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ABSTRACT

In the last decade or so, we have witnessed a rapid development of the wavelet and filter bank theory.
Wavelets find applications in signal compression, computer vision, geophysics, pattern recognition,
numerical analysis, and function theory, just to name a few. Filter banks, on the other hand, offer
very efficient implementation of different algorithms in connection with wavelets. The thesis deals
with three problems in filter banks and wavelets.

In the first part, we show that perfect reconstruction is equivalent to biorthogonality of the
filters. Using this, we examine existence issues in nonuniform filter banks. We show that when-
ever there exists a rational biorthogonal filter bank, then there is a rational orthonormal filter bank
as well. We also derive a number of necessary conditions for the existence of perfect reconstruc-
tion nonuniform filter banks. We show how the tools developed in the first part can be used for
decorrelation of subband signals.

The second problem deals with optimality issues in wavelet and filter bank theory. We tune
scaling function for the analysis of WSS random processes, so that the energy is concentrated in as
few transform coefficients as possible. The corresponding problem in the filter bank theory is that
of adapting filter responses to a given (discrete time) WSS random process so as to achieve a better
energy compaction.

Finally, the last part is devoted to developing sampling theory for multiresolution subspaces.
More precisely, we extend existing uniform sampling theory to periodically nonuniform sampling.
This extension offers one very important advantage over the existing sampling theory. By allowing for
periodically nonuniform sampling grid, it is possible to have compactly supported synthesis functions,
which was not the case before. Several variations on the basic theme are considered. Also, an
application of the developed techniques to efficient computation of inner products in multiresolution

subspaces is presented.



Table of Contents

1 Introduction

1.1 A brief history of filter banks and wavelets . . . . . . . . . . . ..

1.2 Wavelets and multiresolution analysis. . . . . . . . . . . . . . ..

1.2.1 Wavelet examples . . . . . . . . . . . .. Ce e e e

1.2.2 The short time Fourier transform (STFT) . . . . . . . . . ..

1.2.3 Wavelet transform versus STFT . . . . . . . . . . . . . ..

1.2.4 Wavelets and multiresolution . . . . . . . . . . . . . . ..

1.3 Thesis overview

1.4 General conventions and notations . . . . . . . . . . . . . .o ..

2 Results on Biorthogonal Filter Banks

2.1 Introduction

2.1.1 Chapteroutline. . . . . . . . . . . . ... ...

2.1.2 Chapter-specific notations and conventions . . . . . . . . . . .

2.2 Equivalence of biorthogonality and PR property . . . . . . . . . . .

2.2.1 PR implies biorthogonality of analysis and synthesis filters . . . .

222 Corollaries . . . . . . . o e e e e e e e e e e e e e e

2.3 Orthonormalization of biorthogonal filter banks . . . . . . . . . . .

2.3.1 Normalization condition or Nyquist condition. . . . . . . . . .

2.3.2 Orthogonalization. . . . . . . . . . . . . . . . .. .. ..

2.33Stability . . . . . . e e e e e

2.3.4 Numerical examples . . . . . . . . . . . . . ... ..

2.3.5 Numerical considerations. . . . . . . . . . . . . .« « . . . .

2.4 Complete decorrelation of subband signals. . . . . . . . . . . . ..

2.4.1 Decorrelations with orthonormal filters . . . . . . . . . . . .

2.4.2 Biorthogonal decorrelation . . . . . . . . . . .. . ... ..

2.5 The compatibility condition, and generalizations . . . . . . . . . . .

2.5.1 Compatibility . . . . . . . . . .. .00 L0000

2.5.2 Generalizations . . . . . . . . . . . ..o 000

2.6 Conclusion

10
17
19



2.7Appendices . . . . . . . . ... L.

3 Statistical Wavelet and Filter Bank Optimizations

3.1 Introduction. . . . . . . . .. ... ... Lo
3.1.1 Chapteroutline. . . . . . . . . . . . . .. ... ...
3.2 Statistical wavelet optimization . . . . . . . . . . . . .. ..
3.2.1 Derivation of error variance . . . . . . . . . . . . . ..
3.2.2 Discussion and anexample . . . . . . . . . . .. .. ..
3.3 Statistical pre-filter optimization . . . . . . . . . . . . .. ..
3.3.1 Derivation . . . . . . . . .. ... o e
3.3.2 Discussion and an example . . . . . . . . . . . ... ..
3.4 Coding gain optimization . . . . . . . . . . . . . .. .. ..
3.4.1 Coding gain of a biorthogonal filter bank . . . . . . . . .
3.4.2 Pre-filters for PU filter banks. . . . . . . . . . . . . ..
343Examples . . . . . . . . ... 000
3.5Conclusion . . . . . . ..o Lo

36 Appendices . . . . . . . ... L.

4 Generalized Sampling Theorems In Multiresolution Subspaces

4.1 Introduction. . . . . . . . . . . . ...
411 Aims ofthechapter . . . . . . . . . . . .. ... ...
4.1.2 The new results in the perspective of earlier work . . . . . .

4.2 Discrete representations of deterministic signals . . . . . . . . .
4.2.1 Assumptions and preliminary derivations . . . . . . . . .
4.2.2 Review of uniform sampling in wavelet subspaces . . . . . .
4.2.3 Periodically nonuniform sampling . . . . . . . . . . . ..
4.2.4 Reconstruction from local averages . . . . . . . . . . . .

4.3 Further extensions of sampling in wavelet subspaces . . . . . . .

4.3.1 Oversampling . . . . . . . . . . . ... ... ...,

4.3.2 Reconstruction from samples of functions and their derivatives . . . .

4.3.3 Multi-band or multiscale sampling . . . . . . . . . . . .

4.3.4 Efficient computation of inner products in MRA . . . . . .

46

49
49
52
53
53
55
57
58
60
62
62
63
67
69
69

75
75
76
78
78
78
80
81
86
91
91
93
94
98



vii

4.3.5 Errors in sampling times . . . . . . . . . . . . . Lo 100
4.4 Sampling of WSS random processes . . . . . . . . . . . .00 .. 0oL 101
4.4.1 Uniform sampling . . . . . . . . . . . . .. ..o 0o 102
4.4.2 Nonuniform sampling . . . . . . . . . . . . .. 00000 e 103
4.5 Conclusion . . . . . . L. L e e e e e e e e e e e e e e e 105
4.6 Appendices . . . . . . . . L L .. e e e e e e e e e 105

5 Concluding Remarks. . . . . . . . . . . . . .« .+ v« ¢ v ¢ o« . . . 108
5.10penproblems . . . . . . . . . . .. .0 109
References . . . . . . . . . . . v v 4 o« v v v e v e e e e e e e w110



viii
List of Figures

Fig. 1.2.1. Bandpass filter to be used in the reconstruction of the bandpass signal from its

Fig. 1.2.2. Splitting a signal into frequency subbands. . . . . . . . . . . . . . . . ..
Fig. 1.2.3. Examples of basis functions in the Haar basis for L2[0,1]. . . . . . . . . . .
Fig. 1.2.4. Example 1.2.3. The signal to be analyzed by STFT and Wavelet transform.
Fig. 1.2.5. Example 1.2.3. STFT plots with window widths of 0.1, 0.3, and 1.0, and
Wavelet transform plot. . . . . . . . . . . . .. ..o oL
Fig. 1.2.6. A Two-channel PU filter bank. . . . . . . . . . . . . .. .. .. .. ..
Fig. 1.2.7. Towards multiresolution analysis... The spaces {Vi} and {W}} spanned by
various filter responses. . . . . . . . . . . L L Lo oo e
Fig. 1.2.8. The Haar multiresolution example. (a) The scaling function ¢(t) that generates
multiresolution, (b) the function 1(t) which generates Wy, (c) example
of a member of V5 and (d) example of a memberof V4. . . . . . . . . ..
Fig. 1.2.9. Tree structured analysis bank generating wavelet coefficients cx(n) and
multiresolution coefficients dg(n) recursively. . . . . . . . . . . . . . . ..
Fig. 2.1.1. (a) A nonuniform filter bank and (b) an equivalent uniform bank. . . . . . . .
Fig. 2.1.2. (a) A uniform filter bank and (b) its polyphase decomposition. . . . . . . . .
Fig. 2.3.1. Example 2.3.1. Magnitude responses of analysis filters, (a) before
orthonormalization, (b) after orthonormalization. . . . . . . . . . . . . ..
Fig. 2.3.2. Example 2.3.2. Magnitude responses of analysis filters (a) before
orthonormalization, (b) after orthonormalization. . . . . . . . . . . . . ..
Fig. 2.4.1. Magnitude responses of analysis filters (a) before decorrelation,
(b) after decorrelation. . . . . . . . .. ... L
Fig. 3.1.1. A uniform filter bank used for subband coding. . . . . . . . . . ..
Fig. 3.2.1. Example 3.2.1 A continuous version of the AR(6) model of speech (solid)
and its approximation at the finest resolution level (dotted). . . . . . . .

Fig. 3.2.2. Example 3.2.1 Frequency responses of Hps(z) (dotted) and the optimized filter

Fig. 3.2.3. Example 3.2.1 Daubechies’ 5¢(z) (dotted) and the optimized (solid) scaling

functions. . . . . . . . . e e e e e e e e e e e e e e



Fig. 3.3.1.

Fig. 3.4.1.
Fig. 3.4.2.
Fig. 3.4.3.

Fig. 3.4.4.

Fig. 3.4.5.

Fig. 4.2.1.
Fig. 4.2.2.
Fig. 4.2.3.
Fig. 4.2.4.
Fig. 4.2.5.
Fig. 4.2.6.
Fig. 4.3.1.
Fig. 4.3.2.
Fig. 4.3.3.
Fig. 4.3.4.
Fig. 4.3.5.
Fig. 4.3.6.
Fig. 4.B.1.

ix
Example 3.3.1 Relative error variance o2 /02 for Daubechies’ 3¢ (solid) and
4¢ (dotted) scaling functions as a function of the pre-filter length. . . . . . . .
A uniform filter bank used for subband coding. . . . . . . . . . . . .. ..
Filter bank with pre- and post- filters. . . . . . . . . . . . . . . . .. ..
Plots of S~1/4(e) for a test example (dotted curve), and a rational
approximation |P,(e?*)| (solid curve). The approximation filter P,(e/*) is a 2"¢
order IIRfilter. . . . . . . . . . . . . . . . ..
Example 3.4.1. Coding gain of DCT filter banks as a function of the number of
channels, with and without pre-filters. . . . . . . . . . . . . . ..
Example 3.4.2. Coding gain of tree-structured filter banks as a function of the
number of channels, with and without pre-filters. . . . . . . . . . . ..
Filter representation of uniform sampling. . . . . . . . . . . . . . . . ..
Filter bank interpretation of periodically nonuniform sampling. . . . . . . . .
Polyphase representation. . . . . . . . . . . .. .. ..o
Linear spline and its samplesat n+u4pm. . . . . . . . . . .. oL
Local averaging scheme. . . . . . . . . . . . . . ..o o000
Areas under ¢(t) over intervals I; are entriesof T'. . . . . . . . . . . . . ..
Filter bank interpretation of oversampling. . . . . . . . . . . . . . . . ..
o(t), ¢'(t) and its samples at integers. . . . . . . . . . . . ... .. ...
An ideal bandpass signal and its aliasing copies. . . . . . . . . . . . . ..
Polyphase representation of a MIMO nonuniform filter bank. . . . . . . . . .
W_1 UW_3 C Vp in the frequency domain. . . . . . . . . . . . . . . . ..
Qualitative comparison of different methods for computing cp.»’s. . . . . . . .

Block diagrams of local averaging and sampling schemes. . . . . . .

68

68
81
82
83
85
87
89
91
94
94
96
98
99
106



Introduction

In this section, a short historic overview of filter banks and wavelets will be given. It will be
followed by an introduction to multiresolution analysis (MRA) and wavelets. After that, remaining
chapters will be described and the main results of the thesis will be stated. At the end, we introduce

conventions and notation that will be used in the thesis.
1.1 A brief history of filter banks and wavelets

Multirate filter banks are well known and widely used tools in signal processing community. They
find applications in signal compression [Cro76 and Woo086], computer vision [Mal89a], adaptive
filtering [Gil87, Gil92, and Sat93], spectrum estimation [Coo80 and Qui83], beamforming [Pri79
and Sch84], etc.

In the absence of quantizers, there are three types of distortion that may occur in filter banks.
As in any LTI system, there may be amplitude and phase distortion. Additionally, due to the
presence of sub-samplers, there is aliasing as well. At first it was not clear whether aliasing could be
eliminated with rational filters. In 1976, Croisier et al. [Cro76] showed that this is indeed possible
for a two-channel case. After the aliasing has been eliminated, phase and amplitude distortions were
minimized in the design process [Joh80], [Jai84], [Fet85]. A few years later, in 1984, Smith and
Barnwell [Smi84] and Mintzer [Min85] found a way to eliminate all three distortions, again for a
two-channel filter bank. At the same time very efficient implementation techniques were developed
[Gal85].

All the results mentioned so far were for two-channel filter banks only. In a general, M-channel
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case analysis and synthesis are much more difficult. At first, so called pseudo QMF filter banks
were developed. They are called pseudo QMF because only dominant aliasing terms were cancelled
[Nus81], [Rot83]. Finally, solutions of the perfect reconstruction problem in the general M-channel
case were found by many researchers [Ram84], [Smi85], [Vet85], [Pri86], [Vai87], etc. One solution to
the problem stands out, the orthonormal one (also called paraunitary or PU). Not only are the design
and analysis simplified in the case of orthonormal filter banks, but many desirable features (useful
in subband coding, for example) are achieved for free. The design process is especially simplified
due to the complete parameterization of orthonormal filter banks [Vai89)]. This technique has roots

in the classical network theory [Bel68], where the name paraunitary comes from.

Even though a complete parameterization of M-channel PU filter banks was known, the design
was still computationally very involved. There were simply too many parameters to optimize. The
design process was drastically simplified by introducing modulated filter banks [Mal90], [K0i91] and

[Ram91]. In this case, all the filters in the filter bank are modulated versions of a single filter.

While it is true that the transfer function of a perfect reconstruction (PR) filter bank is unity,
the filters themselves do not necessarily have linear phase. In some applications, like image coding, it
is important that the filters have linear phase. At first some ad hoc design methods were developed.
The first systematic design method covering a large class of linear phase PU filter banks was reported
in [Som93]. Unfortunately, this design method was computationally very involved. Finally a design

technique for linear phase cosine-modulated PU filter banks was reported in [Lin93].

All the above mentioned advances were made in the area of one-dimensional signal processing.
Corresponding problems in the multidimensional (MD) case are much more difficult and, therefore,
the results are scarcer. MD filter banks were first considered in [Vet84], [Wo086] and [Wac86]. Even
though there have been many results reported so far, there are still no systematic design techniques
for designing MD filter banks for arbitrary sampling lattices (see [Vis91]). The problem of perfect
reconstruction was considered in [Ans90], [Kar90] and [Kov92]. A very nice and simple design

technique for a two-channel case was given in [Pho93].

In the last couple of years, a number of both theoretical and more practical results have been
reported. There are many design techniques incorporating additional constraints like minimum
overall delay, various time domain constraints, imposition of zeros at aliasing frequencies [Ste93],
etc. Also, there are further generalizations of M-channel uniform filter banks to nonuniform, filter

banks with non-integer decimation ratios, time-varying filter banks, etc. But even just mentioning



of all those results would take us too far afield.

One of the main applications of filter banks is the signal compression using subband coding.
Analysis of brick-wall subband coders when the input is a wide sense stationary (WSS) random
process is straightforward [Jay84]. It is especially easy in the case of PU filter banks and several
interesting results can be derived; see [Vai93]. Results on (un)constrained bit allocation for the
optimal quantization appeared in [Hua63], [Seg76], [Ram82], [Wes88], etc. However, the analysis of

biorthogonal filter banks has not been done.

During the last decade, researchers from rather diverse fields got interested in wavelets. It is not
so common to see quantum physicists, pure mathematicians, geophysicists, engineers, and numerical
analysts work on similar problems at the same time. So, what is it that draws so much attention
to wavelets? One of the main reasons is their very good joint time-frequency resolution. Wavelets

have more desirable properties that other transforms lack (see the next subsection).

Since the invention of the Fourier transform, there have been many attempts to come up with
some transform that will have both good time and frequency resolution. Uncertainty principle shows
that simultaneous, arbitrarily good resolution in both time and frequency cannot be obtained. But
most time-frequency transforms either cannot even get close to the principle of uncertainty (time
or frequency resolution is poor) or lack some desirable properties as a transform (orthonormality
or stability properties). Finally, there is a transform with all those desirable features — the wavelet

transform.

Even though researchers were looking for a transformation with good time-frequency resolution
for more than thirty years, the wavelet theory as we know it today has been mostly developed
within the last decade or so. The notion of wavelets was introduced by Morlet [Mor82], in the
area of geophysics. First smooth orthonormal wavelet bases were constructed by Meyer [Mey85]
and Lemarie and Meyer [Lem86]. Wavelet transform can be nicely embedded in the theory of
multiresolution analysis, developed by Mallat [Mal89] and Meyer [Mey87]. Multiresolution analysis
kind of preprocessing is at the heart of human audio and visual system. It also plays an important role
in approximation theory and numerical analysis, computer vision, signal compression, etc. However,

it was not until Daubechies’ seminal work [Dau88] that wavelets gained popularity they enjoy today.

Daubechies exploited a deep relationship between PU filter banks and wavelet bases to construct
an infinite family of compactly supported orthonormal wavelets of arbitrarily high degree of smooth-

ness. Her work initiated a huge activity in both signal processing and mathematical community. It
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was then realized that some kind of multiresolution analysis had been practiced long before Mallat’s
and Meyer’s formalization (Laplacian pyramid of Burt and Adelson [Bur83], for example). Filter
banks are not only used to construct compactly supported orthonormal wavelet bases, but also for
computationally extremely efficient implementation of MRA, the so called Fast Wavelet Transform
(FWT) [Mal89a).

Wavelets were used for numerical solutions of differential equations in [Bey91]. For the purpose
of audio compression, Coifman et al. [Coi90] developed wavelet packets. We mentioned only a few
advantages of wavelet bases over other types of bases, but there are many more. They play an
important role in harmonic analysis and function theory because they provide unconditional bases
for many functional spaces (L? for 1 < p < oo, Hardy spaces, Sobolev spaces, etc.). It is also possible
to characterize many of those spaces in terms of their wavelet transform. Most of these nice and
desirable properties were lacked by the Fourier transform. Much more on this subject can be found
in Meyer’s book [Mey92].

As it was mentioned, Daubechies’ work initiated mutually beneficial interaction between math-
ematicians and signal processors. On the one hand, existence of M-channel, biorthogonal, MD,
linear phase, etc., filter banks gave rise to construction of M-band, biorthogonal, MD, symmetric,
etc., wavelet bases. On the other hand, desire to construct smoother wavelet bases imposed new
design constraints on filter banks. It is not enough anymore to satisfy just PR conditions; it is also
desirable to put as many zeros at aliasing frequencies as possible. Some preliminary experiments
have shown that the imposition of the new constraints improves performances of some image coding
systems. Also the role of filter banks when it comes to implementations of MRA and other wavelet
algorithms cannot be overemphasized. There is a huge number of references in this area and it
would be impossible to mention all of them. [Chu92], [Dau92], [Vai93], [Inf92], and [Sgp93] are good

starting points for further exploration and an excellent source of references.
1.2 Wavelets and multiresolution analysis

1.2.1. Wavelet examples

Instead of giving formal definitions, we will present two examples of wavelet transform to develop
the intuition. The examples are simple and well-known, yet they show the main features of the

wavelet transform.
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Example 1.2.1. Littlewood-Paley wavelet. Consider a bandpass signal z(¢) with Fourier
transform supported in w; < |w| < ws. It can be shown that for sampling at the rate 23 there is
no overlap of images if and only if one of the edges, wy or ws, is a multiple of 23. This is called the
bandpass sampling theorem.

F(o) B
——

— /B

-y -y 0 & oo
Fig. 1.2.1. Bandpass filter to be used in the reconstruction of

the bandpass signal from its samples.

The reconstruction of z(t) from the samples proceeds exactly as in the lowpass case, except that
the reconstruction filter F(w) is now a bandpass filter (Fig. 1.2.1) occupying precisely the signal
bandwidth. The reconstruction formula is z(t) = -, z(nT) f(t — nT) where T = 7/, and f(t) is

the bandpass impulse response.

Y(® | Y (@ X()
L~

_(q“l —O)k O (Dk (ok+1
Fig. 1.2.2. Splitting a signal into frequency subbands.

Given a signal z(t), imagine now that we have split its frequency axis into subbands in some
manner (Fig. 1.2.2). Letting y(t) denote the kth subband signal, we can write z(t) = ), yx(t). If
the subband region wy < |w| < wg+1 satisfies the bandpass sampling condition, then the bandpass
signal yx(t) can be expressed as a linear combination of its samples. So, let wy = 2%7 (k =
...—1,0,1,2,...). The bandedges are such that y(t) is a signal satisfying the bandpass sampling
theorem. It can be sampled at period T} = m/B = 2~* without aliasing, and we can reconstruct it

from samples as
o

ye®) = > yr@7Fn)fie(t —27Fn). (1.2.1)

n=—oo

Since z(t) = Y, yx(t) we see that z(t) can be expressed as

zt)= Y. Y. wk@7*n)fi(t —27%n). (1.2.2)

k=—o00o n=—00
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Our definition of the filters shows that the frequency responses are scaled versions of each other;
that is Fi(w) = 2-%¥¥(2~*w). The impulse responses are therefore related as fi(t) = %(2*t), and
we can rewrite (1.2.2) as
o
z(t) = Z Z yr(2 ¥ n)p (2%t — n). (1.2.3)
k=—o00 n=—00

In order to make this look like a wavelet expansion, we write it as z(t) = Y., Y., Ckn¥kn(t), where

ckn = 27%/?y,(27%n) and
Vi (t) = 26/2p(25¢ — n) = 2%/%y (2’°(t - 2-’°n)). (1.2.4)

The function (2%t) is a dilated version of 1(t) (squeezed version if k£ > 0 and stretched version if
k < 0). The dilation factor 2¥ is a power of two, so this is said to be a dyadic dilation. The function
¥(2%(t —27%n)) is a shift of the dilated version. Thus we have expressed z(t) as a linear combination
of shifts of (dyadic) dilated versions of a single function (t). This is a typical characteristic of wavelet
bases and could be taken as a possible definition (strictly speaking there is no definition of wavelets).
(1.2.3) is called the wavelet representation for z(t). The function (t) is called the ideal bandpass

wavelet. It has also been known as the Littlewood-Paley wavelet.

Example 1.2.2. The Haar wavelet basis. As early as 1910 an orthonormal basis for L? functions
has been found [Haal0], which satisfies the properties of a wavelet basis given above! That is, the
basis functions 9, (t) are derived from a single function 1(t) using dilations and shifts as in (1.2.4).
To explain this system first consider a signal z(t) € L?[0,1]. The Haar basis is built from two
functions called ¢(t) and (t), as described in Fig. 1.2.3. The basis function ¢(t) is a constant in
[0,1]. The basis function 9(t) is constant on each half interval, and its integral is zero. After this,
the remaining basis functions are obtained from 1(t) by dilations and shifts as indicated. It is clear
from the figure that any two of these functions are mutually orthogonal. We have an orthonormal
set, and it can be shown that this set of functions is an orthonormal basis for L?[0, 1]. However, this

is not exactly a wavelet basis yet, because of the presence of qb(t).Jr

T We will see later that the function #(t) arises naturally in the context of the fundamental idea

of multiresolution.



o (1) 21 2w
1 v, (1) —Io,zs -
0 1t
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o s > 0 o.zsl_l 1t
4 V2 v @y , _2\v (4t-2)

v, (1) 0.5 \vn(t) |_| 0.75 -
0 1t 0 o.s|_| 1t
V2 ﬁ’w‘“) 2y (4t3)

v, ® 1 2T
0 0.5 |_| t W) Hl .

0 0.7 |_| t

Fig. 1.2.3. Examples of basis functions in the Haar basis for L?[0,1].

If we eliminate the requirement that z(t) be supported or defined only on [0, 1] and consider
L?(R) functions, then we can still obtain an orthonormal basis of the above form by including the
shifted versions {t(2Ft — n)} for all integer values of n, and also including the shifted versions
{¢(t — n)}. An alternative to the use of {¢(t —n)} would be to use stretched (i.e., ¥(2¥t), k < 0) as
well as squeezed (i.e., ¥(2%t),k > 0) versions of 9(t). The set of functions can thus be written as
in (1.2.4), which has the form of a wavelet basis. It can be shown that this forms an orthonormal
basis for L?(R).

The above two examples are two extreme cases of infinitely many examples of wavelet bases. The
first example has a good frequency localization, basis functions are infinitely smooth, but of infinite
duration, while the second example has a good time localization, basis functions are compactly
supported, but discontinuous. Obtaining basis functions having a good localization in both time
and frequency is the aim of the game. In the subsections that follow, we will explain properties and
advantages of the wavelet transform over other time-frequency transforms. Now that we know what

wavelets are all about, let us review another time-frequency transform, the STFT.

1.2.2. The short time Fourier transform (STFT)

In many applications, we have to accommodate the notion of frequency that evolves or changes with
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time. For example, audio signals are often regarded as signals with a time varying spectrum, e.g.,
a sequence of short lived pitch frequencies. This idea cannot be expressed with the traditional FT
since X (w) for each w depends on z(t) for all t.

The short time Fourier transform (STFT) was introduced to provide such a time-frequency
picture of the signal [Gab46], [F1a66], [Sch73], and [Por80]. Here the signal z(t) is multiplied with a
window v(t — 7) centered or localized around time 7 and the FT of z(t)v(t — 7) computed:

X(w, )= /00 z(t)v(t — T)e” ¥t dt. (1.2.5)

—oo0
This is then repeated for shifted locations of the window, i.e., for various values of 7. The result is a
function of both time 7 and frequency w. In the traditional STFT both w and 7 are discretized on
uniform grids w = kwy, 7 = nT,. The STFT is thus defined as
o0
X oo (Ko, nTy) = / (&)u(t — nT,)e—T*w-tdt, (1.2.6)
~o0
which we abbreviate as X,;7:(k,n). Thus the time domain is mapped into the time-frequency
domain. The quantity X,¢s¢(kws,nT,) represents the FT of z(t) “around time nT,” and “around

frequency kw,.”

Optimal time-frequency resolution: the Gabor window. What is the best frequency resolu-
tion one can obtain for a given time resolution? That is, for a given duration of the window v(t) how
small can the duration of V(w) be? If we define duration according to common sense, we are already
in trouble because if v(t) has finite duration, then V (w) has infinite duration. There is a more useful
definition of duration called the root mean square (rms) duration. The rms time duration D; and
the rms frequency duration Dy for the window v(t) are defined such that

o _ JER@WPA o, [WlV(W)Pdw

Di=Thora YT TTVwPRe

(1.2.7)

Intuitively we can see that D; cannot be arbitrarily small for a specified Dy. The uncertainty
principle says that D:Dy > 0.5. Equality holds if and only if v(t) has the shape of a Gaussian,
ie., v(t) = Ae—t* o > 0. Thus the best joint time-frequency resolution is obtained by using the
Gaussian window. Gabor used the Gaussian window as early as 1946! The STFT based on the
Gaussian is called the Gabor transform. A limitation of the Gabor transform is that it does not give

rise to an orthonormal signal representation.
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1.2.3. Wavelet transform versus STFT

We will compare wavelets and STFT on several grounds: time-frequency resolution and localization,
stability of the reconstruction from the transform coefficients, existence of orthonormal bases and

so forth. The advantage of wavelet transforms over the STFT will be clear after these discussions.

The STFT works with a fixed window v(t). If a high frequency signal is being analyzed, many
cycles are captured by the window, and a good estimate of the FT is obtained. But if a signal
varies very slowly with respect to the window, then the window is not long enough to capture it
fully. The STFT therefore does not provide uniform percentage accuracy for all frequencies — the

computational resources are somehow poorly distributed.

In the wavelet case, the frequency resolution gets poorer as the frequency increases, but the
fractional resolution (i.e., the filter bandwidth Awy, divided by the center frequency wy,) is constant for
all k. That is, the percentage accuracy is uniformly distributed in frequency. In electrical engineering
language the filter bank representing wavelet transforms is a constant Q filter bank, or an octeve band
filter bank. The nonuniform (constant Q) filter stacking provided by wavelet filters is also naturally
suited for analyzing audio signals and sometimes even as components in the modeling of the human

hearing system.

Example 1.2.3. Resolution of the wavelet transform and the STFT. This example clearly
displays advantages of the wavelet transform over the STFT. Consider the signal z(t) = cos(10nt) +
0.5 cos(5mt) + 1.26,(t — 0.07) + 1.26,(t + 0.07). It has impulses at ¢ = +0.07, in the time domain.
There are two impulses (or “lines”) in the frequency domain, at w; = 57 and wy = 107. The function
is shown in Fig. 1.2.4 (with impulses replaced by narrow pulses). The aim is to try to compute
the STFT or WT such that the impulses in time as well as those in frequency are resolved. Figure
1.2.5 shows the STFT plot for three widths of the window v(¢) and the wavelet plot. The STFT

! is analogous

plots are time-frequency plots, whereas the wavelet plots are (a~!,b) plots where a~
to “frequency” in the STFT, and b is analogous to “time” in the STFT. The brightness of the plots
in Fig. 1.2.5 is proportional to the magnitude of the STFT or WT, so the transform is close to zero
in the dark regions. We see that for a narrow window with width = 0.1, the STFT resolves the
two impulses in time reasonably well, but the impulses in frequency are not resolved. For a wide

window with width = 1.0, the STFT resolves the “lines” in frequency very well, but not the time

domain impulses. For an intermediate window width = 0.3, the resolution is poor in both time and
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frequency. The wavelet transform plot, on the other hand, simultaneously resolves both time and
frequency very well. We can clearly see the locations of the two impulses in time, as well as the two

lines in frequency.

£(

NIPVIN (ruivip
IRARATATTATAT

Fig. 1.2.4. Example 1.2.3. The signal to be analyzed by STFT and Wavelet transform.

Orthonormal STFT bases have poor time-frequency localization. It can be shown that if
we wish to have an orthonormal STFT basis, the time-frequency density is constrained to be such
that w,T, = 2m. Under this condition suppose we choose v(t) appropriately to design such a basis.
The time frequency localization properties of this system can be judged by computing the mean
square durations D} and D3 defined in (1.2.7). It has been shown by Balian and Low (see [Dau92})
that one of these is necessarily infinite no matter how we design v(t). Thus an orthonormal STFT
basis always satisfies DDy = oo. That is, either the time or the frequency localization is very poor.
Instability of the Gabor transform. Gabor constructed the STFT using the Gaussian window
v(t) = ce~t"/2. In this case the sequence of functions {gin(t)} can be shown to be complete in L? as
long as w,T, < 2. However, the reconstruction of z(t) from X, s¢(kw,, nTy) is unstable if w7y = 27.
So even though the Gabor transform has the ideal time frequency localization (minimum D;Dy), it
cannot provide a stable basis, hence certainly not an orthonormal basis, whenever w,T, = 2.

A major advantage of the wavelet transform over the STFT is that it is free from the above
difficulties. For example we can obtain an orthonormal basis for L? with excellent time-frequency

localization (finite, controllable D;Dy).

1.2.4. Wavelets and multiresolution

Daubechies’ construction is such that excellent time-frequency localization is possible. Moreover,
the smoothness or regularity of the wavelets can be controlled. The construction is based on the

two channel paraunitary filter banks. One such filter bank is shown in Fig. 1.2.6.
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Fig. 1.2.5. Example 1.2.3. STFT plots with window widths of 0.1, 0.3, and 1.0, and Wavelet transform plot.
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x() | | X(n)

Fig. 1.2.6. A Two-channel PU filter bank.

Let G,(2) and H,(2) have impulse responses gy;(n) and hs(n) respectively. All constructions are
based on obtaining the wavelet 1(t) and an auxiliary function ¢(t) called the scaling function, from

the impulse response sequences g,(n) and hs(n), using time domain recursions of the form

$t)=2 Y gu(n)p2t—n), YA =2 D he(n)p(2t—n), (1.2.8)

n=—oo n=—oo

called dilation equations. In the frequency domain we have
B(w) = Go(e?/?)®(w/2), T(w)= H,(e"/?)®(w/2). (1.2.9)

It turns out that if {G,(z), Hs(z)} is a paraunitary pair with further mild conditions (e.g., that the
lowpass filter G,(e?*) has a zero at m and no zeros in [0, 7/3]), the recursions can be solved to obtain
¥(t) which gives rise to an orthonormal wavelet basis {2¥/2¢(2¥t — n)} for L?. By constraining
G,(€’“) to have a sufficient number of zeros at m, we can further control the Holder index (or
regularity) of (t). The recursions (1.2.8) are also called the two-scale equations. These have origin

in the beautiful theory of multiresolution for L? spaces [Mey85], [Mal89].

The Idea of Multiresolution

Before giving a more formal definition, let us first review Ex. 1.2.1. Assume for simplicity the
wavelets are ideal bandpass functions as in Ex. 1.2.1. The bandpass filters Fy(w) = 27%/2¥(w/2¥)
get narrower and narrower as k decreases (i.e., as k becomes more and more negative). Instead of
letting & be negative, suppose we keep only ¥ > 0 and include a lowpass filter $(w) to cover the
low frequency region. Imagine for a moment that ®(w) is an ideal lowpass filter with cutoff +7 (see
Fig. 1.2.7). Then we can represent any L? function F(w) with support restricted to £ in the form
Fw) = Yoo _oan®(w)e 9", This is simply the Fourier series expansion of F(w) in [~m,7]. In

the time domain this means
o0

f&)= Y ang(t—n). (1.2.10)

n=—oo



13

Let us denote by Vp the closure of the span of {¢(t —n)}. Thus, V; is the class of L? signals that are
bandlimited to [—w, 7). We know that ¢(t) is the sinc function, and the shifted functions {¢(t — n)}
form an orthonormal basis for Vp.

Consider now the subspace Wy C L? of bandpass functions bandlimited to 7 < |w| < 27. The
bandpass sampling theorem allows us to reconstruct such a bandpass signal g(t) from its samples
g(n) by using the ideal filter ¥(w). Denoting the impulse response of ¥(w) by ¥(t), we see that
{¥(t —n)} spans Wy. It can be verified that {¢(t —n)} is an orthonormal basis for Wy. Moreover,
since ¥(w) and ®(w) do not overlap, it follows from Parseval’s theorem that Wy is orthogonal to Vj.

Next consider the space of all signals of the form f(t)+ g(t) where f(t) € V5 and g(t) € Wy. This
space is called the direct sum (or orthogonal sum) of V5 and Wy, and is denoted as V; = Vo & Wo. It
is the space of all L? signals bandlimited to [—27, 27]. We can continue in this manner and define the
spaces Vi and Wy, for all k. Then V} is the space of all L? signals bandlimited to [—2*, 2¥7]. And
Wi is the space of L? functions bandlimited to 2*7 < |w| < 2%¥*17. The general recursive relation
is Vg+1 = Vi ® Wy, Fig. 1.2.7 demonstrates this for the case where the filters are ideal bandpass.

Only the positive half of the frequency axis is shown for simplicity.

V;
Vi
Vv, |
o
Vo | W,
ol Wl w, W,
0 T 2r 4 8t ®

Fig. 1.2.7. Towards multiresolution analysis... The spaces {Vj}

and {W;} spanned by various filter responses.

It is clear that we could imagine V} itself to be composed of subspaces V_; and W_;. Thus
Vo=V_1®W_q, V1 =V_o & W_,, and so forth. In this way we have defined a sequence of spaces

{Vx} and {W;} for all integers k such that the following conditions are true:
Vi1 =V @ Wy, and Wir L Wy, k#m, (1.2.11)

where | means “orthogonal.” That is, the functions in W} are orthogonal to those in W,,. It is
clear that Vi C Vj41.

Now, the interesting fact is that even if the ideal filters ®(w) and V(w) are replaced with non
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tdeal approzimations, we can sometimes define sequences of subspaces Vi and W}, satisfying the above
conditions. The importance of this observation is this: whenever ¥{w) and ®(w) are such that we
can construct such a subspace structure, the impulse response (t) of the filter ¥(w) can be used
to generate an orthonormal wavelet basis! While this might seem too complicated and roundabout,
the construction of the function ¢(t) is quite simple and elegant and simplifies the construction of

orthonormal wavelet bases.

Definition 1.2.1. Multiresolution analysis. Consider a sequence of closed subspaces {Vi} in

L2, satisfying the following six properties.

1. Ladder property. ...V.ocV_iCcVoCWViCVW,...
[o <]
2. ) Ve={0}
k=—o0

oo
3. Closure of U Vi is equal to L2,

k=—00

4. Scaling property. z(t) € Vi if and only if z(2t) € Vi+1. Since this implies “z(t) € V; if and only
if z(2¥t) € V,”, all the spaces V; are scaled versions of the space V. For k£ > 0, Vj is a finer

space than V.

5. Translation invariance. If z(t) € Vp then z(t — n) € Vp; that is, the space V; is invariant to
translations by integers. By the previous property this means that V} is invariant to translations
by 27 *n.

6. Special orthonormal basis. There exists a function ¢(t) € V; such that the integer shifted ver-
sions {¢(t—n)} form an orthonormal basis for Vy. By property 4 this means that {2%/2¢(2%t—n)}
is an orthonormal basis for V. The function ¢(t) is called the scaling function of multiresolution

analysis.

Example 1.2.4. The Haar Multiresolution. A simple example of multiresolution where ®(w)
is not ideal lowpass is the Haar multiresolution, generated by the function ¢(t) in Fig. 1.2.8(a) (see
Ex. 1.2.2). Here V} is the space of all functions that are piecewise constants on intervals of the form
[n,n 4 1]. We will see later that the function ¥(t) associated with this example is as in Fig. 1.2.8(b);
the space W, is spanned by {y¢(t — n)}. The space Vj contains functions which are constants in
[27%n,27%(n + 1)]. Fig. 1.2.8(c) and (d) show examples of functions belonging to V; and V;. For
this example, the six properties in the definition of multiresolution are particularly clear (except

perhaps property 3, which can be proved too).
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O(t) the scaling function
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Fig. 1.2.8. The Haar multiresolution example. (a) The scaling function ¢(t) that
generates multiresolution, (b) the function (t) which generates Wo,

(c) example of a member of V; and (d) example of a member of V;.

Generating Wavelet and Multiresolution Coefficients From Paraunitary Filter Banks

Recall that the subspaces V, and Wy have the orthonormal bases {¢(t —n)} and {4/(t — n)} respec-
tively. By the scaling property, the subspace Vi has the orthonormal basis {¢xn(t)}, and similarly
the subspace W}, has the orthonormal basis {1k (t)}, where, as usual, ¢x,(t) = 2F/2¢(2%¢ — n) and
Yrn(t) = 28/24h(2Ft —n). The orthogonal projections of a signal z(t) € L? onto Vi and Wy, are given,
respectively, by

[e<]

[o <]
Plz®) = ) <f'3(t),¢kn (t)>¢kn ®, and  Qilz(®)]= ) <$(t),¢'kn (t)>1/1kn(t)-
n=—oo n=-—oo
(1.2.12)
Denote the scale-k projection coefficients as di(n) = (z(t), dxn(t)) and cp(n) = (x(t), Yrn(t)) for
simplicity. (The notation cx, was used in earlier subsections, but ci(n) is convenient for the present

discussion). We say that di(n) are the multiresolution coefficients at scale k, and cx(n) are the

wavelet coefficients at scale k.
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Assume that the projection coefficients di(n) are known for some scale, say k = 0. We will
then show that dx(n) and cx(n) for the coarser scales, i.e., kK = —1,—2,... can be generated by
using a paraunitary analysis filter bank {G,(e?“), H,(e’“)} corresponding to the synthesis bank
{G,(e9%), Hy(e?“)}. We know that ¢(t) and 4(t) satisfy the dilation equations (1.2.8). By sub-
stituting the dilation equations into the right-hand sides of ¢yn(t) = 2¥/24(2%t — n) and Yn(t) =
2k/24h(2Ft — n), we obtain

[> o] o0
¢kn(t) = \/5 Z gs(m - 2n)¢k+1,m(t)’ and ¢kn(t) = \/5 Z hs(m - 2n)¢k+l,m(t)-
m=—00 m=—00
(1.2.13)
A computation of the inner products di(n) = (z(t), gxn (t)) and cx(n) = (z(t), Ykn(t)) then yields

di(n) = Y V2ga(2n — m)des1 (m),
o (1.2.14)
() = Y, V2ha(2n —m)disa(m),

where g,(n) = g(—n) and h,(n) = h%(—n) are the analysis filters in the paraunitary filter bank.
The beauty of these equations is that they look like discrete time convolutions! Thus, if dxy; (n)
is convolved with the impulse response v/2g,(n) and the output decimated by two, the result is the
sequence dg(n). A similar statement follows for cx(n). Because of the perfect reconstruction property
of the two channel system (Fig. 1.2.6), it follows that we can reconstruct the projection coefficients

di+1(n) from the projection coefficients di.(n) and cx(n).

d_ 1 (n) (i_/z(n)
/ . .
do® Zam) [l T em i o = MO
V2h, (n) V2h, (n) V2h, (n)
.Y .y .
2 ) 2
v L b Wavel
' ] ! avelet
E C'l(n) i C'Z(n) i ! (@) 6cocfﬁcicnts
scale 0 scale -1 : scale -2 : scale -3

Fig. 1.2.9. Tree structured analysis bank generating wavelet coefficients

cx(n) and multiresolution coefficients dy(n) recursively.

The Fast Wavelet Transform (FWT). Repeated application of this idea results in Fig. 1.2.9
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which is a tree structured paraunitary filter bank with analysis filters v/2g,(n) and v/2h,(n) at each
stage. Thus, given the projection coefficients dy(n) for V5, we can compute the projection coefficients

dr(n) and ci(n) for the coarser spaces V_i, W_1,V_y, W_s, ... This scheme is sometimes referred to

as the Fast Wavelet Transform (FWT).
1.3 Thesis overview

The thesis is organized into five chapters. Chapters 2-4 provide the main body of the thesis. They
deal with three problems in filter banks and wavelets. The final chapter contains possible directions
for future research, open problems and concluding remarks. The rest of this section gives a brief

description of Chapters 2-4.

Chapter 2: Results on biorthogonal filter banks

In Chapter 2, we analyze properties of nonuniform maximally decimated filter banks. Even the
most trivial problems in uniform filter banks are rather difficult and often impossible to solve in the
case of unequal decimation ratios. For example, given a set of decimation ratios, in general, we do
not know if there exist rational filters satisfying PR. So we take one step at a time, and first we
establish equivalence between PR and biorthogonality. Then, an existence question is answered. If
it is known that there are rational biorthogonal filters satisfying PR, we show that there are rational
orthonormal filters satisfying PR. The proof is constructive, and we show how to obtain orthonormal
filters. However, stability cannot be guaranteed for the causal realizations of filters obtained this
way. Next, we give a set of necessary conditions that decimation ratios have to satisfy in order for a
rational PR filter bank to exist. Finally, we use techniques developed in the first part to show how
to construct filter banks which decorrelate subband signals. These results were reported in [Djo94].
The main results of the chapter are:
1) Equivalence of PR and biorthogonality of filters is established.
2) An orthonormalization technique for nonuniform maximally decimated PR filter banks is de-
rived.
3) A set of necessary conditions on the decimation ratios for existence of rational PR filter banks
is derived.
4) A procedure for constructing filters which produce uncorrelated subband signals is derived, for

the case of uniform filter banks.

Chapter 3: Statistical wavelet and filter bank optimization
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Wavelet transform is a generic term for an infinite number of transformations. The choice of a par-
ticular transform depends of the choice of the scaling function (in the case of orthonormal wavelets).
It is clear that some wavelet functions are more suitable for a particular task than others. Therefore,
if we have some knowledge about the signal, or the class of signals we want to analyze with wavelets,
we would like to know how to choose the scaling function. In the deterministic case, the problem
had already been analyzed. In this chapter, we find optimal scaling functions for analysis of WSS
random processes.

Because of the intimate relation between wavelets and filter banks, there is a corresponding
problem in the filter bank theory. Subband coders achieve compression by exploiting unequal energy
distribution across the subband. Therefore, it is important that a filter bank has good energy
compaction capabilities. The performance of a filter bank to perform energy compaction is expressed
in terms of its coding gain. The aim is to optimize filters in the filter bank to give a higher coding
gain for a particular input WSS random process [Djo94a]. We show that by putting just one pre-
and one post-filter, the coding gain of any PU filter bank can be significantly improved.

For a successful implementation of the MRA, one has to know the approximation of a signal
at the finest scale. This is done approximately. In the deterministic case, it had been shown that a
simple FIR pre-filter can reduce the approximation error significantly. We extend this to the case of
WSS random processes.

The main results of the chapter are:

1) Derivation of the objective function for finding an optimal scaling function.
2) Extension of the pre-filtering technique in MRA approximations to the case of WSS random
processes.

3) Optimization of PR filter banks for higher coding gain.
Chapter 4: Generalized sampling in multiresolution subspaces

One of the fascinating features of the MRA is the fact that a number of well known theories can be
embedded in its framework. One such example is the sampling theory for band-limited functions.
It turns out that band-limited functions form a MRA of L?(R). The sampling theory for band-
limited functions is rather deep and a proper treatment of the problem uses analytic functions,
Fourier transform, Reproducing Kernel Hilbert Spaces (RKHS), etc. The notion of RKHS is very
useful for the development of sampling theorems. Many spaces allowing sampling theorems have

been constructed using the RKHS theory. An important feature of MRA spaces is that under very
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mild conditions they are RKHS, and sampling theory can be developed. In the fourth chapter, we

develop sampling theory for MRA spaces when the sampling grid is periodically nonuniform. This

is an extension of the existing uniform sampling theorems. This generalization allows us to have

compactly supported synthesis functions, which was not possible previously. Several variations of

the basic result are derived. For example, derivative and multi-band samplings are considered, as

well as some other extensions. We show how these sampling theorems can be used for efficient

computations of inner products in multiresolution analysis [Djo94b].

The main results of the chapter are:

1) Extension of the existing sampling theorems to periodically nonuniform grids.

2) Construction of sampling schemes in which synthesis functions are compactly supported.

3) Various extensions of the basic idea.

4) Application of sampling theorems in efficient computation of inner products in MRA.

1.4. General conventions and notations

NS o e

10.

. R and Z denote the set of real and integer numbers respectively.
. R(z) and (z) are real and imaginary parts of z.

. L?(I) are spaces of functions whose p** power is absolutely integrable over the interval I C R.

We say that f € L7 if for any finite I C R, we have that f € LP(I) and the norm is

loc
1 llo.r = (J; 1f (2)Pdz) .
In all the integrals, the limits of integration are (—oo, 00) unless it is explicitly indicated.
The Fourier transform operation and its inverse are denoted by F and F~! respectively.
tr A denotes the trace of A.
The quantities AT and AT stand for transposition and transpose conjugation of the matrix A.
The notation fI(z) = HT(I /z*). Thus H(z) = Hi (z) on the unit circle.
Wn = e~27/N_ The subscript N is omitted whenever it is clear from the context. W is the

N x N DFT matrix. It has elements [W]p, = WT". Note that WIW = NI

. The AC (alias-component) matrix for analysis filters (defined for uniform M-channel filter

banks) is the one with components [H(z)]mn = Hn(2W™). For the synthesis filters we define a
similar matrix: [F(2)lmn = Fp(zW™).
A delay chain is a single input multi output system, with transfer function matrix given by

e(z)=[1 271 ... z=M+1|T
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The M-fold decimator has input-output relation y(n) = x(n)lM = z(Mn), or in the z-domain

M-1
Y(2) = X(2) I, = % 3 X (M Mwiy). (1.4.1)
=0

z(n/M), n=mul. of M

The M-fold expander’s input-output relation is y(n) = m(n)TM = { 0 otherwise

or in the z-domain Y(z) = X(z) t,,= X (™).

The so-called noble identity for multirate systems [Vai93] can be stated, for our purpose, as

(A(z"”)B(z)) an = (A(z) (B(z)) Jm) Lm. (1.4.2)

We say that H(z) has the Nyquist(M) property if (H(2))| = 1.

follows

If f(t) is a random process, its autocorrelation function is defined as

rss(t,7) = E[f () f*(t — 7)), (1.4.3)

where E[:] denotes the statistical expectation and * denotes complex conjugation. When this
autocorrelation function and the mean E[f(t)] do not depend on ¢, we say that it is a wide sense
stationary (WSS) random process. In that case, we define its power spectrum as the Fourier

transform of Ry¢(1) = r44(0,7)

S17(w) = F (Rys(r)) = / Rys(r)e=9*" dr. (14.4)

When 74£(t,7) is a periodic function of ¢t with period 7' (and if the same is true for the mean),
we say that it is a cyclo-wide sense stationary random process (CWSS)r [Pap65]. Then one
usually defines the autocorrelation function of this (CWSS)r process as the time average

T/2

Rys(r) = / T T (1.4.5)

Now the power spectrum of a (CWSS)r signal is the Fourier transform of Ryf(7). Similar

definitions are used for discrete time signals.
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Results on Biorthogonal
Filter Banks

2.1. Introduction

Xo(N)
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Fig. 2.1.1. (a) A nonuniform filter bank and (b) an equivalent uniform bank.

Fig. 2.1.1(a) shows an M-channel filter bank with integer decimation ratios n. The input signal z(n)
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is split into M signals which are passed through the analysis filters Ho(2), H1(2), ..., Hm-1(2) and
decimated by ny, (integers) for k = 0,1,..., M — 1. At the synthesis end, these signals are expanded,
passed through synthesis filters Fy(z), F1(2),- .., Fpm—1(z) and added. When #(n) = cz(n — no),
this system achieves perfect reconstruction (PR). In this thesis the PR property corresponds only
to £(n) = z(n), as this eliminates some inconvenient notations without much loss of generality.
When ), 1/ni = 1, we have a maximally decimated filter bank. A special case is whenng = M
for all k. We call it the uniform filter bank. Every nonuniform maximally decimated filter bank
can be equivalently represented by a “larger” uniform filter bank as in Fig. 2.1.1(b) (see [Hoa89),
[Kov91] and [Nay93]). The theory of uniform filter banks is well developed and such a system is

shown in Fig. 2.1.2(a). The analysis and synthesis filters can be expressed in polyphase form as
M-1 M-1
H;(z) = Z 2 *Eip(z™) and Fi(z) = Z 2P Rei(2M). (2.1.1)
k=0 k=0

With each filter represented like this, the system can be drawn as in Fig. 2.1.2(b) where E(z) and
R(z) are, respectively, the polyphase matrices of the analysis and synthesis banks. This system
has the PR property Z(n) = z(n) if and only if R(z) = E~!(z). There are different ways to design
a uniform filter bank that achieves PR, so the existence of rational filters (i.e., transfer functions
which are ratios of two polynomials) satisfying the PR property is trivially guaranteed. But in
the nonuniform case, it is not always possible to achieve PR with rational filters [Hoa89] (block
decimation [Nay93] is not considered in this chapter). Notice, however, that ideal filters (nonrational,
with possibly complex impulse response) can always be found such that the PR property holds for any
set {ny} satisfying 3~ 1/nr = 1. So, whenever we discuss existence of PR systems, the discussion
pertains only to rational filters.

A set of necessary and sufficient conditions on the set {ny} for PR to be possible is not known.
On the other hand, we know some sufficient conditions. If the numbers {n;} are coming from a
tree structure, for example, then we can have PR with rational filters [Som93a], [Smi86]. Not all
decimation ratios allowing PR allow it with a tree structure. TFor example consider M = 23 and

the set

{6,10,15,30,...,30}.

20 times

This set satisfies Ziio 1/ny = 1. The filters that achieve PR are H;(z) = Fy(z) = z7% where the
set of I’s is {0,1,2,3,4,5,7,8,9,10,13, 14,15, 16, 19, 20, 22, 23, 25, 26, 27, 28, 29}. For this, note that

T The authors would like to thank Tsuhan Chen for pointing out this example.
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the output of the i** decimator is z(mn; — [;). We want every input sample to go through one and
only one branch, which is equivalent to saying that mn; —I; # kn; —l; for i # j and any choice of
m and k. On the other hand, since ged(ng,ny,...,n92) = 1, these numbers cannot come from a tree
structure (if there were a tree, the decimation ratio at the first level of the tree would be a factor of
this ged). Because of such possibilities, we will not assume that {n;}’s come from a tree. Before we

discuss these issues in greater detail, let us explain some conventions and definitions in this chapter.

x(n) Xp(n) (n)
i——-_».——l—_—»«-Ho(z) M (n) | Fo(z) |1
X1 4

/
[ -~ @

) | . (R2 [ . 17

delay chain advance chain
Fig. 2.1.2. (a) A uniform filter bank and (b) its polyphase decomposition.

All our signals are in I, space (i.e., finite energy signals). The inner product is defined as

oo

<z(n),y(n) >= Y z(n)y*(n),

n=—oo

and the norm ||z(n)||; will be defined according to ||z(n)||3 =< z(n),z(n) > .

Biorthogonality and Orthonormality

Definition 2.1.1. A system of sequences {h;(n — mn;), fi(n — kn;)}, 0 < i,l < M — 1 for all

m,k € 2 is called a biorthogonal system if
< hi(n —mn;), ff(—n+ kny) >=6(i — 1)é(k — m) (biorthogonality). (2.1.2)

&



24

In the special case of orthonormal filter banks, the perfect reconstruction property is achieved by

setting fi(n) = hj(—n). In this case, the biorthogonality reduces to
< hi(n —mn;), hi(n — kny) >= 6(t — 1)é(k — m) (orthonormality). (2.1.3)

If the above equation holds for some 3 and I, we often say that “the two filters H;(z) and He(z) are
orthonormal.” It should be borne in mind that the actual meaning depends on n; and n;. The set

{fi(n —n;k)}M 51 Vk will be referred to as a filter bank-like system.

A question of interest in nonuniform filter bank theory is the following: suppose the integers
{nx}25} are such that a biorthogonal PR system (with biorthogonal, rational filters) exists. Does
it mean that an orthonormal PR system also exists? (Again, for the uniform case, the existence is
trivially guaranteed simply by constraining E(z) to be paraunitary.) We will show by construction
that for a given set of integer decimation ratios {nk}ﬁ";l, the existence of biorthogonal systems
implies the existence of orthonormal PR systems as well (Sec. 2.3).

The procedure to convert the biorthogonal system to an orthonormal one is reminiscent of the
Gram-Schmidt (GS) procedure, but is not the same for a variety of reasons. First, the orthonor-
malization of the basis is required to preserve the filter bank-like form of the basis; a conventional
GS procedure would not give us this. Furthermore, using z-domain analysis and the special form of
our system, we will be able to do the orthonormalization process in a finite number of steps (even
though I, is an infinite dimensional space). This is another point of departure from the traditional
GS technique.

At this point, the reader should be warned that this orthonormalization procedure is mostly of
theoretical importance. The filters resulting from the orthonormalization not only are IIR in general,
but also have huge orders; the proposed orthonormalization is not an alternative design technique
for filter banks (after all we do not have biorthogonal filters to start the orthonormalization process).
For the purpose of subband coding, there exists a simple scheme to generate inexpensive orthonormal
filter banks, based on the so-called power symmetric filters (pp. 204 [Vai93]). These can also be

used in a tree structure to obtain a subclass of nonuniform IIR orthonormal systems.

2.1.1. Chapter outline

In Sec. 2.2 we discuss the detailed reasons why biorthogonality and perfect reconstruction (PR)

are identical concepts for mazimally decimated filter bankst. Several corollaries of this result are

t A brief sketch of some of the results has been presented in [Djo93].
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derived in Sec. 2.2.2. For example, we show that for PR to be possible, no two decimation ratios
can be relatively prime. We also show that if a perfect reconstruction system is such that all the
analysis and synthesis filters have unit energy, then the system becomes orthonormal (paraunitary
in the uniform case). We also show that the shifted filter responses form a Riesz basis for l; space.

In Sec. 2.3 we show that whenever the decimation ratios {n;} of a maximally decimated system
are such that perfect reconstruction is possible (i.e., such that there exist biorthogonal filters), then
in particular, there exists an orthonormal filter bank. The proof is constructive, that is, given a
set of biorthogonal filters we show how to find a set of orthonormal filters starting from these.
Numerical examples are included. In general, the resulting orthonormal filters turn out to be IIR
even if we start with an FIR biorthogonal system. However, the IIR filters are guaranteed to be free
from poles on the unit circle. This means that, should they turn out to be unstable, a non-causal
implementation can be found which is stable [Opp89], [Ram88].

In Sec. 2.4 we use the techniques of Sec. 2.3 to decorrelate the subband signals. Unlike the
KLT, this decorrelation is for all time instants.

In Sec. 2.5 we derive some further necessary conditions on the decimation ratios {n } for perfect
reconstructability. These can be regarded as generalizations of the compatibility condition given in
[Hoa89] and [pp. 285 of Vai93]. Some of the technical details which arise in the proofs have been

moved to the Appendices (A—C) to provide a smoother reading.

2.1.2. Chapter—specific notations and conventions

Throughout the chapter, we will use the following notations. Integer M denotes the number of
channels of the nonuniform system (Fig. 2.1.1(a)). The integer L = lem (ng,7n1,...npm—1). Also,

gij = ged (ni,nj) throughout the chapter. The integers {k;} are numbers that satisfy

L= ko’no = k1n1 == kM._l’nM_]_. (2.1.4)

2.2. Equivalence of biorthogonality and PR property

For the study and design of uniform filter banks, there exist powerful tools such as the polyphase
formulation and the AC matrix formulation. In order to use them in a nonuniform filter bank, we
have to transform it into the equivalent uniform one [Hoa89], [Kov91]. This is shown in Fig. 2.1.1(b).

There are L branches (where L is the lcm of {n;}), and each of them has the same decimation ratio.
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The analysis filters are numbered as

So(z), S1 (Z), ey Sko_l(z), Sko (Z), ey (221)

and similarly for the synthesis filters Q;(z). Thus the analysis and synthesis filters are

Si(2) = 2™ Hy(2), Qr(z) = 27" Fp(2), (2.2.2)
where
-1 m—1
i=p+Y ki, 0<p<k-1, k=r+) kj, 0<r<kn—1L (2.2.3)

Here k; = L/n; and its meaning is clear; we just made k; delayed filters from each original filter
H;i(z), i.e., each new filter comes from one of M original filters. The biorthogonality (2.1.2) can be

rewritten as [Som93a]
Zhi(n)fz(mgiz —-n)=6(Gi-06(m), 0<i,l<M-1, meZ  (biorthogonality), (2.2.4)
n

where g;; =ged(n;,n;). This infinite set of conditions can be compactly written as a finite set of
conditions in the z-domain

(H,(z)Fl(z))l =6(i-1), 0<il<M-1 (biorthogonality). (2.2.5)

gil

Again, if Fi(z) = ﬁi(z), then the above property is called the orthonormal property and can be
written as

(H,-(z)ﬁ,(z)) lg —=6@i—1) (orthonormality). (2.2.6)

In this section, we will show that the most general form of PR for a maximally decimated filter
bank is a Riesz basis for [y space, formed by the analysis and synthesis filters. This issue has come
up in earlier work, but has not been shown or proved this way. The relation between filter banks
and wavelets and the role of orthonormality has been discussed in [Vet92], [Rio91], [Gop92], [Dau92]

and [Som93a]. This will be followed by the derivation of a number of corollaries.

2.2.1. PR implies biorthogonality of analysis and synthesis filters

Theorem 2.2.1. Let the system in Fig. 2.1.1(a) be a maximally decimated filter bank with

1

decimation ratios {ng};_o . If the filter bank has the perfect reconstruction property, the filters

form a biorthogonal system; that is they satisfy (2.2.5).
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Remarks.
1. This is a fairly subtle fact, holding only because of mazimal decimation. For example, consider
a two-channel undecimated system with filters Ho(2) = 1+ 271, Hi(z) = 1 — 271, Fo(2) =
Fi(z) = 1/2. Then we have PR, but not biorthogonality.

2. The converse of the above theorem also holds; see Appendix 2.B of [Vai93a].

Proof. Let S;(z) and Qx(z) be analysis and synthesis filters of the equivalent uniform filter bank.
They are related to H;(z) and Fy,(2) as in (2.2.2) and (2.2.3) (see Fig. 2.1.1(b)). Let S(z) denote
the AC matrix of the above analysis bank S;(z); that is [S(2)]mn = Sn(zW™) (Sec. 2.1.2), and let

E(z) be the corresponding polyphase matrix. These are related as [Vai93, pp. 234]
S(z) = WHA(2)ET (1), (2.2.7)

where A(z) = diag(1,z71,...,2z=(E=1). Similarly for the synthesis bank define Q(z) such that
[Q(2)]mn = Qn(zW™), and let R(z) be the polyphase matrix as defined in Sec. 2.1 We have

Q(z) = WA I(2)R(zh). (2.2.8)
Then -
——e
S(2)Q7(2) = WIA(z) (R(5)E(Y)T A ()W = WiW = L1 (2.2.9)

This is because R(z)E(z) = I, due to PR property. So we get [since S(z) and Q(z) are square
matrices]

Q(2)ST(z) = S(2)Q%(z) = LL. (2.2.10)

Notice that without the assumption of maximal decimation, the matrix A(z) would not be square,
A~'(2) would not exist and we would not have S7(2)Q(z) = Q(z)ST(z) = LI (which is an important
step in the proof!).
The condition ST(z)Q(z) = LI implies, in view of the definitions of S(z), Q(z) and (1.4.1),
that
(Si(2)Qu(2)) |, = 6 — k). (2.2.11)
Now suppose that i, k are such that [ # m in (2.2.3), i.e., that S;(2) and Q4(z) do not come from

the same original branch. Then (2.2.11) can be written as

(z”""’"'"Hl(z)Fm(z)> l =0, (2.2.12)

L



28

for0<p<ki—1and 0<r <k, —1. With
= bimGim and N = biniGim, (2.2.13)
where g;,n, =gcd(ny, ny, ), this becomes
(z("b"""'b"")g‘"‘Hl(z)Fm(z)) lL =0. (2.2.14)
By multiplying (2.2.14) by 2¢ and using L = kN = kmbmigmi, we get

24 ((z(pbz,,.-—rbm;)ggm H, (Z)Fm (Z)) 1L> — (Z(pblm—Tbml+dkmbml)glm Hl(z)Fm(z)) lL =0,Vde Z.
(2.2.15)
It is shown in Appendix 2.A that (pbiym — Tbm; + dkmbm;) can take any integer value a, under the

conditions 0 < p< k —-1,0<r<k,,—1,and d € Z. Then

kibimgim

(zayth,(z)Fm(z)> l = (Za ((H,(z)Fm(z)) lg,m>> lk,b,m -0 VaecZzZ. (2216

Since this holds for all integers a, we can rewrite it as

(H,(z)Fm(z)) le =0. (2.2.17)

Let now S;(z) and Qx(z) come from the same branch, i.e., I = m. Then (2.2.11) means

(Z(p_")""‘Hm(z)Fm(z)) lL = (Z(P—r) ((Hm(z)Fm(z))j )) l =6(p—r). (2.2.18)

km

Now p — r can reach any integer in [—k., + 1, k;y, — 1], so that the last equation is equivalent to
(Hm(2)Fn(2)) |, =1. (2.2.19)

Together with (2.2.17), this implies biorthogonality (2.2.5).

2.2.2. Corollaries

Corollary 2.2.1. No two decimators can be coprime.

If any two n;’s are relatively prime, then their ged is 1 and we cannot satisfy the conditions for PR
with rational filters. This is because (2.2.5) now implies H;(z)F,(z) = 0 for | # m and this cannot

be satisfied with rational filters.
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Corollary 2.2.2. Completeness.

Definition 2.2.1. A set of vectors {x;}32, in an infinite-dimensional Hilbert space is said to be
complete if the zero vector is the only vector orthogonal to all of x;’s (pp. 6. [You80]).

¢

Assuming that the filter bank has the perfect reconstruction property, the completeness of the

filter bank follows immediately. To see this, let us write the reconstructed signal

M-1 oo ) M-1
zn)=>. 3 3 hink—m)z(m)filn—nik) = Y Y (a(—m), ki (m + nik)) fi(n — nik).
i=0 k=—oo0 m=—c0 =0 k

(2.2.20)
Assume there is a nonzero input z(n) such that z(—n) is orthogonal to all the analysis filters and
their n;-shifted versions. Then the above sum would be zero and the system would not be a PR
system. Similar conclusion can be made for the synthesis filters if we interchange the analysis and

synthesis filters (because PR is not violated by such an interchange).

Corollary 2.2.3. Linear independence.

Definition 2.2.2. A set of vectors 7 (n) = {fi(n — n:k)}5?, k € Z in an infinite-dimensional

Hilbert space is said to be linearly independent (or minimal) if none of 77k (n)’s lie in the closure of
the linear span of {mm(n)}i2s' m # K for I = J (see pp. 28. [You80] for the Banach space case).

¢

Since the synthesis filters form a biorthogonal system, it can be proved [You80] that the set of

sequences 7;x (n) is linearly independent. We will often say “filters Fj(z) and F;(z) are linearly inde-

pendent,” meaning that the corresponding time sequences and their shifts are linearly independent

in the above sense.

Corollary 2.2.4. Basis property.

In an infinite dimensional Hilbert space, completeness and independence of a set of vectors is not
sufficient to conclude that these vectors form a Riesz basis!. However, by using the further assump-
tion that the synthesis and analysis filters are stable (i.e., Y, |hi(n)| < oo and }_,, |fi(n)| < oo or
F;(e#), H;(e’*) exist and are upper bounded by a finite constant), we show that {f;(n —mn;)} 5"

and {h;(n — mn,-)}?ial V m € Z are bases for I, space. For this, we will invoke Theorem 9, p. 32,

[You80]. Since completeness and linear independence have been established earlier, it is sufficient,

T For the definition of a Riesz or unconditional basis, see [You80] p. 31. or [Chu92] p. 71.
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according to the above theorem, to show that 30 < C1,Cy < oo such that

M-1 M-1
3 Y i< am), frmni—n) > P < Cillz|l} and Y D | < z(n), hi(mn; —n) > |* < Coll|f3.
i=0 m i=0 m
(2.2.21)
In this discussion, all summations are from —o0 to oo unless indicated differently. Thus
M-1 M-1 , M-1
Y Y <am), frmni—n)>P=)" ) ] Y z(n) fi(mn —n)| =3 Y la(m)P, (2.2.22)
=0 m i=0 m n =0 m

where z;(n) is the n;-fold decimation of the convolution z(n) * f;(n). Using Parseval’s relation the
above can be rewritten as
M-1 oo M-1 1 2 )
S 3 I<a), flmni-n) > = 3 o [ 12 P
i=0 m=—oo =0 0
M-1 1 2 M-1 ] 9
< Z —/ |X(e"")Fi(eJ“’)|2dw < ||z(n)||2 max |Fy(e’)|” < C||lz(n)||3. (2.2.23)
= 2r Jo =5 welo.2n]
The first inequality follows because the energy of a decimated sequence is no greater than that of the
undecimated version. The proof for the analysis filters is similar. So, we really have a biorthogonal

basis formed by the set of n;-shifted versions of the synthesis and analysis filters.

Corollary 2.2.5. Unit energy implies orthonormality!

Consider the maximally decimated system [Fig. 2.1.1(a)]. Suppose the following two properties are

satisfied:

1. Perfect reconstruction property, and
2. All analysis and synthesis filters have unit energy, i.e., ., |hi(n)|> = ¥, |fi(n)]> = 1, for
0<i<M-1.
Then the synthesis filters satisfy orthonormality. In other words, eqn. (2.2.6) holds. To prove this,
note that the perfect reconstruction property implies biorthogonality (Theorem 2.2.1.), so that, in

particular, - hi(n)fi(—n) = 1. Now, Cauchy-Schwarz inequality says

Y )P Y I 2 3 m fi-m)| (2.2.29)

The right-hand side is unity, by the biorthogonality. The left-hand side is also unity if the analysis
and synthesis filters have unit energy. But equality in Cauchy-Schwarz inequality implies h;(n) =
%% fr¥(—n) for some 6;. Substituting in (2.2.4) we readily conclude that §; = 0 and that the set of

synthesis filters (equivalently, the set of analysis filters) satisfies orthonormality.
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Corollary 2.2.6. Generalization of Nyquist and power complementary properties.

For uniform filter banks (n; = M for all ¢) it is well-known that if the system is orthonormal
(paraunitary), the filters H;(z) and F;(z) are spectral factors of Nyquist(M) filters (or Mth band
filters) [Vai93, pp. 297]. In the more general (nonuniform, and biorthogonal case), this property is
replaced with the property that H;(z)F;(z) is a Nyquist(n;) filter. We can readily see this from the
biorthogonality condition (2.2.5) (Hi(z)Fi(z)) L,. ~1.

Next, for the uniform paraunitary filter bank,' it is well known that the analysis filters are power

complementary, and so are the synthesis filters [Vai93, pp. 296). For the general case (nonuniform,

biorthogonal) we have

>~ HEFE) = 1, (2:2.25)

(see [Vai93a]) which reduces to the power complementary property >, Hi(2)Hi(z) = M in the

uniform paraunitary case.

2.3. Orthonormalization of biorthogonal filter banks

From the second section, we know that if the integers {nk}fc‘gl are such that PR is possible, the
analysis and synthesis filters (and their shifted versions) form a biorthogonal basis. Under this
condition, does there exist a PR system with orthonormal filters? The answer to this question is in
the affirmative; we will present an orthonormalization process which preserves the filter bank-like
form of the system {h;(n — mn;), fi(n — kn;)} for 0 <i,l < M —1 and m, k € Z. If one wants just
to orthonormalize some set of vectors, the Gram-Schmidt technique is one way of doing this, but we
want more, namely to preserve the filter bank-like form of the system. We now show how to achieve
this aim. Our procedure is reminiscent of the Gram-Schmidt technique, but it converges in a finite

number of steps even though the space has infinite dimension.

2.3.1. Normalization condition or Nyquist condition

Let Fy(z) be a rational transfer function. Define
G(2) = ar(2™ ) Fr(2). (2.3.1)
Then Gi(2)Gr(2) = ag(z™)@x (2™ ) Fi (2) Fy(2), so that

(ak(z"")&k(z"")Fk(z)f‘k(z)) l = g (2)@x(2) (Fk(z)ﬁk(z)) Lk. (2.3.2)

Nk
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Now if we choose ax(z) such that

1
(A@RE) |

ar(z)ax(z) = (2.3.3)
we get (Gk(z)ék(z)) lnk = 1. A function Gg(z) with this property will be called normalized.
This is different from the usual meaning of normalization of vectors in l;. In the time domain, the
above normalization condition means that the ny-shifted versions of g (n) (i.e., {gr(n —ing)}) form
an orthonormal set. Equivalently, Gi(z)Gx(2) is a Nyquist(ny) filter [Vai93, pp. 151]; that is its
impulse response coefficients h(n) satisfy h(ngi) = 0 for ¢ # 0.

The existence of ax(z) satisfying (2.3.3) is assured because of the following. We have
b 1 ~ l/m. 1 1/ng 1
= — . .34
(I‘k(Z)Fk(Z)) ln,, - EO k(2 W B (21 W) (2.34)

Since Fj (z)ﬁ;c (2) > 0 on the unit circle, each term in the above expression remains nonnegative.
Thus whenever Fj(z) is rational, the function (F;c (z)ﬁk(z)) J is rational and nonnegative on the
unit circle. Such functions can always be written as a productng(z)'d(z). The spectral factor a(z) (a
rational function, not unique) can be obtained by standard spectral factorization techniques. Now
take ax(z) = 1/a(z) and (2.3.3) is satisfied. The function a(z) can be chosen to have no poles
outside the unit circle (by choosing a(z) to have minimum phase), but what if a(z) has a zero on
the unit circle? Then ax(z) will have a pole on the unit circle! This potential instability will be
handled later on.

If two filters F;(z) and Fy(z) are orthogonal, will that property be preserved by the above

operation? Let G;(2) and Gi(z) be the normalized versions of F;(z) and F(z). Then

(6:@Gu(2) L, = aste™/om)au(z"/ow) (Fi@)Fi(2)) L, =0 (2.3.5)

=0

showing that orthogonality is preserved (notice that ng/gir and n;/gix are integers). Summarizing,
if we have a set of orthogonal filters {F;(z)}M5?, then the above normalization can be used to obtain

a set of orthonormal filters {Gi(z)}5".

2.3.2. Orthogonalization

Let {H(2), Fy (z)} 5! be a biorthogonal set of rational analysis and synthesis transfer functions

for a maximally decimated PR filter bank with decimation ratios {ni}i5'. We now describe a
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procedure to get a new set of rational transfer functions {Gj (z)}kl"fz?)1 which are mutually orthogonal,
i.e., satisfy

(Gk(z)é;(z)) 1 =0 fork,Il=0,1,...,M —1andk #1. (2.3.6)

gkl

We start by making Go(2) = Fo(z) and G1(z) orthogonal to Go(z). For this, let us look for G1(2)
of the form

Gl (Z) = F1 (Z) - ,301(2901)F0(Z). (237)

(G1 (z)@o(z)) lgm = 0 can be achieved if we set

(Fl (Z)%o(z)) 1901 . (238)
(Fo(2)Go(2)) g0

Clearly 8o1(z) is a rational transfer function. Then, G;(z) as in (2.3.7) remains a rational trans-

Bo1(2) =

fer function. This is how we start this orthogonalization process. Assume that we have made
Go(z),G1(2),...,Gs—1(2) orthogonal to each other in the sense of (2.3.6). In the s* step we want

to make G,(z) orthogonal to Go(z),G1(z),...,Gs—1(z). Assume G4(z) in the form

Gs(z) = Fy(z) — iﬂis(zg'i)Fi(z)- (2.3.9)
i=0

Let

L = g50Cs0 = §51Cs1 = *** = §g,5—1Cs,5—1- (2.3.10)

After expanding (3;,(z) into cs;-fold polyphase components, we get

Csi—1

Bis(2%%) = Y 2719 B (1), (2.3.11)

=0
80 G4(z) is of the form

8—1csi—1

Gi(2) =Fu(2) = Y D Bia(z")z79 Fi(2). (2.3.12)

i=0 1=0
We want to make G,(2) orthogonal to Gi(z) for £k =0,1,...,s — 1. In other words we want

8—1csi—1

(G,,(z)ék(z)) lm = (Fs(z)ék(z)) LM - ¥ (ﬂi,l(zl‘)z"g"Fi(z)ék(z)) 1 =0, (2313)

i=0 1=0 g
It is easily verified that (A(z2)) 4= 0 if and only if (z’"gA(z))lecy =0form=0,1,...,c—1.
Then, (2.3.13) can be written as

8—1cai—1

S5 Binlz) (zmg’k_lg"ﬂ(z)ék(z))lL = (zmoFy(2)Gi(2) ) L’ (2.3.14)

=0 [=0
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form=0,1,...,cqg—1and k =0,1,...,s—1. So we have Zf;& ¢y unknowns ;4 (2), and the same
number of linear equations. If the determinant of the system (which is a rational function of 2) is not
identically zero, we can solve the system of linear equations for ;5 (2)’s. If this is not the case, we
can keep decreasing the number of unknowns until we have a determinant that is not identically zero
(see Appendix 2.B). After solving it, we see that (3;,(z)’s are rational functions, so G,(z) will remain
a rational transfer function. Using the biorthogonal filter H,(z) and the time domain equivalent of
(2.3.9), one can show that the trivial solution G4(z) = 0 is excluded [(8is(29°¢)Fi(2)Hs(2)) In,= 0
for i = 0,1,...,5 — 1 and (Fs(2)H,(z)) dn,= 1, so that (G;(z)H,(2)) In,= 1 which implies that
G,(2) # 0]. At the end of this process, we have a new set of rational transfer functions {Gx(z)} ey

satisfying (2.3.6).

2.3.3. Stability

In this subsection we show that if the transfer functions resulting from the orthonormalization have
poles outside the unit circle, they can be moved inside, preserving the orthonormal and PR property.
We also show that in the process of orthogonalization and normalization described in Sec. 2.3.2 and
2.3.1, the poles will automatically be excluded from being on the unit circle.

First assume that after the orthonormalization we got {G} (2)}27' with some poles outside the
unit circle. For example, let 2o be a pole outside the unit circle. (1 — 27" 2z{*) has zeros at 20W},

for 0 < 1 < ng — 1. Define the product
Qr(z™) = (1 —z7™zg*)(1 — 27 ™20%) ... (2.3.15)

where zg, 21 ... are the poles of G} (z) outside the unit circle, and construct the allpass function

Qu(z™) (2.3.16)
Qr(zm)

This has all poles inside the unit circle. Now form a new set of functions as Gi(2) = (2™ )G} (2).

Y (2™) =

Then Gg(z) has no poles outside the unit circle. The new set satisfies orthogonality because, for
m # k,
(G@Gm(@)) | = (™)GL()Tm(z")Gn(2)) |
g

km Gkm
— g (27/96m )7, (m 9km) ( ;c(z)éim(z)) l —0. (2.3.17)
« gkml
-0
(Recall that ng/gkm and nm,/gkm are integers.) Normality is preserved too since
(G@G@) | =m@@ (Gi)G =) | =1. (2.3.18)
Ny R R nk‘

~~ ~~
=1 =1



35
So, we have shown how to replace the poles outside the unit circle with poles inside, without
destroying orthonormality.
Avoiding poles on the unit circle.

Let us repeat (2.3.9) below, but call it P,(z) for notational convenience.

8—1
Py(2) = Fy(2) = )_ Bia(27) Fi(2). (2.3.19)
i=0

This function, in general, can have both poles and zeros on the unit circle. First, assume that it hasa
pole of order r at z, = e/“». It will be shown that this will be canceled in the process of normalization.
Recall that the normalized function G,(z) is constructed according to G,(z) = a,(2"*)P,(z), where
1
P()P(2) |

It is shown in Appendix 2.C that if P,;(z) has a pole of order r on the unit circle, then a,(z"*)

(2.3.20)

as(2)as(z) = (

ns

defined as per (2.3.20) will have a zero of order at least r at the same point. This zero will cancel
out the pole of P,(z), so that the normalized G,(z) will not have any pole at that point. We see
that G,(z) cannot have any pole on the unit circle coming from P,(2).

The other possibility is that a,(z™*) itself has a pole on the unit circle, i.e., (P,(z)ﬁ,(z)) l
has a zero on the unit circle. Assume that a,(z™) has a pole of order r at 2o = €/“°, and hence a;

z2oWk , 0 <k <n, — 1. We have

1

(rere) ], )1,

From this equation we conclude that a,(z™) can have a pole of order r at some point, on the unit

a,(z™)a(z") = (2.3.21)

circle, if and only if ((P, (z)ﬁ, (z)) Ll) Tn has a zero of order 2r at that point. For this to happen
P,(z) must have zeros of order at least r a‘t z = ZoW,’f’ for k =0,1,...,n; — 1 (for the proof see
Appendix 2.C). These zeros will cancel with the above mentioned poles of a,(2™*) when G,(z) is
formed. From this we can conclude that G4(z) cannot have any poles on the unit circle. Together

with the fact that poles outside the unit circle can be moved inside, we conclude that the described

procedure leads to stable filters.

2.3.4. Numerical examples

Example 2.3.1. Uniform system. As an example of the above described procedure, we or-

thonormalized a uniform, four-channel filter bank. The filters that we started with were all FIR,
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linear-phase, obtained from a two-level tree of two-channel filter banks. Each filter in the two-channel
module has length 10 ([Ngu89]). The resulting orthonormal filters are IIR and their numerator de-
grees are 28, 44, 140, 380 and denominator degrees 25,41, 77,377 respectively. We see that the orders
of the filters increase rapidly as we proceed with the orthonormalization process. The magnitude
responses [see Fig. 2.3.1 (a) and (b)] are more or less the same before and after orthonormalization.
Most of the polynomial coefficients after orthonormalization are very small and can be discarded

without harming the frequency response, but it deteriorates the orthonormality property.
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Fig. 2.3.1. Example 2.3.1. Magnitude responses of analysis filters,

(a) before orthonormalization, (b) after orthonormalization.

Example 2.3.2. Nonuniform system. We orthonormalized a three-channel filter bank with
decimation ratios 4,4 and 2. The filters that we started with were all FIR with lengths 28,28

and 10. After the orthonormalization, we got IIR filters with numerator degrees 100,28, 10 and
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denominator degrees 33,25, 9 respectively. Again their magnitude responses [shown in Fig. 2.3.2 (a)

and (b)] do not differ much.

The examples show that, while the above procedure is of theoretical interest, the resulting filters
are far from being efficient. The main aim of the section is to emphasize the existence of orthonormal
systems for nonuniform filter banks where biorthogonal systems exist, and then demonstrate the

orthonormalization technique.

(a)

0.1 0.2 0.3 0.4 0.5
Normalized frequency

10

/ m ®)
y o : 3

0.1 0.2 0.4 0.5
Normalized frequency

Fig. 2.3.2. Example 2.3.2. Magnitude responses of analysis filters

(a) before orthonormalization, (b) after orthonormalization.

2.3.5. Numerical considerations

In actually implementing the orthogonalization algorithm, one faces the problem of decimating IR
transfer functions [(2.3.5), (2.3.8), etc.]. Theoretically, we could expand the rational transfer function

into partial fractions, then expand each of them into a power series in z and retain every n* term.
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This does not yield numerically accurate results. There are several ways to avoid the factorization
of polynomials.

The first one is based on a state-space manifestation of the decimation. Namely, if A is a state
transition matrix in some realization of H(z), then A™ is a transition matrix of the decimated
system H(z) ln,. Now in order to get the denominator of the decimated system, we need to find the
characteristic polynomial of A™. Notice that the size of A™ grows linearly with the filter order.

Another method, again system theoretical, relies on the fact that a rational transfer function
(with no common factors in the numerator and denominator) of order N can be determined from
the first 2V 4 1 impulse response coefficients (it can be shown that the determinant of the system
is nonsingular [Kai80]). The impulse response coefficients of the decimated system can be obtained
from the impulse response of the original system, which can be easily obtained from the difference
equation described by that transfer function. The problem with this approach is that the matrix of
the system of linear equations, even though nonsingular, is typically ill-conditioned.

The third method is based on the frequency manifestation of the decimation. Namely, we know

that

(H(z)) L = (1/n;) g H(z/™w*). (2.3.22)

Now if we write H(z) as a ratio H(z) = N(z)/D(z), the denominator of the decimated system can
be written as
ni—1
Da(z) =n; [[ D(E/™wWk). (2.3.23)
k=0

So in order to get the denominator of the decimated system, we have to find FFT’s of the modulated
denominators of the original system D(zW*), multiply them, stretch n; times (i.e., decimate by n; )
and multiply by n;. The inverse FFT of the result will give us D4(z). Notice that here we have a
product of polynomials, which is appropriately implemented using the FFT. The critical factor is
the number of terms in the product. It depends on n; only, not on the order of the filter (as opposed
to the first method).

After we get the denominator, getting the numerator is easy. We can again use FFT techniques.
Calculate the sampled DFT of H(:W*), H(e/'W¥*) = %Eﬁ,—',‘x%, where w;’s are the sampling
frequencies (frequencies at which DFT is the sampled Fourier transform of the numerator and
denominator). We add all of these, divide by n;, and stretch n; times, to get the sampled DFT of
H(z) {n,= Hq4(z). Since we already know the DFT of the denominator of this sampled frequency

response, we can get the DFT of the numerator. The product of this sampled DFT and the DFT
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of Dy4(z) will give us Py(e?“') = Hy(e/“)Dy(e?“t). After doing the inverse DFT of this sequence,
we get the numerator polynomial P;(z). One has to pay attention to the number of points of FFT
(sampling density of DFT) to avoid aliasing in the frequency.

The third method yielded much better results than the second one, especially for high order
filters and large decimation ratios. This method was actually used for producing all the above

examples.

2.4. Complete decorrelation of subband signals

In the traditional transform coding, where the polyphase matrices of the corresponding uniform
filter bank are just constant unitary matrices (KLT for example [Jay84]), the subband signals z;(n)
are decorrelated for the same time instant. That is, E{z;(n)z}(m)} = 0 whenever i # j and m =n.
In the other extreme case where the filters are ideal brick wall filters (the polyphase matrix having
infinite order) the subband signals are completely uncorrelated, that is E{zi(n)z}(m)} = 0 whenever
1 # 3, for any choice of n,m.

In this section we will consider the problem of complete decorrelation by use of rational (finite
order) filters. We will show that the subband signals cannot be decorrelated in this way if we use
rational paraunitary filter banks (unless the input signal has severely restricted statistical properties;

see below).

2.4.1. Decorrelation with orthonormal filters

Consider a uniform system in which ny = M for all k£ (nonuniform systems have subband signals
which are not necessarily jointly WSS). Let the filter bank input z(n) be WSS with power spectrum
Szz(z), assumed to be a rational function of z. For any scalar input signal z(n) we can form a vector
signal x(n) = (z(nM) z(mM —1) .- z(nM — M +1))T. This vector signal is the output of
the delay chain in Fig. 2.1.2(b) after decimation, and is called the M-fold blocked version of the
input signal z(n). It is known [Sat93] that the power spectral matrix of this vector WSS process is

pseudo-circulant. Namely

IS:cz,O(z) Szz,l(z) tee Szz,M-—l(z)
27 8oz, M—1(2 Sez,0(2 v Spem—2(2)
Sxx(2) = o 1) ”:O( ) R (2.4.1)
z_ls:cz,l (Z) 2_1531,2(2) te Szz,O(Z)

where S, i(z) is the i** polyphase component of the autocorrelation function S,,(z). After passin
) g
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x(n) through the analysis bank polyphase matrix E(z), the output signal y(n) has power spectrum
Syy(2) = E(2)Sxx(2)E(2). (2.4.2)

If we want the subband signals to be decorrelated, then Syy(z) has to be a diagonal matrix. Fur-
thermore, if we use orthonormal systems, the polyphase matrix has to be unitary on the unit circle.
Thus, on the unit circle, (2.4.2) can be regarded as a unitary diagonalization of the Hermitian matrix

Sxx(€?). Now we recall that a pseudo-circulant matrix can be written as [Vai88a]

I(2)W wir-1(z)
Sux(z) = MD(z)—="2L 2.4.3
where T'(z) = diag(1,z~1/M,z=2/M __ =*7) and D is a diagonal matrix. Since the matrix
Lz ];V is unitary on the unit circle, it follows that the diagonal matrix Syy(e’) is identical to the

diagonal matrix MD(e’*) up to rearrangement of the diagonal elements. Ignoring this rearrange-
ment, we get Syy(e’“) = MD(e’”). Now assume that Sxy(e’“) is rational, and that we wish to
diagonalize it with the rational paraunitary matrix E(e/“). From (2.4.2) we see that Syy(e’“) and,
therefore, D(e’“) have to be rational. Now Eq. (2.4.3) implies WD(z)W]L = I'1(2)Sxx (2)T(2).
Using the pseudo-circulant property of Sxx(z) we conclude that the rationality of Sxx(z) and D(z)
implies that Sxx(z) has the form C(z)I. This means that the power spectrum of the input process
z(n) has the form S;,(z) = C(z). In other words, the autocorrelation R(k) = 0 unless k is a

multiple of M.

2.4.2. Biorthogonal decorrelation

Having shown that an orthonormal filter bank cannot in general be used for decorrelation, we will
decorrelate the subband signals using a biorthogonal filter bank. Assume again that z(n) is WSS.
Then the crosscorrelation between z;(n) and z;(n) is

rij(1) = rij(n,1) = Elzs(n)zj (n = )] = D Y hi(m)h (k)r(Ml + k — m). (2.4.4)

kE m

The subband signals are decorrelated if this is zero for i # j. Equivalently, in the z-domain,

Sij(2) = (ﬁj(Z)Hi(Z)S(z)) lM =0 for i#j (2.4.5)

where S;;(z) is the z-transform of r;(l).
Given a PR (biorthogonal) system with analysis filters H;(z), we show how to obtain a new

set of analysis filters such that the above holds. For this we apply techniques similar to the ones in
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Section 2.3, just simpler. Because the filter bank is uniform, the problem is actually the usual finite-
dimensional Gramm-Schmidt orthogonalization. New analysis filters will be Gi(2). Let Go(z) =
Ho(z). Assuming that we have decorrelated z;(n) and z;(n) for j # i and 0 <4,j < s —1, in the
sth step we put Gy(z) = Hy(z) — Ez;a Brs (2M)Gr(2). z4(n) will not be correlated to any of z;(n)
for i < g if

(H@GE@sE) |
(Gr@6u2)5@) |

Brs(2) = for 1=0,1,...,s—1. (2.4.6)
This way we get filters G;(z)’s which decorrelate subband signals. They can be stabilized using the
techniques of Sec. 2.3. The corresponding synthesis filters can be obtained by inverting the analysis

bank polyphase matrix (stability cannot be guaranteed).
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Fig. 2.4.1. Magnitude responses of analysis filters

(a) before decorrelation, (b) after decorrelation.

Example 2.4.1 As an example of the above decorrelation procedure, we take a lowpass AR(6)

process [Jay84] and a paraunitary two-channel filter bank [Vai88] with FIR filters of order 7 (filter
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8A). Fig. 2.4.1 (a) and (b) show the frequency responses of the original and modified analysis filters
that decorrelate subband signals. The resulting analysis filters are FIR of order 7 and 18. The
synthesis filters are ITR of orders 18 and 12. If one calculates the coding gain of the new system (see

[Jay84] for the definition), it turns out that it is less than that of the original filter bank.

2.5. The compatibility condition, and generalizations

We now present different types of necessary conditions for perfect reconstructability in nonuniform
filter banks. These can sometimes be used to quickly reject certain sets of integer decimation ratios
{n;} from being considered for perfect reconstruction. In all our discussions we assume maximal
decimation, that is E?io_l 1/n; = 1. The discussions of this section do not apply to the case of the

so-called block decimation [Nay93].

2.5.1. Compatibility

In Fig. 2.1.1(a), the reconstructed signal b (2) is given by

nk—l

M-1
@)=Y Fk(z)n—lk S Hu(W2)X (W), 2.5.1)
k=0 n=0

In order for each of the alias terms X (zW},),n # 0 to be canceled, it is necessary that for every k
and n there exist £ # k and m such that W2 = W. This requirement is called the compatibility
condition and is a necessary condition for alias cancelation (see [Hoa89], p. 285 of [Vai93] and the
corresponding solution manual for the derivation). If the set of integers {n;} satisfies this, we say

that it is a compatible set.

Statement of the Test

Assume that the integers n; are numbered such that ng <n, < ... <npy_1.

Step 1. Check if npr—a = npr—1. If no, then {n;} is not compatible. If yes, continue.

Step 2. Form the smaller set by collecting those n; that are not factors of ns—;. Then imagine
that this is the given set, and repeat the test, i.e., go to Step 1.
At some point, if the answer is no in Step 1, then the original set is not compatible. If we keep

getting yes in Step 1, then after a finite number of repetitions, the “smaller set” in Step 2 becomes
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empty. The original set {n;} is then compatible. Thus, the test always gives a decision in a finite
number of steps.

To demonstrate the test, consider the set (2,6,10,12,12,30,30). We have nas—2 = ny—1 = 30
so that Step 1 is successful. The smaller set of numbers that are not factors of 30 is given by (12,12).
This set again passes Step 1 successfully. The next smaller set is empty. Thus the test has been
completed, and the given set (2, 6,10, 12,12, 30, 30) is indeed compatible. It turns out that this set of
integers cannot come from a tree structure (binary or otherwise). For, if it did, then the first level of
the tree would have to be a two—channel system with decimators (2, 2). The second level then splits
the lower branch of the first level only, with the decimators (3,5,6,6,15,15). Since 3 and 5 do not
have common factors, this set of numbers could not have come from a tree-structured connection of
uniform filter banks.

It turns out that while the above set is compatible, it is still not consistent with another
necessary condition for alias cancelation (hence PR). This statement will be elaborated at the end

of the next subsection.

2.5.2. Generalizations

We can obtain further necessary conditions by looking deeper into the details of alias cancelation.
Thus consider the PR condition, expressed in terms of the L—channel equivalent uniform filter bank

(where L is the lem of n;’s; Sec. 2.1.2); it takes the form

So(2) $i(z) - Sp-i(z) Qo(2) L
So(z:WL) S, (z:WL) : : SL_I(:zWL) Ql:(z) _ 0 2.52)
So(zvi/',f'l) Sl(sz_l) SL—I(Z.Wf_l) QL—.I(Z) 0

By substituting for the L pairs of filters {Sk(z),Qk(2)} in terms of the original M pairs filters
{H(2), Fr(2)} using (2.2.8), we can rewrite this in the form

Hp(2)f(z) =[L 0 --- 0]7, (2.5.3)
where f(z) =[Fo(2) ... Fum—1 ]T and H(z) is an L x M matrix. The i** column of this matrix
has the form

[kiHi(z) O kiHi(zWn) 0 kHi(zW2) ... 0 kH;(zWm1) o], (2.5.4)

where 0 is a string of k; — 1 zeros. (Recall that k; are integers such that kin; = L). The compatibility

condition says that any nonzero row of Hy (z) should have at least two nonzero entries.
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Now notice that the decimation ratios ng,n1,...nap—1 of the M—channel nonuniform filter
bank may not all be distinct. Let us relabel them in terms of distinct integers, for convenience of
discussion. Thus let the decimators be

ILo,’rLo,...no, 11,1,”1,...7111 I’fK——lynK—l,---nK—lz (255)

No times N; times Nk _1 times

In this notation, n; are distinct integers and Ng + N1 + ... Ng_1 = M.

For example, let us fully understand the 0** column of the matrix Hy (2). If Ng = 2, then there
are two columns (zeroth and first) of the form (2.5.4), with the same decimation ratio no (and the
same ko). More generally, there are Np columns of the form (2.5.4) with the same no and the same
ko. These Ny columns have nonzero entries occurring in the same positions, namely 0t*, k", 2k&"
and so forth. Consider now another column, say the one corresponding to n;. This has nonzero
elements occurring at the locations 0, k;, 2k;, and so forth. Now compare this with the 0t* column,
and identify the locations where nonzero elements overlap. With the exception of the 0% location,
the first overlap of nonzero elements will occur at the location lem(ko, k;). Define

_ min#o lem (ko, k,)
= ko .

mo (256)

Then the nonzero elements of the leftmost column in the k§* 2kg", ... (mo — 1)k§" positions do not
overlap with any nonzero elements from any other columns, except of course, columns 1, 2, ... No.

We can isolate these nonzero elements in the first Ny columns of equation (2.5.3), and write

Ho(eWno)  Hi(eWn,) ... Hng—1(2Wp,) Fy(z)
Ho(ZW,%O) Hl(ZWgD) s HNo—l(ZWr%o) F1(Z)
) . ] ) . =0. (2.5.7)
Ho(ZW,:';O_l) Hl(zW:;O_l) e HNO_l(ZW,?;o_l) Frn,—1(2)
()
&z

A necessary condition. We will now prove that, if the number of rows mo — 1 > number of

columns Ny, then perfect reconstruction is not possible! So the condition
mj—1<N;, 0<j<K-1 (2.5.8)

is necessary for perfect reconstruction, where N; is the number of decimators equal to n;, and

_ mingy; lem (ki, kj)
= K }

m; (2.5.9)
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This is a generalization of the compatibility condition which merely said that any nonzero row of

H/ (2) should have at least two nonzero entries.

Proof of the necessary condition. Eqn. (2.5.7) implies that the columns of the matrix are linearly
dependent [unless all the F;(z)’s in that equation are zero, which is not possible in a maximally
decimated perfect reconstruction system]. If mg — 1 > Np, this means that the rows are linearly
dependent. Denoting the first row of the matrix in (2.5.7) as h(zWp,), the remaining rows are

h(zW2)) ... h(zWe~1). The linear dependence implies that

mo—1
h(zWp,) = Y ai(2)h(zW}). (2.5.10)

i=2

Since this holds for all z, we can replace z with ng‘OI to obtain

mo—2 mo—2
h(z) = Y a1 (@WiHhh(eWE) = Y Bi(2)h(zW},). (2.5.11)
i=1 i=1

But eqn. (2.5.7) says that h(zW}; )g(z) = 0 for 1 <4 < mg — 1. Using this in (2.5.11) we conclude
h(z)g(z) = 0. That is,

Hy(z)Fo(z) + Hi(2)Fi(2) + ...+ Hyy—1(2)Fny—1(2) = 0. (2.5.12)

But this cannot happen in a maximally decimated perfect reconstruction system. To see this note

that the biorthogonality condition (2.2.5) implies, in particular,

(HQ(Z)F()(Z) + H1 (Z)Fl(Z) +...+ HNo—l(Z)FNo—l(Z)) 1 = No, (2513)

no
which is not possible if (2.5.12) is true! This completes the proof of (2.5.8) for j = 0. The same

argument can be used to show that (2.5.8) is true for j =1,2,...,K — 1 as well.

¢

This test is strictly stronger than the test for compatibility. To demonstrate, consider the same
set (2,6,10,12,12, 30,30) from the end of the previous subsection. As shown there, it satisfies the
compatibility condition. According to the notation in this subsection, n;’s are distinct numbers and

we have K =5, L = 60 and
i 0 1 2 3 4
N 2 2 1 1 1
n; 30 12 10 6 2
ki 2 5 6 10 30
m; 3 2 1 1 1

Since mg — 1 = 2 = Ny, we conclude that PR is not possible.
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2.6. Conclusion

For a maximally decimated nonuniform filter bank, the perfect reconstruction (PR) property is
equivalent to biorthogonality. Using this fact we derived a number of properties of PR filter banks.
We then showed that whenever the decimation ratios are such that biorthogonality is possible, it is
in particular possible to obtain orthonormality. This was done by developing an orthonormalization
procedure. While reminiscent of the Gram-Schmidt approach, the procedure converges in a finite
number of steps and furthermore preserves the filter bank-like form of the basis functions. We
applied this technique to decorrelate the subband signals. Finally we considered the problem of
alias cancelation, and obtained a generalization of the so-called compatibility condition which is a

necessary condition for perfect reconstruction in maximally decimated systems.

2.7 Appendices

Appendix 2.A: Reaching arbitrary integers

In connection with equation (2.2.15), we will show that the quantity pbym — 7bmi + dkpmbm; can be
made to take any integer value by proper choice of the integer d, and the integers p, in the ranges
0<p<k—1,0<r <kp—1. For this recall the meanings of the integers by, b;, and L, namely,
eqns. (2.1.4) and (2.2.13). Since L = kiny = kyny, by definition, we have kibymgim = kmbmigim. S0
kibim = kmbm. Since by, and by, are relatively prime by construction, there exist integers p and 7
such that

Dbim — Ty = any desired integer a. (2.4.1)

We can always decompose p and 7 as p = p + nk; and 7 = r + ik, where 0 < p < k; — 1, and

0 <7 < kp, — 1. Substituting this into (2.A.1) and rearranging, we get
Pbim — Tby + dkmbm = a, (2.A.2)

where d = (n — ¢). Thus, we can write any integer a as above where p and r are in the stated range,

provided we can assign any integer value to d.

Appendix 2.B: Eliminating redundant variables

If the system of equations (2.3.14) has a determinant that is identically zero, we can reduce the size

of the problem as follows. In this case, there exists a;;(z), with at least one of them different from
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zero, such that
8—1 Ccai—

5% aate) (s B @) | = (2.B.1)

i=0 m=0
fori =0,1,...,s—1andl=0,1,...,ce —1. While it is not obvious that there are polynomials a;(z)

satisfying (2.B.1), this can be verified to be the case, by use of the Smith-McMillan decomposition
for rational functions [Kai80], [Gan59]. The previous equation can be rewritten as

=1 cpiml i=0,1,...,5—1
( ™Ik Gy (2) Z Z aa(z)z™ '“‘F(z)) l for all { . (2.B.2)
L

k=0 m=0 [=0,1,...,cse =1

This is equivalent to
8—-1
(ék(z) > A,—(zg"‘)Fi(z)) J =0 forall k=0,1,...,58—1, (2.B.3)
i=0 Gsk

where A;(z) = Zc" z7'ay(2°). Now, (2.B.3) implies that the assumed form (2.3.12) is redun-

dant; namely, we can discard some of B;,;(2%)’s. To see this, let a;7(z) # 0. Then (2.B.3) implies

Cai—1
Bros(22)z™ JﬂuF(z)+ﬂ”-’(z AN Z E Gim (25)2~™9% Fy(2) (2.B.4)

J(zl) &
m;eJ fOI‘i 1

is orthogonal to Gx(z) for k = 0,1,...,8—1. Then we can drop fj,5(zL)z~79:1 Fj(z) from (2.3.12) and
form a smaller system of linear equations. We keep doing this till the determinant is not identically

Z€ero.

Appendix 2.C: Poles on the unit circle

We will show that when a biorthogonal filter bank is orthonormalized, the resulting filters will

naturally be free from poles on the unit circle. We will do this in two parts.

Observation 1.

Let A(z) be a rational function with a pole on the unit circle, at zp = e“°. Let 7, be the order of
this pole. Then, in the neighborhood of 2, the function A(e/*)A(e’) behaves as

Ca
(ejw — eij)Ta (e—j“’ —_ e“]"”O)Ta )

A(e?)A () ~

(2.C.1)

This is the behavior of a pole of order 2r,. Since A(z)A(z) > 0 on the unit circle, we have c, > 0.
Now let B(z) be another rational function with a possible pole at the same point 2z, with order 7.
Then B(e?)B(e/*) can be expressed in a similar way. So

Cq Ch
(@5 —eio0)ra(e—3w — g—dwn)ra | (edo — eiwo)s (630 — g—dwnyre’

(2.C.2)

A(e?)A(%) + B(e7)B(e) ~
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Since ¢,4, ¢y > 0, we see that there can be no cancelations, and as w approaches wyp, the result behaves
like a pole of order = max(2r,,2r;). Similarly, if we have a sum of several nonnegative functions
having poles of various orders on the unit circle, the sum behaves like a pole of order equal to the
largest one.

A consequence of observation 1. Now consider the normalization step (2.3.21). The denominator
of a,(z™*)a,(z™) can be written as

ng—1

(P@B@)[, )], =2 T PEwEIREWL). (2.3)
D=5 2

Each term on the right-hand side is nonnegative on the unit circle. So if P,(z) has a pole of order
T at zo = e/“°, then the above summation still has this pole, with order > 2r. As a result, a, (z™)
has a zero of order > r. This means that when we form the normalized filter G,;(2) = a,(2™ ) P,(2),

this unit-circle pole will be completely canceled.

Observation 2.

From (2.3.21) we see that o, (2™*) will have a pole of order r at zo = e/“° if and only if

(roR@) ).,

has a zero of order 2r at z = zy = e/“°. Now co