform throughout the plasma but the
value of one or more of thém changed from some initial value. Or, a

non~uniformity in one or more of the parameters will be introduced.
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The main interest is in the variation of 1_1;- . However, by the

assumption of weak shielding, n D"_ﬁ; , so that it will serve cqually

eb

well to study n It will be seen that the variations of ¢a. which ac=

eb '
company those of n, may also be readily calculated.

1) Uniform Variations

(a) Formulation. The relationships which define the value

of n

op 27T€ the following: the potential at the surface of the particle,

- Teb e 3,a 1,a 3
¢ 7 AN Mame ! (1 -2i5) v 2lp) 1 (4. 6)
o]

the electron density at the surface of the particle,

BT3/.2 e—e@f’ /KT

n H (4. 7)

ea

and the relation resulting from the assumption of equilibrium,

e({:'a/kT

n = n, e . (4. 8)

ea eb

In order to calculate the changes which occur in 11, and cpa
resulting from changes made in one or more of the parameters of the
system, it is convenient to refer all changes to a reference state.
That is, all the variables will be non~-dimensionalized by reference
gstate values. The selection of the parameters for this reference state
is arbitrary. Letting primes denote reference state conditions, the
dependent variables in the variation process are

\) = neb/ne‘b, 2 (4" 9)

i}

n= ¢, /¢ ' (4. 10)

the independent variables are

W ed/ed!, ' (4. 11)

T/T' , (4. 12)

-
i
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a/a' , (4. 13)

H

o4
L= N/Nt, (4. 14)
and the normalized particle potential and work function of the refer-

ence stiate are

- 1 1
y, = e /KT, (4. 15)

w = ed' /KT . (4. 16)

(b) Variation of the work function. By setting all of the inde-

pendent variables equal to unity except W and dividing equations (4. 6)
to (4. 8) by those corresponding to the reference state, the following

are obtained.

n = \Y] (4. 17)
v_(n=1)
ve o = ew(l—w) (4. 18)
Hence
v = 1+—\Z-(1-w)-—l--f,n\), (4. 19)
Ya Ya
dy W
=¥ = - . (4. 20)
du w=1 ya+1

Equations (4.19) and (4. 20) clearly show the manner in which the ef-
fects of the shielding tend to dominate those of emission as the poten~
tial of the reference state is increased., When Y, is less than or on
the order of unity, the value of n g changes in an exponential manner
with the work function, That is, for N, on the order of n,, the
level of ionization of the system is determined by emission phenomena.
However, when ?a is of the same magnitude as w, (ec{)a,’ ~ €ed'), the

level of ionization is controlled by shielding effects and is relatively
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insensitive to the value of ng, For this case, =dy/dy w=1" 1, and
the relation between the level of ionization and the work function is not
an exponential one but nearly a linear one. It is clear that the reason
for this is the changes in <{>a which accompany those of n_ - This
second situation is the one which prevails in most systems in which
the particles are composed of a good thermionically~emitting material
and are at a high temperature. For these systems, errors made in
the estimation of e? or changes made in the actual value of e® will
not greatly affect the level of ionization. These effects are clearly
shown in Figure 13, where vy is plotted as a function of @ for w =
15 and v, = 1, 5, 10, 15, and oo .

In the illustration considered in Section III-B-7, Y, = 3.58
and w = 15,75, If the work function is increased from 3. 77 ev to 4. 50
ev, w=1,195, nea/nea' = 0,0514, and y = neb/nebt = 0,40 . That
is, the electron density of plasma is decreased only by a factor of
1/2.5, even though the electron density due to thermionic emission at
the surfaces of the particles has been decreased by a factor of 1/19.5 .

It is seen that as the particle potential becomes large, the
presence of the shielding has the same effect as that found in the
strong shielding regime but to lesser degree; the changes which occur
in the value of ADa will produce relatively small changes in the value
of )‘Db .

(c) Variation of the temperature. The same procedure that

wag carried out for the variation of the work function is followed here,
but 7, the ratio of temperature of the actual state to that of the ref-

erence state, is the independent variable. The equations thus
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obtained are:

rn = \) > (40 21)

y (X 1) w(l - =)
vye & T = 'rslze L (4. 22)

Hence,

w T ‘7‘3/2

y =T+§;h-n+§:&n(v ) - (4. 23)
w+y_ +3/2
%g = :1 . (4. 24)
T r=1 Ya

Again, the same general behavior is exhibited. When Va is small
with respect to w, emission phenomena dominate. When v, is of
the same magnitude as w , shielding effects are more important.
However, in this second case the effect is twofold, as is evidenced by
equation (4. 24). As the temperature is increased, the thermal energy
of the electrons increases and more electrons are able to penetrate
the potential barriers of both the work function and the particle poten~
tial. Opposing this is the associated increase in the particle potential.
Chlefly because of this twofold effect, the ionization of the system is
more sensitive to fractional changes of the temperature than of the
work function.

In Figure 14, v 1is plotted as a function of r for the same
values of w and v, used in the case of the work function variation.

(d) Variation of the particle radius and density. For the ma=

jority of practical cases, b/a is much larger than unity. Therefore,

it is not very restrictive to rewrite equation (4. 6) as

n
4, = (ﬁ%h?(zagga) (4. 25)
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Since this is the only governing relation in which a and N appear
explicitly and they appear as a product, any fractional variation of a
will have the same effect as the corresponding fractional variation of
N . Therefore, only the variation of a will be treated, it being
understood that the conclusions drawn hold egually well for N,

The same procedure is followed as in the previous two cases
but with the independent variable being « , the ratio of the actual ra-

dius to the reference radius. The resulting equations are

n = vla (4. 26)
Ya(l-\)/a)
v = e . (4. 27)
Thus,
\J=cx[l-—-l-4",nv} (4. 28)
Ya
dv ya
hodd = . (4. 29)
da‘)CL:l ya+1

When Va is small, it is seen that the size of the particle has litile ef=
fect on the ionization since the values of a and n  are unrelated,
For the case in which shielding is dominant and v, is much larger
than unity, n,p 2 because of the small decrease in cpa which ac-
companies an increase in a . Hence, the level of ionization is at
most directly proportional to the particle radius or the particle den-
sity.

These trends are illustrated in the plot of y versus a given
in Figure 15 for y_=1, 5, 10, 15, and co.

(e) Variation of the particle radius with the mass fraction held

constant. For many physical situations, it is possible to obtain a
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fairly good estimate for the total solid or liquid mass in the system
but not for the particle radius, It is therefore instructive to consider
the variation of the particle radius when the total mass of the non~-
gaseous phase in the system is held constant.

The total mass of the non=gaseous material is proportional to
Na.3 ; therefore, an additional relation is

e = 1., (4. 30)

When the same procedure used in previous cases is followed, and it is

again assumed that b/a is much larger than unity, the following are

obtained:
n =V s (4. 31)
2
-y, (va-1)
v = e . (4.32)
Hence,
1 1
\)——-z[l---&n\)], (4. 33)
a Ya
Zy
o = -2 (4. 34)
c‘cc=l Ya

As in the previous case, where a alone was varied, the ionization is
not sensitive to the particle radius when Va is small. In contrast,
however, when Y, is much larger than unity, noy "~ l/az , which is
the same result as that obtained in the case of strong shielding. Thus,
the smaller the size of the particles into which a given amount of nonw
gaseous material is divided, the larger will be the level of ionization.
The limiting value of electron density is, of course, Ng . These ef-
fects are illustrated in Figure 16, where v is plotted as a function of

o for the condition of !-1‘13 =1.
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These variations may be demonstrated in a second way.
(b/a.)3 is proportional to the ratio of gaseous to non-gaseous material
and n,. is independent of the value of a. Thus, Figures 7a and 7b,}
in which E;/neaL is plotted as a function of b/Lp ~for fixed values of

b/a , may also be used to find the dependence of '1_1;— on a. That is,

—

n_ Ni—e—/nea and, for fixed b/a, a~ b/)‘Da . This plot also covers
the range in which b/a is on the order of unity as well as the strong
shielding regime.

It is also of interest to see how the level of ionization varies

with the total exposed surface area of the particles. Denoting this

area by S,
S = N(4ra?), (4. 35)
S ~ l/a,, (4936)
' 2
Ny, ~ S” . .(4. 37)

(f) Summary. Several general statements may be made as a
result of this study of the uniform variations in the parameters of the
system for weak shielding.

(1) When the particle potential, ecba_ » is much less than the
work function, e¢ , the electron density is exponentially dependent on
the work function and the temperature. Also, it is most sensitive to
fractional changes in the temperature.

(2} If the particlc potential, e<{)a s 18 much less than or approx~
imately equal to kT , the electron demnsity is very insensitive to

changes in the a or N,

{(3) When ed_ is of the same magnitude as e , the electron

density is linearly related to the work function and temperature, and
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it is still more sensitive to fractional changes in the temperature.

(4) If eq;a is much larger than kT, the electron density is
directly proportional to a or N, but varies as I/a2 when Na3 is
held constant,

In situations in which thesc last two statements arc applicable,
it is probable that the largest error made in predicting the value of
oy, will be due to errors made in determining a , since the percent=-
age error made in the estimation of a is likely to be much larger
than those made in the estimation of e? or T . Also, since it is a
which may be most easily changed by large factors for a given mass
fraction, it is the particle size which can be most effectively used in
controlling the electron density of the plasma.

2) Unequal Gas and Particle Temperatures - It has been seen

in Section II~D that it is possible for the characteristic time for gas=-
particle thermal equilibration to be of the same magnitude as the
characteristic time for gas temperature change. Thus, in a plasma
in which the gas temperature is changing rapidly, the particle temper~
ature can be appreciably different than that of the gas. It will now be
shown that it is the particle temperature, rather than the gas tempera=~
ture, which is of primary importance in establishing the magnitude of
the electron density,

In order to determine the maximum vossible effect which un-
equal gas and particle temperatures may have on the particle ioniza-
tion, it will be assumed that the electrons in the plasma are complete~
ly thermalized with the ga.sL That is, the electrons are assumed to

have a Maxwellian energy distribution at the gas temperature, If the
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electrons were thermalized at the particle temperature, there would be
no effect due to the presence of a gas at a different temperature.

The equations which are applicable are the following:

¢, = (%%E)(Z;‘;?){z -%(%H%(%)?’} (4. 38)
ng = B Tp3/2 e o2/ eTy) (4. 39)
n = n e(eéa)/(kTG) (4. 40)
ng TP”Z =, T/ (4. 41)

where TG and TP are the gas and particle temperatures, respective-
ly. The last relation is the equation of steady sta_te in which the elec=~
tron fluxes to and from a particle are equated to one another. In this
relation, it has been assumed that the electron~-gas mean free path,
hegy ? is very much less than the particle radius. It will be shown in
Section V-C~1 that, if )‘eG >> a , this relation would be altered at
most by an interchange of Tp and TG . Also, the Boltzmann factor
would contain the particle temperature rather than the gas temperature.
Thus, since the major effect is in the Boltzmann factor, this analysis
- should lead to results whose magnitude represents an upper bound for
the results to be expected under a wide range of conditions.

The same procedure that was used in the case of uniform vari~
ations will be followed here except that the reference temperature will

be taken to be that of the particles.

To= TG/TP | (4. 42)

The resulting equations are



m o=y, (4. 43)

1 oy (2-1)
t2ye 2T =1, (4. 44)

and
1
v = T -—1n(r3y), (4. 45)
ya
1
V. -2
dv a

N (4. 46)

d r=1 ya+ 1

As may have been anticipated, the gas temperature does not alter the
ionization in an exponential manner. For v, small, the level of ioni~
zatlon decreases with increasing TG because of the increased elec~
tron flux to the particle. When y, is large, the Boltzmann factor
determines the value of Ny and the level of ionization is therefore
proportional to TG . By comparison of equation (4. 46) with the cor-
responding one for the case of uniform temperature variation, equa-
tion (4. 24), it is concluded that the "effective temperature!' of the
system is that of the particles, and the effect of unequal gas and par-
ticle temperatures ié relatively small.

Again, these changes are shown in Figure 17, where vy is
plotted as a function of T for v, = %, 1, 5, 10, 15, and oo.

3) Non-uniform Distribution of Particle Radius and Tempera~

ture - At the beginning of the fundamental shielding problem, it was
explicitly assumed that all of the particle parameters which influence
the ionization of the system were uniform. However, in an actual

physical situation, this is nol lhe case. In most systems, Lhere will
be a distribution of particie sizes and, if the temperature of the sys-~

tem is not static, there will be an associated non~uniformity in the
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particle temperature due to the dependence of particle - gas thermal
equilibration time on particle size. Therefore, it is instructive to
consider an example in which a spectrum of particle sizes and the re-
lated spectrum of particle temperatures are taken into account. The
major point which is made in this section is that, if the values oi a,
N, and Tp are properly chosen for problems in the weak shielding
regime, the relations which correspond to the uniform particle prop-
erty assumption may be used to calculate n.n with negligible error.

It will again be assumed that the temperature of the electrons
external to the particles is equal to the gas temperature. The approx-
imate solution for the potential is still applicable, since it results
from a property of the spherical geometry and not uniform conditions.
However, an equal volume may not be allotted to each particle since
the radius, surface density of electrons, and degree of ionization of
each particle are not the same. One quantity which each particle does
have in common, though, is the electron density at the outer radius,

n Hence, the volume allotted to each particle will be proportional

eb ’
to its degree of ionization. Also, for very large particles where the
strong shielding regime is encountered,or for very small particles
where the emission phenomena may be altered, the use of the approx-
imate solution and a uniform work function is invalid. However, be=
cause the number of particles at these two extremes approachcs ZCT Oy
this procedure is justified.

Letting i denote the th type of particle and assuming

bi/ai >> 1, the potential of the ith particle is
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3
en b
_ eb i
<{)a.i T 3¢ a, : (4. 47)
0O 1

From the conservation of volume,

4 3
zT LN b7 = 1. (4. 48)

The remaining three relations as used previously are

_ 3/2 e/ KT,
np = B Ti e (4. 49)
1/2 _ 1/2
ngs 1y = Teaita (4. 50)
+(edp_.)/(kT )}
n =n.,e at G (4. 51)
eal ebi

In order that the changes in the ionization which occur due to a distri-
bution of a and T may be measured with respect to some base, a
reference state will again be defined. The mean particle radius and
the total content of the non-gaseous phase of this state will be taken to
be the same as in the actual system. That is,
1! = :

N'a Z&% , (4. 52)

N'a‘3 = ZNiai3 . (4. 53)
The reference state temperature is the gas temperature

TH = T (4. 54)

and the work function is that which is common to all the particles.
The same variahles and reference state parameters will be
used as were defined in equations (4. 9) to (4. 16) with the addition

B, = b/p' . (4. 55)

Upon eliminating D and N4 and dividing the remaining equations

by the corresponding ones for the reference state, the following are
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obtained:
3
n, = VB, /ag (4. 56)
2 -W(l/Ti -1 -+ Ya(ﬂi - 1) '
T, e = Ve (4. 57)
3. -
Zpi u, = 1 (4. 58)
Yau = 1 (4. 59)
Yo%y, = 1 (4. 60)
i M .

Using equation (4. 59), equations {4. 56) to (4. 58) reduce to

w
Ya(V"l) +4nv = w - Z{-;—i- - 24’,11'I'i}or,:,L;.Li (4. 61)

which may be solved for v once ui(ai, 'r.l) is known. For the prob~
lem at hand, M; will be assumed to be a continuous function of a,
and the subscript i will be dropped.

The case to be considered here is one in which the particles
are hotter than the gas. Also, the particle temperature will be relat-
ed to the particle radius in a way which is motivated by the assumption
that the particle temperature change is governed by convection heat
transfer to the gas. Since the thermal equilibration time between a
small particle and its gaseous surroundings varies as the square of
the particle radius when Stokes' drag law is applicable, a reasonable
relation to assume between T and o is

2

T-1 = eTCL (4. 62)

where €r defines the magnitude of the temperature spread. Equation

(4. 61) becomes
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W

— - zu,n(1+e,ru2)}u(on)da . (4. 63)
(1+5:T0L )

y,(v-)+iny = w -

o
—°8

Without further information, it is also reasonable to assume .
that y{a) is peaked at a value close to ¢ = 1 and falls off to zero as

0 approaches zero or infinity, A function of this form is
C C

1 1 2 2
ula) = —&—CXP{“——(—?ﬁLOL )}, (4. 64)
[
a o
where ga defines the width of the distribution. The constants of this
particle size distribution are determined by the normalization condi=-

tions [equations (4. 54) and (4. 55)]

0
j‘onu (o) da = 1, (4. 65)
0
o
j asu(a) do, = 1. (4. 66)
0
Hence (see Appendix G),
Q-3
1 -
u(a)=(——§—)—;-{1§e>cp 'ZL[“‘”;‘”“”‘Z“Z'%)] (4. 67)
me )2 o o
a

Plots of this distribution for various values of ea are shown in Fig-
ure 18, In the limit of ea - 0, ufa) becomes a delta function located
at @=1,

When the above expression for (o) is introduced into equation
(4. 63), lwo integrations must be performed. The first may be doneby
setting up and solving a differential equation with the integral as the
‘dependent variable. The second integral is performed, with negligible

error introduced, by expanding 4n(l+ eTCLZ) about the maximum valuc
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of aufa). These integrations are performed in Appendix H, The re-
sulting cxpression which determines \;(ya, W e s eT) is

3 3 € .. € .3
patveidbany = w1 I (- entt A1 - BRI

eaeq., EIT

e 2 € .
@Xp{:%—[—e—l—-}-(l——%) eT+z]-1}>}+z&n{1+gT[1-—%J}+ £ €4 —
& T l+e'r(l‘-——§'—)

(4. 68)
When the error function is close to unity, equation (4. 68) reduces to:
€_¢&
v (v-1)+tny = W(E‘JC}',T)* zz,n(1+<;)+-—g-"r1§ . (4. 69)
where
€
¢ = (1-=)e, - (4. 70)

When the particle temperature is cqual to the gas temperature
everywhere? € = 0 , equation (4. 69) reduces to v =1. The reason
for this may be traced back to the normalization conditions, equations
(4. 65) and (4. 66), and is not related to the form of ji(a) chosen.
Therefore, when the reference state values of a' and N' defined by
equations (4. 52) and (4. 53) are used in calculating Ny in the funda=
mental shieélding problem, no error within the limits of accuracy im-
posed by the assumptions of this analysis will be introduced by the
a.ssumﬁtion of uniform particle size.

For the case in which both the particle radius and temperature
are uniform but the particle temperature is (1+ s:T) greater than the

gas temperature, that is, for ¢_= 0, equation (4, 69) becomes

o

we
yv=1) #4ny = g +24n(l +e,) (4. 71)
lT'
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Figure 19. Fractional Electron
Density Change Versus
the Spread in the Particle
Size Distribution Function
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and
d + 2
—d—e‘—’— = YW+1 . (4. 72)
Tle = a

In Figure 19, v is plotted as a function of the width of the
particle size distribution, €q * for various values of €. and v, and
w = 15, The most striking feature is the almost complete lack of de=
pendence of y upon Co& . This is true even when the problem is dom-~
inated by emission phenomena, Y, = 1, and the corresponding tem~
perature spread is large, e = 1. Of course, there is the strong
dependence on Vg and g, as predicted by equations (4. 71) and (4,72),
It is to be expected that if a different form for the particle size distri~
bution was used, and the particle radius and temperature were related
in a different manner, the details of the effect might be somewhat al-
tered; however, its magnitude should remain the same.

Thus, the difference between the electron density found in the
reference state system and the actual system will be small when the
parameters of the reference state are properly chosen. The values
of 2 and N should be defined such that the mean particle radius and
total non-gaseous content are the same for both systems. The value
of TP » for the reference state, should be that which corresponds to

the value of the reference state radius.
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V. NON-EQUILIBRIUM IONIZATION IN A
GAS - PARTICLE PLASMA

A, Introduction

When thermionically~emitting particles are preseni: in an ion-
ized gas, there are many interesting interactions which may take
place between the two types of ionization. In fact, there is a whole
spectrum of problems to be associated with the many situations which
fall between the two extreme cases of negligible gas ionization, the
case just investigated, and negligible particle ionization. Some of the
special cases located between these two extremes will now be con~
sidered. However, the major phenomenon under study will be a
mechanism by which an electron density may exist in a gas~particle
system which can be several orders of magnitude larger than that
which would be expected from either particle or gas ionization alone.

When hot particles are in a relatively cool but ionizable back=-
ground gas, the possibility exists that the net energy flux in the elec-
trons emitted from and returning to the particles is sufficient to
maintain the temperature of the electron gas outside the particles at a
value significantly greater than the temperature of the heavy species
and thereby enhance the gaseous ionization. The physical property
which makes this phenomenon possible is the relatively large differ-
ences in electron and atomic masses. When elastic collisions with
heavy species constitute the major power loss from the electron gas,
this large mass discrepancy will effectively insulate the electrons

from the heavy species, and the electron temperature can be almost
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equivalent to that of the particles. The role of the hot particles in
elevating the electron temperature in this situation is not unlike that
of the electric field which gives rise to non~equilibrium conductivity in
a plasma [29,30,31]. Both the hot particles and electric field providé
a power input to the electron gas which is balanced by the power lost to
the heavy species through collisions.

In this section, Part V, the equations which are required in
order to analyze non-equilibrium ionization phenomena in a gas -
particle plasma will be formulated., Although the major interest is
directed toward the special case of gaseous ionization enhancement,
the formulation will possess enough generality so that other non~

equilibrium and equilibrium situations may be readily considered.

?

o o= --m—\t -

The assump
be discussed. Then, since the calculation of the electron or ion num-
ber and energy fluxes to and from the particles is important in this
analysis, but yet complex under some conditions, the electron and ion
fluxes will next be investigated in some detail. In addition to its im-
portance to this analysis, the calculation of these fluxes is an interest~
ing problem in its own right. Then, in Part VI, the relations which
have been derived in this section will be used to consider several
special cases of both equilibrium and non«-equilibrium ionization.

Throughout both the formulation and the application of non-
equilibrium theory in a gas = particle plasma, the main effort will be
to investigate, in a relatively simple way, the physically important and

interesting phenomena.
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B. Assumptions and Model

1) Quasi-Steady Approximation - The concept of a static sys~

tem with three distinct temperatures, particle, gas, and electron, is
a realistic one for the situations in which the characteristic times for.
the particle or the gas temperature changes are long compared to the
characteristic time for the establishment of a static charge distribu-~
tion. When this is the case, the system may be analyzed using the
adiabatic or quasi~steady approximation in which the particle and gas
temperatures are considered as external parameters that are un-
changing in time. This approximation has been considered in greater
detail in Section II~E.

2) Spatially Uniform Conditions -~ The model to be used here

for the particles is identical to that used in the fundamental shielding
problem. The particles are assumed to be spherical with uniform
values of a , the particle radius, e? , the particle work function,
and TP , the particle temperature. Also, the degree of ionization of
all the particles is assumed to be the same.

The assumption is made that all the heavy species in the gas
have a common and uniform value of translational temperature, T .
Because the density of the heavy species is usually much larger than
that of the electrons,and the heavy species have masses which are all
roughly of the same magnitude, this is a very good assumption.

The electron gas is also assumed to have a uniform tempera~
ture. Implicit in this is the additional assumption that a temperature
for the electrons can be defined. A discussion of these two assump~

tions involves the consideration of four characteristic lengths: ) R

€e
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the electron~electron mean free path; keG » the electron - heavy
species mean free path; a, the particle radius; and b, a length ap-
proximately equal to the interparticle distance and which is given by
equation (3. 1).

A Maxwellian temperature, Te ; for the electrons may be de-
fined if the length of travel required for an electron to thermalize with
other electrons is much smaller than the thermalization length for an
electron with the heavy species. That is, the following requirement

should be met:

, (b)
( m )( ee
m A
G eG
where m and me are the electron and heavy~species masses re~

(b)

cc

)<< 1, (5.1)

spectively, and } is defined in the main body of the plasma, that
is, in the region of relatively small fields many radii away from a
particle. In the event it is not possible to define a Maxwellian tem~
perature, some of the relations which follow will be in error, but the
magnitude of the effects explored should be the same.

For many of the problems of current interest, including that of
ionization in a solid-rocket exhaust plume, the following are true:

}\((:é) >> a , where k(aé) is defined at the particle surface; and }\(b) b,

e ee
(b)

ce is defined in the main body of the plasma. When it is also

where )
assumed that reg S 2 there will be a collisionless region of appre-
ciable magnitude around each particle, Under these conditions, an
electron, which is emitted from a particle and which escapes this col-

lisionless region, will thermalize with the other electrons in the main

body of the plasma but not necessarily in the vicinity of the particle
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from which it was emitted, For these conditions, the assumption of
a uniform electron temperature in the main body of the plasma is
reasonable. Also, since the particle radii for most applications are
on the order of 10"6 - 1078 cm, the assumption, A . Sa, is not

greatly rcstrictive.

3) Weak Shielding ~ The approximate solution, that was found

to be valid in the weak shielding regime in the fundamental shielding
problem, is assumed to be valid here. That is, the physical concept
of a nearly constant-density sea of charge with abrupt changes occur-~
ring close to the particles is still applicable, However, rather than
the electron density at r = b being the important quantity in deter-
mining the charge on a particle, it is the net negative charge density

at r=bh e(n . -n, whezre .
3 ( e lb) ¥ n

b ib

must be used., Since the plasma is considered to be macroscopically

is the ion density at r = b , which

neutral, the charge per particle in the weak shielding approximartion
is then c(neb-nib)/N » which may bec either positive or negative. The

normalized potential at the surface of a particle is thus assumed to be

e, 2ob™ b
'IET'; = (—g— )P(a: b, Tp), (5. 2)
where
P(a,b, T ) = {m—:;ﬁ;}{l —%(%H-;-(%)B} (5. 3)
which can be expressed as:
P(a,b, T)) = {Ll;*-k‘-*i%‘lf} {1~%<%)+—§-<-§)3}, (5. 4)

where a ., in the first factor, is in microns, and kTp is in electron

volts.
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The criterion for the validity of the approximate solution may
be established, as in the fundamental shielding problem, by a consid-
eration of the relative magnitude of the characteristic lengths at a
particle's surface of the two types of potential distribution.involved, é
and )\Da. . Here, the charge density of the species which actually
shields the plasma from the potential of the particle must be used;
this species will have a charge of opposite sign than the charge on the
particle. In the fundamental shielding problem, it was found that the
approximate solution was applicable when a/)LDa < 5. Itis to be ex~
pected that this same criterion is applicable here, and in some cases
it would be é, conservative one since the presence of the second
charged species tends to increase the characteristic length of the one~
dimensional Debye sheath.

As in the previous instances where the approximate solution
has been used, the analysis is greatly simplified because ec{')a is not
coupled to ne(:r) and ni(r) but is determined by the conditions at
r = b and the spherical geomstry.

4) Ionization Equilibrium ~ The assumption is made that the

ionization of the heavy species is in a state of equilibrium correspond~
ing to the electron temperature at r = b , where all the spatial gradi~
ents are zero. However, since the charge densities and fields do not
change appreciably from their value at r = b, except in regions
which are on the order of a close to a particle, the ionization equi-
librium assumption should be fairly good over the main body of the

plasma. The equilibrium.relation is



ebib _
TS = KG(Te) {5. 5)
o ib
where
Z'n'rnkTe 3/2 g1 --V/kTe

g and g, are the statistical weights of the ion and atom ground
states, respectively. For simplicity, it has been assumed that only
one of the heavy gas species is capable of ionization. The density be=
fore ionization of this species is n_ and its ionization potential is V.

The assumption of equilibrium ionization of the gas at the elec-
tron temperature requires that the electron density be high enough so
that the forward and backward excitation and ionization rates are
dominated by electron collisional processes, That is, radiative pro-
cesses or processes which involve collisions of only heavy species
must be unimportant relative to those collisional processes which in-
volve electrons and heavy species. Since both the electron =~ heavy
species inelastic cross-sections and the electron thermal speed are
relatively large, this is not an unreasonable assumption.

5) Electron Energy Loss -~ The assumption is made that the

dominant power loss from the electron gas is by elastic collisions with
with the heavy species. 7 Hence, the power loss of the electron gas per
unit volume, which is to be balanced by the net energy input from the

particles, is

For further discussion, see references 29 and 30.
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3 SkTe % ———__m 5
("2‘ k)(Te-TG)(neb)(_w-fr—f) {(—THE)(-)‘-;E)} s (5.7)
where
fe'e)
m & m 2 =
(—ngg )(XeG) = > % {(5nG[/mG)J ‘(erj(e)e e fde ) (5. 8)

in which 5j is an energy transfer coefficient of species j, shortly to

be discussed; n is the density of species j; Q .{e) is the momen-~

Gj

tum transfer cross~section for electron -~ species j collisions; and ¢

ej

is the normalized electron energy, (mvez)/(ZkTe) .

By using only the above term to represent all of the power loss
of the electron gas, it has been assumed that the net power loss due to
inelastic collisions with heavy species is negligible. Actually, the
electrons undergo inelastic collisions which give rise to a power input
to the inelastic degrees of freedom, excitation, and ionization, of the
heavy species. If these inelastic losses are to be negligible in the
steady state, there must be an equivalent power input to the electrons
from the inelastic degrees of freedom resulting from three-body re-
combination and super~elastic collisions. When radiation from free -
bound and bound ~ bound transitions escapes the system, the power
return to the electron gas will be decreased, and an additional power
loss from the electron gas will result. In this instance, an additional
term equal to the radiation power loss per unit volume should be added
to expression (5. 7). If some of the heavy species are molecules, vi-
brational and rotational degrees of freedom may also be excited,

Here, too, there will generally not be an equivalent power return to
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the electron gas. Losses may result again from radiative de-excitation
or through the transfcr of energy from the rotational to the translation-
al degrees of freedom. An approximate way to include this power loss
in expression(5. 7) is by increasing the value of 63. above 8/3, it value
for purely elastic collisions; a value of & whose magnitude is 10Z or
103 is not uncommon. However, a more rigorous way would be to add
an additional term to expression (5.7) to account for sﬁch losses. Also
neglected in expression (5. 7) is the direct radiative power loss due to
free - free transitions (bremsstrahlung).

The elevation of electron temperature above i:ha‘t of the gas and
the accompanying enhancement of gaseous ionization has recently been
experimentally demonstrated [30,31] . In this experiment, a D.C.
electric field supplied the power input to the electron gas. Good agree-
ment was obtained between the experimental results and the theory,

which utilized many of the assumptions and relations employed here.

C. Number and Energy Fiux Problem

1) Tatroduction - Tn order to complete the set of relations re-

quired to analyze the non-equilibrium ionization in a gas - particle
plasma, the net current to and from a particle must be computed and
set equal to one another to satisfy the requirement of steady state. Al-
so, the net power emitted from the particles into the electron gas must
be calculated and set equal to the power loss by elastic collisions in
order to define the electron temperature. Hence, the number and en-
ergy fluxes to and from a particle will be calculated.

Only the electron fluxes will be directly considered since the
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ion fluxes are easily obtained by analogy. Also, from this point on,
the ion flux to the particles will be neglected with respect to emitted
electron flux from the particles except in the last three special cases
to be considered in Part VI. The justification for this lies in the large
differences in the values of electron and ion mean thermal speeds. The
inclusion of both the ion flux to a particle and the emitted electron flux
in the current conservation equation is straightforward but considerably
increases the algebraic complexity of the problem.

The magnitude of the electron number and energy fluxes to and
from a particle will be influenced by the size of the collisionless re-
gion which exists around it. When this region is very small, keG <<
a , the motion of the electrons will be characteristic of a one~-
dimensional diffusion process. When this region becomes of signifi-
cant extent, Aeq S a, the three-dimensional nature of the free-fall
problem must be taken into account. A problem, interesting in its
own right, will now be considered that is representative of this situa-
tion and which should give an insight into the effects of this three-
dimensional collisionless region.

2) Model - The actual situation will be idealized, to some ex-
tent, in order to obtain a workable model.

The outer limit of the collisionless region which exists around
a particle is defined by the radius r = c (scec Figure 20), where
C nat Aeg * It will be assumed that most of the potential drop be-
tween the particle and the plasma occurs in this region, so that it is
valid to assume that d)c = 0 . Thus, if the potential distribution which

exists around the particle falls into the weak shielding regime, the
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Collisionless Region

—

C\

Figure 20. Extent of the Collisionless Region.

lower limit on the radius ¢ must be at least a few particle radii.
However, if >‘Da << a, so that the potential distribution falls well into
the strong shielding regime, and heG << a, the ratio c/a will
nearly be equal to unity. In this case, the one-dimensional problem
will be recovered.

The velocity distribution of the electrons emitted from the par-
ticle will be assumed to be a half-Maxwellian with the parameters
(nE R Tp ). Also, it will be assumed that the electrons which strike the
surface of a particle do not rebound but remain with the particle. 8

It will be further assumed that all the electrons which enter the

collisionless region from r ® ¢ have had their velocities completely

A discussion of the '"sticking probability'" for electrons which strike
the surfaces of various materials is given in reference 2, pp. 25-26.
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randomized by electron - heavy species collisions and have also ther-
malized with the electrons in the main body of the plasma. Thus, the
velocity distribution of the electrons which enter the collisionless re-
gion from r < ¢ is a half-Maxwellian with the parameters (neb’ Te).l

Thus, the problem has been reduced to that of two concentric
spheres, each of which emits electrons into the collisionless region
between them. The fluxes which exist in this region will be obtained
by finding the distribution function for the electrons in phase space

and then taking the appropriate moments.

3) Distribution in Phase Space -~ In the collisionless region

between the two emitting spheres, under the requirement of steady
state, Boltzmann's equation for the density f(g,p) in the six~
dimensional phase space (a, E) is
(B v, +d- v )f@5 = 0. (5. 9)

That is, the density along streamlines in phase space is constant.
Therefore, if f(ﬁ', 5) is known on the surfaces in phase space defined
by r=a or r =c, from which all streamlines originate, then f(i’,ﬁ)
is known in all occupied regions of phase space. The specification of
the half-Maxwellians serves this purpose.

The density in phase space may be divided into two parts; one
which accounts for the electrons emitted from = = a , and one which

accounts for the electrons emitted from r =c .
£(4,p) = £, (d,p) +£_(d.P) . (5. 10)

Either fa or fC » but not both, may be non-zero at any point (a, 5) .

Hence, equation (5.9) is satisfied by either function. In particular,
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B v, +d v ), @5 = 0 (5. 11)
In the following, only :Ea will be considered in detail, since the same
considerations apply to fc .
In order that equation (5. 11) can be satisfied, fa(a, f)) must be
a function of the constants of the motion. From the condition specified
at r=a, it is seeén that it can only be a function of 79‘(?1), 1_5) , the

Hamiltonian, and

- ¥ (d, p)/XT
P (5.12)

£,(d.p) = C e

For this system, the Hamiltonian is equal to the total energy of an
electron and is constant along a streamline.

Using the spherical coordinates, r, 8, and §, the origin of

which is located at the center of the particle, the Liagrangian for a

single electron is
Z = 2 r 4 (r8)% + (rsinei )7} + e . (5. 13)

The canonical momenta, defined by

p, = 8Z&/dq, , (5. 14)
are
= mvr = mrzé = er sin 67 (5. 15)
pl' » Pe 1 Pw 3 .
and the Hamiltonian is
b 2 P 2
1 2
B SLlip a8 4 - et . (5. 16)
r r sinf

Since § 1is a cyclic coordinate, PljJ is a constant of the motion. It is
also easily shown, with the aid of Lagrange's equations, that the total

angular momentum vector, BQ , defined by
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- -t d —
Pqy = T Xgg(mr), (5. 17)

is also a constant of the motion. Since

2 .
2 2. Py

) = p, + , (5. 18)

Q 0 sinze

the Hamiltonian becomes
p 2
1 2 0

7ﬂ‘='2‘1;1‘{P1. ""'r-z—}"efb- (5. 19)

f(a,f))) is the density in phase space; therefore, the density in

physical space of electrons emitted from r = a, (d3Nea)/(d3r) . is

given by
a 1 dSNea
ne = 2 . 3 E (D. 20)
r sind d q
where
a’N 2 3
r— = rfa(q,p)d P (5. 21)
d g Y
P
or
a _ 2u 5
Pe T 2 Ur £,z P apylpdpodp s (5. 22)
PIPQ

The constant, Ca ,» is evaluated from the conditions at r=a . Thus,

_elo,-0)
kT
npe P 1 2 pQ2
f (r,p.,Pq) = exp {~ 5=—g==—(p_~ +—5 )}, (5. 23)
a r’ 0 (Z'rrkap)3/Z kaTp r r2
and, in the same manner
. e-i-ec[)/kTe . 5
b 1 2 Q
f (r,p_,pa) = — exp{- 5= (p_" + . (5. 24)
C r’FQ (Zﬂkae)?:/Z kaTe r rZ
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The calculation of the fluxes is now reduced to taking the de-
sired moments over the allowed regions in momentum space. That is,
fa is non-zero only at points in (Pr’pQ) space which are consistent
with the constants of motion and the conditions at r = a . Since mo-
mentum space has been reduced to one which is two-dimensianal,
these allowed regions may be specified by marginal contours in (Pr’
pQ) space. The nature of these contours will depend upon whether the
potential of the particle is positive or negative. Hence, these two
separate cases will now be considered.

4} Positive Particle Potential - When the thermionic emission

from the particles is dominant over the gaseous ionization, a particle
will have emitted a net number of electrons, and its potential with re~
spect to the plasma will be positive. Ilence, the electrons will be at-
tracted to the particle and a certain fraction of those emitted from
r = a will not escape and cross r = c . Also, because of a relatively
high initial angular momentum, many of the electrons emitted from

= ¢ will leave the collisionless region rather than striking the parti-
cle surface at r=a.

The marginal contours are defined from the conditions a:i r = a

or r =c¢ and the constants of the motion, the energy, and angular mo-

mentum.

2

r const. (5. 25)

H

P + pQZ/rZ - 2med¢

2
P

]

const. (5. 26)

For the electrons emitted from r = a, one contour is defined

b

by the condition that pr(rz a) 2 0. Letting the superscript (1) denote
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the initial condition pr(r=a) = 0, this marginal contour for a % r € ¢
ie given by

2 2
p 1) = (.;17 -.;lz.)pg(” - 2me (¢_-¢), (5.27)

which describes a hyperbola in (Pr’ pQ) space. For all r, it must be

2
(1) . In Figure 21, the path in physical space of a

2
>
true that P P.
marginal electron is illustrated and is denoted by (1), Also shown are
the paths which correspond to the marginal contours yet to be defined.

(1)

In Figure 22, the marginal contour P. and three other contours in
(pr, pQ) space are shown.

A second marginal contour is defined by those electrons which
reverse their radial momentum at r = ¢ and return to the particle.
It is clear that the conservation of angular momentum as well as en-
ergy must be considered in the general case, because electrons may
have a kinetic energy greater than zero at r = ¢ and still return o

the particle. (See Figure 21.) If the superscript (2) corresponds to

the condition pr(rzc) = 0, then

2 2
A2 = 2meg - (= - “}zﬁn(z) ‘ (5. 28)
T C

(2)

r

P

which describes an ellipse in (pr’PQ) space. Electrons with P, <P

(2)

r

will return to the particle, and those with P.>P will contribute

to the net number and energy flux leaving the particle (see Figure 22).
An implicit assumption made here is that pr2 >0 atall r for the
electrons with P. > piz) . This really reduces to an assumption
about the shape of the potential field about the particle. This is fur~
ther discussed in Appendix I,

The marginal contours for the electrons emitted from r = ¢
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are likewise defined. The requirement that pr(rz c) £ 0 for the

emitted electrons defines the contour

2 2

p. ) = 2meg - (;_12 --C—lz)pgm : (5. 29).

The marginal contour which separates those electrons which strike the

particle from those which do not is given by the condition pr(rza) = 0.

Thus,
2 2
4 1 1 4
Pr() '“'(:Z";Z)PQ() - 2me (¢, - 9) - (5.30)
Those electrons which do not reach the particle are deflected toward
it but return to r = c . Itis seen that pr(l) = - Pr(4) and pr(z) =

- Pr(S) y 80 that the marginal contours in (pr, pQ) space are symmet-

ric about P, = 0 . This symmetry is exhibited in Figure 22, and the
regions into which the marginal contours divide (Pr’ pQ) space are in-
dicated. The regions marked "orbit" denote those electrons which
cross neither r = a nor r = c¢, but rather orbit the particle. These
orbit electrons, however, do not contribute to the number and energy
fluxes.

The desired fluxes may now be calculated, since fa and :EC
are known and the regions in phase space in which each is non-zero
are defined. The net electron flux in the +r direction for the elec-

trons emitted from the particle, I‘n+ s is given by

e
+ 1
I\ne TG II(P-r/m)faZ“depndPr ’ (5. 31)
Py

where pz is the region of (Pr’ pQ) space in which fa is non-zero.

Thus,
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2
- P
_cle,-9) (12) éz‘+ )
KT Pr o e
Zun,, e p A 2mkT
r t- E 373 > ‘ depQ e b p.dp
De (20mkT ) {mzr”) J : ror
P 0 (2)
Py
( )
o e o) -\ L
kT, 4
+ j‘ dePQI e p dp (5.32)
(12) (1)
Pl‘ r
(12) .
where Pq is the value of P, at the intersection of contours (1)
and (2) [see Figure 22.1.
1
2med e
(12) _ a
pQ - 1 1 > . (5. 33)
A
a c

9

The integrations are straightforward and yield

1 e¢a e(ba
n., /8kT \¢ "kT. T HRERT
Tn+:"‘§(“%r"n£> © p(%)zv-{v-l)e P (5. 34)
where
v = (c/a)’. (5. 35)

The first three factors give the flux which one would calculate for the
: ; 2
corresponding one-dimensional collisionless case, and the 1/r" de~-
: . 2
pendence is consistent with total flux conservation, 4wr I‘n t const.

e
The quantity in square brackets introduces the effect of the three~

? The author has recently found that this result is essentially the
same as that obtained by Langmuir [327, who, in a conceptually
somewhat different way, computed the ion current to a spherical
plasma probe which was at a negative potential and was surrounded
by . a collisionless sheath.
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dimensional collisionless region. As c/a-1, [ ]-1, Since ¢,
has been set equal to zmero, this would corrcspond to the case in which
the size bf the collisionless potential sheath is very much less than
the particle radius; that is, KDa << XeG << a , so that the emission
through the potential sheath is one dimensional in nature. For the
limit in which the geometrical effects are large compared to the
shielding effects,

eci)a/kTP e 7
—3 <<1l, [ :] ~ |1 + 1—{-;]-:-‘-“] >
(c/a)™~1 P
Hence, when (}‘eG/a)z > ecpa/k’l‘p ;» the rate at which electrons are
emitted from a particle is given by

3 - e¢, /kT

n 8kT ed
(4Tra2)(—§)( ﬂmP> e p<1 + mﬁ) : (5. 36)
“p

Thus, the effect of a large collisionless region around the par=-

ticle is to increase the net electron emission by the factor

[+ (ecpa/kTp)] over what would be estimated from one-dimensional
considerations. Curves of [ ] versus (c/a,)2 » which illustrate this
transition from the one- to the three-dimensional case, are shown in
Figure 23,

The energy flux in the electrons leaving the particle is readily
computed. The kinetic energy of an electron which has escaped the
field of the particle and enters the electron gas at r = ¢ is I)elf , the
Hamiltonian. Therefore, the energy flux in the electrons escaping

the particle, T.H/ * , is

e
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+ [ Py
I“He = ,.L.J ( — w)faZﬁpOddepr . (5. 37)
Py

which is related to the previously evaluated integral by

+ 2 0 +
A = C kT “ —2-{I t/c} (5. 38)
'}.[.e a p 8Tp n,' a
where Ca is the constant in equation (5. 12). Thus,

e}, /2KT

+ +
= T - .
l‘%e 2KT . 1 - = (5. 39)
(v-1)kT
ve P (y-1)

As would be expected, the one-dimensional result is recovered in the
limit c¢/a=1; [ J->1; and the mean energy carried per electron is

ZkTp . When the collisionless region is large, (c/aL)2 >>1, and

e /KT 1+ (ed_/2kT )
- /"'a")‘“_Bl <1, [1- [1 +(e¢:/kTP)p ]

Therefore, the mean energy carried in the three-dimensional case is
less than ZkTP , and when (ecba)/(kTP) >> 1, it is only kTp . How-
ever, the energy flux is still larger than would be estimated using a

i + *
one~dimensional approach because of the augmentation of I‘n ; in the
e
three-dimensional 1limit

BKT_ z - ed, /KT, L2 ed,
T'He (T (==2) e (£) (2KT) |1 + ZkTp] . (5. 40)

The calculation of the fluxes to the particle from the electron
gas proceeds exactly in the same manner and, since the marginal
contour in (pr, pQ) is symmetric about P.= 0, the integrals to be

carried out are of the same form as those previously evaluated.
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Thus,
i - o
n 8kT 2 W
eb e a e
T (—...._4 )( — )(;) v=-(y=-1)e (5. 41)
and - -
) po- e¢ /2kT
T = 2kT & 1~ . 5.42
’H'e e n . ec@a (5. 42)
(y—likTe
- ye - (y-1) 4

Oi course, the discussion of I‘n * and PH’ * applies equally well to
the above quantities. Also, in t}eze three-—di?nensiona.l limit, a relation
analogous to equation (5. 36) is obtained, and is the same as that
which Spitzer [1] derived from kinetic theory considerations.

If the value of the ion flux to a negative particle is desired, a
relation analogous to cquation (5. 41) can be used; both e and ¢a.
change in sign.

The steady-state requirement is that the net current to a par-

ticle should be zero. That is,

r Y =r - (5. 43)
n n
e e
or
N e¢a . Cq)a
1 KT W-1kT_
nETpae Ply-(y-1)e P ed_
L T N-IRT
= n,, T 2ly - (y-1)e e . (5. 44)

When the shielding effect is small compared to the geometrical effect,

ed /kT
i > << 1,
(c/a)"-1

but (e¢a)/(kTp) >> 1, the requirement of steady state becomes



N -.ecpa/kTP

-1 _ _
nETp e = n T . (5. 45)

The net power per unit volume into the electron gas, which is
to be equated to the power lost per unit volume by electron~heavy

species elastic collisions [expression (5.7)], is given by

[4:Tra2N][I‘ﬂ+e+(a) - T’er_(a)] . (5. 46)

In general, this expression is an algebraically complicated one, How-

ever, for the case in which

ed [(kT )
¢a (Z P, e << 1 ,
(c/a)" -1
but ecba/(kTP’ Rl WL re;luces to
e
1 a

8kT (2 "kT_ |[,ed
2 = nE P zX ]
Mo "N (T)(—'P“wm e (k—,f;>(kTp—kTe) , (5. 47)
which is a factor of e¢a/(2kTp) larger than the corresponding one-
dimensional estimate.

5) Negative Particle Potential - When gaseous ionization is

dominant over thermionic emission from the particles, a particle will
absorb electrons, and its potential with respect to the plasma will be
negative. The calculation of the fluxes in this case is relatively sim-
ple. It is easily seen that all of the electrons emitted from the parti-
cle will leave the collisionless region. However, not all the electrons
emitted from the electron gas will reach the particle. The situation
may again be examined through marginal contours.

For the electrons which are emitted from r = a, the require-

ment that Pr(rf a)> 0 leads to the contour
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(5)° 1 1y (5)°
P - (:Z - ;7 )Pr + 2me(¢-<{>a) > (5- 48)

r

where the superscript (5) denotes the condition pr(r‘—‘ al=0. The
contour which separates the electrons which reach the particle from
those which do not, after emission from r =c¢ , is also given by the
condition pr(r= a)= 0., Therefore, equation (5. 45) again is valid for

(6) (5)

this contour, but P.. =-P. These contours are illustrated in
Figure 24.

Using equations (5.31) and (5 38), the fluxes are

SkT
+
r, ' s ) (3) (5. 49)

ecba

> (—) e e | (5. 50)

8k T

hel
- _ Teb
L “T(
e

and
+ +
1“ _— I‘ ZkT - 50 51
p, = Do (2KTy - o) (5. 51)
I“#e = l"ne(ZkTe - eci)a) . (5. 52)

It is seen that the fluxes for the case of negative particle poten-
tial are just what one would calculate for the one-dimensional problem
times the geometrical factor, (a./r)2 . The requirement of steady

state yields

1+ e¢a/kTe

— 2
npT % = n, T e , (5. 53)

=

and the expression for the power input to the electron gas per unit vol-

ume is .
2z

[ 4ma’ N][ (“‘EB> 2T -T ), (5. 54)
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both of which are relatively simple compared o the results of the

positive potential case.
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VI. SPECIAL CASES

A, Introduction

All of the relationships that are necessary to define the elec~
tron density in a gas - particle system have been derived and dis-
cussed in Part V. These relationships will now be employed to study
various special cases. First, however, the order that exists between
these special cases will briefly be considered.

In the problem of ionization in a gas -~ particle plasma, there
are two extreme cases; one of negligible gas ionization, where the
particle potential is always positive; and one of negligible particle
ionization, where the thermionic emission from a particle is relative-
ly small so that the ion and electron fluxes to a particle are almost
equivalent and the particle potential is negative. The first extreme
case, in which only the particles are ionized, has been considered in
Parts III and IV, If the amount of ionization of the gas in this extreme
case is now increased from zero, a point will be reached where the
contributions to the electron density by the gas and the particles will
be of comparable magnitudes, and there will be a noticeable supres-
sion of one form of ionization due to the presence of the other. The
two special cases of a slightly ionized gas and a fully ionized gas will
be used to illustrate this direct interaction. In this range, the parti-
cle potential will be positive, but may be close to zero.

The situation which is of major interest here, that in which the

enhancement of the gaseous ionization is large and the particle ioniza-
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tion is negligible, will next be considered. In this case, the interest-
ing interaction between the gas and particles is the indirect one of
electron heating leading to enhanced ionization rather than the more
direct interaction between the two types of ionization just considered.
The particle poteutial in this case will generally be negative. A nu-
merical example will be presented to illustrate the possible magnitude
of the ionization enhancement.

The last three special cases to be investigated are at the sec-
ond extreme where the gaseous ionization is completely dominant and
the thermionic emission from the particles can be assumed to be equal
to zero. One phenomenon of interest here is the electron absorption
by the particles which, under some conditions, can greatly reduce the
number of free electrons in the system. The possible magnitude of
this effect will be explored by again considering the two special cases
of a slightly ionized gas and a fully ionized gas. A second phenomenon
which is of interest, when the thermionic emission from the particles
is negligible, is that of quenching of the gaseous ionization. This re~
sults when the particles are cooler than the gas so that the rate of re-
combination exceeds the rate of ionization at the surface of the parti-
cles and the electron gas is therefore cooled, This, in turn, will
decrease the level of ionization.

In all of these special cases, it is convenient to reduce the
number of relationships required to define the electron density to two.
This will now be done for the special case of primary interest, gase-
ous ionization enhancement. The treatment of this special case will

not only illustrate this reduction, but the resulting relations will also
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be applicable to the first two special cases to be considered.

In the special case of gaseous ionization enhancement, it will
be assumed that the particle potential is negative and that the electron.
flux emitted from a particle is balanced by the flux emitted back from
the electron gas. Hence, equation (5. 53) and expression (5. 54) are
applicable. The approximate solution for the particle potential, equa-
tion (5. 2); Saha's equation, equation (5.5); and the steady state re-

quirement, equation (5. 53); may be combined to yield

T T
o“ 4 p (‘P‘:’IIL) <’T‘e'> [‘“‘ - Zin T‘S] K (T_)
n_ . T = T (6. 1)
2 el ) () e - en 2]
where
p = neb/nE o {6.2)

By equating the power lost by elastic collisions with the heavy
species, expression (5.7), to the power gained by thermal replenish~
ment from the particles, expression (5. 54), the power balance on the

electron gas yields
1

T T T .5
(P ) - (%

This relation determines the value of Te relative to Tp and T

){(m/m [EYS NP ) (6.3)

e

411‘ N
G

If the right hand side of equation (6. 3) is very much less than
unity, Te will be close to Tp . This is a very possible situation in
view of the relative magnitudes of the electron and alomic masses.
For the case in which the electron energy loss is accomplished

through purely elastic collisions, an average electron emitted from a
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particle would have to make at least 104 - 105 collisions with the
heavy species before returning to another particle if the electron tem=
perature is fo differ appreciabiy from that of the particles. The tran-
sitinn of the temperature of the electrons from the particle tempera- |
ture to the gas temperature ie shown in Figure 25 where Te/’I‘g is
plotted as a function of the right hand side of equation (6.3) for many
values of TP/TG between 1. 0 and 2. 0.

In general, both equations (6. 1) and (6. 3) must be solved si-
multaneously for Te and p. A straightforward iteration procedure
would be to first assume a value for T-e s calculate p, and then ob-
tain Te from equation (6. 3) or Figure 25. From this value of Te s
a new estimate may be made and the cycle repeated until an acceptable
agreement between the assumed and calculated values of Te is
reached,

The same general procedure for solution may be followed in
the case of a positive particle potential, although the algebraic com-~
plexity is somewhat greater,

The special cases mentioned previously will now be investigated..

B. Particle and Gas lonizations of Comparable Magnitudes, Te __z_TP .

When the parameters of the particles and heavy species are

such that the electron temperature may be assumed equal to the parti=-
cle temperature, the electron density may be calculated directly from
equation (6. 1); this is equivalent to assuming Te = Tp in the above
iteration scheme, and it should be checked once p is determined.

The calculation of the electron density in this case is interest-
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ing for several reasons. First, when the particle and gaseous ioniza~
tions are of the same magnitude, the direct interaction which occurs
between them produces effects which are also of this magnitude and
are easily demonstrated. Second, it describes the case of complete
thermodynamic equilibrium; Te and TP are equivalent, and TG
does not enter. Third, it really applies to both positive and negative
particle potentials because the requirement of steady state, equation
(5.44) or (5.53), is the same for both cases when Tp = Te . It
should be pointed out, however, that the changes in the electron den-
sity due to this direct interaction are small relative to the other phe~

nomena to be investigated (< 50 per cent).

1) Slightly Ionized Gas -~ Assuming that the gas is slightly

ionized, and Te = TP s equation (6. 1) becomes

n K (T)
Pz"'( N Jpinp = 2 G _B. | (6. 4)
Pn 2
5 nE

In order to better visualize the direct interaction which occurs be-
tween the two types of ionization, two characteristic values of the rel-
ative electron density, PP and P ¢ will be defined, When the parti-
cle density is zero, so that all the existing electrons are due only to

gaseous ionization,

n KG(T )

2 0
gt = R 6.5

ir
When the density of ionizable gas species is zero, so that all the elec~

trons are from the particles,

Pn

1 1 E

1oL . (6. 6)
N

Pp Pp
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In terms of these two characteristic quantities, p is given by
2 in p 2
P + p pp 1 = pG o (60 7)
The anticipated effect here is that the presence of one type of ioniza-
tion tends to supress the level of the other so that p is always less
than (pp + pG) as predicted by the principle of L.e Chatelier. This
effect is clearly illustrated in Figure 26,

2) Fully Ionized Gas - In the case of a slightly ionized gas,

there were two degrees of freedom; both the particle and gas ioniza-
tions were variable. If the gas is assumed to be fully ionized, there
exists only one degree of freedom, and it would be expected that the
total supression of the ionization would not be as large.

When the gas is fully ionized and Te = TP s equation (6. 1) be=

comes

N B
t=s— finp = —
P PnE N

. (6. 8)

When characteristic quantities are defined as done previously,

PG = no/nE 3 (6. 9)
and
: Pn
Lot = 1 E (6. 10)
p P N
P P

equation (6. 8) becomes

p+P _’.{.’.{LE._ =

(6. 11)
P &n—l—

P

This equation is also plotted in Figure 26. Again, p is less than

pP + Po but the supression’is not as large, and the net ionization is
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greater than in the case of a slightly ionized gas, When the exact
form of Saha's equation is used, the resulting value of p will be
somewhere between the two limiting values which correspond to a

slightly or a fully ionized gas.

C. Negligible Particle Ionization

When the electron deunsity thal would exist in the case of only
particle ionization is very much less than the electron density that
would exist in the case of only gaseous ionization at temperature Te N
the electron flux to the particles in the composite system will be of
such a magnitude that, for a steady state to exist, the particles must
absorb electrons and be at a negative potential, This defines the
range in which the particle ionization is said to be negligible.

When the particle potential is negative, the ion flux to the par=
ticles should be included in the equation of steady state that requires
that the net current to the particles be zero. Equation (5. 34) will be
used for the ion flux, and it will be assumed that the collisionless re=

gion around a particle is large; that is,

ecba- a 2
(= ——) << 1,
, kTP kiG

where XiG is the ion - gas mean free path. Equations (5. 49) and
(5. 50) will be used for the electron fluxes. Thus, the requirement of

steady state is

2 0
. bom o 3, e
ppTy” g Tg ’n'{;) (1 'E“(‘}) = ngp Tt e . (6. 12)

where m, -and m are the masses of the ion and electron, respec-
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tively.

Rather than pursuing this general case further, which would
involve a great deal of algebraic complexity, the range of nagative
particle potential will be broken up into two parts. The first partis
that in which the electron fluxes to and from a particle are almost
equivalent. The second part, that in which the thermionic emission
from the particles is negligible compared to the gaseous ionization
(nE = (), is that in which the ion and electron fluxes to a particle are
nearly the same.

The phenomenon of enhancement of gaseous ionization would
most likely fall into the first part of this range.

The second part includes some situations in which the gas ~
particle interaction is capable of greatly reducing the numbexr of free
electrons in the system. A direct interaction, by which this is done,
is the one in which the particles absorb an appreciable fraction of the
free electrons generated by the gas and thereby reduce the electron
density well below that which would exist if the particles were not
present, An indirect interaction, similar in nature to that of gaseous
ilonization enhancement, but also able to vastly reduce Lhe electiron
density, is that in which the electron gas suffers a power loss because
the rate of recombination exceeds the rate of ionization at a particle's
surface. This power loss reduces the electron temperature, and,
therefore, the gaseous ionization.

1) Enbancement of Gaseous Ionization - As stated previously,

it is assumed in analyzing the effect of gaseous ionization enhance-

ment, that the particle potential is negative and that the ion flux to the
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particles may be neglected. Also, in order to have this effect con~
sidered under conditions where it may be large, it is further assumed
that the gas is slightly ionized and that there is only a negligible frac-
tion of electrons absorbed on the particles.
Using these assumptions, equation (6. 1) reduces to Saha's
equation:
1
n K (T 2
o = _2__(1;_3)_ . (6. 13)
“E

Combining this with equation (6. 3), it is seen that

1 1
T -T T \2 {n K (T )}
p e ~ o G'Te (6. 14)
( Te-TC> (“TE) v (T
where
¥ o= (%—){(m/m(})(ﬁ/k ). {6. 15)
4a"N eG

Before considering a numerical example, it is instructive to analyze
equation (6. 14} in order to determine the dependence of the electron
temperature on the particle temperature,

It might initially be anticipated that by increasing the strength
of the thermionic emission from the particles by increasing the parti~
cle temperature, the ratio Tp/Te could be driven toward unity,
However, the power lost by the electron gas through elastic collisions
has a corresponding increa.se‘ proportional to the increase in n_y -
Equation (6. 14) shows that

1

I,

T
. 2 £ - ed ]
(%) @E‘) LR R (6. 16)

vl <
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Thus, when Tp/Te =~ 1, the work function has twice the "weight' of
the gas ionization potential. If (V/ZXTP/Te) <ed and TP is in-
creased, Tp/Te will be driven closer to unity. However, if
(V/Z)(Tp/Te) >ed , and Tp is increased, ’I‘p/Te will decrease and,
as long as the gas remains slightly ionized, Tp/Te cannot be driven
closer to unity by inci'easing Tp . Physically, it is a question of
which will increase faster as Tp is raised; the electron density due
to the thermionic emission, Np s which increases the power input to
the electron gas, or the electron density due to gaseous ionization,
N,y » Which increases the power lost by the electron gas through
elastic collisions,

The numerical example of gaseous ionization enhancement
which is to be considered illustrates the .Ina.gnitude of the §:nhauue-
ment that can occur in the exhaust plume of a solid rocket motor. The
combustion products in a plume may contain both thermionically-
emitting alumina particles, whose temperature lags that of the gas,
and alkali metal impurities. It is the interaction between these parti-
cles and the other products of combustion which determines the eﬁ-
hancement of the ionization of the alkali metal vapors.

The obsefved electron densities are usually on the order of
1010 - 10ll cm“3, but equilibrium calculations of the particle ioniza~
tion at the pérticle temperature or the alkali metal ionization at the
gas temperatﬁre yield considerably lower values, One possibility is
that the chemicé.l reactions, including recombination of electrons and
ions, become frozen upstréam of the exit plane and thereby give elec~

tron densities which are higher than the equilibrium values. A second
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possibility, and one which may be attributed directly to the presence
of the particles, is the type of gaseous ionization enhancement studied
here. This phenomenon is one of equilibrium in the sense that the
ionization is assumed to be in equilibrium at the electron temperature.s
but one of nonw-equilibrium in that the particles and gas temperatures
are unequal. It is felt that, even though the model used to study the
ionization enhancement is much simpler than the actual system, the
results are representative of the correct magnitude of the enhance-
ment to be expected.

Some of the parameters which will be used to describe the
conditions in the plume have been chosen in an arbitrary, but is is
hoped, realistic manner. Others have been taken directly from ref-
erence 33. The average properties of the gas are taken to be

T. = 1500°K
e 17 -3 = pressure = ,02 atm.
n = 107 cm
G
0<£8<100 (6= g for purely clastic collisions)
molecular weight = 27
electron-gas total collision cross~section =
10'-15 cmz
The alkali metal impurity is assumed to be 300 ppm of potassium va=
por which has the following charécteristics:
n, = 3x10%cm™?, V = 4.34ev,
g = 1, 8o ~ 2.
The parameters of the alumina particles are taken to be

K -3 -4

N 10" em 7, a = 10 crm

H

ed

1
"

3.77ev , w = 1.17 x 1074,
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Direct calculations vield

regr = 1072 cm , m/mG = 2 X 10-5,

(25?)( —(2)s = (4.77x 1075,
Na )‘eG G

In the calculation of the ionization enhancement, equations (3.32),
(5. 6), and (6. 13), and Figures 10a, 10b, and 25 are used. The re~
sults are shown in Figures 27 and 28.

In Figure 27, the electron temperature is plotted as a function
of the particle tempe rature for 6 = 10, 100, and the case of no elec-
tron energy loss, 6§ = 0., When Tp is close to TCT » Dp is very
much less than Ny, » SO that the energy input to the electrons is not
sufficient to displace them far from thermal equilibrium with the gas.
However, since V/2 < ed , increases made in TP tend to drive
Tp/Te closer to unity at higher values of Tp . In Figure 28, the en~
hanced ionization is plotted as a function of Tp for & =0, 10, and
100. The approximate magnitudes to be expected for intermediate
values of & are readily obtained by extrapolation. 'Ihe electron den=-
sity due to gas ionization alone at the gas temperature,and the electron
density due to particle ionization alone at the particle temperature,
are also shown. Itis secen that for & = 10 and a particle thermal lag
of 500°C s the ionization is enhanced by a factor of 10. A lag of 800°
C gives a factor of enhancemént 102', that is, an electron density of
3.5 X l()11 (:rn“3 . Thus, the ionization enhancement in this sysatem
can be quite large.

In order to further define the magnitude of the phenomenon in
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an actual system, the particle thermal lag, the rate of ion - electron
recombination, the electron energy loss mechanisms, and the physi-
cal properties of the particles and the gas should be more fully ex~
amined,

2) Electron Absorption - Rosen ! 127 has proposed that in

some gas ~ particle systems, it is possible for the particles to absorb
an appreciable fraction of the electrons produced by gaseous ioniza~-
tion. The purpose of this discussion is to further explore this possi~
bility under the assumption that the thermionic emission from the
particles is negligible.

The requirement of steady state, equation (6. 12), now reduces

to
e([,a. 1
n ed kT m, T 2
(%Xl - kTac'}) e ° = ('ﬁ%Té> . (6. 17)

That is, the ion and electron fluxes to a particle are equal to one an=-
other. From equation (6. 17), it is seen that there are two limiting
and essentially different ways by Which the requirement of steady
state may be satisfied. First, when the system is dominated by the
absorption phenomena, the particle potential will be close to zero, and
the electron and ion fluxes are equivalent by virtue of the large dis-
crepancy in the electron and ion densities. That is, equation (6. 17)

becomes

ot

m,

T El
i
mTG ¢

(6. 18)

(32) = (
eb
At the other limit, the gaseous ionization will dominate, the particle

potential will be large and negative, and there will be only a negligible
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loss of free electrons from the plasma. In order to gain an estimate
of the magnitude of the particle potential at this limit, assume Te =
Ty m/mi = 1077 , and neb/nib = 1. The result, using equation
(6.17), is (eej:a)/(kTe) = -~ 4,12,

The ability of the gas to produce more free electrons to par-
tially compensate for those absorbed on the particles is taken into ac~
count by the Saha equation.

n n
_eb ib _ g (T ) (5. 5)
n_-n G
o "ib

This equation, together with the equation of steady state, equation

(6. 17), and the relation for the particle potential

ed n . n,
a _ eb ib
KT (“ N ) Pla,b, T ), (5. 2)

must be solved simultaneously to determine the value of the electron
density. In order to identify the important parameters of the problem
and to predict the magnitude of this phenomena, two special cases will
be considered,

(a) Slightly ionized gas and thermodynamic equilibrium. When

the system is in a state of complete thermodynamic equilibrium (TP =
TG = Te) and the gas is slightly ionized, the analysis is relatively
simple and the essential features of the absorption phenomena are
readily apparent. It is convenient to define a quantity, % , termed the
absorption ratio, as the ratio of the actual free-electron densify in the
gas =~ particle system, Ny, 0 to the electron density which would exist

if the particles were not present, n!

eb ° Thus,



L= neb/néb (6. 19)

and
néb o G) ) (6. 20)
Using equations {6.17), (5.5), and (5. 2), the relation which deter-

mines ¥ is

3 + Q2 - %)
E SR R 21
where
n' 2 3
3 1
Q = (f:b)(weia,k'r){l -z v z(5) 1 (6. 22)

x(Q) is plotted in Figure 29 for m/m, = 10"% and 10°% . When Q >>
1, the case of large electron density and small particle density and
radius, it is seen that the absorption ratio is close to unity, implying
that the system is only slightly perturbed. However, when Q<< 1,

1/4 . That is,

absorption phenomena willdominate, and Y - (m/mi)
the electron density is reduced by (m/mi)1/4 » the degree of ioniza-
tion is increased by (mi/m)l/4 s and the ratio of the free electron
density to the ion density is '(m/mi)l/2 . In this instance, the gas =
particle system is in a state almost exacily opposite to that found
when the gaseous ionization was negligible; a particle has a negative
charge and the charged species surrounding it is almost entirely -
positive.

An estimate of the magnitude of the absorption parameter, Q,

for representative values of the temperature and particle radius is

informative. When {(a/b)<<1, Q is given by
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! -2
@ = ()AL (6.23)

where a is in microns and kT is in electron volts., For a =1 mi=

cron and kT =.172 ev (2000°K), Q=.00837 (n!, /N). Thus, itis
evident that for appreciable absorption to occur, the particle density
must be at least on the order of n(‘ab/IOO . For one micron size par=-
ticles and high values of néb y this is a very difficult requirement.

It is seen, however, that for fixed mass fraction (Na.3 = const. )s

Q ~ az s so that the absorption effect may be increased by dividing the
non-gaseous material into finer particles. Thus, if the particle radi~-
us was reduced to . 1 micron while the mass fraction was held con~
stant in this example, the absorption phenomena would becoms= im-
portant if the particle density were only as large as néb X 10"4 .

(b) Fully ionized gas and thermodynamic equilibrium. It is to

be expected Lhal the absorption phenomena in a fully lonized gas would
be of a larger magnitude than in a slightly ionized gas, because the
gas does not have the freedom to generate more electrons to partially
compensate for those absorbed,

The absorption ratio, X , may be used as defined previously by
equation (6. 19), but

n}3b =n_ . (6. 24)

Thus, for a plasma in which thermodynamic equilibrium prevails and
the ionizable species is fully ionized, the absorption ratio is deter-

mined by
1
X = (m/mg)?[1+Q-x1e?0, (6. 25)

where Q , the absorption parameter, is given by equation (6. 22).
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This relation is also plotted in Figure 29. The behavior exhibited
here is of the same nature as that found in the previous case, but the
magnitude is much larger. When Q >> 1, the absorption phenomena
are negligible., But when Q<<1, % - (m/mi)l/Z , the square of the |
value found for the reduction in the case of a slightly ionlzed gas,

However, the total fraction of free electrons, » will be the

“eb /nib
same, (m/:rni)l/2 s because the ion density is unaltered by the elec~
tron ahsorption,

The investigation of these two special cases has shown that the
absorption parameter, Q , defined by equation (6. 25), is the appropri=
ate one for estimating the magnitude of the absorption phenomena and
that for this phenomena to be appreciable, it is necessary for the ab~
sorption parameter to be of the magnitude of or very much less than
unity. Also, the maximum factor by which the electron density may

)1/4

be reduced is (m/m , for a gas which is slightly ionized, and

i
(rn/mi)ll2 for one which is fully ionized.

Attention should be called to the fact that the importance of
the phenomena of absorption as well as that of quenching of gaseous
ionization, yet to be discussed, rests on the assumption that the elec~
tron current emitted thermionically from a particle is negligible with
respect to the ion current returning to it. Allport and Rigby [13]
have pointed out that in high~temperature gas - particle systems
(~3000°K) , it is exceedingly difficult in practice to find materials
that are not good thermionic emitters or which do not introduce metal

vapor into the system which will ionize and add substantially to the

electron density. Hence, the application of these analyses to plasmas
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in which the particles are at high temperatures (~ 3000°K) is specula~
tive, and the difficulties mentioned by Allport and Rigby should be
considered. The application to systems of lower temperature is more
realistic,

3) Quenching of Gaseous Ionization - The purpose of this

section is to briefly point out the existence of several additional phe-
nomena which may appreciably alter the degree of gaseous ionization
by changing the electron temperature. The discussion will center
primarily on the gquenching of the gaseous ionization which results
when the particles, rather than the electrons, act as energy-absorbing
third bodies in recombination collisions, and thereby induce a cooling
of the electron gas.

When the particles and the gas are at the same temperature
and none of their properties are changing with time, a state of thermo=~
dynamic equilibrium prevails in which the electron temperature is
equal to the particle and gas temperatures, and the rates of ionization
and recombination at the surface of each particle are egual to one an-
other. If now the particle temperature is reduced, the rate of surface
ionization will be exceeded by the rate of surface recombination and
there will be a net rate of removal of electrons and ions at the sur~
faces of the particles. If a steady state is to exist, there must be a
net rate of ion and electron generation in the plasma and, if it is as=
sumed that the ionization is controlled by electron - atom collisions,
there will also exist an associated net power drain on the electron gas.
The compensating power input to the electron gas, which balances this

power loss, will result from elastic and super~elastic electron colli-
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sions with the heavy species. Thus, when the particles are at a low~
er temperature than the gas and are not thermionically emitting an
electron current, the temperature of the electrons will be reduced be=
low the gas temperature by this mechanism, and a reduction in the
gaseous ionization will result. Also, since the rate of heating of the
particles by surface recombination is limited by the rate at which en~
ergy may be transferred from the gas by collisional processes, itis
to be expected that the rate of particle temperature change will be
very small, except when the particles themselves are very small (see
Section II-D-4).

When the thermionic emission from the particles is negligible,
the condition of steady state is

T =T " . (6. 26)

The power balance on the electron gas will be written in a sim-
plified form by assuming that for every ion that strikes the surface of
a particle, a net amount of energy is absorbed by the particle which is

equal to OLRV , where @, is an accommodation coefficient equal to

R
or less than unity, and V is the ionization potential of the gas. This
accommodation coefficient is representative of the difference between
the rates of surface recombination and surface ionization as well as
the efficiency of energy transfer to a particle’s surface. When Tp =
'.L‘G ’ G.R =. 0.

A second effect which should be included here is that which

arises due to the negative potential of the particles. When the rate of

surface ionization is lower than the rate of surface recombination,



~140=
there will not be as many high-energy electrons expelled by the field
around a particle as penetrate this field and reach the particle!s sur-
face. Thus, for each electron that reaches the surface of a particle,
an amount of energy equal to a,Reci:a is lost from the electron gas.
For simplicity, the coefficient ccR has been assumed to be the same
for each of these two energy-loss processes. Thus, the power bal-
ance on the electron gas is

(4ra’N)(@p LVE_ "(a) - €9 T_ "(a)]
1 e

n T, (TmlmglB/ Lol Ha KL ), (6. 27)
where & is the energy transfer coefficient now for elastic and super-
elastic collisions.

If equations (6. 26) and (6. 27) are combined, equation (5. 50) is
used for I‘n “{a), and it is assumed that the energy restoration to the

e
electrons is controlled by one heavy species only, the following is

obtained:
KT -T ) " e,
R = 2 o m —_—
"\/*..2_“"4.?;3‘ = (E;)(Na Xec)(—?)( mG)e KT (6. 28)

Oxce the right hand side,which varies as the total surface of the parti=-
cles, is increased to a value on the order of kTG/ (V-e¢a) , further
increases will decrease the electron temverature abruptly, However,
the electron temperature can Be decreased only so far before the atom-~
atom collisions become dominant in the electron - ion generation re=-
actions. In order to gain an estimate of the magnitude of the right

hand side, assume the following:



N = 107 cm_3 a = 10-4 cm
_ -2 _ -1
keG = 10 cm (xR = 10
— _ 5
5 = 10 mG/m = 10

(ec{:al)/kTe = =~ 4.6 (negligible electron absorption by the
particles).

Upon substitution of these values into equation (6. 28), the following is

obtained:
k(To-T_)
V-—ecpa

= 2.09 x 10"2' .

If V=4ev and TG = 3000°K s» a reduction of Te to 1850°K is pre-
dicted,

Two additional phenomena which could also produce significant
changes in the degree of gaseous ionization by altering the electron
temperature become apparent when the inverée of some of the situa=-
tions already investigated are considered. The situation in which the
particles are again cooler than the gas but the thermionically-emitted
current from a particle is now much larger than the ion current to the
particle, is rcally just the inverse of the situation considered when
gaseous ionization enhancement was analyzed. The particles absorb
hot electrons from the plasma and emit relatively cooler ones, and
the temperature of the electron gas and the degree of gaseous ioniza~-
tion are thereby reduced. The formalism developed in Section VI-A
is applicable here, but Tp fvTe £ Ty . The case of quenqhing of
gaseous ionization also has associated with in an inverse situation. If
the particles are hotter than the gas but not thermionically emitting,

the rate of surface ionization will exceed the rate of surface recom-
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bination, and a net energy input to the electron gas will result. This

also could appreciably increase the electron density in the plasma.
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VII. SUMMARY

It has been shown that, when thermionically-emitting particles
are present in an ionized gas, there are many interesting and practi- |
cally important interactions which may take place between the gaseous
and the particle ionizations. Some of the interactions which have
been explored, the case of gaseous ionization enhancement in particu-
lar, are able to produce extremely large changes in the electron den-
sity of the plasma from what would normally be expected f{rom either
particle or gas ionization alone.

An understanding of the basic ionization phenomena which oc~
cur in a gas = particle plasma has been developed through an analysis
of various special cascs. The order of presentation of these cases in
the analysis has followed the transition from the case of pure particle
ionization alone, with no gaseous ionization, to the second extreme
case of pure gaseous ionization, with no thermionic emission from the
particle. However, before the analysis was undertaken, the physical
phenomena which are of primary importance were discussed (Part II).
Thermionic emission from the particles, the coupling which exists
between the charge and potential distributions, the equilibrium charge
distribution, and the application of the quasi-steady state approxima-
tion to the plasma were considered.

The first special case, which has been investigated (Part III),
is that in which there is no gaseous ionization and the plasma is in
equilibrium. The coupling between the charge and potential distribu~

tions was taken into account in a direct manner by finding a family of
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numerical solutions to Poisson's equation for a one-particle system.
These solutions cover the range in which almost all problems of cur=~
rent engineering interest are located. From the results, it has been
shown that the potential distribution which exists around a particle
will fall into one of two distinctly different characteristic regimes;
the weak shielding regime, or the strong shielding regime.

In the weak shielding regime, the potential distribution is de=-
termined primarily by geometrical effects, and it has therefore been
possible to obtain a relation which is a very good approximation to the
actual potential distribution. It was shown that in this regime almost
all of the electrons which are external to the particles are located in a
region of nearly uniform density and potential, and that the picture of
a "uniform sea'' of electrons is appropriate. Also, in the weak shield-
ing regime, there is a limiting case that can be easily analyzed by
statistical methods which take the distribution of particles over the
available ionized states into account. It has been pointed out that the
results of such an analysis are in good agreement with the approxi~
mate solution. In addition, it was demonstrated that under certain
conditions, which are well satisfied in many problems of current in-
terest, the degree of ionization of each particle in the plasma is near-
ly the same.

The essential features of the strong shielding regime were
found to be in sharp contrast to those of the weak shielding regime.
First, a large fraction of the electrons in the plasma are located
close to the surfaces of the particles so that there are relatively few

"free electrons''. Second, the potential distribution close to a
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particle's surface is one~dimensional in nature. Also, it was found
that the transition which occurs in going from the weak to the strong
shielding regime is a very sharp one and that it takes place as the
particle radius becomes larger than five times the Debye shielding
distance defined by the properties at the particle's surface.

Values of the particle potential and other quantities of interest
have been plotted as functions of two parameters which are initially
known and which completely define the solution. Both regimes are
covered by these plots.

In order to gain an estimate of the degree of accuracy with
which the value of the electron density in the plasma may be calculated
or the extent to which it can be controlled, an analysis was carried
out (Part IV) to determine the functional dependences of the electron
density on the various parameters which define the solution. Again,
the special case of negligible gas ionization was explored.

It has been found that, in the strong shielding regime, the
value of the Debye shielding distance far from a particle adjusts itself
to a value which is approximately equal to the interparticle distance
so that the '"free'' electron density is limited by the temperature and
the particle number density. On the other hand, the mean electron
density, which is almost directly proportional to the number of elec-
trons packed close to the surfaces of the particles, is strongly de~
pendent on the properties of the thermionic emission from the particle.

In the weak shielding regime, two types of limiting behavior
were found. First, when the particle potential is small with respect

to the work function of the particle material and kT, the electron
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density of the plasma is exponentially dependent on the temperature
and work function in the same manner in which the thermionic emis~
sion law would predict. Also, it is very insensitive to the particle
radius or number density. However, when the particle potential be=
comes of the same magnitude as the work function and much larger
than kT, the electron density is linearly related to the work func-
tion, temperature, particle radius, and particle number density.
When the total non-gaseous content of the plasma remains the same
but the size of the particles is varied, the electron density varies as
the inverse square of the particle radius. Hence, the effects of
shielding tend to nullify the strong dependence of the electron density
on the thermionic emission properties, and changes in the particle
size and number density become the means by which the electron
density can most efficiently be altered by large factors.

Two additional features of the weak shielding regime have
been established in Part IV, First, it has been demonstrated that it
is the particle temperature, rather than the gas temperature, which
is of primary importance in fixing the degree of particle ionization.
Second, it has been shown that, when there is a distribution of parti-
cle sizes and a related distribution of particle temperatures, the
electron density will be nearly the same as that which would be found
in another system which had the same amount of particle material,
the same mean particle radius, and the temperature which corre-~
sponded to this mean radius.

The additional effects which non~equilibrium gaseous ionization

introduces into the problem were next analyzed (Parts V and VI). The
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special case of primary interest, in these last two sections, has been
that of gaseous ionization enhancement. This occurs when the parti-
cles are hotter than the gas, so that the electrons which are emitted
from a particle are hotter than those which return to it. This causes
a heating of the electrun gas which, in lurn, enhances the level of
gaseous ionization. Before any special cases were considered, how~
ever, the additional relations which are required in order to analyze
these non~equilibrium effects have been formulated.

The assumptions and model which were used in the analysis
were first considered. This included a discussion of the following
assumptions:

(1) quasi~steady state,

(2) spatially uniform conditions,

(3) the validity of the weak shielding approximation for the
case in which both electrons and ions are present,

(4) ionization equilibrium of the gas at the electron tempera-
ture.

The energy transfer processes which exist between the elec~
trons and the gas were also discussed.

The electron number and energy fluxes to and from a particle
were next considered in some detail. A problem in which a three=~
dimensional collisionless region exists around the particle, has been
solved in order to obtain expressions for these fluxes for both positive
and negative particle potentials.,

In the last section (Part VI), some special cases in which gase-~

ous ionization is of importance have been investigated.
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The first situation which was considered is that in which the
particle and gas ionizations are of the same magnitude. The supres-
sion of one type of ionization due to the presence of the other has been
clearly illustrated by two special cases. In both of these, the gas ~
particle plasma was in equilibrium; but in the first, the gas was
slightly ionized, while in the second, it was fully ionized. However,
the magnitude of the effects which were explored here were found to
be small relative to the magnitudes Which have been encountered in
the other special cases studied.

The special case of primary interest, that of gaseous ioniza-
tion enhancement, was next considered. A straightforward method of
calculation of the ionization enhancement, which is induced by the
relatively hot particles, has been presented. This method was then
applied to the calculation of the ionization enhancement that could be
expected in the exhaust plume of a solid rocket motor. It was found
that this enhancement could be quite large (a factor of 102) if the tem-~
perature change of the particles appreciably lagged that of the gas., It
has also been pointed out that this process has an inverse; when the
temperature of the particles is less than that of the gas, the degree of
gaseous ionization will be reduced.

The last two types of interaction between the particles and the
gas, which were investigated, are located at the second extreme where
the thermionic emission from the particles is negligible,

The first of these two interactions, which has been considered,
was the direct one of electron absorption by the particles. The mag~

nitude of this effect was explored by again investigating the two spe-
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cial cases of an equilibrium plasma in which the gas was either slight-
ly or fully ionized. It was shown that the magnitude of the reduction
in the free electron density can be expressed in terms of one parame-
ter only, and this parameter has been termed the absorption parame~
ter. Plots of the magnitude of the reduction in free electron density
as functions of this absorption parameter have been presented.

It was shown that when the absorption parameter is very much
less than unity, the maximum absorption occurs. In the case of a
slightly ionized gas, the electron density can be reduced by a factor

1/4

of (m/mi) s where m and m, are the masses of the electron

and ion respectively. In the case of a fully ionized gas, the factor of
reduction could be (m/mi)l/Z . It has been concluded that, for one
micron size particles and high electron densities, it would be diffi-
cult to make the absorption parameter of magnitude of less than
unity. However, it was shown that the value of this parameter can be
greatly decreased by dividing the non~gaseous material into finer
sized particles.

The other interaction between the gas and particles, that is
located at the second extreme where the thermionic emission from the
particles is negligible and which was investigated, is the indirect one
of quenching of gaseous ionization. It was pointed out that if the par-
ticles are cooler than the gas, the rate of recombination will exceed
the rate of ionization at the surface of a particle and a net power loss
from the electron gas will result. This, in turn, will produce a de~

crease in the degree of gaseous ionization. This process, like that of

jonization enhancement previously examined, also has an inverse;
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when the temperature of the particles is greater than that of the gas,
the degree of gaseous ionization will be increased.,

In general, the results of this analysis have been twofold.
First, the problem of equilibrium particle ionization, in which there
is no gaseous ionization, has been thoroughly analyzed and a good
understanding of the nature of the potential and charge distributions
has been obtained. Second, many gas - particle interactions, by
which the clectron density of the plasma can be greatly altered due fo

the presence of the particles, have been investigated.
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APPENDIX A

Nomenclature

Each symbol which is used repeatedly in the text is defined
below. Following each definition is the number of the equation where
the symbol is first used or quantitatively defined.

Any quantity which is primed is to be evaluated at reference
state conditions [see equations (4. 9) - (4. 16) or equation (6. 20)] .

The notation (T ) means £(T )=4£(T_)or £(T ).
pse Py e P e

2

A(th), A(ex) theoretical (2. 5) and experimental (2. 4) values of the

constant coefficient in the Richardson-Dushman equa~

tion

a particle radius (2. 6)

(th) 5(ex)

theoretical (2. 5) and experimental (2. 2) values of the
constant in the equation for the electron density due to

thermionic emission

o

outer radius which defines the volume allotted to each

particle (3. 1)

particle capacitance (3.37)

o O

mean electron speed (2. 3)

G mean gas molecule speed (2. 20)

ith constant (used repeatedly)

a O
[

N

outer radius of collisionless region (see Figure 20)

=

electric field (3. 30)
e absolute value of electron charge (2.1)

ed thermionic work function (2. 1)
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particle ionization potential of af,th level (3. 38)
number density in phase space (5. 9)

number density in phase space of the electrons emitted

from r=a and r =c¢ (5.10)

statistical weight of ion and ground state atom {5. 6)
Hamiltonian (5. 12)

Planck's constant (2. 1)

saturation electron current (2. 3)

experimental value of saturation electron current (2. 4)
ionization equilibrium constant (5. 6)

Boltzmann's constant (2. 1)

Lagrangian (5. 13)

electron mass (2. 1)

gaseous molecule mass (2. 21)

ion mass (6. 12)

atom mass for atoms in particle (2. 21)

number density of particles (2. 12)

number of electrons due to emission from the particle
number density of particles ionized 4 times (3.39)
electron density due to thermionic emission (2. 3)

theoretical (2.1) and experimental (2. 2) values of the

electron density due to thermionic emission
electron density as a function of r (3.2)
electron density at r = a, b, and ¢ (3. 2)
density of gaseous heavy species (2. 21)

ion density at r =b (5. 2)
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density of ionizable species at zero degree of ioniza=-
tion (5. 5)

numbexr density of atoms in particle material (2. 21)
mean electron density {2.12, 3.19)

non~dimensional potential of a particle with one elec~

tron charge (5. 3)
particle ionized { times (3.38)
conjugate momentum vector (5. 9)

momentum conjugate to r, §, and { coordinates
(5. 15)

radial momentum for ith marginal contour (5. 27)
total angular momentum (5. 17) |
absorption parameter (6. 22)

generalized coordinate vector (5.9)

ratio of geometrical to charge density terms in

Poisson's equation (3. 11)
radius whose origin is at the particle center (3. 4)
temperature of plasma in equilibrium (2. 1)

temperature of electrons (2.25), gas (2. 22), and par-
ticles (2. 22)

ionization potential of ionizable species (5. 6)

non~-dimensional work function {4. 16} of reference

state
non~-dimensional radius (3. 5)
non-dimensional potential (3. 5)

non~dimensional potential at r = a {3.8) or of refer~

ence state (4. 15)
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total number of electrons outside radius r (3.17)

positive charge on particle in electron charges (2. 6)

ratio of actual to reference state particle radius (4. 13)
accommodation coefficient (6. 27)
ratio of actual to reference state outer radius (4. 55)

guantity per unit time and area at radius r which is
emitted from the particle and leaves the collisionless
region (5.31, 5.37)

quantity per unit time and area at radius r which is
emitted into the collisionless region and reaches the
particle (5. 41, 5.42, 6.26)

square of the ratio of the radius of the collisionless

region to the radius of the particle (5.7)

spread in the particle size distribution (4. 64)
permittivity of a vacuum (2. 11)

spread in the particle temperature distribution (4. 62)

ratio of actual to reference state particle potential
(4. 10)

angle between T and z axis in spherical coordinates
(5.13)

ratio of experimental to theoretical values of the elec~

tron density due to thermionic emission (3. 33)

Debye shielding distance at radius a and radius b
(2.8, 3.7)

theoretical and experimental values of the Debve

(th) (ex)

shielding distance corresponding to N

(3.36)

and ng
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electron - electron mean free path (5. 1)
electron = gas mean free path (5. 1)

ratio of actual to reference state particle number den=
sity (4. 14)

ratio of actual to reference state electron density at
radius b (4.9)

independent variable of the numerical integration (3. 9)

ratio of the electron density at radius b to the elec-

tron density due to thermionic emission (6. 2)

values of p with pure gas ionization alone (6.5, 6.9)

and pure particle ionization alone (5. 6, 6,10)

shielding ratio (3. 18)

‘ratio of actual to reference state temperature (4. 12)

characteristic times (2. 15)

thermionic work function (2. 1)

electrostatic potential (3. 2)

particle potential (2, 14)

particle ionization potential of {,th level (3. 38)
absorption ratio (6. 19)

azimuthal angle in spherical coordinates (5. 13) and

electron energy loss parameter (6. 15)

ratio of actual to reference state work function (4.11)
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APPENDIX B

Integral-Relation for the Potential Distribution
About a Spherical Particle

Soo has attempted to solve for the potential distribution about

a positively-charged spherical particle which is surrounded by a con-
tinuous electron charge. This charge extends out to an outer radius
defined by the requirement that the net charge contained within this
radius is zero. This is the same problem which is solved in Part III
by the use of Poisson's equation. Soo has elected to use the integral
relation for the potential which, using an opposite sign convention and
to within an additive constant, he has written as (reference 15, equa~

tion 1. 1)

r

(r) = ZTTZ:f [z - fne(r')‘hrr'z dr’] (b=-1)

a
where r is the position radius, a is the particle radius, 2z is the
number of positive electron charges on the particle, and ne(r) is the
electron density. ¢{b) is set equal to zero, b being the outer radius.
This equation is in error in that it assumes that the potential may be
determined, to within an additive constant, by knowing only the value
of the net charge within the sphere of radius r . This is true for the
electric field, but not for the potential. In particular, the potential at
the surface of the particle is not given just by ez/(41reoa) , but it also
depends upon the manner in which the electrons are distributed about
the particle.

The correct relation for &(r) may be found from Gauss' law
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|

where D is the electric displacement vector and p is the charge

- d8 = p dv {b-2)
[

density, For this problem, it may be written as

T
- 4-n'gor2 %% = e[z - J ne(r')41fr'2dr’] {(b=3)
b
= e JPne(rf)sz'Zdr! . (b=4)
r
Thus,
b b
mn
oir) = = [ e e (b-5)
O o L:E.l-_:rn

Interchanging the order of integration, by examination of the area in-

tegrated over in the {r!,r') plane,
"
=

Ao /

S

l
|
r b ./

Figure 30. Area of Integration in the (r', r'') Plane.
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vields
b r! .
p
d(r) = .;_ ] {r'/r”}zn_e(r‘)dr”dr' (b=6)
© p=r r'=r
b
= -é—e—- j‘(%—%—,)ne(r‘)r'zdr' R (b=T)
° r
or

o []3 en_(r')
${r) = 411’801’ [z - Jn (r')4mr! dr} f[ 41_(6 s J4mr! dr' . (b=8)
a

Comparing this with equation (b=1), it is seen that the actual potential

will be lower bv the amount

Ir? en (r‘) >
J [-ﬁ—r] 4grtTdrt? . (b-9)
Ey

The origins of this and the other terms in equation (b~8) are easily

seen by dividing the charge distribution up into thin, spherical shells

and summing over the potential due to each.
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Transformation of Poisson's Equation

Poisson's equation,; equation (3. 6), may be written in the

form of a first-order eguation by using the following transformation:

d.

u = x[—i-}%-l- 2 (c-1)

2
2

z = (—:P—-—-) <" e . (c=2)

‘Db
This yields
du |, 1
ut>(u=-2) = 1, (c=3)

which, although relatively simple in appearance, has not been of as~

sistance to the author in obtaining an analytical solution.
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APPENDIX D

Computer Solution to the Fundamental Problem

The DEQ subroutine of an IBM 7090 computer was used to in- -

tegrate the following differential equation:

)
4T = b/an )i e (d-1)
ae? Db’ ¢4

v=0 and dy/d§ =0 at £=1.
In order to make use of this subroutine, the problem was reduced lo

two simultaneous first~order differential equations.,

vy =Y (d-2)
y, = dy/d§ (a-3)
dy, /d§ = vy, (d-4)
dv./dE = 2 4, 71
v,/ de = (b/ap ) (L/ET) e (d-5)

yl=O and yZ=0 at £€=1.

vy and y, were calculated as functions of £ and increments of
AE = +1 were used, The error per interval was less than 10"6 and
the maximum error for a given value of £ was less than £ X 10"6 .
Twenty values of (bMDb) between . 1 and 2. 0 were used.

Several quantities of interest were calculated at each value of

§ and are given below.

L - 3enn)? = 2?0y, (d-6)

+vy /2
2. b - b e 1 (c=7)
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Increasing (b/) Db’

Figure 31. Family of Curves Found in the Numerical Solution.

3
2E7y,
3. R = —-——--'-—-Z———"‘
)
Apb
4, o = ne/neb

Using Gauss' law,

_ 2 dé
eZ{r) = = 4115;01' I

—_— =¥
5a b /n = g e
e’ Tea

§

(d-8)

(d-9)

{a-10)

(d=11)

(d-12)
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APPENDIX E

Solution to the One-=-Dimensional Problem

The one-dimensional problem is defined by

2

dy . 2y

dXZ e (b/)\.Db) € (e"l)
y=0 and dy/dx =0 at x=1.

Multiplying both sides by dy/dx and integrating from x =1 to

X =x gives

1
E_Zc = \[_'(b/xDb -1)2 , (e=2)
Letting
p = eY’ (e=3)
—B = - Zhg,) dx . (e-4)

p(p-1)2

Integraiing again from x=1 to x=x glves

y = {sec (_\/E;;bﬂ (e=-5)
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APPENDIX F

Efiective Work Function for a Spherical Particle

It is of interest to explore the effect which the curvature of the
surface of a spherical particle may have on the value of the work func-
tion for thermionic emission. A good portion of the work function
arises from the image force felt by the electron as it escapes the sur~
face, and it is possible that the image force felt by an electron which
is emitted from a sphere will not lead to the same contribution to the
work function as that which exists in the case of a flat surface,

An approximation which is many times made is that the work
function for a flat surface is the sum of two terms. 10 One term,

e@s » is the integral of all the short~range forces acting on the elec~
tron as it leaves the surface., The range of these forces, Xo . is a
length whose magnitude is equal to one or two interatomic distances

of the solid (~ 10"'8

cm), The second term, e@L s is the integral of
the long=range forces felt by the electron in moving from XO to in~
finity, The most important of the long-range forces has been identi~
fied as the "mirror~image" force through field emission experi ~
ments. This mirror~image force, which is induced by an electron as
it leaves a semi~infinite conducting solid, is a consequence of the
fact that a perfectly conducting medium must be at a uniform poten-
tial; hence, all electric field lines must be perpendicular to its sur-

face., The potential distribution set up by the charge -~ image charge

system in Figure 32 will satisfy this boundary condition of an equi~-

10

Reference 27, pp. 199~211; reference 23, pp. 28-33.
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Figure 32, Charge = Image Charge System for a Flat Wall.

potential surface at X = 0 as well as the one of zero potential at in-
finity. Hence, this potential distribution will be the correct one for
X 2 0 and will lead to the actual force felt by the electron as itmoves
away from the surface., This force is easily calculated, since it Is
the force between the electron and its image charge, Thus, the value
of the long-range contribution to the work function corresponding to
this potential distribution is

2
ed; = e /(161reOXO) . (f~1)

These same concepts may be applied to the case of a spherical
emitter for which a , the radius, is much larger than XO (see Fig~
ure 33). When an image charge of magnitude q' is placed at a posi-
tion r', defined by equation (f-=2), the spherical surface r = a will

be
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Figure 33. Charge ~ Image Charge System [or a Sphere.

@t=2e, q'=@-3Ie, r*=3; (£-2)
an equipotential one, 1 The resulting electric field must also obey
Gauss! law for any surface enclosing the sphere. Thus, for the case
in which the degree of ionization goes from /-1 to {4, a charge of
magnitude (4 - %)e must also be placed inside the sphere. Itis
placed at r = 0 so that the surface r = a remains at an equipoten=-
tial. The potential energy gain of an electron as it moves from in-
side the sphere to r = o , W, , may be calculated in the same man-

ner as was done in the plane case.

a+X foo]

w, = I F. dF + f dr {(£f-3)
a a-l-X

11

See reference 28, pp. 27-30.
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at+X
e y avy 1 % FO Troa 1 2
Wy = etgtg— | @D F)er gy “?’(’*"2)
° 0 °a+Xx r e
[0} r
a 1
+ ( "r‘)(’;‘z’ Yar . (1-4)

It is noted that the integral of the forces experienced by the electron
in moving from r<a to r =a+ XO includes not only the short-range
contribution to the work function, as in the case of a flat surface, but
also the work done against the initial positive charge on the sphere
which appears to the electron to be of magnitude g'" located at r = 0,
As was done previously, the image force is assumed not to exist up to
the distance Xo outside the surface. Integration of equation (f-4)

vields

2 2
~ e 1 1 e )
W& =edgt 16me X ( X )+ (- 3)<41-rs; al ’ (£-3)
oo o o
1+_2‘aT

Using equation (f-~1) and neglecting terms of magnitude ech(Xo/a)Z or

smaller,
eZ ) eZ
W, = [ebg+ ety - ———-—Szﬂeoa} + (4;,--2—)(-—-—-4“%3) . (£-6)

The last term in equation (f=6) is that which one would compute for
the change in the energy of the electromagnetic field surrounding the
particle and arises directly from the work done against the force be~
tween q'' and the electron as the electron moves from r = a to

r = . The first term is identified as the work function for a flat

surface minus the small guantity

e2 _1.80
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where a is in angstroms. Hence, there is a slight reduction in the
long~range contribution to the work function due to the curvature of
the particle. It exists because the force between the electron and its
image is slightly less than that for the plane case when the electron
is the same distance from the surface. However, this reduction
would be negligible for particle sizes of practical interest {(a > 1001&).
In addition, other effects due to the discontinuous nature of the parti-
cle malerial may become of comparable magnitude for very small

particles.
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APPENDIX G

Evaluation of the Constants in p{a)

The assumed form of o) is

C 2
1 1 2 2
pla) = — eXP{~‘g—(—T+Ot)} (g-1)
64 ¢4
and the normalization conditions which determine Cl and C2 are

(e o]
fau(a)doa -1, (g=2)
0
oo

3
JOL p,(or,)d& = 1 . (g-3)
0

The integral resulting from the first normalization condition is a

tabulated one:
0

I(s,1) LJ‘Pe:cp {- (—92- + taz)} da , (g-4)

i

1
ey = 35 2V (5-5)

The second normalization condition gives rise to the integral

(0 0]

I,(s,t) = raz exp{- { —% + ta%)} da (g-6)
- &
0

which may be evaluated from the recursion relation
Il(s, t) = - 816/81: . (g~7)
Thus,

1

1
et = 35" e BVRT Ly gy (g-8)
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The relations which determine Cl and C.2 are

i -2C._ /¢
5 2" "
~;—cl(-:rem)2 e =1,

-2C./¢e
1 2/(-"

1
ch(wem)

Hence,
2
(;— - 1)
2 o}

Q
[
|
¢4

e [ (e, /2)+C,1 = 1.

(g=9)

(g-10)

{g-11)

(g-12)
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APPENDIX H

Evaluation of the Integrals in Equation (4. 63)

The first integral to be evaluated is of the form

e = [(—=)enl-(F+u)a, @
l@ 1+ eTCL a

which obeys the following differential equation:

2
IZ - GT Bt IO ? (h—Z)
or
?_{2_'_.;1_1 :__.}._Ea o2 Vst (h-3)
ot e_ "2 2@:,r t -

t/ t/ -t/ i
Iz(s,t) = C, e eT-e o1 rﬁe )(— ’ -Z\[—‘. (h=-4)

The integration indicated in this solution is accomplished by complet-

ing the square. When the following boundary condition is then applied,

Iz(s,t)ﬁo as t—- o ,
the result is
t
T (?:L 2 t \3 3
- Y 2 -
Iz(s, t) = 5 e [1 - erf{(eT) +(S€¢) }] . {(h-5)
T

Ags a check, it is seen that in the limit
IZ(s, t) - Io(s, t) as €.~ o

Using the above, the first integral in equation (4. 63) becomes
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Q0 1 1 1
P au(a) ~ T \2 1 \2 Cay, 672
TSP B e

X CXP{**(lJr[l* SJZeT+2>—1}] o (h=6)

The second integral in equation (4. 63) is of the form
o
r 2
13 = J in(l+e 0 )apla)da . (h-7)
0
Compared to the first lntegral, the contribution of this second one is
small because of the logarithmic variation of the term in the inte=
grand. This is also evidenced by tracing the second integral back to
the T2 dependence in the thermionic emission law and the first inte-
gral back to the exponential dependence. Because of this and the
peaked nature of ayla), little error in the calculation of y will be

2
introduced by expanding 4n(l+ €0 ) about the value of o corre~-

sponding to the maximum value of ay(a) .
€ P
= — Q
(a“)max Onm T (l “—2_) (h-8)

Rewriting 4n (1 + eTcxz) and expanding about IV

- 2 2
e Ta "=, ]
ta(lte a?) = n(te oyt (14 M) | (n)
T T l1+e¢ a
T M
2 2
tn{l+e &%) = 4n(l+e a,M)+—--—-—-—-——- + ... o (h~10)
T T 2
l+e ocM

Retaining only the first two terms in the expansion and using the nor-
malization conditions to do the resulting integrals, the second integral

in equation (4. 63) becomes



r 5 €y £,€
2 [4n(l+e a”)aua)da=24n(1+e [1- 2])+ — T €
o
Q
tte ll-—]

{h-11)
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APPENDIX I

The Requirement on the Shape of the Potential Distribution

The marginal contour which divides those electrons which es~

cape from those which do not has been found to be

P:r(z)z = 2med - (—-12- - -}Z-)PQ(Z)Z (i-1)

T C

by solving for the condition which corresponds to Pr(rz c)=10,
However, if the force due to the electric field which is felt by an
electron as it moves away from the particle decreases faster than the
centrifugal force, a point may be reached where the electron no long~
er experiences a net force toward the particle, but rather, is accel-
erated foward r =c . The motion of a marginal electron in this
case would be one in which the radial velocity comes to zero at some
value of v < c , and then either returns to the particle or is acceler=
ated to r = c. This effect would tend to decrease the total amount of
emission,

The restriction which must be placed on the shape of the field
in order for equation (5. 28) to be valid, may be found from the re=
quirement that Pr2 > 0 for all possible electron trajectories. Thus,
from the conservation relations, equations (5. 25) and (5. 26), it is

necessary that

2 2 1 1Ny 2 ,
P =P "+ (-72- --—-Z-)PQ - 2me($_-9¢) > 0 (i=2)
a r
or
2 1 1 2 .
2me¢ > 2me, - P, +( -—7)PQ , (i-3)
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where Pra = Pr(r =a}. The trajectories that are in question are
those of Pr(z). That is, it may be necessary for Pr2 to become

less than zero at r < ¢ in order that it can be equal to zero at r = c.

2 (2)°
Thus, the lower limit on Pra is Pra,
2 1 1 2 .
p_° = 2me¢_ - <;‘Z - ?)Pﬂa . (i-5)

The maximum value of Pnaz corresponds to Praz = 0. Hence, the

requirement which must be placed on the shape of the potential distri-

bution, if equation {i-1) is to be used to define the marginal contour

for escape, is

2
% . —-——2—-—-—(C/r) -1 (i=6)
cl)a (c/a)” -1

This requirement, relation (i-3), may be shown to be equiva~
lent to the requirement that the electric field should decrease less
rapidly than the centrifigal force in moving away from.the particle.

That is, upon differentiation of relation (i~6) with respect to r, itis

seen that
dé const. :
“dr ~ 3 (i-7)

The left hand side of relation (i-~7) is the absolute value of the electric
field and, since the centrifugal force is equivalent to PQZ/mr3 » the
right hand side varies as the centrifugal force,

The inequality, relation (i-6), is satisfied in the weak shield~
ing regime since the potential close to a particle varies approximate-

ly as 1/r . Itis clear, though, that in the strong shielding regime

12 This is analogous to the requirement found by Langmuir [32],p.
120.
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this requirement is,in general, not satisfied, since the potential falls
2
off more rapidly than 1/1‘2 . However, Pr(z) ; as defined by equa=
tion (i=1), is valid in the limit, c/a - 1. That is, as c/a.—_v 1,
2 2 (2)° .
(1/r" = 1/¢®) = 0, and P - 2me¢ , which is the correct marginal
contour for the one-dimensional problem. Therefore, the correct

one~dimensional relations should be obtained for the fluxes derived in

Section V=C in the limit of c/a -1,



