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Abstract

In this thesis, we study and compare the performance of several distributed channel
assignment algorithms (CAAs) in a cellular system. The CAA which is used to assign
a channel to a new call greatly influences the amount of traffic the system can support.
We are interested in the design and analysis of algorithms which perform well, but
at the same time are relatively easy to implement. In this thesis, we have analyzed
the performance of a very simple CAA which we call the Timid Algorithm, in the
limiting case of a large number of channels. We have been able to show that, under
a plausible mathematical hypothesis, the algorithm is asymptotically optimal, where
“asymptotically” refers to a system with a large number of channels. This is very
surprising as there are algorithms of much higher complexity which provably do not
have this property.

The Timid Algorithm is asymptotically optimal, but it requires a large number of
channels for a satisfactory performance. We looked at some algorithms which retain
the simplicity of the Timid algorithm but which can be expected to give a good per-
formance even with a smaller number of channels. We called one such algorithm the
Modified DCAA. We present some simulation results which show that this algorithm
gives a reasonably good performance even when the number of channels is small. One
of the ways to increase the capacity of a cellular system is through the use of micro-
cells. The Modified DCAA, because of its distributed nature and low complexity, is
particularly suitable for such microcellular systems.

We also present a method for computing the upper bound on the performance
of any CAA in a cellular system with adjacent channel constraints. The method,
although computationally intensive, may be useful for determining how close an al-
gorithm’s performance is to the optimal performance.

Finally, we discuss ways of obtaining the set of “allowable” states for a system. We

also present some “measurement-based” algorithms and compare their performance



with “prediction-based” algorithms.
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Chapter 1 Introduction

1.1 A Cellular System

In a cellular system, the service area is divided into a large number of smaller areas
called cells. Each cell has a base station. Communication takes place between the
mobiles in the cells and the corresponding base stations through frequencies or chan-
nels. Since the number of channels is limited, the same channel has to be used in
different cells simultaneously to increase the system capacity. However, the cells that
use the same channel simultaneously cannot be very close to each other, otherwise
the interference among them may be unacceptable. The set of cells which can use the
same channel simultaneously while keeping the interference within acceptable limits
1s specified by the cochannel reuse constraints.

Example. Consider a linear array of three cells shown in Figure 1.1. Suppose the
reuse constraint is that the same channel cannot be used in adjacent cells simultane-
ously. Figure 1.2 shows the state diagram for a single channel. A “1” corresponding
to a cell indicates that a channel is being used by a call in the cell, while a “0” indi-
cates that the channel is not being used by any call in the cell. We shall refer to this

example throughout most of the thesis.

Figure 1.1: A linear array of three cells

The offered traffic (measured in Erlangs) in a cell is the average number of calls
that would be in progress in the cell if all the calls were accepted. Since the number
of channels is limited, some calls have to be blocked. The carried traffic is the average

number of calls which are in progress at any time when a particular algorithm is used.



2

The performance of an algorithm is measured by the carried traffic or the blocking
probability. The channel assignment algorithm (CAA) which is used to assign a
channel to a call greatly influences the amount of traffic the system can support. Our
aim is to design algorithms that have a good performance and are also relatively easy
to implement. Some algorithms give a good performance by being unfair, i.e., by
providing low blocking probabilities in some cells and high blocking probabilities in
others. Although the issue of fairness is important, we don’t consider it in our thesis.

We will consider only the class of CAAs which either accept a call request or block
it. There is no call waiting. Also, calls-in-progress cannot be dropped. Throughout
the thesis, we assume that a call remains in the cell in which it originated throughout

its duration.

Figure 1.2: The state diagram for a single channel

1.2 Important Questions Regarding a CAA:

Now we state the important questions we face when assigning a channel to a call:
e Should we block it even if there is a channel available to accept the call?
Consider the 3-cell system. Suppose there is only one channel and it is in the

all-zero state as shown above. Suppose we know that the offered traffic in cell 1 and



cell 3 is very high. Then if a new call arrives in cell 2, it might be better, from
the point of view of maximizing the carried traffic, to block the call although it can
be accepted. Whereas such an algorithm definitely increases the carried traffic, it

requires a knowledge of the offered traffic which is not always available.

e Should we rearrange the existing calls to see if the new call can be accepted?

Channel 1 —= o
Channel 2 —= o

Suppose there are two channels in the 3-cell system. Suppose channel 1 is in state
2 and channel 2 is in state 3. A new call arrives in cell 2. If the call in cell 3 is
moved to channel 1 or the call in cell 1 is moved to channel 2, then the new call can
be accepted. This rearrangement of existing calls to accept a new one apparently

increases the carried traffic. However it leads to an increase in the complexity of the

algorithm.

e Should we look for the “best” available channel to be given to the call?

Channel 1 —= o
Channel 2 —= O

Suppose there are two channels in the 3-cell system. Suppose channel 1 is in state

3 and channel 2 is in state 1. A new call arrives in cell 1. If channel 1 is given to the
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new call, then channel 2 will continue to be in state 1 and hence if the next event
is a call arrival in cell 2, the system will be able to accept the new call. However
if channel 2 is given to the new call, and the next event is a call arrival in cell 2,
the system cannot accept the new call without rearranging the existing ones. Thus
channel 1 appears to be a “better” choice than channel 2. However, we should note
that although looking for the best available channel apparently increases the carried
traffic, it also leads to an increase in the complexity of the algorithm.

The performance as well as the complexity of a CAA depend on how the algorithm
answers the three questions given above. We should note that a CAA need not answer
the above questions as just “Yes” or “No”. The answer may be somewhere in between.
For example, there may be a CAA which allows rearrangement of up to one call in

order to accommodate a new one.

1.3 The Timid DCAA

One of the ways to meet the increasing demand of cellular phones is through the
use of microcells. These allow the use of the same channel by a larger number of
users at the same time. However they require the use of low-complexity CAAs as the
system size is typically very large because of the large number of cells. Most of the
known CAAs which have a good performance are very complex or have some other
disadvantages. The complexity of these CAAs increases with the system size.

We propose a very low complexity algorithm. We call it the Timid Dynamic
Channel Assignment Algorithm (TDCAA). The algorithm is as follows:

TDCAA: All channels are available for use in all the cells, provided they don’t
violate the reuse constraints. When a call comes to a cell, a channel is chosen at
random from among the channels that are available for use at that time and is given
to the call. If no channel is available, the call is blocked. Call rearrangements are not
allowed.

Let us see how it answers the questions given above:

e It does not block a call if there is a channel available to accept the call.
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o [t does not rearrange calls in progress in order to accept a new one.

e [t does not look for the “best” available channel before accepting the call. It
picks one of the available channels at random.

The idea 1s that when a call comes to a cell, the interference power received at the
corresponding base station at the different frequencies is measured, and from among
those frequencies which have interference power less than a threshold (that is, those
which are available), one is chosen at random. In this sense, it is a decentralized algo-
rithm and is very suitable for systems with a large number of cells, e.g., microcellular
systems.

The TDCAA has none of the features which increase the complexity but which
we might think also improve the performance of an algorithm. It is perhaps one of
the simplest algorithms one can think of. Yet we have been able to show that the
algorithm’s performance is quite good. In fact, its asymptotic performance is better
than that of some other algorithms of very high complexity.

Asymptotically Optimal Algorithm: Consider a cellular system described by
a set of cells, a set of reuse constraints, and some offered traffic per channel (perhaps
different in different cells). We say an algorithm is asymptotically optimal if, for any
given cellular system, as the number of channels becomes large, the carried traffic
per channel, obtained by using the algorithm, is at least as large as can be achieved
using any other algorithm. (We consider only algorithms that are not allowed to drop
calls in progress. We also assume that a call remains in the cell in which it originated
throughout its duration.)

Conjecture: The TDCAA is asymptotically optimal.

We can prove the conjecture assuming a certain plausible mathematical hypoth-
esis, and we have strong experimental evidence to support our conjecture in many
special cases.

This is very surprising as there are some highly complex algorithms which are
provably not asymptotically optimal. For example, the “Greedy” algorithm, which is
identical to the TDCAA except that it allows call rearrangements in order to accept

a new call, does not have this property.
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Example. Consider the linear array of three cells shown in Figure 1.1. Figure 1.2
shows the state diagram for a single channel. Suppose the offered traffic is uniform in
all the three cells. Figure 1.3 gives an upper bound on the performance, measured by
the carried traffic per channel, for this system for various values of the offered traffic
[18]. We simulated the performance of the TDCAA, assuming n = 10000 channels,
for various values of the offered traffic. Figure 1.3 shows the result. It also shows
the performance, in the limit of a large number of channels, of the highly complex
GDCAA [19], as well as of a particular FCAA [18]. As is clear, when the number of
channels is large, the performance of the TDCAA tracks the upper bound, whereas

the performance of the GDCAA does not.

0.50

Asymptotic caried traffc per cell e channgl

.33
Upper Bound and FCAA
1 Tirmid DCAA (Simulation)
Greedy DCAA
0.17
0.00 . . . ] . i .
0.0 0.5 1.0 1.5

Offered traffic per cell per channel

Figure 1.3: Asymptotic performance of various CAAs for a linear array of 3 cells with
uniform traffic distribution

1.4 Rest of the Thesis

The main disadvantage with the TDCAA is that a large number of channels are
required before it gives a reasonably good performance. One of the reasons for this
is that it selects a channel randomly from the set of available channels. We studied
another “dynamic” CAA which does away with the random selection from the set

of available channels but otherwise retains the simplicity of the TDCAA and which
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can be expected to give a reasonably good performance even with a small number
of channels. We call it the Modified DCAA. We have some simulation results which
indicate that the Modified DCAA does indeed approach the performance limits much
faster than the TDCAA.

The result regarding the TDCAA has been obtained for cellular systems with only
cochannel constraints. However, the use of a channel in a cell imposes restrictions
on the use of nearby channels in the neighbouring cells. These constraints are called
adjacent channel constraints. Consider a cellular system described by a set of adjacent
channel constraints and some offered traffic per channel (perhaps different in different
cells). We will show how to compute, by linear programming, an upper bound on
the performance of any given cellular system with a given number of channels. We
will further show that as the number of channels becomes large, this upper bound
approaches a limit. We will also show that the upper bound is asymptotically tight in
the sense that as the number of channels becomes large, there are algorithms which
achieve the upper bound.

The thesis is organized as follows. In Chapter 2, we prove two theorems, one re-
garding the equilibrium distribution of two stationary Markov processes whose transi-
tion rates satisfy certain conditions and the other regarding the equilibrium distribu-
tion of an “almost Markov” stochastic process whose transition rates and equilibrium
distribution satisfy certain conditions. These theorems are used to prove the results
in Chapter 3. In Chapter 3, we begin with our analysis of the TDCAA. We state
the model, the hypothesis, and prove that the algorithm is asymptotically optimal
provided the hypothesis is correct. In Chapter 4, we compare the TDCAA with two
well known algorithms. We also look at an example where the TDCAA performs
better than a well known algorithm of very high complexity and try to understand
the reason for this. We also describe the idea of the Modified DCAA and give simu-
lation results that indicate that this algorithm gives a good performance even with a
small number of channels. In Chapter 5, we give a method for computing an upper
bound on the performance of any given cellular system with a given number of chan-

nels and show that the upper bound is tight in the sense that there are algorithms
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which achieve this bound as the number of channels becomes large. In Chapter 6, we
discuss interference, availability and ways of computing the comparability matrix for

a cellular system. We also discuss some “measurement-based” CAAs.



Chapter 2 Two Theorems Related to Markov

Processes

2.1 Introduction

In this chapter, we prove two theorems related to Markov processes [7], [5]. Through-
out this discussion, we assume that the Markov processes we deal with are irreducible,
have a finite state space, and have an equilibrium distribution. The first theorem
states that if the transition rates of two discrete-space continuous-time stationary
Markov processes tend to each other, then their equilibrium distributions also tend
to each other. The second theorem states that if the transition rates of a discrete-
space continuous-time “almost Markov” process satisfy certain conditions, then the
equilibrium distribution of the process is the same as the equilibrium distribution
of a Markov process whose transition rates are related to the transition rates of the
“almost Markov” process in a simple manner. These theorems turn out to be very

useful in proving some of the results in Chapter 3.

2.2 A Theorem About Stationary Markov Pro-
cesses

In this section, we prove a property about the relation between the equilibrium dis-
tribution of two discrete-space, continuous-time, irreducible, stationary Markov pro-

cesses whose transition rates tend to each other.

Theorem 2.1 Consider two discrete-space, continuous-time, irreducible, stationary
Markov processes X, (t) and X/ () having the same finite state space S. Let X;;(n)
be the transition rate from state ¢ to state j for the process X, (1) and let A};(n) be

the transition rate from state i to state j for the process X! (¢). The transition rates
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for the two systems are functions of the parameter n where n is real. Let {7;(n)} be
the equilibrium distribution for the process X, (t) and let {7%(n)} be the equilibrium
distribution for the process XJ (f). Suppose that A;j(n) = 0 if and only if Al:(n) = 0
for all ¢,7 € S and for all n. We also assume that if A;;(n) = 0 for any n, then it is

zero for all n.

For alli,5 € S, # j such that A;;(n) # 0, if

’\l T
lim ,](12) =1,
Nt ) 2](77,)

then for all j € S,

lim

n—00 gr

~
Ay
. 5
o~ ~

J
This says that if the transition rates of the two processes tend to each other, then
their equilibrium distributions also tend to each other.

In order to prove this theorem, we need several results which we prove before proving

the main theorem.
Determinant Properties of a Transition Matrix

Let aq,as, ... be variables which can take any non-negative value. Consider a square
matrix A with the following properties:

Each diagonal element is a sum of some of these variables. The other entries are
either zero or negative of one of these variables. Each column sum is greater than or
equal to zero for all non-negative values of these variables.

Let F; be the set of all such matrices of order [.

Example:
ay + as + as 0 —ag —dag
—ay a4 + as -7 0
G =
—ay —ay  asg+ar+ag 0

0 —ds —ag dg
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Lemma 2.1 For all [, the determinant of a matriv A € F; always has non-negative

coefficients .

For example, det G = azaqagag + azasagag + asasarag + azasasag + asasasag.

Here the coefficients of all the terms are non-negative.

Proof: We should note that as the column sums are non-negative for all non-negative
values of the variables, the variables which appear as elements of a column ( excluding
the diagonal element ) must appear as a term in the diagonal element corresponding
to that column. In addition to these, the diagonal element may consist of some other
terms with positive coefficients. The sum of these terms is equal to the column sum
and we will denote it by A; for column 1.

Let a; denote column ¢ of the matrix A. Then we can write

!
a; = a; + €,

where ¢; is a column vector with A; for entry ¢ and zero for all other entries and a/ is
an appropriate vector such that the above relation is satisfied. We should note that
the sum of the entries of a’ is equal to zero.

We can write

! . I3 7
A=(a;+e1,a5+€eq ... a;+ €,

where [ is the order of the matrix A.
We will prove the lemma by induction. Suppose the lemma is true for [ < b — 1.
We will prove it for [ = £.

If A is of order &, we have

det A = det(a] + ey, ay+ ey, ..., a) + ex) (2.1)

= det(a},a)+ €z,...,a) +ex) + det(eg, ay + €9, .. a) +ex).  (2.2)

Now, the matrix formed by crossing out the first row and column of (ey, ab+es, ..., a}+
¢r) is of order £ — 1 and satisfies all the properties for a matrix to be an element of

Fy_y. Therefore, det(ey, a) + €2,...,a) + ex) consists only of positive terms since it
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is equal to the product of Ay (consisting only of positive terms) and the determinant
of a matrix which belongs to Fj_.

Also,

det(a), ay+eq, ... ai+ey) = det(ay, ay, aytes, ..., ap+er)+det(a), ea, ahtes. ... di+ep).
(2.3)

By an argument similar to the above argument, the second term on the right side of

( 2.3) also consists only of positive terms. Proceeding in the above manner, we can

show that the first term on the right side of { 2.3) also consists of only positive terms.

We should note that finally we will be left with a matrix of order & whose column

sums are zero and hence its determinant is zero.

Hence from ( 2.1), ( 2.2) and ( 2.3) and the above argument, we conclude that for [ = k,

the determinant of a matrix A € Fj consists only of positive terms. The assumption is

truefor [ = 1. Hence it is true for all [.

Lemma 2.2 Consider an irreducible, stationary Markov Process x(t). Let S =

{1,2,..., m} be the finite set of states of the system. Let A;; be the transition

rate from state ¢ to state j. Let A be an m x m matrix defined as follows:

—Ajiy if 1 # j;

> i%i Aij. otherwise.

a5 =

Whenever we refer to the variables a;;’s, we shall mean the variables «;;’s for 7 # j.
We can say that the a;;’s are non-negative. Let B = (b;;) be the matrix formed from
A by replacing its first row by an all-one vector. Let B;; be the value of the cofactor
corresponding to b;;. We should note that both A and B are square matrices of order
m. Then,

For all j € S, By; consists only of positive terms in the variables a;;’s. Similarly,

det B consists only of positive terms in these variables.

Proof: Let P = (71, 7, ..., 7, ) be the steady state probability distribution vector on

the states of the system. We should note that since x(t) is an irreducible, stationary
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Markov process defined over a finite state space, the vector P is unique. Let e; be
a vector with 1 in the first position and zero everywhere else. Then P should satisfy

the following relation:

BP = e;. (2.4)

We can write
= . 2.5
7T1 det B (2.5)

We should also note that since P is unique and satisfies ( 2.4), det B cannot be zero.

We can easily verify that the matrix obtained by crossing out the first row and
column of B is an element of F,,_; and hence from Lemma 2.1 its determinant consists
only of positive terms in the variables. Therefore, By; consists only of positive terms.

We will prove now that the determinant of B also consists only of positive terms.
Suppose we represent all the transition rates by different variables. Then each variable
will occur only in one column. Therefore in the determinant of the matrix B, no term
will consist of a variable raised to a power higher than one. All terms will have the
variables raised either to power zero or one.

Suppose that the determinant consists of negative terms also. Take one of them.
Let the variables appearing in this term tend to infinity and the remaining variables
tend to zero. Then the contribution to the determinant will be dominated by this term
and will become negative. However, By; will be positive, whatever be the value of
the variables. (We should note that the variables can take only non-negative values.)
Hence from ( 2.5) we see that we will get a negative value for 7y which is not possible
as 7 is the probability of the system being in a state. Hence our assumption is wrong.
Hence det B consists only of positive terms.

We can go even further and say that each of the cofactors By, also consists only

of positive terms. This is because we can write for all j € S,

By

7T det B (2.6)
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Since each variable occurs only in one column, no term in By; will consist of a variable
raised to a power higher than one. All terms will have the variables raised either to
power zero or one. Suppose By; had negative terms. Then take one of those negative
terms. Let all the variables which appear in this term tend to infinity and let all the
other variables tend to zero. Then By; will become negative. However. as proved
above, since det B consists only of positive terms, it will always be positive. Hence,
from ( 2.6) we see that we will have a negative value for r; which is impossible. Hence,
B, ; also consists only of positive terms.
Hence, for all 7 € S, By; as well as det B consist only of positive terms.

Corollary: If we write
N;

Ty =T
D;

where N; and D; are polynomials in the variables a;;’s, then for all j € S, NV; and D;

consist only of positive terms.

Lemma 2.3 Let f(y1,y2,...,y,) be a polynomial with positive coefficients. Let [, =
{1,2,...,p}. For i € I,, let x;(n),zi(n) be variables that are allowed to take only
positive values. Here n is real. We will denote f(z1(n),z2(n),...,z,(n)) by f(x(n))
and f(z}(n), 2h(n),. .. xh(n)) by f(z'(n)).

If for all v € I,,

im i)y (2.7)
)
then
. flx(n))
lim L ]
R Fl )
Proof: We can write,
zi(n) = x;(n)(1 4+ €(n)) for all i € 1,,. (2.8)
Here for all 7 € 1,
lim ¢(n) = 0. (2.9)

n—o0
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Suppose f(x(n)) has m terms and let #5(n) denote the &A™ term in f(a(n)). Let #}(n)
be the corresponding term in f(2'(n)). Let the variables occurring in the expression
for t1.(n) be a2, (n), xp,(n), ..., Ty, (n). Then the variables occurring in the expression

for ti(n) are x} (n),x},(n), ..., xﬁqk (n). Let

where aj, is a positive number and py,’s are positive integers for all ; from 1 to /.

Then we can write

Iy
th(n) = a;gH:tL]ka(n)
J=1

Iy

i k
= ar ][] xif"(n‘) TI(L + e, (n))"
=1

=1

I

= ti(n) H(l + ex,(n))"

J=1

= t(n)(1 + €(n).
Here,

Uy
() = TLL + e, (m)P — 1.
7=1

and since from ( 2.9), for all ¢ € I,

lim ¢;(n) =0,

N—00

we can say that
lim ¢, (n) = 0. (2.10)

T OO

Also we should note that for all & € [, and for all positive values of the variables

B <. (2.11)
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Therefore,
f(@'(n)) = Z t.(n)
k=1
= Y (t(n)(1 + ¢i(n)))
k=1
= ’ te(n))(1 + €.(n))
Z Z Ek - ( n)
Let
€ (n)=max(|e(n)]: k=1,2,...,m).
Then
mhm € (n)=0 (2.12)
Hence we can write
(1 - kZl e (m)]) < HEm) < (14 Z e (n)])
(] - 7n|6mcm“(n)|) S ];((1;((:)))) 1 + 'n|6m41' 1)

Hence, from ( 2.12), we have

Proof of Theorem 2.1: The proof of Theorem 2.1 now follows from the corollary

to Lemma 2.2 and Lemma 2.3.
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2.3 A Theorem About Stationary “Almost Markov”

Processes

Theorem 2.2 Consider a discrete-space, continuous time stochastic process z(t).
Let [,, = {1,2,...,m} be the set of states which the system can be in. Suppose the
process x(t) satisfies the following properties:

(1) For all ?,] € ITTMZ.’ # ja

Pr(a(t+h) =7 | z(t) =1) = N (t)h + o( L), (2.13)
and for all 1 € I,
Pr(z(t+h)=1i|a(t)=1)=1=>_ Xj(t)h+ o(h). (2.14)
JEL

(2) Forall t,5 € I,,1 # 7, if A;;(t) # 0, then for all ¢,
0 <AL < /\Z‘j(i) < A\p. (2.15)

(3) Suppose that for all 2,7 € I, if A\;;(t) # 0 for any ¢, then it is not zero for all ¢
sufficiently large. For all A;;(¢) # 0 there exist A;; such that

lim Aii(t) =1. (2.16)

{—o0 /\ij

For 7,7 such that A\;;(?) = 0, let
/\Z] = O.

(4) Let Pi(t) = Pr(x(t) =12) for allv € [,,. Foralle e I,,

lim Pi(t) = P, (2.17)

t—00

The steady-state probability distribution {P;} on I, of the process x(t) satisfying the

above properties s the same as that of a Markov process defined on the state-space
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I and which has transition rate from v to j given by X\;;.

Proof: From ( 2.17), we can write that for all ¢ € I,,,

tlim" Pl(t)=0. (2.

(O]
—
o0
N

We can write for all j € [,,,

Pi(t+h) = Z Pr(z(t+h) =7 | 2(t) =) Pr(a(t) = 1)
1€lm
= (1= " Auh)Pi(1) + D Aij(1)hPi(t) + o(h) from ( 2.13) and ( 2.14).
i#i i
Following the usual process of transferring P;(t) from the right to the left, dividing

by h, and taking the limit as h approaches zero, we get
P(t) = =Y Au(t)Pi(t) + D () Pi(t). (2.19)
i#] v

Consider a m x m matrix A(¢) defined by

—)\ji t s if ¢ ";
o) { (t) ]

> Aij(t) otherwise.

Let B(t) be the matrix obtained by replacing the first row of A(?) by an all one

vector. Let us define two matrices P(¢) and C(¢) as follows :

P(t) = PQ.(ZL/) and C(t) = —P:;(t)
P,(1) P

Then from ( 2.19) we can write
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Let B;;(t) denote the cofactor corresponding to the element b;;(#) in B(?). Let B be
the matrix obtained from B(?) by replacing A;;() by A;; and let B;; be the cofactor
corresponding to the element b;; of B.
Since each B;;(t) is a polynomial in the X;;(#)’s, from ( 2.15) we can say that there

exists an My such that for all 7,5 € [,,,

Also, since B(t) and B are similar to the matrix discussed in Lemma 2.2 in section
2.2, det B(t), det B, By;(1) and By; (for all j € I,,) consist only of positive terms. We
can say the following:

(1) There exists an M, such that

o
S
o
—_—

det B(t)| > M, > 0. (2.2:

(2) Since By;(t), By, consist only of positive terms, from ( 2.16) and Lemma 2.3, we

have, for all j € I,,,

1nBlj( )

= 1|. 2.2
Jim =5~ (2.23)

(3) Since det B(t), det B consists only of positive terms, from ( 2.16) and Lemma 2.3,

det(B(t)) _

' 9 94
fm det(B) (2.24)
Writing Pj(t) in terms of the A;;(#)’s and the P!(#)’s, from ( 2.20) we get
o (Bult) = i Bi(1) P{(1))
i) det(B(1)) (225)
From ( 2.21) and ( 2.22), we can say that for all ¢,y € I,
— M, B; ('t)P"(t) M,y
Pl(t)] < =Xt Pl(t
M, 1] = det(B(t)) — Mz‘ Dl



Since

we can say that

Therefore,

ppo= lim B(1)
By;(t
= tl.l_% detgg(i)) ( from ( 2.25) and ( 2.26))
By
" _ 2.2 2.2
Jot(B) ( from ( 2.23) and ( 1))

However this is exactly the steady-state probability of being in state j of a Markov
process which is defined over the same state space as the process x(f) and whose

transition rate from state i to state j is given by A;;. This completes the proof.



Chapter 3 The Timid DCAA

3.1 Introduction

In this chapter, we shall analyze the performance, in the limiting case of a large
number of channels, of a distributed dynamic channel assignment algorithm which
we call the Timid Dynamic Channel Assignment Algorithm (TDCAA). The algorithm
is as follows:

TDCAA: All channels are available for use in all the cells. When a call comes
to a cell, one of the available channels is picked up at random and is given to the
call. If there is no available channel, the call is blocked. Call rearrangements are not
allowed.

Conjecture : The TDCAA is asymptotically optimal.

We can prove the conjecture assuming a certain plausible mathematical hypoth-
esis, and we have strong experimental evidence to support our conjecture in many
special cases.

This is very surprising as there are some highly complex algorithms which are
provably not asymptotically optimal. For example, the “Greedy” algorithm, which is
identical to the TDCAA except that it allows call rearrangements in order to accept

a new call, does not have the property of asymptotic optimality.

3.2 Model and Definitions

We assume that there is a finite set of N cells. The N cells share a common set of n
channels. The offered traffic in each cell is described by a simple Poisson birth-death
process [12], which is independent from cell to cell. (In practice, however, we should
note that handoffs between cells make the traffic among various cells dependent.) Let

In ={1.2,..., N} be the set of cells in the system. The rate of call request arrivals
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in cell 7 is Ajn per second and the rate of call departures is u per second. Thus the
offered traffic intensity in cell ¢ is r; = A;/u Erlangs per channel. The total offered
traffic is » = 3_, r; Erlangs per channel. The ratio p; = r;/r is the fraction of the total
offered traffic present in cell i. The vector p = (p1,p2,....pn) is called the traffic
pattern.

We define the state j of a channel by an N-tuple a; = (a1, as,....,ay;) with
a;; = 1 if the channel when it is in state j carries a call in cell i and ¢;; = 0 if
it does not. Although there are 2V possible channel states, only a subset of these
will be allowable, because of the channel “reuse constraints”. Let Q = {1,2,... ,m}
denote the set of allowable channel states. The only restriction we impose on the
reuse constraints is that the corresponding set of allowable states € is closed under
the operation of changing a 1 in the state vector a; corresponding to a j € € to a 0,
l.e., removing a caller from the system.

Let €2; be the set of channel states such that only if a channel is in a state j € (;
that a;+e; € Q, where ¢; is an N-tuple with a 1 in the i*" position and a 0 everywhere
else. That is, ; C Q such that only if a channel is in a state which is in ;, the
channel can accept a call in cell ¢ without violating the reuse constraints.

Example: Consider the linear array of three cells shown in Figure 1.1. Sup-
pose the reuse constraint is that the same channel cannot be used in adjacent cells
simultaneously. The state diagram for a single channel is shown is Figure 1.2. We

have,

QO = {(0,0,0),(1.0,0).(0,0,1),(0,1,0),(1,0,1)}.
{(0.0.0),(0,0, 1)},

2 = {(0,0,0)},

Qs = {(0,0,0),(1,0,0)}.

We will discuss a method for analyzing the asymptotic performance of the TDCAA
i.e., the performance of the TDCAA as the number of channels tends to infinity but

the offered traffic per channel in each cell remains constant. In this case, it is clear
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that as all the channels are treated in the same manner, we can focus our attention
on one particular channel, which we call 3, and study its behavior. We will refer to
the process described by it as x(¢) . Let S denote the system of n channels and S’
denote the system of (n — 1) channels excluding channel /3. Let 7; be the probability
of channel 3 being in a state 7 € ) . Let S? be the set of all channels from 5" whose
states are in §); at any given time. It should be noted that the elements of S/ vary
with time.

The single-channel system, containing channel 3, will be equivalent to the system
of n channels in the sense that the carried traffic and the blocking probability in
different cells in the single-channel system will be the same as the carried traffic per
channel and the blocking probability in the corresponding cells in the system of n

channels.

3.3 The Process xz(t)

We should note that the process x(?) described by the single channel 3 is not a Markov
process. Consider two states 7, k& € Q. Suppose a, = a;+¢,; for some ¢ € In, where ¢; is
a vector of length NV with a 1 in the i'! position and 0 everywhere else. The transition
rate from state j to state k, a transition caused by an arrival in cell 7, is a function of
the state of the system S’. The state of S’ is not independent of the past history of
channel 3. Hence the transition rate from j to k, where a; = a;+e;, is a function of the
past history of the channel. So the process described by it is not Markov. Appendix
B explains in detail why the process is not Markov. Since the entire system describes a
Markov process, each channel has an equilibrium distribution. In the same Appendix,
we prove, using Theorem 2.2 in Chapter 2, that this equilibrium distribution is the
same as that of a Markov process in which the transition rate between two states is
taken to be the transition rate between the corresponding states of z(t) conditioned
only on the present state of the system. From now on, when we refer to the transition
rate between two states of x(¢), we will mean the transition rate conditioned only on

the present state of the system and we will treat the system z(#) as being Markov.
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When a channel is in a state j € §2;, let us denote the rate at which calls arrive to
it in cell 7 by A}, i.e., the transition rate from state j to state & where ay = a; +¢;
is Al;. (We don’t talk about A}, when a channel is in a state j & ;, because in
this case, the algorithm does not allow the channel to accept any call in cell 2.) The
call departure rate is independent of the state of the channel and the cell in which
the call is in progress. We define the apparent traffic in cell ¢ for the system x(?)
when it is in state j € €; by 7}, = Al ;/u. Once we know the A} .'s for all ¢ € Iy and
all j € Q;, we can analyze the performance of the system of n channels by studying
the behavior of a system with a single channel g and which has offered traffic in cell
i € In when it is in state j € Q; given by r!. = Al ./p.

In general, A! is different from A;. Let P/, be the probability that when a call

comes to cell 7, it is assigned channel 3 given that channel 3 is in a state j € ;. We

can write

AZ,‘] — )\gnPL-/‘j. (3.1)

Let v/ (1) be the probability that |S]| = [ given that channel 7 is in state j. Then we

can write

P/, = Pr(A call in cell i is assigned channel /3 | channel 3 is in a state j € ;)
= ni Pr(A call in cell 7 is assigned channel 3 | channel 3 is in a state
;:2 0,181 = 1) x Pr(|S!] = 1| channel 3 is in a state j € Q;)
= nil Pr(A call in cell 7 is assigned channel 3 | channel 5 is in a state
]1'22 Qi S]] =1) x v ;(1). (3.2)

Now, when a call comes to cell ¢, the algorithm picks one of the available channels at

random and assigns it to the call. Hence we can say that,

Pr(A call in cell 7 is assigned channel 5 | channel 3 is in a state j € Q,, ][5/ =1)
1 o -
= T (3.3)
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Therefore, from ( 3.2) and ( 3.3), we have

In general, as is clear from ( 3.1) and ( 3.4), A! . will be a function of j, i.e.,

g

Mo#EMN,  for j ke, and  j#k

3.4 Hypothesis and the Resulting Reversibility

Hypothesis: We make the following assumption. Let v/(/) denote the probability
that |S!| = [, i.e., the probability that the number of channels in the system S” which
can accept a call in cell 7 is [. Then we assume that, when the TDCAA is used, for
alli e Iy, all j e Q. and for [, =0,1.....n — 1,

!
1im I/ZJ( )

Nt 50 l/i(

= 1.

n

In other words we assume that, when the TDCAA is used, as the number of channels
tends to infinity, the influence of a particular channel on the state of the rest of the
system becomes arbitrarily small.

Then we can write for all ¢ € Iy, all 7 € Q, and for [, =0,1,...,n — 1,

vi (1) = vi(L)(1 + &), (3.5)
where
Let
§mar = max(|& ;] 11 € Iy, j € Q). (3.6)
Then we can write
Jim &max = 0. (3.7)



Let us define P/ as

1 / o o
= . (3.8)

Therefore, from ( 3.4),( 3.5),( 3.6) and ( 3.7), we have,

V L+ 1&51),

/ i < P' <
I/Z |§7]| Z ] +

2/ ‘fmua’ <P ,’7. < Z 1 + lfmal ’)

Pi/(l - lévnarl) < Pz'/,j < Pi 14 {fmalj' .
Hence, for all 7 € Iy and all j € Q;,
lim — = 1. (3.9)

Now consider two single-channel cellular systems X, and X/ with the same set
of cells Iy and the same set of allowable states 2. Suppose that the two systems
describe Markov processes. Let the arrival rate in cell ¢+ when the system X, is in
a state j € Q; be X[ = A\nP/; and the corresponding rate for X be A} = AinF/.
The call departure rate is pu for both the systems. We should note that the system
X, is the same as the single-channel system with channel  described earlier. As is
clear from ( 3.9), the two systems X,, and X/ describe two Markov processes whose

transition rates tend to each other as n — oc. Let P = (my,mq, ..., . 7m)! be the

equilibrium distribution vector for the first process and let P’ = (71, 75, ..., 7. )7 be

the equilibrium distribution vector for the second one. Since X, is the same as the
single-channel system with channel 3, this is consistent with the definition of «; as
the probability of channel 3 being in state j. Then from Theorem 2.1 in Chapter 2,
we can say that for all j € Q,

mp= (1 + ),

where

lim ¢; = 0.

i unde el
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Hence,

=T G (3.10)
where

Hm 6= 0.
Let ¢ be a m x 1 matrix ({1, Cay- -5 Cm)t. Then we can write

P=P +¢. (3.11)

Now from the discussion on reversibility in the Appendix C, it is clear that the
process X/ is reversible.

Thus we have used Theorem 2.1, Theorem 2.2 and the hypothesis to reduce the
problem of analyzing the single-channel system containing channel 3 to that of a
system X! which describes a reversible process, where the two systems are equivalent
in the sense that as n — 0o, the two systems have the same equilibrium distribution.

Hence from now on , we will focus our attention on the process X|.

3.5 The Process X

Now we will relate the traffic in the cells of the system X! to the blocking probabilities
in the corresponding cells of the system S.

Let the offered traffic in cell 7 for the system X/ be denoted by ri. We can write

Y
r,o= =
U
B Ain P!
— .
= T.m,Pl»,. (3.12)
For all 7 € Iy, let
1 « g 1
Pl =—, 0<é <1 (3.13)



7‘2 = nnl_&’
= rnf, (3.14)
where for all 7 € I,,,
fi=1-=2¢,. (3.15)

61 h 1

1) < 1
o= _2 , f = J‘Tz , and J =

on I~ 1

From ( 3.15), we have

§+f=1. (3.16)

Now we state a very important result relating the traffic 7/ in cell 7 for the system X
to the blocking probability in cell 7, denoted by P, for the system S.
Let &8, and Py, be arbitrary positive numbers with 0 < Py, < 1. Let fi, = 1 — éun.

Let us define sets ' and I as follows:

I'= {226 ]N75i>6t.h}a

I = In\T.

Lemma A.1 For all 7 € I" there exists an ng such that for all n > ny,

Pbl < P
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Fh

We can also say that for large enough n, for all © € I,
Pb7 < Pth~

The proof is given in Appendix A.

Let A = (a;;) be the incidence matrix defined by

1, if channel 3 carries a call in cell « when it is state j;
CLL',J' =
0, otherwise.

Since the process X/ is reversible, its equilibrium distribution can be written down

in terms of its transition probabilities as follows (see Appendix C):

P H )
7TJ = NUSE

tay ;=1
wy ot SRR
= an(’ul (3-11)
= o/ 2 om™ ] (3.18)
len
where v; = T[] r, w;= Y fiand 7 is the probability of the system X! being

t:a; ;=1 va; ;=1

in the all-zero state.

We call w; the weight of state j. Let w be an m x 1 matrix defined as follows:

wy
Wo
W =
Wi,
We can easily see that
wl =fTA. (3.19)

Let wpax = max(w; : j € Q). Let €1, €; be arbitrary positive numbers.
Now we state another important result relating the weights of the states of X to its

probability distribution.
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Lemma A.2 There exists an ny such that for all n > ny and for all 7 € Q,

if (Wmax — Wj) > €1, then T < €.
That is, if n is large enough, the above result holds. The proof is given in Appendix
A.
Lemma A.2 that as the number of channels tends to infinity, most of the probability
lies with states which have their weights in a given neighborhood of the maximum
weight. This neighbourhood can be made arbitrarily small and the probability given
to the remaining states can also be made arbitrarily small by making ¢, and ¢, suffi-
ciently small. This is because the number of allowable channel states m is independent

of n.

3.6 Proof that the Timid DCAA is Asymptoti-
cally Optimal under the Hypothesis

We should recall that the equilibrium distribution for the single channel system con-
taining channel 3 when the Timid DCAA is used is denoted by P = (7, 71, . ., 7))L
Let the carried traffic vector be denoted by x = (k1. K2..., kn)T. Let x; denote the
/™ component of . Let (AP); denote the :'™" component of the N x 1 vector AP.

We can write

x = AP
= AP + A( (from ( 3.11)).

Since offered traffic in any cell is greater than or equal to the carried traffic in that

cell, we have, for all 2 € [,,,

T 2 Ky — (1AP)7

Also, (r; — (AP);) gives the blocked traffic per channel in cell  when this algorithm

is used. Let A be the total blocked traffic per channel when the distribution is P.



31

Then from Lemma A.3 in Appendix A,

N

A = Y (ri—(AP)) (3.20)
=1

= J'[r — AP] (3.21)

< fT[r — AP'] + 6y + Par — £1]A(], (3.22)

where r = 3~ r; is the total offered traffic per channel.

Considelf Ig distribution P” on © due to some other algorithm A . Let the carried
traffic when this algorithm is used be given by an N x 1 matrix #” . Let x denote
the 7*" component of x”. Let (AP”); denote the ™ component of the N x 1 vector
AP”.

Since offered traffic in any cell is greater than or equal to the carried traffic in that

cell, P” also must satisfy the following relation for all ¢ € In:
r; Z h‘;’ = (APH){‘.

Also, (r; — (AP”);) gives the total blocked traffic in cell 7 when the algorithm A is

used. Let A” be the total blocked traffic per channel when algorithm A is used. We

have
N .,
A" = Z(ri — (AP"),)
=1
= J'[r— AP". (3.23)

From ( 3.21), ( 3.23) and ( 3.22), we have

A—A" = J[r—AP] - J'[r — AP"]
< fTr — AP+ 8or + P — I [ — AP — £7[AC]. (3.24)



32

We should note that f; <1 for all ¢ € Iy. Therefore,

fr — AP") < J7[r — AP"]. (3.25)
Hence, from ( 3.24) and { 3.25), we have
A—A" < v — AP —fF[r — AP"] + éuur + Ponr — £1[AL)
= —fTAP' + fTAP” + Sur + Pur — £1[AC]. (3.26)
From Lemma A.4 in Appendix A, we have
fTAP” < wmax, (3.27)
and from Lemma A.5 in Appendix A,
fEAP' > (10may — €1)(1 — mey). (3.28)

Therefore, from ( 3.26), ( 3.27) and ( 3.28), we have

A — A” S Wmax — (u’max - 61‘)(1 “ m62) + 61;]17“ + Pthr - fT[AC}

= Wmaxmes + 61(1 — mey) + bnr + Panr — fT[AC].
Now € , €5 , &, P are arbitrary positive numbers which can be made as small as
we please. Also the vector ¢ tends to (0,0,...,0) as n tends to infinity. Therefore,

A —A"—=0asn— oc.

Hence, we conclude that the TDCAA is asymptotically optimal under the
stated hypothesis.

Example: Consider the linear array of three cells whose state diagram is given
in Figure 1.2. Assume that the offered traffic is uniform in all the three cells. Figure
1.3 shows the upper bound [18] on the performance, measured by the carried traffic

per channel, for this system for different values of total offered traffic. Assuming n =
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10000 channels, we simulated the performance of the TDCAA for several values of the
total offered traffic. The simulation results are shown in Figure 1.3. The simulation

strongly supports our conjecture that the TDCAA is asymptotically optimal.

3.7 Conclusion

In this chapter, we analyzed the performance of the TDCAA, in the limiting case of
a large number of channels. We showed, under a plausible mathematical hypothesis,
that the performance of the algorithm, measured by the carried traffic per channel,
is at least as good as that of any other algorithm, in the limiting case of a large
number of channels. This is very surprising, as there are algorithms of very high
complexity which provably do not have this property. We believe that the TDCAA
requires a large number of channels before it achieves the upper bound. One of the
main reasons for this is that it selects a channel randomly from the set of available
channels. We would like to comment here that this property of the TDCAA was
chosen more because it made it easy to analyze the asymptotic performance of the
algorithm than to make the algorithm simple. As will be described in Chapter 4, there
is a slight modification of the TDCAA which does away with the random selection
of a channel from the set of available channels, but which continues to retain the
simplicity of the TDCAA. This modified algorithm can be expected to give a good

performance even with a small number of channels.
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Chapter 4 Some Channel Assignment

Algorithms

4.1 Introduction

In this chapter, we compare the performance of three different types of algorithms
inclading the TDCAA. We will show that the TDCAA performs better than a very
complex algorithm when we have uniform traffic distribution in a linear array of
three cells and try to understand why this is the case. Although we conjecture that
the TDCAA is asymptotically optimal, the number of channels required before its
performance becomes “good” is very large. In this chapter, we introduce another
algorithm which we call the “Modified” DCAA. The advantage with this algorithm is
that while retaining the simplicity of the TDCAA, we can expect it to give a “good”

performance even with a small number of channels.

4.2 Comparison of CAAs

(1) Fixed Channel Assignment Algorithm (FCAA): In FCAA, each cell is
given a fixed number of channels. When a call comes to a cell, if one of the channels
which has been assigned to it is free, the call is accepted. Otherwise the call is
blocked. It has been shown that for any given traffic distribution, there exists a fixed
channel assignment which is asymptotically optimal [18]. However the problem with
FCAA is that we require a knowledge of the traffic distribution for the algorithm to
be asymptotically optimal. The traffic distribution may not always be available, and

it may change with time.

(2) Greedy Dynamic Channel Assignment Algorithm (GDCAA): It is

also known as the mazimum packing algorithm [6]. In GDCAA, all channels are
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available for use in all the cells. When a call comes to a cell, the call 1s accepted if
there is a rearrangement of the calls in progress which allows that call to be accepted
without causing any of the calls which were in progress to be dropped. If there is
no such rearrangement of the calls in progress which will allow that new call to be
accepted, the new call is blocked. From the way the algorithm works, we should expect
GDCAA to give a near optimal performance. It can be shown that asymptotically,
the algorithm does track the carried traffic upper limit up to the first break point.
This means that if there is an algorithm which asymptotically does not result in any
blocking in any cell for a given traffic distribution, then using GDCAA will also result
in no blocking. Moreover the algorithm does not require a knowledge of the traffic
distribution, a major drawback of the FCAA. The main problem with GDCAA is
that the complexity of the algorithm is very high. It increases with the number of

cells and the number of channels. This makes it impractical.

(3) Timid Dynamic Channel Assignment Algorithm (TDCAA): TDCAA
is perhaps one of the simplest algorithms one can think of. Moreover, our conjecture

is that it is asymptotically optimal.

Example: A linear array of three cells

Consider the linear array of three cells whose state diagram is given in Figure 1.2.
Assume that the offered traffic is uniform in all the three cells. Figure 1.3 shows the
upper bound [18] on the performance, measured by the carried traffic per channel,
for this system for different values of the total offered traffic per channel. Assuming
n = 10000 channels, we simulated the performance of the TDCAA for several values
of the total offered traffic. Figure 1.3 shows the simulation result. It also shows
the performance, in the limit of a large number of channels, of the GDCAA [19]
and a particular FCAA [18]. As is clear, when the number of channels is large, the
performance of the TDCAA tracks the upper bound, whereas the performance of the
GDCAA does not.

We will now try to explain why, when the number of channels is large, the TDCAA

gives a better performance than the GDCAA in the case of a linear array of 3 cells
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with uniform traffic distribution.

Why greed doesn’t pay

We shall consider the case when the offered traffic is one Erlang per channel in all

the three cells. In this case, we know from simulation and theory that the TDCAA

is better than GDCAA [19]. Using the ATP satisfied by independent Poisson arrivals

[18], we can say that all the channels will either be in state 4 or state 5. In order to

maximize the carried traffic. we would like all the channels to be in state 5 as then

each channel will carry two calls.

TDCAA

n > number of channels

o % ~= call arrival rate per cell per channel
hn u u > call departure rate
) / -

0 0 1 f ~> fraction of channels

fun o fu in state 101.
fu+i

fun+in

Figure 4.1: TDCAA versus GDCAA
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Consider the TDCAA. Suppose a channel was in state 5 and a call departs from
it taking it to state 3. We assume that all the other channels are in state 5 or state 4.
The probability that this channel goes to state 1 is approximately p/(y + An). (Here
A and g are the call arrival rates and departure rates per channel per cell. In this
case, we have A = p.). See Figure 4.1. This probability tends to zero as n becomes
large. Hence the probability of the channel going to state 4 can be made very small
by increasing n. On the other hand, the probability of it going back to state 5 is
approximately An/(An + ). This probability tends to 1 as n becomes large.

Now we will examine what happens when we use GDCAA. A channel in state 5
goes to state 3 after the departure of a call from it. Here also we assume that the
remaining channels are either in state 5 or state 4. Suppose kn channels are in state
5. Then the probability that a departure in cell 3 (from any channel) occurs before
an arrival occurs in cell 1 is approximately kun/(kun + An) (see Figure 4.1) i.e.,
kp/(kp + X), which is a non-zero constant. Hence, under the operation of GDCAA,
the probability that a channel in state 3 goes to state 1 does not tend to zero. This
is because, when GDCAA is used, a channel in state 3 and another in state 2 is
equivalent to having a channel in state 5 and another in state 1 as it allows call
rearrangements. Once a channel reaches state 1, the probability of it going to state
4 from there is non-zero. Similarly, the probability of a channel going from state 3 to
state 5 is also non-zero.

Suppose a channel is in state 4. One can easily verify that irrespective of whether
we use GDCAA or TDCAA, the probability of it going to state 5 does not tend to
zero with the increase in the number of channels.

Thus we see that, under TDCAA, once a channel is caught in a state which has
a higher rank (one carrying a larger number of calls) than another state, it becomes
very difficult for it to go to a state of lower rank (one carrying a lower number of
calls). On the other hand, if the channel is in a low-rank state, the probability of
it going to the high-rank state does not tend to zero. Under the GDCAA, however,
the probabilities for a channel in a high-rank state to go to a low-rank state and vice

versa do not tend to zero.
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GDCAA, in trying to be optimal in the short run, fails to be optimal in the long

run. On the other hand, TDCAA turns out to be optimal in the long run.

4.3 Modified DCAA

We have proved under a reasonable mathematical hypothesis that the TDCAA is
asymptotically optimal and the simulations we have carried out have only strength-
ened our conjecture. Although the TDCAA is apparently asymptotically optimal,
the number of channels required before the carried traffic per channel comes very
close to the upper bound for a given offered traffic and a given set of allowable states
is very high, as some of the simulation results show. In this section we propose a
modification of the TDCAA, which we call the Modified DCAA. The basic idea is
that instead of picking up an available channel at random, the algorithm looks for an
available channel in a certain order. The advantage is that with hardly any increase
in complexity, the algorithm can be expected to approach the upper limit very fast.
We were able to confirm this through simulation on very regular cellular systems.

Consider a linear array of cells numbered 1,2,... (Figure 4.2(a)). Suppose the
reuse constraint is that the same channel cannot be used simultaneously in adjacent
cells. We have inefficient use of the spectrum if the same channel is being used in cell
numbers 3, 6 and 9 (Figure 4.2(b)). We have only three calls in progress whereas if
the channel was being used in cell numbers 3, 5, 7 and 9 (Figure 4.2(c)), we would
have had 4 calls in progress. The main idea is to avoid the use, as far as possible,
of the same channel by cells numbered ¢ and ¢ + 3. Hence we propose the following
algorithm:

Algorithm: Consider any regular cellular system where the cells can be par-
titioned into & groups ¢y, ¢g,...,¢; such that cells in the same group can use the
same channel simultaneously without violating the reuse constraints. We divide the
number of channels also into & groups ay,as,...,a;. When a call comes to a cell in
group ¢;, the algorithm first looks for a channel from the group a;, then from group

11 (modulo &) then from group a;12(modulok), and so on.
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2 3 4 5 6 7 8 9 10
(@)

0 1 0 0 1 0 0 1 0
(b)

0 1 0 1 0 1 0 1 0
©)

Figure 4.2: (a) A linear array of cells (b) Inefficient channel utilization (c) Efficient
channel utilization

A little thought will indicate that if we have uniform traffic and only cochannel
reuse constraints, the algorithm, without increasing the complexity much, tries to
avoid configurations which might lead to inefficient spectrum utilization.

For example, for a linear array of cells where the reuse constraint is that the same
channel cannot be used in adjacent cells simultaneously, we can divide the cells into
two groups: the odd-numbered cells and the even-numbered cells and then apply the
above algorithm.

The advantage with such an algorithm is that we can expect it to give a good
performance when the traffic is not very high, even without a knowledge of the offered
traflic in different cells.

Simulation Results: We have simulation results which show that the Modified
DCAA performs quite well. Figure 4.3 shows the number of channels required by
different algorithms for blocking to be less than 1% for a circular array of 30 cells.
These results were obtained through simulation. The simulation results show that
the Modified DCAA performs quite well, at least in this particular case.

We should note that the results shown in Figure 4.3 do not contradict what we
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said earlier regarding the relative performance of the TDCAA and GDCAA. TDCAA

performs better than GDCAA when we have a large number of channels and the
traffic is very heavy (that is, beyond the first break point [18]). Upto the first break
point, both are optimal when the number of channels is large. However, when the

number of channels is small, the GDCAA does perform better than the TDCAA up

to the first break point, as the simulation results show.

1000 .
;
e Greedy DCAA /
- Modified DCAA !
- Timid DCAA ,
750 ! -
’J
|

Number of channels required

500 -
!
L /f _
I3
/
//
250 —
o e ‘ = : -
0.0 0.1 0.2 0.3 0.4 0.5
Offered traffic per cell per channel

Figure 4.3: Number of channels required for average blocking probability of less than
1 percent for a circular array of 30 cells with uniform traffic distribution

Modified DCAA taking adjacent channel constraints into account and for

inhomogeneous traffic:

We should note that the Modified DCAA given applies only to cellular systems
with cochannel reuse constraints and can be expected to perform well when the traffic
distribution is uniform. The main problem comes when we are considering adjacent

channel constraints and when the traffic is not uniform. In this case, we have not

been able to come up with a satisfactory order in which the different cells should look
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for an available channel. One way to get the order of the channels for the different
cells is described below. Some simulation results are also given.

Estimate the traffic pattern. If we have no idea about the traffic intensity in the
different cells, assume that the traffic is uniform in all the cells. Using the algorithm in
[22], divide the available channels among the cells so that the adjacent and cochannel
constraints are not violated and the number of channels each cell gets is roughly
proportional to the traffic intensity in that cell. Now when a call comes to a cell,
it first looks for an available channel from among the channels which it has been
allocated and then from among the rest.

We will briefly describe two dynamic algorithms [22], with which we compare the
performance of the Modified DCAA:

e Simple : The algorithm assigns the least available frequency to an incoming
call.

e Maxavail : When a call comes to a cell, for each available channel, the algorithm
computes the systemwide channel availability which is the sum of available channels
in the different cells provided this channel is given to the new call. It picks the one
with the maximum systemwide channel availability.

We have simulation results for the Modified DCAA as well as the algorithms
described above. Clonsider a hexagonal system containing 21 cells. The 21-cell system
as well as the traffic pattern for inhomogeneous traffic is given in Figure 4.4. Figure
4.5 shows the simulation results when the traffic is inhomogeneous. The total number
of channels is 447. We consider two cases of Modified DCAA : (1) The channels
are allocated equally among the cells (i.e., we have no idea about the traffic in the
different cells ) (2) The channels are allocated according to the traffic pattern. As the
figure shows, if we know the traffic pattern, then the performance of the algorithm is
actually better than that of the very complex Maxavail Algorithm described above.
However if we do not know the traffic distribution, then the performance is not so
good, although it is better that that of FCAA.

Figure 4.6 gives the simulation results for the case when the traffic is uniform.

The number of channels is 444. In this case, the performance is slightly worse than
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that of the Maxavail algorithm but is better than that of the other algorithms.
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Figure 4.6: A 21-cell hexagonal system: Uniform traffic distribution

The reason why Modified DCAA works quite well if we know the traffic distribu-
tion is that then, in any cell, we can look for channels in an order depending on the
traffic distribution. This fixed nature of the algorithm tries to keep the system close
to an optimal state. The dynamic nature of the algorithm allows the system to adjust
to the randomness in call arrivals and the holding times. The overall performance

can thus be expected to be good.

4.4 Conclusion

In this chapter, we compared several channel assignment algorithms, including the
TDCAA, in terms of their performance and complexity. We also presented a heuris-

tic algorithm, very similar to the TDCAA, which can be expected to give a good
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performance even for cellular systems with a small number of channels.
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Chapter 5 Performance Limits for Cellular

Systems with Adjacent Channel Constraints

5.1 Introduction

In a cellular system, in addition to the co-channel restrictions on the use of a frequency,
we also have adjacent channel restrictions. These impose restrictions on the use of the
nearby frequencies in neighbouring cells. This is because the filtering process is not
ideal. The entire set of restrictions is specified by a compatibility matrix which we
describe below. One important problem in the area of cellular communications is to
develop tight bounds on the performance of channel assignment algorithms (CAAs).
Earlier work [18] in this regard deals with cellular systems having only cochannel
constraints. In this paper, we extend the results obtained in [18] to cellular systems
with adjacent channel constraints. We will develop an upper bound (as a function
of the number of channels) on the performance of a system with a given offered
traffic per channel (perhaps different for different cells) and a given compatibility
matrix. We will further show that as the number of channels becomes large, this
bound approaches a limit and that there are channel assignment algorithms which
achieve this limit. The bound, though computationally intensive, can be used as a
benchmark against which the performance of channel assignment algorithms can be

compared.

5.2 Model, Definitions and the Main Result

Let Iy = {1,2,..., N} be the set of cells in the system. Let the offered traffic in cell
¢ be r; Erlangs per channel. Let r = (ry,7y,...,7n). The compatibility matrix for

the system is given by an N x N matrix C' = (¢; ;) of non-negative integers such that
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¢;; indicates the minimum separation required between the channels being used in
cells 2 and j. Let ¢ be the maximum value of the entries in (". For the rest of the
paper, we shall assume that r and C' are fixed. Let there be n + (¢ — 1) channels in
the system. Let the channels be numbered 1,2,... . n.n+1,...,n+ (c—1).
Example. Consider a system of three cells 1,2 and 3. Let the compatibility matrix be
{{3,2.1},{2.3,2},{1,2,3}}. What this says is that the separation between channels
in the same cell should be at least 3 and that the separation between channels being
used in cells 1 and 2 should be at least 2 and so on. Here ¢ = 3. We shall refer to
this example throughout the paper.

Result. Let T'4(n,r) be the carried traffic per channel when a particular CAA A is
used. The algorithms we shall consider either accept a call or reject it. There is no
call waiting and calls in progress cannot be dropped. We will show that there exists
a function T'(n,r) such that T4(n,r) < T(n,r) for any algorithm A and show that as
n tends to infinity, T'(n,r) approaches a limit 7'(r) and there are channel assignment
algorithms which achieve this limit.

Let I' = {1.2,...,m} be the set of all states a channel can be in, if we consider
only co-channel constraints. Let  CT'x 1" x ... x I" be the set of all states a set of ¢
contiguous channels can be in. Let || = M and let the elements in Q be represented
by 1,2,..., M. An element w € Q will be of the form w = (v, y2,...,7.) where v; € T
fore=1.2...,c. Weshould note that Q = I'x I' x ... x I' iff we have only cochannel
constraints, that is ¢ = 1 or 0.

In the example above, let the state of a channel be denoted by a 3-tuple (ay, as, as)
where a; = 1 if the channel is being used in cell 7 and is 0 otherwise, for ¢ = 1,2, 3.
Then

I' = {(0,0,0),(1,0,0),(0,1,0), (0,0,1)}.

We shall index these states by 0,1,2, and 3 respectively. Hence if we talk about
a channel being in state 1, we shall mean that the channel is in state (1,0,0). Let

w € Q be ((0,0,1),(0,0,0),(0,1,0)). We shall also indicate this by w = (3,0, 2), where 3

corresponds to the state (0,0,1), 0 corrresponds to the state (0,0,0) and 2 corresponds
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to the state (0,1,0). The set  is as follows:

Q={ (0,0,0),(0,0,1),(0,0,2),(0,0,3),(0,1.0),(0,1,3),(0,3.0). (0.3, 1),
(0,2,0),(2,0,0),(2.0,1),(2,0,3), (1,0,0), (1,0,2).(1,0,3), (3,0,0),
(310* 1)~ (3,0~2), (3 170)7 (13'3~0)}

Thus we have |Q] = M = 20.

These are the only possible states a set of 3 contiguous channels can be in without
violating the constraints imposed by the compatibility matrix.

Let 7, be the set of channels numbered 1,2,...,n. Let us define the hyperstate
of a channel k € I, to be w = (y1,72....,7.) € Q if channel k + 1 — 1 is in state =,
for 1 <1 < ¢. Thus the hyperstate is well-defined for all the channels in the set ,,.
Let ¥ be the set of states a set of ¢ — 1 contiguous channels can be in. Consider
W =719 vil ) € L Let Qp(w') be a subset of Q such that Qp(w') = {w |w €
Qw= (1,7 --»7_1.7) with 4" € T'}. Similarly, let Q7(w’) be a subset of Q) such
that Qp(W) ={w |w e Qw=(v,7,7,---,7._,) with 4" € T'}.

For example, we say that channel 4 is in hyperstate (2,0, 3) if channel 4 is in state
2, channel 5 (=4+1) is in state 0 and channel 6 (=4+42) is in state 3. In the above

example,

Q = {(030)’ (07 1)> (072)1 (0, 3), (1,0% (133)1 (‘2’0)7 (30)7 (;37 1)}

Also,
Qu((3,0)) = {(3,0,0),(3,0,1),(3,0,2)},

and

When a channel is in a hyperstate w = (71,72, ...,7.) € Q, let the carried traffic t,,
corresponding to it be the number of calls being carried by the channel. Let B = (b;,)
be the incidence matrix, i.e., b;, is 1 if a channel carries a call in cell ¢ when it is in

hyperstate w = (v1,72,...,7.) and is 0 otherwise.
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For example,

t203) =1 and tosny =0,

and

bl,(gyoyg) = 0 ELlld bzy(gfggg) = 1

We should note that

tw = Z bi,w- (51)

i€y

5.3 The function T'(n,r) as the Upper Bound

Let x, be the number of channels from the set [, which are in hyperstate w € €. Let
us denote the state of the system by an M-tuple @ = (zy,22,...,27). For all o’ € (Y,

we have

Ut
oo
—

Z T, = Z Ty — b, (5.

wey (w') wey (W)
where 6, is zero for all W’ or one of the §,’s is +1 , one of them is —1 and the rest
are (’s.

What this says is that the number of channels whose hyperstates are in Q¢ (w’)
is the same as the number of channels whose hyperstates are in Qp (w'). This is true
except perhaps for the w’ such that Qp/(w’) contains the hyperstate of channel 1 and
for the w' such that Qp(w’) contains the hyperstate of channel n.

For example, let n = 12. Suppose that channels 1,2,...,13,14 are in states
2,0,3,1,0,0,0,2,0,3,1,0,3,0 respectively. Then channel 1 is in hyperstate (2,0, 3),
channel 2 is in hyperstate (0,3, 1), channel 3 is in hyperstate (3,1,0) and so on. We
should note that the number of channels whose hyperstates are in Qp((3,1)) is 2
(channels 3 and 10) and the number of channels whose hyperstates are in Q7((3,1))
is also 2 (channels 2 and 9). This is true for all w' € ' except for the elements (2,0)
and (3,0) of . This is because channel 1 is in hyperstate (2,0,3) € Qy((2,0)) and
channel 12 is in hyperstate (0,3,0) € Q.((3,0)).
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From ( 5.2) we get,

S OBy = Y B(ry) — E(Su). (5.3)

weQu(w') wEQ (w)

We should note that for all W’ € ¥,

(b)) < 1. (5.4)

Since the carried traffic in any cell is less than or equal to the offered traflic in that

cell, we have, for all 2 € I,
> biwB(w0) < ri(n 4 (e~ 1). (5.5)

Also,
Ta(n,r) < thE(;rw)/(n +(c—1))+k/(n+(c=1)), (5.6)

where k is an upper bound on the traffic carried by the last (¢ — 1) channels.

Let us define the set S, as follows:

Sp= {(81,82,...,8M): Zbi,wa <ri(l4+(ec—1)/n) forallie Iy,
3, >0 forall we

Z S, = Z Sy — 64, forall W e Y,

weRy (w') we (w')
~1/n <6, <1/n, forallw €,

Zéw/:(),zngl}. (r

ot
-~I
~—

We should note from ( 5.3), ( 5.4) and ( 5.5) that

E(x) € nS,. (5.

Ut
oo
——



Let us define T'(n,r) as follows:
T(n,r)= ma‘x(thsw D8 = (81,892,...,8y) € 5,). (5.9)
Then it is clear from ( 5.6), ( 5.8) and ( 5.9) that

Ta(n,r) < T(n,,rf)('—,lw——) +k/(n+(c—1)). (5.10)
I+ (c=1)/n

Hence we have obtained an upper bound (as a function of the number of channels ) on

the carried traffic per channel for a cellular system with adjacent channel constraints.

5.4 The Function 7T'(r) as the Upper Bound Limit

Now we will show that this upper bound approaches a limit as n becomes large.

Consider the set S defined as follows :

S = {(s1,89,....80): Zbi,wsw <r; for all 2 € Iy,
84 >0 for all w € Q,

Z S = Z Sw for all W’ € €,

werr{w’) weSlp (w')

ZSWZQ‘ (5.11)
Let us define T'(r) as follows:

T(r)= max(thsw 15 = (81,82,...,8Mm) € 5). (5.12)

W

From ( 5.7) and ( 5.11), we have

lim S, = S.
T O

Now T'(n,r) and T'(r) are solutions to linear programs with the same objective func-

tion but over different spaces S, and S. Also, as n tends to infinity, S, tends to
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Therefore

lim T'(n,r)=T(r)

=00

(This follows from [8], pp. 63-77.),
and therefore from ( 5.10),

lim Tq(n,r) < T(r).

=00

Example. Consider once again the 3-cell system with compatibility matrix
{{3.2,1}.{2,3,2}, {1,2,3}}. Suppose r = (1/3,1/3,1/3)r Erlangs per channel. Fig-
ure 5.1 shows the function T'(r). Compare it with 7'(r) when the compatibility
matrixis {{1.1,0},{1,1,1}.{0,1,1}}. that is, with the 7'(r) of a system having only

cochannel constraints.

0.8 —— . - .

-——— Adjacent and cochannel constraints
————— Cochannel constraints only

o
o
\

©
N
\
|

Upper bound on asymptotic carried traffic per cell per channe!
o
N
I
|

0.0

0.0 0.5 1.0 1.5 2.0
Offered traffic per cell per channel

Figure 5.1: Asymptotic upper bound for the three-cell system with offered traffic

r=(1/3,1/3,1/3)r. The solid line indicates the upper bound when we have adjacent

channel constraints and the dashed line gives the bound when we only have cochannel

constraints.

In the next section we will show that the upper bound is achievable in the limit as
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the number of channels becomes large.

5.5 Asymptotic Tightness of the Upper Bound

Consider a directed graph G = (X, E). Let there be a one to one correspondence
between the elements of the vertex set X in (G and the elements of the set Q and
we shall refer to them interchangeably. Let E consist of directed edges between the
vertices of (. There is an edge from vertex ¢ to vertex j if and only if there is an
w' € ' such that ¢ € Q7(w') and j € Qu(w'). Let s = (51,82,...,53) € S give the
maximum value 7'(r) in ( 5.12). Let s; be the value given to vertex ¢ in (. Figure
5.2 shows the graph G for the 2-cell example we have been considering throughout
this paper. It also shows the value s; given to the vertex ¢. This s € S corresponds
to 7T'(r) for r = (1/6,1/6,1/6).

The graph G has the following properties: (1) For any &’ € ', there is a directed
edge from every vertex in (¢ which is in Q1,(w’) to every vertex in & which is in Q¢ (w').
(2) The sum of the values given to those vertices in (¢ which are in Qp(w') is equal
to the sum of the values given to the vertices in (¢ which are in -(w’). This follows
from the definition of the set S ( 5.11). Let us remove from  all the vertices having
a value 0. This does not affect properties (1) and (2) described above. Figure 5.3
shows the graph G with all the vertices having a value 0 removed.

Consider the following operation of first picking a circuit A and then removing it
from the graph. Pick up any vertex ¢. Since s; # 0.0, there is at least one vertex j
with a nonzero value which has an edge coming into it from 7. If ¢ and j are the same,
we stop. Otherwise, there is at least one vertex & with a nonzero value which has
an edge coming into it from vertex j. If £ coincides with one of the vertices already
encountered (in this case, vertices ¢ and j), we stop. Else we continue in this manner.
Finally, the process has to stop as the number of vertices is finite. The moment the
process stops, we would have traced a circuit. Call it A. We should note that not
all the vertices encountered during the process belong to A. Let ys be the minimum

value among the vertices in A. Subtract ya from the values of all the vertices in A,



Figure 5.2: The directed, labeled graph G for the system with 3 cells. The label
against a vertex indicates the hyperstate to which it corresponds and the figure in
bracket gives the s; value for r = (1/6,1/6,1/6). An s; value of zero is not indicated.
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Figure 5.3: The graph G after all the vertices having a zero value have been removed.

remove all the vertices having a zero value (there is at least one such vertex) and also
remove all the edges going into and out of these vertices. Let the new graph be .
The new graph has at least one vertex less than the previous one. This new graph
continues to have the properties (1) and (2) described above regarding the graph G.
Hence we can continue this operation of picking and removing circuits from G’ till we
are left with an empty graph. The number of times we repeat this operation before
we get an empty graph is finite as the graph  itself is a finite graph and contains a
finite number of vertices. Hence the number of circuits we obtain is also finite, say
M’. Figure 5.4 shows a circuit A and the graph G after the circuit has been removed
from the graph.
Let
Yi = |[nya]. (5.13)

We have for all w € (),
Sw = Y Ya (5.14)

Adw

Given a circuit A containing vertices A, Ag, ..., Ay, ( where there is an edge from
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Figure 5.4: (a) A circuit A with y4 = 1/8 and (b) the graph G after the circuit A has
been removed.

A; to Aiyq) and an integer value Y, associated with A, we will now describe how to
assign states to a set of ky x Y3 4 (¢ — 1) contiguous channels such that from this
set, we will have Y, channels in hyperstate corresponding to A; for « = 1,2,..., ka.
Suppose Ay = (Y1, %2---» V). Then let Ay = (72,73, ..., Yes71,2). In general, let ~; ;
be in I’ such that if we append a channel which has been assigned the state +;; to
the last (¢ — 1) channels of the vertex A;, we get the hyperstate corresponding to
vertex j. Number the channels 1,2,...,kxy x Ya,...,ka x Y3 + (¢ —1). Let channel
number 1 be assigned the state 1, channel 2 be assigned the state 72, and so on
so that finally we have channel 1 in hyperstate A;. Now if we assign the state v
to channel (¢ + 1) , then we will have channel 2 in hyperstate A;. Now to have
channel 3 in hyperstate A3, we assign the state v,3 to channel (¢ 4+ 2) . In this way
we can continue till finally we have Y channels in hyperstates Ay, Ag, ... Az, . We
would have used exactly kx x Yy + (¢ — 1) channels. Figure 5.5 shows a circuit A
with &y = 5,Y4 = 2 and the assignment of states to a set of 5 x 24+ (3 —1) = 12

contiguous channels such that for each hyperstate in A, we have Yy = 2 channels in

that hyperstate.
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201 013
0
302 130
(a)

Channel Number Channel State Hyperstate
1 0 020
2 2 201
3 0 013
4 1 130
5 3 302
6 0 020
7 2 201
8 0 013
9 1 130
10 3 302
11 0O
12 2

(b)

Figure 5.5: (a) A circuit A with Yy = 2 and (b) the assignment of states to 12 channels
corresponding to this circuit.

Now suppose that v, € I' denotes the all-zero state. Then append (¢—1) channels
which have been assigned the state 74y to the set of ky x Yy + (¢ — 1) channels
corresponding to the circuit A. Then we will have a set of ky X Yy +2(c—1) channels
corresponding to the circuit A. Since 7g is the all-zero state, we can concatenate the
channels corresponding to the various circuits without violating the adjacent channel
and cochannel reuse constraints. Thus we will have a set of n' = 3, (ka X Ya+2(c—1))
channels. This set will contain at least 345, Ya channels which would have been

assigned the hyperstate w.
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We should note the following:

Z kAyA =1.
A

Therefore we have,

n o= Z kayan
A
> Z ka lyan]
A
= Z A"A}'A
A
= n'=> 2(c—1),

A
and
n = Z kayan
A
< > ka(lyan) +1)
A
= Z ka(Ya + 1)
A
= n —22((5— 1) —I'Zk/\'
A A
Therefore,
n' — Z(Z(( —1)<n<n - Z(?(C — 1))+ Z kA
A A A
Let
n" =n' — Z(Z(c - 1))+ ZAA
A A
Then
n" =3 ky <n<n' (5.15)
A
Hence
. n .
nl]_{% == 1. (5.16)

Fixed Channel Assignment Algorithm: Suppose we have a system with n”
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channels with a certain offered traffic per channel r = (r{,72,....7x). The channels
are assigned states as described above. Suppose that the channels which are assigned
the hyperstate w are allocated to cell 7 if and only if b;, = 1. The algorithm is as
follows: When a call comes to cell 7, if there is a channel which has been allocated
to the cell and is not being used by a call in the cell, then the call is given one such
channel. Otherwise the call is blocked.

Suppose we consider only the channels which were actually assigned the hyperstate
w € § and ignore the channels which happen to be in hyperstate w because of
appending channels in state 4o to the channels corresponding to a circuit or because

of concatenating channels corresponding to various circuits. Let X; be the the number

of channels allocated to cell i using this scheme. Then we can say that

)(i = Z Z bi,u:y;\- (517)

w Adw
Therefore,
X; X . o

lim = lim ( from ( 5.16 ))
n''—oo ' n—os

= lim SO> biwYa/n ( from ( 5.17))

o w Adw
= Z Z biwya ( from ( 5.13 )). (5.18)
w Adw

Also, we have

/Yi = Z Z bi,wK\

w Adw

Z Z bi,wyl\, n

w AdSw

Y biw( D ya)n

A3w

Zbi,wan ( from ( 5.14 ))
rn ( from ( 5.11))

IN

i

IA

rin” ( from ( 5.15)).

IA
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What this says is that the offered traffic in cell 7 is greater than the number of channels
which it has been allocated under the Fixed channel Assignment Algorithm (FCAA).
Let g; be the carried traffic in cell 7. Then from the Asymptotic Traffic Property
satisfied by independent Poisson arrivals [18] we have,

lim —E[—l— =1.

n'’—oo AXL'

17
. qi/n
Iim —4— =
! — oo Xi/n//

Since from ( 5.18),

X,
/1/1m n!! = Z Z b‘i,wy/\a
n''—oo N 5 Asw
we have
. q; )
lim =2 =37 biuwya (5.19)
n—oo 1 W Adw

Let 77(n”,r) be the total carried traffic per channel when the number of channels
is n” and the FCAA described above is used. Then we have,
lim T'(n",r) = lim =

H i
! 0 n'l—oo . 1
€ly

= Z Z Z biwya (from ( 5.19))

t€ly w Adw

= > (D biw)(D ya)

w qely Adw
= Y t.s. (from ( 5.1) and ( 5.14))

= T(r).

This shows that as the number of channels tends to infinity, there are channel assign-
ment algorithms which achieve the upper bound given by T'(r) and hence the bound

is asymptotically sharp.
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5.6 Conclusion

In this chapter, we developed an upper bound on the performance of cellular systems
with adjacent channel constraints. The bound obtained is tight when the number
of channels is large. The bound is computationally intensive, but can be used as a

benchmark against which the performance of algorithms can be compared.



Chapter 6 Interference and Availability

6.1 Introduction

We have assumed so far that we are given the set of allowable states a system can be
in, and have tried to design and analyze “good” channel assignment algorithms bhased
on this assumption. One main problem in cellular radio is to determine the set of
allowable states. In this chapter, we will discuss some ways of determining the set of
allowable states for a system. Also, in any given state, users experience interference
from one another. We will introduce “availability” as a measure of how good the
call quality for a particular user is in the presence of other users and hence develop
another measure for comparing the performance of channel assignment algorithms. In
microcellular systems, determining the set of allowable states becomes a very complex
task because of the large system size. Also, there is no single channel model which fits
all situations. The set of allowable states based on a certain channel model may not
be very suitable. We might be underutilizing the capacity of the system or the service
quality might be bad. One possible way to solve the problem is to have algorithms
which choose channels based on the instantaneous measurement, by the base stations
and the mobiles, of the interference power in the channels. This implies the use of
algorithms which are “measurement based” [3] rather than “prediction based”, as the
algorithms discussed so far have been. In this chapter, we also present some heuristic

measurement-based algorithms and give some simulation results.

6.2 Interference and Availability

Consider a single-channel cellular system. Let Iy = {0,1,2,..., N — 1} denote the
set of cells in the system and let Q = {1,2,...,2V} be the set of all possible states

that a single channel can be in. Consider a state j of the system in which we have
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users in cells i1,75,...,4z. Let us focus on the user in cell 7;. In any urban cellular
system, the signal power received by a given user in this cell will undergo rapid fading
caused by the variations in the channel as well as shadowing caused by obstacles in
the signal path from the transmitter to the receiver. At the same time, this user will
experience interference from users in cells 73,13,. ..,z This appears as noise to the
receiver. Thus the signal to interference ratio (S/1) lor the user will be a random
variable. We assume that there is a threshold such that if S/1 > z, the call quality
is acceptable to the user, whereas if S/ < z, the call quality is not acceptable. We
then define the availability for a call-in-progress as the probability that S/I > z. We
denote the availability for a call in cell ¢ when the system is in state j by p; ;.

One problem is how to calculate the p;;’s. These numbers depend on many
factors: the frequency being used, the weather conditions, the height of the antenna,
the geography of the region etc. However, for a given cellular system operating in a
certain frequency range, the p; ;’s can be approximately obtained using the following

formula due to Linnartz [15]:

1 m 7i
Pij = —= ) W H Pi(s). (6.1)
! \/_7?; =1

We can say that p;; consists of m terms and that FP(s) may be regarded as the
contribution of the s interferer to the [*® term in p;;. Here the w;’s are constants
associated with the m-point Hermite integration [1].

In order to calculate P(s) in ( 6.1), the user is placed at the farthest position
from the base station, and the interferer is placed at the center of the interfering cell.
This is not exactly the worst case situation, but is in between the worst case and the

average.

Thus the following term (;(s) [15]:

IR O 1)
VT rl exp{xzaﬂ} + zrg <3Xp{:(;ka\/§}7

Qifs) (6.2)

may be used for Pi(s) in { 6.1).
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In ( 6.1) and ( 6.2), the w;’s and the z;’s are constants associated with m-point
Hermite integration [1]; o is the logarithmic standard deviation of the shadowing; 3
is the signal attenuation constant, which is usually a number between 3 and 4; n is
the number of interferers for user 7; the r,’s indicate the distance of the interferer s
from the center of the cell 7; ry is the distance of the user from the corresponding
base station; (n + 1) is the total number of cells in which the channel is being used;

and z is the S/I threshold. See Figure 6.1.

User in cell Interferer s

Figure 6.1: Linnartz formula: equation 6.2

In our numerical studies of the formula ( 6.2), we have found that using m = 3
is sufficient to get a very good approximation for the p;;’s. For example, Table 6.1
gives the values of the p;;’s for a linear array of three cells with z = 10db, 3 = 4,
and o = 1.38. These were calculated from ( 6.2) using m = 20. The figures in the
brackets indicate the values obtained using m = 3, which as can be seen are very
close to those with m = 20.

For example, if we want only those states in which the availability to each user is 90
percent or more to be allowable, then the set of allowable states is {(000), (100), (010),
(001)}. On the other hand, if we say that a state is allowable if each user has an avail-
ability of 85 percent or more, then the set of allowable states is {(000),(100), (010),

(001),(101)}. Once we have the set of p;;’s, we can get the set of allowable states



States | 000 | 001 | 010 | 100 | 110 101 011 111
Cell 1| - | - | - | 1.0] 05715 | 0.8911 - 0.6041
(0.5740) | (0.8907) (0.607)

Cell2| - | - | 1.0] - | 05715 . 0.5715 | 0.371
(0.5740) (0.5740) | (0.371)

Cell 3 - | 10| - | - - 0.8911 | 0.5715 | 0.6041
(0.8907) | (0.5740) | (0.607)

Table 6.1: p;;’s for a linear array of three cells with z = 10db, 3 = 4, and ¢ = 1.38.
The figures in the bracket indicate the p; ;’s obtained using m = 3.

depending on the call quality we want to guarantee the users.
A different way of getting the set of allowable states

In order to calculate the interference experienced by a user from other cochannel
users, normally the user is placed at the worst possible spot: as far as possible from
the base station with which he is communicating, and the interferers are placed at
the centers of the interfering cells. One of the possible reasons for this might have
been that the amount of calculation needed to get the interference between users in
different cells was enormous and so it was difficult to take any kind of an average.
However, the Linnartz formula enables us to average the interference over the entire
area of the cells in which the users are, with very little computation.

(lonsider two non-overlapping cells of unit area with their base stations distance
d apart. Let

) — I« (2 + ()" + d* + 2da’)""
) = J oy 75 2 P TGP 50 20+ LT 777D

dx dy dx" dy'.
(6.3)
Here R and R' indicate the regions of the two cells, (z,y) is the position of the
user in one cell with respect to its center and (', y’) is the position of the user in the
other cell with respect to the center of that cell (See Figure 6.2).
Suppose a channel is in state j and we have users in cells ¢ and s. Let the distance
between their base stations be d(s). Then to get the contribution of the interferer

in cell s to the I*" term in p; ;, if we use Q)(d(s)) given by ( 6.3) for P(s) in ( 6.1),
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R,

Figure 6.2: Averaging method: equation 6.3

States | 000 | 001 | 010 | 100 110 101 011 111

Cell 1| - - - 1.0 | 0.6703 | 0.9253 - 0.6351
Cell 2 | - - 1.0 | - |0.6703 - 0.6703 | 0.4958
Cell 3| - 1.0 | - - - 0.9253 | 0.6703 | 0.6351

Table 6.2: p;; values for the 3-cell example, obtained using the averaging method.

instead of using @Q(s) given by ( 6.2), we can expect the carried traffic to increase.
The reason is that we are averaging the availability over the cells in which the users
and interferers are, instead of taking something between the average and the worst
case.

Table 6.2 gives the values of the p;;’s obtained by averaging the availability
over the cells in which the users and interferers are. As is clear, even if we have an
availability criterion of 90 percent, the set of allowable states is more.

Figure 6.4 shows the upper bound on the carried traffic [18] for a 19-cell hexagonal
system shown in Figure 6.3 for the case when the set of allowable states is obtained by

using the averaging method and when it is obtained using the “worst-case” method.
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The parameters for calculating interference are z = 10db, 5 = 4, and ¢ = 1.38.
The availability threshold is 90 percent. We have found via simulation that, if the
averaging method is used to find the set of allowable states, then the number of users
who experience an availability less than the threshold is quite low. Thus the averaging

method is seen to increase the capacity without affecting the call quality.

Figure 6.3: A 19-cell hexagonal system

Averaging method
Worst-case method
3.0 /
5 4
;L_é 2.0
B
8
S
= /
: /
8
k]
&
= 1.0
/
0.0 . | . s . ; i .
0.0 2.0 4.0 6.0 8.0 10.0

Offered traffic per channel

Figure 6.4: Upper bound on the carried traffic for the 19-cell system for the averaging
method and for the worst-case method

Above Threshold Carried Traflic
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Let us define the weight w; of a state 7 by

wi= Y P (6.4)

1:aq =1

Here a;; is the incidence matrix. «;; is 1 if there is a call in cell 2 when the system
is in state j and is 0 otherwise. The weight w; is a measure of the “above threshold
carried traffic” (ATCT) for state .

We now define the ATCT for a given algorithm, say algorithm A, as
t(A) = Z Tiw;, (6.5)
J

where 7; is the probability that the system is in state j.

In this new setting, our goal is to find algorithms which maximize the ATCT,
rather than simply the carried traffic.

Assuming that the matrix of p;;’s is known, we have been able to show (a sketch
of the proof is given in Appendix E) that for a given cellular system with a given
offered traffic, there is an upper bound on the ATCT as defined above and that there
are algorithms which achieve this upper bound asymptotically. The proof is similar
to that in [18]. Our goal is to look for algorithms which are “practical” and which
give a “good performance” even when the number of channels is not very large.

Simulation: We conducted simulation for the following two algorithms to get
an idea of how the call quality and performance are affected when we use different
methods (mentioned above) for calculating the p; ;’s. We use the Above Threshold
Carried Traffic (ATCT) as our performance measure.

(1) Algorithm 1: Here the interference between various cells is calculated by av-
eraging it over the area of the cells as mentioned above ( 6.3). When a call comes to
a cell, the following is done for each channel: Assume that the user has been given
that channel. Then the availability for all the users using that channel is calculated.
If the availability is above the minimum for all such users, the change in the above

threshold carried traffic is calculated assuming that the new call has been assigned
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this channel. If the availability falls below the minimum for any user, the channel is
assumed unavailable. From all the channels which pass the availability criterion, the
channel which results in the maximum increase in the ATCT is selected.

(2) Algorithm 2: Similar to algorithm 1 except that instead of averaging over the
areas of the cells in which the users are, when we calculate the interference experienced
by any user, we assume that the user is at the farthest point from the center of cell
in which he is and the interferers are at the centers of the interfering cells.

We conducted simulation for the 19-cell hexagonal system shown in Figure 6.3
with uniform traflic distribution and 100 channels. We used z = 10 db, 5 = 4.0, and
a minimum availability requirement of 90 percent. Figure 6.5 shows the simulation
results. As expected, Algorithm 1 performs better than Algorithm 2. Also, although
it is not shown in the figure, simulation shows that the fraction of users who experience
an availability of less than 90 percent is very small. For the purpose of comparison, the
figure shows the upper bound on the ATCT for the 19-cell system for two cases, when
the p;;’s are calculated using the averaging method and when they are calculated

using the “worst-case” method.

6.3 Measurement Based Algorithms

As mentioned in the introduction, the algorithms discussed so far are prediction based.
The set of allowable states is determined based on some model of the channel which
may not be suitable for different situations and which may require updating as the
channel conditions change. Hence we need to look at algorithms which are based on
instantaneous measurement, rather than on prediction. In this section, we look at two
such algorithms and compare their performance with the prediction based algorithms
mentioned above, through simulation.

(1) Algorithm 3: Here the actual location of the user is taken into account to
calculate the interference. When a call comes to a cell, the following is done for all the
channels: Assume that the user has been given that channel. Then the availability

for all the users using the channel is calculated. If the availability is above the
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minimum for all the users using the channel, the change in the above threshold carried
traffic is calculated assuming that the new call has been assigned this channel. If the
availability falls below the minimum for any user. the channel is assumed unavailable.
From all the channels which pass the availability criterion, the channel which results
in the maximum increase in the ATCT is selected.

(2)Algorithm 4: Similar to Algorithm 3, except that only the availability for the
new user is calculated. A channel is assumed unavailable if this availability is below
a minimum. From among the channels which remain, the channel which provides the
maximum availability for the new user is chosen.

Algorithm 3 requires a centralized decision making process, which may not be
practical for microcellular systems. Algorithm 4 is more practical as the decision as
to whether a channel is available in a particular cell is made locally. The simulation
for both these algorithms assume that the base stations can determine the power from
the interferers in the various channels exactly, as if they knew the exact locations of
the users of the channels and the Linnartz model [15] is perfect.

We conducted simulation for these two algorithms for the 19-cell hexagonal system
mentioned above, assuming the same values for the various parameters. Our results
indicated that the fraction of users who experience availability less than 90 percent,
when Algorithm 4 is used, is very small. The results for all the four algorithms are
shown in Figure 6.6. The contribution to ATCT from all the users is taken into
account. Algorithm 3 seems to perform better than Algorithm 4. Both these mea-
surement based algorithms perform better than the two prediction based algorithms

1 and 2.

6.4 Conclusion

In this chapter, we discussed some methods of determining the set of allowable states.
We also discussed some heuristic “measurement-based” algorithms. These algorithms
are particularly useful for microcellular systems which have a large number of cells,

because of the decentralized nature of the algorithms and because such algorithms
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don’t require any frequency planning. Also such algorithms are adaptive in the sense
that they maintain acceptable call quality even when channel conditions change. More

work needs to be done in this respect.



Conclusions and Future Work

The work in this thesis on channel assignment algorithms applies to channelized cellu-
lar systems, for example, systems using Frequency Division Multiple Access (FDMA)
or Time Division Multiple Access (TDMA). It does not apply to systems using Code
Division Multiple Access (CDMA). It is still an open question as to which one is
“better”, and a lot of work needs to be done before one can come close to answering
the question.

In this thesis, we studied and compared the performance of various channel as-
signment algorithms (CAAs). One of the ways to increase the capacity of cellular
systems is through the use of microcells and our aim in this thesis was to develop
decentralized, low-complexity CAAs which are suitable for microcellular systems. We
analyzed the performance of a very simple CAA which we call the Timid DCAA, in the
limiting case of a large number of channels. We showed, under a plausible mathemat-
ical hypothesis, that the algorithm is asymptotically optimal, where “asymptotically”
refers to a system with a large number of channels. This is very surprising as there
are algorithms of very high complexity which provably do not have the property of
asymptotic optimality. However, the Timid DCAA appears to give a good perfor-
mance only when the number of channels is large. We developed an algorithm, called
the Modified DCAA, which retains the simplicity of the Timid DCAA, but unlike the
Timid DCAA, can be expected to give a good performance even when the number of
channels is small. Such an algorithm is extremely suitable for microcellular systems.

The cellular system model we considered does not include some important features
which we describe below. One of the most important features we excluded in our
model is user motion. Also, power control methods are being proposed to increase
the capacity and improve the quality of cellular systems. Although we have not
talked about power control in the thesis, the results regarding the Timid DCAA can

be extended to a system using power control in the following manner. We can assume
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that the area served by a base station is divided up into a very large number of smaller
cells, such that when power control methods are used, the power transmitted to and
from anywhere in a small cell can be assumed to be constant. Then the set of allowable
states can be determined, depending upon the propagation model, the power control
algorithm used, and the call quality which we want to provide. Since the cellular
system model in Chapter 3 allows the set of allowable states to be arbitrary for
a system, all the results regarding the Timid DCAA apply. However the Modified
DCAA needs to be changed further to incorporate power control, along with user
motion, and its performance relative to other algorithms under these new conditions
need to be studied. Also, measurement-based algorithms of the type described in
Chapter 6 are also being proposed. These become particularly important for systems
where it becomes extremely difficult to model the propagation channels which vary
a lot in space and time. Also, cellular systems might be offering different grades of
service to customers of different types. This will greatly influence the power control
algorithms, as well as the channel allocation algorithms. We think that the major
thrust now should be to develop measurement-based algorithms which incorporate
power control, take user motion into account, and which offer different grades of
service to customers of different types, and to study the performance and complexity

of such algorithms.



Appendix A Proof of Some Lemmas Related to
TDCAA

Lemma A.1 There exists an ng such that for alln > ng and all 1 € T, Py, < Py,.

Proof: From ( 3.8) and ( 3.13), we have
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Py, is the probability that a call arriving in cell ¢ gets blocked. Also S? is the set of

channels in S’ which can accept a call in cell i. We can say that
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Hence we can say that there exists an ng such that for all n > ng and all 7 € T,

sz < P(‘h.
|

Lemma A.2 Let A be a set defined as follows:
A= {] ] € Q’a(’u’max - ?LUJ‘) > 61}. (Al)

There exists an ny such that for all n > ny and for all j € A,
ri < €3.

Here ¢; and €y are arbitrary positive numbers.
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Proof: From ( 3.18), we have for j € Q,

T =, 72”/(2@17? )

1eQ

Let vmin = min(v; : 7 € Q) and vmax = max(v; € Q). Then we can write

n"l_ S (vmaxn s ) / (’Umin’:'lwm“ )

= (Umax/'l’min) 't T Wmax

Therefore for 7 € A, we have

vma.x —
! S n 61‘

Umin

It is clear from the above expression that there exists an ny such that

vmax —

nyt < €.

vmln

Hence, there exists an ny such that for all n > ny and for all j € A,

T < €.

|
Lemma A.3 J'[r — AP] < fT[r — AP'] + 6y + Puar — fTAC.
Proof: (r;—(AP);) gives the blocked traffic in cell i when the TDCAA is used. Since
Py, 1s the blocking probability in cell 7, we can also write for all i € Iy,
- (AP)Z = Tini. (AQ)

Now,

N
A = 3(r-(AP)) (from( 3.20))
— J7[r— AP] (A.3)



= (f1 4+ 67)[r — AP]
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(from( 3.16))

= fflr— AP] + ¢'[r — AP]

= flr~ AP'] — fTAC 4+ 6%[r — AP]

Also,

61 [r — AP]

= > b&(r;— (AP)))

iEIN

= > 4rib,

el

(from ( A.2))

= Y &Py + Y 6D,

el

Now, P, <1 and é; <1 for all 2 € Iy.

Also for ¢ € I', from Lemma A.l in Appendix A, we know that

and for ¢ € I, we have by definition,

Therefore from ( A.5), we have

Pb,j < Pthﬂ

0; < byn.

5T[I' — AP] = Z 6i7’ini -+ Z <5272Pb7
= el

< P biri+ 6m i,
ier ier

< Pud ri+om Y. m
ier ier

< Pon ) ritém .
el €1y

< Pthr + 6th717

where r = 3~ r; is the total offered traffic per channel.

(from( 3.11)).

(A.4)

(A.5)
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Hence, from ( A.3) and ( A.4), we have

JTr — AP] < fT[r — AP'] + b + Pur — fTAC.

Lemma A.4 For any probability distribution Q = (q1,¢2, .- ¢m) on £,
fTAQ < wmax.
Proof: From ( 3.19), we know that
w’ =fTA.
Also,
Wmax = r;leaﬁx{ w;t.
Therefore,

fTAQ = wiQ

= D wig
JEQ
S Z wmaij
JEQ
=  Wmax Z q;
JEQ

- Ujmax .

Lemma A.5 For the distribution P’ on § obtained for the system X,

fTAP > (Wmax — €1)(1 — mey).



Proof: From ( A.1), we have

A=1{j:7€Q, (Wnax —w;) > €1},

and from ( 3.19), we have

fTAP = wiP/

JEQ
= Zwﬂr‘;%— > w; T (A.6)
jeA JEQ\A

Let n denote the probability of channel 8 being in a state in A and let »’ denote the
probability of channel 8 being in a state in (2\A). Also we have proved in Lemma

A.2 in Appendix A, that for 7 € A,
T < €y
and by definition, for j € Q\A,
W 2 Wmax — €1- (A7)

Therefore,

A (A
& &

Since

n+n =1,



[&9)
o

we have

n' > 1 —me,.

Therefore, from ( A.6), we have

fTAP/ = Zuv;ré.-k Z 20]‘72';

JEA JjeO\A
2 Z ’lUj?TJ,/‘
JEQ\A
2 (W —e1) D ) (from ( A.T))
JEQ\A
= (U)max - 61)(1 - méz).



Appendix B z(t) - An “Almost Markov” Process

Consider the cellular system S described in section 3.2, Chapter 3. x(t) denotes
the single-channel system containing channel 3. We will now show that the single
channel 3 does not describe a Markov process. Consider two states j and k such
that a, = a; + ¢; for some ¢ € Iy. Here ¢; is a vector of length N with a 1 in the
"™ position and a 0 everywhere else. Then the transition rate from state j to state
k given the present state of the system is not independent of the past states of the
system. It depends on the state of 5" which is not independent of the past states of
the system x(#) given the present state of the system x(#).

To be precise, let A be the event that channel 3 is in a state a; € Q; and let B
be some information regarding the past states of the channel. Let X p be the call
arrival rate in cell 7 to channel 3 when both A and B are given and ), be the arrival

rate in cell 7 to channel 3 when only A is given. Then we have

Nyp = Call arrival rate in cell 7 x Pr( A new call in cell ¢ is given

to channel 5 | A, B)

vl |
= \ny ——Pr(|S]|=1]A,B), B.1
S T Psi =1 A8 (B.1)
and
Ny = Call arrival rate in cell ¢ x Pr( A new call in cell 7 is given to channel 3| A)
n—1 1 ‘

= A — Pr(]5Y =11 A).

n S Prsi= 1A (B.2)

Since, in general, B gives us some information about the state of the system S’, we

can say that

Pr([Si| = 1|4, B) # Pr(]S]| = 1]A).



34
Hence,

Nap # Ny

But for the process described by channel 3 to be a Markov process, the call arrival
rate in cell ¢ to channel 3 should be independent of the past states of the channel
given its present state, i.e., it should be independent of B given A. That is, we should
have

/ RY
A7B -"/\A-

This is not true in general and hence the process x(t) described by the single channel

3 1s not a Markov process.

Example:

Consider the 3-cell system of Figure 1.1. Suppose the system has 2 channels.
Suppose the call arrival rate in each cell is 1 per second and the call departure rate is
1 per second. We denote the state of the system by a two-tuple (z, j) where ¢ denotes
the state of channel 1 and j denotes the state of channel 2 . Let P; ; be the probability
of the system being in a state (7,7). Let A be the event that channel 1 is in state 1
and B be the event that channel 1 has been in state 1 for a “long” time. Let A, be
the call arrival rate in cell 1 for channel 1 when A is given and let ), g be the call
arrival rate in cell 1 for channel 1 when both A and B are given. Then from ( B.1 )

and ( B.2 ), we have

1
1
N, = —Pr(|S! = 1|A), .
V=3 g PrIsi = 1) (B3)
and
LIS |
Ny = —— Pr(|S!| = 1]A, B). B.4
A.B §1+lf(1 |A, B) ( )

By solving for the P, ;’s, we get

Pl,l - 166/3717,
PLQ - 178/3717,



P174 - 166/3717

Let m be the probability that channel 1 is in state 1. Then we have

5
o= > P
=1

= 790/3717.

When a channel is in states 2.4 or 5, it cannot accept a call in cell 1. Therefore,

Pio+Pis+ Pis

To

Pr(|S[] = 0]4) =

and

» P P,
Pr(|j| = 1]4) = T

= 172/395.
Therefore, from ( B.3), we get

1 . ;
Ny o= 1xPr(]S] :()]A)_f_gxpr(lbvi = 1|A)

1

223/395 +1/2 x 172/395
= 309/395. (B.5)

Now suppose that it is given that channel 1 has been in state 1 for a “long” time.
Given that channel 1 is in state 1, channel 2 describes a Markov process whose state
diagram is given in Figure B.1. We should note that this state diagram is obtained
from the state diagram for the entire system of 2 channels by keeping only those
states which have channel 1 in state 1 and keeping only the transitions occurring
between these states. The transition rates remain unchanged. By “long” time, we

mean time large enough for the channel 2 to have attained equilibrium given that
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channel 1 has been in state 1. Then the probabilities of the system being in the
states (1,1).(1,2).(1,3),(1,4), and (1,5) are given by the probabilities of the Markov

process whose state diagram is shown in Figure B.1.

Figure B.1: Markov process described by channel 2 given that channel 1 is in state 1

Let us denote by P ; the probability of the system being in state (1,;) given
that channel 1 has been in state 1 for a “long” time. Then by solving for the state

probabilities of the Markov process whose state diagram is in Figure B.1, we get

P o= 4/11,
P, = 2/11,
P, o= 2/11,
P, o= 211,

Ply = 1/11.
Therefore, we have

PI‘(ISHZOIAaB) = P1,,2+P1,,4+P1/,5
= 5/11,



@.¢]
-3

and

Pe(|Si| = 1|A,B) = P, + P,

= 6/11.

Hence, from ( B.4), we get

1 |
Nip = LxPr(|S{]| = 0|4, B) + 5 x Pr(|S}| = 1|4, B)
= 5/114+1/2 x 6/11
= 8/11. (B.6)

As is clear from ( B.5 ) and ( B.6 ),

Nip # Ny

Hence the call arrival rate in cell 1 for channel 1 when it is in state 0 is a function of

the time the channel has spent in state 0. Hence the resulting process is not Markov.

Claim: Although the process x(t) is not Markov, its equilibrium distribution is the
same as that of a Markov process which has the same state space as z(#) and for which
the transition rates between two states are given by the transition rates between the
corresponding states of the process x(¢) conditioned only on the present state of the
system.

Proof: For the single-channel system that we are considering, let a; and a; be the
vectors corresponding to the states j and k. Let e; be a N x 1 vector with a 1 in the
i position and a 0 everywhere else. Let A;x(t) be the transition rate from state j to

state b at time ¢ given that the system is in state j at time t. Then we have

APl (1), if ap = a; + ¢; for some ¢ € Iy,

Mk(t) =4 u if a; = ap + ¢; for some 7 € Iy,

0 otherwise,
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Here, P/ (t) is the probability that a call in cell 7 will be given to channel 3 given

that channel 3 is in a state 7 € Q; at time t. We should note that

Let us define v ;(,1) as follows:
vii(I,1) =Pr(|S{| =1 at time¢ | channel 3 isin a state j € Q; at time #).

Then we can write

3
|
—

1 ;
Tt
1+ZV2,([7)

J

I§
)

Since the entire system describes a Markov process, we know that

Jlim vi;(Lt) = v (D).

Here, v/ () is the equilibrium probability that |Si| = [ given that channel 7 is in a

state 7 € Q.
Therefore,
n—1 1
. 'y r
}Hg Pz',j(f) = g 1 _l_ll/zt,j(l)
— !
= P
Let
/\mPi’yj‘, if ar, = a; + ¢; for some ¢ € [y,
Nik =4 u if a; = ay + €; for some ¢ € Iy,
0 otherwise.
Then

[im /\M(i) = /\j,k'-

i—oc



[020]
Ne)

We should note that for A, x(¢) # 0,

lim Aik(t)

= 1.
t—o0 A],k

Also since the entire system describes a Markov process, we can say that the single

channel-system has a steady state distribution, i.e.,
'11“}{10 Pr( channel 3 is in state j at time ¢) = 7;.
Also we should note that for A;;(t) # 0, we have
0 <min{p, X 17 € In} < Ajp(t) <max{u, Am 7€ In}.

Since the single-channel system satisfies all the properties which should be satisfied

by a process for Theorem 2.2 in chapter 2 to be applicable, our claim follows.
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Appendix C Reversible Processes

A stochastic process X (1) is said to be reversible if (X (#), X(#;),..., X(%,)) has the
same distribution as (X(t — 1), X(1 —13),..., X (¢t — t,,)) for all ty,¢5,...,1,,¢ [12].
Let S be the set of states which a stationary Markov chain can be in and let p(j, k)
be the transition rate from state j to state k for j,k € S. Then the stationary
Markov chain is reversible if and only if there exists a collection of positive numbers
75,7 € 5, summing to unity that satisfy the following detailed balanced conditions
for all j,k € S:
mip(J. k) = mp(k, j)

When there exists such a collection , it is the equilibrium distribution of the process.

Kolmogorov’s Criteria for Reversibility

Kolmogorov’s criteria allows us to establish the reversibility of a process directly
from the transition rates.
A stationary Markov chain is reversible if and only if its transition probabilities

satisfy
p(J1,92)P(2:33) - - P(n=15J0) P> J1) = (1, 70 )P(Gns Jum1) - - - P(J25 51)

for any finite sequence of states ji, ja,...,Jn € S.
Cellular System and Reversibility

Consider a single-channel cellular system with N cells and m states. Let Iy =
(1,2,...,N) denote the set of cells and Q = (1,2,...,m) denote the set of states of
the system. Let the departure rate of a call be p in all the cells. Let €, be the set of
states in which a channel can accept a call in cell i. Suppose the rate at which calls

come in cell 7 is independent of which particular state of j € €; the channel is in. Let

us denote it by A;. Also assume that the resulting Markov chain is reflexive, that is,
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if the transition rate from state i to state j is non-zero , then the transition rate from
state j to state ¢ is also non-zero. In that case we can verify that the transition rates
satisfy Kolmogorov's criteria for reversibility and hence the process is reversible.

Let A be the N x m incidence matrix such that

1, if there is a call in progress in cell i when the system is in state j;
al?] = -
0. otherwise.

Then it can be verified that
T = H 7.
sa; j=1

Here, r; = % and 7y is the probability of the all-zero state.

Since,
Z T = I,
JEQ
we can write

[

20, ;=1

S _
"1+ ey I m

va; ;=1

One of the advantages of having a reversible process is that the equilibrium probability
of the states of the system can be written down in terms of the transition rates in a
simple manner which is very useful for analysis. The state probabilities are said to

have a product form solution.



Appendix D An Interesting Theorem

In this section, we will state and prove an interesting theorem regarding probability
distributions which maximize a given function. This came up while proving some of

the results in Chapter 3.

Theorem D.1 Consider a set Iy = {1,2...,N}. Let 0 < ¢; < 1 be a number
associated with each 7 € Iy. Let S be a collection of subsets of Iy with the property
that if S; € S, then all subsets of S; are also elements of S. Let us denote S =

{1,2,...,m}. Let A = (a;;) be an N x m matrix defined as follows:

1, ifee S ,
a5 = (Dl)

0. otherwise.

Let
Cy 1
Co 1
c= ‘ and J=1 |- (D.2)
CN 1

Consider a probability distribution P = (p1,pa,....pm) on S satisfying
APT <ec. (D.3)

Let y be the set of all P’s which satisfy ( D.3).
Let t = (t1,12,...,tx)" = AP, Let

Tp = JTAPT,

and

Tmax = I}}gi({TP}
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Define
f» B 1, i < ¢}
) i, (0<a,<1) ift, =g¢.
Let w = (wy,ws, ..., wy,) be defined by
w; = Z fiv
1:4E€S;
and

Wiax = max{w; }.

For a given P € vy, if there exist x;’s such that for all j’s,

wW; < Wpax = p;j =0

then

TP = Tnlax

(D.4)

(D.6)

(D.7)

Proof: Let P = (p1,p2....,pm) € Y be a probability distribution such that there

exists a collection of x;’s such that w; < wmax = p; = 0. Let f be a vector defined

from the corresponding f;’s:

N1
f2

I

Let P = (p},ph,...,p..) € X be any other probability distribution. Then for all

i, we have from ( D.3), (APT)i < ¢; and (AP’T)i < g

We would like to show that

JTAPT > 37APT.
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Now from ( D.2), ( D.3) and ( D.4), we have

Jc— AP =fT[c — AP"]. (D.8)
Also, since ¢ > AP'T| we have

Ic— AP > fT[c — AP (D.9)
Therefore,

Tp —Tp = JTAPT —J7AP?’
= —J7c— APT] 4+ J7[c — AP'"]
> —fTlc — APT) +t7[c— AP""]  (from ( D.8) and ( D.9))

= fTAPT —fTAP”.
Now, since P satisfies ( D.T), we have

fTAPT = Wmax,

and

fTAP” < Winax-

Hence,

TP 2 TP/.
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Appendix E Some Results Regarding the Above
Threshold Carried Traffic

E.1 Upper Bound on the Above Threshold Car-
ried Traffic and its Achievability

Consider a single-channel cellular system Y; with N cells. Let the corresponding
system with n channels be denoted by Y,,. A single channel in the system can be in
M = 2% states. Let us denote the set of states by Iy = {1,2,..., M}. Let us define

a N x M matrix A = (a;;) as

{ 1, if a user in cell ¢ is using the channel when the channel is in state j;
a;; =

0, otherwise.

For any state j € Iy, let a;; denote the probability that when the system is in state
7, the signal to interference ratio for user in cell 7 1s above a certain threshold. Let
X = (2;;) be an N x M matrix. Let Jy be an all-one vector of length V. Let us

define a vector b = (b, b, ..., byr) as
b= JxyX.

We can look upon b; as the revenue that the system gets when a channel is in state
J.

Let us denote the offered traffic per channel in each cell by r = (ry,r2,...,7n).
Let s = (81,82,...,8y) be a probability distribution on the set of states [y =
{1,2,...,M}. Let S(r) be the set of all probabiltiy distributions on I such that
s € S(r) if and only if

sAT <r.
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Let us define T'(r) as follows:
T(r) = max{sb’ : s € S(r)}. (E.1)

Let S, denote the set of all feasible states for the system Y,. By a feasible state,
we mean a M-vector m = (my,ma,...,mp) such that m; indicates the number of

channels in state j and >, m; = n. We have
E(mAT) < rn. (E.2)

Therefore,
E(m) € nS(r). (E.3)

( E.2) is the constraint that the carried traffic in any cell is less than or equal to the
offered traffic in that cell.
Let us denote by T,,(r) the maximum possible revenue for the system Y,, when the

offered traffic per channel is r. We will show that for n =1,2...,

1

—T,(r) < T(r). (E.4)
n
We will also show that
1 o
lim =77, (r) = T'(r). (E.5)
n—o0 n

This is the main result. What the above results say is that the function 7'(r) is the
normalised upper bound on the revenue the system can get for a given offered traffic

distribution r and that this upper bound is asymptotically tight.
Theorem E.1 The function T(r) is non-decreasing, continuous and convex.

Proof: Since the set over which the maximum occurs is increasing in r, it follows that
T'(r) is nondecreasing. To prove that T'(r) is convex, let r; and r, be arbitrary demand
vectors, and let p and ¢ be positive real numbers such that p+¢ = 1. Let s; € S(rq)

achieve T'(ry), i.e., 5167 = max{sb? : sAT < r1} and similarly let sy € S(ry) achieve
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T(ry), ie., s;b7 = max{sb? : sAT < ro}. Let s = psy + ¢so . Then s € S(pri + gra),

and

sb = (psy + qs2)b7 = psi b7 + gsob” = pT(r1) + ¢T(rs).

Therefore.

T(pry + qra) = pT(r1) + T (r2).
"

Theorem E.2 Let T4(nr) be the expected value of the function mb’, when a partic-

ular algorithm A is used and when the offered traffic is nr. Then,

Lrstnr) < T(r)
1

Proof: We have by definition, and by linearity of the expectation operator,
Ta(nr) = E(mb") = E(m)b’.
Therefore, from ( E.3) and ( E.2), we have

Ts(nr) = E(m)bT < max{sb” : s € nS(r)}
= nmax{sb’ : s € S(r)}

= nT(r).
Since this is true for all algorithms A, ( E.4) follows.
E.2 Asymptotic Optimality of 7T'(r)
Theorem E.3

lim ~7,(x) = T(r).

n—oo 1



Proof: To prove this, we will prove the following inequality which together with (4)

will complete the proof :

lim lTn(r) > T(r).

Nn—=0C ’r?
Consider the following algorithm A. Choose s = (st,s2,...,sM) € S(r) arbitrarily
and select a sequence s, = (s!,s2,...,sM) € S, (r) such that
Sp
lim = = s.
FL— 00 n

This can be done by choosing for example s, such that |ns’] < s/ < |ns’/| + 1.

Consider a fixed channel assignment scheme in which s/ channels are “reserved”
for state j or are of service type j. Let 7(s/) be the average number of channels from
these allocated s/ channels which are in state j. Suppose the call arrival requests are
processed as follows: When a call comes in cell 7, it is sent to the channels reserved
for state j with probability s/ /r;, if a;; = 1. (This can be done for all the states and
for all the cells simultaneously because ¥, s/ a;; < r;.) If one of those channels can
accept the call, the call is accepted. Otherwise the call is blocked.

Let us denote the revenue function for this algorithm by 77*(r). Then we have
M M 4
T*(r) = E(mb") = Z E(m;)b; > Zr(tsfl)bj. (E.6)
J=1

i=1

We will prove in the next section that under the operation of the above algorithm A,

CoT(s!
lim —(”—) =1.
n—os st

If we divide ( E.6) by n and take the limit as n — oo, then we get

1., s
lim —=T"(nr) > rli?% Z T(Sn>bj

n—oop " n

7=1
i

i=1
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= sbl.

But since this holds for every s € S(r), we choose the s = s(r) which maximizes it,

i.e., the one for which s(r)b” = T'(r). For this particular choice of s, we have

lim 7% (nr) = T(r).

This completes the proof.
Theorem E.4 When algorithm A is used,

T Sj
lim M = 1.
n—oo  nglt

Proof: Suppose s'n channels are reserved for state j. We will consider those values of
n for which s/n is an integer to avoid complications and we will assume that s = s/n.
With a slight modification, the proof can be made valid for all n. Then if a,; = 1,
then the traffic in cell 2 which goes to this set of channels is nr; x f’%, i.e., the traffic in
cell ¢ for this set of channels is 1 Erlang per channel. So we have reduced our problem
to the following problem:

We have a set of n channels and there are N cells. Each channel can carry a call in
any cell, irrespective of other cells which are using it. The offered traffic per channel
in each cell is 1 Erlang per channel. Let x(n) be the number of channels which carry
a call in all the IV cells at a given time. We have to prove that,

. E(x(n))
Im ——e

=00 n

= 1.

This follows directly from the Asymptotic Traffic Property of Poisson arrivals proved

in [18].
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