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ABSTRACT

The dynamic responses of a 20-story nonlinear structural
frame representative of a modern high rise building are analyzed
with the aid of a digital computer. Related analytical studies of
continuous systems are carried out. Quantitative information is
provided on the importance of a wide range of modes to the various
responses of a multi-story structure during an earthquake. The
effect of yielding on the response is observed. The magnitude of

the structural responses are compared with common measurements
of earthquake strength,

At the ends of each girder and column of the structural
frame are yield hinges which have bilinear bending moment- rotation
hysteretic characteristics. Two beam models having such character-
istics are studied; one of these models can treat curvilinear hysteretic
behavior. Three definitions of ductility factor are discussed, one of
which is applicable to both bilinear and curvilinear hysteresis loops.
In the computer program, the frame is subjected to the time history
of an earthquake accelerogram, the equations of motion are step-
wise integrated, and the various structural responses - displacement,
bending moments, incurred yielding, etc. - are determined.

The agreement between the response parameters resulting
from excitation by seven different earthquake ground motions indicates
that these response characteristics are delermined more by the
properties of the structure than by the earthquake. These results
throw some light on extreme valuc statistics of the response of
yielding structures subjected to earthquakes. The characteristic
patterns observed in the computed responses of the nonlinear
‘structure can be related to analytical studies of linear elastic,

shear-type, uniform and tapered continhuous cantilever beams.
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CHAPTERI .

INTRODUG TION

Until recently, comparatively little has been known about the
response of multi-story structures subjected to éarthqua.kes. Conse~
quently, in regions where earthquakes have occurred relatively
frequently, building codes imposed stringent height limits on
structures, In the past few years, however, there has been a
significant improvement in the understanding of how structures
respond to earthquakes, and, as a result, in some cities height
restrictions have been relaxed for structures which are designed on
the basis of the dynamic forces, dcformation, and yielding which
would be induced by a strong earthquake,

A common type of high~rise building being constructed today
(1967) uses glass and light-weight walls extensively, relying on large
columns and girders for support. The investigation described in
this report was undertaken in order to provide additional informé.tion
on how this kind of multi~story structure responds to earthquake
excitation,

The initial work on problems encountered in designing earth-
quake resistant multi-story structures was done during the 1920's
and early 1930's by K. Muto(3) and K, Suyehiro(4) of Japan and
M. A. Biot(5'6) and J. R. Freeman(ﬂ in the United States. rAltho-ugh
the equations of motion for earthquake excited multi-story structures
were well known, the time history solutions of the responses of

multi-story structures could not be obtaincd because neither analog
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nor digital computers were available to make the extensive calcu~
lations necessary.

Through the years the one degree of freedom system has
received extensive study by several investigators using analytical
techniques and, as they become available, analog and digital com-
puters., Among them are D, E, Hudson(s), G. W. Housner(g),

(11)

T. K. Caughey(io), G. V. Berg s Se S, Thomaides(“),

J. Penzien“z), Ww. D, Iwan(13), Paul C, Jennings(14), C, V.,

Chelapati(is), and L., D, Lutes“f)). In addition to direct application

to the one degree of freedom system, the resultst of their investiga-
tions also provide significant insight into the understanding of how
multi-story structures respond to earthquake excitation.

One early study in multi-story structurcs appeared in 1938,
in that study, L. S, Jacobsen and R, S. Ayre“ﬂ experimentally
determined the dynamic shears for at least the first four modes of a
sixteen-story model of an office building using a decaying sinusoidal
base excitation of finite duration. The results indicated that the
higher modes are impo-rtant for shear forces in the upper floors,

With the‘ advent of analog and digital computers, the equations
of motion of multi-story structures subjected to earthquake excitation
could be solved. The.earlier research work on multi~story structures
using these tools was performed by T, P, Tung(18), Richard L., .

{19, 20) k(18,20,23) (21}

Jennings s No M, Newmar

(22,23)

» R. W, Clough

J. A. Blumne s Je Goldberg(24), Je Lia Bogdanoff(24),

Z, L. Moh(24), L. Corning(ZS_), 3. Penzien(ZB) and many others.,

More recent work of this nature has been carried out by J. 1.



3

{26) (27) (27)

Bustamente s Hoe Umemura s A Shibata(27),

, Y. Dsawa
{28) .
and G, V. Berg ,» to mention a few.
A number of researchers have visualized this problem as a
wave propagation problem in a continuous cantilever beam., Among

{(3,29) (4)

them are K. Muto » He M, Westergaard(30).

s+ H. Suyehiro
L. S. Jacobsen(?’l), K. Kanai(32), G. N. Bycroft(33’34’35),
M. J. Murphy(ss) and L., W, Harrison(35).

During the five years preceding 1967 a large amount of re-
search on muiti-story structures using high capacity-high speed

digital computers has been done by R. W, Clough(36’37’38’39'“

(37,38,39) 1 (37,38}

and his co~workers E, L. Wilson P. King
K. L. Benuska(39), and T, Y. Lin &Associates(z).

Many of these authors have noted that several modes can be
excited in a multi-story structure and that the "higher” modes must
be considered in the interfloor shear force in the upper portion of the
structure. In this report, quantitative information is provided on
the importance of all modes including the "higher" ones to the various
responses of a multi-story structure during an earthquake,

In Chapter II two different models of a nonlinear beam which
can be used to represent each girder and column in a structural
frame are presented and compared, One beam model can have
different curvilinear or bilinear bending moment-rotation hysteresis
loops located at the yield joints at each end of the beam. The other
model is restricted to having bilinear hysteresis loops at the ends.
Three definitions of ductility factor applicabie to these beams are

given and discussed.
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The properties of the class of nonlinear multi-story structures
considered in this report are listed in Chapter IIl. In addition, the
damping mechanisms are described and the equations of motion for
this system are derived. Using the Wilson-Clough integration
(40)

technique s the equations of motion are put into a form suitable

for solution by the 7090/7094 digital computer at the Computer Center
of the California Institute of Technology.

As an overall check on the computer program for analyzing
the response of nonlinear multi-story structures, several tests on
it were carried out which are briefly described in Chapter IV, One
of these was a cbmparison with results for a corresponding system
presented in the FHA Study(i).

In Chapter V uniform and tapered, shear-type, linear
elastic, continuous cantilever beams are analytically studied in order
to determine the importance of "higher modes" to the responses, i,e.,
displacement, strain, shear force, and ‘totél acceleration, at various
positions in an earthquake excited structure. "Whiplash" is discussed
and a definition suggested., A method of determining "equivalent"
modal participation factors for nonlinear structures is presented and
examples of the "equivalent" modal contributions to displacements
and interfloor displacements (strain) are given.

Chapter VI treats the response results for a nonlinear twenty
story structure subjected to earthquake excitation. The effect of
yvielding is observed by comparing the responses for the nonlinear
structure with those for the corresponding linear structure. Time

history response plots, displacement envelopes, and ductility factors
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for the nonlinear structure subjected to the entire duration of several
earthquakes are presented and analyzed. The effects of various
modes are observed by comparing time history response plots of

the multi-story structure with those for one degree of freedom

linear oscillators representing the individual modes. Three common
measurements of the strength of an earthquake are given and are
compared with the magnitudes of the corresponding structural

responses for the earthquakes used.
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CHAPTER II

MODELS OF BEAMS WITH NONLINEAR CHARACTERISTICS
AND ASSOCIATED DEFINITIONS OF DUCTILITY FACTOR

2.1 ‘ Introduction

The primary purpose of this chapter is to describe and com-
pare two different models of a nonlinear beam which can be used to
repi-esent each girder and column in a discretized model of a non-
linear tall structure. One beam model has identical bilinear bending
moment-end rotation hysteresis loops at the yield joints located at
each end of the b;ea.m. The other model is more versatile since it
can have different curvilinear or bilinear bending moment-end
rotation hysteresis loops at each end.

In order to develop concepts and terminology useful in dis-
cussing yielding beams, simple yielding systems are studied first.
In this study the term '"'simple yielding system" alﬁays refers to a
system with only one yield joint. A vyield joint is similar to a
Couloﬁb slider, but is more general since it can have a curvilinear
force-deflection (or bending moment-rotation) relationship. In
_ particula.f, certain nomenclature pertaining to hysteresis loops is
presented, two different simple yielding systems are studied, and
three definitions of ductility factor for these simple systems are
given. Two independent models of beams with yield joints at each .
end are presented as extensions from the simple yielding systems.
Three definitions of ductility factor which apply to yielding beams are

also discussed.
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2.2 Nomenclature Pertaining to Hysteresis Loops

The nomenclature pertaining to hysteresis loops as used in
this report is defined in this section. A typical curvilinear hysteresis
loop is shown in Fig. 2.1 and a typical bilinear hysteresis loop is
depicted in Fig. 2.2. For both of these loops, the following nomen-

clature applies:

Ix] = maximum absolute displacement,
max )
xy = displacement at yield (yield level),
X, = nonlinear displacement: departure from
the initial tangent (absolute value),
X, = lxlmaxa x, = linear displacement: displacement along
the initial tangent at the force level of
|} (absolute valne),
max
x = irrecoverable displacement or permanent
set {absolute value), and
X = Ix[ '_-x, = recoverable displacement (absolute value),
r max i
Hence,
+ = +
X tx =x tx
or
= + - . .
X, S% tx -x | (2.1)

From Fig. 2.1 and Fig., 2.2 it is seen that

x; = X, and X) = X (Z.Z)

Note that for the bilinear hysteresis loop of Fig. 2.2 with

% | s =
max

xmaxz . (2. 3)
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the irrecoverable displacement is identical to the nonlinear displace-

ment, and the linear displacement is identical to the recoverable

displacement:

=X and Xy =%, . : (2.4)

The bilinear hysteresis loop with the maximum displacement
restricted by Eq. 2.3 is the one of primary interest in this report,
Looking at Fig. 2.1 and Fig, 2.2, it appears that in many
instances the irrecoverable displacement can be much smaller than
the corresponding nonlinear displacement. Furthermore, failure is
probably more closely related to the nonlinear displacement than to
the irrecoverable displacement. Consequently, one definition of
ductility based on the nonlinear displacement rather than the irre=

coverable displacement is given in the next section.

2.3 Three Definitions of "Ductility Factor” for Simple Yielding
Systems

In this report, the ’ter.m "ductility factor™ is used as a measure
- of the amount of yielding incurred in a system. However, a "ductility
factor" has no precise meaning until the method of measuring it has
been defined. The purpose of this section is to make three definitions
of the term "ductility factor" for the nonlinear spring of the simple
yieiding system of Fig. 2.3. All three definitions apply to the bilinear
hy-steresis loop shown in Fig., 2.4 and one of them also applies to the

more general curvilinear hysteresis loop of Fig. 2.5,
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The next section, Section 2.4, treats two systems composed
of linear springs and Coulomb sliders which can be used to model a
simple yielding system with bilinear hysteretic characteristics. How-
ever, for the purposes of this section, it is only necessary to con-
sider the simple yielding system of Figs. 2.3, 2.4, and 2. 5.

For the nonlinear spring of the system of Fig. 2.3, one
possible hysteresis loop is the path 0,a,b,c¢,d, e, f in Fig, 2.4. On
this path only linear displacement is incurred until the displacement
x exceeds XY at point (a}, whereupon it yields., At )point (b} the
displacement |x|

is composed of the linear displacement, x_,
max , b4

‘and additional displacement incurred during yielding, 5, where

Furthermore, using the terminology of Section 2.2, 50 has both
"linear" and "no:nlinear" components., Now, if the spring is released
so that the force becomes zero, the equilibrium displacement is the
irrecoverable displacement X at point {c). Note that for this
example, lemax is less than X ax. consequenily, the nonlinear

2
displacement X and irrecoverable displacement x; are equal:

x =X (if |x|max = xma.xz) . (2.5)

From geometrical considerations, X is found frbm Fig., 2.4

to be
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xn=(i~-1;—2)-60 . | (2.6)

Hence, the additional linear displacement incurred in going from

point {(a) to point (b) is

B =%y = (—kE) * 5 - (2.7)

Therefore, the total linear displacement incurred in traversing from

(0) to (a) to (b) is

k
xy =xy+(—kg)‘ 50‘ . {2.8)

The first definition of ductility factor, Py s is simply a

measure of the maximum absolute displacement at point (b), |x ,maﬁ:’
(see Fig. 2.4) with respect to the yield displacement, Xy without

regard to the second slope, kz;

Pl
By | {2.9)
Y
or
&
= -2
y

Although Eq, 2.10 can be used to measure the yielding for any
bilinear hysteresis loop, its mnst appropriate application is to the ‘
ideally elasto-plastic hysteresis loop, i.e,, a bilinear hysteresis

loop with the second slope identically equal to zero, sz 0. In this
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case, all of the displacement from the yield displacement at point (a)

to point (b) is nonlinear:

x =6 = ]xlmax "X (k, = 0) {2.11)

and the total linear displacement at point (b) is the yield displacement,

b

v

]

X, =X {k

- 2 0) . (2.12)

Furthermore, the total energy dissipated, ED in a complete, sym-

metric hysteresis loop with k, = 0 is proportional to (p, - 1) and is

-given.by
ED = 4FY° 50 (kz = 0) ‘ _(2. 13)
where
F =k-x_ . (2.14)
¥y b4

The amount of energy dissipated is of interest since, in some cases,
dissipating energy by yielding can limit the amplitudes of the
"response.

Now, for systems with k,# 0, a second definition of ductility
factor which measures the nonlinear displacement (instead of the
maximum absolute displacement) at point (b) with respect to the yield

displacement is

MI:’N

{2.15)

-q
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which, by substituting Eq. 2.6 for x » becomes

bt (1 2)32 e

~<

In this case, the total energy dissipated in a complete symmetric

hysteresis loop is proportional fo (p,z - 1)
k
=4F . (1 - =2).
Ep = 4F, (1-2) s, . (2.17)

For the first two definitions of ductility factor, it is necessary
to have a well-defined yield level. However, most curvilinear hyster-
esis loops do not have an inherently well-defined yield level, Never-

- theless, for any hysferesis loop, except one with a vertical initial
tangent, the nonlinear and linear displacements are well defined.
For these loops a third definition of ductility factor relating the maxi-

mum absolute displacement, |x| » at point (b) (see Fig, 2.4) to the

max

linear displacement, X, » can be made:

1% e
B3 = X,
] or
X
Ba = 1 +-2 (2.18)
3 X, :

However, the energy dissipated either in a curvilinear or in a
bilinear hysteresis loop cannot be directly related to (}.I.3 - 1) as was
done abovce for (p.z - 1) in Eq. (2.17).

When used for the bilinear hysteresis loop of Fig. 2.4, the
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third definition can be written in another form. For fhe maximum
absolute displacement in this loop (at point (b)), X, and x are
‘given by Eq, 2.6 and Eq. 2.8, respectively, Substituting these into

Eq. 2.18, s becomes

. (2.19)

In order to show how these three definitions differ for bilinear

hysteresis loops, the following numerical examples are considered:

Let x =1 and
Yy

]x'max = 5 for systems with kz/k = 0,05 and

kz/k = 0.95, The various ductility factors are:

k k

e 2 _ 2 _
Definition —1?--0.05 = = 0.95
5 .
= f +— 5,0 5.0
ey X *
»
= .2}, 0
b=+ (1 Z) R 4.8 1,2
k
(- 2) 5,
p, =1 + 4,17 1.17
3 'k,
x + (£ 5,)

(Note that when szk =0, By =Py = |J,3.) From these examples, one
can see that the choice of the definition of ductility factor can make a
sizeable difference in the resulting numerical value.

If only bilinear hjrsteresis loops are of interest, the second

definition, o is 'a better indication of the amount of yielding



16
incurred as well as of the energy dissipated than the first, By On

the other hand, if one wishes Lo compare the ductility factors of

curvilinear systems to those of bilinear systems, the third definition,

Hys is best.

2.4 Two Systems for Modeling a Simple Yielding System With Bilinear
Hysteretic Characteristics

 This section treats two systems composed of linear springs
and Coulomb sliders (see Fig, 2.6 and Fig. 2.7) which are used to
model the simple yielding system of Fig. 2.3 with the bilinear
hysteresis loop of Fig. 2.4, The purpose of studying these sjrstems
is to form a base from which to extend to the more complex problem
of nonlinear beams.

As seen in Figs, 2.6, 2,7, 2.8 and 2.9, the primary difference
between these two simple yielding systems is the arrangement of the
springs and Coulomb sliders. In one, the springs are in series, and
in the other, the 'springs are in parallel. Consequently, the general
equations relating forces to displacements as well as those relating

7the ductility factors to the displacement incurred during yielding have
different functional dependencies for the two systems. Concerning
the functional dependence of the ductility factor for the springs-in-
series system of Fig. 2.6 and Fig, 2.8, the incurred yielding (the .
amount of slip in the Coulomb slider), &', is purely the nonlinear*

: . * . .
displacement and the corresponding linear displacement is

See Section 2.2 for definitions of linear and nonlinear displacements,
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lxlmax - 6' .

Since &', as shown in Fig. 2.8c, corresponds to X, of Fig. 2.4,
the ductility factor for this system by the third definition, Eq. 2.19,

is

1}
[
+

W
series || - &

or

i
-
+

l
°

M3 (2.20)

series Xi

In the springs-in-parallel system of Figs. 2.7 and 2.9, the displace~
ment incurred during yielding, &, is the sum of both the nonlinear
and the linear displaceﬁents incurred by the ent-ire systemn beyond

the yield point. -. Since & of Fig, 2.9c corresponds to 50 of Fig. 2.4,
the ductility factor for this system, by the third definition, Eq, 2.19,

is

3parallel k,

where k=k1+k2.

In the following vis-h-vis presentation, the different functional
dependencies of the forces upon displacements in the two systems are

studied.



Springs-in-Series
(Fig, 2.6 and Fig, 2.8) (Fig, 2.7 and Fig. 2.9) .
General equations: General equations:
F'=F1+F:z; F=F +F,;
x'=xi+6'; x$x1+5;
in incremental form: in incremental form:
AF' = AF'1 +AF!; (2.22.1) AF = AF, * AF 53 (2.22,2)
Ax' = Ax'1 + A8, {2.23.1) Ox = Axi + A . | (2.23.2)
For small displa;cements: For small displacements:
F'=k'%' F=kx
where
=k, tky;
or
k1 = gk, k2= pk ,
and
ptg=1.,
Spring k': Spring k;:
F'= k'x'1 ; F1 = kixi ;
AF' = k'Ax‘1 . (2.24.1) AF1 =k Ax, . (2.24.2)
Spring k‘z: Spring k,:
F‘Z = k'zﬁ' ; FZ = kzx H
AF.'Z= k"ZAG' . (2.25.1) AFZ = kZAx . (2. 25. 2)
Coulomb slider: Coulomb slider:
If F!' is the yieid limit for If FY is the yield limit for
the force F', then the force F, then
= F' Fiy =q- Fy

Fl
iy vy

20
Springs-in-Parallel




Springs-in-Series, cont.

-is the yield limit for the Coulomb

slider:

1

iy *
Yield Criteria:

|F| | =F

When
F! < P! linear state),
l 1I 1y (linea ate)
A&' - 0 .

Hence,

AF' = k'. Ax' (2.26.1)
When
[Fi] = Fiy {(nonlinear state)
ro_
AF1 =0
Hence, from Eq. 2.22.1,

I - I
AF' = AFZ
and with Eq. 2,.25.1,

AF’=k'2-A6'. {2.27.1})

. Also, in this state

R
k,

where k'z' , as shown in

AT . Ax!

Fig. 2.8c, is given by.

= t + »

o

1 1
k:?.' k2

21

Springs~in~-Parallel, cont.

is the yield level for the Coulomb
slider:

ENEEN

Yield Criteria:

When
IFI | < Fly (linear state),
A6 =0,
Hence,
Axi = Ax, and
AF = k+* Ax . (2.26,2)
When
IFI | = Fly‘ (nonlinear state)
AF1 =0,
Hence,
Ax, = 0
and
AS = Ax .

From Eq., 2,22.2, with AF1 =0,

AF = AF, ' (2.27.2)
and
AF = k0% ,

i.e., ainy increase of the force
above the yield level is done via
spring k2 only.
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In order to make the bilinear spring systems appear the
same to mass (m) in Fig., 2.6 and Fig. 2.7, let
x'=x , (Ax'" = Ax) ;
and
F' = F ; (AF' = AF) .
Then, from Eq. 2.26.1 and Eq. 2. 26.2 for the linear state, it is
found that
k' =k

and, correspondingly, for the nonlinear state, it is found that

i} —_
kp =k
Hence, by substitution, an equation for kfz' in terms of k and kZ
arises:
I N §
1
kZ : kZ k

This shows that it is possibie to adjust the spring constants of
these two simple yielding systems so that they appear the same from
the outside in both states of yield. As will be seen in the next section,
it is not possible to adjusl the spring constants of the two models of
nonlinear beams so that they appear the same in all states of yield.

2.5 Two Models of Nonlinear Beams

The two beam models prcsented in this section have nonlinear
hysteretic bending moment-end rotation characteristics; consequently,

they' are more complicated than the simple yielding systems of the

previous sections. It should be noted that the '"one-component! beam

model, Fig. 2,10, is an extension of the springs-in-series system,
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ACTUiEr\\J‘
LENGTH

1S ZERO

Fig, 2.10 Ones-~vwnpunent Model
of a Nonlinear Beam
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ELASTO-
PLI}STIC

ACTUAL. ELASTIC w; = w'+a
LENGTH w: = W'+ a.
IS ZERO iTY T

Fig. 2.1la Two-component Model
of a Nonlinear Beam

Fig. 2.1ib The Linear Component

Fig, 2.1lc The Ideally Elasto-plastic Component

{Note that the plastic angles a; and u‘i occur only in this component. )
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Fig. 2.6 and the "two-component" beam model, Fig, 2.11, is an
extension of the springs-in-parallel system, Fig. 2.7.

As seen in Fig, 2.10 and Fig, 2,11, the one-component beam
is the more appealing model of a yielding column or girder from
the physical point of view. Furthermore, nonlinear (bilinear and
curvilinear) hysteresis loops can be used with the one-component
beam, the only restriction being that the initial slopes of the hysteresis
loops at both ends of the same beam must be equal, On the other hand,
the two-component model can have only bilinear hysteresis loops at
each end. Although the yield levels can differ, these loops must have
identical initial and identical second slopes. For this model, the
second slope of the loop is determined by the stiffness, pk, of the
linear component of the beam.,

Nevertheless, the two-component beam has been used by other
investigators* in the study of nonlinear tall structures with results that
arc very similar to those obtained using the corresponding one-com-
ponent beam. Consequently, both of these beam models are studied
in the following vis-a-vis presentation,

In the linear state both beam modele have stiffness

_ 4EI
k=

where

E is Youngs modulus (lbs/inz) )

- _
R. W, Clough and K. L, Benuska, FHA Study, reference 1.
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I is the area moment of inertia (in4), and

is the length of the beam (in) .

The shear deflection in the beam is neglected,

Although the same symbols are used in the moment-rotation

equations for both models, some of the definitions differ slightly,

particularly for the plastic angles a, As seen in Figs. 2,10 and 2.11,

the symbols have the following meanings:

Mi’Mj

bending moments at the ends {i) and (j)
(same in both models},

bending moments at the ends of the linear com-~
ponent of the two-component model,

bending moments at the ends of the elasto~plastic
component of the two-component model,

end rotations (same in both models),

end rotations of central beam in one-component
model, or

end rotations of central beam of elasto-plastic
component in two-component model,

incurred plastic angle at the ends in the one-
component model (note correspondence to §'
in Fig. 2,8c); or

incurred plastic angle at the ends of the elasto-
Plastic component in the two-component model
(note correspondence to & in Fig. 2.9c).
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One-component Model (Fig, 2.10)] Two-component Model (Fig, 2.11)

Stiffness distribution: Stiffness distribution:
The central beam has stiffness The stiffiness k of the total
k. The end beams have zero beam is apportioned to the two
length and are dropped from components as follows:
further consideration, linear component:
k1'1nea.1- =Pk

elasto-plastic component:

kelasto-plastic =a-k;

where
p tq=1; (usually p = 0,05}.

Fundamental Bending Moment-End{ Fundamental Bending Moment-End
Rotation Equations: Rotation Equations:

linear component:

m, = pklw, + %wj)
m; = pkido, + o)

or, in incremental form,
Am, = pk(Aw, + %Amj)
Amj' = pk(%Awi + ij)

elasto-plastic component:

- t 1 1
mi - qk(wi + ij)

.= gk(3w! + o
mJ q (awl J)
where ¢q =1 - p,

From Fig. 2.11a,
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One-component Model, cont.

Central beam

M. = kiw!
1

+3w!
; sz)

= 1.1 !
Mj -~ k(aml + WJ) .

From Fig, 2.10,

W, =W - .
i 1 i
and
'=w, - @, ,
J J J

By substitution, the fundamental
bending moment-end rotation
equations for this beam model are
obtained:
M.=k {w.~2,) +3{w.- 2,}]
t ) tot 37 (2.28.1)
sz k[‘a‘ (mi-ai) +(wj-aj)]
or, in incremental form:
—— - 1 -
AM.l—k[ (Ami Aai)-l-g(ij Aaj)]

(2.29.1)
AMj=k[% (Aw-ac) + (Amj-/_\a'j)] .

Two-component Model, cont.

and

w = w -a,,

J J N
By substitution, then,

m.

1

M,
3

or, in incremental form:

qk[ (mi-ai) +%(wjuaj)]

qk[ 2{w;-a,) + (;-a)]

n

Ami gkl (Awi-Aai) +%(ij-aaj)]

A,
mJ

For the total beam:

1 - -
qk[ g(Awi Aai} +(Amj Aafj)]

Mizmi'i'mi
M. = m. 3
J J

similarly in incremental form.

.+
m.]

By addition, the fundamental

bending moment-end rotation

equations for this beam model

are obtained:

M=K (0;-q) 3 (w;-qa.)]
M,=klzb;-q;) +(w;-qe;)]

or, in incremental form:

(2.28.2)

AM, =K (Bw; -qAai)+%(ij-qAaj)]
(2.29.2)

1

—1f L - - '
L\.Mj-l_c[a (Ami qAai)-f-(Amj qz_\.aj}'_l .
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The purpose of writing these equations for both beam models
in incremental form is that in this form it is pussible to solve the
equations of motion using finite integration techniques assuming that
the state of yield remains constant throughout each time increment,
Asg scen above, the incremental bending moments, AM, are related
to both the incremental rotations, Aw, and incremental plastic angles,
Aa, Nov&, if the state of yield is known at the beginning of the time
increment, it is possible to establish beforehand an equation of the

form
Aa = Aa(Awi,ij)

relating the incremental plastic angles to the end rotations. Using
these equations it is possible to eliminate the incremental plastic

angles from the incremental moment-rotation equations resulting in

equations of the form:
AM = AM(Aw.l,ij)

which are valid for each time increment,

The criteria for establishing the state of yield at the time ¢
(at the beginning of a time increment) are based upon the bending
moment at time t and the last incremental bending moment prior
to time t. Thesc criteria, which are the same for both beam models,

are {see Fig. 2.12) the following:
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Y\
M
MA(t)
/

/ §

[
4 @

M(t) /
O\
MB (t

Fig, 2.12 Bilinear Hysteresis Loop Showing "Overshooting”’
Upon Entering the Neonlinear State of Yield and "Backtracking"
Upon Returning to the Linear State
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I MB(t) < M(t) < MA(t), then the state of yield is linear;

. M(t) = MA(t) and AM(t) > 0, then the state of
. {Or M(t) = MB(t) and AM(t) <0 } { yield is nonlinear;
whert_e

M(t): total bending moment at time t ,

MA(t): upper yield bending moment at time t ,

MB(t):’ lower yield bending mmoment at time t, and

AM(t)-: the last incremental bending moment prior to time t.
Inherent in this procedure is the phenomena of "overshooting" the
yield limit upon entering the nonlincar state and "backtracking™ upon
returning to the linear state, as shown in Fig. 2.12, This results
from the assumption that the state of yield remains constant through-
out the time increment.

Althouhh the yield criteria and the general form of the equa-

tions relating moments and plastic angles to rotations are the same

for both beams, the actual equations for each beam are different as

shown below,

One-component Model Two-component Model

When the state of yield is linear .| When the state of yield is linear

at end {i) and/or end {j), the cor-| at end (i) and/or end {j), the cor-

responding incremental plastic responding incremental plastic
angle must be zero: angle must be zero:
at end (i), Aai=0 ;- _ at end (i), Aa'i=0 ;

and/or - ' | and/or




One-component Model, cont.

at end (j), Aaj =0,
When the state of yield is non-
linear at end (i) and/or end {j),
the corresponding incremental

bending moment is proportional

to the incremental plastic angle:

at end (i), AM, = f.kAa, ;
1 1 1
and/or

at end {(j), AM. = f .kAea, ;
‘ J J J

where fi and fj are independent,

These equations are analogous to

Eq. 2.27.1 of the springs-in-
series system of the previous

section.
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Two-component Model, cont.

at end (j), Aa'j =0,
When the state of yield is non-
linear at end (i) and/or end (j},
the corresponding incremental
total bending moment equals the
incremental bending moment of the
linear component, and the incre-
mental bending moment in the
elasto-plastic component is zero:

at end (i), AMi = Ami .

Ami =0;

and/or

at end (j). AMj = Amj s
, j
These equations are analogous to
Eq. 2.27.2 of the springs-in-
parallel sttem in the previous

section.

Since :E.1 and fj are independent, it is possible to use a

curvilinear hysteresis loop with the one-component model. The

method of determining fi and fj is discussed in the next section.

On the other hand, for the two-component model, Am, and Amj

are dependent upon the same stiffness parameter {p), Consequently,
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this model can have hysteresis loops at the ends with only the two

slopes (k) and (pk) although the yield levels may be different.

Since there are two possible states of yield for each yiéld

joint, there are four possible states of yield for a beam.,

These

states, denoted by (a}, (b), (¢}, and (d), are described below,

One-component Model

State (a) - linear at (i) and (j):

Ao, =0 ;

Ao, =0 .'

State (b} - nonlinear at {i);
linear at (j}:

" AM. = f.kAa, ;
1 1 1

State {c) - linear at (i);
nonlinear at (j}:

AM, = f kba, .
J J J

_ Statc {d) - nonlincar at (i)} and (j):

Two-component Model

State {(a) - linear at (i) and (j):

Aa, = 0 ;

Ao, =0,

State (b) - nonlinear at (i);

linear at (j):
AM. = &mg; (A, # 0) ;

Ao, = 0,
J

State (c) - linear at {(i};

nonlinear at (j):

AM, = Am. ; {Aa, # 0).
j J j

State {d) - nonlincar at (i) and (j):

AM, = L. kA, ;
i i i

AM. = fkAa, .
b J

The functional dependencies of
‘the incremental plastic angles

upon rotations are as follows:

AM. = Am. ; (Ao, # 0);
i i i

AM. = Am,. ; (Aa,# 0).
J J J

The functional dependencies of -

the incremental plastic angles

upon rotations are as follows:



One-component Model, cont.

State (a) - linear at {i) and (j):

State (b} - nonlinear at (i);
linear at (j):

from state (b) above and

Eq. 2.29.1,

1 -
k[ (Awi-Aai) + gAmj] = fikAa.'i .

Hence,
1 . .
Ae; = (TTf;)(A“i“A“j)’
Aa, =0,
J

State {c) - linear at {i) ;
nonlinear at (j) :

(similar to state (b); replace (i)
by (j) ):
Aa, =0 ;
i

- 1y
Aafj = (“i-—_r“fj—) (aAmi"f'ij)

State (d} - nonlinear at (i) and (j):
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Two-component Model, cont,

State (a) - linear at (i) and {j):

State (b) - nonlinear at (i);

linear at (j):

from state (b) above and
Eq. 2.29.2
1 —_ 1
k[ (Awi-qAa!iH ,?,Amj] —pk(Awi'i' 2ij) .
Hence,
Aa’i = (Ami + %Amj) H

Aa. =0,
J

State (c) - linear at (i) ;

nonlinear at {(j):

(similar to state (b); replace (i)
by (i} ):

Aa, =0 ;
i

A,
J

1
(aAwi + ij) .

State (d) - nonlinear at (i) and (j):

from state (d) above and
Eq- 2. 290 1 3
K (AmimA_ai)+%(ij"Aaj)1
= f. kAa,
i i
1 - -
k[Z (Awi Aal)-l-(AwJ Aaj)]
= f.kAa,
J J

from state (d) above and
Eq. 2.29.2,
k[ (Awi-qAaiH%(ij-qAaj)]
= pk(Ami-l-%Amj)
k] %(Ami-qAaiH(Amj—qAaj)]
= pk(%Ami +ij)



One-component Model, cont.

rearranging:
1 1
+“ = = .t
(1+fi)Aai zAa'j Awi+3AwJ,
1 1
zAai+(1+fj)Aa'j = aAwJ._*FAmJ. .
Hence,
P 2
+ =1, =AW,
. (1 3fJ)Aml 5100,

1

a . 4
L5l HEe 1)

2

i
+{1+2
500+ (1 35;) Ao,

Aa.' =

l] . iL. .
AT RIS

By substitution, the Aa's can be
eliminated from the incremental

moment-rotation equations:

State {(a) - linear at (i) and (j):

il

‘ 1 .
AM; = kAo + 30 ;

AM,
J

I

k(3 Aw; + )

State (b) - nonlinear at (i};
linear at (j):

_ (1 1 )
AM,= (E—Ff—i)k(Awi+zij) ;

AM.= k -’L(—l—)am +(3+€Lfi )Aw
i * e\ ) A\ Ty

I
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Two-component Model, cont,

rearranging:
(Aw, - Aa,) +2{Aw,- Aa.) = 0 ;
1 1 J J
i - - =
,a_(Awi Aai)'i'(ij Aafj) 0.
Hence,
Ao, = Ay,
1
Ao, = Aw., .,
J J

By substitution, the Aa's can be
eliminated from the incremental

moment~rotation equations:

State {(a) - linear at (i) and {j):

_ 1 .
AM; = K(Aw; 42 Awy) ;

AM, = k(3 Aw, + Aw,) .
J i J

State (b) - nonlinear at (i);

linear at !j):

= 'l'l H

AM, = k [% pAw, + (1- %)Amj].
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Cne-component Model, cont.

State {c) - linear at (i};
nonlinear at (j):

344f.
AM; =k (‘4"(‘ '1““+f"j) ) de;

H(rh) )
J
AMj = (%)k(%&mi'f ij) .

State (d) - nonlinear at {i) and {j}:

Two-component Model, cont.

State (¢} - linear at (i);

nonlinear at (j):

AMizk [(1 - %) Ac.oi+ %pij] ;.

- 1
AMJ. = pk(aAwi fbwj) .

State {d) - nonlinear at (i} and (j}:

AM,;= 1 '
L5l EFE L)

4 2
ik [(1 +§fj)£\wi+ —jfjij] .

2 4
. £k [EfiAmi+(1 +3 fi)ij]
i 4 .
1+ 5P HE £

(2.30.1)

- Py .
AMi = pk(Awi +5 Amj) ;

- 1
AMj = pk(ZAmi + Amj) .

(2.30.2)

Since the incremental bending moment-end rotation equations

have a regular pattern for all four states of yield, the following matrix

-equations using the " effective stiifness arameters » an
quati ing the "effecti iff "p S,» Sp d 5S¢

can be established:

One-component Model

AMj S SC Amj

(2.31.1)

Two-component Model

AMi SA S13 Aw,

AMj SB SC ij
{(2.31,2)
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Cne-component Maodel, cont, Two-~component Model, cont.
where - where
state state
of of
yield: yicld:
a k zk k a k 2k k
f.k f.k (3+4£,)k '
i 17 i 1 29
bouEy  faw) TE) | ° pk sk (1-2)k
(3+4f )k . f.k f.k q 1
¢ ITRT T, E(1‘]+f“3) EREN ¢ {t-Z)k  zpk pk
4 2 4
f(1+=f)k Sf.£k f(1+31.)k
d -t D3.L 3;')‘1 1 Sl_ d Pk %pk Pk
where
D—1+3(f+f+f f)
Note that for bilinear hy'stéresis
loops, which are of primary con-
cern here, fi = fj =%, As a result,
some of the effective stiffnesses
- can be simplified,

In order to identically match the bilinear hysteretic response
of the two beam models, an {f:p) relationship must be found which’
equates the corresponding incremental mbment- rotation equations for
each of the four states of yield., Although one (f:p) relationship

forms a malch between the two beam models for yield states (a}, (b},
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and {c), and another (fip) relationship forms a match for yield states
(a) and {d), it is not possible to find an (f:p} relationship which forms
a match for all four states of yield.

However, in order to compare the response of a nonlinear tall
structure using the one-component model to the response of the same
nonlinear tall structure using the two-component model, it is neces-
sary to choose the most representative (f:p) relationship. Since it
is common in a tall structure for both ends of a girder to rotate
symmefrica.lly and to yield at the same time, the (f:p) relationship
chosen is the onc which matches the incremental molnent-rotatioﬁ

equations for yield states (a) and (d). With

AMi = AMj = AM
and

Aw, = Aw, = Aw ,
1 J

the following moment-rotation equations are obtained for yield state

(d), For the oné-component model, Eq. 2.30.1 yields

f

— kAw H (2.32.1)
(1 +'§ f)

AM =

and for the two-component model, Eq. 2.30, 2 yields

AM = 1.5 pkAw . (2.32.2)

By equating the incremental bending moments and end rotations for

the two models, the desired (f:p) relationship is found
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.1.5p _ f
f= or p-—-—-——i.5+f .

For example, if p = 0,050, then f = 0.079.

2.6 Hysteresis Loops and Simple Yielding Systems for Nonlinear
Beams

In order to draw an exact two-dimensional hysteresis loop for -
either end of a beam, it is necessary to ﬁave the same functional
relatioﬁship between the bending moment and the curvature for all
states of yield, Such a hysterésis loop, Fige 2.13d, can be established
for end (i) of the one-component model of Fig. 2,13a by defining the

"simple yielding beam" shown in Fig. 2.13b having the following

properties:

Mi the bending moment at end (i) of the one-
component model,

a the plastic angle at end (i) of the one-
component model,

@, o the rotation of the simple yielding beam
having bending moment Mi and plastic
angle ari,

w{i 2w - a an angle representing the curvature at

t end (i} of the central beam of the one-
component model, and

mji =W - the angle representing the cross-effect of

end (j) on end (i) where w, is the end
rotation of the one-component beam.

A similar "simple yielding beam" can be defined for end (j)
of the one-component model having the above properties but with (j)

and (i) interchanged., By using the simple yielding beam for end (i),



Fig, 2.13a One-component Model

of a Nonlinear Beam

Fig, 2,13b Simple Yielding
Beam for End (i)

! M=0 M=0
( wli EtIs-Z\
w.’. \
PIN
g; ENDED

Fig, 2,13c Simple Yielding
Beam for End (j)

WHERE
I i

.5+f
w

a| -
(I-p)faj \ -

) \I-p/]|
ii o -

Fig. 2.13d Bilinear Hydteresis Loop for the Simple

Yielding Beams for Ends (i) and (j) of the One-

component Model of a Nonlinear Beam
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the bending moment Mi can be directly related to wii (see
Fig. 2.13b) which represents the curvature of the central beam at
end (i) as shown below {similarly for end (j) ).

Thé bending moment~end rotation equations for the simple

yielding beams are:

1}

for end (i}, M 1.5 k(mii - oz.l) :

(2.33)

I

for end (j}, M.,

j 1.5 k(wjj - Qj) .

Furthermore, in the nonlinear state of yield, the equations relating
incremental bending moments to incremental plastic angles for the

simple yielding bcams are the same ones used at the ends of the one-

component model:

at end (i}, AM.l = fikAcvi ;
(2.34)

at end (j), AM, = f kAea, ,
J J J
By equating Eq. 2.33 to Eq. 2.28.1, the general moment rota-

tion equations for Mi and Mj’ the focllowing equations for the simple

- yielding beams are obtained:

£ 5iuy; - o) = K {u; - @) + Ho-a)]
(2.35)

1, 5k(ij = QJ) = k-[ %(wi- ai) + (wj- aj)] .

Hence, equations for W and m.j are found:
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= £ 1 1o . ,
wii'“‘ 3[mi+2ai+2(wj aj)] +
’ (2.36)
2r1 1
w,, = = z(w=~-a) tw +3a] .
3 3[2( i 1) j 2 J]
Since
W =W, tTw
i i1 J
and
w, = w, tw,.,
J JJ L
an equation relating the cross-effect angles is obtained:
0O=w.. tTuw., ,
ij ji
or
wi.j = - wji' {2.37)

This means that the effect of the rotation at end (i) on end (j) is just
.the negative of the effect of the rotation at end (j) on end (i), Since

a definite relationship exists between the bending moment ]fvf[.1 and the
angle Wy and bgtween Mj and wjj for all states of yield, it is
possible to draw a meaningful bilinear hysteresis loop with the abscissa
" labeled @ and mJJ as is done in Fig. 2.13d for both ends of the one-

component model of a nonlinear beam. In this case (see Section 2.4),

—f = ___f
fi—fj—f and P"m1.5+f'

The above derivation of the equations for Wiis Wity and wij

(mji) are also valid for a curvilinear hysteresis loop such as the one
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Fig. 2,14a Curvilinear Moment-

Rotation Hysteresis Loop of the Plastic A

Simple Yielding Systems for
Ends (i) and (j)

Fig. 2. 14b Associated Moment-

ngle Hysteresis Loop

of the Simple Yielding Systems

for Ends

(i} and (j)

IPig. 2,15 Configuraiion of Beam
alL Point of Incipient Yielding
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shown in Fig. 2.14a. Such freedom of choice of the hysteresis loop
makes the one-component model quite versatile. The points (i} and
(j) on the hysteresis loop in Fig. 2.14a represent the moments, rota-
tioﬁs » and plastic angles of the ends of a one~component beam at a
particular point in time. The values of fi and fi to be used in the.
next time increment are found from the slopes at the corresponding
peints (i) and (j) on the associated M - @ hysteresis loop of

Fig. 2.14b.

In the two-component mpdel, the total bending moment at an
end is dependent upon the curvatures of both components of the beam
at that end, Since these two curvatures have different functional
dependencies on the end rotations and plastic angles, when a beam
encouniers multiple states of yield (at different times), it becomes
impossible to draw a two-dimensional hysteresis loop for the two-
component model such as was done above for the one-component

model -

2.7 Ductility Factors for Nonlinear Beams

In the previous section (Section 2. 6) it was shown that by
using the concept of simple yielding beams, bilinear and curvilinear
“hysteresis loops with precise meanings could be found for each end
of a one~-component model of a nonlinear beam. Consequently, the"
threé ductility factors for simple yielding systems given in Section 2,3
can be directly applied to- either end of a one-component beam., Even

though an exact hysteresis loop cannot be found for the two~component
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beam, two ductility factors can be defined for the two-component
model which approximate the corresponding definitions for the
one ~component model.

It should be recalled that the definition of the plastic angle (a)
for the two-component model is different from the definition of (a)
for the one-component model. Since no definite hysteresis loop can
be drawn for the two-component model which is valid for all states of
yield, one can only obtain an approximate relationship between the
incurred plastic angles, «, of the two systems. Since the beam
usually yields approximately symmetrically, one can approximately
relate the a's of the two systems by

Xne- = (1 -p)a’two_ . (2.38)

component - component
The incipient yield angle wy_ appears in the definitions which
are used for bilinear hysteretic systems., Knowing the yield moment
My" wy is found from either a simple yielding beam or from the
entire beam rotating symmetrically as shown in Fig. 2.15. In cither

case, the equation relating MY to w_is



One-component Model

The first definition of ductility

factor measures the maximum
absolute value of the end rotation
of the simple yielding beam with
respect to the incipient yield angle

(for end (i) ):

= %Imiilma" (2.39.1)
M~ " ’ T
Y
but since
o,
. &
=t (7 L ). (2.40.1)
where
I
P=1.5+1 *

Eq. 2.39.1 becomes

e
. i- max
]J‘ii_i + o f2.41.1)

_The second definition measures

the maximum absolute value of the
nonlinear angle, which is the
plastic angle (o) for this model,

with respect to the incipient yield
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Two-component Model

The first definition measures the

maximum absolute value of the end
rotation of the elasto-plastic com-
ponent (or of the total beam) with

respect to the incipient yield angle

of the total beam (for end (i) ):

|(""'J'.[:max
By = ” ' (2.39.2)
b
but since
w = w +ta o, (2.40,2)
1 Yy i N
Eq. 2.39.2 becomes
l‘Zilmz’m
Y

Using Eq. 2.38, it is seen that
Eq. 2.41.1 and Eq. 2.41.2 are

approximately equal,

The second definition measures the

maximum absoclute value of the
(approximate) nonlinear angle,

which is

(1 -p)se,

%
This is the definition of ductility factor (or ductility requirement)

used in the FHA Study, reference

1'



One-component Model, cont.

angle (for end (i) ):

la’i,max
{1+ =22l
wr

b2

Bag . (2.42,1)

The third definition measures the

maximum absolute value of the
total end rotation of the simple
yielding beam with respect to the
linear end rotation (for end (i) ):

Ww..

_ ii
P34 lw..- @,
11 1

. (2.43.1)

max
The form of Eg., 2.43,1 is useful
for curvilinear hysteresis loops;
however, for bilinear hysteresis
loops, Eq. 2.40.1 can be used to
eliminate Ws s The resulting

equation is (for end (i} ):

w T+ !
v (1-p) lmax

(2.44,1)

Eq. 2.44.1 is the one used in the

47

Two-component Model, cont.

where (@) is the plastic angle for

this model, with respect to the

incipient yield angle (for end (i) }:
(1-p){a. |
Mo =1+ o (2,42.2)
Y

Using Eq. 2,38, it is seen that
Eq, 2.42.1 and Eq. 2.42,2 are

approximately equal,

The third definition of ductility
factor is not written for the two-
component model sincé it is im-
possible to use this model for

curvilinear hysteresis loops,
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One-component Model, cont, Two-component Model, cont,

computer studies for finding the
ductility factors of one-component
beams. The primary reason for
using this definition is that it can

be used for curvilinear hysteresis

loops as well.

In this chapter two models of a nonlinear beam were discussed
and compared. It was seen that the one~component model was more
realistic from the physical point of view., Furthermore, the one-
component model was shown to be more versatile since it could treat
curvilinear hysteresis loops whereas the two-component model was
restricted to bilinear hysteresis loops, Consequently, the one-
component model is considered to be the better model of a nonlinear
beam and is therefore used in the computer studies of nanlinear tall
structures for this report,

In the next chapter the equations of motion of a nonlinear tall

_structure are derived wherein either of these beam models can be

used to represent the girders and columns of the structure,
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CHAPTER III

EQUATIONS OF MOTION FOR NONLINEAR
TALL STRUCTURES

3.1 Introduction

The purposes ol this chapter are to describe the properties of
a class of nonlinear tall structures, to present the damping mecha-
nisms appropriate to such structures, to derive the equations of
motion, to discuss the int;egration techniques, and to show how the

equations of motion are solved with the aid of a digital computer.

3.2 A Class of Nonlinear Tall Structures

The class of nonlinear structures considered in this report is
intended to be representative of modern high-rise buildings with glass
and other lightweight walls such as are being built today (1967). This
class of.structures is characterized by the following assumed
properties,

1. The foundation is infinitely rigid.

2. The structure is symmetric in plan view; hence, torsional

. deformation is neglercted.

3. The girders provide all of therstiffness to the floors and

they are flexible (not infinitely rigid)}.

4. The columns provide all of the stiffness to the walls.

5. There no shear walls; hence, the structures are of the

moment-resisting type. This means that the structures

resist deformation only by the moments developed at the
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ends of the girders and columns.

6. Shear deflection in the girders and columns is neglected.

'f. As modeled in Chapter II, the girders and columns can
yvield at each end according to a bilinear bending moment-
end rotation hysteresis loop. |

8. There is no extension (or contraction) between any joints
within the same floor.

9. There is no extension {(or contraction) between floors
since it is assumed that the structures are infinitely
‘rigid in the vertical direction,

10. All mass is concentrated at the floor leQels.

1l. The mass of each floor moves only horizontally. Vertical
motion is not considered because of property (9). Although
the joints rofa.te, the rotational inertia associated with
each joint is neglected.

12. Gravitational effects are negligible for the base over-
turning moment,

The particular c.omputer program developed in this study can
analyze only one (two-dimensional) structural frame at a time. In
addition to the properties listed above, the structural frame must also
have the following:

A. It must have three bays (four columns) and be symmaetric

with respect to the centerline as shown in Fig. 3. 1b.

B. The structural properties of the frame are representative

of the three~dimensional structure being considered.
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Such a three-dimensional structure is shown in Fig. 3.1la,
C. The columns are uniformly spaced L inches apart.
D. There are twenty floors above ground level, With minor
alteration, however, the computer program can ha.ndle:-.
an arbitrary number of floors.

Several properties of the frame are optional:

E. The mass of each floor;

F. The distance between any two adjacent floors:

G. The stiffness properties of the girders and éolumns in

the linear state of yield;

H., The ratio of the second slope to the first slope of the

bilinear hysteresis loops (see Chapter II); and

ls The yield moments in the hysteresis loops,

Since the frame is subjected to an earthquake accelerogram
in the computer program, it is of interest to note the properties of
the accelerograms which can be used:

J. The time history must be digitized.

K. The time increments can be either uniform or nonuniform.

L. A ‘mu-ltiplicative amplitude scale factor can be used.

One frame having the above structural properties is exten-
sively studied in this report, This is the A/20/2.2/2/6 frame which
was designed by R.W. Cloughand K. L. Benuska and ‘was used in their
‘studies for the Federal Housing Administratioﬁ. ¥ An advantage of

using this particular frame is that a basis for comparison exists for

* .
See Section 2.2 of the FHA Study, reference i,
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verifying that the computer program for analyzing nonlinear frames
written for this report operates properly (see Section 4,5). Inde-

pendent studies using this program with various modifications can

then be made with confidence in the results.

This frame was designed by means of static analysis using
a digital computer. The design moments and design forces in the
frame were found in a conventional manner by taking into considera-
tion static gravity loads plus lateral loads as specified by the Uniform
Building Code (of 1965). The design of the girders and columns is
such that after the static gravity loads (but not the lateral loads)
are applied, the positive and the negative yield bending moment for
each hysteresis loop have the same absolute value, M_, as shown
in Fig. 2.12,

The identifying numbers of this frame have the {ollowing
significance:

| A structural propcrties are tapcred;
20: number of floors above ground level;
2.2: (apprbximate} period of the fundamental mode;
2: ratio of the yield moments to the corresponding design
moments in the girders; and
6: ratio of the yield moments to the corresponding design
moments in the columns.

For completeness, the structural properties of this frame are given
in Fig. 3.2. The stiffnéss and strength properties of structures
are often unrelated and this is reflected in this frame.

A section of a frame having the properties listed above is
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Mass Stiffness Properties
o2 Young's Modulus
99%5555—) E =1,925 X 10° lbs/in?2
Area Moments of Inertia of the
half floor Girders and Columns as Shown
Below, (in%} X 10-3
240" 120" —m
230 40 — 40
10 20
260 | 40 f— 10
10 20
260 | 40 — 40
10 20 I
260 | 40 —40
15 30
290 |} 60 L
15 30
290 | 60 60
15 30
290 |- 60 60
30 60
300 | 60 60
30 60
500 60 | 60
30 60
300 60 —¢0
4% 90 1
ato | 80 }—s0
45 90
370 b 80 50
45 90
370 | 20 b—s0
60 120
380 | 80 —80—p
60 120
380 80 —— 80
60 120
380 | 80- I—s0
100 200
410 F 100 —100
100 200 i
410 100 —100
100 200
410 100 — 100
120 240
420 100 f— 100
120 240

Fig. 3.2, Structural Properties of the A/20/2,2/2/6 Frame,

Floor Strength Properties
Mumber Yield Moments at the Ends of
from the Girders andColumns as
Ground Shuwn Beluw, (in-lbs) X 10-3
20 I 1080 , 987-__J
1590 1770
} 1820 b 1670
2330 3210
18 } 2300 F—2160—
3010 4620 |
| 2700 F—2570
3780 5900
16 } 3350 }—3210—
4480 7440
— 3790 — 3640 —
120 4220 s 4080
14 i
6280 10200 T
} 4580 }— 4470
6700 11400
12 E 4960 — 4850 —
7200 12400
} 5180 }—- 5081
8170 13900
10 | 5980 | —s3860—]
8500 14600
k 6210 — 6090—
9040 15700
8 [ 6520 }— 410
9730 16700
F 6780 }b—e680—
10020 17500 |
6 f— 7016 f— 6910—
10210 17900
t 7020 — 6940
11410 19800
4 i 7700 b 7620——
11000 19100
7660 7570
11050 19400 T
2 | 7620 — 7540 —
12060 20600
| 7230 — 7131
17600 34200
Only Half of

the Frame is Shown Since it is Symmetric With Respect to the Centerline

(see Fig, 3. 1b),

The Height Between Floors is 144 Inches Except Between

Ground and the First Floor Which is 150 Inches,
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Vin-i,m)

HT (n=1) Cin-1,m) /C(n l,m+1)
_,}V(n l,m)
{ )(

U(nl) )3f

G(n,m
JOllNT(n m)Q}V(n ,m) JOINT (n, m+n-.
|
!
HT(n):
' ctn,m) Cin,m +1)
| . Uln)-Uln+ 1)
|—‘/ UUH(n) T
|/
L/
== _JOINT(n+I,m)
st e  ——
Uln+1) G(n+1, m)

Fig. 3.3 Section of a Typical Moment-resisting Frame
in a Deformed Position
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Fig. 3.4 Bending Moments M(n, m, j)
at Joint {n, m)
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shown in a deformed position in Fig. 3.3 and a typical joint is shown

in a rotated position in Fig. 3.4, The coordinates, moments and

forces used in this chapter are depicted in Figs. 3.3 and 3,4 in the

positive direction unless labeled to the contrary. These coordinates,

etc, , are defined below, *

41

ii=1,2,3,4)
joint (n,m)

w(n,m)

a(n’m!j)
M(n!m:j)

V(n,m)

HT{n,m)

Uin)

UUH(n) = 'U(n)H}(anum

¢ index, the floor number starting from
the roof;

: index, the column line starting from
the left;

: index, the number of the intersecting
beam (column or girder);

: the joint formed by the intersection of
girder (n) and column (m};

: the angular rotation of joint {n,m);

i the plastic angle of the jth beam at
joint (n,m) {see Section 2.5);

: the (total) bending moment of the jth

beam at joint (n,m);

: the shear force in column Cin,m);

: the height between floor number {(n)
and {n+1) (numbered from roof);

: the horizontal displacement of floor {n);
and

: the interfloor shear angle between
floors (n) and (nti).

Usually floors are numbered from the ground up as shown in

¥Fig. 3.2. However, this method of numbering is not convenient for

the computer program s

is from the roof down.

e

Some of these coordina
€.g., UUH(n): the inte
is used in the resulting

ince the natural sequence of most operations

Consequently, in the derivation of the

tes, etc, , are labeled in "Fortran notation,"

rfloor shear angle, since this type of notation
computer program (see Appendix E),
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equations of motion, the floors are numbered from the roof down,

as shown in Fig. 3.3.

3.3 Damping

Because of the difficulty of determining the damping mecha-

nisms in structures, conventional approximations are made., Two

approximate damping mechanisms which can be adapted to the

equations of motion are described below.

1.

As a structure vibrates during an earthquake, energy is

dissipated aerodynamically. This dissipation is approxi-

mately proportional to the product of the area of the face
of the structure perpendicular to the motion and the
absolute (or total) velocity of the face. However, for the
studies performed here, a pseudo-aerodynamic energy
dissipation is assumed which uses the velocity relative to
ground. Assuming that the area of the face at a given
floor level is proportional to the mass of the associated
floor, "mass proportional" viscous damping is obtained.
The expression for this type of damping, for an N-floor

structure is:
aeMU {(3.1)

where
@ scalar coasiani,
mass matrix (N X N), and

vector (N X 1) of the velocities of the floors

la- &

- relative to the ground.
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2. When a structure vibrates in an earthquake, the interfloor
displacements are large enough to cause the walls and
partitions to crack and to rub together, thus dissipating
energy. This type of damping in a structure is propor-
tional to the relative interfloor velocity, and a convenient
approximation is the expression

BKU : (3.2)
where
B: a scalar constant,
K: a stiffness matrix (N X N), and
_L_.I: vector (N X i) of the velocities of the floors
relative to ground.
The form of the stiffness matrix which can be used in
Expression 3.2 depends to some degree upon the method
of solving the equations of motion., Since the equations
of motion are nonlinear, they are solved by means of an
incremental integration approach (see Sections 3.4 and
~3.5). In this case, if K is a tridiagonal stiffness matrix
such as Lhe one for a structure with rigid girdei-s*,
Expression 3.2 can be readily adapted to the equations of
motion, This type of damping is often referred to as
"stiffness proportional™ viscous damping.

These two damping mechanisms together comprise "Rayleigh damping"

for the structure with rigid girders.

=k'I‘he: (N X N) stiffness matrix for an N-floor structure with flexible
girders is, in general, full, -
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Asggume for the moment that the structure with flexible
girders remains linear (does not yield) and that the damping matrix,

C, is given by

C =aM + pK' . (3.3)

where
w,p : scalar constants;
M : diagonal mass matrix (N X N); and

K': stiffness matrix (N X N} for the structure with
flexible girders,

The resulting linear homogeneous matrix equation of motion is
MU + (@M +BK) U + K'U = 0 (3.4)
where
U is the displacement vector (N X 1) .

In this case, classical normal modes can be found.(44) Hence, for
mass proportional damping (B = 0) only, it can be shown that the

_p s th .
fraction of critical damping in the n~ meode is

where w is the natural frequency (circular); therefore,

§in> «EIzn > §;n> ene > E.i\? . (See footnote, page 61,)

Furthermore, for stiffness proportional damping (@ = 0) only, it can

be shown that



therefore,

8 s 8 8 *
Ei<8,<E <., <E.
When written in the form of the incremental equations of

motion for structures with flexible girders, the Rayleigh damping

described above in Expressions 3.1 and 3.2 appears as
AD =[aM + BK] AU (3.5)
where

AD : incremental damping force vector (N X 1) ;
«,f : scalar constants;
M : diagonal mass matrix {NXN) :

K : tridiagonal stiffness matrix (N X N} for the structure
with rigid girders; and

AU : wvector (N X 1) of the velocities of the floors relative
to ground.

For the A/20/2.2/2/6 structure described in the previous section
(Section 3, 2),
wn=2.84, 6.91, 11.5, 16.0, 20.9, ... .

Hence, for mass proportional damping, with 0.10 fraction of
critical damping in the fundamental mode,

£ = 0,10, 0,041, 0,025, 0.018, 0,014, ... ,

and for stiffness proportional damping with 0,10 fraction of critical
damping in the fundamental mode,

§:=0.10, 0.24, 0,40, 0,56, 0.74, vo. .
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In the next section it will be seen how Eq. 3.5 is incorporated

into the equations of motion for this class of structures.

3.4 Eqguations oi Motion

In this section the equations of motion are derived for the
structural frame described in Section 3,2 having the damping mecha-
nisms of Section 3.3. Two general equations are derived. One of
these is for the angular rotation of the joints and the other governs
the horizontal motion of the floors. The equation for the rotation
of the joints is dsrived from a balance of bending moments at the
ends of the gifders and columns at a typical joint and the equation of
motion for the floors is derived from a balance of forces on a typical
floor. Since the frame is symmetric, as shown in Fig, 3.1b or in
Fig. 3.5, these equations of motion are written for only one-half of
the frame (the left half) taking symmetry into consideration.

Both of these equations use incremental bending moment-end
rotation equations for the girders and columns in the frame. In
Chapter II, the moment-rotation equations, Eq. 2.29.1 and
Eq. 2.29.2, are developed for beams without making a distinctiOn
between columns anﬂ girders. However, for the present purpose,

a distinction must be made since the interfloor shear angle appears
in the moment-rotation equations for the columns but does not appear
in the equations for the girdérs. Using the one-component beam
modecl, the increrﬁental moment-rotation equations ;fOr the girders
and columns which intersect to form joint (n,m) (see Fig. 3.4) are

given in Eq. 3,6, Similar equations can be written for the two-
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component beam model,
AM{n,m,1) = kG(n,m- 1) {[ Aw{n,m) - Aa(n,m,1})]

+3[ Awln,m-1) - Aaln,m-1,3)]} ;

AM(n,m,2) = kc(n-i,m){[Aw(n,m) - AUUH(n~-1) - Aa{n,m,2)]

+%[Am(n-1,m) - AUUH(n-1) - Aa'(n-i,m,":lr)]} H
(3.6)
AM(n,m,3) = kG(n.m){[Aw(n.m) - Aa{n,m, 3)]

+4 [ Aotn,m#) - Aatn,mH, 1)1} ;

OAM(n,m,4) = kC(n,m) {[Aw(n,m) - AUUH(n) - Aa(n,m,4}]

+ 3 [ Aw(ntl,m) - AUUH(n) - Aa(n+1,m,2)]} R

where
kG(n,m) ;  stiffness of girder G(n,m)* in the linear state
_ .k
of yield ;

kC(n,m) : gtiffness of column C{n,m) in the linear state

of yield,
Just as the Aa's were eliminated from the incremental
bending moment-end rotation equations in Chapter II, the Aa's can be

eliminated from Eq. 3.6. Conseqdently, equations analogous to

*
See Section 3.2 for nomenclature of G{n,m); C{n,m)}.

ek '
See Section 2,5 for nomenclature of "linear state of yield."
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Eq. 2.31.1 relating the incremental bending moments to end rotations

via effective stiffness paramecters can be written

for the pirders:
{AM(n,m,3) }
AMn,m+i,1)

for the columns:

SGA(n,m) SGB(n,m):l {Am{n,m) } |
i (3.7)
[SGB(n,m) SGC{n,m) Awln,m+1)

{AM(n,m,é&) }

[SCA(n,m) SCB(n,m) {Aw(n,m) - AUUH(n)
AM(nt,m, 2) ] } .

SCB{n,m) SCC(n,m) Aw(nti,m) - AUUH(n)

(3.8)

In Eq. 3.7, SGA(n,m} is the Fortran name for the effective stiffness
pafafneter which corresponcis to 5, in Eq. 2.31,1 {or Eq. 2.31.2)
for the girder Gi(n,m) having stiffness kG(n,m) in the linear state
of yield.r A similar correspondence applies for the other effective
stiffnesses of the girders and columns,
One of the properties of the class of nonlineq.r éi‘:r.ucturés
considered is that the rotational inertia associated with each joinl
is neglected (see Section 3.2)., Hence, the sum of the bending
moments at the ends of the girders and columns at each joint is zero
(sce Fig. 3.4):
4
z AM(n.,m,j) =0 , (3.‘9)
j=1
- By substituting Eq. 3.7 and Eq. 3.8 with appropriate indices, n, m,

and j, into Eg. 3.9, the general equation for the incremental rotation
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of joint (n,m) is found:

+8GB{n,m-1)*Aw(n,m-1) + SGB{n,m)  Aw(n,m+1 )_
+ SCB(n-i,m)* Awin-1,m) + SCBi{n,m)* Hwintl.m)

- [ 8CB(n-1,m) + SCC(n-1,m)] - AUUH(n-1)

- [ SCA(n,m) + SCB{n,m}| - AUUH(n)

4
[ SGC(n,m-1) +SGA(n,m) +5CC(n-1,m) +SCA(n,m)]

(3.10)

Aw{n,m) = -

For the left half of the symmetrical three bay frame of
Fig. 3.5, ’the jointas {n,2} and (n,3) are seen to be typical of the
joints of column lines m=2 and m = 3, respeétively. By consider-~
ing the characteristics of each of these two joints, different equations
"for the incremental joint rotations of each column line are derived,

Because the girders G{n,1}, n=1,..., 22, do not exist in
the structure (see Fig. 3.5), an equation for the incremental joint
rotation Aw(n,2) is found by removing the constants SGB(n,1) and

SGC{n,1) from Eq. 3.10., Hence, for each joint of column line m= 2:

'+ SGBn, 2)* Awln, 3) |
+ 5CB{(n-1,2)*Aw(n-1,2) + SCB(n, 2)» Aw(nti, 2)

- SCB(n-1,2)} + SCC(n-1,2)] »AUUH(n-1)

-[ SCA(n,2) + SCB(n, 2)] -AUUH(n)
Aw(n,2) = - — = L{3.11)
[ SGA(n,2) + SCC{n-1,2) + SCA(n, 2)] |

For column line m = 3, the symmetry oi the frame is con-

sidered in either of two ways. The first and simpler method is to

look at the entire frame and to observe that
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Aw(n,4) = Aw(n,3) , (3.12)

Consequently, for the interior girders, G(n,3), =2, eos , 21,
a simplified bending moment equation is obtained for AM(n,3,3)

by substituting Eq, 3.12 into Eq. 3.7):

AM(n,3,3) = [ 5GA(n,3) + SGB(n,3)] *Awln,3). (3.13)

Because the joints at both ends of each interior girder rotate identi-
cally the same amount, only the two yield states {a) and (d) need to be

considered for either beam model:

State {a) - linear at both ends:

 AM(n,3,3) = 1.5 k * Awln,3); (3.14)

State {d) - nonlinear at both ends:

AM(n,3,3) = 1.5 p «» k* Awn,3) ; (3.15)

{see Kq. 2.,32.1 and kg, 2.32,2 at the end of Section 2.5), In the
second method the girders are cut at the centerline and pinned so
that the bending moment at the centerline remains identically zero. |

- For the one-component model this is shown in Fig. 3.6a. For the
two-component modél, in order to pr_opefly treat symmetry, each’
component must be separately pinned at the centerline as shown in
Fig. 3.6b. If, instead, the two components are first connected
together and then pinned, certain problems arisé, which are dis-~
cussed in Appendix C. Assuming symmetry is considered correctly,
the second method yields the same incremental moment-rotation

equations as the first.
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Since there are only two states of yield for the interior

girders, KEq. 3.14 and Eq. 3.15 are of the form
AM(n,3,3) = SGA(n,3) « Awi(n,3) (3.16)

which uses only one effective stiffness parameter: SGA(n,S). Hence,
for the interior girders, SGB(n,3) is unnecessary and is merged
into SGA(n,3). The new values of SGA(n,3) are given (for both beam

models) by:

state of yield SGA(n,3)
linear : 1.5« k
nonlinear : 1l.5«p-k

Using Eq. 3.16 for AM(n,3,3) instead of Eq. 3.13, the

following equation is obtained for each joint of column line m = 3:

[+ SGB(n, 2)+ Aw(n, 2)
+ SCB(n-1,3):Awln-1,3) + SCB(n, 3): Aw(n+1,3)

-[SCB(n-1,3) + SCC(n-1,3)] - AUUH(n-1)

-[SCA(n,3) + SCB(n,3)] - AUUH(n)
Am(n,B) = - - - .(3.17)
[ SGC(n,2) +SGA(n.3) +SCC(n-1,3) +SCA(n, 3)] |

The diffcrential equation of motion for a typical floor of the
structural frame is derived from a balance of forces wherein the
sum of the shear forces in the columns, V, damping forces, D,
and initial force, I‘,' acting on each floor must be zero, These
forces, along with the displacement, U, are depicted in incremental

form in Fig., 3.7 and are positive as shown.,
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T

AD(n-1); ,H'
ATl(n=1);AU(n-1) _ 3

= AV(n-I,m) o
C{n-I,m) H

AD(n);

AI(n);aU(n) == AV(n-l,m) == AV(n-l,m+l)
= AvVi(n,m) == AV(n,m+1)
ﬂC(n,m)

AD(n+1), J
Al(n+1);aU(n+1) -~ AV(n,m)

fL)

1

Fig. 3.7
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Several constants having Fortran names are used in the

equations of motion. Besides those introduced previously, the

following ones are used:

SCAB(n,m) = SCA(n,m) + SCB(n,m) :
SCBC(n,m) = SCB{n,m) + SCC(n,m) ; (3. 18)
_ SCAB(n,m) .
SCABH(n,m) = “HTO ) H
_ SCBC(n,m) |,
SCBQH(n,m) = THT(m)
3
5CD(n} = Z [ SCAB{n,m) + SCBC(n,m)] ; and
m=2
SCDHH(n) - -3-92@-2 .
- [HT(n)]

The incremental shear force in column C(n,m) is

AV{n,m) = - [AM(“’m’ﬂTJr(zﬁM(nH’m’z’] . (3.19)

Substituting from Eq. 3.8 and from the list of Fortran constants,

Eq. 3.18, Eq. 3.19 becomes

- SCAB(n,m)+| Aw{n,m) - AUUH(n)]

AVin,m) = -

HIm) 4 sCBC(n,m)-[ Awlnti,m) - AUUH(n)]
(3.20)
where
AUUH(n) = AU(H)I;,I-%S(HH) . (3.21)

The resultant incremental shear force acting on (the left half of) the
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nth floor of the structural frame in Fig. 3.7 is given by the ex-
pression
3
Z[AV(n_—l ym) -~ AV{n,m)] . (3.22)
m=2

Using Eq. 3.20 for AV and Eq. 3.21 for AUUH, and substituting
from the list of Fortran constants, Eq. 3.18, an equation for the

resultant incremental shear force acting on the nth floor is found:

3
Z [AV(n-1,m) - AV{n,m)]

‘m=2
3 3
= - Z SCABH(n-1,m)*Aw{n-1,m) - Z SCBCH{n-1,m}- Aw{n,m)
m=2 m=2
3
+ Z SCABH(n,m)*Awln,m) + Z SCBCH(n,m)+ Aw{ntl ,m)
m=2 m=2

+ SCDHH(n). AU(n+1) + SCDHH(n-1)+ AUln-1)

. [ SCDHH(n) + SCDHH(n-1)] -AU(n) (3.23)

T'he incremental damping force acting on the n® floor is

found from Eq. 3.5:

- 2810, M{n)+ AU(n)
ADfm) = ¢ . | tSCDHH(n-1):AU(n-1) &
zg -
+ —5.1.) ¢ -[ SCDHH(n~1) + SCDHH(n)] - AU(n)
1
L + SCDHH(n)- AU(n+1) ]

(3.24)
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where

£1°:  the fraction of critical damping for the fundamental
mode of the linear structure with only mass propor-
tional damping;

£9: the fraction of critical damping for the fundamental
mode of the linear structure with only stiffness pro-
portional damping;

Wy circular frequency of the fundamental mode,

Min) : mass of one half of the nth floor, and
AI:T(n) 2 incremental velocity of the o' floor relative to the

foundation,

Although both mass proportional and stiffness proportional damping
are included in the equations of motion, only mass proportional
damping is used in the computer program for this report (see Sub-
routine CONYV in Appendix E).

The incremental inertial force, AI, acting on the nth floor

is given by
Al{n) = -M(n)+ (AT(n) + AY) (3.25)

whe re

th

M{n) : mass of one half of the n fleor,

AiT(n) : incremental acceleration of the nﬂ'1 floor relative fo

the foundation; and

Ay : incremental acceleration of the foundation,

Since the incremental force balance for the nth floor is
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3 .
Al(n) + AD{(n) + Z [AV(n-1,m) -~ AV(n,m)] =0 ) (3.26)

m=2

by substituting from KEq. 3.23, Eq. 3.24, and Eq. 3,25, the differ-

ential equation of motion in incremental form is obtained:

M(n)- Al(n)
£
+[ 26w Mn) + z(:;-i-).(sanH(n) + SCDHH(n-1))] - AU(n)
1

+ [ SCDHH(n) + SCDHH(n-1)] » AU(n)

3 \
+ z [SCBCH(n-i ,m) - SCABH(n,m)] «Aw{n,m)

m=2
3
)

4

)-SCDHH(n-i)-AfJ(n-i) - SCDHH(n-1)- AU{n-1)

3 \
+ 2 SCABH(n-1,m)s Aw{n-1,m)
m=2
28] )
- ‘J‘") + SCDHH(n)* AU(n+1) - SCDHH(n)+ AU(n+)
i : '

3

- 2 SCBCH({n,m)*Aw{ntl,m)
m=2 '

= - M{n)-Ay . (3.27)

In this section, three equations of motion have been derived
for the left half of the nth floor of the structural frame taking into
consideration the symmetrical properties of the frame. In the next

section, the methods used to solve the set of 3N equations of motion



74

for an N-floor nonlinear frame are discussed,

3.5 Soclution of the Equations of Motion

As previously mentioned, because of yielding, the stiffness
properties of the girders and columns change as a function of timne
during a strong earthquake, Hence, the equations of motion are
nonlinear, whic_h eliminates, for all practical purposes, solutions
using modal analysis methods, Nevertheless, the nonlinear equations
of motion can be solved by means of an integration technique which
uses finite increments of time. In the integration technique used
here, it is assumed that the stiffness properties of each girder and
column in the structure rema,i‘n constant throughout each time incre-
ment, but that they can change from one time increment to the next,
Consequently, within each time increment, the equations of motion
are linear.

Onc critcria for determining the magnitude "AT" of the

time increment is

where 750 is the period of the ZOth

mode of the linear structure.
It should be mentioned that in the studies for this report the

A/20/2,2/2/6 structure is analyzed with
AT = 0.005 secﬁ-i-"r .
i 6 20

The integration technique used to solve the equations of
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motion is one presented by E. L. Wilson and R. W. Clough
(42,43)

(40)

and is similar to the Newmark B-method with B=1/6. For
this - method, it is assumed that:
1. the acceleration is linear within each time interwval; and

2. the acceleration, velocity and displacement at the

beginning of the time interval are known.
With thesc assumptions, for cach floor, .a set of equations relating
the incremental acceleration, velocity, and displacement that occur
during the tth time interval can be found. One form of this set of

equationg is the following:

AU(n)t

AU(n)t :

AUm), 72‘{: AU(n), + Bln) ; (3.28)

AU, = —85 AU, +AW) ;

(At)
where
Aln) = - 756"5 i}(n)(t-m}' 36(“’(:;-&) 3
Bin) = - 3{”“)&—&) - %t ij(“)(1:-4:5.1&) ;

t-At : time at the beginning of the increment; and

t : time at the end of the increment.

A(n) and B(n) appear as constants in Eq. 3.28 since they are deter-
mined at the beginning of the time increment. Using Eq. 3.28, the
incremental acceleration and incremental velocity are eliminated
from the equations of motion leaving only the incremental displace-

ment; hence, it is said to be the "AU" form. Furthermore,
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Eq. 3.28 can be manipulated into any one of six forms, AU, AU,
AG, u, I:T, or ij, where the name of the form corresponds to the
variable that remains in the equations of motion.

Using Eq. 3.28, the equation of motion, Eq. 3.27, becomes
6§m

“1 ) * M{n)
(at)?

(6

+ AU(n)

65_?,5 .
+ (1 PR ) . (SCDHH(n) + SCDHH(n-1))

|
3
+ z [ SCBCH(n-1,m) - SCABH(n,m)] *Aw{n,m)
m=2
667 .
- (1 o o )-SCDHH(n-i)-AU(n-i)

3
+ 5‘ SCABH(n-1,m)-Aw(n-1,m)}
-

m=2

6§i
(1 + mi) « SCDHH(n)* AU{n+1)

3
z SCBCH{ntl ,m)}* Aw({n+i,m)
~,

=-[Ay +AMm) + 2+£7% o+ B(m)]  M(n)

2¢% | | -[SCDHH(n) + SCDHH(n-1)] - B(n)
+ [ e
( ) + SCDHH(n-1)- B{n-1) + SCDHH(n)- B(n+1)
(3.29)

where the incremental displacements and joint rotations are the only

unknowns.



[

Two methods for solving the equations of motion, Eq, 3,11,
Eq; 3.17, and Eq. 3.29, for a nonlinear tall structure are con-
sidered here, One is entitled relaxation-iteration and the other,
matrix substitution., In the relaxation-iteration method, .£or each
time increment, the three equations of motion are solved for each
floor beginning with the top floor (roof) keeping all of the other floors
.fixed. Then, the equations for the adjacent floor are solved keeping
all of the other floors, including the roof, fixed. This p)rocedure is
continued sequentially until the equations for all the floors have been
"relaxed." By iteration, or repetition of this relaxation process
until a convergence criteria is satisfied, the incremental displace-
ments and rotations are found for this time increment, Then the
succeeding time interval is considered and the relaxation-iteration
process is applied again. |

In the matrix substitution method, (37) which is described in
more detail later in this section, a matrix equation is written
involving a large tridiagonal matrix with 3 X 3 matrices as
elements. For each time increment the equations of motion are
solved according to a recursion relationship. No iteration is
necessary.

In summary, any one of threc forms, AU, AL.T, or AU s
of the integration technique can conceivably be used with either one
of the two methods, iteration or matrix, for solving the incremental
equations of motion. |

Four of the combinations were studied: Aﬁ-iteration,

AU-matrix, AU-iteration, and AU-matrix. Of these, only the
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AU -matrix does not work well, 1In this case, some of the

3 X3 matrices are ill~conditioned since the relative magnitudes of
the elements may be on the order of 106. The other three combli-
nations yield approximately the same answers (resulting displace-
ments are the same to about 4 decimal places) and take about the
same amount of computer time, using single precision arithmetic

(8 decimal digits). The combination used in all of the computer
studies presented in this réport is the AU-matrix method using
double precision arithmetic#= (16 decimal digits) for solving the
incremental equations of motién and finding the displacements, joint
rotations and interfloor displacements. However, the bending |
moments, shear forces, etc,, are calculated using single precision.

Throughout this chapter the roof has been numbered n = 2
and the first floor above ground level n = 21 for reasons mentioned
earlier. However, there is one exception: for the matrix operations
described below, n =1 corresponds to the roof and n = 20 cor-
responds to the first floor abovc the ground level. It should be
mentioned that this notation, including the exception for the matrix
operations, is consistent with the computer program.

The three equations of motion for the nth floor of the
structural frame, Eq. 3.11, Eq. 3.17 aﬁd Eq. 3.29, can be written
together as a matrix equation, Eq. 3,30, which is of the form of
Eq. 3.31. The equations of motion for a tall structure are obtained

by writing Eq. 3.31 for each floor, Together, the equations for a

" :
By using double precision instead of single precision arithmetic, -
the computing time for the usual run, i.e., without Subroutine MODE,
was increased approximately 75 %,
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twenty floor structure form the tridiagonal matrix equation,

Eq. 3.32:*

s, ©; PRi DP,
T
C, S, C, 0 DR, DP,
T
C2 53 C3 DR3 DI?—’3

e Sig ©ig DR, DP 5

0 Cis Sig Cio| [PRyg DPq

C?e 20 [PRag f’P 20|

. | (3.32)

This set of equations is solved by successive substitution
followed by successive back-substitution as shown below. The
equafion for n=1 is

Si' DR1 + Ci' DR2 = D.'F’1 .

Multiplying by s;i, an equation for DR, is obtained:

P S -1
DR, =-§; +C DR, +§; - DP, . (3.33)

DRi » which is composed of the unknown displacement and joint rota-

tions for floor n = 1, is eliminated from the equation for floor n = 2:

5
This closely follows the matrix-substitution method presented by
R. W, Clough, I. P. King, and E, L, Wilson in reference 37.



81
-1 ' -1 _
C,(-5; +C,*DR, +S§ *DPy) +5,:DR,t C,*DRy= DP

2 i 3 2
or
§,°DR, + C,*DR, =DP, (3.34)
where
_ T -1
Sp=8,-Cy+5,7-Cy
and
—_ P SRS U
DPZ'—DP2 Ci-S1 DP1 .
From Eq. 3.34 a recursive relationship is seen for the nth floor:
S,"DR_ +C ‘DR ., =DP_ {3.35)
whe re
- _~T . -1,
®n = 50" Cpo1"Sno1"Cany
and
P =pp_-c! .57t .pp ]
n n n-1 "n-1 n-1

Noting that both Czo and DR21 are nonexistent for a 20 floor

structure, the equation for floor n = 20 is

SZO.DRZO = on (3.36)

where 3-20 and “ﬁuﬁzo are found by successive substitution. Since
the only unknown in Eq. 3.36 is DRZO’ it can be found from the

equation

=1, == _
DR,, =8, DP,, . (3.37)
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Having DRZO » by means of back-substitution using the recursive

relationship

5455 - .
DR, =5 '(OPF, - C "DR_,,) (3.38)

which is an inverse form of Eq. 3.35, solutions are found for DR19.
DR 18 *** DR 1 In this manner, the incremental equations of motion
are solved for each time increment,

In this chapter, the class of nonlinear tall structures treated
in this report was described in detail, and the equations of motion
for this class of structures were derived using the bending moment-
end rotation equations for beams developed in Chapter II, Also, the
method used to solve the equations of motion with the aid of a digital
computer was outlined,

In order to verify that the resulting computer program
operates properly, a number of tests were made. These are discussed

in the next chapter.
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CHAPTER IV

VERIFICATION OF THE COMPUTER PROGRAM

4.1 Introduction

The computer program developed in connection with this
report is based upon the equations of motion derived in the previous
chapter. As an overall check on the program, several tests cover-

ing various aspects of it were made, The purpose of this chapter

is to briefly describe these tests.

4.2 Error Checks in the Program

In the computer solution of the equations of motion, one can
anticipate ccrtain round-off error, To evaluale these errors, the
"error parameters" el(n,m) and ez(n) were introduced into the
moment balance and force balance equations, respectively.

For each time increment, the equations of motion were solved
for the joint rotations and the displacements of the floors using
double precision arithmetic ({6 decimal digits}). The individual bend-
-ing moments and forces were found for the girders and columns of
the frame using single precision arithmetic (8 decimal digits) since
the nature of the round-oif error in these computations is not so
critical, Having determined the moments and forces , the error
ei(n,m) in the bending moment balance at each joint in the frame
is found according to Eq. 4.1, and the error €,(n) in the balance

*
of forces acting on each floor is found according to Eq. 4.2:

5 _
See Chapter III for the terminology used in these equations.
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4
Z Mn,m,j) = ei(n,m) : (4.1}
j=1
3
I{tn) + D(n) + z [Vin-1 ,m) - Vin,m)] = ez(n,m) (4.2)
m=2

In the printed oufput at the end of the program, the maximum abso-
lute values of ¢ 1(n,m) and ez(n) are printed along with the times

at which they occur, For a typical computer run using an earthquake

accelerogram, it is found that

(4.3)

leyinmy| o~ 10-6]M(n,m,j)]max;

and

3
IEZ(n)lmax” 1076 Z V{n,m) . (4.4)
' : m=2

max

It should be noted that for single precision arithmetic, the limit on

accuracy is 10-8.

If the values of the error pai'ameters in the printed output of
a computer run are consistent with the typical values given in
Eg. 4.3 and Eq. 4.4, then there is reason to accept the results of
~ the run. On the other hand, unusual behavior of the error parameters
would lead one to suspect some type of program or computer mal-
function. Such difficulties were not encountered in the computer runs

{for the present investigation,
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4.3 The Wilson-Clough Integration Technique (40)

To investigate the properties of the Wilson-Clough integration
technique, several different programs based on it were examined. At
thé same time, other programs were developed which used different
integration techniques to solve the equations of motion for either the
same or an equivalent system. These programs are described below,
and the results are compared.

The equations of motion of the damped, three-mass, bilinear
hysteretic system of Fig. 4.1, excited by a constant frequency,
sinusoidal base acceleration ;(t), were solved using three different
computer programs; The first program, explicitly written for this
system, solved the equations of motion by means of a third order
Runge-Kutta integration technique. * The second program, also
explif:itly developed for this system, used the Wilson-Clough inte-
gration technique., The third program was an adaptation of the
regular progfam for analyzing nonlinear frames developed in con-
nection with this report, In this adaptation the number of floors was
reduced from twenty to three, and the girders were made rigid. The
- resulting model is shown in Fig. 4.2, The same approximately
steady state initial conditions and the same sinusoidal excitation
were used for all three programs. In each case the integration was
carried out for fifteen cycles of the input acceleration. The resulting

time history plots of the corresponding displacements were within

s

This program, written by Dr, W. D. Iwan of California Institute of
Technology, uses the standard integration subroutine of the
California Institute of Technology Computing Center.
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2% of each other throughout the entire length of the computer runs.

A second system used for comparing the first two programs
described above consisted of the damped, three-mass system with
cubic-nonhysteretic springs shown in Fig. 4.3, Again, the resulting
time history plots of the corresponding displacements were within
2% of each other for the fifteen cycles of the computer run. Even
with zero initial conditions, this system achieves steady state
motion after nine cycles.

Because of the consistency of the above results, it would
appear that the Wilson-Clough integration technique is suitable for

the present investigation,

4,4 Excitation of the Linear A/20/2.2/2/6 Frame Near Its Third
Natural Frequency

For an additional test of the more complicated system later
used in the nonlinear analysis, the computer program was modified
so that the base excitation was a constant frequency, sinusoidal
accel_erogré,m. Included in this program was a means of checking
 that the response was approximately steady state.

The A/20/2.2/2/6 frame was used with the yield condition
suppressed so lhat the system remained linear. The specified
damping in the fundamental mode was 0.10 fraction of critical.
Since mass proportionai damping only was used, the effective damp-
ing in the higher modes is reduced, being 0.025 fraction of critical
in the thfxrd mode, The frequencies of the half power points of the

steady state resonance curve for a single degree of freedom system
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having as a natural frequency the third modal frequency of the frame
were analytically calculated (see Table 4-1}.

Three computer runs were made in this test: one at each of
the three frequencies given in Table 4.1. In each run the initial
conditions were zero and the amplitude of the sinusocidal forcing
function was the same. After the steady state criteria* were
satisfied, the amplitude of the displacement of the 20" floor and
the phase angle between that floor and the forcing function were
found. The three resulting amplitudes, normalized with respect to
the amplitude {or the third natural frequency, along with the cor-
responding phase angles are given in Table 4-1,

For a one degree of freedom system at steady state, the
normalized amplitudes at the half-power points are 0.707 instead of
0.69 and 0,77, and the phase angles are 45° and 135° instead of 47°
and 1407, respectively., The unnormalized displacement of the 200
floor at the third natural frequency as calculated by the computer
was 5% smaller than that found by analytical means using eigenvalue
theory wherein it was assumed that the contributions to the excitation

- by all modes except the third were negligible.

*
Within any one complete cycle of the input acceleration, if
| U MAX(n) + U MIN{n)| < 0,050 MAX(n)
for each floor, where
U MAX(n) : the most pobsitive displacement for the nth
floor during that cycle, and
th

U MIN(n) : the most negative displacement for the n
flooxr during that cycle;

then an approximation to steady state is obtained,
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TABLE 4-1
| Third

Lower half- mnatural Upper half-
power point frequency power point

Circular frequency 11,1905 11,4748 11,7591

Theoretical amplitude, 0,707 1.00 0.707
normalized :

Amplitnde of the displace- 0.69 £.00 0.77

ment of the 20th floor,
normalized (computer

output) |
Theoretical phase angle 45° 90° 135°
Phase angle between 47° 90° 140°

displacement of the Z.Oth

floor ang the forcing
function™ {computer
output)

These discrepancies in amplitudes and phase angles can be

explained by the following factors:

1. Because the steady state criteria are not exact, the
results of the computer program are only approximately
steady state.

2. In the analytical calculations it is assumed that only one

| mode--~the third--contributes to the excitation, However,
in this test, base excitation is used which does not excite

a pure mode in a multi-degree of freedom structure.

w 7 ,
The forcing function used here is

£.(t) = - M(n)y(t)

where th
M(n) : mass of one half of the n

A floor, and
y{t) : base acceleration,
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Consequently, even though the third mode is the dominant
one in this frequency range, the others do contribute.

Since the discrepancies in the results are small and can be
explained by these factors, this test provides further assurance that
the computer program, iﬁcluding the mass proportional damping
mecha.nisrﬁ. is working properly.

Another point which reflects upon the accuracy of the compufer'
program concerns the joint rotations of the linear A/20/2. 2/2/6
frame. The stiffness properties of this frame (see Fig. 3,2) are
designed* so that at each joint within the same floor the ratio of the
sum of the column stiffnesses to the sum of the girder stiffnesses is
the same. For example, for the first floor above the ground, this
ratio for cach joint is 2.4« Hence, as 16ng as this frame remains
linear, the rotations of the joints within the same floor should be
equal. Even though the rotation of each joint is calculated independ;
ently, it is seen in the computer output that the rotations of joints
within the same floor are the same to eight significant decimal digits,
thus giving an additional check on the program. However, such a
. check cannot be made for the particular nonlinear frame studied in
this report., For this frame, the strength propei'ties are not directly
proportional to the corresponding stiffness properties, and, there-
fore, the rotations within the same floor would not be expected to be
equal, This difference in joint rotations *évithin the same floor of the

nonlincar frame can be scen in the time history plots of Chapter VI.

*
See Section 2,2 of the FHA Study, reference 1.
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It is especially evident in the plots for the joints of the ZOth

floor.

4.5 A Comparison With Results Presented in the FHA Study

In another comparison test, the A/20/2.2/2/6 frame was
subjected to earthquake excitation and the resulting responses were
compared with corresponding ones presented in the FHA Study. Since
the yield criteria and the treatment of symmetry used in the regular
nonlinear analysis program for this report differ from those used in
the program foy the FHA Study, the computer program used for this
test includes mddificatiOns to remove these differences.

It is the author's understanding that the computer program
used for the FHA Study is basically the same one presented in a report
- to the Office of_ Civil Defense by T. Y. Lin and Asso_ciates.( 2} That -
program can treat an arbitrary number of girders and columns, but
since the two-component beam model is used (see Section 2,5}, the
- symmetrical prdperties of the three bay (four column) frame cannot
be treated exactly by cutting the interior girders at the centerline
as is done there. Nevertheless, this is an expedient approximation
_ for that program. The problems that are encountered by using such
an approximation are discussed in Appendix C. In order to account
- for the treatment of symmetry used in the FHA Study, the two-
component beam model is used in the progfarn for this test with
appropriate modifications to the incremental moment- rotation-plastic

angle equations.

As mentioned above, the yield criteria used in the regular
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nonlinear analysis program for this report differ from those used in
the program for the FHA Study. In order that the criteria be the
same in both computations, the criteria used in the FHA Study are
adopted for purposes of the comparison test., It is noted that the
yield criteria used in the FHA program can, in special cases, lead
to incorrect responses, The plastic angles and resulting ductility
factors are particularly sensitive to this difficulty, The special
situations under which these problems may become troublesome
are discussed in Appendix B.

The same input data consisting of the structural properties
and the accelerdgram of the El1 Centro (N-S) earthquake of 18 May
1940 were used in both computations, This accelerogram is the
sarné as the one used at the Ear‘thquake Engineering Laboratory of
the California Institute of Technology, but rounded off to four
decimal places;__

The responses obtained from the modified program using
this input data are the same as those {within the tolerance of the
plots) presented in the FIIA Study.

In this Chapter several different tests of the computer pro-
gram were outlined and the results of each test indicate that the pro-
gram performs as expected. Consequently, it is believed that the
computer program for determining the response of nonlinear tall
structures subjected to earthquake excitation operates properly and

provides the desired accﬁracy.
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CHAPTER V

MODAL ANALYSIS OF CONTINUQUS CANTILEVER BEAMS
AND OF TALL STRUCTURES

5.1 Introduction

In the past a number of authors, M, A, B‘mt,( 6) G. N.
Bycroft,(34) R. W, Clough,(36) R. L. Jennings ,(19) K. Kanai,(32)
K. Muto,(zg) H. M. Westergaard(30) and others have mentioned
that "higher modes" are important and that "whiplash" is observed
in tall stru'c:tures. This chapter is intended to determine the con-
ditions under which higher modes are important as well as to suggest
a definition of whiplasgh for tall structures.

By studying continuous beams and discretized models of tall
structures, it is possibie to gain a fuller understanding of why the
displacements, strains {interfloor displacements), shear forces,
and total accelerations have differing dependencies upon the various
modes as well as upon the position in the structure, Two linear
elastic continuous cantilever beams which represent limiting cases

of tall structures are studied. In one, the stiffness and mass distri-
butions are uniform, while in the other, these distributions taper to
a point at the top. Furthermore, a discretized model of a typical
structural frame (A/ZO/Z.Z/Z/G)* Vis also studied by modal analysis,
In Section 5,2 the continuous beams, which are subjected to an

ensemble of earthquakes, are analyzed. In particular, the average

*
See Section 3.2 for a description of the structural properties.
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Fig, 5,3 Averagc "psoudo—velocﬂay%n%pectrum curves for strongest

ground motion, These curves are the average of the four strongest
ground motions so far recorded: El Centro, California, May 18, 1940;
£l Centro, California, Dec, 30, 1934; Olympia, Washington, Apr. 13,
1949; Taft, California, July 21,1952, Before averaging, each spec-
trum was normalized so that there was a unit area under the zero-
damped curve, To correspond to the respective ground motions, the
ordinates must be multiplied by factors as follows: El Centro, 1940
(2.7); E1 Centro, 1934(1,9); Olympia, 1949(1.9); Taft, 1952 (1. 6).
(Reference 9).
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maximum absolute modal contributions to the displacements, strains,
shear forces, and total accelerations are related to the average
pseudo-velocity spéctra Sv' In this chapter, the phrase "average
maximum absolute" means average over an ensemble of earthquakes
of the maximum absolute value over time of each member of the
ensemble. In order to show how these average maximum absolute
modal contributions depend upon the taper of the beam and upon the
position (%) in the beam (see Fig. 5.1) some of them are later
presented in tabular form.

In Section 5.3, the method used to obtain "equivalenf" modal
participation factors and the "equivalent" modal contributions to
displacements and to interfloor displacements for'yielding structures
is treated. The results obtained by using this method for a typical

yielding structural frame are then discussed,

5.2 Modal Analysis of Continuous Beams

One possible model for approximating a tall structure of
uniform properties subjected to horizontal earthquake excitation is
_ the shear-type continuous cantilever beam shown in Fig, 5.1. The

general equation for this type of cantilever beam excited by the base

: 2
acceleration 51——% (t) is
dt

%(K(x)%(x,t))= y(x)(%(x,t) +y) (5.1)

with the boundary conditions:
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atx =0, %ﬁ:o

at x=1£ , u=20

where

K(x) is the shear stiffness in units of 1bs ;

v(x) is the mass density in units of

u(x,t} is the relative displacement;

(X ) dz
.dt .

mass
unit length

and

- For the uniform beam, the properties of stiffness and mass

density are cp_nsfants:
K{x) = Ko , and
vix) =v, -

The velocity of wave propagation, c,

<

2
K -

o

—
=

L
2
c

By substituting these values into Eq.

equation for a uniform beam is obtained:

2
&
22 ) - 5

is defined by

5.1, the general

9%u 1 e
—5={x,t) = — y(t} .
Ox c.2 Btz ’ cZ

The boundary conditions remain the same

- ou _
X—-O _-B—}i_
x= £ u=0.

and

(5.2) .
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The solution of this eigenvalue problem with zero initial

conditions is

a0
u(x,t) =-%£ z (- 12)11 cos (mrclx )S‘t;('r)- sin (mn(t—'r)) dr (5.3)
‘o

and the eigenfrequencies are given by

. _(2n-i)r
c 2 '

1‘1=1,2,3,-.. L] (5.4)

In this section the primary interest in us ing modal analysis
is in making con;iparisons between the average maximum absolute
values of the individual modal contributions of the responses, and not
in finding the sums of the modal contributions. Furthermore, there
is some question as to the absolute convergence of the total accelera-
tion series. This is discussed briefly later. Consequently, only the
nth terms of the various responses are considered.

t

From Eq. 5.4, the contribution of the n'' mode to the dis-

placement is

u (x t) = ic ('12) cos (--—-—)K y('T) sin wn(t—'r)) drT. {5.5)

58

Differentiation of Eq, 5.5 with respect to x gives the contri-

bution of the _nth mode to the strain:

3u n+i w x t.. :
(x,t) =7 Lim);__sin w%—-) 5:0 v(7) sin (wn(t-'r)) d7 . {5.6)
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It is noted that strain for a continuous model is analogous to the

interfloor displacement of a model of a structure.
t

The contribution of the n h mode to the shear force is ob-
tained by multiplying Eq. 5.6 by K.

Ko :1:: (x,t) = o (- 1)n b sm( :{)g y('T) sm( (t- 'r)) dt . (5.7)

From Eq. 5.2 it is seen that the total acceleration is given by

2 2

o"u e 2 ¢ u
(x.t) +y(t) = ¢ "T(Xst) ' (5.8)
ot Ox
th e e ' R
and the n"." modal contribution to the total acceleration is
2
2 0

5 (x,t) = S5 (-1)" Icos( )g viT) s:.n w_(t- 'r)) dt . (5.9)

By taking the maximum value over timerof the absolute value
of Fgs. 5,5, 5.6, 5; 7 and 5,9, one. finds the maximum absoclute value
of the nth modal contribution to each response for a given position
) (%) in the beam. Note that a term common to all of these equations

is the maximum over time of the absolute value of the integral

t [ X ] K |
5 (wn) = an.zc . y{7) sin (wn(t-’r)) d7 ' (5'.10)

which is sometimes called the "spectral velocity." Physically,

" .
Absolute convergence of this series is discussed below.
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Sv(wn) is the absolute value of the maximum pseudo-velocity for an
undamped single degree of ireedom oscillator with a natural fre~
quency w_ (or period Tn)* subjected to an earthquake accelerogram
.y:(t). Curves of SV(T) vs., period T have been made for an en-
sembie of earthquakes with several damping factors.( 9) By
averaging SV(T) over the ensémble, average spectral pseudo-
velocity curves are obtained which are shown in Fig, 4.3. From
these curves one can find the average over an ensemble of earthquakes
of the maximum absolute value of the pseudo-velocity of a single
degree of freedom oscillator with a given period and fraction of
critical damping.

Hence, the average maximum absolute values of the nth
'modal contributions to the various responses are as follows:

for displacement:

2L 4 “DFN o
u_(x) = £ e — cos (| —= ) 8 (w} (5.11)
‘n ‘max c TrZ(Zn-i)Z ( c) v n
o<t
for strain:
du . W X,
n _2 2 . n
ox (=) ¢ mw2n~1) sm& c ) Sv(wn) 15.12)
max
0<t

*For linear systems "pseudo-velocity" equals the displacement
times the natural frequency. Studies comparing pseudo-velocity
spectra to velocity spectra for a one degree of freedom linear
system cxcited by an ensemble of earthquakes have been performed
by C. V. Chelapati, reference 15, '
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for shear force:

ou

n
Ko % )

2K 2 0 X '
" m(2n-1) sm( c ) Sv(‘_un) (5.13)

max
0<t

and for total acceleration:

2
Z.aun
c

2 (x)

W X
=-219 cos (—;—1—) S (w ) . (5.14)

ox max

0<t

In Fig. 5.3 it is seen that for periods greater than 0.3 seconds

(frequency less than 5."3 radians per second) and for very lightly
damped systems the average spectral velocity Sv(w) is approxi-
mately a constant, to be denoted by -§v. Since the periods of only
the first five modes of the A/20/2,2/2/6 structure are 1a‘rger than
0.3 sec, only the first five modes of the continuous beams are con-
sidered below.

Looking again at Fig. 5.3, oﬁe sees that for peric;ds less
than 0.3 sec, as the periods approach zero (w— o), the average
spectral velocity S, (w) decreases approximately in proportion to

T. From Eq. 5.4 then,
~ 1
Sv(uh) =

This rate of decrease of Sv(wn) is sufficicnt to ensure absolute
convergence of summations of Eqs, 5.5, 5.6, and 5.7 for displace-

ment, strain, and shear force. However, there may be some
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question of the absolute convergence of a summation of Eq. 5.9 in

order to obtain the total acceleration, even though the average
maximum absolute contribution of the nth mode does decrease as
(n)‘ increases beyond some value, By assuming that the base
excitation .};(t) has a bounded frequency spectrum, absolute con-
vergence can be assured.

In order to show more explicitly the dependence of the
average maximum absolute values of these responses upon position
in the uniform beam, Eqs. 5.11, 5.12, 5.13, and 5.14 are evaluated
at seven different positions in the beam with Sv(wn) replaced by
S,. The results are tabulated in Tables 5-2, 5-4, 5-6, and 5-8,
From these tables several general trends are seen regarding the
dependencies of the various responses upon the modes and upon the
position (%} in the beam.

Table 5-2 shows that the displacements can be expected to be
dominated by the first two or three modes, particularly in the upper
portion of the beam. In Tables 5-4 and 5-6 it is seen that thé strains

| and shear forces in the lower portion of a uniform beam are highly
) depéndent on fhe first few modes, while in the ﬁpper portion many
modes can be expected to contribute significantly.

From Table 5-8 for the total acceleration it is seen that
throughout the structure all modes can be expected to contribute,
Note, however, that near the baée of the beam the expected contri-
bution of the first mode is the smallest of the first five modes.

In order to show the effect of taper on the response of a con-

tinuous cantilever beam, subjected to earthquake excitation, the
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beam of Fig. 5.2 is examined.
In this case, the stiffness K(x) and the density per unit

length vy{x) are functions of x:

Ki{x) = K

o}
b

s E5

y(x) =
However, the velocity of wave propagation, c, is constant since

{ (x) Yo

27 K{x K
o

By substituting these values into the general shear beam

equation, Eq. 5.1, the equation for the tapered beam is obtained:

= '5;(1{‘5'}—'{ (X,t)) - :Z.- —a';z-(x,t) = c—zy (5_15)

at =0, «~— =0 ; and

at x=1 , un=0 .

The solution of this eigenvalue problem with zero initial con-
ditions is
00

| u (x,t) = : i— ('T) sin (w_{t-T) {(5.16)
.Tn—i “n J' (—-—) S‘ ( )

and the frequency equation is
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w 4
JO(-—E—) =0 . (5.17)

The roots of the Bessel function ‘To are given in Table 5-1.

TABLE 5-1

Natural Frequencies of Uniform and Tapered Beams

Uniform Beam Tapered Beam
cos () =0 Treaueney o(25) = “Rasios
w £ ‘ w L
" (&) (=
1 1.57 1 ' 2.4 1.00
2 4,71 3 5.52 2,30
3 7.85 5 8.65 3.61
4 10.99 7 _ 11.8 4,92
5 14,13 9 i4.9 .. 6.21

6 17,27 i1 18.1 7.54

Again, because the primary interest is in making comparisons
between the average maximum absolute values of the individual
modal contributions, the nth terms of the various responses are
discussed.

From Eq. 5.16, the nth term of the displacement for the

tapered beam is
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J (mnx t
u (x,t) = - _2.1;2 _1_2 ...2___..:}2].1 S' v{7) sin (wn(t-'r)) ar . .{5.18)
n () °

By differentiating Eq. 5.18 with respect to x, the nth modal

contribution to the strain is obtained:

n
iﬁg(x,t) = = ( ) S‘ Y('r) sin (w (t- 'T'))d'T . (5.19)

ox ( )
The contribution of the nth mode to the shear force in a

tapered beam is found by multiplying Eq. 5.19 by Ko- %

x n X 0 1' Jl(—u%_}'{) t.. o f
K = —-*-"-(x,t) =f 7 -J- —-—'—-—J—rS Y(T)Sln (mn(t-'r)) dr. (5. ZO)

Tl Y

From Eq. 5.15 it is seen that the total acceleration for the

tapered beam is given by

2 2

9 ey _ 9 (. du(x,t)"
Sz Y =E 5 (SR, (5.21)

- Hence, the nth modal contribution to the total acceleration is

w X, .
"'E‘ _ai (xi‘i_(x t)) f_q&;_r_:_% S't v(7) sin (r.on(t-'r)) dar . (5.22)
() e *

. _
See p.l00 for discussion of absolute convergence of this series.
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By taking the maximum over time of the absolute value of Eqs.
w &

- 3

5.18, 5.19, 5,20 and 5. 22; using Fq. 5.10; and letting 7 S
th

the average maximum absolute values of the contributions of the n

mode to the various responses are obtained:

for displacement:

|3 I |
lu )] = 24 1( it 7)1 S (w) (5.23)
max 2 |J (z )I
0<t
for strain:
<
du (x) 21 17,(=, 7) | s (o) 5. 20
ox T ¢ oz v'®n ! .
max ~“n |J1(z )
0<t n
for the shear force:
%
K = Eu—n(x” = = Elf_o_i_ ]Ji “n T | S (w) (5.25)
ofd ox f ¢ =z v n ? *
max n lJi(zn”
0<t '
"and for total acceleration:
2 du ' : iJ.‘ z & I
Chome) -z i)l o)
max I‘Tl(zn)l

0<t
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In order to show the dependencies of displacements, strains,
shear forces, and total accelerations upon the first five modes and
ﬁpou the position ( % ) in the tapered beam, Eq. 5.23, 5.24, 5,25
and 5. 26 with Sv(mn) replaced by i have been tabulated in
Tables 5-3, 5-5, 5-7 and 5-9. The general trends regarding the
dependencies of the responses upon the modes of and upon the
position ( -}—{ ) in the tapered beam are approximately the same as
~ for the uniform beam with two exceptions. These exceptions are the
increased emphasis on the higher modes in all of the responses in
the tapered beam and the fact that the shecar force in the tapered

beam is proportional to

7 (3)
whereas the shear force in the uniform beam is directly proportional
to the strain.
The total acceleration coefllicienis of the uniform and tapered
beams in Tables 5-8 and 5-9 are interesting since they indic'ate that
each of the first five modes of the uniform beam can be expected to
“contribute about the same amount, except near the basc where the
contribution of the first mode becomes small, At the top of the
tapered beam, however, the higher modes can be expected to dominate
the total acceleration.
It appears, then, that a mass ‘particle at the top of a severely
tapered structure can be rexp_ected to feel very high accelerations,

- Furthermore, since it is more closely related to strain than to
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TABLE 5-2
Displacement Coefficients of —ZC—'L"SV
for Uniform Beam from Eq. 5.11
Mode

1 2 3 4 5
0.405 0.045 0.016 0.008 0.005
0.391 0,032 0.004 0.002 0.004
0.351 0,000 0.014 0.007 0.000
0.287 0.032 0.011 0.006 0.004
0.203 0.045 0.008 0.004 0,005
0.105 0.032 0.016 0.008 0.004
0.000 0.000 0.000 0.000 0.000

Displacement Coefficients of -%-t -éw

Normalized to Coefficients of Mode 1

Mode

1 2 3 4 5
1.000 0.111 0.040 0.020 0.012
1.000 0.081 0.011 0.005 0.009
1.000 0.000 0.040 0.020 0.000
1,000 0.111 0.040 0.020 0.012
1.000 S 0.222 0.040 0.020 0.025
1.000 0.304 0.149 0.076 0,034
0.000 0.000 0.000 0.000

0.000
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TABLE 5-3

Displacement Coefficients of 2{’-§v

4

for Tapered Beam from Eq. 5.23
Mode

{ 2 3 4 5
0.333 0.096 0.049 0.031 0.022
0.320 0.077 - 0.027 0.008 0.001
0.282 0.031 0,011 0.012 0.004
0.223 0.016 0.018 0.004 0.006
0,151 0.038 0.004 0.006 0.005
0.074 0.029 0.014 0.007 0.003
0.000 0.000 0.000 0.000 0.000

Displacement Coefficients of %Egv
Normalized to Coefficients of Mode 1_

Mode -

1 2 3 4 5
1.000 0.290 0.148 0.093 0.065
1.000 0.241 0.084 0.024 0.003
1,000 0.108 0.038 0,044 0.014
1,000 0,073  0.079 0.017 0.026
1,000 - 0.254 0.027 0.042 0.035
1,000 0.387 0.196 0.098 0.040
0,000 0.000 0.000

0.000

0.000
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TABLE 5-4

Strain Coefficients of -S's',v

for Uniform Beam from Eq. 5. 12

Mode
1 2 3 ' 4 5
0.000 0.000 0.000 0.000 0.000
0.165 0.150 0.123 0.088 0.050
0.318 0.2t2 0.064 0,045 0.071
0.450 0.150 0.090 0.064 0,050
0.551 0.000 0.110 0.0.79 0.000
 0.615 0.150 0.033 0.024 0.050
0,637 0.212 0.127 0.091 0.071
Strain Coefficients of %gv
Normalized to Coefficients of Mode 1
_ Mode
1 2 3 4 5
0.000 0.000 0.000 - 0,000 0.000
i.000 0.911 0.746 0.533 0.304
1.000 0.667 0.200 0.143 0.222
1.600 0.333 0,200 0.143 0.11i
1.00b - 0,000 0.200 0.143l 0.000
1.000 0,244 0.054 0.038 0.081
1,000 0.333 0.200 0.143 0.111
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TABLE 5-5

Strain Coefficients of %'Sv

for Tapered Beams from Eq. 5.24

Moade
i 2 | 3 4 5
0.000 0.000 0.000 ~  0.000 0.000
0.157 0.220 0,234 0.211 0.162
5.296 0.310 0.162 Dé014 0.105
6?400 0.225 0.077 0.108 0.041
0.457  0.033 0.134 0.078 0.018
0.462 0.137 0.025 0.032 - 0.057
0.416 0.181 0.116 0.085 0.067
Strain Coefficients of %E’v
Normalized to Coefficients of Mode 1
Mode
{ 2 3 4 5

0.000 0.000 0.000 - 0.000 0.000
1,000 1,398 1.486  1.342 1.030
1,000 1.047 . 0,548 0.048 0.356
1,000 0.563 0.192 0.270 0.103
1,000 . 0.072 0.294 0,170 0.039
1,000 0.296  0.053 0.068 0.123

0.161

1.000 0.436 0.278 0.204
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TABLE 5-6

2K

Shear Force Coefficients of 3 °'§v

for Uniform Beam from Eq. 5,13

1.000 0.333 0, 200 0.143

Mode
1 2 3 4 5
0.000 0.000 0,000 0.000 0.000
0.165 0.150 0.123 0.088 0.050
0.318 0.212 0,064 0,045 0.071
0.450 0.150 0.090 0.064 0.050
0.551 0.000 0.110 0.079 0.000
0.615 = 0,150 0.033 0.024 0.050
6.637- 0.212 0.127 0.091 0.0714
2K
Shear Force Coefficients of ngv
Normalized to)Coefficients of Mode 1
Mode
1 2 3 _ 4 5

0.000 0,000 0.000 0.000 0.000
1,000 0.911 0.746  0.533 0.304
1.000 0,667 .  0.200 0,143 0,222
- 1.000 0.333 0.200 0.143 0.111
1,000 0,000 0.200 0.143 0.000
1,000 . 0.244 0.054' 0.038 0.081
0.111
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TABLE 5-7
- 2K _
Shear Force Coefficients of S Sv

for Tapered Beam from Eq. 5.25

Mode
1 2 3 4 5
0.000 0.000 0.000 0.000 0.000
0.026 0,037 0.039 0.035 0.027
0.099 0.103 0.054 0.005 0.035
0.200 0.113 0.038 0.054 0.021
0.304 0.022 0.090 0.052 0.012
0.385 0.114 0.020 0.026 0.047
0.416 0.181 0.116 0.085 0.067
2K
Shear Force Coefficients of S °§V
Normalized to Coefficients of Mode 1
Mode
i 2 3 4 5
0.000 0.000 - 0.000 0.000 0.000
1.000 1.398 1,486 1.342 1.030
1.000 1,047 0.548 0.048 0.356
1.000 0.563 0.192 0.270 0.103
1,000 - 0.072 0.294 0.170 0.039
1,000 0.296 0.053  0.068 0.123
0.161

1,000 0.436 0.278 0.204
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TABLE 5-8

Total Acceleration Coefficients of _21.9§v

- -

base acceleration

for Uniform Beam from Eq. 5.14
Mode

1 2 3 4 5
1.000 1,000 1.000 1,000 1.000
0.966 0,707 0.259 0.259 0.707
0.866 0.000 0.866 0.866 0.000

. 0.707 0,707 0.707 0:707 0.707
0.500 1.000 0.500 0. 500 1,000
0.259 0.707 0.966 0.966 0.707
--------------- base acceleration -F--ws---caa--
Total Acceleration Coefficients of %Egv
Normalized to Coefficients of Mode 1
Mode

1 2 3 4 5
1.000 1.000 1,000 1.000 1.000
1.000 0,732 0.268 0.268 0.732
1.000 0.000 1,000 1.000 0.000
1.000 i1.000 1.000 1.000 1.000
1,000 2,000 1.000 1,000 2.000
1.000 2,732 3.732 3.732 2,732

- -
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TABLE 5-9

Total Acceleration Coefficients of -‘?‘-@E'év

for Tapered Beam from Eq. 5.26
Mode
1 2 3 4 5
1.926 2.939 3.684 4,302 4,842
1.850 2.349 2,003 1.049 0.206
1.629 0.931 0.805 1.724 0.896
1,290 0.495 1.312 0.520 1.311
0.874 1.170 0.302 0.872 1,180
0.427 0.870 1.085 i.009 0,664
----------------- base acceleration ~-~-==vcceca-o
Total Acceleration Coefficients of -%C-EV
Normalized to Coefficients of Mode 1
Mode
1 2 3 4 5

1.000 - 1.526 i.912 . 2,233 2,513
1.000 1.270 1.083 0.567 0.112
1.000 0.571 - 0.494 1.058 0.550
1,000 0.384 1,017 0,403 1,016
1.000 1.339 0.346 0.998 1.350
1.000 2,039 2.541 2.365 1.555
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displacement, structural damage appears to be more dependent upon

the higher modes than upon the lower ones, particularly in the upper
portion of a severely tapered structure.

From these tables of response coefficients it can be concluded
that in order to minimize the strains and total accelerations in a
structure, particularly in the upper portion, it is best to have the
stiffness and mass distributions as uniform as possible.

It is also clear from lthese tables that the extent to which
"higher modes" are important depends upon the response of interest,
the taper of the structure, and the p‘osition within the structure,

Often an analogy is made between either excessive displace~
ments (relative to ground}, structural damage, or total accelerations
near the top of.'a building and an energy pulse tra,veliﬁg toward and

being reflected from the tip of a whip., These phenaoamena are said to

result from "whiplash" of the structure, Since structural damage

and total acceleration are directly related to excessive interfloor
displacement and do not necessarily result from large displacements,
a suggested definition of "whiplash" in structures is the magnitude of

- the interfloor displacements,

5.3 Modal Analysis of Discretized Models of Tall Structures

The application of eigenvalue theory to the discretized model
of a structure is covered in this section. Using the equations
developed here, a computer program subroutine was written which

determines the "equivalent" modal participation factors, "equivalent"
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modal contributions to the displacements and "equivalent" modal
contributions to the interfloor displacements for arbitrarily selected
floors in the structure. Using such results a comparison can be
made with the results for the continuous beams.

Usually, modal analysis is restricted to structures that
remain linear. However, modal analysis can also be useful for -
structures which yield., Since the eigenvectors of the linear structure
form a complete set of base vectors, it is possible to expand any
displacement vector in terms of these eigenvectors in order to find
what will be called the "equivalent" modal participation factors.
These factors can then be used to find "equivalent" modal contributions
to the displacements and to the interfloor displacements., In this
sense, the concept of the modal participation factor has the same
significance for a yielding structure as for a linear one,

It should be noted that, for the excitation used, all of the
columns in the A/20/2.2/2/6 structure remain linear except for
those between the upper two or three floors, Furthermore;, all of
the girders yield--but not necessarily all at the same time. Hence,
irom an overall point of view, the structure is reasonably linear
when compared to one in which all of the girders and columns yield
at the same time,

The eigenvecliors of a linear slruclture with N floors are

found as follows: The homogeneous equation of motion is

Mu +Ku= 0 (5.27)

where
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u : displacement vector (N X 1),
M : diagonal mass matrix (N X N}, and

K: symmetric and positive definite stiffness matrix (N X N).

Letting
-1

u= M Z— (5.28)

-
and premultiplying by M 2, Eq. 5.27 becomes

IE+KRE=0 ' (5.29)
where

— -1 i

K=M KM 2,

Since K is symmetric and positive definite, a theorem of matrix

algebra guarantees the existence of a unitary transformation matrix

¢ such that

| -
6T$=1 and ¢ K¢= [ W ] : (5.30)
n .
Y
Therefore, letting
£=¢n | (5.31)
. as T
and premultiplying by ¢, Eq. 5.29 becomes
LR J \ 2
nt wn\ﬂ=0 | | (5.32)

which is a diagonalized, or separated equation. That is, the solution

for the nth modal participation factor , is independent of every

other mode,
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By substituting Eq. 5,31 into Eq. 5.28, an equation relating

the displacement vector, u, to the modal participation factors, 5

is obtained:

1
.‘~_1=M-2¢3] . (5.33)
The inverse of Eq. 5.33 is
1
n=¢ M2y , (5.34)

Equations 5.33 and 5,34 are the ones used in the modal analysis of
a tall structure,

As discussed in Section 3.5, a direct integration method is
used in the computer program to solve the equations of motion for
the yielding structure. Then, knowing the displacement vector u,

- Eq. 5.34 is used to find the vector, m, of "equivalent" modal ‘parti-

cipation factors. For My, Eq. 5.34 becomes
2
n, = Z qﬁank u {5.35)

for a structure with 20 floors. Similarly, for the displacement, uj,

of the jth floor, Eq. 5.33 becomes
20
1
.= M 24 . 5.
b Z "% jn"n (5.36)
n=1 '

Consequently, after obtaining n,» the "equivalent" contribution of

th

the nth mode to the displacemnent of the j floor, ujn’ is found
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.. M . {5.37)

Using Eq. 5.37, the "equivalent" contribution of the a"? mode to

%
the interfloor displacement, Uan, between floors (j) and (j+1)

is found by subtraction:

uu,

in = ujn - u(j+1)n (5.38)

As mentioned earlier, the interfloor displacement of the discretized
structure corresponds to the strain in a continuous beam.

Only one modal analysis study of a yielding structure was
made on the computer because of the extensive time involved. o In
this study the A/20/2,2/2/6 structure with 0,0035 fraction of critical
damping*** in the first mode was subjected to the four seconds of
the El Centro Earthquake (N-S) of 18 May 1940, Furthermore, the
two-compounent beam model described in Appendix C and the yield
criteria with the "test bending moment" described in Appendix B

were used. Although the beam model and yield criteria were later

sk
UU is the Fortran name for interfloor displacement, Also, j= 2

at the top floor (roof) and j = 22 at the ground level. See Section
3.2 for more details of notation.

**The modal analysis is performed by subroutine MODE, which is
optional. A listing of this subroutine is provided in Appendix E--
Listing of the Computer Program.
ok

akM‘This fraction of critical damping is believed to be the same as
that used by Clough and Benuska for their studies with essentially no
damping in the FHA Study (reference 1).
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refined (see Chapter II and Appendix C, respectively), it is felt that
the general trends of the results presented below are, nevertheless,
correct,

The entries in Table 5-10 are the "equivalent" modal contri-
butions to the displacements of the arbitrarily selected floors at
the time when the entire displacement (not each modal contribution)
reaches its maximum absolute value, Similarly, the entries in
Table 5-11 are the "equivalent" modal contributions to the selected
interfloor displacements at the time when the entire interfloor dis-
placernent {not each modal contribution) reaches its maximum
absolute value. Hence, Tables 5-10 and 5-11 are not directly com-
parable to the corresponding tables for the continuous beams.

At various times during this study, modes as high as the
eighth were found to contribute as much as 2% to the displacements.
And what is more important, modes as high as the 13" were found
to contribute similar amounts to the interfloor displacements, If
one either increased the level of the mass proportional damping, or
preferably, introduced stiffness proportional damping, the number
_of modes which contribute significantly would probably decrease,

In Table 5-10 it is éeen that,' for the instances presented, the
fundamental mode dominates the displacements throughout the
structure. It is also seen that the higher modes contribute very little
to the displacements in the upper portion but somewhat more in the

lower portion.

On the other hand, for the cases presented in Table 5-11, the
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third and fourth modes contribute thé lé.:rgest amounts to Lhe inter-
floor displacement between the 18th- 19th floor (which is the largest
one occurring anywhere in the structure) with the fundamental mode
contributing a relatively small amount. In the lower portion, how-
ever, the fundamental is the most important contributor.

Even though the results of this computer study are not directly
comparable to the studies of continuous beams, the general trends
of the modal contributions are the same. That is, {1} the fundamental
mode dominates the displacements, particularly in .the upper floors;
and (2), for the interfloor displacements, the higher modes usually
contribute more than the fundamental in the upper floors, but in the
lower floors, the fundamental mode is more important.

In ordef to learn more about these trends, the time history

plots of numerous responses are analyzed in the next chapter.
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CHAPTER VI

" RESPONSE RESULTS

6.1 Introduction

The purpose of this chapter is. to present response results
from computer studies of the A/20/2.2/2/6 structural frame
(Sec. 3.2) subjected to earthquake excitation. These studies are
carried out by the computer program described earlier in the report
(Sec. 3.5} using the one-component beam model (Sec., 2. 5) for the
girders and columns of the frame. The plots given here are time
histories of bending moments, interfloor shear forces, joint rotations,
total accelerations, displacements and interfloor displacements for a
number of stations in the structure.

The {first section of this chapter shows the effect of yielding
on the response of the structural framc. The excitation used in this
investigation is the first four seconds of the accelerogram of the
El Centro (N-S) earthquake of 18 May 1940. This is the strongest
portion of the earthquake. 1In a later study in which'the nonlinear
frame was subjected to the entire length of the earthquake, it was
observed that the maximum values of most of the responses
occurred during the first four seconds, although several occurred
afterwards. It is believed, however, that results based on the first
four seconds are indicative of the effect of yielding.

The second ‘section treats the response results for the non-
linear frame subjected to the entire length (30 sec) of the Jennings

pseudo-earthquake number 6. In addition to time history plots, the
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TABLE 6-1

Nomenclature Used in the Time History
Plots in Chapter VI and in Appendix A

TOTAL ACCEL 17F : The total horizontal acceleration of
the 17tP floor

HORIZ DISP 4F : The horizontal displacement of the 4th
floor relative to ground

OVRTURNG MOMT-BASE ¢ The overturning moment at the base
of the three bay structure

SHEAR FORCE 18-19F ¢ One-half of the interfloor shear force
between the 18th and 19th floors (from

only the two columns used in the
analysis)

INT-FL DISP GD-1F : The interfloor displacement between
- the ground and the first floor

JNT ROT'N 17F-XC : The rotation of the joint formed by the
intersection of theexterior girder of
the 17th floor and the exterior column

line
BND MOMT 17F-XG-XC : The bending moment at station (e)
PL ANGLE 4F-XG-XC : The plastic angle at station (f)
PL INDEX 4F-XG-XC : The plastic index at station (f), This

index indicates when yielding occurs
and the direction of incremental

yielding
BND MOMT 20F-IC-BT  : The bending moment at station (d)
MOD JNT RQT 20F-IC : The rotation of the joint formed by the

intersection of the 20th floor and the
interior column line modified to include

the effect of the interfloor shear angle
(see Eq. 3.8)

PL ANGLE 2I"-XG-1IC : The plastic angle at station (g)

BND MOMT 2F-IG-IC : The bending moment at station (h)
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displacement envelope and the ductility factors are shown. Response
plots for similar studies of thié frame using the entire length
(29.38 sec) of the El Centro (N-S‘) earthquake of 18 May 1940 and
sevéra’l other pseudo-earthquakes are given in Appendix A,

The nomenclature used in these plots is described in Table 6-1.
The unit system used is "in-lbs-sec”" with the joint rotations given in
radians. The stations for which the time histories of the responses

are plotted are shown in Fig, 6.1.

6.2 Comparison of the Linear and Nonlinear Respbnses of a Structural

Frame
In this section a comparison is made between the responses of
the linear A/20/2.2/2/6 structural frame and the corresponding
nonlinear frame. Kach system had O; 10 fraction of critical damping
in the fundamental mode and was subjected to approkimately the first
four seconds of the El Centro (N-S) earthquake of 18 May 1940.

h

The time histories of the total acceleration of the 17t floor,

the horizontal displacements of the 17th floor and the 4th floor as
-well as the overturning moment at the base of each frame are shown
in Fig. 6.2a and Fig. 6.2b., For both the linear and the nonlinear

h

cases, the displacement of the 17" floor and the overturning moment

at the base are primarily characterized by the frequency of the funda-

h floor,

mental mode, In the time history of the displacement of the 4t
higher frequencies are observed in addition to the fundamental for

~ both the linear and nonlinear cases. Many frequencies are noted in

the time history of the total acceleration of the 17*® floor. These
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observations are in agreement with those for the continuous canti-
lever beam of Chapter V.

Comparing the total acceleration of the 177th floor of the
linear structure with that of the nonlinear structure, two features are
noted which call for some discussion. The first is that an unusual
peak occurs at 2.7 sec in the nonlinear plot in Fig. 6.2b which does
not occur in the corresponding linear response, ¥ig. b.2a. The
second concerns the relatively larger high frequency components of
the nonlinear plot.

For the above calculations mass proportional damping was
used but no stiffness proportional damping was introduced. As a
result, the higher modes are not so effectively damped as the lower.
Consequently, there is a limitation on the mndel for the representation
of certain responses which exhibit significant high frequencies.

The first feature to be discussed concerns the unusual peak in
the total acceleration record of the 17th floor in the nonlinear frame.
This peak has an absolute value of 0,81g and is the maximum absolute
value of the total acceleration for any floor during this run for the
- nonlinear case., However, for the linear frame, the maximum abso-
lute value of the total acceleration at the 17th floor is 0. 58g while at
the ZOth floor it is 1.0g. Since the maximum absolute value of the
acceleration of the ground is 0.32g, it appears possible to have
amplifications 6f the total acceleration on the order of 2 or more

in this particular nonlinear structure, As a result of yielding, the

amplitude and phase of the shear force waves in the nonlinear case
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TABLE 6-2
Maximum
Absolute Value
of Total
Acceleration
" Estimate of from a Non-
Sum of Shear Maximum linear Study
Forces Above « Absolute Value Using El Centro
and Below Floor Weight of Total (N-5}, 18 May
Floor (at Yield Level} of Floor Acceleration 1940
1bsX10-4 1bs x 10~ fraction g fraction g
20 4,31%% 8. 88 0.49 0.54
12.00 10,04 1.20 0.58
18 "~ 18.29 10.04 1.82 0.45
‘ 24.04 10. 04 2.39 0.81
16 29.99 i1.20 2.67 0,65
' 35.93 11,20 3.21 0,61
14 42,27 i1.20 3.77 0.66
48.03 11.58 4.14 . 0.45
i2 52.36 _ i1.58 4,52 0.53
57.87 11.58 4,99 0.50
i0 62.73 14,28 4,39 0,48
67.44 14,28 4,72 0,43
8 71,06 14,28 4,97 0.39
74.92 14, 67 5.10 0.45
6 17.20 14,67 5.26 0,39
82,39 14,67 5.61 _ 0,45
4 85,15 15,83 5,37 0.50
84.15 15. 83 5.31 0.37
2 87. 71 15.'83 5. 54 O.4i
1 102.92 16,21 6.34 0.37
Ground - - ’ - 0.32

. :
Calculations based on half of the A/20/2.2/2/6 frame (see Fig, 3,2).

e
This one uses the yield moment in the ?.Oth. floor girder at the

exterior column since it is lower than the one in the exterior
. ¢column., : ‘ ST
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are changed from those in the linear case. From a review of the
plots for thi.s study, it appears that in the nonlinear case at 2,7
sec, shéar force waves fortuitously meet at the 17th floor in a
manner sufficient to cause a high total acceleration.

To éxplore the way in which interfloor shear forces and
accelerations may add up at various points in the structure, Table 6-2
has been compiled. The estimate of the maximum absolute value of
the total acceleration of a floor is found by dividing the sum of the
yield levels of the shear forces in the columns directly above and
below that floor by the mass of the floor. These estimates of the
maximum total acceleration that the structure could sustain are very
high: from 0.49g at the roof to 6.3g near the base, This only means
that with respect to total acceleration the columns near the base of
the structure are much stronger than would be required for actual
earthquake excitation. As shown in Table 6-2 for the El Centro {N-S)

h

earthquake of 18 May 1940, the total acceleration of the ZOt floor
was calculated to be 0. 54g, and near the base it was calculated to be
0,37g. The 0.b4g value is in excess of the estimated 0,49g because

th and 20th floors in

- interfloor shear forces occurred between the 19
excess of those sufficient to cause yielding in the columns,

The second point to be discussed concerns the iarger high
frequency components observed in the total acceleration for the ndn-—
linear case in comparison with that for the linear case. This is likely

to be a consequence of the sharp corner at the yield level in the bi-

linear hysteresis loop. A similar phenomenon was observed in the
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previous investigation of the three-mass system with bilinear
hysteretic springs shown in Fig. 4.1, In that case it was noted that
higher frequency components corresponding to the higher natural
modes appeared whenever a spring passed into the yield range. This
type of response corresponds to that which would result from a step
in the forcing function, i.e., the response would contain all of the
natural frequencies of the system. The total acceleration of a real
structure may or may not exhibit this high frequency characterisfic
depending upon the properties of the structure at the yield level,

An estimate of the effect of such a sharp corner on the response of a
tall structure might be obtained in a future study using curvilinear
moment-rotation hysteresis loops such as shown in Fig, 2.14,

In order to observe the effect of ylelding on other responses of
the structure, a?‘igs. 6.2a and 6.2b are again considered. Comparing
the horizontal displacement of the 17th floor for the linear case with
that for the nonlinear case, one notes that there is little differcnce
in the maximum displacements or in the time at which they occur.
However, it is seen in Fig. A.1.3 of Appendix A that, as a result of
" vielding, a permanent displacement of about four inches is incurred

in the displacement of the 17th

floor. Similarly, the maximum
absolute displacement of the 4™ floor in the linear and the nonlinear
cases are approximately equal and occur at about the same time. In
the nonlinear cése y a pe:;_-manent displacement of about one inch is
incurred.

The maximum absolute value of the overturning moment at

the base, Fig. 6.2, is reduced about 30% by yielding. Since the
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girders yield, the moments at the ends of the girders and the axial
forces in the columns are limited. Consequently, the base over-
turning moment is also limited. Note that gravitational effecté are
not considered in the calculation of the base overturning moment of
this model,

In the plots of the interfloor shear forces and interfloor dis-
placements, Fig. 6.3, changes in the shape of the shear waves as a
result of yielding can be seen. In particular, a shear wave pulse with
a period of'approximately 0.5 sec, about the period of the third mode,
can be traced and changes in its shape observed. This shear force
pulse appears between the ground and the 15 floor from 1.6 sec to
2.1 sec in both the linear and nonlinear cases. In the linear case,
this pulse appears approximately 0.6 sec later between the 18t‘n and

19th floors. However, in the nonlinear case, the shear force pulse

h and 19th floors with different character-

is observed between the 18t
istics than those observed in the linear case. In comparison with the
linear case, the amplitude is reduced 50%, the shape is different,
and the peaks are delayed by approximately 0.1 sec. This delay is

 such that the peak in the shear force between the 18th th

-19"" floors
at 2.7 sec coincides with the 0.81g peak in the total acceleration plot
in Fig. 6.26. The effect of yielding on the wave shape is even more
noticeable after 2.8 sec in these time history plots.

Similarl effects are observed for the bending moments at

different stations in the structure as shown in Figs. 6.4, 6.5 and 6. 6.

Furthermore, it is seen that the time histories of the hending moments,
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joint rotations, and plastic angles differ from one station to another

in both the linear and in the nonlinear cases.

To summarize the effects of yielding on the response of the
A/20/2,2/2/6 frame subjected to the strongest portion of the E1l Centro
earthquake, it was observed that yielding limits the maximum abso-
lute values of the shear forces to about 60% of the corresponding
values in the linear case, However, yielding was not so effective in
limiting displacements, interfloor displacements, and joint rotations.
For these, the maximum absolute values were reduced to only about
80% of the linear values. Although the maximum absolute values of
the total acceleration may be reduced by yielding, it was shown that
for the structural properties used, this frame could withstand total
horizontal accelerations in excess of 6g near the base and in excess
of 1g near the top without the columns yielding (the girders do yield).
It was also seen that during the time of severe yielding, the phase of
the résponse was significantly altered.

In the next section, the response of this nonlinear structure to
a pseudo-earthquake is presented. By a visual analysis of the time
- history plots of various responses, it is possible to obfain an under~

standing of the frequency components expected in each response,

6.3 Response of the Nonlinear A/20/2,2/2/6 Frame Subjected to -
Farthquake Excitation

Several response studies of the bilinear hysteretic
A/20/2.2/2/6 frame subjected to different earthquakes are performed

using the computer program developed in connection with this report.
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In addition to the El1 Centro (N-S) earthquake of 18 May 1940, six of

the pseudo-earthquakes generated from a random process by P, C,.
Jennings are used. Since the corresponding responses of the
structure are similar in amplii‘:ude and frequency content for the
pseudo-earthquakes used, the plots for one earthquake only are
analyzed in this section. The plots for the other earthquakes are given
in Appendix A.

The pseudo-earthquake accelerograms have spectral proper-
ties similar to those for the recorded strong motion accelerograms
of real earthquakes. However, the pseudo-earthquake accelera-
grams are more nearly uniform in amplitude over time than are the
real ‘ones . In an attempt to obtain approximately -the same amount of
yielding in the structure for the pseudo-earthquakes as occurred in
the structure for the El Centro earthquake, they were scaled so that
the rms value of each accelerogram is approximately 1.2 times that
of El Centro. The actual rms values used are given in Table 6-3, In
all cases the bilinearity (the ratio of the second slope to thé first in
the hysteresis loop) was 0.05. The fraction of critical damping in the
 fundamental mode .Was 0.10 in all runs except one which used .05
fraction of critical damping in order to observe the effect of damping
on the response, A summary of the combinations of parameters used
in the studies is shown in Table 6-3.

The response plots for the nonlinear A/20/2.2/2/6 frame using
pseudo-earthquake number 6 with 0,10 fraction of critical damping in
the fundamental mode are presented in this section., In addition, the

displacement responses (in inches) of seven one-degree of freedom
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linear oscillators subjected to the same excitation are presented in

Fig. 6.8. There is a one-to-one correspondence between these
oscillators and the first seven modes of the linear A/20/2.2/2/6
frame with respect to period and damping. For example, the first
oscillator has the period and the fraction of critical damping of

mode 1, In Fig. 6.8 the response of this oscillator is labeled
1 T=2.21 DAMP = .100

The time history of the displacement of the 17tP floor is shown
in Fig, 6.9. By comparison with thc responsc of the lincar oscillator
corresponding to the first mode of the linear frame, henceforth called
the first modal oscillator, it is seen that the two are closely corre-
lated. This is iﬁ accordance with the analytical results for continuous
cantilever beams in Chapter V which indicate that the horizontal
displacements in the upper porition of the siructure are expected to be
dominated by the first few modes, primarily the fundamental,

By design, the distribution of yield bending moments in the
A/20/2.2/2/6 frame is such that throughout most of the structure the
. girders yield at a much lower level than the neighboring columns. The
.purpose for such a design is''to maintain vertical load integrity of the

strucfure. n¥ For all of the earthquake excitations used, the interior
columns of the nonlinear structure yield in only the upper 2 or 3 floors
and the girders spend at most 10% of the time in yield. Consequently,

the time histories of the gross res.ponses of this particular structure,

*Clough and Benuska, FHA Study, p.1-7.
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such as the displacements, should be highly correlated with those of

the linear structure. If the yield moment distribution were changed
50 that more of the columns yielded, a lower correlation with the
response of the linear system would probably occur,

The overturning moment at the base, Fig. 6.7, ie observed
to be closely correlated with the displacement at the i?th floor and
with the response of the first modal oscillator {with opposite sign).
This correlation should exist for the following reason: When a floor
is displaced, shear forces develop in the girders which appear as
forces in the axial direction in the columns. Only when many of the
floors are displaced in the same direction, such as in the fundamental
mode, do the axial column forces add together to cause a significant
resultant moment at the base,

A comﬁariscm of the 4th floor displacement with the 17th floor
displacement, I'ig, 6.9, indicates thal higher frequency response
(corresponding to the higher modes in a linear structure) of the
structure influences the displacement (not interfloor displacement)
of the 4th floor more than it influences the displacement of the 171:h
- floor. This is in agreement with the studies of continuous beams.,

In addition to a fundamental modal response component, higher
frei:luency response is observed in the plot of the velocity (relative to
ground) of the 17" floor. This is expected since the velocity is a
first derivative of the displacement and differentiations characteristi-
cally tend to amplify higﬁer frequencies,

As seen in Fig. 6.9, the total acceleration, which is the sum
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of the acceleration relative to ground and the acceleration of the
ground, has many frequency components. Again, this is in agree-
ment with the results of the continuous beam studies.

In Fig. 6.10, the time histories of the shear force and of
the interfloor displacements between the iSth and 19th floors as well
as between the ground and 15% floors are shown., By comparison, it
is seen that the time history of the shear force between the 18th and
19t floors and the time history of the corresponding interfloor dis-
placement are very similar in appearance. The small differences
between them occur because the shear force is a function of the joint
rotations in addition to the interfloor displacement and because
permanent displacement occurs as a result of yielding.

In the propagation of the first shear force pulse from the base
to the 19™ floor in the linear Af20/2.2/2/6 frame a time lag of about
0.6 seconds is observed. This time lag is seen throughout most of
the earthquake, but it is usually not so clear. For the shear-type
continuous cantilever beams described in Chapter V, the time neces-

sary for a shear force pulse to travel from the base to the top is:

" for the uniform beam:

Ty
e = 0,55 sec and

for the tapered (to a point) beam:

Ti' _
5 = 0,85 sec

o

where T1 is the period of the fundamental mode in each case. Since
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this frame has mass and stiffness properties which are partially
tapered (Fig, 3.2), the observed time lag of 0.6 sec is in good agree-
ment with those predicted for the continuous beams. In these plots

it is seen that the shear force and interfloor displacement between
.the ground and first floor have a strong dependence upon the funda-
mental mode. However, many modes contribute to the shear force
and interfioor displacement near the top of the frame.

Time history plots of the bending moment, joint rotation,
plastic angle, and plastic index are shown for several stations in the
frame.* Each of the figures 6.11 through 6.18 corresponds to one of
these stations. If the station is in a girder, the joint rotation is given;
if the station is in a column,the modified joint rotation (Eq. 3, 8) taking
into account the interfloor displacement is plotted. During yielding
the plastic index is (+1} or (-1) depending upon the direction in which
the associated plastic angle moves., TFor example, at station (¢) in the
exterior girder in the g7th floor, Fig. 6.11, the initial yielding occurs
with negative bending moment; hence, the incurred plastic angle is
negative and the plastic index is (-1). By making visual comparisons
- of the time history plot of the bending moment at station (e}, Fig. 6.11,
with the response of each of the linear modal oscillators, Fig. 6.8,
correlations can be observed which indicate the importance of the

modes to the response at that station. Between 3 sec and 10 sec a

FAll of these time history plots were made on the California Computer
Products "Model 763 Plotter" programmed with the IBM 7094-7040
Computer at the California Institute of Technology Computing Center,
For the 30 seconds of the earthquake there were 6000 time incre-
ments, After every 4th time increment, a point was plotted; hence,
50 points per earthquake second were plotted. "
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strong correlation with the an modal response is observed; hence,
it is concluded that the an mode is responsible for most of the
yielding during this time at this station, DBetween 13 sec and 19 sec,
correlation with the first modal responge occurs. Similarly, it is
concluded that during this interval the first mode is responsible for
most of the yielding at this station. At times combinations of modes
are responsible for the yielding since the contribution of each mode
by itself does not appear to be sufficient to cause yielding.

For an accurate determihation of the relative importance of
each mode at a particular instant, it is usually necessary to make a
modal decomposition of the motion of the structure at that instant.
Only at the times when one or two modes dominate a response does
it appear possible to visually determine the importance of these
modes. Such a modal analysis is made for this nonlinear structure
in each time increment throughout the first four seconés of the
El Centro earthquake according to a technique described in Section
5.3. The modal contributions to the largest displacements and inter-
floor displacements that occurred in that analysis are given in
. Table 5-10 and Table 5-11. The results presented in those tables
indicate that often more modes than can be observed by the eye are
.important for the interfloor displacements, However, because exten-
sive computer time is used in making modal decompositions, an
analysis of this type was not performed for the present study. Conse-
quently, in this chapter the discussion of modal contributions (or

frequency components) is based upon visual analysis,
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At station (f) in the 4th floor, the fundamental mode appears to

be the largest contributor to the bending moment and, hence, is the
most important for yielding at this station. At times, however, the
second and higher modes are observed to add to the fundamental mode,
thereby contributing to the yielding.

As the frame is deformed, the ends of the girders within the
same floor may Or may not yield simultaneously depending upon the
distribution of strength properties, i.e., yield moments, in that
portion of the frame., In the lower portion, the yield moments in the
interior and exterior girders within the same floor are approximately
equal and the yield moments in the girders are lower than those in
the neighboring columns. As a result, the columns remain linear
and the girders yield. In the time history plots, Fig. 6.13 and
Fig. 6.14, for stations (h) and {(g), it is observed that the girders in
the second floor yield almost simultaneously,

Near the top of the frame the yield moments within the same
floor differ by as much as 10%. In the top two floors the yield moments
in the girders approximate the yield moments in the neighboring

_columns. Consequently, in this portion of the frame, the girders
within thé same floor usually do not yield at the same time or by the
same amount. This can be seen by comparing the time history plots,
Fig. 6.15 and Fig. 6.16, of the plastic angles incurred at the opposite
ends of the exterior girder in the 20th floor. (Note that different scale
factors are used in the various plots for the 20tP floor.)

For statione (h) and (g) in thc second floor, there are some
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TABLE 6-4

Times at which the most positive and most negative displace~
ments and interfloor displacements occur for each floor of the
A/20/2.2/2/6 frame with 0.10 fraction of critical damping (mass
proportional) in the fundamental mode., Pseudo-earthquake number 1
isg used. B8ee Fig. A.2.3 in Appendix A for plots of corresponding
displacements at the 4th and 17th floors and Fig. A.2.4 for the

interfloor displacements betwoen ground and the 15t floor and between
the 18t and 19th fioors.

Time (sec) of Occurrence Time (sec) of Occurrence
of the Most Negative: of the Most Positive:
Interfloor Interfloor
Displacement Displacement - Floor Displacement Displacement
14.6 sec 20 18.0 sec
29.5 sec 24,5 sec
14,6 19 18.0
10.1 24.5
14,6 18 18.0
29.6 24.5
4.0 0 ' 17 18.0 3.2
2 - -
4.0 ? 16 25,3
3.9 s 15 25. 3 3.2
* 4.1 ) 18.0
3.8 14 25.3
12.0 18.0
3.8 13 "25.3 253
3.8 12.9 12 15.6 !
i2.0 25.4
3.8 11 i3.1
16,5 25.4
3.8 10 13.1
16.5 - 25.4
3.8 9 13.1
3.8 15.3
21.5 8 13.1
3.8 i5,6
21.5 7 13.1
9.7 13,2
21.5 6 13.1
9.7 13.1
21,5 5 13.1
16.3 13.1
21.5 . 4 13.0 3.1
21,4 21'5 3 13.0 50
i. .
21.4 2 2 13.0 13.0
21.4 2l.4 i 13.0 :
21.4 ' 13,0

Ground
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high frequency components in tile bending moments, but it appears
that most of the yielding occurs in connection with the response of
the fundamental mode, On the other hand, in the time history plots
of the bending moments in the 20" floor, many frequencies are ob-

served. It is not obvious that any one frequency dominates the

bending moments or the yielding in the ZOth

timmes at which yielding occurs in the zoth floor are different from

those at which yielding occurs in either the an, 4th, or the 17th

fioor., Furthermore, the

floor,

In Fig. 6.19a the displacement envelope is given. Although
the points are connected together, this does not necessarily imply
that either all of the most positive displacements or all of the most
negative disPIaceménts occur at the same time, Typically three or
four times are represented for either side of the envelope as shown
in Table 6~4 for the study using pseudo-earthquake number 1, How-
ever, in the study being analyzed in this section, which uses pseudo-
earthquake number 6, all floors do reach their rﬁost positive dis-

placements at the same time and the most negative displacements at

~the same time.

th

The 20" floor {(roof) usually, but not always, is the floor which

incurs the maximum absolute displacement of any floor in the frame
during an earthquake. As indicated in Table 6-3, for the various
studies using 0.10 fraction of critical damping in the frame, the maxi-
mum absolute displacements range between 8.5 and 14.4 inches., The

ductility factors for the individual girders and columns are shown in
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Fig. 6.20a and Fig. 6,20b, respectively. The ductility factors

greater than 1,0 indicate that yielding oécurred and are calculated
according to Eq. 2,44.1. However, when yielding does not occur,
the ductility factors are icss than 1.0 and are given by the maximum
absoluté values of the ratios of the incurred bending moments to

the corresponding yield bending moments. For the girders, the
ductility factor for each end is shown, but for the columns, only the
maximum value that occurs at either end is plotted. The maximum
values of the ductility factors for each study are presented in

Table 6-3. For the pseudo-earthquakes, with 0.10 fraction of critical
damping in the frame, the maximum values of the dﬁctility factors
for the girders range from 3.6 to 5.0. For the exterior columns,
which do not yield, the maximum values range from 0,71 to 0, 81,
For the interior columns, which yield in the upper two or three floors
only, the maximum values are between 1.74 and 3.11.

This range in the maximum values of the structural responses
appears to result from statisti.‘cal variatio;a. Such a range might be
expected because the exact time histories of the earthquake accelero-
grams difier and because there is some variation in the statistics

‘of the properties of the accelerograms.

In order to observe the effect of viscous damping on the
response of this frame, a computer run using pseudo-earthgnake
number 6 with 0,05 fraction of critical damping was made. The
plots for this run are shown in Fig., A,6.1 through Fig, A.6.8 in
Appéndix A. The effect of viscous damping is seen by comparing

the various responses in those plots with the corresponding ones
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presented in this section. The summary of these response results

tabulated in Table 6-3 indicates that by decreasing the fraction of
critical damping from 0.10 to 0,05, the maximum absolute values

| of the various responses increase: the displacement by 15%; the

interfloor displacement by 9%; the ductility factors in the girders by

8%, in the interior columns by 12%, and in the exterior columns

(moment ratio) by 3%.

6.4 Relationships Between Structural Responses and the Strength of
an Earthguake

Three common measurements of the strength of an earthquake

are the foliowing:
1, The maximum absolute value of the ground acceleration
during the earthquake;

2. The rms value of the acceleration of the earthquake:

30 .. %
[31-0 So [y(t)]z dt] ;

3. The spectrum intensity of the earthquake: The specirum
intensity SIg is defined as the area under the velocity

*
spectrum curve from period T =0.1{to T = 2.5 for a

*If 2z is the relative velocity of a linear, base excited oscillator
having period T and fraction of critical damping £, then the velocxty
spectrum value for this system is

, vel(g’ T i) = ]Z'max
where t' is the length of the earthquake excitation, Other points of
the same velocity spectra curve are obtained by using different
natural periods of the system. The average specira curves in Fig.,
5.3 are based upon the "pseudo-velocity" spectrum values

S 1(§D_w’t') =(A)IZ| -

ps-ve max
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given damping factor, §, and earthquake excitation! ?* 14),
T=2.5
' 2m
Sl = ) (g :—330) dT
3 T=0.1 vel T

The numerical values of thege three strength measurements of the
earthquakes used tu excite the nunlinear slructure are listed in
Table 6-3. Note that the spectrum intensities are given for £= 0.0,

In an attempt to find a means for predicting the magnitude of
structural response, it is of interest to compare the earthquake
strengths as defined above with the magnitudes of the corresponding
structural responses. Unfortunately, it is seen that none of these
three measurements correctly predicts the trend of the maximum
absolute values of either the displacements or ductflity factors of the
structure.

The first two measurements, maximum absolute value and
rms value of an earthquake, do not take any properties of the structure
into consideration and, therefore, they should not be expected to
accurately estimate the maximum absolute value of the various
responses of a tall structure. However, if the same earthquake is
used with two different amplitude scale factors, the response cor-
responding to the larger scale factor can be expected to be larger.

The period range chosen for the spectrum intensity includes
many of the natural periods of a typical tall structure. However,
because the modes-of a particular structure are not specifically con-
sidered, the spectrum intensity should ﬁot be expected to accurately

predict the amplitude of the response of that structure, Nevertheless,
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the spectrum intensity may be indicative of the amplitude of the
average response of numerous structu.res- taken together,

Another method for estimating the maximum values of the

horizontal displacement, v, , in the étructufe is( 7
' max
20 ‘ 2 %
20 | L $My o
k=1 : i
¥; = ST % Pps-vel
max i~ P i

20
i=1 2
k=1

where
J : floor number,
i : mode number,
ps --veli the pseudo-velocity spectrum value at ’I‘i .

¢ ki ° the 1P component of the i mode shape, and

w : the ith modal {requency.

Since this method takes the modes of the structure into account, it
might be more successful in predicting the trends of the maximum
absolute displacements of the structure as a function of the earth-
qguakes, It is noted that this method does not consider the time
dependence of the modes. From the results of Section 6.3, it appears
necessary to take the time dependence into consideration in order to
accurately predict the maximum values of the various responses., One
such method of approximating the magnitude of a given rcsponsc in a
structure might use the ﬁxa.ximum absolute value of a time dependent

sum of the linear modal responses, such as shown in Fig. 6.8, with
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each mode weighted according to its expected contribution to the
response of interest, The abilities of these methods to predict the
trends could be evaluated in a future study by applying them to the

structure and earthquakes discussed in this chapter.



161
CHAPTER VII

CONCLUSIONS

The following is a summary of the conclusions reached for

the investigation described in this report:

1} Since the one-component nonlinear beam model can have a
different curvilinear or bilinear hysteresis loop at each end,
it is more versatile than the two-component model which is

restricted to bilinear hysteresis loops at the ends.

2) Of the three definitions of ductility factor presented, only one
is adaptable to both bilinear and curvilinear hysteresis loops.
In the computer studies, this one was used with the one-com-

ponent model having bilinear hysteretic behavior.

3} As an overall check on the computcr program for analyzing the
response of a nonlinear multi-story structure subjected to
earthquake excitation, several tests covering various aspects
of the computations were made, The results of each test

indicate that the program operates properly and provides the

desired accuracy,

4) For a nonlinear structure, it is possible to find "equivalent"
modal participation factors which describe the contributions of
the various modes to the structural response. These can be
obtained by expanding the displacement vector for the nonlinear

structure in terms of the eigenvectors of the linear system.
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Such an analysis indicates that more modes may contribute to
the interfloor displacements than can be visually observed
in the time history response plots, particularly in the upper

portion of the structure.

The effects of yielding on the response of the A/20/2.2/2/6

frame subjected to the first four seconds of the El Centro {(N-5)

earthquake of 18 May 1940 are, generally,

(a) to reduce the forces and momeﬁts to approximately 60% of
the values for the linear system, and

{b) to reduce the displacements, interfloor displacements, and
total accelerations to about 80% of the corresponding values
for the linear system.,

During severe yielding, the shapes of the response time history

plots are significantly changed from the shapes of the correspond-

ing responses for the linear structure.

In different computer runs, the nonlinear A/20/2.2/2/6 frame
with 0.10 fraction of eritical damping in the fundamental mode
was subjected to the entire El Centro (N-5) earthquake of

18 May 1940 and to six pseudo-earthquakes. The time history
plots for a given response at a given position in the structure
were compared for the earthquakes used. Characteristic
patterns of response behavior were notcd which were in
qualitative agreemenf with similar respbnses of linear elastic,

shear-type, continuous cantilever beams., A brief summary of



163

. these characteristic response patterns follows:

{a) For the overturning moment at the base, the fundamental
mode dominates.

{b) For the horizontal displacements in the upper portion, the
fundamental mode dominates; in the lower portion, the
fundamen.tal mode is important, but the 2nd and 3rd modes
are also significant,

(¢} For the interfloor displacements in the upper portion, as
many as eight modes may be important. The fundamental
mode decreases in importance approaching the roof, In
the 1oﬁer portion, the fundamental mode-increases in im-

portance approaching the base, but the an, 3rd th

and 4
modes also contribute significantly.

{d) For the total accelerations, frequencies of almost all modes
are observed. This is partly a consequence of the relatively
low damping in the higher modes.

{e) Results of the studies of the continuous systems indicate
that, with increasing taper of the structurc, the higher
modes become more important for ail of the responses
throughout the structure.

The distribution of ductility factors in the girders are simi-
lar for the different earthquakes used, Column ductility factor
distributions were also similar for the different earthquakes,

Because these results are consistent for all of the earth-

quakes used, it is believed that the characteristic patterns of
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modal contributions to the responses and the shapes of the
ductility factor distributions are a function more of the
structure than of the earthquake.

The maximum absolute value of a particular structural

response differs between earthquakes because this value is highly

dependent upon:

{(a) the extent to which individual modes are excited at a
particular time, and

(b) the phe%,se relationships between the contributing modes at
that time.

These modal responses differ from one earthquake to another

because the exact tirne histories of the earthquakes are different.

Comparing maximum responses of the yielding structure for the
series of pseudo-earthquakes having similar statistics, the

following percentage deviations wer e found:

{a) maximum absolute displacements 50%
(b) maximum absolute interfloor displacements 40%
{c) girder ductility factors 35%
(d} .interior column ductility factors 55%
(e) exterior column ductility factors 15%

The effect of decreasing the fraction of critical damping from.
0.10 to 0.05 in the fundamental mode of this particular structure
excited by pseudo—eé.rthqué.ke number 6 is to increase the maxi-
mum values of the displacement response by 15% and ‘of the

ductility factor by 8%,
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APPENDIX A

RESPONSE PLOTS FOR A NONLINEAR MULTI-STORY
STRUCTURE SUBJECTED TO SEVERAL
EARTHQUAKE EXCITATIONS

In this appendix response plots for the A/20/2.2/2/6 structure
subjected to several earthquakes are presented. Seté of response
plots consisting of the displacement envelope, distributions of
ductility factors in the girders and in the columns, and time history
response plots for various stations in the structure are given for
seven structure-earthquake combinations. The positions in the
structure of the stations indicated in the plots are shown in Fig. 6.1,
The structural and earthquake parameters used are listed in the

heading at the top of each plot, They are also tabulated in Table 6-3,
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NONLINEAR RESPONSE OF FRAME A/20/2.2/2/6
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APPENDIX B

DISCUSSION OF THE YIELD CRITERIA USED IN THE FHA STUDY

The purpose of this appendix is to describe the special situ-
ation which causes the yield criteria used in the computer program
for the FHA Study to lead to computational difficulties. Instead of
the actual bending moment, this criteria compares a corresponding
"test bending moment" with the yield bending moment in order to
determine whether the end of a beam is in the linear range or in the
yield range. By following the actual and corresponding test bending
moments for a number of time increments along the paths shown in
Fig. B.la and Fig. B.1b, respectively, the special situation can be
seemn.

Usually, the .bending moments are written as a function of
the rotations and plastic angles of both ends of the beain; however,

a simpler form in which the moment is a function of the rotation

and plastic angle at one end only is sufficient for the present purpose;
The equations written below are those for a simplificd two-com-
ponent beam, The usual moment-rotation equations for a two-com-

ponent beam are described in Section 2.5.
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Actual Bending Moment Tesf. Bending Moment
(See Fig. B.1a) ' (See Fig, B.1b)
General equations: General equatioris:
elasto-plastic component: test bending moment:
My = qk(“’t.‘ o) s | MtT = logma ad
elastic component: however, with
m, = pk(wt) ; “wt = wt—At+ Awt R
total actual bending moment: ME: k(wt-At— a’t-At)+ kAmt ,
Mt = k(wt - qozt) ; | or
end ro'cationl: MtT = (—11 rnt_At+ % Amt
W = WA + Amt H where
plastic angle: Int, m., ps 9, and t
@ =@ + Aat i are the same as those for the
t=1,2,3,... the integration "actual bending moment."
step number, i,e., the time
at the end of the increment; and
ptg=1 (usually p= 0.05).

Follow the process for

a number of time increments.

t = 0, initial point. t=0
w, =0, : Initially in the linear range;
@ =0 N ' hence,
m =0, PLASTIC INDEX (1) = 0.
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Actual Moment, cont.

= 0, and

= 0,

Test Moment, cont.

Integration step number 2,

" calculate Aw

t=1

Since PLASTIC INDEX (1) =0,

Aa/1=0.
oz1=0, |

m1=qk(w1-0),

m1=pkw1,and
M1=km1 .
(M, = M7 )

1.

t=1
T_ 1 i
Mi_. m +pAm1,
with
m =0,
o
Am1=pkAw1 ,
and
Awi—-mi ’
T _
I\/I1 —kwi.

Compare Mrf with My' From

point (t= 1} in Fig. B.1b, find
that M < M_.

_ Yy
s PLASTIC INDEX (2) = 0, i.e.,
in the linear range for integration

step number 2.

Integration step number 2,

calculate sz.
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Actual Moment, cont. Test Moment, cont.
t=2 t= 2
Since PLASTIC INDEX {2) = 0 M =in +Lam
! 2 q i P 2

Aaz =0, With
a2=0, m1 =qk.:.o:l .
mz = qk(wz- o), Amz = pkAwZ ,
m, = psz, and and
M2=km2. _ Aw2=m2-w1,
(M, = MTZ) it follows that

T _

MZ = sz.

Compare M, with M . From

point (t = 2} in Fig. B.1b,find that

VLI

~ PLASTIC INDEX (3) = 1, i,e.,
in the yield range for integration
step number 3. From Fig. B.1b,

note that

T _
M2 = MY + kwov

where the overshoot w is
ovr

r

Integration step number 3,

calculate Am3 .



Actual Moment, cont,

t=3

Since PLASTIC INDEX (3) = 1,

Aa3=Aw3=w3-m2.
Since ay = a, +Aa3.
and oy = 0,

it follows that

(3 = W3 = Wy

Furthermore,

My = qkaw,,

or

my = UPE:

m3 =pkm3;
" and

M3 = k(m3 - qa.f3).
Also,

M,

1

MZ +AM

Test Moment, cont,

FRN |
3 q 2 p 3

"With

mz = qsz,
Arng = pkAw,,

it follows that
T _
M3 = kw3 .
Compare M'_,T with My' From

Fig. B.1b, find that Mg > M.

.. PLASTIC INDEX (4) = 1, i.e.,
in the yield range for integration
step number 4,

Note that

M'I‘ =MT

3 2.+kAm

3 L]
Since

MY =M +ko
¥ ovr

2

T_
M3 = MY +k(w0vr + Aws) .
1f

>
(wovr + w3) 0,

then

MY sM .
3 y

As seen in Fig. B.1b,
3 = ws - wz > Oo

In this instance, the criteria indi-

Aw

cate that the system is in the
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Actual Moment, cont. Test Moment, cont.

yield range during the next time
interval, as it should be., Hence,

PLASTIC INDEX (4) = 1.

Integration step number 4,

calculate Am4.

t=4 t=4
Since PLASTIC INDEX (4) = 1 MizIn +Lam
ince =1, a=ghstg 4

Aa4=Aw4=w4-w3, With
My=m,. My =M, = gka,
Also, - and
M4=M3 +Am4 Am4=pk£}.w4 y
where it follows that

" T _
Am4—pkAw4. . M, -—kw2+kAw4.
In this time increment "back- Since
tracking” occurred, i.e., kmz =M +ko ’

; y ovr
T .
. = +

Aw4 <90, 7 I\/I4 MY + k{movr Am4).
as shown in Fig. B.1b. As shown in Fig. B.1b,
Hence, Aw4 <0, .
@y < aq but
and M4< M3. . Worp +Aw4> 0,
The first increment of back- Consequently, the criteria for
tracking is unavoidable but yielding:
additional ones are undesirable. M;r > MY
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Actual Moment, cont. Test Moment, cont,

is still satisfied indicating that
the system continues in the yield
range:

PLASTIC INDEX (5) = 1.

As long as

w + Aw. >0
ovY t

for

t=4l 5! 6! L) 2

the criteria for being in the yield range will be satisfied even though
Awt<0 for t=4,5, B, ves

In this special situation, the bending moment as well as the yield
anglle will continue to "backtrack," that is, decrease according to
the equations for the yield range when they should have returned to
the linear range. The system will not return to the linear range

until some Awt is sufficiently negative so that

w + Aw, <0,
ovr t

Fortunately, &wt- is usually sufficiently negative, or what is the

same, w__ 1is usually sufficiently small so that this problem with

the yield criteria does not often cause serious difficulties.
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APPENDIX C

DISCUSSION OF THE TREATMENT OF SYMMETRY
FOR THE TWO-COMPONENT BEAM MODEL

The purpose of this appendix is to discuss an approximate
treatment of symmetry for the two-component model of the interior
girder of a three-bay (four-column) structuAral frame. This approxi-
mation is convenient for the computer program used for the FHA
Study( 1 ). " In this treatment, the intcrior girder is cut at the center-
line and the resulting "centerline" end, end (c), is treated the same
as the end of any other beam, That is, the ends of both components
of the girder are connected together and then pinned so that they
rotate identically, as shown in Fig., C.1b., In this case, the sum
of the bending moments of both components of the girder at end (c)
is zerb‘. |

The correct treatment of symmetry is achieved by cutting
the girder at the centerline and separately pinning the resulting end
of each component so that they can rotate independently. In this
case, the bending moment at end (c) of each component is zero,
as shown in Fig. C. la.

The nomenclature used in this appendix closely follows that
for the two-component beam in Chapter II, with the usage for each
éystem being indicated in Fig. C.1a and Fig. C.1ib. The appropriéte
boundary conditions are also given in these figures.

The bending moment-end rotation-plastic angle equations for

both the correct and approximate treatments of symmetry are given
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I 2
£ A Mc,
M, c] mg
‘ é
i
left end: ""'centerline'' end:
AM. = Al + Am. ; Al =0, Am =8 ;
1 1 1 C c
Awi = A(.Upi-+ Aai ; wec =+ wPC; Ao;c =0,
Acci ¥ 0,

Fig., C,1a Treatment of Syrmmetry
of an Interior Girder

left end: ""centerline' end:

AMi = Ami+ Ami; AMC = AT[IC + Amc =0 ;
A(Ui = Awpi+ Aqi ; Amc = - Amc ; Aac =0;
Do, #* 0, A, = Dwp = AW,

Fig, C,1b Approximate Treatment of Symmetry
of an Interior Girder
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below, In both systems, the stiffness

of the elastic component is:

Pk'=P(TE§I—2-) ;

and of the elasto-plastic component is:

' El .
qk =q (m) *
where p +q = 1, In this case k'= 2k where

_EI
k===

and ! is the length of the entire interior girder. Since no yielding
occurs at end (c} for either system, only two yield cases are con-

sidered: end (i) is either linear or yielding.

Correct Treatment Approximate Treatment
{See Fig. C.1a) (See Fig, C.1b)
Boundary Conditions;: Boundary Conditions:
end (i): . end (i):
AM. = A, T Am, , AM, = A, + Am, ,
i i i T i i
Aew ) = Awi - Aai : Awp- = Awi - /_\.afi ;
i i
end (c): ' : end (c):
AIIIC:O, AMC=AmC+AmC=O
Am_ =0, or
(]
Aw_ F Aw . Al = - Am_,
P, e, c c
With these boundary conditions, and
| ; = = Aw_ .
the general moment-rotation A'mpc Amec ®




Correct Treatment, cont.

equations in incremental form

are:

for the elasto-plastic component:
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Approximate Treatment, cont.

With these boundary conditions,
the general moment-rotation
equations in incremental form
are:

for the elasto-plastic component:

i
—_ 1 - =
/_\.mi = gk [Awi Aai) + ZAwPC]
1 :
n = T = - .
amn aqk'[ Z(Awi Aa)) +Awpc],
for the elastic component:

1
- 1 =
Am, = pk'[ Aw, +3 Awec]
i
= ' —
Am = pk [ 5 A_Sw.l + Awec] .

Apply bo.unda.ry conditions at

' end (c):
Amc =0

and

[
£
n
]
!
L
£

For the total beam at end (i):

AMi:Ami+mi.

Eliminating Aw and Ame .
c c

this becomes

3, o
AMi = 4k(Ami qAa'.l) .

1
= ak! - -
Ami = gqk'[ (Awi Aai) + 5 ch]

T - )
Amc = qk[-z(émi Aai) + ch] ;

for the elastic component:

1
R
Am, = pk [Awi t /_\wc]
i
= ' —
Am = pk'] 5 Aw, ¥ ch] .

Apply boundary conditions at

end !c!:

AM = Am +Am =0,
c c c

"Hence

i
ch = - E(Ami - qAa.l).

For the total beam at end (i):

AM, =AM, + Am. .
i i i

Eliminating Ac.oc, this becomes

3
AM, =3 k'(Ami - qla.) .



Correct Treatment, cont,

Since
k!'= 2k ,
‘EI ., .
where k === is the stiffness of
the entire interior girder,
/_\.Mi =1. S(Awi- qAai) .

The moment-rotation equation

for the total beam at end (i) for
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Approximate Treatment, cont.

Since
k'= 2k,
ET . .
where k= 5 is the stiffness of
the entire interior girder,
AM - 1.5(Awi- qAQ’i) .

The moment-rotation equation

for the total beam at end (i) for

the linear case

with

the linear case

with

is

AM., = 1,5 kdw, .
i i

These equations for both systems are

the same in the linear case.

Incremental plastic angle at

end (i}. During yielding. for

the two-component beam (see

Sec, 2.5),
AMi = Ami
or

1,5k Awi-qAafi] = 1.5pkdw, .

Incremental plastic angle at

end !i!.

the the two-component beam {see

During yielding, for

Sec. 2.5),
AMi = Am.1
or

i, 5k[ Aw, - qAai] =

] g
1. 5pk{ Aw, t3 Aai] .



Correct Treatment, cont,

Hence

Moment-rotation equatibn for

the total beam at end (i) during
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Approximate Treatment, cont,

Hcnce

Ao_fim k?%“'p )A w, .

Moment rotation equation for

the total beam at end (i) during

yielding. By eliminating Aai,
this equation becomes:

AMi = 1. 5pkAwi .

yielding. By eliminating Aai,
this equation becomes:

_ 6
aM, = (3—&—’) pkAw, .
For p = 0.05, as used in this
report,

AM, = 1,97 pkAw,.

Comparing these two moment~rotation equations, it is ob-

served that for the value of (p) used, the effective stiffness of the

approximatc technique during yielding is about 4/3 timmes that for the

correct method. Because each joint of the frame is in the linear

case about 90% of the time, and because the equations are the same

for both systems in the linear case, only small differences in the

structural responses occur. By comparing the computer results

for the two methods with each other, these differences are seen to

be on order of 1%, being small enough to justify the use of the

approximate technique for treating symmetry.
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APPENDIX D

FUTURE STUDLES

As a result of the investigation described in this report,
several analyses are suggested which would provide additional
understanding of how multi-story structures respond to earthquake
excitation. These are briefly mentioned below,

1) Stiffness proportional démping in the form of Eq. 3.24
could be added to the computer program, thereby making it possible
to observe the effect of this type of damping on the response., Com-
binations of the two types of damping would make it possible to
match more closely the modal damping distribution in actual buildings.

2) An energy balance subroutine could be developed and
added to the program., Such a balance might consist of the energy in
(and out) at the base, dissipation by yielding, dissipation by damping
mechanisms, kinetic energy and {(recoverable) potential energy.
Such an analysis would provide insight into the distribution of energy
dissipation in a multi-story structure, |

3) Instead of bilinear hysteresis loops which inherently have
a sharp corner at the yield level, curvilinear hysteresis loops could
be used with the one-component beam model., This would permit
the effect of the sharp corner upon the response of the structure to
be observed.

4) Analyses of nonlinear elastic, shear type, base excited,
continuous cantilever beams might be considered. The excitation

could be either pulse, sinusoidal, or earthquake.



209

5) Static moments could be applied to the ends of the girders
to account for static loads in the structure. This would require the
use of the entire frame because the yielding characteristics would no

longer be symmetric with respect to the centerline.
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APPENDIX E

LISTING OF THE COMPUTER PROGRAM

The computer program used for determining the response of
nonlinear multi-story structures subjected to earthquake excitation
is listed in this appendix. A flow chart is also provided. Numerous
comment cards are used so that the program will be understandable
to the reader with some background in Fortran II or Fortran IV,

’l‘hié program was written in Fortran IV for use on the IBM
7090/7094 Computer at the Computer Center of the California
Institute of Technology. The computer has a 32,000—<ell memory
core which is filled by this program and the necessary library sub-
routines. Alterations may be necessary to adapt this program to
the computers at other installations.

A typical run in which the nonlinear A/20/2,2/2/6 frame
was subjected to 30 seconds of pseudo-earthquake took 40 minutes of
computer time. Since the time increment is 0,005 sec (earthquake
time), there were 6000 integration steps. After every fourth time
interval, most of the responses of the structure were written onto
binary tape. After every second of earthquake time, the most posi-
tive and most negative (cumulative) values of all of the responses,
’Jalong with the times at which they occurred, were written out on
paper,

The resultirig 2400 ft, 560 bit-per-inch binary tape was
scanned to obtain the time histories of the responses to be plotted.

The time history for each response was punched into a deck of cards,
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The plots were made from these decks, The time necessary to scan

a tape for 30 responses was about 10 minutes. IEach page of four
response plots took the computer 30 sec to set up; however, it took
7 minutes to actually plot.

When a modal analysis was made, the "equivalent" modal
participation factors, the "equivalent" modal contributions to four
displacements and to four interfloor displacements were found.
This information was calculated and 1;;vritt:en out for every time
increment. Such an analysis doubles the computer time required.
One run of this nature was made for the first four seconds of the

El Centro (N-S) earthquake of 18 May 1940,
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START ZERO
Block Data
|
Q56(Main)
Initial Conditions
i
OPTION Fig, E.1 Flow Chart
/ \ of Computer Program
ACEKEL ACEL
Regular Pseudo-
Earthquake Earthquake
, WORK
Dimension for
Regular Earth- :
quake or for CONV MINV
Pseudo-Earth- Solves inverts
uake Equatu?ns 3 x 3
1 of Motion Matrices
Most of Compu-
tations done here
uzo
Writes
Results
on Tape
MODE
(optional)
Modal
Analysis
GONE
Writes
out
Results

END -
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