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Abstract

The launching, acceleration and stability of MHD outflows were studied numerically in two and
three dimensions using a parallelized version of the ZEUS code.

The launching from Keplerian accretion disks was investigated using time-dependent simulations,
to determine parameter dependence and stability to 3D perturbations. The most critical factors
controlling the cold outflows from the disk surface were found to be the poloidal magnetic field
profile and the mass discharge rate: together they determine the acceleration of gas away from the
disk, and the location of the Alfvén surface, which, in turn, fixes the angular momentum loss and
the asymptotic speed. The flows were found to be remarkably stable in 3D against perturbations of
the initial conditions, at least in the formation region of the jet before the Alfvén surface. This is
surprising in the context of previous studies.

Intermittent flows are found when the mass discharge rate is too large for a given magnetic
field profile. This may be relevant to some observed episodic sources. This intermittency can be
suppressed if the mass loading has the angular dependence suggested by the magnetocentrifugal
mechanism, namely that the discharge is a function of the angle # between the poloidal fieldline
threading the disk and the rotation axis, turning off when §<30°. The mechanism of intermittency
sets up a maximum mass loading to the observed smooth jets, may explain those that are pulsed,
and shows a possible transition back and forth between both regimes. The result presented here
may be compared to some recently published papers which suggest that intermittency could occur
if the mass loading is too small: here it occurs when it is too large. If both results are generic, mass
loading is bracketed for steady flows.

Launching from disks was simulated using a cold disk and atmosphere. The number of boundary
conditions that was imposed on the disk surface is what is necessary and sufficient to take into
account information propagating upstream from the fast and Alfvén critical surfaces, avoiding over-
determination of the flow and unphysical effects, such as numerical “boundary layers” that otherwise
isolate the disk from the flow, produce impulsive accelerations and confuse the connection between
the disk parameters and the flow.

The solar wind provides another example of an MHD outflow, using the high solar latitude ob-
servations by the satellite Ulysses. The simulations performed here allowed an estimate of the mean
value of the azimuthal velocity, which is not directly accessible to measurement, and is necessary to
estimate the torque of the solar wind. The Alfvén point was found to be located at ~11Rg. Similar

outflows from faster rotators were simulated, and found to be collimated along the rotational axis.
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Chapter 1

Introduction

1.1 Observations

1.1.1 Collimated flows

Astrophysical jets are fast and well-collimated flows, observed in a wide variety of astronomical
systems, of both stellar and galactic size.

Stellar jets are found associated with young stellar objects (e.g. Lada 1985). Other Galactic,
stellar-size systems often associated with jets are microquasars (e.g. Mirabel & Rodriguez 1998,
Hjellming 1997), such as SS433 (e.g. Margon 1984) or black hole X-Ray transients (e.g. Mirabel,
Cordier, Paul, & Lebrun 1992). Extragalactic jets are frequently observed emanating from active
galactic nuclei such as quasars (e.g. Begelman, Blandford, & Rees 1984). Table 1.1 shows typical

outflow speeds, power, size and collimation angle of these different kinds of jet.

Table 1.1: Physical scales associated with jets or bipolar outflows in Active Galactic Nuclei, X-
ray Binaries (XRB), and Young Stellar Objects (YSO). Vjet/c is a typical jet speed, and Lie; its
luminosity. M,/Mg and R, are the mass and radius of the central object, and Vese/c its local escape
velocity. Reon is an estimate of the radius by which collimation is achieved, and B is the inferred
magnetic field at the source. All dimensioned quantities in cgs units.

Adapted from Blandford (1993), p. 17.

AGN YSO XRB
Viet/ 1 10° 03
Lijet 10" 10% 1070
M./Mg | 108 1 10
R, 10 10t 10°
Vesc/¢ 1 107 03
Reonl 1017 10'¢ 10!
B 106 100 10°

When constructing a model, we must remember that there are indications that a single basic
mechanism may be responsible for the formation and collimation of jets (e.g. Livio 1997). Accretion
phenomena, into a compact object seems to be present in all the relevant sources. Accretion disks
have been observed in many cases, such as in YSO (e.g. Burrows et al. 1996), x-ray binaries and
black hole x-ray transients (e.g. van Paradijs & McClintock 1995; Southwell et al. 1996). There is
also some good evidence for the existence of accretion disks in the case of AGN, such as the nuclear
disk of dust observed by Ferrarese, Ford, & Jaffe (1996), and the gas disks observed by Ford et al.
(1997).
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Another apparently universal characteristic is the fact that the outflow speed of jets is typically

a few times the escape speed ves. from the central object. This speed varies between a few hundred
kms™! in YSO, through mildly relativistic speeds of the order of 0.2 to 0.9¢ in microquasars, to
highly relativistic speeds with Lorentz factor I' of a few and up to 20 for AGN jets. Gamma Ray
Bursts (GRB) may also form jets with Lorentz factors as high as I'~300 (Piran 1999). The relation
between asymptotic and escape speed hints that the mechanism of launching must be sensitive to
the depth of the gravitational well, indicating that the jets originate in the vicinity of the central
object.

An interesting although not universal characteristic of relativistic jets, both galactic and stellar,
is apparent superluminal motion. This can happen when the jet is directed towards the observer.
Shocks moving with velocity v = B4c, at an angle 8 to the line of sight, have an apparent transverse
velocity in the plane of the sky equal to Bappc = Tﬁ;i’—i&z@c; this speed is larger than ¢ for small
values of the angle 6 combined with large values of the Lorentz factor I'y = (1 — 82)~1/2 (Rees 1966;
Blandford, McKee, & Rees 1977). Some relativistic jets indeed have such point sources as features;
tracking them over time shows their superluminal motion.

A related effect observed in similar conditions (small 8, large 8) is relativistic beaming or Doppler
boosting of the jet, which can boost the apparent luminosity of the source. The relativistic speed fsc
of the fluid in the jet, not necessarily the same as the shock speed fsc, has an associated Doppler
boost factor D = ng—so). If the source has a spectral index «, the observed flux at a given
frequency is increased by a factor D?t®. For small angles # < 1, the Doppler factor is of the order
of the Lorentz I" of the jet. If the source is intrinsically bipolar, with the opposite jets aligned, the
counter-jet is also subject to Doppler effects, but its corresponding D is less than one, reducing the
observable luminosity, so much that the jet might appear unipolar through Doppler dimming of the
counter-jet. Performing the Lorentz transformation relative to proper time % also shows that
time variability is faster by a factor D in the beaming direction; this is relevant to some rapidly

varying sources such as blazars. The enhanced luminosity of beamed sources makes them easier to

observe. A small minority of beamed sources can dominate flux limited source samples.

1.1.2 Active Galactic Nuclei

Many galaxies show highly energetic nuclear activity, which has been observed in all electromagnetic
frequencies from radio to v-rays, and at spatial scales from intergalactic (Mpc scales) down to the
resolution limit of the observations (typically 1pc for VLBI radio observations), allowing a very rich
spectroscopy.

AGN activity takes many forms, although not all of them are present in a given object. Many

AGNs show an optical nucleus of small angular size, brighter than its host galaxy, often observation-

ally unresolved (“point-like”). Broad-band continuous emission from radio to y-rays that cannot be
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fit with a black-body model —showing that it is not only stellar in origin— is also typical. Strong

emission lines, both broad and narrow, are present in most sources. Mild variability and weak polar-
ization are seen in most cases, whereas strong variability and polarization are present in a few kinds
of AGN, especially in “Blazars.” Most AGN are weak radio sources, but a minority (~5-10%),
called “radio loud” sources, have strong radio emission, remarkable for their huge spatial scales,
often much larger than the galaxy size, with extended radio images showing lobes and jets.
Synchrotron radiation is emitted by relativistic electrons orbiting in the magnetic fields present in
the AGN. This radiation has a substantial polarization, which gives information about the direction
of the magnetic fields. Inverse Compton scattering by the same electrons also contributes to the
power of the source, and also reprocess the synchrotron radiation inside optically thick sources.
Spectroscopy and morphology allow different classification schemes for AGN. This classification
has grown following the development of observations, and it is still largely an unsystematic division
of a set of objects whose real variation is a probably continuous. Some of the classifications might be
dominated by the effects of orientation, beaming and obscuration. With this in mind, the following

is a classification, mostly following Woltjer (1990).

Radio Galaxies (RG) While most galaxies have radio emission less than 1033ergHz™' (mea-
sured around 1.4GHz), radio galaxies have a much higher power, at least one or two orders
of magnitude more intense. Radio maps show two large lobes, often much larger than the
optical galaxy. Energy is being transferred from the galactic nucleus to the radio lobes by
means of a fast collimated outflow; that is, a jet. These sources are often seen as bipolar,
with two lobes and jets, one on each side of the galaxy. One of the observed jets sometimes is
much brighter than the other. This is due to relativistic Doppler beaming, which enhances the
apparent luminosity of sources moving towards us with a small angle by a power of its Lorentz
I". Some apparently unipolar sources might in fact be bipolar with one of the sides amplified

by beaming effects. Typically RG are associated with elliptical galaxies.

Radio galaxies have been classified according morphology by Fanaroff & Riley (1974) into two
types, now called FRI and FRII. The morphological criterion is the distance between the two
brightest spots in the opposite sides of the central galaxy, divided by the total extent of the
radio source. If this ratio is less than 0.5, the source is classified as FRI, otherwise as FRIL
The interest of this classification, is that many other properties of the sources correlate with

this morphology.

Due to its definition, FRII radio galaxies have the lobes brightened at the edges, with radio
hot spots located in the regions far away from the central galaxy. They also have a relatively
dim jet connecting those spots to the source core. Their radio power is typically Pi7smaz >

2x10%2erg Hz™!. FRI radio galaxies are relatively less powerful sources, with the edges of the
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lobes darkened instead of brightened. Their jets are relatively brighter, and more liable to

exhibit changes in curvature than in FRII sources.

Polarization data show that the magnetic field in FRI jets is seen as predominantly perpen-
dicular to the jet direction, sometimes turning into parallel at the edges. By contrast, in
FRII the magnetic field tends to be parallel to the jet (Bridle & Perley 1984). It has been
suggested (Begelman, Blandford, & Rees 1984; Laing 1996) that the propagating jets consist
of a spine, with a mostly perpendicular field and a shear layer outside, with a mostly parallel
field. Edge-brightened sources, such as FRII, will show predominantly the radiation emitted

from the shear layer, while center-brightened sources will show the field from the spine.

The observations above have been physically interpreted by assuming that the jets in FRIIs
must be faster and more energetic, so that they are able to advance further into the intergalactic
material before releasing some of their kinetic energy at the lobes; this would also explain why

the edge-brightened sources are the more powerful.

Linear polarization is often observed, indicating the existence of ordered magnetic fields. De-
polarization is also observed, stronger in the counter-jet of bipolar sources. This is explained
as the effect of differential Faraday rotation through the medium surrounding the source, be-
cause the radiation from the counter-jet, which is further away from us, has to traverse a larger

distance, and is more subject to depolarization (Laing 1988; Garrington et al. 1988).

During a study of the polarization properties of powerful radio sources, it became clear that in
those sources with one-sided jets, depolarization with increasing wavelength is usually weaker
for the lobe containing the jet. One obvious interpretation is that the depolarization is caused
by differential Faraday rotation through irregularities in a magnetoionic medium surrounding
the radio source. The side with the stronger jet is closer to us, is seen though a smaller amount
of material, and therefore shows less depolarization. A halo of hot gas around the associated

galaxy or quasar is a likely candidate for the depolarizing medium.

Radio-Loud Quasars (RLQ) The radio characteristics of these objects are similar to the more
powerful RG, such as the FRII. However, the optical image is dominated by a bluish, unre-
solved, ! luminous nucleus, with strong, broad emission lines. Most bright RLQ are also X-ray
sources. It is probable that many powerful FRII radio galaxies are indeed RLQ, with their
bright optical nucleus obscured by clouds of gas and dust. VLBI observations show that the
nuclei of quasars have compact components, with measurable, superluminal proper motion on
the plane of the sky, implying that there are beamed outflows at relativistic speeds {e.g. Unwin

et al. 1989; Cohen 1989). The optical nuclei are often variable, especially in the flat spectrum

! Historical note: this unresolved nucleus, seen in the absence of the dimmer ambient galaxy, gave quasars their
old name of “quasi-stellar objects.”
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radio sources? (FSRQ), which show also optical linear polarization. These FSRQ are related

to the next two classes of source.

BL Lac objects These objects® resemble FSRQ, except that the optical broad emission lines are
absent. They are highly variable at radio, optical and X-ray wavelengths, with strong and
variable polarization. Their variability timescale in optical and X-ray can be less than a day,
showing the presence of a small source. Two types have been observed, with peaks in their
spectrum at respectively low and high frequencies: this is at least in part a bias effect due
to taking samples from respectively radio and X-ray surveys. This is only one of the many

instances where AGN classification is influenced by sample bias (Urry & Padovani 1995).

Optically Violently Variables (OVV) This is a class of quasars with optical characteristics like
the BL Lac objects, but weak broad emission lines are present. OVVs, BL Lac objects and

FSRQ are grouped together as “Blazars.”

Blazars form a set of object of high variability at all wavelengths from radio to y-rays, with
high polarization, and flat-spectrum radio emission. It is probable that blazars contain rel-
ativistic jets pointing directly towards the observer (e.g., Urry & Padovani 1995;Urry 1996),
with powerful relativistic beaming. This would explain their frequent superluminal motion
(e.g. Vermeulen & Cohen 1994), high and rapidly variable polarization (e.g. Smith 1996), and
the surprising intensity of their v-ray emission (e.g. Dondi & Ghisellini 1995). Also, their rapid
variability is attributable to superluminal expansion of the emitting features, with the Doppler

factor shortening the time intervals of variation.

Powerful, beamed 7 rays were observed in blazars, including BL Lac objects, FSRQ, and highly
polarized quasars, by the instrument EGRET, on board the Compton Gamma Ray Obseratory.
The luminosity above 100MHz can be larger than that emitted in all the other frequencies,
and it is highly and rapidly variable. A rough estimation of the value of the Doppler boosts
D was performed by Dondi & Ghisellini (1995), giving typical values between 1 and 10.

Radio-Quiet Quasars (RQQ, QSO) These objects resemble RLQ optically, but their radio emis-
sion is weak —though not silent. Most quasars are radio-quiet (~90%), so that optically se-
lected quasars are sometimes assumed in surveys to be radio-quiet until strong radio emission is

0% 7ergHz !,

observed. The separation in radio power between RL- and RQ quasars is at Psgpz~1
close to the separation between weak and strong radio galaxies at this frequency. The X-ray

emission relative to optical emission is lower for RGG than RLQ.

Some RQQ have very broad absorption lines in the optical, and are called BALQSO. Models

of BALQSO present powerful, apparently uncollimated outflows, containing gas clouds (with

2Spectral index flatter than a = 0.5 at GHz frequencies.
3Called after eponymous “variable star” BL Lacertae.
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a small filling factor) where the absorption lines originate. The acceleration mechanism of the

outflows may be either radiative, due to continuum or line radiation (Arav, Li, & Begelman
1994), hydromagnetic (Emmering, Blandford, & Shlosman 1992), or, more probably, a com-
bination of both mechanisms at different distances from the central object (Konigl & Kartje
1994). BALQSOs are almost never radio-loud. There is evidence that radiatively-driven out-
flows are generic in RQQ, with the BALQSOs being the case where the observer lies in the

equatorial plane so that the flow is in our line of sight (Weymann, Morris, Foltz, & Hewett
1991).

Seyfert 1 (Syl) The nuclei of these galaxies resemble RQQ, at a lower luminosity; the bound-
ary is defined at My = —23. They have very broad hydrogen emission lines, with typical
FWHM~5000kms™?, and narrower forbidden lines, with FWHM~500kms~!. Most Syl are
radio sources with Psgu, = 102" 3%rgHz . Their X-ray emission as compared to optical is a
little stronger than for RQQ. This classification makes a continuum with the RQQ. Morpho-

logically, these are often spiral galaxies.

Seyfert 2 (Sy2) The spectra of these galaxies have similar line widths for permitted and forbidden
lines, with FWHM~500km s~1; the hydrogen lines lack broad wings. Their nuclei have diame-
ters ranging from point-like to 3kpc. They are weak X-ray sources. They have the same radio
luminosity as Syl, and, also like Syl, they are associated with spiral galaxies. The optical
spectra of RG can have either Syl or Sy2 properties, called Broad Line (BLRG) and Narrow
Line Radio Galaxies respectively. Radio-loud quasars emission lines belong to the BLRG type,

with wide wings.

The BL emission seems to come from a relatively dense region (> 10%cm™3), whose size,
deduced from variability, is around 10-100 light-days in Syl, up to a few light-years in bright
quasars. The gas velocity must be typically around 3000-10000kms~1, large enough to justify
the line width. In this same picture, the NL emission comes from a much larger region, where
the density is around 10%-10%cm—2, and the gas speed is around one tenth of the above. This
NLR region is resolved in some nearby Seyferts, with sizes around 100-300pc. The NLR in

quasars is probably larger, around a few kpc.

Seyfert galaxies are by no means rare objects in the sky; based on CfA, the local fraction of
Seyfert galaxies is around a few percent (Huchra & Burg 1992). It is widely believed than Syl
and Sy2 are the same kind of object, observed from a different angle, so that Sy2 nucleus is
partially obscured by an equatorial gas torus which happens to lie edge-on. Broad emission
lines from Sy2 are observed in polarized radiation; in the unified model, this radiation is
explained as being emitted from the central region in a non-equatorial direction, and then

reflected towards us. The reflection mechanism would polarize the light, and allow it to reach
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us avoiding the obscuration region (Antonucci & Miller 1994).

“Normal” Galaxies Some form of nuclear activity is present in all galaxies, often showing some
of the typical AGN phenomena at a lower energy range. For instance, our Galactic center
is marked by the compact radio source Sgr A*, which probably harbors a black hole with a
mass ~2.6x10% M, as shown by the motion of the stars close to this object (Ghez et al. 1998;
Eckart & Genzel 1997).

Also, observations of the dynamics of the gas at the center of several normal galaxies, indi-
cate central objects with a mass between 109°M, and with a large mass /luminosity ratio,
indicating some darkness of the object (Kormendy & Richstone 1995). While these data do
not conclusively prove the presence of central black holes, it is by far the most conservative
explanation, because alternative models such as compact clusters or superstars are unstable in
a timescale much shorter than the age of a galaxy or invoke objects whose existence violates

the laws of physics.

Non-thermal low-ionization emission is a regular feature in most spiral galaxies (Keel 1983).
The low-ionization nnuclear emission line regions (LINERs) and low-luminosity (“dwarf”)
Seyfert nuclei were detected by Ho, Filippenko, & Sargent (1997) in a large fraction of galaxies

taken from a magnitude-limited sample.

1.1.3 Microquasars

The name of “microquasars” has been given to stellar-mass systems in our Galaxy showing relativistic
jets, which exhibit on a smaller scale many characteristics of quasars.

These systems include a stellar-mass black hole or neutron star, which accretes material through
an accretion disk from a binary companion. The accretion disk emits hard X-rays?; relativistic jets
are launched, and are observed via synchrotron emission.

Most of the ingredients of quasar models are present here in the little; the central compact object
(a few million times smaller in mass than in quasars), the accretion disk, and the collimated outflow
(a few parsecs long, instead of the Mpc scale of extended radio galaxies). Microquasars are expected
to show most of the same physics of quasars, and not only be superficially similar. Their properties
are more convenient to observe in a human lifetime, because typical variation times are 105-102
times smaller.

Superluminal motion has been observed for microquasars, starting from the first observations in
GRS1915+105 (Mirabel & Rodriguez 1994) and GRO J1655-40 (Tingay et al. 1995; Hjellming &
Rupen 1995). In particular, the gjecta of GRO J1655-40 have an extremely fast proper motion in
the plane of the sky (40 to 65 mas per day). This object is a binary of a star of 1.7-3.3M, and a

4 Justifying the spectrally-biased name of X-ray binaries given to these sources.
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collapsed object of 4-7M¢ (Orosz & Bailyn 1997; Phillips, Shahbaz, & Podsiadlowski 1999). Given
the large mass of the collapsed object, which is above the maximum stable mass for a neutron star,
it has been concluded that this is a black hole (Kalogera & Baym 1996).
A review on microquasars can be found in Mirabel & Rodriguez (1999). A review of the object

SS433 can be seen in Margon 1984. Jet power and formation has been studied by Levinson &
Blandford (1996).

1.1.4 Young Stellar Objects

A young star is formed by gravitational collapse in the dense core of a cloud. This core later
accretes material, via an accretion disk. However, at the same time that gas falls in, large outflows
are produced: it is often speculated that some of this outflow is necessary for accretion to proceed,
releasing the excessive angular momentum of the cloud material, viscous mechanisms being probably
insufficient for this (e.g. Konigl & Pudritz 2000). The infalling material forms first an accretion disk
around the central object, rotating at a Keplerian speed which prevents its immediate collapse. This
theoretically-expected disk has been observed in compelling detail by the Hubble Space Telescope
(HST), notably in the object HH30 (Burrows et al. 1996). The size of these disks is typically of the
order of the solar system. In the case of HH30, the size of the disk is 500AU, and that of the jet is
1600AU, with a jet velocity of 300kms™?.

The young stellar jets have speeds of the order of several hundred kms™!, higher for high lumi-
nosity sources; these speeds are inferred from both emission lines and the proper motion of knots
inside the jet. This collimated outflow forms a bipolar jet, which interacts with the interstellar
medium on parsec-scales forming the Herbig-Haro objects, which are nebulae of shocked material.
These HH objects have the shape of bow shocks or knots, tracking the trajectory of the jet. In
some cases, such as HH34, a long chain of HH objects is visible (Reipurth et al. 1986). The jets are
accompanied by bipolar, poorly collimated outflows (Lada 1985).

1.1.5 Uncollimated flows: Stellar Winds

Most stars emit some mass in the form of a stellar wind. In the case of the Sun, it is a fast,
mostly radial outflow of ionized plasma (400-800kms~!), with a mass loss rate of ~2x1071*Mg
per year. For other stars, however, the loss due to the wind might be significative for its evolution.
Different mechanisms have been proposed, adapted to the circumstances of the different stars and
flows observed: no generic theory valid for all objects is expected. In the case of the Sun, it is
probably a thermally driven wind from the corona (Parker 1958), combined with an Alvén-wave
driven mechanism (Hartmann & MacGregor 1982). In early times in the life of a star, when its

rotational speed is faster, a magnetocentrifugal mechanism may be also relevant (Weber & Davis



1967).

1.2 Theories

This observational summary surely demonstrates that outflows are typically observed to accompany
accretion. Sometimes they are relativistic, sometimes not. Sometimes they are collimated into
Jets, sometimes not. Sometimes they are magnetically driven, sometimes not. There is a wealth of
phenomenology that is difficult to interpret because of strong orientation effects (relativistic beaming
and absorption). It is the primary goal of theoretical research, like that described below, to match

these observations to the properties of physical flows.

1.2.1 Hydromagnetic models of jets

Hydromagnetic models start from the equations of MHD, frequently restricted to axisymmetry. The
energy is extracted from the accretion disk, or from the magnetic field. In some variants of the
model, gas pressure and magnetic turbulent pressure may also help in the launching. Most of the
models in this category are quasi-stationary, and can be studied with either the steady state or the
time dependent equations. Other models are fundamentally episodic, or intermittent (Uchida &
Shibata 1985; Ouyed & Pudritz 1997a). Both possibilities are considered below.

Before describing the models, it is convenient to write down the equations that govern MHD

outflows.

1.2.2 Theory of MHD outflows

A generic hydromagnetic outflow, accelerated or not, collimated or not, can be modeled by the usual

equations of adiabatic MHD, which are presented here in order to to fix the notation:

Op
hullad . = 1.1
S +V-(pv) = 0 (LD
p%—‘t’ +p(v-V)v = —Vp+pVe,+jxB/c (1.2)
%? = Vx(vxB)=VxE (1.3)
% +V-(uv) = —-pV-v (1.4)

p = (y=1lu (1.5)
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where

p = matter density (1.6)
v = velocity flow field (1.7)
B = magnetic field (1.8)
= (c¢/4m)V x B = current density (1.9

E = vxB=—cE (1.10)
®, = gravitational potential (1.11)
p = thermal pressure (1.12)
u = internal energy density (per unit volume) (1.13)
v = adiabatic index. (1.14)

These adiabatic equations do not include phenomena such as resistivity, viscosity, cooling, heat
transfer, ambipolar difussion, etc., each of which would add an extra term to the equations.

Cylindrical coordinates (z, R, ¢) are usually preferable. The projection of a vector on the poloidal
plane (z, R) will be indicated with a sub-index p, so that for instance, the velocity vector v can be
written as v = v, + v¢<f> =v,2+vrR+ v¢qAS. Spherical coordinates, when needed, will be labeled as
(r,8,9), preventing confusion between the cylindrical and spherical radii R and r.

The components of the current in cylindrical coordinates are

a7\ 1 15} 1 0Bg
47\ | _ 0By 1 0B,
(?) Jr = - + & 5% (1.16)
47\ | OBr 0B,
- = - 1.1
( c )“’ 8z OR (1.17)

At first, instead of solving this full system of equations, a simplified case of great astrophysical
importance will be shown; the experience gained will help in acquiring an intuition for the kinds of

solutions expected in the more general case.

1.2.2.1 Axisymmetric, steady outflows

The most developed part of the theory of compressible MHD outflows is that dealing with stationary

axisymmetric flows. The fieldlines can be labeled using the flux function v, such that

_1oy
~ ROR

and Bp=-—2¥ (1.18)

B. ROz’
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with the boundary condition (2, R = 0) = 0. This flux function is related to the magnetic flux ¥

across a circle of radius R by ¢ = ¥/2r, and to the magnetic vector potential component A, by
%= RA,.

There are five constants of the motion derivable from the axisymmetric, steady equations of
motion, which appear as functions that are constant along fieldlines in the poloidal plane (Mestel

1968, Weber & Davis 1967, Heinemann & Olbert 1978, Blandford & Payne 1982), becoming functions

of ¢ alone:

k(y) = 4=pvy/B,, the ratio of mass to magnetic flux; (1.19)
Qy) = % (vg — Bgvp/Bp), the corotational angular velocity; (1.20)
l(¥) = R(vg— By/k), the specific angular momentum; (1.21)
e) = v*/2+h+®, - QRBy/k, the specific energy; and (1.22)
S(¢¥) = kp(y—1)"'In(p/p"), the specific entropy, (1.23)

where h is the specific enthalpy of the fluid, A = [ Y=const (dp/p), equal for an adiabatic equation of
state to h = :Y—}T% = 7—6_% It is convenient to define derivative operators 3/3s and 8/9n, respectively
along and across fieldlines, so that for instance e/ds = 0. The angle of inclination of the fieldlines

to the axis is called 8, so that

8/0s
8/6n

cos(9/0z) + sin(8/OR) (1.24)
—8in6(8/8z) + cos8(3/0R) . (1.25)

Three Alfvén speeds are of particular interest, vap, = Bp/+/Amp, var = B/+/Anp, and vay =
By /+/4rp, constructed out of the poloidal, total, and azimuthal magnetic field.

In the axisymmetric steady state the velocity is related to the magnetic field by v = % + RO,
so that

V. _ VR _Y—RQY_ vk (1.26)
Bz BR B¢ Bp 471',0 | )

The quantity ) is related in steady state to the electric field components by Q = £gr/RB, and, in
the case of launching from a Keplerian accretion disk, it is expected to be close to the Keplerian

angular speed at the disk surface, so that

1 /6%
"4 5)
Ry \OR ] ,_,

where vk is the Keplerian speed at the footpoint Ry of a given fieldline .

(vk/Rs)” (1.27)
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These equations determine most properties of the flow along a given fieldline, with proper bound-

ary conditions. The last equations required are the conservation of mass,
V-(pv)=0 (1.28)

and the balance of forces across fieldlines, which can be written as a Grad-Shafranov equation

(Lovelace et al. 1986)

k? o199 b? k
1— —— == — . -
( 47rp) (RaRRaR * 322) vokV (471',0) VY
!
= —4rR*p[e’ — () + RvyQ'] — k(Rvg — I)[Rugk’ — (Ik)'] + 4w R?p (kS—) , (1.29)
B
where the primes represent derivatives with respect to 1, or equivalently as (e.g. Ustyugova et al.
1999; Bogovalov 1997)

96  cosf 10 B? 0%
(03 vis) 3¢ — 5 (8 =) + 53 (p+ 5 ) + 2 =0 (1.30)

The force balance equation is difficult to solve analytically; however, self-similar descriptions have
been used, which reduce the problem to the solution of coupled ODEs and give some insight.
Equation 1.30 may be regarded as governing the collimation, as it gives the derivative of § along
the fieldlines, %. It can be seen here that collimation may be either dominated by the poloidal
field (through the term —S}r_p%
- 87r; yoe3 6(%)—2—), or by the thermal pressure (through a term ——%g%).

), by the toroidal field (through a term that can be written as

Collimated outflow models can be classified on the basis of which of these three effects is pre-
dominant in collimating the wind, as either toroidal, poloidal, or thermal.

The force per unit mass along a fieldline can be written as (Ustyugova et al. 1999)

2
v

bging - - SNPe) P T% 1.31
R sind 8rtpR2  Os pOds  Os (1.31)

Terms of particular interest in this force are the magnetocentrifugal acceleration

v2
fe = Ed’sine (1.32)
and the magnetopropulsive acceleration
1 B
= —(jxB)=L 1.33
fu p (4 xB) B, (1.33)
1 8(RB,)?

- " 8rpR2  0s (1.34)
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These two forces, together with the thermal push f, = —%g—’s’, must counter the projected gravita-
. o . .
tional pull f, = — 68:. Depending on which of the three pushing terms dominates at low altitudes

above the outflowing surface, a model describing the launching of an outflow can be called magne-

tocentrifugal, magnetopropulsive, or thermal.

1.2.2.1.1 Parker thermal wind launching theory
The equations of this axisymmetric theory are already more complex than those of Parker’s theory
of stellar outflows (Parker 1958), and can be regarded as its natural extension.

Parker theory created the concept of solar wind, in the context of a study of the outer solar
atmosphere (the corona). Starting from the equations of fluid dynamics, it was found that in order
to find solutions with a pressure at a few solar radii compatible with observation (relatively high),
and a pressure at infinity comparable to that of the interstellar medium (close to zero), it was
necessary to postulate a permanent outflow of material; the Sun is losing matter, at a rate that is

now estimated around ~2x10714Mg per year. In spherical symmetry, the relevant equation is

2
dv, (UT ~ 2kBT) _ 2k’ AT GMo (1.35)

dr M;Uy m; drr? r2

where m; is the mass of the solar wind particles. The details of the solution of this equation depend
on the profile of T'(r); however, the topology of the solutions does not depend strongly on this profile,
giving solutions with the shape shown in Fig. 1.1 for temperatures declining less rapidly than 1/r.
Three kinds of solutions connect small and large distances from the source; subsonic (below the AD
line), supersonic (above the CB line), and a single transonic curve, going from A to B, and passing
smoothly through a critical point where the outflow speed becomes equal to the local isothermal
sound speed ¢ = \/m . In the case of the Sun, the flow at small radii is locally subsonic, which
forces the rejection of the supersonic solutions; the subsonic solutions (so called breeze solutions)
yield a non-zero pressure at infinity, much larger than the interstellar gas pressure. Despite early
criticism by Chamberlain (1961, 1965) only the transonic solution is now considered to be relevant.
The existence of critical points in these solutions restricts the freedom in the choice of parameters,
in contrast to purely subsonic outflows. The Parker solution is appropriate under a wide set of
assumptions for the equation of state giving the thermal pressure. However, it does not take into

account the dynamical effects of the magnetic field on the flow.?

1.2.2.1.2 Critical points in axisymmetric, steady MHD
The full addition of magnetic fields to this outflow problem can be done with the help of the

equations 1.18-1.30. Solving them also requires the crossing of critical points. Instead of crossing one

5The justly celebrated Parker spiral —the profile of By /By as a function of radius— takes into account only the
kinematic effect of the flow on the magnetic fields.
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critical (sonic) point as in the Parker problem, there are now up to three critical points, corresponding

to the crossing of the slow magnetosonic speed (v, ~ Csound), the Alfvén speed (v, = B,/\/dmp =
v4p), and the fast magnetosonic speed (vp ~ B//4mp=vyy, for a cold flow). If these points are
to be crossed at all, the flow must be smooth across them. Crossing the fast critical point is
not required by the observation of stellar winds (sub-fast flows at infinity are possible), but it is
probably required by all applications dealing with astrophysical jets, due to their large observed
speeds. Crossing the Alfvén point poses a strong restriction on the transported angular momentum,
namely | = R%(), where R, is the cylindrical radius at the point where the flow makes the Alfvénic
transition v, = v4p, (Mestel 1968, Weber & Davis 1967). The slow magnetosonic crossing produces a
more complex condition, ultimately constrains the mass outflow pv, along the fieldlines, analogously
to the sonic critical point in Parker’s hydrodynamic model in a high plasma 3 flow. Crossing of the
fast point also produces a complex condition, involving | B|, which constrains the outflow of angular

momentum.

1.2.3 Axisymmetric, time dependent outflows

In time dependent theory, the functions 1.19-1.23 are no longer constant along fieldlines.® However,
it is convenient to carry out time-dependent studies even when looking for steady state solutions.
Steady-state methods usually do not give the most general solutions, due to the great complexity of
the critical surfaces whose loci are unknown a priori (Heinemann & Olbert 1978). Time dependent
methods also guarantee that, if a final steady-state solution is found at the end of a study, it is
reachable for the given set of initial and boundary conditions, satisfying causality automatically.

However, unsteady and intermittent (§4.3) solutions also become possible.

1.2.4 3D MHD outflows

3D MHD outflows are largely unexplored. It has been argued (e.g. Begelman 1998) that MHD
instabilities may be destructive for these flows. For instance, outflows whose magnetic field is
dominated by the By component have been compared to Z-pinches, which are known to be unstable
to a variety of modes distorting the plasma column, such as the m = 0 “sausage” mode, and the
m = 1 and higher kink instabilities. Kink instabilities are essentially 3D, and this dimensionality
must be used to study their non-linear development. Furthermore the equilibrium flows that we
model are far more complex than the static configurations studied analytically, because they involve
lateral expansion, longitudinal shear and radial density gradients.

Against this expectation of MHD instability, it should be mentioned that fast acceleration is a

common characteristic to many of these outflows, together with strong velocity shears. Moreover,

At a boundary where the conductivity is very high, it is still possible to impose values for the quantity €2, related
to an electric field component.
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the dominance of By over the poloidal components B,, is not fully established during the launching

process until the Alfvén surface is reached (Kénigl & Pudritz 2000).

1.2.5 The magneto-centrifugal model

This jet-launching mechanism was proposed by Blandford & Payne (1982), investigated for instance
in Clarke, Norman, & Burns (1986), Lovelace, Mehanian, Mobarry, & Sulkanen (1986), Pudritz &
Norman (1986), Kénigl (1989), Ostriker (1997), and reviewed recently by Kénigl & Pudritz (2000).

Consider poloidal magnetic fieldlines emerging from the surface of an accretion disk. In steady
state, the flow will be along these lines, due to the frozen-in property of ideal MHD flows. We can
picture one element of gas flowing along a fieldline as a ‘bead’ sliding on a rigid ‘wire’ (Henriksen
& Rayburn 1971). Let that bead start from z = 0, at a slow speed or at rest. The wire is rotating
at a constant angular speed 2. This will exert on the bead a centrifugal force outwards, competing
against the gravitational force pulling the bead inwards. For a lever arm large enough, the centrifugal
force wins this competition, and the field line propels the flow. This happens when the inclination 8
of the poloidal fieldlines from the axis is larger that a critical angle 6., allowing the flow to accelerate
centrifugally along the fieldline as if shot by a sling. This critical angle is 6, = 30° for Newtonian
gravity and Keplerian rotation.

During rotation, the fieldlines are twisted backwards due to the inertia of the outflowing gas,
creating a toroidal By. The magnetic pressure of this field component tends to collimate the
flow, decreasing 6 along a fieldline for increasing height z, as shown in equation 1.30. In ad-
dition, the gradient in the poloidal field pressure causes focusing, depending on the shape of
the flux function. The three critical surfaces of MHD axisymmetric theory may be present: the
Alfvénic surface (v, = Bp/\/4mp = v4p), depending on the poloidal magnetic field; the fast surface
(vp~B/+/Amp = wv4t), depending on the total magnetic field, and the slow magnetosonic surface,
with (vp~cCsound). Blandford & Payne (1982) consider two kinds of winds: sub-fast, just able to
reach the fast speed asymptotically at infinity, and super-fast, which make this transition at a finite
distance from the source, typically not very far from their Alfvénic point.

Close to the disk, vy is not far from vk, making a powerful force fo. Gradients of the toroidal
magnetic field provides a force term fas, which also helps in pushing material up the gravity well.
Further up, but typically still below the Alfvén surface, the term fas starts to be larger than fe.
Beyond the Alfvén surface, the poloidal magnetic field becomes dynamically small, and is wound
up by the outflow efficiently, generating a large By, and reducing vs. The centrifugal force fo is
therefore small; the only possible acceleration will be due to departures of By from its expected R™*
dependence. This is why most of the acceleration is expected to be complete by the Alfvén surface,
making v4 and v, of the same order. If the collimation mechanism reduces 8 by a large amount for

small z, then fo becomes small (due to the reduced sin @ factor), and becomes inefficient to launch
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the jet. The magnetocentrifugal mechanism is more efficient if collimation is not dominant before
the Alfvén surface is reached.

The magnetocentrifugal model has the advantage that it is able to explain both acceleration and
collimation inside the same picture. It can work with a variety of profiles for the flux profile Y(R)
along the disk. It is quite likely that open magnetic field lines thread accretion disks over many
decades in radius. Note that the fraction of the disk surface that is threaded by open field lines
may be quite small (Blandford & Payne 1982). In the models that follow, we define an effective disk
surface in the corona, above the closed loops.

This assumption can be contrasted with Shu et al. (2000), who have proposed for young stars
the X-wind model, which concentrates the open field lines on a thin ring close to the inner radius
of the accretion disk. This question about the radial extent of the region on the disk threaded by
open poloidal lines is linked to assumptions about the ambient medium (whose pressure at large
distances should keep the open poloidal fieldlines from falling towards the equator in the large radius
picture), and the efficiency of reconnection process on the disk surface {which cannot be allowed to
be too efficient for thin ring pictures, because fieldlines with ~90°, skimming over the accretion
disk would otherwise reconnect outwards);

The question about the critical angle, is potentially threatening to the model. It has been argued
that the nature of the accretion flow may make it difficult to achieve the expected values of § > 30°
(Lubow et al. 1994): 6 = 30° might be an unstable equilibrium. Since demonstrations omit key
ingredients of the model, these results are not necessarily applicable to all accretion flows. However,
even admitting them, Ouyed & Pudritz (1997a) have shown that, if the initial field lines start from
such an inconvenient angle as 8 = 0°, the formation of the toroidal magnetic field can make the
fieldlines open outwards —even if temporarily— so much that jet launching will still be present, at
least episodically.

Another question is how the open poloidal fieldlines happen to form. A plausible mechanism has
been studied by Romanova et al. (1997), where magnetic field loops, initially closed, open up due
to differential rotation of the footpoints at different radii on the disk surface in the regions where
the plasma #<1. Dynamo-generated magnetic fields are probably still not the answer, at least in
the thin disk case, because they tend to have too large a Bs/B, ratio for the models to proceed
efficiently. Numerical studies concentrating on the atmosphere around the accretion disk (such as

those by Miller & Stone 1997) may help in answering these questions about the disk-jet interaction.

1.2.6 Stationary magnetopropulsive models

In these models, the force term fas (equation 1.33) is important even at z = 0, making most of the

launching. A strong gradient %i‘ﬁ is required close to the disk surface such as in Contopoulos (1995)

astrophysical plasma gun. These models are similar to the magnetocentrifugal picture; the forces
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involved are the same, changing only their relative importance. Intermediate cases may happen. For

instance, many simulations show at z = 0 a value of Q dominated by vg, but a value of | dominated

by B¢.

1.2.7 Non-stationary magnetopropulsive models and the magnetic spring

These models are highly dynamical, and have been studied more by simulation than analytically.

They depend on creating a strong 3£¢ by twisting field lines in a tight configuration. Once a strong

magnetic field gradient is created, this “magnetic spring” becomes large enough to launch coronal
material. This differs from the model shown in §1.2.6 in being essentially out of steady state, and
frequently episodic.

Uchida & Shibata (1985) create the initial tension by starting with a sub-Keplerian flow whose
infall twists fieldlines rapidly. Magnetic pressure then drives a hollow jet. This initial state is very
far from equilibrium, but it still determines the final solution. The formation of the sub-Keplerian
flow is not a part of the simulation. No steady state can be achieved, and the initial state cannot
be reproduced.

The Bell & Lucek (1995) model starts in Keplerian, hydrostatic equilibrium. Differential ro-
tation in the corona twists the initially poloidal magnetic field, creating a component Bys. This
toroidal component propagates into the fluid in a torsional Alfvén wave, which reduces the angular
momentum of the material at the disk surface. This reduces vy at the disk surface: this process is

also referred to as *

‘magnetic braking of the disk.” Keplerian equilibrium fails, and the gas at the
disk surface falls into more central regions. This increases the gas pressure there, enough to drive a
powerful jet.”

The simulations presented in §4.3 have some of the features of these models, with the great
advantage that the flow is able to reproduce the initial conditions approximately, making intermittent

episodes of outflow driven by the magnetic spring instead of single transients. They also differ from

Bell & Lucek (1995) in being cold; launching is based on magnetic pressure and centrifugal forces.

1.2.8 Blandford-Znajek mechanism

When a black hole is in rotation (such as the astrophysically expected Kerr black holes), part of its
energy is stored in its spin, and can be extracted. Blandford & Znajek (1977) proposed a mechanism
for this extraction of rotational energy. When a black hole in rotation is threaded by a magnetic field,
an electromotive force appears. This “battery” can drive an electric circuit: its internal resistence is
377Q (given by the black hole magnetic properties), and its resistive load is at the base of the wind

being launched by this mechanism. The electromagnetic power produced is of the order of the area

"This feature is not present in Uchida & Shibata (1985), who allow the material falling into central regions to
accrete immediately into the central object, and do not obtain large gas pressures.
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of the black hole, times the magnetic pressure of the field that effectively threads the black hole,
times the speed of light.

It is very plausible that this mechanism extracts energy from a black hole, powering an axial
jet, at the same time that some other mechanism extracts energy hydromagnetically from the disk,

powering an outer envelope for the axial jet, and becoming responsible for its collimation.

1.3 Numerical simulations of jet launching

The historical development of jet launching simulations started then with non-steady, transient
phenomena, probably due to the computational costs involved in keeping a numerically stable simu-
lation running for a long time. This is in contrast to analytical work, which started from steady state
studies, which are the most convenient case for theoretical analysis. Later, long term simulations
appeared, aiming for steady state solutions. Nowadays some of the longest term simulations are
also aiming for episodic behavior, in an apparent full circle to the initial, transient studies, but now
without a stringent dependence on initial conditions.

The first simulations of jet launching were published by Uchida & Shibata (1985); they are not
based on the magnetocentrifugal mechanism, instead they simulate a transient flow, based on the
magnetic spring mechanism (§1.2.7). 8 A variant of this mechanism is simulated by Bell & Lucek
(1995), and its stability investigated by Lucek & Bell (1997).

Simulations of jet launching based on the magnetocentrifugal model include Lind et al. (1989),
Ouyed & Pudritz (1997b), Romanova et al. (1997), Ustyugova et al. (1999), Krasnopolsky et al.
(1999).

Relativistic simulations of launching are already starting, using flat, Schwartszchild (Koide et al.
1998, Koide et al. 1999), and Kerr metrics. Up to now, these simulations are not cold (gas pressure
effects are very important), and are dominated by transient infalls due to the initial conditions.
Computational costs are probably still too large for either stationary or recurrent, episodic relativistic
simulations, but, comparing to the history of the non-relativistic case, it appears that they will be
coming soon.

Non-relativistic studies of jet propagation (as opposed to launching) have been studied by e.g.
Hardee et al. (1997). Relativistic jet propagation has been studied by e.g. Nishikawa et al. (1997).
Effects of the interaction with the ambient medium have been studied by Nishikawa et al. (1998).

8Kudoh, Shibata, & Matsumoto (1998) argue that it represents the magnetocentrifugal mechanism, on the grounds
of some characteristics they have in common. However, the use of a sub-Keplerian corona misses one of the most
important features in Blandford & Payne (1982), namely the almost complete cancelation between centrifugal and
gravitational force at the disk surface, which allows the existence of the critical angle of 30°.
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1.4 This Thesis

In this thesis simulations of astrophysical outflows are presented. Simulated jets are launched from
accretion disks in a cold atmosphere in chapter 3, together with improved boundary conditions
studied in §2.2.1. Collimated outflows from a finite disk are shown in chapter 4. In particular, a
model of transition from stationary to intermittent flows is studied in §4.3. The stability of the
launching mechanism against 3D perturbations is studied numerically in chapter 5. Finally, the
largelly non-collimated solar wind flow is studied, based on data and simulations in chapter 6. To
do all these simulations, a parallel version of the ZEUS code (Clarke et al. 1994) was written, and

presented in §2.1.3.
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Fig. 1.1 Solutions of the Parker solar wind equation plotted as radial velocity vs. radius for a tem-

perature profile decreasing less steeply than 1/r. The curve labeled (2kT/M)'/? represents the local
isothermal speed. The unique wind solution connects from A to B, passinght through the critical
point.

Source: Parker (1965).
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Chapter 2

Numerical Methods

2.1 Computational Engine

2.1.1 Overview of numerical methods

Before describing the numerical code used in this work, I want to place it in the wider context of

the art of computational fluid dynamics (CFD).

2.1.1.1 General overview and classification

CFD methods can be classified according to the locality of treatment of the computational volume,
starting from those that treat the volume globally and ending with methods that deal at a (pseudo)-

particle level.

Spectral methods

In spectral methods, a set of field functions f; is defined, and flow quantities are approximated
by linear combinations of these functions. The duty of the numerical method is then to find
the coefficients of these linear combinations. These methods treat the flow without breaking

the volume into cells, and therefore are very global in character.

It is often recommended to choose the f; so that the boundary conditions (BC) are fulfilled
automatically; this can be done (in principle) if the BC are linear. Another recommendation
is to use a set of functions already known to be similar to the expected solutions, for instance
by using the known solutions of a simplified version of the problem. Frequent choices for the

expansion functions are:

Sines and cosines (Fourier basis) This has the advantage that space derivatives are easy to
calculate (sines and cosines are eigenfunctions of V2), there is access to the FFT technique
(which is convenient for treating the non-linear terms), and the coeflicients often have
a direct physical meaning. It has the disadvantage that sharp features in flows produce

ringing (the Gibbs phenomenon), and require many terms to be retained.

Chebyshev polynomials This basis is able to represent flows inside a computational domain,
with a better treatment of sharp features than the Fourier basis. The fast Fourier trans-

form is still available, because of the algebraic trigonometric definition of these polynomi-
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als, Tp,(x) = cos(n arccos(z)). Derivatives are still easy to represent using the recurrence

relations.

The most impressive advantage of spectral methods is the extremely large Reynolds number
that can be achieved. They have good treatment of smooth flows, but a rather poor treatment
of non-linearities, and especially bad treatment of shocks. For linearized, smooth problems
with simple boundary conditions, these are probably the best methods to use, giving high

accuracy and low numerical viscosity with little computational cost.

The range of applicability of spectral methods can be widened by using a basis of appropriate
wavelet functions, whose sharpness allows the description of sharp features in the flow. The
equations usually don’t have an exact solution in terms of an expansion in the subspace F'
generated by the basis functions f;. There is a residual, which the method tries to minimize
in terms of a set of test functions N;. If these test function coincide with the basis elements,
we have the Galerkin method, in which the error is declared to be orthogonal to the subspace

F'; this is the most usual approach, but it is not the only one.

Some non-spectral methods can be described using a spectral language. For instance, a set
of splines subordinate to a splitting of the volume in cells can be a good choice of basis; but
this good idea already makes the method more local and less global in character, and it is
an example of the finite element method. In an extreme case, Dirac delta functions can be
approximated by localized top-hat functions, centered at points in the flow; this is equivalent

to the finite-difference method.

An example of usage of the method in an astrophysical contex can be seen in Marcus (1988);

general references can be seen in Gottlieb & Orszag (1977) and Canuto et al. (1987).

Finite element methods

These methods are intermediate between finite difference and spectral methods. There is a

grid, as in a finite difference method, which can be either structured or unstructured.

At each mesh location, a localized functional shape or set of functional shapes sharing a finite
support are defined. Flow quantities are then described in terms of these functions, instead
of sample values at the mesh points as in a finite-difference description. Finite elements are
strongly recommended for problems with boundary conditions with complex geometry. The
grid can be chosen to adapt to those boundaries, especially if an unstructured mesh is chosen.

This is the reason it is the most popular method to study practical CFD in aeronautics.

1Computational meshes can be called structured, when their topology is defined from a coordinate system, and
unstructured, when the topology is defined ad-hoc (it might even be time-dependent), requiring an explicit data
structure containing topological information such as the list of vertices corresponding to a cell and the list of its
next neighbors. Structured grids, being easier to keep track of, are more commonly used. On the other hand, mesh
refinement or higher dimensionality Lagrangian methods are more efficient when coded using an unstructured mesh.
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Finite difference methods The basic idea of these methods is probably the most intuitive. A

grid is defined, and the flow quantities are represented by values defined only at the grid points.
The derivatives appearing in the fluid dynamic equations are represented by differences (hence
the name of this family of methods), and the integrals by sums. The numerical representation
of first derivatives might be by as little as two points, making the error first order in the spacing

Az, or it can be by more points, so as to reduce the truncation error to a higher order.

In finite-differencing, better physical results are found in methods that try to keep track of
flow-conserved quantities, such as mass, momentum, angular momentum and energy. This is
done by setting up volume control cells around the grid points, estimating the total value of the
conserved quantity on each such small volume —for instance, the total energy—, calculating
the expected energy flux between the volume interfaces, and use only those fluxes to calculate
the advection of energy. This is one reason why it is convenient to write the equations in
divergence form prior to finite differencing them: the fluxes become explicit in the equations.
The various grid setups used in finite differencing can also be ordered from most global to

most local. Here are some of the most common examples:

Fulerian grid These are grids fixed in space and time, over which the equation is differenced,
following the Eulerian form of the fluid equations. It is usually simpler to code than
other grids, and does not incur computational overheads of grid updating. They are best
for problems where the location of the regions of interest and boundary conditions are
known beforehand, or when evolving the grid would produce an unacceptable overhead

in computer or programming time.

Moving Eulerian grid These grids are topologically fixed, but are allowed to move in space
according to the motion of the regions of interest, tracking for instance the bulk motion

of the flow or the location of a sharp variation.

Adaptive Eulerian grids Obviously there is an advantage in having more detail in the regions
of the flow where more complex phenomena occur. This can be done by changing the grid
during run-time. Two popular approaches to this are grid refinement and grid nesting.
In grid refinement steps, points are added to the grid at run-time in regions where more
precision is looked for; de-refinement steps are also needed to subtract points that have
fallen out of the “spotlight”. In grid nesting, temporary, finer grids are created inside a
global, coarser grid, and evolved using a finer time-step than the rest of the flow. These
methods produce a very accurate representation of the flow, and are recommended when
sharp shocks, whose locations can’t be predicted, dominate the flow. They are expensive
in computational time, though, because the finer grids or refined space intervals require

a finer time step At to be both precise and stable.
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Lagrangian grid Here the grid follows the fluid elements, using the Lagrangian description of

the fluid. Mass conservation is (in principle) automatically ensured. Moreover, following
the fluid elements has the advantage that a region undergoing a sudden compression
gets automatically refined by the natural motion of the fluid elements. This is the grid
method of choice in 1-D problems, such as the simulation of a spherically symmetric star
or supernova, a point blast, or a problem with 1-D plane symmetry. In a higher and
more realistic dimensionality, flow motion distorts the shape and even the topology of the
grid cells. The usual work-around for this problem involves doing a periodic remap to an
Eulerian grid. Another solution involves working with a Lagrangian adaptive grid, which
will split cells that become too ill-shaped, and will keep track of topological changes at

run-time.

Particle methods An even more local description of the fluid than using a Lagrangian grid is
done by representing it by a set of N particles, and studying an appropriately modified N-
body problem to evolve the flow. These are often called pseudoparticles, when there is need

to distinguish them from the authentic particles in the flow.

Each particle has information on its position x;, its velocity v;, its mass m;, a local value of

the pressure or of the internal energy, and of other fields (e.g. B, j) as needed.

Each computational particle used represents a region of the flow, with an extent and shape
described by an interpolating kernel function W;. The method is usually called SPH (Smooth
Particle Hydrodynamics).

Frequent applications of SPH are to galactic dynamics, electrostatic plasmas, and other sys-
tems where there is a large density dynamic range. The low-density regions are relatively

unimportant for the dynamics, and the particle description will naturally de-emphasize them.

With the local value of v; in hand, updating the position x; is easy enough; the difficult step
lies in the calculation of forces on the particles, especially if they are long range. If the number
of particles is small, it is possible to calculate the force by adding all the interactions between
pairs of particles. The number of these interactions grows like N2, which is computationally

too expensive.

Two techniques used to overcome this limitation are:

Particle-in-cell (PIC) A mesh is set up for the purpose of storing information that permits the
calculation of long-range forces at mesh points (for instance, by solving the Poisson equation
in the case of electrostatic or gravitational forces). These mesh-valued forces are applied to
each particle that happens to lie there. The method as defined here (Particle-Mesh, PM in

short), has the disadvantage that the departures from the average, coming from next-neighbor
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forces, are disregarded. It is however good enough for non-collisional problems.

If the system is collisional, this method can still be used if we split the force between a
contribution from a few nearest neighbors, which will be calculated exactly and a contribution
from further away particles, which is calculated in an average way. The resulting method is
called P3M, because the particle-particle interactions are taken into account together with the

smooth particle-mesh part.

The identification of nearest neighbors can be done by using another, coarser mesh; particles
belonging to the same cell (or nearby cells) are considered to be next-neighbors. This particle
identification step is however computationally expensive, and difficult to parallelize; so it is

not usually done every time step.

Tree methods These methods also split the force into one between nearest-neighbors and an average
force term, but without using a mesh to calculate them (Hernquist & Katz 1989). Instead, a
tree data structure keeps information on the relative location of the particles. At the root node
of the tree, all particles are present. Successive branches include groups of closely connected
particles, until the leaf nodes, which contain only the closest neighbors. These are used to
calculate the local forces exactly; wider levels in the branching are used to calculate average
forces with varying degrees of precision, which can be tailored to balance computational accu-
racy and efficiency. Creating and updating the tree is also a relative expensive task, which is
not done exactly every time step. For the benefit of parallelization, some tree methods do a
frequent approximate update (every few time steps), followed by a less frequent full redraw of

the tree to prevent it from becoming too inexact.

2.1.1.2 Some necessary techniques and concepts

In the following I will describe some techniques applicable to some or all numerical methods, con-

centrating on those effectively employed in this thesis.

Treatment of time dependence When solving a time-dependent equation of the form

Ou(x,t)
—5 = Alu,x,t) (2.1)

time dependence can be treated either explicitly or implicitly.

Ezxplicit methods Here already known values of the field v are used in the numerical represen-
tation (for instance, finite-differencing) of the right-hand side. These values are used then

to update u. This algorithm is usually first order in time; in some favorable circumstances,
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such as those of the leapfrog method?, it can reach second order.
Implicit methods Here the numerical representation of the operator A is done using both the

present value at time-step n, and its future value at the next step n + 1. For instance,

equation 2.1 can be represented in an implicit method by

u(x, tn+1)A—tu(x,tn+1) = Au(ty), u(tns1),%) , (2.2)

where at least some of the appearances of u in the operator A4 use the unknown value
u(tns1). Finding u(tn41) requires solving an algebraic equation, which will be more or
less complex depending on the operator A. These methods are inherently higher order
in time, but tend to have better numerical stability; both features allow them to work
with larger time-steps At. However, they incur the extra costs of having to solve an extra
operator equation per timestep (which also complicates coding), and having to store both
u(tns1) and u(ty,) in the computer memory, which can also be a limitation when using

very fine grids.

Numerical stability

It has been known for a long time (von Neumann & Richtmyer 1950; Richtmyer & Morton
1967) that many numerical methods can become unstable if they are not treated properly. That
is, the output of the method can grow exponentially from a small perturbation, even when the
underlying physical system would be stable or grow at a much slower rate. For simple systems
it is possible to do a full stability analysis: the difference representation of the differential
equations is linearized around an equilibrium solution, assuming a small perturbation around
it. The growth rate of the perturbation can be found from an eigenvalue problem, and it is
of course desired that it be at most 1. For more complex systems, this stability study is not

done directly, but the experience obtained from simpler problems can be used.

In grid methods, stability of the advection terms often depends on the Courant number
(Courant, Friedrichs, & Lewy 1928), roughly defined as C = vAt/Az, where At is the timestep
and Az is the grid spacing, and v is the largest speed of transmission of information, such as
a flow speed, a sound speed or an Alfvén speed as the case may be. Stability of good explicit
methods requires C' to be smaller than a value of order unity. Fixing the desired C to some
reasonably safe value such as 1/2 or 1/10 fixes the maximum At available to the method for
a given grid spacing. From this we see that using a grid finer by a factor of 2 requires the

simulation to run for a time larger by a factor of 16, because the time step must also contract.

2The leapfrog method consists in time-staggering the positions and velocities, so that velocities correspond to half
a time-step after the positions. This can be combined with space-staggering in a grid.
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Unconditionally stable methods are those not formally required to satisfy the Courant condi-

tion, remaining stable for all values of C, no matter how large, allowing larger values of At.
Some implicit methods are known to be unconditionally stable in this sense; however, using
too large a value of At of course harms the accuracy of the method, and it is not too surprising
to find that keeping C on the order of unity or smaller is often a condition for accuracy here

as well.

Finally, 2 method can be so defective as to be unconditionally unstable, so that no matter
how small C' is, numerical instability will appear. This often happens in grid treatments of
the advection equation, where the (v-V)u term can be treated in different ways. In doing this
gradient in finite differences, it is possible to use centered differences (Az; ' (ui41 —u;—y), in a
1D problem), upwind differences (Az; " (u; — u;—1), in a 1D problem with v; > 0), downwind
differences (Az; " (u;41 — u;), in this same example), or combinations of the above. Downwind
differencing of advection terms should never be used in practice, because the method becomes
unconditionally unstable (Fletcher 1990). The simple upwind differences are stable. They
introduce an extra element of diffusivity to the equation, akin to an artificial viscosity, which
can be either desirable or undesirable, depending on the case. Centered differences are higher
order in a Taylor expansion in powers of Az, and they are therefore more accurate and less
diffusive. It is a trade-off in each particular case if their more restrictive stability is tolerable.
It is possible to combine these two virtues of accuracy and stability: that is shown below when

treating shock-capturing methods.

Treatment of shocks in the various finite-difference methods

Representing a shock numerically requires additional care. It is necessary that the numerical
scheme produces the correct Rankine-Hugoniot jump conditions, the correct front propagation

speed, and conserve energy, momentum, and magnetic flux with sufficient accuracy.

Shocks can be treated by shock resolution, for instance using an adaptive grid, or shock track-
ing, which detects the presence of a shock and applies the shock boundary conditions directly

to the cells where a shock is detected.

The preferred approach nowadays is shock-smearing, or capturing. In these methods, the shock
is purposely diffused so as to make it a few zones wider in its numerical representation than
in reality. To do that, the method imitates the physics, where real shocks are resolved on the
basis of physical dissipation, using a well-designed artificial dissipation scheme, so that only
shock regions are affected by the artificial diffusive effects. Numerical viscosity is usually seen
as an enemy of the accuracy of simulations, reducing the achievable Reynolds number and the
reliability of the method. However, in an authentic compact with the Devil, here an artificial

diffusivity is imposed on the flow with the intention of improving the treatment of shocks and
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the stability of the numerics. This artificial viscosity must be non-linear, so as to increase in

shocked regions. The most usual choice (Richtmyer & Morton 1967) for an explicit artificial
viscosity term has it growing as some power of the gradient of velocity. Ideally, artificial
viscosity should be small and irrelevant in a smooth flow, but strong near shocks to smear

them for a few grid cells (such as two or three, which is usually sufficient).

An explicit artificial viscosity alone can be enough to treat shocks. However, more and better
can be done. In the calculation of fluxes between computational cells, it is necessary to
interpolate some of the flow quantities at the interfaces between the cells (the fluxes will later
be used to update the flow quantities in a conservative way). In doing the interpolations, it
is desirable to use methods that combine a high-order accuracy in the smooth flow, with a
lower order method in the shock regions. Upwinding improves the stability of the method,
by following the direction of causality properly. It may also be desirable to have a method
to reduce unphysical noise, such as ringing; that is done for instance by using monotonizers
(other linear and non-linear filters of high-frequency noise are also used). Both monotonization
and upwinding are diffusive; sometimes so much that there is no longer need of an explicit

artificial viscosity.

Various upwinding methods differ in the order of the interpolation being used. At lowest order,
there is the simple donor cell method, in which the upwinding is done simply by choosing the
value of the variable being updated in the upstream direction. This method is very highly
diffusive, too much to be accurate. Better are higher order schemes such as van Leer upwinding
and monotonization (van Leer 1979), and the interpolator defined in PPM method (Colella &
Woodward 1984).

Once the interpolated values are found, they can be used directly in an advection step; this is
a simpler procedure, which is often good enough, especially if a price is paid by increasing the

number of grid zones. This is done in the ZEUS code (Stone & Norman 1992).

In modern shock-capturing methods, designed to handle sharper shocks at a lower compu-
tational cost in grid resolution, this is not enough. The results from the interpolation step
give a flow profile which is not used directly, but instead used as initial conditions to find the
flows, using some prescription based on the physics of the problem. This becomes necessary

for instance in relativistic flows.

For example, using Godunov methods, a Riemann shock problem is solved at each cell in-
terface; the flow obtained from that shock problem is then used in the updates. Different
Godunov methods differ in the order of the interpolator, the kind of monotonizer or other

non-linear filter used, and the construction of the Riemann solver itself, which is either exact

or approximate. We have for instance Godunov’s original method Godunov (1959), which uses
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simple (first order) upwinding; van Leer’s method (1979, using second order upwinding and a

monotonizer; Colella and Woodward’s (1984) Piecewise Parabolic Method, using higher order
interpolation by approximating the flow variables by parabolic arcs; ENO, which uses a less
drastic monotonizer than the previous schemes, with the intention of reducing clipping of the
peaks of authentic waves (Harten et al. 1987), and many others. Godunov methods do not as
a rule require explicit artificial viscosity; they take care of their own dissipation. The use of
a Riemann solver makes the methods inherently upwind, because they use locally the shape
of a solution of the shock equations. A review and tutorial on Godunov methods, written by

Manzini (1994), can be found as an interactive book on the WWW.

All the methods above succeed by purposefully reducing the order in the shock zones. In flux

limited schemes, we start (in 1-D) from a conservation equation of the form

ow 0
o= fw). (2.3)

Using a grid z;, with spacing Az;, a discretization of this equation in flux form is
w?H =wy — (Fi+1/2 - Fi—1/2)/sz' ’ (2.4)

where Fy /o, the numerical flux, is a numerical approximation to the value of f at the cell
interface z; /7, integrated along the timestep going from ¢, to t,+1. Two possible values for

the flux are considered; a diffusive but numerically stable flux FZ based on a low-order

i+1/2
upwinding, and a more precise flux Fﬁ_l /2 based on a higher order calculation, which has some
risk of instability, and their difference A; /s, called the antidiffusive flux. A combination of
both, Fiyy/2 = Fiﬁl 2t Cit1/24i11/2, will be finally be applied to evolve the w;. For instance,
in the Flux Corrected Transport method, the lower order flux is used first to construct a
reference solution for the primitive variable w;, which is then used to estimate how large C
can be at each point, subject to the conditions 0 € C < 1 and of keeping the solution from
exceeding specified bounds in its maximum and minimum values. In smooth regions, C ends up
being close to 1, while in shock regions it is close to 0. Other flux limiters are also used. A wide
family of these methods are the so-called upwind flux limiters, following a classification scheme
by Sweby (1984), as generalized by Zalesak (1987). These limiters calculate the quantity C;1/2
without previous knowledge of the other values of C. The lower order solution is not, as a rule,
explicitly computed. The family includes Roe’s Superbee method (1985), the PDM method
(Hain 1978), and many others. Many Godunov methods (including the eponymous first-order
Godunov scheme) can be written in an algebraic equivalent form as flux-limited methods, and

therefore also belong to this family.
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Operator splitting
Let’s suppose we have a differential equation of the form

ow(z,y, 2)

S0E = Aw,2,9,2) + Bw,2,9,2) . (25)

A finite difference representation of this may have the form
wi'fk = whik + (Ain + Bijk) At" (2.6)

where A and B may depend on both w™*! and w” in an implicit method, but only on w, in

an explicit one.

If solving both terms together is inconvenient, an operator split method consists on evaluating

first the effects of the A term obtaining
Wik = Wik + Aij kAL, (2.7)

and after this half-timestep is advanced, calculating the effects of B by doing

wik = wije + Bije At (2.8)
The numerical errors introduced this way can sometimes be reduced by exchanging the order

of A and B on the following timestep.

This technique is often used to separate the source terms from the transport terms in the
equation (the transport terms are often more difficult to treat). It is also frequent using it to
evolve 3-D and 2-D systems one dimension at a time, instead of treating all three dimensions
together. This technique of dimensional split allows the generalization of most 1-D schemes
to 3-D, including some schemes whose direct 3-D usage would be cumbersome or impossible.
The error introduced by dimensional splitting is small, of the order of the other truncation
error terms already tolerated. Following tradition perhaps more that authentic testing, it is
common to vary the order of the dimensions being updated on each timestep; this is expected

to avoid dimensional bias and to improve accuracy.

Treatment of the magnetic field
The magnetic field is subject to a null-divergence constraint, which should be considered in

evolving it.

Constrained Transport Probably the most direct approach to this problem is Evans & Hawley
(1988) Constrained Transport method. In this method, the magnetic field is evolved in
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such a way that no monopoles can be formed. The equation for the evolution of the

magnetic field has the form 0B/dt = V x &, with for instance & equal to v x B for an
ideal MHD problem. The values for the electromotive force field &€ are first found in all the
computational volume, and their numerical curl is found, and used to update B. If the
numerical curl is defined properly, its numerical divergence will be zero (up to machine
round-off error). If the initial B field fulfilled the divergence constraint, its updated value
will not depart from it. Implementation of this consistent numerical curl is done more
easily by using a staggered grid. If we consider each grid point in a 3-D grid as the vertex
of a small computational cube (corresponding perhaps to a small wedge in a spherical
grid), the preferred staggered grid will have its vectors B and v defined on the faces of

the cube, and the vector £ on its edges.

Other methods The V - B = 0 constraint can be taken care of also by other methods, that

will be mentioned here with less detail than they deserve.

Evolve the B field components with a method that might produce some small divergence,
then subtract a term cancelling this divergence out. This usually requires solving a

Poisson equation.

Evolve only two of the three components of B in a 3D problem, and calculate the
last component by solving the Poisson equation V - B = 0. This method has the
disadvantage that it concentrates the numerical truncation and precision errors into

this last component.

Evolve the vector potential instead of the magnetic field. This idea may be particularly
appealing in a 2-D problem, where one component of the vector potential often
suffices. For an axisymmetric problem, the variables could be the flux function %
and the component By, which is free of divergence constraints when 8/8¢ = 0. The
disadvantages of this idea is that it requires a higher order in the numerical derivatives

when calculating force terms. It becomes less convenient in 3-D.

A more risky approach consists in tolerating the presence of a non-zero V-B, but making

sure that it has no direct effects in the force term.

2.1.2 Description of ZrEUs3D

The simulations presented here are based on ZEUS36, a parallel version of the code ZEUS3D. As
the main numerical algorithm is unchanged, I start by describing the parent code, and in the next
section I will describe the differences.

ZEUS3D is a general-purpose code for three-dimensional MHD, widely popular among the as-

trophysics community. Written by David Clarke (Clarke, Norman, & Fiedler 1994), it is presently
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maintained by the LCA (Norman 1996), where the code can be obtained on request. Its easy avail-

ability and generality of scope amply justify its popularity. It is made all the more convenient by

its good manual and excellent internal documentation.

2.1.2.1 Geometry of the code

ZEUs3D uses a 3D Eulerian mesh, in any of three geometries: cartesian, cylindrical and spherical.
The structured grid is made out of three coordinate axes, called in a geometry-independent way x1,
x2 and x3, corresponding to either of cartesian (z,y, z), cylindrical (2, R, #) or spherical (r, 6, ¢).
Each coordinate axis has associated with it a main 1-D grid, called the a grid, located at the edges
between the computational zones, and a secondary grid b, located at the zone centers; this is done
to allow staggering of the different flow fields, as explained below. Each of the main 1-D grids can
move in space independently, allowing some motion to the Eulerian mesh (however, as this feature
was not found useful for the problems we studied here, it has not been maintained in ZEUS36).

Each axis extends between a minimum and a maximum active value, assigned by the user at
grid-creation time. Beyond these active values, a few non-active values are required for the purpose
of taking care of boundary conditions.

The grid is staggered so that

xla; +xla;4

xla; < x1b; = 2

< xlajyg ; (2.9)

we may then say that the a grid is centered at the index values i, and the b grid is centered at
the index values 7 + 1/2. Most scalar fields are defined at zone centers, on the b grid, at the
points (x1;41/2,%2;41/2,%X3g11/2). This includes the density p, the internal energy u, the Newtonian
gravity field ®,, the pressure p, the divergence of the velocity V - v, and many others. The vec-
tor fields v and B are defined at zone interfaces, so that the component v1 is defined at the point
(x14,%2j41/2,%3k41/2), v2 at the point (x1441/2,%25,%8g11/2), and v3 at (x1;41/2,%2;41/2,%3); sim-
ilarly for the magnetic components. The Constrained Transport method requires also the calculation
of values of the field £ = v x B; calculation of the Lorentz force may require the current j. These
two vector fields are centered at zone edges, at the locations (x1;41/2,%2;,%3t), (x14,%X2j11/2, X3%),
and (x1;,%2;,%3;1/2) respectively for the components in the three directions.

ZEUS3D can be used in a two-dimensional and even one-dimensional mode, by imposing appro-
priate symmetry flags. As a two-dimensional code, it is a descendent of ZEUS2D, written by James

Stone (Stone & Norman 1992), and also presently maintained at LCA (Norman 1996).
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2.1.2.2 Algorithm

The algorithm is explicit in time, using both operator and dimensional splitting. The transport
terms of momentum are treated using Consistent Advection, by which the fluxes of momentum on
each axis are obtained from the mass fluxes in the same directions (Norman, Wilson, & Barton 1980).
Specific energy advection is treated similarly. The magnetic field is evolved using the Constrained
Transport (CT) method (Evans & Hawley 1988), which guarantees a constant divergence of B, set
to zero initially by the user. Three different CT options are given, differing in their calculation of
the EMF term v x B, and in their treatment of the Lorentz force j x B. In the simpler option, CT is
implemented directly by doing an upwind estimate of v x B, and the Lorentz force is simply treated
as a source term in the equation of momentum conservation. This method, while essentially correct,
may be too diffusive, smearing out the magnetic field being advected. The two other options are
less diffusive, They implement a method of characteristics approach to the calculation of both v x B
and the transverse part of Lorentz force; the longitudinal part is now treated as the gradient of a
magnetic pressure. The two method of characteristic implementations, called MOC and HSMOC
in the internal code documentation, differ technically in the way the upwinding is performed; it has
been observed, however, that the older MOC can produce unphysical spikes in the magnetic field,
especially when the field is passive, making HSMOC the preferred method (Hawley & Stone 1995).

At the beginning of each complete time step, the fields stored are p, v, B, u, and ®,. Each explicit
time step starts by calculating the pressure field, and the three components of the momentum. The
three components of the momentum are updated considering only the source terms in the force,
but none of the transport terms; the terms considered are the gradient of pressure, gravity, and
the Lorentz force (its longitudinal part or all of it, depending on the usage or not of the method
of characteristics). Also the pseudoforces arising from curvature in the non-cartesian coordinate
systems supported are updated during this source step. This partial update is of course an example
of operator splitting of the whole equation. The velocities are then updated from the values of
momenta. Artificial viscosity is then applied to the flow, updating velocities and the internal energy
u. To finish the source step, the internal energy is updated, by taking into account the compressional
heating pV - v, and, for non-adiabatic problems, empirically defined cooling and heating functions.
Values of the fields in the ghost zones are then found by using the boundary conditions set up by
the user.

The transport step is in charge of calculating the advective terms, which are particularly prone
to numerical instability. Upwinding becomes a necessity here.

The transport step starts by considering magnetic effects; first of all, the transverse components
of the Lorentz force (if they had not been calculated before in the source step), and next the update
of the magnetic field, based on values of £, using the constrained transport method.

The three components of the momentum s are then calculated from p and v. By using upwinding,
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the mass flux in the direction 1 is obtained and used to update the local value of the density. The

same is done with the specific internal energy u/p. The value of the mass flux is then used to
calculate the flux of the vector s in the direction 1. This procedure is repeated in the other two
directions. On succeeding timesteps, the order of the three directions will be changed, in the hope of
diminishing the bias introduced by this dimensional split, so that if timestep 1 starts with an order
123, it will be followed by 213, 231, 321, 312 and 132. Once all the components of s are updated
due to fluxes in all three directions, they are used to recalculate v. The boundary conditions are
used again to find ghost zone values, finishing the transport step.

All terms in the flow equations have now been accounted for, and all fields have been updated.
But before starting the next timestep, the code needs to know the value of At to use. This is done
by considering the Courant condition, so that At will not be larger than cAz/v, where Az is an
estimation of the coordinate spacing; v is an estimation of the speeds of propagation of information,
including the sound speed, the Alfvén speed, and the flow speed. The factor c is a safety parameter
set by the user between 0 and 1. The timestep At also contains effects due to the artificial viscosity,
and it is not allowed to grow larger than the older timestep multiplied by 1.26; but it is allowed to
decrease by any factor (however, if the decrease is too steep, a warning is produced, and if too many
such warnings are produced, simulation stops).

Once the size of the new At is known, the code checks if there are any I/O requests, and complies
with them if present. The termination conditions for the simulation are also checked here. If they

fail, the next timestep will start.

2.1.2.3 Input/Output

A multitude of output mechanisms are provided; however, most have not been included in the parallel
version, so I will not go into their detail. They include full restart dumps, one and two dimensional
plots and dumps along slices, rebinned volume dumps, 2D integrations along line of sight, values of
selected scalars, and 3D HDF output files. Of the many output quantities included, I will mention
first the main stored fields v, B, u, p and ®,, and also other quantities, such as the Mach number,
the thermal and magnetic pressures, components of the current and of the momentum, and the
divergence of v and B.

Most user input is done while writing the initial setup of the problem (or adapting one of the
sample initial setups provided with the code) and selecting the boundary conditions to use. It may
also be necessary to edit two small files used by the precompiler, especially if there is a change in
the problem being studied or in the number of elements used in the grids. Control of the parameters
used by the code is done by editing the namelist file inzeus. Finally, ZEus3D allows some variables
to be modified by run-time input, which allow the modification of the termination conditions, or of

the conditions to produce the different kinds of output.
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Zeus3D is distributed together with a powerful precompiler, specialized in working with FOR-
TRANT7 code, called EDITOR. Also written by David Clarke (Clarke 1992), it is intended to facilitate
the management of large FORTRAN projects.

The last released version of ZEUS3D is version 3.4, which can be obtained from LCA at the URL

http://zeus.ncsa.uiuc.edu:8080/1ca_intro_zeus3d.html.

2.1.3 Parallelization: ZEUS36

Parallelization requires distributing both the data and the tasks over a set of computational nodes.
This distribution is straightforward for the case presented here, which is a fixed, structured Eulerian
mesh: the computationally cubic grid is subdivided into N equal, smaller cubic grids, each given
to one of the N computer nodes (independent processors in a parallel machine). Communication
between the nodes is realized by taking advantage of the boundary condition subroutines, appro-
priately modified to allow communication between adjacent computer nodes. The equality of the
subdivision guarantees load balancing.?

It was found convenient when doing the mesh subdivision to add one ghost zone more to the
grid, which might improve the treatment of boundary conditions. More important for parallel usage,
however, was making fully consistent the treatment of the corners and edges of the grid. Corners and
edges are of less importance when the code is not run in parallel. They become more important in a
parallel treatment, where they appear in the middle of the overall mesh rather than less obtrusively
at the boundaries of the calculation, where the simulation has lowered reliability anyway. This also
improved the performance of the code with periodic boundary conditions, which are subject to the
same need for clean corners.

The user interface was modified to make it more convenient to our usage on many different com-
puter systems, serial and parallel. For instance, it was decided not to use the powerful precompiler
EpITOR (Clarke 1992), bundled into the ZEUS3D release. This precompiler is very powerful and
versatile, but it is slower than the standard C precompiler, which was finally preferred. This change
was also intended to eliminate the need to recompile the main code: only the specific problem setup
should need recompilation. EDITOR ‘decks’ were replaced by include files, conditional compilation
statements were replaced by either FORTRAN conditional statements, invocation of user-defined rou-
tines, or, as rarely as possible, C precompiler statements. These changes were helped by the use of
dynamic memory allocation, which allows one to dispense with recompilation in the frequent event
of grid size change.* Sadly, dynamic memory allocation is not a standard FORTRANT77 feature, and

FORrRTRAN9IO is not yet easily available in all parallel systems. Therefore, dynamic memory alloca-

3 All computer nodes have the same computational load, minimizing the wait times involved when one node has to
wait for another to complete its task whose result is needed elsewhere.

4And also in the less frequent event of being able to omit some array not needed for a particular problem, such as
the energy density for an isothermal problem.
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tion required going beyond the standards. The most convenient way consisted in using Cray-style

pointers,® which allow explicit dynamic allocation of arrays whose pointers can then be passed along
via the subroutine call interface or common blocks. Unused arrays can simply be omitted from the
explicit allocation, reducing memory usage with no need for recompilation. However, not all FOR-
TRAN77 dialects available had this useful feature; a conspicuous exception was GNU FORTRAN77
(g77), which is closer to standard compliance than most other compilers. For this case, a less ob-
vious departure from ANSI FORTRAN77 standards was used, consisting in the usage of automatic
arrays.5

Communication of data between the different nodes was done using MPI —a, standard message
passing interface for parallel machines, including networks of workstations. This makes ZEUS36
easily portable in the parallel computing world: ZEUS36 has been run on the historical Delta Touch-
stone, on Intel Paragon machines, on an HP Exemplar with 128 CPUs, and recently on a Beowulf
system. The practical payoff of portability is great, especially given that the two first mentioned
systems have already been decommissioned at Caltech. Experienced supercomputer users point out

that all such machines only start to run smoothly by the time they are already obsolete.

2.2 Boundary Conditions

2.2.1 Boundary Conditions at the Accretion Disk

The launching problem will be studied here describing the accretion disk as a boundary condition
—no attempt will be made to model or simulate the disk itself. This disk is also the main motor
of the jet in the magnetocentrifugal mechanism, requiring extreme care in describing this boundary
condition.

The first question to address is the number of boundary conditions we are allowed to fix at this
surface. This was studied for instance in Bogovalov (1997), with the main intention of using the
results for steady state, axisymmetric flows; but the reasoning is general.

The number of boundary conditions to fix is equal to the number of waves outgoing normally from
the boundary, which is also equal to the number of characteristics outgoing from the same boundary
(Kontorovich 1959; Landau & Lifshitz 1987). This can be calculated counting the degrees of freedom
of the system, subtracting all constraints, and adding in the effects of the flow speed. There are, in
principle, seven degrees of freedom: the density, three components of v and B, minus the constraint

V-B = 0, and also the internal energy, because our simulation, while dynamically cold, keeps track

5Semantically very similar to the pointers used in C, even if their syntax is widely different.

5The three array dimensions are passed as integers to an allocator subroutine via either common blocks or the call
interface. This subroutine then defines local arrays having these sizes. Subroutines downstream from there are able
to read those arrays via the call interface. It may be a surprise to some FORTRAN users to know that this practice is
not completely standard, and indeed some compilers (Absoft Fortran, Paragon) still do not allow it.
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of a small internal energy. These degrees of freedom correspond to seven MHD waves: one entropy

wave, and two Alfvén, two slow and two fast magnetosonic, waves. In a plasma at rest, the pairs of
Alfvén and magnetosonic waves have opposite group speeds, propagating backwards and forwards
from the interface, while the entropy wave has zero speed. In a plasma in motion, the speed of the
plasma is added vectorially to the group speeds of these seven waves. At the z = 0 interface, the
plasma speed v, is added to the group speed in the normal direction. If this speed were positive, but
slower than the slow magnetosonic speed, then the number of outgoing waves is four, counting the
forwards Alfvén, the forwards slow and fast waves, and the entropy wave. Therefore, when studying
the launching hot plasma undergoing the slow magnetosonic transition, it is necessary to fix four
boundary conditions. In our problem, however, we are studying a cold plasma, cold enough that v,
is larger than the slow magnetosonic speed (projected on the z axis), but smaller than the Alfvén
speed. In this case, both slow waves become outgoing, albeit at different speeds. The number of
boundary conditions required is now five.

Strong geometrical restrictions such as axisymmetry or self-similarity impose strong limitations
on the waves that can propagate. Axisymmetry is responsible for the importance for steady state
flows of the fast and Alfvén surface defined in terms of the poloidal speed alone (v, = B/\/47p and
vp = Bp/+/4mp for a cold flow), independent of vg. Self-similarity limits wave propagation to the
self-similarity direction chosen.

It is interesting to observe that the proper number of boundary conditions can also be found
in an axisymmetric, steady state problem by subtracting one independent quantity per crossing of
a critical surface, which in steady state is also a constraint that removes a degree of freedom. In
principle there are three such surfaces, slow, Alfvénic and fast; however, in our simulations, the
initial poloidal v, at z = 0 is already larger than the slow speed, so only two critical surfaces can be
crossed. Five independent waves are left out of the original seven, and so five boundary conditions
should be imposed, agreeing with the more general argument above.

In some simulations (e.g. Ouyed & Pudritz 1997b; Meier et al. 1997) more BC are imposed at the
disk than allowed by the above description. In that case a boundary layer may appear between the
disk surface and the wind, where the quantities readjust discontinuously.” Typically, this produces
localized kinks in the poloidal fieldlines, associated with abnormally high values of j4. Also locally
impulsive forces may appear, which change the flow substantially between the first few active zones
in the grid and the intended boundary conditions. Artificial, locally impulsive forces are particularly
dangerous when studying a naturally powerful acceleration mechanism, because they cast doubts on
the authentic origin of the acceleration. The disk parameters do not control directly the simulation

of the wind, because they may be masked by the boundary layer.

"The boundary layer might be absent if the BC imposed happen to match the values physically given by the flow
evolution. The only practical case where this is possible is in finding stationary solutions by a shooting method.
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In an alternative presentation, it has been argued, for instance by Meier (1998), that the disk may

be resilient to react to information propagating backwards from the wind, due to its higher matter
density, so that fixing a larger number of boundary conditions at the disk is justified on physical
grounds. In particular, the angle between the fieldlines and the disk would be fixed by the disk alone,
with no wind intervention. This does not seem to be the case, due to the arguments mentioned above.
But, assuming for a moment that it is the correct picture, the interface between the disk and the
wind will naturally present the sharp variations and large curents mentioned, which a simulation of
the boundary layer region above the resilient disk should try to resolve by increasing the resolution,
describing the strong forces associated with the proposed transition instead of representing them in
a numerically impulsive way.® There is a simple interpretation that allows the simulations presented
here to adapt to this picture. In this resilient-disk picture, it is possible to find a relatively small
altitude above the disk surface where the quantities are again smooth. This altitude, which we
may call the base of the wind, can be used as a launching surface in the simulations, and it will
be sensitive to backward propagating waves, even if the disk is considered resilient to them. By
considering that the effective BC is defined at this base of the wind, the simulations presented here
keep validity in both pictures, with the only difference of replacing all references to the disk surface
by a small altitude above it.

Once the flow leaves its launching region, it will finally encounter the outer edges of the com-
putational box. The boundary conditions here are difficult to represent properly, because we have
no authentic information on the outside flow. Different guesses have been proposed in this outflow
region, mostly trying to reduce unphysical effects such as wave reflection on the box boundaries;
however, no matter what is done, the issue remains that these are guesses and not real knowledge of
the outside flow, especially when out of steady state. However, if the flow is already super-Alfvénic
when it reaches the box surfaces, the influence of these outer boundary conditions is substantially
reduced, and it is possible to relax some of the care required in their treatment. The usage of simpler
outer boundary conditions is then allowed. Fortunately for the problems studied here, most or all
of their outer boundary surfaces are super-Alfvénic.

When using cylindrical coordinates, two purely geometric boundary conditions also appear: the
azimuthal boundaries at ¢ = 0 and 27, and the inner radial boundary condition at the axis R = 0.
These are both easy to treat geometrically, the first by periodicity, and the second using rotational

symmetry.

8No simulation up to the present has achieved enough resolution to do this kind of study in this region with sharp
gradients of density, and, inside the present assumption, with large currents. Probably the closest would be Miller &
Stone (1997).



39

2.2.2 Numerical implementation

In these cylindrical simulations the computational grid has at most six boundaries: axis (R = 0),
outer radius (R = Rnay), disk (z = 0), outer height (# = Zmax), and inner and outer azimuth
(¢ =0, 2m). The last two obviously disappear in a 2-D axisymmetric study.

The ZEUS code enforces boundary conditions by assigning values to the fields p, u, v, and € at
the grid edge and at a few ghost zones beyond the edges of the active the computational grid. In
each coordinate direction,' there are up to three ghost zones to each side, continuing both the a a
and b grids described in §2.1.2.1 or in Stone & Norman (1992).

The boundary conditions for B are enforced indirectly from the values of £, using the equation
0B/0t = V x £ to evolve B in both active and ghost zones, ensuring V - B = 0 everywhere; this
indirect treatment of the magnetic boundary conditions is required by the Constrained Transport

method to avoid formation of numerical monopoles.

2.22.1 ¢=0,¢=2r

These two boundaries are very easy to treat, by enforcing the periodicity f(¢) = f(¢ + 2n) for
all fields f. When working on a parallel computer, and there is more than one node spanning the
azimuthal range, this requires communication between the first and the last computer node in the

¢ direction.

2.2.22 R=0

The axis boundary is geometrically well-determined by symmetry, and it presents no complications
either in implementing or running. The conditions are implemented as usual for the axis in cylindrical
coordinates, by observing the result of rotating the model by 180°, which should be equivalent to
a change of sign in R. This implies that in the calculation of ghost zone values for R < 0, scalar
fields f are reflected (f(R) = f(—R)), and components of vectors A are reflected with a change of
sign for the R and ¢ components (4,(R) = A,(—R) as the scalars, but Ag(R) = —Ag(—R), and
Ag(R) = —Ay(~R)).

2.2.2.3 2z = zZmax

The upper boundary is treated by using an outflow boundary condition, as defined in the ZEUS3D
code. Specifically, for z > Zmax A(2) = A(Zmax) for all fields, except for v,(z) = max(v,(2pax),0).
This is not perfect, but, as the physics of the model implies the existence of a supersonic, super-
Alfvénic accelerated outflow, these imperfections are not expected to have a large influence in the

simulated flow.
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2.2.24 R =Ry

This is more delicate, especially for some of the simulations, where the flow at small heights above
the disk is sub-Alfvénic, and can influence the upstream flow. In practice we use similar outflow
conditions as for z = zmax. If there is a fieldline that becomes trans-Alfvénic only at the box edge
R = Ruax, such as ¥ = ¥, in the axisymmetric simulation shown in Fig. 3.1, it is clear that
artificial conditions imposed at R = Ryax for ¥ > ¥; may induce spurious collimation. In the
present treatment, it becomes necessary to explore the sensitivity of the results to the treatment of
this part of the boundary. (cf. §3.3).

In one example of an alternative prescription, Romanova et al. (1997) have used a “force-free”
prescription, j,||Bp, that can be written as B, - V(RBy) = 0; a later proposal from the same
authors is taking B, - V(RBy) = aBgrBs, with a a constant to be determined (Ustyugova et al.

1999), observing that artificial collimation may occur for inappropriate box sizes.

2.2.2.5 Disk Surface at z =10

Even more important is the treatment of z = 0. It represents the launching surface of the model,
located at the top of the disk, or the base of the corona, above the slow magnetosonic surface. Its
properties will determine all the flow downstream.

As explained above (§2.2.1), the number of BC to fix is five. We chose to fix the five fields p, u,
&4, €r and v, at the disk —if launching were sub-slow, the presence of the slow critical surface would
reduce the number of independent boundary conditions to the first four. At z = 0, the boundary
conditions for £; and £g are derived from the infinite conductivity of the disk material, giving £4 = 0
and £ = RNB,. The condition for £y = (v, X By) - $ implies that v,||Bp, vr/Br = v;/B; =
vp/Bp. The condition for £ = vy B, — v, By implies that vy = RQ + Byv, /B, = RQ + Byv, /B,.
Implementation is done by assigning values to fields at the ghost zones z < 0. Density, velocity and
internal energy are defined at the ghost zones as straightforward functions of R, with u = pc2,/(y—1)
for a small constant csg. This fixes the mass flux pv,; if our launching were subsonic, this quantity
should be determined from the crossing of the slow critical surface.

The magnetic field evolves in time following 8B, /8t = R~*0RE,/OR, 0BR/0t = —0E4 /02, and
OBy /0t = 0ER/Bz— O, [OR. Fixing £y = 0 at z = 0 allows us to keep a constant B, (R) at the disk
surface, anchoring the field lines to the disk. The angle 8 = arctan(Bg/B,) between the lines and
the vertical should be allowed to change in time, because otherwise the fieldlines might get sudden
kinks at z = 0, associated with large currents and localized forces. This requires a £4(z) dependence
allowing Bpr evolution. We demand that £, be odd in 2, so that it vanishes on the disk z = 0.
Time dependence of B, becomes odd in z, and that of Bg even. The final inclination 8 of the field

line is decided by the flow itself and its crossing of the critical surfaces, producing a much better
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steady state than alternative approaches in which the fieldline inclination is fixed. Similarly we make
Er(z) symmetric around its known value at z = 0, defining £r(2) = 2RQ(R)B,(R) — Er(—2) for
2z < 0. (An alternative possibility here would be extrapolating the fieldlines inside the ghost zones;
however, this is somewhat more difficult to implement.) With this choice, one term of the time
dependence of By is even in z. We make the other term also even, by requiring &,(z) = E.(-2),
which allows this quantity to vary freely. Finally we need values for vg and vg. We will take them
from vg = Bpv./B, and vy = RQ + Byv,/B,, which we implement using the values of B, and
at z = 0. Following the variation of these quantities inside the ghost zones is also a possible option.

In simulations that present a finite disk of radius Rp (such as those in chapters 4 and 5), it is
necessary to set the functions v,(R) and B,(R) to zero for R > Rp. The 2z = 0 boundary conditions
for R > Rp, ouside of the finite disk, must be modified. This is done by obtaining ghost values for
z £ 0 of p, u, vy and vg from their values at the first active zone with z > 0, and assigning the
ghost values for v, to zero.

In some simulations —early in the run of the simulation, long before steady state is approached—
v, becomes negative at the first active zone close to the disk. In that case the boundary conditions
are modified, allowing the disk to absorb the backflow, thus preventing the numerical artifacts shown
in §2.2.3. This is implemented by temporarily assigning ghost values at z < 0 for the fields p, u, vg,
vg and v, in the same way described in the previous paragraph. ® With this prescription, backflow
is absorbed, and eventually disappears.

In most of this thesis the mass flux j = pv, has been prescribed as a function of R alone, although
mass loading is effective only for #>30°. However, in the steady state simulations presented here
this inequality is satisfied for most of the disk outside the innermost region, justifying the choice of
disregarding 6 dependence in these cases.

The functions of radius are parametrized using a combination of exponents and softening radii:

PR = po/y/(L+ (B/rp)2)e (210)

B.(R) = Buo/v/(+ @/ (211)

R (212)

S Y2/ (R L 2.13)
L+ E'roc))

Veouter = (fooRUR)) v/ T+ (RIrua) o (214)

(2.15)

Exponents v = 1 (linear) and v = 2 (quadratic) were used. For large R, v, o R(¢vt1/2) = R=¢ev,
j=pv, < R~(evte) = R=¢ and U o« R—(e0—2) = R—ev,

°In some simulations, however, the internal energy was set to u = pc2y /(v — 1) in the backflowing ghost zones;
given that these simulations are remarkably cold, this is a small detail that made no dynamical difference.
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For finite-disk problems, the functions B,(R) and v,(R) must go to zero for R > Rp, taking

care that their ratio must be kept finite, because it is used in the boundary condition for vg. This is
performed by multiplying both of them by a continuous function f (R) which softens the transition

to zero by spreading it out over some interval. The most frequent choice was an arc of a cubic spline,

0 if R> Rp
fB) = 3 (B-Rp) [(roirey — 2 2Rtys| i Rov < R< Bop (2.16)
1 if R<Rp; ,

which spreads the transition smoothly over the interval [Rp;, Rp].
The boundary condition for vy defined above needs a definition of the Keplerian speed v = R
to be complete. This has been taken from the softened Newtonian gravity field

Q2 3
@, =998 (2.17)

\/T2 + 22 + R?

with (g and r, fixed parameters. The product vkxo = Qory gives the scale of Keplerian speeds, so

that
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at the launching surface z = 0. The critical angle 8. for this smoothed gravity is given by tan? 6, =
1/3 + r2/R?, only slightly different from 30° for R>>r,.

This implementation of disk boundary conditions uses some values of the fields in the corona;
there is upstream propagation of information. The velocity at z = 0 is supersonic but still sub-
Alfvénic; upstream propagation of waves is physically expected. A simulation that omits this effect
is incomplete, and our results are, manifestly, sensitive to the treatment of the surface conditions.
There is, in principle, a risk of numerical instability involved in using this information in the code;

fortunately, our runs did not show this kind of instability.

2.2.3 Pitfalls

We mention here some numerical problems that had to be overcome in developing and testing the
code, in the spirit of helping developers of similar codes.
A simulation can develop backflow through at least two physical mechanisms. One is simple

gravitational infall, which operates mostly in the axial region, where the magneto-centrifugal accel-
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eration fails. A second mechanism is cocoon backflow. Due to the differential Keplerian rotation, the

inner parts of the flow launch a jet earlier than the outer parts. The cocoon of this jet may produce
a temporary backflow. When the backflow impinges on the disk boundary, our boundary conditions
shown in §2.2.2 carefully allow the disk to absorb it. This easy prescription avoids the problems
discussed below. However, in our earliest simulations, the disk boundary condition was independent
of the sign of v, in the first active zone. This created two kinds of trouble: false acceleration, and

filamentation.

2.2.3.1 False acceleration

If there is backflow onto the disk, it encounters a boundary condition imposing a positive speed
outwards. Compression increases the density close to z = 0. This increased mass is then flung out
at the speed v, given by the boundary condition imposed. No physical process is involved: only a
badly chosen boundary condition. This false acceleration is seen more clearly when we reduce the
axial injection, allowing the gravitational infall to go all the way into the disk; with these incorrect

boundary conditions, the infalling flow quickly bounces back unphysically.

2.2.3.2 Non-physical filamentation

Suppose that, early in the simulation, a portion of the cocoon backflows onto the disk at some radius
R = R;, already far from the axis. If the disk boundary condition enforces a forwards speed v, > 0
to the material, we will get an increase in density due to the artificial compression of the coronal
material. If the ejection speed v, is not large, a fast bounce-back will be avoided, and we will not
get a false acceleration like in §2.2.3.1. Nevertheless, we still get a localized region, close to the disk,
where the density is abnormally large. This larger density will be associated with large localized
By, and it will have a large inertia; the magneto-centrifugal acceleration will not be enough to lift
the material up. The region around R; will be a hole in the acceleration front; the jet will proceed
forwards for both smaller and larger radii, but it will stagnate here. A succession of such holes
would make the simulation look filamentary; again, allowing the disk to absorb the backflow avoids
this numerical effect. This numerical defect is more interesting than the previous one, because it is

possible to imagine physical (instead of numerical) conditions that may produce a similar effect.

2.3 Initial Conditions

Naturally, we are mostly interested in flows that are independent of the starting conditions. It
turns out that in most cases, transients decay in a few Alfvén crossing times, and do not influence
the late final flow. Nevertheless, they deserve some detailed explanation, at least for the benefit of

researchers wishing to check and continue this work.
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The initial density at z > 0 is given by p(z, R) = n,p(z = 0, R), with 1, < 1. Initial v, in the
corona is defined similarly through v,(z, R) = n,v,(z = 0,R). The initial value for the internal
energy is u = pcZy /(v - 1).

In axisymmetric problems, B, at z = 0 is always defined from its boundary condition value
B.(R) at z = 0. This gives the flux ¥ at the launching surface. The flux in all the volume is defined
using either of two alternative prescriptions: fixing the shape of the initial fieldlines, or setting the
initial toroidal current js to zero. The calculations needed for this second case will be shown in
§2.3.1.

In the first case, the initial fieldlines are prescribed by giving the initial position of the footpoint
(z =0, R = Ry) corresponding to the poloidal fieldline passing through a point (z, R). This footpoint

Ry is found from the equation
R3 — (R —mygre(1 4 2/7¢)°) Ry — Rmyry =0, (2.20)

where Bq, 74, €3, T¢, €¢ and m, are constant parameters. The lengthscale , determines the location
of the initial footpoint R, of the critical fieldline ¥, with 8 = 4., e, gives the initial curvature and
collimation of the fieldlines, and m, sets the maximum slope tan @ allowed for the fieldlines, through
the prescription tanf = e,R/(r; + R/my) valid at z = 0. If m, is set to infinity, all angles # are
allowed, and Ro(z,R) = R/(1 + z/rg)e¢.

In most of these simulations the initial value of By has been set to zero, and, consistently, the
initial toroidal speed at z = 0 is Keplerian, vy(z = 0, R) = vk = RQ(R). For simplicity, this initial
vy is chosen as independent of z. Finally, the radial component of the velocity, vg, is set to zero in
the bulk of the flow, and to its boundary condition value vg = Bg(v,/B,) for 2 < zmin, where zmin
is the value of z at the first zone above the disk.

In some 2-D finite disk problems, it was found that convergence to a steady state could be
accelerated by assuming a lighter coronal density, with a density reduction that follows ellipses with
foci at the edges of the disk, (z =0, R = £Rp). For a given point (z, R) in the poloidal plane, with

z> 0, or R > Rp, the sum of the distances to these two foci is calculated:

f=+v([R~Rp?+2*+/(R+Rp)*+22 . (221)

This value is then used to find the initial density, following
—€pi /2
—~2Rp\’
p(z, R) = 1,p(z = 0, R) ll + (f——D) ] : (2.22)

Zpi

where z,; and e); are appropriate constants. The initial value for the internal energy is again
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u = pcZy/(y —1). This lower initial density profile makes it easier for the flow to sweep out the

initial condition and relax to steady state values; this is particularly useful in simulations using
very large boxes, which extend far away from the Alfvén surfaces. However, reducing the density
makes also for a worse initial Courant condition, because Alfvén speeds are larger. The value of the
exponent e,; is chosen based on this trade-off.

The few modifications of the initial conditions, required by non-axisymmetric 3D simulations,

will be presented in §5.2.

2.3.1 Current-free poloidal field

In this prescription for the initial poloidal magnetic field, it is necessary to find a current-free field
compatible with the choice of B,(R) at z = 0. The advantage of a guaranteed smooth value for
the initial currents becomes important in the case of the non-steady solutions, removing suspicions
of their non-steadiness being due to numerical artifacts originating in small discontinuities in the
current. It will also be interesting to compare the final configuration of fieldlines with the initial

potential field. Using the flux function (z, R) as the dependent variable, the differential equation

cR 0% o 10y
— | — = — 1 _— | —— = 2.2
(47r)7¢ 52 T 53R (RaR) 0 (2:23)
can be solved by separation of variables, subject to the boundary conditions #(z,R = 0) = 0,

¥(z = 00, R) = 0, and ¥(z = 0, R) = ¥(R), with 1¥(R) a known function of R, that flattens to a

constant value ¢p for R > Rp, the outer radius of the disk for finite-disk problems. The solution is

¥(z,R) = R /0 oodke‘szl(kR)g(k) (2.24)
o) = k[ drAGRGE (2.25)
— & / " ARIR)F(R) + Jo(kRo)op (2.26)

0

where J,, are Bessel functions. Doing these integrations at each grid point can be expensive, espe-
cially in regions where these integrals are slow to converge, due to the rapidly oscillatory integrands.
For finite-disk problems, a more convenient and safe procedure consists in evaluating with sufficient
approximation the integrals at the edges z = zmax, R = Rmax, which together with the known values
of ¥(z, R) at the disk and axis, set up the Dirichlet boundary conditions for the elliptic differential
equation 2.23. Assuming that the spherical radius at the edges is r > Rp, the integrals can be

expanded in powers of k. The first two terms, which proved enough to calculate our boundary
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values in finite disk problems, are

¥(z, R) = ¥p(l - 2/r) + gazRQ/r5 , (2.27)

where a = ORD RyY(R)dR — %wDRzD. The elliptic equation j4 = 0 was then solved by a relaxation
method of Successive Overrelaxation (SOR, Press et al. 1992), assuming (2, R) = 4(r)(1 — z/r) for
the initial guess required by the method.

When doing this relaxation, erroneous results were sometimes observed, ranging from results
subtly dependent on computer architecture and other non-physical parameters, to runs collapsing
with obviously unphysical results. After some heavy testing, these errors were finally traced to
defects in the Absoft compiler used on the Linux machines. A workaround for the error was found,
disabling optimization of a particular variable involved in a loop (with a special FORTRAN extension
option). A contact to the supplier gave a more general workaround for this serious defect, ultimately
due to overeager but erroneous optimization in the strength reduction step, especially visible in
loops with variable bounds, as required by the Numerical Recipes implementation of the relaxation
method. This workaround requires downloading a variant version of their compilation script, and
then turning on one undocumented flag in the compilation line, thus disabling the excessive and
erroneous optimization. I thank the customer support of the Absoft Corporation for their prompt

answer, which enabled us to continue using their product.

2.4 Code Tests

2.4.1 Parallelization tests

Parallelization of the code was tested by running 3D MHD problems, split over different numbers
of computer nodes, checking that both even and odd number of nodes in the different directions
would be used (such as 2 x 3 x 4 nodes), and comparing the results with single-node, unsplit output.
The comparison was done very stringently, in a bit-per-bit basis, which, when comparing across
different architectures, always requires forcing the compiler to produce fully IEEE compliant code,
and sometimes requires transforming the endianity of the output.

Passing this stringent test required including a few extra calls to the boundary condition subrou-
tines after some of the field updates. For instance, the boundary conditions are called by ZEUS36
during the trasport term calculation, immediately after each of the updates of p and u, where the
original ZEUS3D code delayed the boundary condition call for after the completion of the transport
step. Probably this measure was not the most efficient, and involves some overkill; however, it was
decided to err on the side of safety and correctness versus efficiency. However, probably efficiency

is not deeply harmed here, because boundary condition updates are usually less computationally
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expensive than full field updates, growing like N2 instead of N3, for a typical grid size N.

Having passed these tests, it is now possible to be certain that the code ZEUS36, when used
properly and (at least) for the subroutines probed by the test problems, produces exactly the same
results when used on either a serial or parallel computer —provided, of course, that the problem is
not so large as to overwhelm the capacity of the serial processor.

This stringent testing had to be repeated for the setup, ensuring that proper parallelization has
been done, not only for the main numerical engine, but also for the problem setup and problem-

dependent boundary conditions.

2.4.2 Boundary condition tests

Once the boundary conditions were implemented and properly parallelized, it was necessary to check
if the flow was properly following them. The most stringent test performed consisted in running
a simulation up to steady state (such as the simulation presented in §3.2), and then checking if
the quantities 2 and [ indeed behave as functions of the flux 4 alone, especially at low altitudes 2
above the boundary. The results are shown in Fig. 3.6. The agreement found for Q is excellent, but
that for [ was subject to some visible but minor defects for the first few active zones. It was found
that the best choice, reducing z dependence in [, was setting vg from its boundary condition value
vg = Brv, /B, for z = 2z, 1 (with z;, = 0), despite the fact that this value of z > 0 is an active
zone for other fields such as vy, p, Br, and u. Most probably there is still room for improvement

here.
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Chapter 3

Launching of Cold Winds
3.1 Introduction

The magnetocentrifugal mechanism (Blandford & Payne 1982) is simulated, under the assumption
that the winds are already fully supersonic at the launching surface. This was done with the intention
of isolating the magnetocentrifugal mechanism from thermal forces, which might cast some doubt
about which mechanism was responsible for the jet formation. In the magnetocentrifugal picture,
parcels of cold gas are stripped from the surface of a Keplerian disk and flung out along open magnetic
field lines by centrifugal force. At large distances from the source region, rotation winds the field
lines up into concentric loops around the axis. These magnetic loops pinch on the outflow (or wind)
and collimate it into a narrow jet. The mechanism has been investigated for instance in Clarke
et al. (1986), Lovelace et al. (1986), Pudritz & Norman (1986), Konigl (1989), Ostriker (1997), and
recently reviewed by Konigl & Pudritz (2000). Here a simulation procedure was adopted, searching
for steady-state solutions for a given set of boundary conditions defined at the disk surface. This
flexible approach has been adopted by several authors (e.g., Lind et al. 1989; Stone & Norman 1993;
Ouyed & Pudritz 1997b; Romanova et al. 1997; Ustyugova et al. 1999). The boundary condition on
the disk was treated as described in §2.2.1 and §2.2.2, avoiding overdetermination that may cause
the effective boundary conditions governing the wind flow to differ from those imposed at the disk,

as mentioned in Meier et al. (1997).

3.2 Reference Run

Here a fiducial or reference simulation is described, to help fix ideas and in the presentation of
results. The final, stationary solution is shown in Fig. 3.1. The simulation box has 256 x 128 active
pixels, with 0 < z < 80.0 and 0 < R < 40.0. Initial and boundary conditions for this run are
shown in Fig. 3.2. The boundary density at z = 0 is constant and uniform, p = pg = 1, with initial
p = 0.1pg for z > 0. The Keplerian velocity scale is given by vko = Qory = 1, with ry = V3. The
function v,(z = 0, R) is determined by v,0 = 1.7, fyo = 0.1, 7yi = Tyo = Ty, €yi = 2, €yo = 1,
making e, = 1.5. Initially v,(z > 0, R) = 107%0,(R), By, = 0 and v, = RQ(R), independent of
z. The parameters determining B, are B,o = 4ukovA4mpo, o = T4, € = 3/2, 10 = 14, €¢ = 1

and my = v/3 = tan60°. The initial sound speed is set to ¢, = 0.0002, ensuring that pressure is
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unimportant in this simulation. The adiabatic index is v = 5/3.

The flow is then evolved until a steady state is reached. Once in steady state, the flow is
accelerated up to 2.77 times the Keplerian speed at the launching point; the acceleration is purely
centrifugal and magnetic. The maximum Alfvén number v, /v4, = 3.98 is found close to the upper
edge, where the maximum fast Alfvén number vy, /v 4; is also found, equal to 1.36. Collimation of the
fieldlines starts even before the flow crosses the Alfvén surface v, = v4,, as can be seen in Fig. 3.1.
The minimum Mach number is 140, showing that pressure is dynamically unimportant in this cold
simulation. The acceleration along the fieldline ¥ = ¥, passing through the outer edge of the grid
is shown in Fig. 3.3. Important fieldlines are ¥y, the last fieldline able to make the Alfvén transition
inside the computational volume; ¥, the fieldline making a critical angle . with the axis; and ¥y,
with footpoint at R = r,;, at the outer edge of the “core” inner injection, thus separating this core
from the wind region.

We have followed this simulation for a time equal to 2.6 Keplerian turns 27/Q at R = Rmax
(and, equivalently, 94 turns at the critical radius R., 170 at the smoothing length radius r4). The
poloidal velocity and the magnetic field change by less than 1.1 x 10~* in the last 10% of the run.

The approach to steady state can also be observed in the integrals of motion , [, k and e (Fig. 3.6)
which are already functions of ¥ alone, with the exception of border effects for the smallest and
largest values of z, important mostly for the non-centrifugal core region, ¥ < ¥,. We followed these
integrals along all the fieldlines in the wind region where ¥ > ¥,, and found that on each fieldline
the integrals depart from their averaged value by less than 5% for Q, 6% for I, 7% for k and 7% for
e. This still overestimates the errors; the corresponding standard deviations divided by the mean
are less than 0.3% for Q, and 3% for the other integrals, further improved to 0.9% if the outermost
region ¥ > ¥, is excluded.

The Alfvén radius can be found from Mestel’s theorem R4 = I/Q. Our parameter choice is such
that angular momentum is primarily extracted from the disk by magnetic stress. Therefore we can

estimate [ for low values of z by its magnetic term alone, and write an approximate lever-arm ratio

as Ra/Ro = \/—(By/B.)v%,/v.vk. Fig. 3.4 shows the observed value, the exact formula and the
estimate; all agree on a value around 3 for all fieldlines, already large enough to justify approximating
[ by its magnetic term. In the formula of the estimate, the boundary conditions determine all the
quantities at z = 0, with the exception of the toroidal field By, which is allowed to self-adjust in the
simulation; assuming a value for the lever-arm ratio gives an estimate for the toroidal field at the
base of the wind in steady state, which can then be compared with disk models to check consistency.

The collimation shifts the position of fieldline ¥, which makes a critical angle with the disk
surface. In steady state 0. is found at R, = 1.85r,, while initially it had been R, = 1.63r,. The
integrals M (¥), L(¥) and G(®) are the total fluxes of mass, energy and angular momentum between

the axis and a fieldline ¥. They have very little numerical dependence on the height z of the surface
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used to perform the integration, because the ZEUS algorithm respects these conservation laws. The

axial thrust T' used here is divided by a factor of 2, defined as the surface integral of the kinetic energy
term pv2 /2, calculated at z = zpax. The integrals M and ¥ at z = 0 are completely determined from
the boundary parameters, and have been done analytically. These results are shown in Table 3.1.

It is important to observe that in this steady state, not only do the fieldlines and streamlines
collimate, but also the density, which is roughly a function of R alone for large z, as shown in
Fig. 3.5, in spite of the boundary condition at z = 0, where p is kept constant. This result is in
accord with previous asymptotic analysis (Shu et al. 1995).

As a stringent quality check, we made contour plots of the ratio between the magnetopropulsive
and magnetocentrifugal forces per unit mass along fieldlines, fas and fc, defined in equations 1.32—
1.33. Centrifugal acceleration dominates close to the disk, approximately up to the point where
vp achieves the local escape speed; magnetopropulsive acceleration takes over afterwards. There is
no visible discontinuity associated with the fieldline ¥ = ¥;; this shows that the influence of the
sub-Alfvénic boundary at R = Ry, is not unduly large. However, there is a triangular region near
the outer corner where fjr < 0, decelerating the flow —the vertices of this triangle are the points
(z = 60, R = 40), (# = 80, R = 30) and the outer corner. The box was enlarged in both directions
z and R, as shown below in §3.3.1.2, which showed that this is an artifact caused by the edges and
not a physical effect.

Table 3.1: Mass discharge M, luminosity L, torque G, and thrust T at selected fieldlines labeled by
their magnetic flux ¥ or footpoint Ry. M is in units of povkor?, L in povier?, G in povkers, T in
PoV%oTi, and ¥ in units of /Ampoukor:. Thrust was calculated at z = Zmax.

lI’O ‘IIC lI’e 2‘Ilc 3\I,c ‘I’l Rmax

I 55 131 181 205 240 250 285
G 88 31 54 71 109 127 265
M 32 60 77 86 102 108 14.8
¥ 9.5 226 358 452 679 79.2 191
Ry 1.73 320 4.77 6.01 9.41 11.35 40
Ra/Ry, 294 314 329 338 350 351 -
T 1.9 41 55 - - - -

3.3 Validation

In this section, the reference run described in §3.2 is criticized, in order to find if it has any dependence
on non-physical parameters such as resolution or the size of the computational box, or uncontrolled

dependence on the initial conditions.
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3.3.1 Dependence of the reference run on resolution and box size

3.3.1.1 Resolution

The resolution of the original reference run is reduced by one half, using a box with 128 x 64 active
pixels, 0 < 2z < 80.0 and 0 < R < 40.0. Simulation converges to a steady state similar to the
reference run, with maximum v,/v4, = 3.74 and maximum v,/va; = 1.33. The resolution test is

therefore passed.

3.3.1.2 Box size: éhanges in both length and width together

This simulation is performed in a larger box, with 256 x 128 active pixels, 0 < z < 160.0 and
0 < R < 80.0; this is the same space resolution used in §3.3.1.1, with a box extending in space to
twice the height and width of the reference run. The lower quadrant of the final, stationary state
of this simulation is compatible with the reference run. For instance, in Fig. 3.10, the surfaces of
constant Alfvén number for the two runs compare with good results. The strongly accelerated flow
found before is reproduced, with a maximum Alfvén number in the lower quadrant of this run of 3.78,
and a maximum fast number of 1.34. These results are close to the reference run and even closer
to the results of §3.3.1.1, showing a numerically small and qualitatively irrelevant dependence on
resolution. Tt is important to check the ratio far/ fc of the forces acting along the fieldlines, especially
where this quantity was ill-behaved in the reference run, now the center of the computational box.
Fig. 3.11 shows that far/fc in this region is smooth, with positive magnetopropulsive acceleration;
therefore the conclusion is that the deceleration observed in the reference run was only an edge
effect related to the outer corner. As another indication that outer boundary conditions effects are
responsible for this effect in fys, this simulation shows a tiny triangle of magnetic deceleration near

its outer corner.

3.3.1.3 Box size: change in width only; a sub-Alfvénic case.

This run has also the same physical parameters, changing only the shape of the computational box.
Here the larger box from §3.3.1.2 has been cut in half, obtaining a square box with 128 x 128 active
pixels, 0 < z < 80.0 and 0 < R < 80.0.

The results show that the Alfvénic surface crosses the outer boundary z = zpax: the flow at
the boundary R = Rupax is fully sub-Alfvénic. The last fieldline able to make the Alfvén transition,
¥ = Uy, now crosses the 2 = zya, edge. It marks the separation between two very different kinds of
simulated flow. Towards the axis, the usual magnetocentrifugally accelerated flow in steady state is
present. But outside, in the sub-Alfvénic region, there is a complex structure out of steady state, with

filaments of magneto-centrifugal acceleration approximately parallel to the fieldlines, wide islands

where the magnetopropulsive force fy is negative, and sharp variations in the magnetic twist By/Bp.
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Collimation is excessive, slowing down the acceleration of the flow. The total projected force along

fieldlines, f, + far + fc, is negative in a sizable part of the box, instead of only around the axis.

As shown in §3.3.1.2, this complex flow disappears in a larger and axially elongated box; it is
created by the finite size, which sets artificial limits on the critical surfaces. The fieldlines in the
¥ < ¥ region are able to reach the Alfvén surface, carry the proper critical point information, and
propagate it downwards to the disk. Due to the shape of the box here, most fieldlines have ¥ > ¥,
with critical points at 2z > Zmax, inaccessible to the simulation. Mathematically, the assumptions
used to decide the number of functions to fix at the disk surface are wrong, because the critical
points are not reached. In this region, each streamline is nearly independent, creating the possibility
of filaments.

To further check this assumption that the different behavior of our square and non-square boxes
is due to the location of the Alfvén surface, the Alfvén surface used in §3.3.1.3 was displaced by
reducing the intensity of the magnetic fields by half without changing the box. This allows the flow
to become super-Alfvénic inside the square computational box. The flow is now smooth, showing
that the relative position of the simulated Alfvén surface and the computational volume determines
whether the run will be filamentary or smooth. We have also checked that the conserved quantities

are functions of U.

3.3.2 Dependence of results on initial conditions

When large parts of the flow are unable to cross the Alfvén surface, it raises the possibility that the
solution is no longer unique, because the boundary conditions do not determine the solution. This
may produce dependence on the initial conditions, as observed in the simulation described here.

The setup used is similar to the reference run, differing only in the initial values of Bg and vy,
set by vg(2z = 0,R) = (1 — fBy)vk and By(z = 0.R) = fpgvkB./v,, with fpg a small fraction,
equal to 0.01. For simplicity, we have kept the initial values of B4 and vy independent of z; we could
have chosen them to make the initial Q a function of ¥, but the initial values for By would still be
away from steady state.

This simulation starts with a large initial toroidal field, which later in the run provides excessive
collimation of the fieldlines, making the angle 8 too small for magnetocentrifugal acceleration. Also,
the magnetic force along the fieldlines is such that B = (RBy)? acts like a pressure (equation
1.33), often producing acceleration; but here B grows along the fieldlines, decelerating of the flow.
Filamentation, low acceleration, and high twist result. This flow is sub-Alfvénic throughout the
volume. We observe here that initial conditions can matter in these simulations, provided that the

Alfvén surface is not reached.
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3.3.3 Results of the validation tests

These tests show that when a majority of the fieldlines reach the critical Alfvén surface inside
the computational volume, acceleration of the flow is not affected by artificial effects due to the
finite computational box, and it can proceed smoothly, provided that the parameters of the flow
allow a physical, stationary solution. If these conditions are met, the simulation results depend
mostly on the disk boundary conditions, with little dependence on the outer boundary conditions.
The transients are quickly swept up by the advance of the fast accelerating flow. The opposite
happens when too many fieldlines lay in the ¥ > ¥, region: then the runs show filamentation,
excessive collimation, dependence on initial and outer boundary conditions, and —obviously— a
slow acceleration. As shown in §3.3.1.3, the shape and size of the simulation box can sometimes
induce artificial instability in sub-Alfvénic flows. Caution must be observed also in steady-state
sub-Alfvénic flows, due to their possible dependence on the outer boundary (3.3.2). Controlling the
position of the critical surfaces inside the computational box can improve convergence, and avoid
this kind of numerical uncertainties.

Knowing the importance of keeping this control has helped in the setup of the subsequent simula-
tions. For instance, the critical surfaces are well controlled in the simulations presented in chapters 4
and 5 by setting up initial and boundary conditions such that a finite, rotating disk will be enclosed
by the Alfvénic and fast surfaces, which are fully nested inside the computational box. This setup
successfully minimizes the influence of the outer boundaries, where the flow speed is now faster than

the propagation speed of waves.

3.4 Parametric Study

Now that the reference simulation presented §3.2 is validated, with a known range of reliability, it
is possible to vary some of its parameters.
Here we explore the steady state solution dependence on changes in the functions v,(R), p(R)

and B, (R), parametrized by the exponents e,, e, and e;, or e; = e, + €, and ey = e, — 2.

3.4.1 Relevance of Mass Flux j = pv,

It is important to observe that e; is indeed a determining parameter of the flow, by comparing
simulations starting with different values of the function p(R) but the same value of the product
J = pv.. A simulation was performed with the same value of 7 = pv, as the standard run, but with
e, = 0.25 instead of zero, and it was let to run for the same physical time (measured in units of
Qo"l). For z > 2, the results of this simulation coincide with the reference run; however, steady state

is not achieved at the outer corner (Figs. 3.7 and 3.8). Despite its slower convergence, it represents
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the same physical steady state as the reference run, with the exception of very small values of z,

where the different profile of p(R) at z = 0 still has some influence. For a larger value of the density
exponent, such as e, = 1, the run fails to reach steady state in the same box as the reference run.
However, simulations with a box size four times larger, such as in the one used in §3.3.1.2, show that
the e, = 1 case is nearly identical to the previous case.

Let’s suppose that a portion of fluid is just leaving the sonic point with a velocity v, whose
component v, is much smaller than both vg and v4, but verifies v, > ¢Csouna. The bead-on-a-wire
model shows that the accelerating forces of the cold magnetocentrifugal mechanism applied to this
portion of fluid do not depend on the velocity. Typically, after a very short distance Az above the
disk, they would add momentum equal to a relevant fraction of mvy to a portion of fluid of mass
m = pAV. This will be essentially all the momentum of the fluid at an altitude z = Az, regardless
of the initial value of v, for all v,<«vg. However, mass conservation is still enforced. It is governed
by the mass discharge per unit time per unit area, equal to pv,. Therefore, the product pv, keeps
its relevance, even if v, is irrelevant, provided it is small enough.

This conclusion will be used in the following, by not considering as essentially different two sim-
ulations with identical j(R) profiles, differing only in having two different values of v,(R), provided
that both of these values are supersonic, and far below Keplerian and Alfvén speeds. This has been

checked again in the non-steady simulations presented in §4.3.

3.4.2 A parameter sweep

Here a few simulations for different values of the parameters are presented. Fig. 3.9 shows the critical
surfaces and fieldlines for these runs. Their shapes are qualitatively similar, with the remarkable
exception of the outer fieldlines for the flatter j simulation e; = 0.5, e; = 1.5; some of these lines
start pointing inwards instead of outwards. Not all fieldlines are able to propel the flow centrifugally
at z = 0; they must spend some initial kinetic energy before acceleration can start. Further tests
can tell if this unexpected effect is physical or only a numerical artifact. Because the assumption
|6] > 6. is not fulfilled everywhere, these tests should take into account that the mass flux should
be reduced for those fieldlines, requiring the usage of a mass flux j dependent on 6.

Values of speed, Alfvén number, lever-arm ratio, luminosity and torque are calculated at the
point (Zmax, Rmax) and given as functions of the exponents e;, e, and e, in Table 3.2. The first
four columns are the simulations represented in Fig. 3.9. The last column is the simulation shown
in Fig. 3.7, where we can already see that it is almost completely equivalent to the reference run.
Only its flux at the outer corner is slightly different; this is due to its insufficient convergence to the

steady state in that region of the computational volume.
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Table 3.2: Dependence of some flow quantities on the exponents e, e, and e,. Fluxes and thrust
are calculated at the outer corner of the grid, and made dimensionless as in Table 3.1. The maxima
of vy /uke are taken at 2z = Zmax.

€y 1.5 0.5 1.25 0.5 1.25
ep 1.5 1.5 1.625 125 1.5
€, 0.0 0.0 0.25 0.0 0.25
€; 1.5 0.5 1.5 0.5 1.5
ey -0.5 0.5 -0.375 -0.75 -0.5
R 35.8 425 27.1 70.8  38.8
Ry 4.77 564 391 7.68 5.15
R4/Ry 3.29 231 3.03 261 3.31

Max. M4 3.98 5.06 5.26 266 3.78
Max. vp/vko 1.67 1.33 1.67 131 1.54
773 15.02 6.89 19.54 8.05
181 23.5 145 343 188
54 85 38 162 58
5.5 8.9 4.8 104 5.2

NQ~

3.5 Conclusions

As expected, cold, steady jets can be launched smoothly from Keplerian disks by the magneto-
centrifugal mechanism. The same mechanism is also effective in collimating the outflows. Collimation
is observed both in the shape of the fieldlines and in the density profiles, which become cylindrical
and thus jet-like at large distances along the rotation axis, in agreement with asymptotic analysis.

Steady-state jets obtained in earlier studies using an essentially incomplete treatment of the disk
boundary conditions are qualitatively unchanged when this deficiency is rectified. It remains to be
shown, however, whether the same is true in general for non-steady jets.

The magneto-centrifugal mechanism for jet production is robust to changes in the conditions at
the base of the jets, which have consequences consistent with expectations. However, the size of
the simulation box can strongly influence the outcome of a simulation unless most field lines pass
through the Alfvén surface within the box. As a result, simulations that produce mainly sub-Alfvénic
disk outflows, steady or not, must be treated with caution. This highlights the pressing need for
box-invariant simulations, which will be shown in the following chapters.

The structure of the magnetocentrifugal outflows is insensitive to the separate values of the initial
density or flow speed at the injection surface, as long as their product (i.e., the mass flux) is kept
constant. This important result, which simplifies the parametrization of the flows, will be used in
the following two chapters.

The code ZEUS3D can be parallelized so that solutions from different subgrids match smoothly.



Fig. 3.1 Reference simulation.

The local Alfvén number v,/vap is shown in grayscale. In thin black, fieldlines and vectors of
vp. In medium black, the critical surfaces v, = vap, vp = var and the local escape speed line
vp = \/—-_23; = Vese; the line By, = By is shown in dashes. In thick black, some selected field-
lines: Uy passing through the intersection between the Alfvén surface and the outer boundary;, ¥y
at the outer edge of the azial injection zone, separating the injected core from the main wind; ¥,

the fieldline whose inclination is critical ot z = 0; and V., passing through the outer edge of the grid.
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Fig. 3.2 Reference simulation.

Boundary and initial conditions for v,, va, = B:[\/Arp, vap, vk = RQ, B, and \/~8; = veqe/V/2

at z =0 as functions of R, normalized by the Keplerian speed scale vgo = Qory.
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Fig. 3.3 Reference simulation.

Velocities along the fieldline ¥ = W, passing through the outer edge of the grid. Plot of Up, Udp, VAt,

Vese; RS, Ro§) and vy vs. z, showing the growth of poloidal speed.
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Fig. 3.4 Lever arm ratio Ra/Ro (full lines), compared to \/2/Q) in dashes and \/— (Bli,/Bz)vf‘\z (vavK
in dots. Both the fluz U and the footpoint Ry are used to label the fieldlines.
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Fig. 3.5 Greyscale of the density in the reference run, showing collimation.
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Fig. 3.6 The four cold conserved quantities, shown as contour levels in a ¥ vs. z plot. Two field-

lines and critical surfaces are shown in dots, together with the outer edge of the box R = Ry and

the box midline R = Ryyax/2. The region where ¥ > ¥, is not fully reliable.
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Fig. 3.7 A variable density simulation defined by e, = 0.25, e; = 1.5, and ey = —0.5, is compared

to the reference run, which has the same mass fluz j = pv,, and a flat density profile at z = 0,

defined by e, = 0.0, e; = 1.5, and ey = —0.5. Fieldlines and contours of M4 in these two runs are
shown.
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p

Fig. 3.8 The variable density simulation defined in Fig. 3.7 is again compared to the reference run,

this time by showing contours of the density of one run divided by that of the other.
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Fig. 3.9 Comparison of four runs. Alfvén surface in thick lines, fast surface in medium and field-

lines in thin. Fieldlines have been chosen to pass through the same footpoints in the four runs.
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Fig. 3.10 Contour plots of Ma = vy /vy, for the reference run (solid lines) and a larger and wider

boz (dashes), compared to check convergence.

Fig. 3.11 Simulation on the larger and wider boz.
In solid, the contour levels far/fc =0, 1, 2, 8, and 4, show the ratio of magnetic over centrifugal

forces along the fieldlines (shown in dots). The far = 0 level is a short, thick line at the outer corner.
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Chapter 4

MHD Outflows from Finite Disks

4.1 Introduction

In the previous chapter we described the use of the ZEus MHD code to study the problem of wind
launching from a Keplerian disk. The disk was idealized as a boundary condition at z = 0, on which
open magnetic fields are firmly anchored at all radii. Mass was injected onto the open field lines at
a prescribed rate and then accelerated magnetocentrifugally to produce a high speed wind. In this
chapter, we shall tie the open field lines to a finite disk.

There are good astrophysical as well as numerical reasons to consider winds driven from finite
regions of accretion disks. There are two popular models for the origin of the spectacular optical
jets observed around many young stellar objects (YSOs), both based on the magneto-centrifugal
mechanism. The models differ on where the wind-driving open magnetic fields are anchored. If
the open field lines are anchored in a narrow region on the disk near the corotation radius of the
stellar magnetosphere, then the wind is called an “X-wind” (Shu et al. 2000). The X-wind serves the
fundamental purpose of removing angular momentum from the central star and keeping it rotating
slowly as observed, below the breakup rotation speed. If, on the other hand, the field lines are
anchored over a wider region of the disk, then a “disk-wind” is produced (e.g. Konigl & Pudritz
2000). The disk-wind may be primarily responsible for driving the mass accretion through the
portion of disk where the wind is launched. The wind-launching region is bound from the outside
by a low temperature region (with T' < 10®K) where magnetic field is effectively decoupled from
the disk material (e.g., Nakano & Umebayashi 1986). For typical parameters of YSO, the radius
of the disk region that is well-coupled magnetically is ~1 AU (e.g.,Li 1996). Therefore, the size of
the wind-launching region is finite in both models, and it is of considerable interest to examine the
effects of the size of the launching region on the properties of the outflows, especially on large scales
that can be probed observationally. Small magnetized disks occur in another type of astrophysical
systems, the cataclysmic variables (CVs).

Numerically, a finite launching region is highly advantageous because simulations are performed
inside a finite computational box. Ideally, the size of the simulation box should not interfere with
the wind structure being simulated inside the box. This non-interference is difficult to achieve
if mass is injected at all radii from the plane of the disk surface into the wind. In such a case,

there will always be a region close to the outer edge of the disk that does not have enough room
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inside the computational box to accelerate beyond the fast magnetosonic speed, no matter how big

the simulation box is. In other words, there will always be a sub-fast region at the edge of the
simulation box, which allows information at the outer boundaries to propagate upstream to the
launching surface, creating an undesirable coupling between the wind and the computational box.
In some cases, such as in §3.3.1.3 this coupling destroys the wind completely. If, on the other hand,
the wind launching region is finite, the last open fieldline will be anchored at a finite radius from
the center and lie on the equatorial plane to fill space in the absence of a confining medium.! Mass
loaded on this last, equatorial fieldline will be accelerated above the fast magnetosonic point at a
finite radius and the problem associated with the infinite disk disappears. It is now possible to have
a wind that is entirely super-fast before leaving the simulation box. In such a case, the box size
should have a minimal effect on the wind.

The removal of box-dependence allows us to simulate simultaneously the launching, acceleration,
and collimation of magnetocentrifugal winds from small to large (observable) scales. Traditionally,
the large scale wind structure is studied by asymptotic analyses (e.g. Heyvaerts & Norman 1989; Shu
et al. 1995). There exists a “gap” between the large scale structure obtained by asymptotic analyses
on one hand, and the small structure in the wind acceleration region obtained numerically on the
other. The calculations presented here are able to close this “gap” in MHD wind theory and predict
the observable quantities of jets/winds on large scales from the conditions on the launching surface.
Large scale quantities that are of particular interest include the isodensity contours which control the
appearance of optical jets, and the mass and momentum distributions which govern the interaction
of the wind with its ambient medium. In the case of YSOs, the interaction creates a bipolar
molecular outflow, whose properties are well constrained by observations (Lada 1985). Results of
these simulations can be compared to both direct observations and the asymptotic theory.

Smooth, steady, accelerated flows are often found, compatible with most theoretical expectations.
These will be presented in §4.2. However, some simulations (presented in §4.3) produced non-steady
Jjets, whose intensity increases and decreases in episodic outbursts, resembling in their intermittency
those found by Ouyed & Pudritz (1997a). These non-steady jets are characterized by an intermittent
opening and closing of the launching channel, defined by the set of fieldlines whose inclination to
the axis is larger than the critical angle of 30° (Blandford & Payne 1982). Many jet flows are well-
described as being episodic, which gives more importance to this intermittent model. An exploration
of the causes of this intermittency was done, showing that its main cause is the failure of the lower

portions of the wind to keep up to quasi-Keplerian speed.

LA confining medium would be more realistic. It would require a simulation or at least a description of the
interstellar medium; this need is avoided here by setting the last fieldline as equatorial, with expected little change in
the magnetocentrifugal results.
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4.2 Steady Outflows

The boundary and initial conditions of these simulations have been explained in §2.2.2 and §2.3,
where the parameters used are explained.

Because one of the purposes of these finite disk simulations to compare with asymptotic solutions,
large computational boxes were used. Assuming that the inner radii are all equal, Tg=Tph =1, =
Tyi = Tvo = 2p; = 1, the outer radii Rp and Rp; were taken between 10 and 30, and the box sizes
Ripax and zmayx between 200 and 1000.

In a few of the finite disk simulations, the bulk poloidal field was started using a prescription
for the fieldlines as in equation 2.20, with m; = —Rp/r; < 0 to ensure that the last fieldline is
equatorial.? The exponent e, was set to 1, and the lengthscale to r, = r,. However, after it was
observed that some of these finite-disk simulations showed a pronounced instability (§4.3), it was
decided to use an initial current-free poloidal field, as described in §2.3.1, with the intention of
removing any doubt of the instability being due to an effect of the current j, otherwise present
in the initial condition. This change had no effect in the development of the instability (for the
unsteady cases) or on the final steady state achieved (for the steady ones), but it was kept because
it provides a good initial condition with the advantage of reducing the number of free parameters.

Another modification introduced in some of the simulations was changing the boundary condition
function p(z = 0, R), reducing the density close to the origin, so that either the mass flux j = puv,
or the kinetic energy term pv? would be flat for R < r,;, despite the presence of the axial injection.
This was done with the intention of representing a low density but large velocity flow at the axis,
such as a particle-antiparticle jet. The expected advantage of this is that the axial region would
contribute less to the density profile at large 2, allowing a more isolated study of magnetocentrifugal

effects.®

4.2.1 Results
4.2.1.1 Reference run

We first performed a baseline simulation —the reference run-— adopting the following conditions.
All the inner radii used in definitions of boundary and initial profiles have been set to 1. The outer
radii, used in equation 2.16, are Rp = 10 and Rp; = 8, making a rather small launching disk (only

one decade in extent). The Keplerian velocity scale is given by vko = Qory, = 1.0. The velocity

2Tn solving the quadratic, the minus sign must be chosen. The opposite choice applies to the infinite disk of the
previous chapter, which has m, > 0.

31t should be mentioned that this axial density reduction has one numerical disadvantage. The reduced density
at the axis pushes the fast magnetosonic surface up, so much that frequently this surface is unable to close inside
the computational volume. This leads to a diminished control in the axial region, especially for large 2. This was
considered tolerable, because the upper axial region of the simulation may comprise a core relativistic jet derived from
the vicinity of a black hole (in an AGN simulation) or high entropy ionized gass in the case of a YSO, and it is not
in any case well represented by the centrifugal model.
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profile was set as in equations 2.12-2.14, with the exponents e,; = 2 and e,, = 0 (implying e, = 0.5),

the scale v,o = 1.7 for the axial injection, the scale factor fvo = 0.1 for the outer profile, and a value
of 2 for v. The magnetic field intensity is defined as in equation 2.11 with B,y =4V4m, and e; = 1.5.
The density is given by po = 1, e, = 0. However, it is not completely flat, because close to the' axis
the density was reduced, so that for z < 0 and R < r,;, the momentum flux component pv? is set
to a constant value, taken from the value calculated at R = r,;.

The initial poloidal field has been chosen as current-free (in equation 2.27, o = —191.8244). The
initial density field is given by 2.22, with parameters 1, = 0.1, z,; = 1 and e,; = 1.5. This flow is
very cold, with a sound speed parameter of c;o = 0.0002.

The computational box extends up t0 (Zmax, Rmax) = (1000, 1000), with 190x210 non-uniform
active zones. The z-grid is uniform from z = 0 to z = 8, with 40 active zones, changing continuously
to a ratioed* grid with 150 zones going from z = 8 to z = 1000, with a ratio of 1.0350 between
adjacent values of Az;; the R-grid is uniform from z = 0 to z = 12 (thus covering the disk), with 60
active zones, followed by 150 non-uniform zones from R = 12 to R = 1000, using approximately the
same ratio of 1.0350 between zones.

Fig. 4.1 shows the fieldlines and critical surfaces, and Fig. 4.2 shows profiles of velocity and
density. The third panel of both figures uses a logarithmic scale in both axes to show both the
approach to the asymptotic regime at large altitude and to the launching region at small altitude.

Speeds at various large altitudes can be seen in Fig. 4.3, showing the acceleration of the flow.
Profiles of density, multiplied respectively by R? and r2, hint about the asymptotic values (Fig. 4.5).
The lever arm ratio 1/1/Q/R has been calculated over the finite disk, and shown in Fig. 4.4.

4.2.1.2 Influence of the axial injection

Two runs were performed having a boundary condition at z = 0 with either j = pv, or p constant
inside R = r,;, instead of pv? as in §4.2.1.1. The results are shown in Figs. 4.6 and 4.7. Comparing
them to the reference run, the different treatment near the axis has influence only inside the fieldline
with footpoint at R = r,;, but not outside. Inside this narrow region, the main effect of the change
is seen in the critical surfaces (Alfvén and fast), which are closer to the disk for the heavier axial
jets. The importance of this test is that the exact treatment of the axial injection is relevant only in
a limited part of space, which is convenient given the fact that this axial injection is not controlled

by the magnetocentrifugal mechanism.

4.2.1.3 Parameter dependence

Four simulations having the same value of e, = 1.5 are shown in Figs. 4.8 and 4.9, panels (abcd). The

value of the exponent e; increases along these panels, which reduces the mass loading in the outer

4Each zone is wider than the previous one by a small constant factor.
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regions of the disk. The increase of e; pushes the Alfvén and fast surfaces in the equatorial region

outwards, so much that the fast surfaces do not close back to the equator inside the computational
volume for the cases presented in panels (c) and (d).

Three simulations, shown in panels (bef) of the same figures Figs. 4.8 and 4.9, have the same
value of e; = 1.5. The Alfvén surface moves inwards for increasing ey; however, the fast surface did
not vary regularly. The profiles of constant density are quite similar in these three runs; they seem
to be controlled by the profile of j rather than by that of B,. Figs. 4.8 (a) and (e) have similar
hydromagnetic lines. This hints that the position of the critical surfaces might be determined by the
adimensional ratio 4wpv,vk /B2, which is the approximately the same in both panels. However, the
corresponding hydrodynamic quantities, as shown in Figs. 4.9 (a) and (e), are not especially similar
to each other. It seems that the position of the isodensity contours depends on the mass loading

exponent e;, more than in the magnetic field exponent e;.

4.3 Intermittent Outflows

4.3.1 Description

When the mass loading pv, is increased too much for a certain profile of B,, the magnetocentrifugal
mechanism cannot launch the flow continuously any longer.

The simulations show how the standard magnetocentrifugal mechanism at first starts to operate,
launching material in the expected way, accelerating the fluid and forming the expected Alfvén and
fast surfaces. However, the stability of the flow is already compromised at its source. The rotational
speed vy, necessary to launch the plasma against gravity, starts to drop below Keplerian at some
points just above the disk, at the same time that |Bg| grows larger, keeping corotation enforced at
the disk surface. When vy reaches a sufficiently low value (typically ~ 0.7vk in the simulations),
matter is pulled inwards gravitationally, making a flow parallel to the disk. The fieldlines, which are
frozen to the flow, also bend inwards. In particular, their angle to the axis becomes smaller than
30°. This might be a secondary consideration, however: this angle is special only assuming that the
rotational speed is close to Keplerian, which had already been violated. The mass density close to the
disk increases due to the larger mass loading and the deficient acceleration. The toroidal magnetic
field also becomes larger, with the term —Bgv,/B, becoming of the same order of magnitude as
the Keplerian speed. Some time later, the overstretched fieldlines will bounce back to something
closer to their original position, allowing again a temporary magnetocentrifugal acceleration of the
outflow. Therefore, launching and acceleration do not fully stop, but become intermittent and
chaotic, with some regions on the disk contributing to the flow at different times, blobs of matter
achieving acceleration at various heights, and, occasionally, moments of smooth outflow when the

fieldlines are rebounding to something closer to the configurations shown in §4.2.
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4.3.2 Results

A series of simulations was performed with Rp = 30, Rp; = 24, varying exponents ep, ¢, and e,,
and otherwise the same physical parameters as the reference run.’

The most important result is that for each value of ey, there was found a value of ¢; = e, +e, low
enough that it will make the system unsteady, as shown on Table 4.1, indicating that an increase
in the mass loading profile for a given magnetic flux can trigger the unsteady mechanism. The
critical parameter seems to be in the neighborhood of B, /pv, rather than B2/pv,, with an exponent
ep—e;~0.5, below which the system becomes unsteady, for the present choice of the other parameters.
The instability is slow to appear, typically taking a time of around 1007 to affect the inclination
of the fieldlines, and ten times as much between the occasional smooth outflows. In the process of

formation of the instability, the value of vg close the disk surface drops below vk (Fig. 4.10).

Table 4.1: Stability of the simulation for various values of e; and ej, for a disk radius Rp = 30,
Rp; = 24. Values of vy taken near the disk surface.

ep €; € | ep—e; 2e,—e; || Result

1.5 0500 1.0 2.5 Unsteady

1.5 15| 0.0 0.0 1.5 Steady

15 15|10 0.0 1.5 Steady

20 15| 1.0 0.5 2.5 vy ~ 0.5vk: expected to become unsteady.®

20 20110 0.0 2.0 Steady as of t = 637. vy =~ vk: expected to keep steady.
20 25|10 -0.5 1.5 Steady

25 25|15 0.0 2.5 Steady® despite vy ~ 0.7vg.

25 20| 1.0 0.5 2.5 Unsteady.

“Instability not yet developed at the end of this run, ¢t = 627.
bAt time ¢ = 300x.

A series of simulation was performed with e, = 1.5, e; = 0.5, and e, = 0, varying the radii of the
finite disk Rp and Rp;. With Rp = 30 and Rp; varying between 10 and 24, all the results were
unsteady, and the same with Rp = 25, Rp; = 20. A steady simulation was found for Rp = 20,
Rpi = 16. Comparing with §4.2.1.1, the values Rp = 10, Rp; = 8 are also steady. This hints that
the points where B, has become too small for the given pv, in the unsteady runs are located at
R>20, which may be a guide in the construction of a more precise criterion for the maximum steady
mass loading allowed.

One of the simulations used a prescription for the mass loading boundary condition with a sharp
angular dependence, such that if R > 1.5r,; and the inclination 8(R) of the fieldline at (z = 0, R)
was smaller than 30°, v, was set to 0.01, times the appropriate spline arc defined in equation 2.16.
Otherwise the simulation used the same parameters as in line 1 of the table 4.1. The result was a

steady flow. The angular dependence introduced a negative feedback to the unsteady mechanism

5The grid used had Zmax = Bmax = 200, with 140x 160 active zones, uniform with a spacing Az; = AR; =0.2 for
2£8.0 and R<32.0, ratioed with constant ratios Az;41/Az; = 1.0365 and AR;y;/AR; = 1.0346 for the remaining
100 zones.
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which kept the ratio k = 4mpv, /B, constant (in an average sense) along the disk instead of allowing

it to grow with distance as « R, as the raw exponents would indicate (Fig. 4.11). The mean profile
of pv, produced by this kind of angular-dependent simulation is probably very close to the maximum

loading allowed for steady launching with the given profile of B,.

4.3.3 Comparison with previous results

An intermittent behavior, whose presence depends on the value of the mass loading, may at first
resemble the recent results by Ouyed & Pudritz (1999) (OP99). However, the relation with mass
loading is in the opposite direction: their unsteady flows appear for low mass fluxes instead of large.
That in itself is not implausible: there might be a range of speeds required for smooth launching,
this thesis exploring the upper bound, OP99 the lower.

The results presented in OP99 can be criticized on the basis of their boundary conditions at
z = 0, which constrain the magnetic field components By and Bg too stringently and overdetermine
the flow. It would be desirable to repeat these calculations using less restrictive boundary conditions
for the magnetic fields, such as those presented here or those presented in Ustyugova et al. (1999).
In addition OP99 only present short simulations, and may be describing transients reflecting the
initial conditons: they have run their problems by times in the order of ¢ = 150, smaller than the
times presented here, in fact smaller than the typical time ¢ = 1007w necessary for the formation
of the unsteady mechanism described in this chapter. It would be interesting to observe how these
simulations would behave if left to run up to ¢ = 3000x. Finally, their usage at z = 0 of very low
values of v, ~1075vg, implies that the value of the speed in the first active zone of the grid will
be much larger than the value at z = 0. & It could be feared that this impulsive acceleration may
weaken the link between the parameters defined at the BC and the simulated flow, because the
effective boundary condition for v, seen by the bulk of the fluid is indeed much larger than the value
used to parametrize the runs, and completely different from it. Fortunately, this is not the case,
because the ZEUS code used in OP99 guarantees mass conservation up to machine round-off error.
While the velocity seen by the bulk of the flow is not authentically as small as the parameter value of
around ~107%vg, it can be assured that the mass loading pv, has been parametrized reliably. The
mass discharge pv, controls the launching of cold flows, rather than v, or p separately (§3.4 in this
thesis; Krasnopolsky, Li, & Blandford 1999), being of little physical importance which of the two
factors in the product is the control parameter. Numerical considerations lead to a preference for
reducing v, rather than reducing p, because the latter reduction increases the Alfvén speed, making

the Courant condition more stringent. Therefore, OP99 is using a reliable parameter to reduce the

6The authors explicitly admit this effect, when they note that while their v, at the disk is subsonic, supersonic
speeds are obtained already at the first active zone in the z direction. In some sense, it is fortunate that impulsive
acceleration makes the flow essentially supersonic despite the value of the v, parameter, because otherwise their
simulations would fall under the criticism that crossing the sonic point requires relaxing the constraints imposed by
fiat at the disk BC by one degree of freedom (Bogovalov 1997).
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mass loading, and numerically the more convenient.

Comparing again with the results of this chapter, the different typical time of appearance, the
different mechanism and evolution, and, most obvious, the opposite dependence on the value of mass
loading, point out that the intermittent mechanism presented here is distinct from that presented

in OP99 and Ouyed & Pudritz (1997a).

4.4 Conclusions

A technique to study launching from a finite disk was presented. Two kinds of flows were observed,
steady and unsteady, depending on the mass loading pv, for a given value of B,. Collimation was still
observed, despite having a finite disk. The intermittent case may be relevant to those astrophysical
jets showing some degree of intermittency and knots, such as the FRI radio galaxy MS87 or the
microquasar GRS1915+4105.

The physical cause of this intermittency is the sub-Keplerian speed of the material close to
the disk. Its presence is related to the amount of mass being loaded into the fieldlines; when
it is excessive, the wind cannot launch it smoothly. This sub-Keplerian mechanism resembles the
Uchida & Shibata (1985) simulations, where a similarly unsteady situation was assumed as an initial
condition. However, there the origin of the sub-Keplerian flow was not simulated, and the initial
state could not be reproduced at the end of the run, making the mechanism useful to produce
a single pulse. The resemblance is probably closer to Bell & Lucek (1995), who obtain a sub-
Keplerian rotation and a corresponding pulse of launching from more generic conditions (§1.2.7).
The intermittent mechanism presented here can authentically be called “pulsed,” as the configuration
is able to reproduce itself after the material is launched.

For each magnetic field profile B,(R) on the disk, there is a maximum mass loading jmax-
which allows a smoothly accelerating jet. An angle-dependent feedback mechanism, based on the
magnetocentrifugal model, limits the mass loading to this maximum value, allowing a smooth jet
to flow. The existence of this feedback mechanism hints that j,.x might be a more probable value
than other discharge rates: if this is the case, then the profile of B,(R) helps to determine the mass
loading j through the requirements of the Blandford & Payne angle § = 30° and of keeping the
process smooth.

The steady flows presented here have been simulated up to a very large height, equal to 100 times
the radius of the disk. In the case of young stars, where the magnetically coupled disk is expected
to have a radius Rp~1AU, this corresponds to a height of 100AU, already close to the possibilities
of observation, bridging the gap between the model and the data.
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Fig. 4.1 Finite disk launching: reference run.
Surface of constant M a7 = 0.5, 1, and 2 in solid black (the fast surface thicker); surfaces of constant
M4 =03, 1, and 2 in black dashes (the Alfvén surface thicker); surfaces of of constant —Bg/Bp, =1,
2 in grey (—Bgy/By = 1 thicker); fieldlines in black dots. The region painted in grey is influenced by

the azial injection; the region in darker grey is out of steady state, and should be disregarded.
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Fig. 4.2 Finite disk launching: reference run. Density profiles are shown in solid black, spaced

logarithmically by half decades (full decades in thicker lines, and the value p = 107! even thicker).
Level surfaces of v, and v, in black dashes and grey lines, respectively, taken at the values 0.5,
1.0 and 1.5; value 1.0 drawn thicker. fieldlines in black dots. The region painted in grey is influ-

enced by the axial injection; the region in darker grey is out of steady state, and should be disregarded.
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Fig. 4.3 Finite disk launching: reference run. Values of the velocities vy (grey) and v, (black), at

the altitudes z = 900 (solid), z = 500 (dashes), z = 200 (dot-dashes), and z = 100 (dots)

velocity

Fig. 4.4 Finite disk launching: reference run. Lever arm ratio R/ Rp, calculated at the disk surface

using Mestel’s theorem R =1/Q.
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Fig. 4.5 Finite disk launching: reference run. Values of pR*> and pr® at the dltitudes z = 900

(solid), z = 500 (dashes), z = 200 (dot-dashes), and z = 100 (dots)
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Fig. 4.6 Launching of a jet with j = pv, flat at the azis. The two panels show hydromagnetic and

hydrodynamic quantities, with the lines coded as in Figs. 4.1 and 4.2, respectively.

Fig. 4.7 Launching of a jet with p flat at the azxis. The two panels show hydromagnetic and hydro-

dynamic quantities, with the lines coded as in Figs. 4.1 and 4.2, respectively.
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Fig. 4.8 Siz simulations: (a) ey = 1.5, e; = 0.5; (b) ey = 1.5, e = 1.5; (c) e = 1.5, ej = 2.5; (d)
es = 1.5, €5 =3.5; (e) e, =2.0, ¢; = 1.5 and (f) e» = 2.5, ¢; = 1.5. Hydromagnetic quantities are
shown with lines coded as in Fig. /.1.
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Fig. 4.9 Siz simulations: (a) ey = 1.5, ¢; = 0.5; (b) ey = 1.5, ej = 1.5; (c) ey = 1.5, ¢; = 2.5; (d)

es = 1.5, €5 = 3.5; (e) e, = 2.0, 5 = 1.5 and (f) e = 2.5, e; = 1.5. Hydrodynamic quantities are
shown with lines coded as in Fig. 4.2.
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Fig. 4.10 Values of vy/R) for three simulations: the angle-dependent simulation in solid, an un-

steady simulation in dashes, and a steady simulation in dot-dashes: these last two were taken from

lines 1 and 2 in Table 4.1.
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Fig. 4.11 Values of k = 4mpvy/B, for three simulations: the angle-dependent simulation in solid,
an unsteady simulation in dashes, and o steady simulation in dot-dashes: these last two were taken
from lines 1 and 2 in Table 4.1.
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Chapter 5

3D Stability of the Launching Mechanism
5.1 Introduction

The magnetocentrifugal launching mechanism is intrinsically axisymmetric. Questions on its 3D
stability against non-axisymmetric perturbations (specifically helical) have been a concern since it
was proposed (Blandford & Payne 1982).

The magnetic field configuration required by the mechanism has been compared with some
configurations used in plasma-confinement theory and experiment, such as the Z-pinch (with a
mostly toroidal field), #-pinch (with a mostly axial field), and the screw-pinch (having both magnetic
components). These plasma-confinement mechanisms are known to be unstable against a variety of
modes distorting the plasma column, which for m > 0 are called kink modes.

The question asked in this chapter is whether these kink modes are able to drive an instability
during the formation phase of the jet. Arguments in favor of this kind of instability in jets have
been put forward by Begelman (1998), relying on an expected large fraction |By/B,|. Simulations
by Hardee et al. (1994, 1995, 1997, 1999) also point out in that direction.

However, the magnetocentrifugal mechanism implies a large fraction |By/B,| at large altitude,
but not during early launching. For instance, Kénigl & Pudritz (2000) present the estimation
|Bg/By| ~1 at the Alfvén surface, close to the end of the main acceleration of the wind for cold
flows. This make the field picture resemble less the Z-pinch and more the -pinch, which is more
stable. Also the presence of intense acceleration, velocity shear and fast rotation distinguishes these
astrophysical flows from the corresponding static-equilibrium plasma-confinement configurations;
these differences in the flow field are expected to be stabilizing (Arber & Howell 1996; Hameiri
1981,1981). Other formation mechanisms related to the magnetocentrifugal picture, such as Bell &
Lucek (1995), or the intermittent mechanism shown in §4.3, have important axial magnetic fields,
weakening again the case for the kink instability: for instance, the 3D stability simulations by Lucek
& Bell (1997) were robust against kink instabilities. The answer from theory about the instability

of the launching configuration is unclear, making simulations necessary.
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5.2 Method

The simulations presented in this chapter start from an axisymmetric steady state configuration,
similar to the ones found in §4.2, and add to it an m = 1 perturbation of the magnetic field to
the initial state. However, the boundary conditions have been kept unperturbed and axisymmetric,
because the intention here is studying stability against perturbations of the initial conditions, and

not against a small but persistent perturbation at the boundary.

5.2.1 Perturbation

The perturbation has been designed to ensure that the divergence of the magnetic field is kept to

zero. A perturbative field B; was added to the main field By, such that
B1 =V x (f X Bg) , (51)

with £ a small displacement vector. In order to seed a kink instability with m = 1, this displacement
was chosen to be £ = d sin (2m2/)) £, parallel to the z-axis, with d and A constants with units of

length characterizing the perturbation.

5.2.2 Grid

3D cylindrical simulations have the problem that the azimuthal grid spacing close to the axis, R d¢,
can be very small, leading to a very small timestep At, given by the Courant condition required
for numerical stability, At < Az/v, where v is at least the maximum of the sound, flow, and
Alfvén speeds. The most usual response to this is to do the 3D simulation in Cartesian coordinates.
However, when this was tried, the boundary conditions at the outer surfaces and at the disk became
too complicated. Even more problematic for this study, both the boundaries and the discretization
introduced a permanent, artificial m = 4 perturbation.

Therefore a cylindrical coordinate system was preferred. The fact that the flow is super- Alfvénic
before hitting the outer surfaces should minimize any effects of the outer boundary condition.
Timestep problems were alleviated by using low resolution in R close to the axis and in ¢. The
computational cost of doing long-term 3D simulations would probably not have allowed a much
higher resolution inside the given constraints of time and computer allocation. It is also helpful that
the initial unperturbed configuration was chosen so as to have a small Alfvén speed at R = 0. For
the purpose of future research at higher resolution, a system of coordinates where the number of
azimuthal zones decreases for small radii may be useful. This way high overall resolution might be

kept while having a moderate timestep.
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5.3 Results

Six different simulations were performed, varying the amplitude and wavelength of their perturba-
tion, and the resolution of the grid. The unperturbed system and the disk boundary conditions were
defined by the parameters Qy = 1, rg = 7 = 1y = 1yo = 1, By = 447, ey = 1.5, vy = 1.7,
foo=0.1, ey =2, eyo = 1, ¥ = 2, ¢; = 0.0002, and v = 5/3. The finite disk has outer radii Rp = 10
and Rpy = 8, as in the run §4.2.1.1. The density was kept flat, with p(R,z = 0) = 1 over all the
finite disk. An additional parameter, 7,y = 1.8, fixed the magnetic field at z = 0 to have a flat
constant value between R = 0 and R = rps. This was done to reduce the Alfvén speed close to the
axis, making the Courant condition more favorable.

Two different grids were used. The lower resolution grid has a z axis with 20 equally spaced
zones from z = 0 to z = 8, followed by 50 ratioed! zones from z = 8 to z = 180, with a minimum
step Azmin = 0.4, and a constant ratio Az;41/Az; & 1.0716; an R axis with 3 equally spaced zones
from R = 0 to R = 2.4, 24 zones equally spaced zones from R = 2.4 to R = 12, and 45 ratioed zones
from R = 12 to R = 180, with ARnin = 0.4 and a ratio AR+ /AR; =~ 1.0827; and 64 zones in
the azimuthal direction, extending from ¢ = 0 to ¢ = 2n. The higher resolution grid differs only in
having a higher resolution for the inner R axis. This axis is now defined by 30 equally spaced zones
from R = 0 to R = 12, and 45 ratioed zones from R = 12 to R = 180, these last defined with the
same ratios as for the other grid.

Perturbations were imposed with d = 0.2 and d = 1.0, with wavelengths A\ = 10, 5 and 2.5. The
magnetic field was decomposed into azimuthal components B,,e?™¢ using a Fast Fourier Transform
algorithm, and the energy was calculated for each of these components. Figures 5.1- 5.3 show how
in all the six simulations, the energy of the initial perturbation was initially concentrated in the
m = 1 component. This component decayed in time instead of growing, as expected in case of a
kink instability; this decay features an initial sharper drop. The magnetic energies corresponding to
the first few values m > 1 have an initial rapid expansion, probably at the expense of the initial fall
in m = 1, but later also decay, to some energy value typically lower than that of m = 1. In these
simulations, the energy of the m#0 modes did not tend to zero for large ¢, but rather to a small
non-zero value: this might be due to resolution effects. In any case, there was no sign of any long
term growth of these modes: the kink instability was not observed.

The evolution of the perturbations is presented by showing 3D images of the Alfvénic surface
v = B//4mp (Figs. 5.5- 5.9). Note that this 3D-Alfvénic surface is different from both the Alfvén
and fast surfaces defined in previous chapters: it has been defined so as to take all three components
of the vectors equally, rather than being a critical surface of a steady-state solution. The unperturbed

Alfvénic surface has the shape of a cone, with its axis coincident with the axis of rotation (Fig. 5.4);

!Each zone is wider than the previous one by a small constant factor.
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the axis itself is however hollow, because of the relatively low magnetic field imposed by the flattening

of the B, profile. The perturbation starts by distorting this cone, giving it a helicoidal shape (time
t = 0, Fig. 5.5). Later in time, the surface develops a hollow cocoon encircling the tip of the cone
and the axis of rotation. This cocoon expands in both z and R, and at the same time it becomes
thinner, especially at middle altitudes z (times ¢ = 57 and t = 10, Figs. 5.6 and 5.7). This thinning
of the cocoon is not uniform, producing hollow windows through which the tip of the cone is visible
(time t = 157, Fig. 5.8). These windows enlarge, in some simulations shredding the cocoon into a
ribbon-like structure (time ¢ = 207, Fig. 5.8(b) ). In all the simulations, at some time the mid-height
cocoon gets so thin that its upper tip breaks off, swept away towards z = oco. The Alfvén surface
left behind is similar to the initial unperturbed solution, with the addition of a thin, cylindrical ring
on top, which expands slowly as it diminishes in height and width (time ¢ = 207, Figs. 5.9).

The calculations presented here may be criticized based on a possible influence of the relatively
low grid resolution. Low resolution is known to be dissipative, and it could mask some weakly
unstable growth. Two resolutions were used to address this; it can be seen that the lack of instability
stayed the same in both cases, with similar decay rates for the non-axisymmetric perturbation, and

similar evolution of the perturbative features.

5.4 Conclusions

The simulations indicate that the energy of the m#0 modes decreases in time, instead of increasing
as it would be for a non-axisymmetric instability. It was expected that a strong instability would
have found a way to manifest itself destructively, even against an artificial dissipation conceivably
imposed by the grid.

This stability against kink perturbations must be compared against the simulations presented by
Hardee et al. (1994, 1995, 1997, 1999) which indicate that 3D instabilities may grow in astrophysical
jets. A few key differences in the physical models used may be the reason of the different result.
Probably the most important difference is that their 2 = 0 boundary condition is not fixed in time
and symmetric, but represents an ongoing precession of the jet at the origin: this produces a constant
powering of the perturbation through a physical mechanism, as opposed to having only an initial
perturbation, as treated in this thesis. Other differences include the confinement of the magnetic
field by a fluid pressure that grows with radius (absent in this thesis, which deals with mostly cold
jet flows), and their imposition of a preformed jet at the boundary condition instead of a simulation
of the acceleration mechanism itself. The instability results of Begelman (1998) depend on the
assumption of a magnetic field dominated by its toroidal component and ignoring all shear, which
is not the case for the magnetocentrifugal mechanism before a point beyond the Alfvén surface.

Moreover, these studies, based on preformed jets, are more relevant to the propagation of the jet
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at large distances than to the launching as presented here in this thesis. Acceleration and velocity

shear during launching should have a stabilizing effect, which is lost in studies of preformed jets.
However, even for the study of jet propagation, an expected power-law dependence of the fluid
pressure with distance may change the stability properties, requiring a revision of some previous

results.
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Fig. 5.1 Magnetic energy [ d®r |B,|? of the various azimuthal components Bp,ei™? as a function

of time. Perturbation defined with d = 0.2, X = 10.0.
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Fig. 5.2 Magnetic energy [ d°r |B,,|? of the various azimuthal components Bp,e™™? as a function

of time. Lower resolution.

(a) Perturbation defined with d = 0.2, A = 5.0.
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Fig. 5.3 Magnetic energy [ d°r |Byn|? of the various azimuthal components B,,e'™? as a function
of time. Perturbation defined with d = 1.0, A = 10.0.
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Fig. 5.4 The unperturbed Alfvénic surface v = B/+/4dnp, at both resolutions.
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Fig. 5.5 Alfvénic surfaces v = B//4wp, at time t = 0. Higher resolution simulations.

(a) Perturbation defined with d = 0.2, A = 10.0.

L\
-100

(b) Perturbation defined with d = 1.0, A = 10.

~
-100




90

Fig. 5.6 Alfvénic surfaces v = B/\/4wp, at time t = 5n. Higher resolution simulations.
(a) Perturbation defined with d = 0.2, A = 10.0.
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Fig. 5.7 Alfvénic surfaces v = B/\/Axp, ot time t = 10%. Higher resolution simulations.
(a) Perturbation defined with d = 0.2, A = 10.0.
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Fig. 5.8 Alfvénic surfaces v = B/\/4wp, at time t = 157. Higher resolution simulations.
(a) Perturbation defined with d = 0.2, A = 10.0.
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Fig. 5.9 Alfvénic surfaces v = B/\/4mwp, at time t = 20xw. Higher resolution simulations.
(a) Perturbation defined with d = 0.2, X = 10.0.
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Chapter 6

Solar Wind
6.1 Introduction

The solar wind is a fast, mostly radial outflow of plasma from the Sun (400-800kms~!) with a
mass flux of ~2x10714 M per year. It is ionized, composed mostly of protons and electrons,
with an appreciable component of « particles, and a small amount of heavier ions. Biermann
(1951) postulated its existence based on the observation of comet tails, following the suggestion by
Hoffmeister (1944) that solar particles rather than solar electromagnetic radiation were responsible
for the shape of the comet tails. Parker (1958) formulated the hydrodynamic theory of this flow,
showing that under wide circumstances a thermally driven outflow was inevitable. Weber & Davis
(1967) extended these results by taking into account magnetic forces and a flow vy in the azimuthal
direction, initially disregarded by Parker; their prediction for the angular momentum loss of the Sun
is substantially larger than the initial numbers given by Parker. These outflow theories were shown
in §1.2.2.1.1 and §1.2.2.1.2.

The calculations presented in this chapter start with solar wind observations at high latitudes
acquired by the satellite Ulysses. Average fields and parameters are obtained from the data, giving
a simple, analytical one-fluid representation of the flow. This analytic model is used as a basis for

a 2D simulation that attempts to infer conditions close to the Sun.

6.2 Ulysses mission and results

6.2.1 The orbit

The Ulysses satellite has explored the heliosphere at high solar latitudes, between 80°S and 80°N,
at a distance from the Sun between ~1.3 and ~5 AU. The mission was launched from the Earth on
6/0ct/1990. It arrived at Jupiter on 8/Feb/1992, where it used the gravitational field of the planet
to accelerate out of the ecliptic plane; this made the mission to polar latitudes possible.

The maximum South latitude of ® = —80.2° was achieved on 13/Sep/1994, at a solar distance
r = 2.28AU. Near its perihelion, Ulysses performed a fast sweep from pole to pole. It crossed the
solar equator (© = 0°) on 4/Mar/1995, achieved its perihelion on 12/Mar/1995 (at a solar distance
r = 1.34AU and latitude ©® = 6.1°), and reached its maximum northern latitude of ® = 80.2° on

31/Jul/1995. From there the spacecraft continued its northern sweep towards its aphelion, which
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it reached on 17/Apr/1998 (r = 5.41AU, © = —6.1°). Presently Ulysses is performing its second
southern sweep, with a latitude of @ = —43.6°, at a distance from the Sun of r = 4.08AU on
20/Jan/2000; it is still in the aphelion side of its second orbit, gaining southern latitude while
it approaches the Sun. The data used in this chapter are taken from the high latitude portions
(|©]|>30°) of the first southern and northern sweeps, obtained during the quiet portion of the 11
year solar cycle.

The first orbit and the approach to Jupiter are shown in Fig. 6.1.

6.2.2 Data

The hydrodynamic and thermal data used here were obtained by the experiment SWOOPS (prin-
cipal investigator Dave J. McComas) and described in Bame et al. (1992). The magnetic data were
obtained by the experiment VHM/FGM (principal investigator A. Balogh) and described in Balogh

et al. (1992). These and other heliospheric data are available at the NSSDC Space Physics web site,
http://nssdc.gsfc.nasa.gov/space/ and at COHOWeb, http://nssdc.gsfc.nasa.gov/cohoweb/.
The data present at the NSSDC ftp and web sites include the density, temperature, the 3 compo-
nents of the vectors of velocity and magnetic field, and orbital data. The heliospheric coordinates
used are the distance from the Sun center r, the latitude measured from the solar equator ©=90° -9,
and the longitude ¢. Vector components have been taken along these same coordinate directions.

It is convenient to show the data as functions of time, latitude and radial distance, separating the
high latitude data into four datasets. Those four are, by chronological order: the southern aphelion
sweep (after achieving a latitude —30° for the first time, but before reaching maximum latitude), the
southern perihelion, the northern perihelion, and the northern aphelion. No data from the present
second southern aphelion sweep are presented.

In all the figures showing Ulysses data in this chapter, southern data are shown in gray, and
northern in black; perihelion data points are shown with thicker dots and lines than those taken at
the aphelion. This separation helps to keep track of the fact that each latitude in absolute value
was visited four times, at two widely different distances from the Sun. Unless it is explicitly stated
otherwise in the caption, only high latitude data (}©]>30°) have been kept; the few plots including
low latitude data show also the initial approach from the Earth to Jupiter in light gray. Most of the
data in the figures have been averaged over 120-hour periods: other averaging is announced in the
corresponding caption. In many of the data figures, the ordinate axis of the plot is centered on a
trimmed mean, with the lowest and highest 1/8 of the data excluded, and its extension is calculated
as six times the interquartile range of the data. The caption of these figures mentions that the
ordinate axis was calculated, instead of taken directly from the full data range.

The radial magnetic field at high latitude is close to that of a split monopole, with B,r* =

3.2x1073G AU? sign(0) (Fig. 6.2). The radial velocity of the solar wind varies substantially between
g
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high and low latitudes, as shown in Fig. 6.3. Considering only the high latitude part of the data

(18>30°) the typical radial speed is v,~800kms~!, largely independent of latitude and radial
distance (Fig. 6.4). The mass loss rate per solid angle purr? at high latitude is shown in Fig. 6.5.
Its value of pv.r? ~ 9 x 101 s~ is also largely independent of latitude and distance from the Sun
and when combined with the previously estimated speed v, gives pr? ~ 5x10~24gcm=% AU2. The
flux ratio k = 47w pv, /B,, defined in Eq. 1.19, is therefore nearly constant, changing sign between
North and South, as shown in Fig. 6.6, with an absolute value around ~1.5%10~10g!/2cm~3/2,

The temperature varies with distance following an approximate power law. A polytropic model
will be assumed, with T' o p7=1. Plotting T vs. p (Fig. 6.7) gives an estimated y~1.5, which is
below the adiabatic value of 5/3, but also above the isothermal value of 1. This is consistent with
the Ulysses results presented by Feldman et al. (1998), where the polytropic v was estimated to
fit between 1.5 and 1.7. The difference from the adiabatic value is probably due to electron heat
conduction.

The number density of a particles n,, is a fraction ~0.044 of the number density of protons n,
(Fig. 6.8). Therefore it can be assumed that p = 1.8pkpT/amu = (v — 1)u, taking into account
both electron and ion pressure, and that (consistent with a one-fluid model) the electron and ion
temperatures are the same.

The corotational angular velocity @ = (vs — Bgv,/B,)/R has a large dispersion (Fig. 6.9).
However, its mean value of ~2.1x10~%sec™! gives 27/Q = 34 days, agreeing well with the solar
rotation period of ~36 days near the poles. This again agrees with the present view of the fast
solar wind as originating mostly from the polar coronal region. In general terms, Q tends to be
dominated by its magnetic term, as shown in Fig. 6.10 —the small departures from unity in this
plot are dominated by long term biases in the measurement of vg and are probably even smaller in
reality than depicted here.

The mean and typical values mentioned here are used in the next section to construct a simple
analytical model of the solar wind, which is used as a basis for simulations. They are useful as a

reference for the mean field properties of the high-latitude heliosphere near solar minimum.

6.3 Simulations

6.3.1 Method

The simulations are performed using the methods and boundary condition presented in previous
chapters of this thesis. Spherical coordinates (r,0,¢) instead of cylindrical coordinates (z, R, @)
are used, replacing for instance the boundary condition at z = 0 with r = r;,. The colatitude

0 = 90° — © coordinate is used in the calculations.

In order to set up the simulations, it is necessary to choose initial conditions, a value of Tmin, and
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define the functions v,(8), p(#), w®), (0) and B,(6) at r = rmin; these functions are taken equal

to their initial values at r = ryi,. The initial conditions chosen are

Uy ("'a 0) =  Urmin t+ ('Uref - Urm'm) min (‘uﬂy 1) (61)
Tref — Tmin
B, (7‘, 6) = (Brefrfef) 7"_2 (62)
vg(r,0) = 0 (6.3)
30 (ra 0) = 0 (6.4)
Vg (7‘, 9) = (1 - fB¢) TQO sin @ (65)
By(r,0) = —ferldo —?T- sin 8 (6.6)
p(r;0) = (PrefUrefTref) T—2U;1 (6.7)
y—1
T(6) = Te ( p ) (6.8)
Pref
1.8pkBT
u(p, ) = ——, 6.9
0. T) ply — 1) (6.9)

using a reference radius rf = 1AU where appropriate to obtain the initial values vrer, Bref, Pref, and
Tret- A launching value vymin is used for the speed, a value Qg for the corotational constant, and a
number 0 < fpg < 1 gives the initial fraction of the magnetic term in this corotation. The particle
mass constant y is set to 1 amu and the factor 1.8 takes the presence of electrons and « particles
approximately into account. The polytropic index < has been set to 1.5.

Consistent with the restriction of the data to the high latitude case, the heliospheric current
sheet present in the equatorial region was not simulated. In their suite of simulations, Keppens
& Goedbloed (1999) present a split monopole for high latitudes and a dipole close to the equator,
matching them smoothly. Here it was preferred to restrict the validity of the simulation to high
latitudes. The simulations were however extended to the equator for geometrical convenience, in
order to avoid forcing the fieldline at 8 = 8., < 90° to be radial. There is no doubt that the other
approach has more generality. In particular, it allows to represent the equatorial region where the
sign of the radial magnetic field changes inside the simulation.

The values of rmin and vemin have been chosen so as to have an initial value for the Bernoulli
constant e which is approximately the same at ry;, and at r.. The terms considered in this

approximation were the kinetic radial energy, the specific enthalpy, and the gravitational potential.

6.3.2 Results

6.3.2.1 Reference run

This simulation starts with the parameters ryin = 8Rg, Qo = 27/34 days, Bres = 3.1 x 107°G,

PrefUrefToo; = 9% 1010 sec™, Tyer = 2% 109K, vyer = 900km s ™, Vpmin = 418.6kms™!, and fpys = 0.7.
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With these values, the magnetic field is essentially passive, which corresponds to the mean values of
Ulysses data.

The numerical box extends from 8,,;, = 0° to Omax = 90°, using 90 equally spaced zones, and
from rimin = 8Rg t0 Tmax = 1.5AU, using 90 zones, equally-spaced with a spacing of 10~3AU for the
first 10 zones, and ratioed' for the remaining 80.

After steady state is achieved, the resulting flow is mostly radial, with a final speed at r = rpax
of v,~890kms~!. Corotation is properly enforced with the magnetic term becoming dominant at
large distances. Fig. 6.11 shows how vy /R rapidly drops with a power law of r—2 from a starting
value of ~0.5 at rpin. However, the angular momentum ! has an appreciable fluid contribution,
between 0.20 and 0.26, with little radial or angular dependence. Acceleration of the flow can be seen
in Figs. 6.12 and Figs. 6.13; they show how the flow, starting barely supersonic, crosses the Alfvén
surface and reaches its final speed.

The Alfvén radiusis ry = 11.5Rg, with little 6 dependence. Mestel’s theorem (I = R%Q = 7% Qsin” )
predicts the angular momentum correctly.

This simulation was also tested with a run starting with fps = 0.0 instead of 0.7, with substan-
tially the same results in steady state. This shows that the final value of the toroidal magnetic field

is independent of initial conditions.

6.3.2.2 Simulations of faster rotators

The Sun is a star in relatively slow rotation, but with plasma 8 < 1 at its surface. It is interesting to
study the effects that an equivalent star that happens to rotate faster would produce in its outflowing
wind. The two simulations presented here are similar to that in 6.3.2.1, differing only in having faster
values for €, corresponding to a rotation period of 1 day and 3 days respectively.

The simulation with a period of 3 days produces essentially the same final speed v, (Fig. 6.14).
Some collimation is visible in the angular dependence of the Alfvén radius (Fig. 6.15), and more
clearly in the ratio between the values of 6, at some large radius r and at the footpoint r = 7min
(connected by the same fieldline). This ratio is visibly smaller than 1.0, especially close to the axis
(Fig. 6.16).2 This factor makes the fieldlines not exactly radial, but not enough to be very important.

The simulation with a period of 1 day has marked departures from spherical symmetry. For
instance, the final speed at r = 1.5AU now has a strong angular dependence (Fig. 6.17); the speed
is approximately the same as before at the poles but increases towards lower latitudes. Collimation
is clearly visible in the position of the Alfvén radius (Fig. 6.18), in the ratio between 6, and 6 on

the same fieldline (Fig. 6.19), and in the shape of the fieldlines (Fig. 6.20).

!Each zone is wider than the previous one by a small constant factor.
2A similar simulation, using fmax = 60°, featured a ratio Ormox/0F = 1 at 8 = 60°, instead of 90°; evidently the
degree of collimation was altered by the shape of the computational box.
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6.4 Energy and angular momentum flux

It is important to estimate how much energy and angular momentum the Sun currently loses in the
solar wind. Those values can be estimated from the Bernoulli constant e defined in Eq. 1.22 and
the angular momentum constant ! defined in Eq. 1.21 by multiplying these constants by the mass
loss rate pv,r? and integrating over solid angle dw. In stationary, axisymmetric theory, these values
are functions of fieldline only, and furthermore | = R4%Q), where R4 = r4sin6 is the cylindrical
Alfvén radius. The simulations shown in §6.3.2 agree with theoretical expectations, giving a power
L = [epv,r?dw = 4.5x10*"erg/ sec and a torque G = [lpv,7% dw = 1.0x10%dyncm/sec. 3 The
relatively small value obtained for G is due to the small value of the Alfvén radius used in this
simulation, consistent with the high values of v, measured by Ulysses at high latitudes.

It is now time for theory to confront measurement of the fast, “quiet” wind at solar minimum.
Assuming a value for the polytropic index «y, the enthalpy per unit mass h can be estimated as
h = ~yu/p where u is the internal energy per unit volume, related to the temperature by u =
(v — 1)7'1.8pkpT /amu. With this in hand, it is possible to calculate the Bernoulli constant. The
results (Fig. 6.21) show that the radial kinetic energy term dominates the value of e, with the
enthalpy two orders of magnitude smaller and the other terms contributing to e still another order
of magnitude lower (Figs. 6.22, 6.23, 6.24, 6.25, and 6.26). The radial kinetic energy (largely
independent of latitude, outside of the equatorial region) gives an estimate of the power in the wind
as L = 47r3’-2ipvrr2 ~ 3x10%"erg/ sec, six orders of magnitude below the solar luminosity.

Assuming axisymmetric, steady state theory, the value of the angular momentum can be esti-
mated from | = R4%Q. While strictly speaking Ulysses measurements do not reach the Alfvén radius
where v, = B, /\/47p, they provide an estimation. Assuming that v, grows by a factor a between
the Alfvén radius and the measured region, and assuming that the flow is mostly radial, we have
that rqo~r(B,//Amp)v, " a'/2~11Rzal/?. With this estimated radius, and remembering that the
magnetic term was observed to be dominant in Q at Ulysses distances, the result is I~ — RByk™la.
The growth ratio «, is between 1.1 and 1.5 (Suess et al. 1998); the simulation indicates a~1.3.
Therefore we expect that the magnetic term in [ = R (vy — Bg/k), equal to Iyr = —RBy/k, is at
least important as the fluid term Ip = Rvg and probably dominant, with a ratio Iz /Ip~o — 1~0.3.

This gives a value for v, of approximately 0.2kms™*

rau " !sin@, much smaller than the typical
values of the solar wind velocity. Extremely high precision would be needed to measure this small
velocity component, which also would be masked by non-axisymmetric azimuthal motions in the
order of 10kms~!.

To make the angular momentum measurement and calculation even more complex, there are

large systematic errors present in the Ulysses angular data (Goldstein & McComas 1999). Fig. 6.27

3These integrals have been integrated over a solid angle of 4w, despite the fact that the simulation extends over a
limited angle.
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was obtained using the data presented at NSSDC uncritically. Its panels show a specific angular

momentum which is not a function of latitude alone; given that the fieldlines are largely radial, this
would mean that, despite axisymmetric theory, the quantity [ is not being conserved along fieldlines.
Fig. 6.28 shows that this unexpected ! is dominated by its fluid term, I~Ruvg, whose sign changes
between hemispheres and when the orbit reaches r~3.5AU. The magnetic term [y = —RBy/k,
instead of being the larger term in the directly measured value ! = R (vgy — By/k), is typically two
orders of magnitude smaller and it does not agree regularly in sign. The real situation is probably
very different: Ulysses measurements of v, and vy have large systematic errors, especially large
when dealing with long trends. These errors are so large as to preclude any direct measurement
of | (Goldstein 1999). The dispersion of vg observed in the data is however mostly physical, due
to deflections in the wind originated in turbulence and Alfvén waves. It is possible to assume that
the dispersive part of Ulysses measurement of the azimuthal velocity (Avy~20kms™!) is a valid
estimation despite the many sources of error mentioned in Goldstein & McComas (1999), because
these errors affect the long trends more than the fast variations. This “random” variation Awvg
is probably the largest part of the authentic instantaneous value of I, causing effects larger than
the theoretical Mestel value of R4 by around three orders of magnitude. This theoretical value
might still be the average momentum loss, if the rapidly varying part of vs nearly cancels out. The
measurement of the angle arctan(vg/v,), necessary to estimate vy and !, might be more reliable
using long term averages, or taking measurements closer to the Alfvén surface.

The magnetic term is dominant in Q = (vy — Byv,/By) /R, giving the expected Parker spiral.
However, I = R(vy — ByB,/4wpv,) may be dominated by the the rapidly varying, noisy vg term.

This combination of inequalities is possible when

| By Br| {Bg|vr
— < || L =5 6.10
4 pu, vl | By (6.10)
B? 5
6.11
m, < U (6.11)

that is, in strongly super-Alfvénic flows, as is indeed the case for the Sun where 2 is dominated by
the magnetic term at large r, but [ has a sizable vy term (about 25% of the total in the simulations).
This value is consistent with allowing some moderate growth factor a for v,, around 30% after the
Alfvén point.

The measured k and e are close to values computed from axisymmetric theory, and §2 is not far
away. However, [, dominated observationally by its rapidly varying vg term, is far from theoretical
values.

The departures from theory can be explained by assuming the presence of Alfvén waves super-
posed on the radial field, breaking both steady state and axisymmetry. If there are large scale

departures of the fields, those waves must have a large scale and large time correlation, as suggested
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by Forsyth et al. (1996) to explain some departures of  from the ideal Parker spiral value. (The

large scale trends for I shown in the figures are however explained as instrumental error, rather than
requiring a physical explanation.)

A recipe of the solar wind can be formulated by adding three ingredients. The first ingredient is
the ideal Parker model, where there is no vs, no vg, no By, a large B, o< 72, a large v,  r°, and
a moderate By which starts modest at small r, with a ratio By/B, increasing with distance. The
next addition to the recipe is a small vy, consistent with Mestel’s theorem [ = R%Q, using a value
of r4 close to 11Rg. This vy is rather small, less than 1kms™, and it decreases |By| by some small
factor to keep corotation. Finally, the key ingredient consists in Alfvén waves outgoing from the
Sun. Those waves modify the non-radial components of the vectors. The already sizable value of
By is slightly perturbed by these waves; but the values of the other non-radial vector components,
which were zero or very small before considering these waves, become completely determined by

these waves. This would explain why

1. The flux ratio k, = 4wpv,/B, and the corotational @ = (vy — Byvy/B,)/R ~ —Bgv,/B,/R

behave as expected: they depend on quantities mostly unaffected by the waves.

2. The flux ratio kg = 4wpvy/By depends on quantities defined exclusively by the waves, and

becomes very different from k...

3. The angular momentum ! = R(vg ~ Bg/k;) is far off from predictions; its most important term

is dominated by wave effects.

In favor of this Alfvén wave theory, it is the fact that vy, while typically smaller than vg, is not

usually much smaller. Also the approximate relation

éB
Viarp’

oV ~

(6.12)

frequently fulfilled by the flow perturbations (Bruno et al. 1985) points out to Alfvén waves.

6.5 Conclusions

Ulysses high latitude data taken during a solar minimum were studied and used as the basis for an

MHD simulation. Their analysis showed that:

o The energy flux was much smaller than the solar luminosity (six orders of magnitude below).
However, the large dispersions of v4 due to waves and turbulence and the large systematic
errors in the data (Goldstein & McComas 1999,Goldstein 1999) make a direct measurement

of the angular momentum flux impossible.
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e The dispersions of the transverse speeds are close to the dispersion of the transverse magnetic

fields divided by +/4mp (Bruno et al. 1985). This suggests an Alfvénic wave component in the

non-axisymmetric part of the flow.

* A polytropic fit with v = 1.5 (Fig. 6.7) was found to the high-latitude data on temperature
and density data. This result is consistent with the value found by Feldman et al. (1998),
using a slightly different selection of data. This value is both too high and too low. It is too
low because, being below v = 5/3, it shows that either thermal conductivity or heating are
present, while it is too high because extrapolating the polytropic fit from 1.5AU towards the
Sun with this value of v would give an unreasonably high value for the temperature of the
solar corona. Clearly the phenomenological polytropic index decreases with radius, showing
that the thermal conduction or heating mechanisms are more efficient closer to the Sun. The
value v = 1.5 is also marginally high in that it implies T'ocr~!: any power law steeper than this
would have allowed (in principle) subsonic solutions to the Parker equations (Parker 1965).
It was decided however to use this value v = 1.5 as close to the Sun as possible, to have an
estimation consistently based on high-latitude data of the solar wind. The closest approach
to the Sun in the simulation was at the sonic point of the solar wind, estimated here to be at

8R, based on energy and mass conservation for this value of .

e The measured ratio of alpha particles to protons produced an estimate of 1.8pkpT/u for the
pressure, under the assumption that the temperatures of protons, alpha particles, and electrons

are the same.

e The Parker spiral structure of the solar wind toroidal field behaved as expected, giving a value
of © consistent with the period of solar rotation of 34 days. The measured values of § in the
wind have a large dispersion, but they seem to be closer to the value given by polar rather
than equatorial rotation of the Sun. This is consistent with the picture of the solar wind as

originating from the polar coronal holes.

e Some other results of Ulysses are shown: the split-monopole shape of B, at high latitude
the lack of latitude dependence of the high-latitude fast flow v,. The radial velocity term is
dominant in the Bernoulli constant e and in the mass flux pv,, implying that these quantities
are also mostly latitude-independent inside the high-latitude portions of the flow, outside of

the equatorial heliospheric current sheet.

The simulation performed here gave the estimation of some quantities difficult to measure directly
or estimate from the data, for instance, the value of the ratio Rvg/l (giving the relative importance
of the fluid part of the angular momentum) and the ratio between the Alfvén speed v4 and the speed

at infinity ve, (giving the precise location of the Alfvén surface). The value of Ruvy /1 is particularly
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important for the solar case because a direct measurement of the mean values of vs, and I from

Ulysses data is impossible. The simulation gives an estimate based on theory of a quantity that
otherwise cannot be measured.

Stars rotating 10 and 30 times faster than the Sun were also studied for comparison: they may
represent the rotation of the Sun at some earlier stage of its evolution. They showed appreciable
magnetocentrifugal acceleration (mostly in the equatorial direction), together with collimation in the

polar direction. Compared with launching from an accretion disk, there are many basic differences:

e The accretion disk is close to Keplerian rotation, that is, close to breakup speed. Stars can
rotate at any speed between zero and breakup, with the last being the least probable, except

for very young stars.

e The wind emitted from a Keplerian disk is probably dynamically cold for most of its trajectory,

while the wind emitted by a star has a thermal pressure that may dominate the flow.

¢ The equatorial mass discharge of the solar wind is lower than that from the poles by a factor of
around 2.0. The magnetic field is constant over most latitudes. In the case of a Keplerian disk,
the analog of the equator is the outer radius, and the analog of the pole is the inner radius; both
the magnetic field and the mass discharge are expected to have strong dependences (power

laws) on the distance from the central object.
e The geometry of the emitting surface is spherical instead of largely flat.

Despite these many differences, the collimating mechanism appeared in a similar way. The Alfvén
surface of the faster rotator became non-spherical, further away from the Sun at the poles than at
the equator by a factor of 10%. The Alfvén radius has a value equivalent to that of the slow rotator
at an intermediate latitude. This predicts essentially the same value for the ratio a‘nﬁ%&éﬁ as for
the slower rotator. This is probably due to the relatively large value of v, at r = rmin and to the
large thermal pressure. Both effects are spherically symmetric and independent of the rotation, and
largely determine the shape of the Alfvén surface, for a given value of the hemispherically symmetric
magnetic field B,., in spite of the larger rotation.

All these data were taken during solar minimum. Ulysses is already starting to measure the
polar wind at solar maximum. It will achieve its highest southern latitude ® = —80.2°, r = 2.30AU
on 24/Nov/2000 and its highest northern latitude ©® = +80.2°, r = 2.02AU on 12/Oct/2001. The
conditions of the polar wind are expected to be very different from those found in the previous
polar pass. In particular, the transient events are expected to be much stronger, disturbing the
structure of the wind. The Ulysses mission is in an unique position to study the 3D evolution of the

heliosphere across the entire solar cycle, far from the ecliptic.
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Fig. 6.1 Ulysses orbit. All latitudes included, data averaged in 1-hour periods.
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Fig. 6.2 Magnetic fluz per solid angle B,r%sign(©), from Ulysses data. Calculated ordinate azis.
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Fig. 6.3 Radial velocity vy, until just before the completion of the first Ulysses orbit. Data averaged

over 48-hour periods.
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Fig. 6.4 Radial velocity v,. High latitude Ulysses data, averaged over 48-hour periods.
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Fig. 6.5 Mass loss rate per solid angle, pv,r?, from Ulysses data. Calculated ordinate azis.
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Fig. 6.6 Flux ratio k = 4mpv, /B,sign(0), from Ulysses data. Calculated ordinate azis.
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Fig. 6.7 Temperature as a function of plasma density, from Ulysses data. An indicative line showing

a Toxp®® relation is drawn over the data, consistent with v = 1.5.
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Fig. 6.8 Ratio of the number of a particles to protons, from Ulysses data. Calculated ordinate azis.
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Fig. 6.9 Corotational Q = R~ (vy — Byv,/B,), from Ulysses data. Calculated ordinate axis.
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Fig. 6.10 Ratio of the magnetic term —Bgv,/RB, of the corotational  to Q itself, from Ulysses

data. Calculated ordinate azis.

Note that the small departures of this ratio from unity are largely due to long term biases in Ulysses

measurements of vg.
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Fig. 6.11 Solar wind reference simulation. Values of vy relative to the corotational angular speed

and to the specific angular momentum, taken at 8 = 30.5°. Values taken at a different angle would

not differ appreciably.
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Fig. 6.13 Solar wind reference simulation. Values of the sonic, Alfvénic and fast magnetosonic

Mach numbers on the radial line § = 30.5°. Values taken at a different angle would not differ

apprectably.
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Fig. 6.14 Solar wind simulation with a 3-day rotation period.
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Fig. 6.15 Solar wind simulation with a 3-day rotation period.

Critical radii as a function of colatitude 6.
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Fig. 6.16 Solar wind simulation with a 3-day rotation period.
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Fig. 6.17 Solar wind simulation with a 1-day rotation period.

Values of v, at siz different heights, as a function of colatitude 6.
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Fig. 6.18 Solar wind simulation with a 1-day rotation period.

Critical radii as a function of colatitude 6.
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Fig. 6.19 Solar wind simulation with a 1-day rotation period.

Ratio between the angle 8, at a certain radius r and its value 8p at the footpoint r = rmin, taken on

the same poloidal fieldline. Two values of r are shown.
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Fig. 6.20 Solar wind simulation with a 1-day rotation period.

Twenty poloidal fieldlines, shown on the poloidal plane.
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Fig. 6.21 Bernoulli constant e, from Ulysses data.
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Fig. 6.22 Specific kinetic energy in the radial direction, %v%, divided by the Bernoulli constent e.

Ulysses data.
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Fig. 6.23 Specific enthalpy h, divided by the Bernoulli constant e. Ulysses data.

This enthalpy has been calculated from the measured temperatures, assuming a polytropic v = 1.5.
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Fig. 6.24 Specific kinetic energy in the transverse direction, 1 (vZ +v2), divided by the Bernoulli
2\Y% TV [)

constant e. Ulysses data.

Ulysses measurements of v, and ve.
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Note that this small term in e is largely influenced by long term biases in
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Fig. 6.26 Magneto-centrifugal term —RQBy/k, divided by the Bernoulli constant e. Ulysses data.
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Fig. 6.27 Specific angular momentum | = R (vg — By /k), from Ulysses data. Note that this quantity

is largely influenced by long term biases in Ulysses measurements of vy, making an authentic measurement

of the angular momentum fluz of the solar wind from these data impossible.
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Fig. 6.28 Specific angular momentum divided by its magnetic term, —lk/RBg, from Ulysses data.

Note that this quantity is strongly sensitive to the long term biases in Ulysses measurements of vs.
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Chapter 7

Conclusions

The principal original conclusions contained in this thesis are:

Tt is the total mass flux at the base of the coronal wind, rather than the velocity or the density

separately, that determines the character of the outflow.

There is an intermittent regime of launching, accessible by increasing the mass loading beyond
a limit, related to the magnetic flux profile on the disk surface. Transitions between an
intermittent and a smooth launching are possible, by changing the amount of mass flux, or by

making the mass loading depend on fieldline angle.

The unexpected 3D stability of the steady-state configurations found against perturbations
in the initial conditions, especially against the kink mode, despite reasons to expect such

instability.

Boundary conditions for the disk were written for numerical usage, consistent with mathemati-
cal constraints on the number of enforceable boundary conditions. This avoids overdetermining
many physical quantities of the wind, such as the inclination of the fieldlines at the disk, the

value of the toroidal magnetic field, the Alfvén radius, and the angular momentum flux.

Data and simulations of the solar wind were combined to produce estimates of the azimuthal

velocity and of the Alfvén radius, otherwise not available.

A stellar wind in faster rotation was simulated, showing again the presence of magnetocen-

trifugal collimation.

Some of these answers raise new questions and challenges, prompting future simulations, which

could give answers to the following questions:

There is much to be explored concerning the stability of 3D outflows. The results presented
here, which were unexpected, encourage to believe that stable outflows can be found. A com-
prehensive investigation will require 3D simulations with a finer grid, able to reduce artificial

dissipation.

The intermittent mechanism showed how a configuration, initially magnetocentrifugal, was
able to change into a generator of pulsed jets. The resulting flows are very complex, and
deserve further study. Constructing a theory out of this non-linear and dynamical mechanism

only adds to the challenge. Prospects for comparing with observations are good.
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¢ The magnetopropulsive model was mentioned in this thesis as a launching mechanism different
from but closely related to the magnetocentrifugal model. It has a stronger azimuthal field
at small distances from the disk. Studying its 3D stability against kink modes may teach
which of the stabilizing effects for the magnetocentrifugal mechanism is most responsible for

the observed stability.

e Integration of outflow models with coronal models such as Miller & Stone (1997) is necessary
to answer some physical questions depending on the details of the interaction between the

wind and the disk.

e Simulations of the solar conditions should be performed taking into account phenomenological

heat transport, and the presence of large amplitude waves, which transport momentum and

energy into the flow.

e The success in reducing the number of independent parameters for cold jet launching presented
here hints to the possibility of a further reduction, perhaps based on some combination of the

mass and magnetic fluxes.

Code will be developed in the future to reflect the physics of these systems more accurately.
Relativistic simulations already exist (Aloy et al. 1999; van Putten 1996; Koide et al. 1999) and are
a necessary direction for the future numerical study of the jets from AGNs and microquasars.

A black hole magnetosphere and a disk corona require considerations beyond pure MHD, similar
to those present in radio pulsars.

The very complex, localized flows revealed in some of the simulations requires the possibility of
increasing the resolution by using adaptive methods. Higher space resolution and longer timescales
are often conflicting desirable goals, due to the limitations imposed by the Courant condition; new
ways of doing as much as possible inside the limitations will be possible by a more intelligent
treatment of the computational volume.

Cooling, heat transport, and turbulent magnetic pressure must be added to a realistic simulation
of the solar wind, which is the MHD outflow where most data is available; some of these physical
effects should also be present on the flows where the data are more sparse.

The observational prospects in the near future are very exciting, with projects such as space VLBI
(ARISE, VSOPII); the y-ray observatory GLAST. Chandra, the 3”-resolution X-ray observatory, is
already operating. The Ulysses polar probe is going to perform its solar maximum passage above
both poles of the Sun, starting later this year.

There is much to be discovered out there!
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