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ABSTRACT

In the last decade or so, we have witnessed a rapid development of the wavelet and filter bank theory.
Wavelets find applications in signal compression, computer vision, geophysics, pattern recognition,
numerical analysis, and function theory, just to name a few. Filter banks, on the other hand, offer
very efficient implementation of different algorithms in connection with wavelets. The thesis deals
with three problems in filter banks and wavelets.

In the first part, we show that perfect reconstruction is equivalent to biorthogonality of the
filters. Using this, we examine existence issues in nonuniform filter banks. We show that when-
ever there exists a rational biorthogonal filter bank, then there is a rational orthonormal filter bank
as well. We also derive a number of necessary conditions for the existence of perfect reconstruc-
tion nonuniform filter banks. We show how the tools developed in the first part can be used for
decorrelation of subband signals.

The second problem deals with optimality issues in wavelet and filter bank theory. We tune
scaling function for the analysis of WSS random processes, so that the energy is concentrated in as
few transform coefficients as possible. The corresponding problem in the filter bank theory is that
of adapting filter responses to a given (discrete time) WSS random process so as to achieve a better
energy compaction.

Finally, the last part is devoted to developing sampling theory for multiresolution subspaces.
More precisely, we extend existing uniform sampling theory to periodically nonuniform sampling.
This extension offers one very important advantage over the existing sampling theory. By allowing for
periodically nonuniform sampling grid, it is possible to have compactly supported synthesis functions,
which was not the case before. Several variations on the basic theme are considered. Also, an
application of the developed techniques to efficient computation of inner products in multiresolution

subspaces is presented.
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Introduction

In this section, a short historic overview of filter banks and wavelets will be given. It will be
followed by an introduction to multiresolution analysis (MRA) and wavelets. After that, remaining
chapters will be described and the main results of the thesis will be stated. At the end, we introduce

conventions and notation that will be used in the thesis.
1.1 A brief history of filter banks and wavelets

Multirate filter banks are well known and widely used tools in signal processing community. They
find applications in signal compression [Cro76 and Woo086], computer vision [Mal89a], adaptive
filtering [Gil87, Gil92, and Sat93], spectrum estimation [Coo80 and Qui83], beamforming [Pri79
and Sch84], etc.

In the absence of quantizers, there are three types of distortion that may occur in filter banks.
As in any LTI system, there may be amplitude and phase distortion. Additionally, due to the
presence of sub-samplers, there is aliasing as well. At first it was not clear whether aliasing could be
eliminated with rational filters. In 1976, Croisier et al. [Cro76] showed that this is indeed possible
for a two-channel case. After the aliasing has been eliminated, phase and amplitude distortions were
minimized in the design process [Joh80], [Jai84], [Fet85]. A few years later, in 1984, Smith and
Barnwell [Smi84] and Mintzer [Min85] found a way to eliminate all three distortions, again for a
two-channel filter bank. At the same time very efficient implementation techniques were developed
[Gal85].

All the results mentioned so far were for two-channel filter banks only. In a general, M-channel
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case analysis and synthesis are much more difficult. At first, so called pseudo QMF filter banks
were developed. They are called pseudo QMF because only dominant aliasing terms were cancelled
[Nus81], [Rot83]. Finally, solutions of the perfect reconstruction problem in the general M-channel
case were found by many researchers [Ram84], [Smi85], [Vet85], [Pri86], [Vai87], etc. One solution to
the problem stands out, the orthonormal one (also called paraunitary or PU). Not only are the design
and analysis simplified in the case of orthonormal filter banks, but many desirable features (useful
in subband coding, for example) are achieved for free. The design process is especially simplified
due to the complete parameterization of orthonormal filter banks [Vai89)]. This technique has roots

in the classical network theory [Bel68], where the name paraunitary comes from.

Even though a complete parameterization of M-channel PU filter banks was known, the design
was still computationally very involved. There were simply too many parameters to optimize. The
design process was drastically simplified by introducing modulated filter banks [Mal90], [K0i91] and

[Ram91]. In this case, all the filters in the filter bank are modulated versions of a single filter.

While it is true that the transfer function of a perfect reconstruction (PR) filter bank is unity,
the filters themselves do not necessarily have linear phase. In some applications, like image coding, it
is important that the filters have linear phase. At first some ad hoc design methods were developed.
The first systematic design method covering a large class of linear phase PU filter banks was reported
in [Som93]. Unfortunately, this design method was computationally very involved. Finally a design

technique for linear phase cosine-modulated PU filter banks was reported in [Lin93].

All the above mentioned advances were made in the area of one-dimensional signal processing.
Corresponding problems in the multidimensional (MD) case are much more difficult and, therefore,
the results are scarcer. MD filter banks were first considered in [Vet84], [Wo086] and [Wac86]. Even
though there have been many results reported so far, there are still no systematic design techniques
for designing MD filter banks for arbitrary sampling lattices (see [Vis91]). The problem of perfect
reconstruction was considered in [Ans90], [Kar90] and [Kov92]. A very nice and simple design

technique for a two-channel case was given in [Pho93].

In the last couple of years, a number of both theoretical and more practical results have been
reported. There are many design techniques incorporating additional constraints like minimum
overall delay, various time domain constraints, imposition of zeros at aliasing frequencies [Ste93],
etc. Also, there are further generalizations of M-channel uniform filter banks to nonuniform, filter

banks with non-integer decimation ratios, time-varying filter banks, etc. But even just mentioning



of all those results would take us too far afield.

One of the main applications of filter banks is the signal compression using subband coding.
Analysis of brick-wall subband coders when the input is a wide sense stationary (WSS) random
process is straightforward [Jay84]. It is especially easy in the case of PU filter banks and several
interesting results can be derived; see [Vai93]. Results on (un)constrained bit allocation for the
optimal quantization appeared in [Hua63], [Seg76], [Ram82], [Wes88], etc. However, the analysis of

biorthogonal filter banks has not been done.

During the last decade, researchers from rather diverse fields got interested in wavelets. It is not
so common to see quantum physicists, pure mathematicians, geophysicists, engineers, and numerical
analysts work on similar problems at the same time. So, what is it that draws so much attention
to wavelets? One of the main reasons is their very good joint time-frequency resolution. Wavelets

have more desirable properties that other transforms lack (see the next subsection).

Since the invention of the Fourier transform, there have been many attempts to come up with
some transform that will have both good time and frequency resolution. Uncertainty principle shows
that simultaneous, arbitrarily good resolution in both time and frequency cannot be obtained. But
most time-frequency transforms either cannot even get close to the principle of uncertainty (time
or frequency resolution is poor) or lack some desirable properties as a transform (orthonormality
or stability properties). Finally, there is a transform with all those desirable features — the wavelet

transform.

Even though researchers were looking for a transformation with good time-frequency resolution
for more than thirty years, the wavelet theory as we know it today has been mostly developed
within the last decade or so. The notion of wavelets was introduced by Morlet [Mor82], in the
area of geophysics. First smooth orthonormal wavelet bases were constructed by Meyer [Mey85]
and Lemarie and Meyer [Lem86]. Wavelet transform can be nicely embedded in the theory of
multiresolution analysis, developed by Mallat [Mal89] and Meyer [Mey87]. Multiresolution analysis
kind of preprocessing is at the heart of human audio and visual system. It also plays an important role
in approximation theory and numerical analysis, computer vision, signal compression, etc. However,

it was not until Daubechies’ seminal work [Dau88] that wavelets gained popularity they enjoy today.

Daubechies exploited a deep relationship between PU filter banks and wavelet bases to construct
an infinite family of compactly supported orthonormal wavelets of arbitrarily high degree of smooth-

ness. Her work initiated a huge activity in both signal processing and mathematical community. It
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was then realized that some kind of multiresolution analysis had been practiced long before Mallat’s
and Meyer’s formalization (Laplacian pyramid of Burt and Adelson [Bur83], for example). Filter
banks are not only used to construct compactly supported orthonormal wavelet bases, but also for
computationally extremely efficient implementation of MRA, the so called Fast Wavelet Transform
(FWT) [Mal89a).

Wavelets were used for numerical solutions of differential equations in [Bey91]. For the purpose
of audio compression, Coifman et al. [Coi90] developed wavelet packets. We mentioned only a few
advantages of wavelet bases over other types of bases, but there are many more. They play an
important role in harmonic analysis and function theory because they provide unconditional bases
for many functional spaces (L? for 1 < p < oo, Hardy spaces, Sobolev spaces, etc.). It is also possible
to characterize many of those spaces in terms of their wavelet transform. Most of these nice and
desirable properties were lacked by the Fourier transform. Much more on this subject can be found
in Meyer’s book [Mey92].

As it was mentioned, Daubechies’ work initiated mutually beneficial interaction between math-
ematicians and signal processors. On the one hand, existence of M-channel, biorthogonal, MD,
linear phase, etc., filter banks gave rise to construction of M-band, biorthogonal, MD, symmetric,
etc., wavelet bases. On the other hand, desire to construct smoother wavelet bases imposed new
design constraints on filter banks. It is not enough anymore to satisfy just PR conditions; it is also
desirable to put as many zeros at aliasing frequencies as possible. Some preliminary experiments
have shown that the imposition of the new constraints improves performances of some image coding
systems. Also the role of filter banks when it comes to implementations of MRA and other wavelet
algorithms cannot be overemphasized. There is a huge number of references in this area and it
would be impossible to mention all of them. [Chu92], [Dau92], [Vai93], [Inf92], and [Sgp93] are good

starting points for further exploration and an excellent source of references.
1.2 Wavelets and multiresolution analysis

1.2.1. Wavelet examples

Instead of giving formal definitions, we will present two examples of wavelet transform to develop
the intuition. The examples are simple and well-known, yet they show the main features of the

wavelet transform.
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Example 1.2.1. Littlewood-Paley wavelet. Consider a bandpass signal z(¢) with Fourier
transform supported in w; < |w| < ws. It can be shown that for sampling at the rate 23 there is
no overlap of images if and only if one of the edges, wy or ws, is a multiple of 23. This is called the
bandpass sampling theorem.

F(o) B
——

— /B

-y -y 0 & oo
Fig. 1.2.1. Bandpass filter to be used in the reconstruction of

the bandpass signal from its samples.

The reconstruction of z(t) from the samples proceeds exactly as in the lowpass case, except that
the reconstruction filter F(w) is now a bandpass filter (Fig. 1.2.1) occupying precisely the signal
bandwidth. The reconstruction formula is z(t) = -, z(nT) f(t — nT) where T = 7/, and f(t) is

the bandpass impulse response.

Y(® | Y (@ X()
L~

_(q“l —O)k O (Dk (ok+1
Fig. 1.2.2. Splitting a signal into frequency subbands.

Given a signal z(t), imagine now that we have split its frequency axis into subbands in some
manner (Fig. 1.2.2). Letting y(t) denote the kth subband signal, we can write z(t) = ), yx(t). If
the subband region wy < |w| < wg+1 satisfies the bandpass sampling condition, then the bandpass
signal yx(t) can be expressed as a linear combination of its samples. So, let wy = 2%7 (k =
...—1,0,1,2,...). The bandedges are such that y(t) is a signal satisfying the bandpass sampling
theorem. It can be sampled at period T} = m/B = 2~* without aliasing, and we can reconstruct it

from samples as
o

ye®) = > yr@7Fn)fie(t —27Fn). (1.2.1)

n=—oo

Since z(t) = Y, yx(t) we see that z(t) can be expressed as

zt)= Y. Y. wk@7*n)fi(t —27%n). (1.2.2)

k=—o00o n=—00
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Our definition of the filters shows that the frequency responses are scaled versions of each other;
that is Fi(w) = 2-%¥¥(2~*w). The impulse responses are therefore related as fi(t) = %(2*t), and
we can rewrite (1.2.2) as
o
z(t) = Z Z yr(2 ¥ n)p (2%t — n). (1.2.3)
k=—o00 n=—00

In order to make this look like a wavelet expansion, we write it as z(t) = Y., Y., Ckn¥kn(t), where

ckn = 27%/?y,(27%n) and
Vi (t) = 26/2p(25¢ — n) = 2%/%y (2’°(t - 2-’°n)). (1.2.4)

The function (2%t) is a dilated version of 1(t) (squeezed version if k£ > 0 and stretched version if
k < 0). The dilation factor 2¥ is a power of two, so this is said to be a dyadic dilation. The function
¥(2%(t —27%n)) is a shift of the dilated version. Thus we have expressed z(t) as a linear combination
of shifts of (dyadic) dilated versions of a single function (t). This is a typical characteristic of wavelet
bases and could be taken as a possible definition (strictly speaking there is no definition of wavelets).
(1.2.3) is called the wavelet representation for z(t). The function (t) is called the ideal bandpass

wavelet. It has also been known as the Littlewood-Paley wavelet.

Example 1.2.2. The Haar wavelet basis. As early as 1910 an orthonormal basis for L? functions
has been found [Haal0], which satisfies the properties of a wavelet basis given above! That is, the
basis functions 9, (t) are derived from a single function 1(t) using dilations and shifts as in (1.2.4).
To explain this system first consider a signal z(t) € L?[0,1]. The Haar basis is built from two
functions called ¢(t) and (t), as described in Fig. 1.2.3. The basis function ¢(t) is a constant in
[0,1]. The basis function 9(t) is constant on each half interval, and its integral is zero. After this,
the remaining basis functions are obtained from 1(t) by dilations and shifts as indicated. It is clear
from the figure that any two of these functions are mutually orthogonal. We have an orthonormal
set, and it can be shown that this set of functions is an orthonormal basis for L?[0, 1]. However, this

is not exactly a wavelet basis yet, because of the presence of qb(t).Jr

T We will see later that the function #(t) arises naturally in the context of the fundamental idea

of multiresolution.



o (1) 21 2w
1 v, (1) —Io,zs -
0 1t
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2y (4t-1)
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o s > 0 o.zsl_l 1t
4 V2 v @y , _2\v (4t-2)

v, (1) 0.5 \vn(t) |_| 0.75 -
0 1t 0 o.s|_| 1t
V2 ﬁ’w‘“) 2y (4t3)

v, ® 1 2T
0 0.5 |_| t W) Hl .

0 0.7 |_| t

Fig. 1.2.3. Examples of basis functions in the Haar basis for L?[0,1].

If we eliminate the requirement that z(t) be supported or defined only on [0, 1] and consider
L?(R) functions, then we can still obtain an orthonormal basis of the above form by including the
shifted versions {t(2Ft — n)} for all integer values of n, and also including the shifted versions
{¢(t — n)}. An alternative to the use of {¢(t —n)} would be to use stretched (i.e., ¥(2¥t), k < 0) as
well as squeezed (i.e., ¥(2%t),k > 0) versions of 9(t). The set of functions can thus be written as
in (1.2.4), which has the form of a wavelet basis. It can be shown that this forms an orthonormal
basis for L?(R).

The above two examples are two extreme cases of infinitely many examples of wavelet bases. The
first example has a good frequency localization, basis functions are infinitely smooth, but of infinite
duration, while the second example has a good time localization, basis functions are compactly
supported, but discontinuous. Obtaining basis functions having a good localization in both time
and frequency is the aim of the game. In the subsections that follow, we will explain properties and
advantages of the wavelet transform over other time-frequency transforms. Now that we know what

wavelets are all about, let us review another time-frequency transform, the STFT.

1.2.2. The short time Fourier transform (STFT)

In many applications, we have to accommodate the notion of frequency that evolves or changes with
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time. For example, audio signals are often regarded as signals with a time varying spectrum, e.g.,
a sequence of short lived pitch frequencies. This idea cannot be expressed with the traditional FT
since X (w) for each w depends on z(t) for all t.

The short time Fourier transform (STFT) was introduced to provide such a time-frequency
picture of the signal [Gab46], [F1a66], [Sch73], and [Por80]. Here the signal z(t) is multiplied with a
window v(t — 7) centered or localized around time 7 and the FT of z(t)v(t — 7) computed:

X(w, )= /00 z(t)v(t — T)e” ¥t dt. (1.2.5)

—oo0
This is then repeated for shifted locations of the window, i.e., for various values of 7. The result is a
function of both time 7 and frequency w. In the traditional STFT both w and 7 are discretized on
uniform grids w = kwy, 7 = nT,. The STFT is thus defined as
o0
X oo (Ko, nTy) = / (&)u(t — nT,)e—T*w-tdt, (1.2.6)
~o0
which we abbreviate as X,;7:(k,n). Thus the time domain is mapped into the time-frequency
domain. The quantity X,¢s¢(kws,nT,) represents the FT of z(t) “around time nT,” and “around

frequency kw,.”

Optimal time-frequency resolution: the Gabor window. What is the best frequency resolu-
tion one can obtain for a given time resolution? That is, for a given duration of the window v(t) how
small can the duration of V(w) be? If we define duration according to common sense, we are already
in trouble because if v(t) has finite duration, then V (w) has infinite duration. There is a more useful
definition of duration called the root mean square (rms) duration. The rms time duration D; and
the rms frequency duration Dy for the window v(t) are defined such that

o _ JER@WPA o, [WlV(W)Pdw

Di=Thora YT TTVwPRe

(1.2.7)

Intuitively we can see that D; cannot be arbitrarily small for a specified Dy. The uncertainty
principle says that D:Dy > 0.5. Equality holds if and only if v(t) has the shape of a Gaussian,
ie., v(t) = Ae—t* o > 0. Thus the best joint time-frequency resolution is obtained by using the
Gaussian window. Gabor used the Gaussian window as early as 1946! The STFT based on the
Gaussian is called the Gabor transform. A limitation of the Gabor transform is that it does not give

rise to an orthonormal signal representation.
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1.2.3. Wavelet transform versus STFT

We will compare wavelets and STFT on several grounds: time-frequency resolution and localization,
stability of the reconstruction from the transform coefficients, existence of orthonormal bases and

so forth. The advantage of wavelet transforms over the STFT will be clear after these discussions.

The STFT works with a fixed window v(t). If a high frequency signal is being analyzed, many
cycles are captured by the window, and a good estimate of the FT is obtained. But if a signal
varies very slowly with respect to the window, then the window is not long enough to capture it
fully. The STFT therefore does not provide uniform percentage accuracy for all frequencies — the

computational resources are somehow poorly distributed.

In the wavelet case, the frequency resolution gets poorer as the frequency increases, but the
fractional resolution (i.e., the filter bandwidth Awy, divided by the center frequency wy,) is constant for
all k. That is, the percentage accuracy is uniformly distributed in frequency. In electrical engineering
language the filter bank representing wavelet transforms is a constant Q filter bank, or an octeve band
filter bank. The nonuniform (constant Q) filter stacking provided by wavelet filters is also naturally
suited for analyzing audio signals and sometimes even as components in the modeling of the human

hearing system.

Example 1.2.3. Resolution of the wavelet transform and the STFT. This example clearly
displays advantages of the wavelet transform over the STFT. Consider the signal z(t) = cos(10nt) +
0.5 cos(5mt) + 1.26,(t — 0.07) + 1.26,(t + 0.07). It has impulses at ¢ = +0.07, in the time domain.
There are two impulses (or “lines”) in the frequency domain, at w; = 57 and wy = 107. The function
is shown in Fig. 1.2.4 (with impulses replaced by narrow pulses). The aim is to try to compute
the STFT or WT such that the impulses in time as well as those in frequency are resolved. Figure
1.2.5 shows the STFT plot for three widths of the window v(¢) and the wavelet plot. The STFT

! is analogous

plots are time-frequency plots, whereas the wavelet plots are (a~!,b) plots where a~
to “frequency” in the STFT, and b is analogous to “time” in the STFT. The brightness of the plots
in Fig. 1.2.5 is proportional to the magnitude of the STFT or WT, so the transform is close to zero
in the dark regions. We see that for a narrow window with width = 0.1, the STFT resolves the
two impulses in time reasonably well, but the impulses in frequency are not resolved. For a wide

window with width = 1.0, the STFT resolves the “lines” in frequency very well, but not the time

domain impulses. For an intermediate window width = 0.3, the resolution is poor in both time and
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frequency. The wavelet transform plot, on the other hand, simultaneously resolves both time and
frequency very well. We can clearly see the locations of the two impulses in time, as well as the two

lines in frequency.

£(

NIPVIN (ruivip
IRARATATTATAT

Fig. 1.2.4. Example 1.2.3. The signal to be analyzed by STFT and Wavelet transform.

Orthonormal STFT bases have poor time-frequency localization. It can be shown that if
we wish to have an orthonormal STFT basis, the time-frequency density is constrained to be such
that w,T, = 2m. Under this condition suppose we choose v(t) appropriately to design such a basis.
The time frequency localization properties of this system can be judged by computing the mean
square durations D} and D3 defined in (1.2.7). It has been shown by Balian and Low (see [Dau92})
that one of these is necessarily infinite no matter how we design v(t). Thus an orthonormal STFT
basis always satisfies DDy = oo. That is, either the time or the frequency localization is very poor.
Instability of the Gabor transform. Gabor constructed the STFT using the Gaussian window
v(t) = ce~t"/2. In this case the sequence of functions {gin(t)} can be shown to be complete in L? as
long as w,T, < 2. However, the reconstruction of z(t) from X, s¢(kw,, nTy) is unstable if w7y = 27.
So even though the Gabor transform has the ideal time frequency localization (minimum D;Dy), it
cannot provide a stable basis, hence certainly not an orthonormal basis, whenever w,T, = 2.

A major advantage of the wavelet transform over the STFT is that it is free from the above
difficulties. For example we can obtain an orthonormal basis for L? with excellent time-frequency

localization (finite, controllable D;Dy).

1.2.4. Wavelets and multiresolution

Daubechies’ construction is such that excellent time-frequency localization is possible. Moreover,
the smoothness or regularity of the wavelets can be controlled. The construction is based on the

two channel paraunitary filter banks. One such filter bank is shown in Fig. 1.2.6.
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Fig. 1.2.5. Example 1.2.3. STFT plots with window widths of 0.1, 0.3, and 1.0, and Wavelet transform plot.
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N\
x() | | X(n)

Fig. 1.2.6. A Two-channel PU filter bank.

Let G,(2) and H,(2) have impulse responses gy;(n) and hs(n) respectively. All constructions are
based on obtaining the wavelet 1(t) and an auxiliary function ¢(t) called the scaling function, from

the impulse response sequences g,(n) and hs(n), using time domain recursions of the form

$t)=2 Y gu(n)p2t—n), YA =2 D he(n)p(2t—n), (1.2.8)

n=—oo n=—oo

called dilation equations. In the frequency domain we have
B(w) = Go(e?/?)®(w/2), T(w)= H,(e"/?)®(w/2). (1.2.9)

It turns out that if {G,(z), Hs(z)} is a paraunitary pair with further mild conditions (e.g., that the
lowpass filter G,(e?*) has a zero at m and no zeros in [0, 7/3]), the recursions can be solved to obtain
¥(t) which gives rise to an orthonormal wavelet basis {2¥/2¢(2¥t — n)} for L?. By constraining
G,(€’“) to have a sufficient number of zeros at m, we can further control the Holder index (or
regularity) of (t). The recursions (1.2.8) are also called the two-scale equations. These have origin

in the beautiful theory of multiresolution for L? spaces [Mey85], [Mal89].

The Idea of Multiresolution

Before giving a more formal definition, let us first review Ex. 1.2.1. Assume for simplicity the
wavelets are ideal bandpass functions as in Ex. 1.2.1. The bandpass filters Fy(w) = 27%/2¥(w/2¥)
get narrower and narrower as k decreases (i.e., as k becomes more and more negative). Instead of
letting & be negative, suppose we keep only ¥ > 0 and include a lowpass filter $(w) to cover the
low frequency region. Imagine for a moment that ®(w) is an ideal lowpass filter with cutoff +7 (see
Fig. 1.2.7). Then we can represent any L? function F(w) with support restricted to £ in the form
Fw) = Yoo _oan®(w)e 9", This is simply the Fourier series expansion of F(w) in [~m,7]. In

the time domain this means
o0

f&)= Y ang(t—n). (1.2.10)

n=—oo
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Let us denote by Vp the closure of the span of {¢(t —n)}. Thus, V; is the class of L? signals that are
bandlimited to [—w, 7). We know that ¢(t) is the sinc function, and the shifted functions {¢(t — n)}
form an orthonormal basis for Vp.

Consider now the subspace Wy C L? of bandpass functions bandlimited to 7 < |w| < 27. The
bandpass sampling theorem allows us to reconstruct such a bandpass signal g(t) from its samples
g(n) by using the ideal filter ¥(w). Denoting the impulse response of ¥(w) by ¥(t), we see that
{¥(t —n)} spans Wy. It can be verified that {¢(t —n)} is an orthonormal basis for Wy. Moreover,
since ¥(w) and ®(w) do not overlap, it follows from Parseval’s theorem that Wy is orthogonal to Vj.

Next consider the space of all signals of the form f(t)+ g(t) where f(t) € V5 and g(t) € Wy. This
space is called the direct sum (or orthogonal sum) of V5 and Wy, and is denoted as V; = Vo & Wo. It
is the space of all L? signals bandlimited to [—27, 27]. We can continue in this manner and define the
spaces Vi and Wy, for all k. Then V} is the space of all L? signals bandlimited to [—2*, 2¥7]. And
Wi is the space of L? functions bandlimited to 2*7 < |w| < 2%¥*17. The general recursive relation
is Vg+1 = Vi ® Wy, Fig. 1.2.7 demonstrates this for the case where the filters are ideal bandpass.

Only the positive half of the frequency axis is shown for simplicity.

V;
Vi
Vv, |
o
Vo | W,
ol Wl w, W,
0 T 2r 4 8t ®

Fig. 1.2.7. Towards multiresolution analysis... The spaces {Vj}

and {W;} spanned by various filter responses.

It is clear that we could imagine V} itself to be composed of subspaces V_; and W_;. Thus
Vo=V_1®W_q, V1 =V_o & W_,, and so forth. In this way we have defined a sequence of spaces

{Vx} and {W;} for all integers k such that the following conditions are true:
Vi1 =V @ Wy, and Wir L Wy, k#m, (1.2.11)

where | means “orthogonal.” That is, the functions in W} are orthogonal to those in W,,. It is
clear that Vi C Vj41.

Now, the interesting fact is that even if the ideal filters ®(w) and V(w) are replaced with non
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tdeal approzimations, we can sometimes define sequences of subspaces Vi and W}, satisfying the above
conditions. The importance of this observation is this: whenever ¥{w) and ®(w) are such that we
can construct such a subspace structure, the impulse response (t) of the filter ¥(w) can be used
to generate an orthonormal wavelet basis! While this might seem too complicated and roundabout,
the construction of the function ¢(t) is quite simple and elegant and simplifies the construction of

orthonormal wavelet bases.

Definition 1.2.1. Multiresolution analysis. Consider a sequence of closed subspaces {Vi} in

L2, satisfying the following six properties.

1. Ladder property. ...V.ocV_iCcVoCWViCVW,...
[o <]
2. ) Ve={0}
k=—o0

oo
3. Closure of U Vi is equal to L2,

k=—00

4. Scaling property. z(t) € Vi if and only if z(2t) € Vi+1. Since this implies “z(t) € V; if and only
if z(2¥t) € V,”, all the spaces V; are scaled versions of the space V. For k£ > 0, Vj is a finer

space than V.

5. Translation invariance. If z(t) € Vp then z(t — n) € Vp; that is, the space V; is invariant to
translations by integers. By the previous property this means that V} is invariant to translations
by 27 *n.

6. Special orthonormal basis. There exists a function ¢(t) € V; such that the integer shifted ver-
sions {¢(t—n)} form an orthonormal basis for Vy. By property 4 this means that {2%/2¢(2%t—n)}
is an orthonormal basis for V. The function ¢(t) is called the scaling function of multiresolution

analysis.

Example 1.2.4. The Haar Multiresolution. A simple example of multiresolution where ®(w)
is not ideal lowpass is the Haar multiresolution, generated by the function ¢(t) in Fig. 1.2.8(a) (see
Ex. 1.2.2). Here V} is the space of all functions that are piecewise constants on intervals of the form
[n,n 4 1]. We will see later that the function ¥(t) associated with this example is as in Fig. 1.2.8(b);
the space W, is spanned by {y¢(t — n)}. The space Vj contains functions which are constants in
[27%n,27%(n + 1)]. Fig. 1.2.8(c) and (d) show examples of functions belonging to V; and V;. For
this example, the six properties in the definition of multiresolution are particularly clear (except

perhaps property 3, which can be proved too).
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O(t) the scaling function
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Fig. 1.2.8. The Haar multiresolution example. (a) The scaling function ¢(t) that
generates multiresolution, (b) the function (t) which generates Wo,

(c) example of a member of V; and (d) example of a member of V;.

Generating Wavelet and Multiresolution Coefficients From Paraunitary Filter Banks

Recall that the subspaces V, and Wy have the orthonormal bases {¢(t —n)} and {4/(t — n)} respec-
tively. By the scaling property, the subspace Vi has the orthonormal basis {¢xn(t)}, and similarly
the subspace W}, has the orthonormal basis {1k (t)}, where, as usual, ¢x,(t) = 2F/2¢(2%¢ — n) and
Yrn(t) = 28/24h(2Ft —n). The orthogonal projections of a signal z(t) € L? onto Vi and Wy, are given,
respectively, by

[e<]

[o <]
Plz®) = ) <f'3(t),¢kn (t)>¢kn ®, and  Qilz(®)]= ) <$(t),¢'kn (t)>1/1kn(t)-
n=—oo n=-—oo
(1.2.12)
Denote the scale-k projection coefficients as di(n) = (z(t), dxn(t)) and cp(n) = (x(t), Yrn(t)) for
simplicity. (The notation cx, was used in earlier subsections, but ci(n) is convenient for the present

discussion). We say that di(n) are the multiresolution coefficients at scale k, and cx(n) are the

wavelet coefficients at scale k.
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Assume that the projection coefficients di(n) are known for some scale, say k = 0. We will
then show that dx(n) and cx(n) for the coarser scales, i.e., kK = —1,—2,... can be generated by
using a paraunitary analysis filter bank {G,(e?“), H,(e’“)} corresponding to the synthesis bank
{G,(e9%), Hy(e?“)}. We know that ¢(t) and 4(t) satisfy the dilation equations (1.2.8). By sub-
stituting the dilation equations into the right-hand sides of ¢yn(t) = 2¥/24(2%t — n) and Yn(t) =
2k/24h(2Ft — n), we obtain

[> o] o0
¢kn(t) = \/5 Z gs(m - 2n)¢k+1,m(t)’ and ¢kn(t) = \/5 Z hs(m - 2n)¢k+l,m(t)-
m=—00 m=—00
(1.2.13)
A computation of the inner products di(n) = (z(t), gxn (t)) and cx(n) = (z(t), Ykn(t)) then yields

di(n) = Y V2ga(2n — m)des1 (m),
o (1.2.14)
() = Y, V2ha(2n —m)disa(m),

where g,(n) = g(—n) and h,(n) = h%(—n) are the analysis filters in the paraunitary filter bank.
The beauty of these equations is that they look like discrete time convolutions! Thus, if dxy; (n)
is convolved with the impulse response v/2g,(n) and the output decimated by two, the result is the
sequence dg(n). A similar statement follows for cx(n). Because of the perfect reconstruction property
of the two channel system (Fig. 1.2.6), it follows that we can reconstruct the projection coefficients

di+1(n) from the projection coefficients di.(n) and cx(n).

d_ 1 (n) (i_/z(n)
/ . .
do® Zam) [l T em i o = MO
V2h, (n) V2h, (n) V2h, (n)
.Y .y .
2 ) 2
v L b Wavel
' ] ! avelet
E C'l(n) i C'Z(n) i ! (@) 6cocfﬁcicnts
scale 0 scale -1 : scale -2 : scale -3

Fig. 1.2.9. Tree structured analysis bank generating wavelet coefficients

cx(n) and multiresolution coefficients dy(n) recursively.

The Fast Wavelet Transform (FWT). Repeated application of this idea results in Fig. 1.2.9
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which is a tree structured paraunitary filter bank with analysis filters v/2g,(n) and v/2h,(n) at each
stage. Thus, given the projection coefficients dy(n) for V5, we can compute the projection coefficients

dr(n) and ci(n) for the coarser spaces V_i, W_1,V_y, W_s, ... This scheme is sometimes referred to

as the Fast Wavelet Transform (FWT).
1.3 Thesis overview

The thesis is organized into five chapters. Chapters 2-4 provide the main body of the thesis. They
deal with three problems in filter banks and wavelets. The final chapter contains possible directions
for future research, open problems and concluding remarks. The rest of this section gives a brief

description of Chapters 2-4.

Chapter 2: Results on biorthogonal filter banks

In Chapter 2, we analyze properties of nonuniform maximally decimated filter banks. Even the
most trivial problems in uniform filter banks are rather difficult and often impossible to solve in the
case of unequal decimation ratios. For example, given a set of decimation ratios, in general, we do
not know if there exist rational filters satisfying PR. So we take one step at a time, and first we
establish equivalence between PR and biorthogonality. Then, an existence question is answered. If
it is known that there are rational biorthogonal filters satisfying PR, we show that there are rational
orthonormal filters satisfying PR. The proof is constructive, and we show how to obtain orthonormal
filters. However, stability cannot be guaranteed for the causal realizations of filters obtained this
way. Next, we give a set of necessary conditions that decimation ratios have to satisfy in order for a
rational PR filter bank to exist. Finally, we use techniques developed in the first part to show how
to construct filter banks which decorrelate subband signals. These results were reported in [Djo94].
The main results of the chapter are:
1) Equivalence of PR and biorthogonality of filters is established.
2) An orthonormalization technique for nonuniform maximally decimated PR filter banks is de-
rived.
3) A set of necessary conditions on the decimation ratios for existence of rational PR filter banks
is derived.
4) A procedure for constructing filters which produce uncorrelated subband signals is derived, for

the case of uniform filter banks.

Chapter 3: Statistical wavelet and filter bank optimization
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Wavelet transform is a generic term for an infinite number of transformations. The choice of a par-
ticular transform depends of the choice of the scaling function (in the case of orthonormal wavelets).
It is clear that some wavelet functions are more suitable for a particular task than others. Therefore,
if we have some knowledge about the signal, or the class of signals we want to analyze with wavelets,
we would like to know how to choose the scaling function. In the deterministic case, the problem
had already been analyzed. In this chapter, we find optimal scaling functions for analysis of WSS
random processes.

Because of the intimate relation between wavelets and filter banks, there is a corresponding
problem in the filter bank theory. Subband coders achieve compression by exploiting unequal energy
distribution across the subband. Therefore, it is important that a filter bank has good energy
compaction capabilities. The performance of a filter bank to perform energy compaction is expressed
in terms of its coding gain. The aim is to optimize filters in the filter bank to give a higher coding
gain for a particular input WSS random process [Djo94a]. We show that by putting just one pre-
and one post-filter, the coding gain of any PU filter bank can be significantly improved.

For a successful implementation of the MRA, one has to know the approximation of a signal
at the finest scale. This is done approximately. In the deterministic case, it had been shown that a
simple FIR pre-filter can reduce the approximation error significantly. We extend this to the case of
WSS random processes.

The main results of the chapter are:

1) Derivation of the objective function for finding an optimal scaling function.
2) Extension of the pre-filtering technique in MRA approximations to the case of WSS random
processes.

3) Optimization of PR filter banks for higher coding gain.
Chapter 4: Generalized sampling in multiresolution subspaces

One of the fascinating features of the MRA is the fact that a number of well known theories can be
embedded in its framework. One such example is the sampling theory for band-limited functions.
It turns out that band-limited functions form a MRA of L?(R). The sampling theory for band-
limited functions is rather deep and a proper treatment of the problem uses analytic functions,
Fourier transform, Reproducing Kernel Hilbert Spaces (RKHS), etc. The notion of RKHS is very
useful for the development of sampling theorems. Many spaces allowing sampling theorems have

been constructed using the RKHS theory. An important feature of MRA spaces is that under very
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mild conditions they are RKHS, and sampling theory can be developed. In the fourth chapter, we

develop sampling theory for MRA spaces when the sampling grid is periodically nonuniform. This

is an extension of the existing uniform sampling theorems. This generalization allows us to have

compactly supported synthesis functions, which was not possible previously. Several variations of

the basic result are derived. For example, derivative and multi-band samplings are considered, as

well as some other extensions. We show how these sampling theorems can be used for efficient

computations of inner products in multiresolution analysis [Djo94b].

The main results of the chapter are:

1) Extension of the existing sampling theorems to periodically nonuniform grids.

2) Construction of sampling schemes in which synthesis functions are compactly supported.

3) Various extensions of the basic idea.

4) Application of sampling theorems in efficient computation of inner products in MRA.

1.4. General conventions and notations

NS o e

10.

. R and Z denote the set of real and integer numbers respectively.
. R(z) and (z) are real and imaginary parts of z.

. L?(I) are spaces of functions whose p** power is absolutely integrable over the interval I C R.

We say that f € L7 if for any finite I C R, we have that f € LP(I) and the norm is

loc
1 llo.r = (J; 1f (2)Pdz) .
In all the integrals, the limits of integration are (—oo, 00) unless it is explicitly indicated.
The Fourier transform operation and its inverse are denoted by F and F~! respectively.
tr A denotes the trace of A.
The quantities AT and AT stand for transposition and transpose conjugation of the matrix A.
The notation fI(z) = HT(I /z*). Thus H(z) = Hi (z) on the unit circle.
Wn = e~27/N_ The subscript N is omitted whenever it is clear from the context. W is the

N x N DFT matrix. It has elements [W]p, = WT". Note that WIW = NI

. The AC (alias-component) matrix for analysis filters (defined for uniform M-channel filter

banks) is the one with components [H(z)]mn = Hn(2W™). For the synthesis filters we define a
similar matrix: [F(2)lmn = Fp(zW™).
A delay chain is a single input multi output system, with transfer function matrix given by

e(z)=[1 271 ... z=M+1|T
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The M-fold decimator has input-output relation y(n) = x(n)lM = z(Mn), or in the z-domain

M-1
Y(2) = X(2) I, = % 3 X (M Mwiy). (1.4.1)
=0

z(n/M), n=mul. of M

The M-fold expander’s input-output relation is y(n) = m(n)TM = { 0 otherwise

or in the z-domain Y(z) = X(z) t,,= X (™).

The so-called noble identity for multirate systems [Vai93] can be stated, for our purpose, as

(A(z"”)B(z)) an = (A(z) (B(z)) Jm) Lm. (1.4.2)

We say that H(z) has the Nyquist(M) property if (H(2))| = 1.

follows

If f(t) is a random process, its autocorrelation function is defined as

rss(t,7) = E[f () f*(t — 7)), (1.4.3)

where E[:] denotes the statistical expectation and * denotes complex conjugation. When this
autocorrelation function and the mean E[f(t)] do not depend on ¢, we say that it is a wide sense
stationary (WSS) random process. In that case, we define its power spectrum as the Fourier

transform of Ry¢(1) = r44(0,7)

S17(w) = F (Rys(r)) = / Rys(r)e=9*" dr. (14.4)

When 74£(t,7) is a periodic function of ¢t with period 7' (and if the same is true for the mean),
we say that it is a cyclo-wide sense stationary random process (CWSS)r [Pap65]. Then one
usually defines the autocorrelation function of this (CWSS)r process as the time average

T/2

Rys(r) = / T T (1.4.5)

Now the power spectrum of a (CWSS)r signal is the Fourier transform of Ryf(7). Similar

definitions are used for discrete time signals.
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Results on Biorthogonal
Filter Banks

2.1. Introduction

Xo(N)
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Fig. 2.1.1. (a) A nonuniform filter bank and (b) an equivalent uniform bank.

Fig. 2.1.1(a) shows an M-channel filter bank with integer decimation ratios n. The input signal z(n)
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is split into M signals which are passed through the analysis filters Ho(2), H1(2), ..., Hm-1(2) and
decimated by ny, (integers) for k = 0,1,..., M — 1. At the synthesis end, these signals are expanded,
passed through synthesis filters Fy(z), F1(2),- .., Fpm—1(z) and added. When #(n) = cz(n — no),
this system achieves perfect reconstruction (PR). In this thesis the PR property corresponds only
to £(n) = z(n), as this eliminates some inconvenient notations without much loss of generality.
When ), 1/ni = 1, we have a maximally decimated filter bank. A special case is whenng = M
for all k. We call it the uniform filter bank. Every nonuniform maximally decimated filter bank
can be equivalently represented by a “larger” uniform filter bank as in Fig. 2.1.1(b) (see [Hoa89),
[Kov91] and [Nay93]). The theory of uniform filter banks is well developed and such a system is

shown in Fig. 2.1.2(a). The analysis and synthesis filters can be expressed in polyphase form as
M-1 M-1
H;(z) = Z 2 *Eip(z™) and Fi(z) = Z 2P Rei(2M). (2.1.1)
k=0 k=0

With each filter represented like this, the system can be drawn as in Fig. 2.1.2(b) where E(z) and
R(z) are, respectively, the polyphase matrices of the analysis and synthesis banks. This system
has the PR property Z(n) = z(n) if and only if R(z) = E~!(z). There are different ways to design
a uniform filter bank that achieves PR, so the existence of rational filters (i.e., transfer functions
which are ratios of two polynomials) satisfying the PR property is trivially guaranteed. But in
the nonuniform case, it is not always possible to achieve PR with rational filters [Hoa89] (block
decimation [Nay93] is not considered in this chapter). Notice, however, that ideal filters (nonrational,
with possibly complex impulse response) can always be found such that the PR property holds for any
set {ny} satisfying 3~ 1/nr = 1. So, whenever we discuss existence of PR systems, the discussion
pertains only to rational filters.

A set of necessary and sufficient conditions on the set {ny} for PR to be possible is not known.
On the other hand, we know some sufficient conditions. If the numbers {n;} are coming from a
tree structure, for example, then we can have PR with rational filters [Som93a], [Smi86]. Not all
decimation ratios allowing PR allow it with a tree structure. TFor example consider M = 23 and

the set

{6,10,15,30,...,30}.

20 times

This set satisfies Ziio 1/ny = 1. The filters that achieve PR are H;(z) = Fy(z) = z7% where the
set of I’s is {0,1,2,3,4,5,7,8,9,10,13, 14,15, 16, 19, 20, 22, 23, 25, 26, 27, 28, 29}. For this, note that

T The authors would like to thank Tsuhan Chen for pointing out this example.
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the output of the i** decimator is z(mn; — [;). We want every input sample to go through one and
only one branch, which is equivalent to saying that mn; —I; # kn; —l; for i # j and any choice of
m and k. On the other hand, since ged(ng,ny,...,n92) = 1, these numbers cannot come from a tree
structure (if there were a tree, the decimation ratio at the first level of the tree would be a factor of
this ged). Because of such possibilities, we will not assume that {n;}’s come from a tree. Before we

discuss these issues in greater detail, let us explain some conventions and definitions in this chapter.

x(n) Xp(n) (n)
i——-_».——l—_—»«-Ho(z) M (n) | Fo(z) |1
X1 4

/
[ -~ @

) | . (R2 [ . 17

delay chain advance chain
Fig. 2.1.2. (a) A uniform filter bank and (b) its polyphase decomposition.

All our signals are in I, space (i.e., finite energy signals). The inner product is defined as

oo

<z(n),y(n) >= Y z(n)y*(n),

n=—oo

and the norm ||z(n)||; will be defined according to ||z(n)||3 =< z(n),z(n) > .

Biorthogonality and Orthonormality

Definition 2.1.1. A system of sequences {h;(n — mn;), fi(n — kn;)}, 0 < i,l < M — 1 for all

m,k € 2 is called a biorthogonal system if
< hi(n —mn;), ff(—n+ kny) >=6(i — 1)é(k — m) (biorthogonality). (2.1.2)

&
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In the special case of orthonormal filter banks, the perfect reconstruction property is achieved by

setting fi(n) = hj(—n). In this case, the biorthogonality reduces to
< hi(n —mn;), hi(n — kny) >= 6(t — 1)é(k — m) (orthonormality). (2.1.3)

If the above equation holds for some 3 and I, we often say that “the two filters H;(z) and He(z) are
orthonormal.” It should be borne in mind that the actual meaning depends on n; and n;. The set

{fi(n —n;k)}M 51 Vk will be referred to as a filter bank-like system.

A question of interest in nonuniform filter bank theory is the following: suppose the integers
{nx}25} are such that a biorthogonal PR system (with biorthogonal, rational filters) exists. Does
it mean that an orthonormal PR system also exists? (Again, for the uniform case, the existence is
trivially guaranteed simply by constraining E(z) to be paraunitary.) We will show by construction
that for a given set of integer decimation ratios {nk}ﬁ";l, the existence of biorthogonal systems
implies the existence of orthonormal PR systems as well (Sec. 2.3).

The procedure to convert the biorthogonal system to an orthonormal one is reminiscent of the
Gram-Schmidt (GS) procedure, but is not the same for a variety of reasons. First, the orthonor-
malization of the basis is required to preserve the filter bank-like form of the basis; a conventional
GS procedure would not give us this. Furthermore, using z-domain analysis and the special form of
our system, we will be able to do the orthonormalization process in a finite number of steps (even
though I, is an infinite dimensional space). This is another point of departure from the traditional
GS technique.

At this point, the reader should be warned that this orthonormalization procedure is mostly of
theoretical importance. The filters resulting from the orthonormalization not only are IIR in general,
but also have huge orders; the proposed orthonormalization is not an alternative design technique
for filter banks (after all we do not have biorthogonal filters to start the orthonormalization process).
For the purpose of subband coding, there exists a simple scheme to generate inexpensive orthonormal
filter banks, based on the so-called power symmetric filters (pp. 204 [Vai93]). These can also be

used in a tree structure to obtain a subclass of nonuniform IIR orthonormal systems.

2.1.1. Chapter outline

In Sec. 2.2 we discuss the detailed reasons why biorthogonality and perfect reconstruction (PR)

are identical concepts for mazimally decimated filter bankst. Several corollaries of this result are

t A brief sketch of some of the results has been presented in [Djo93].
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derived in Sec. 2.2.2. For example, we show that for PR to be possible, no two decimation ratios
can be relatively prime. We also show that if a perfect reconstruction system is such that all the
analysis and synthesis filters have unit energy, then the system becomes orthonormal (paraunitary
in the uniform case). We also show that the shifted filter responses form a Riesz basis for l; space.

In Sec. 2.3 we show that whenever the decimation ratios {n;} of a maximally decimated system
are such that perfect reconstruction is possible (i.e., such that there exist biorthogonal filters), then
in particular, there exists an orthonormal filter bank. The proof is constructive, that is, given a
set of biorthogonal filters we show how to find a set of orthonormal filters starting from these.
Numerical examples are included. In general, the resulting orthonormal filters turn out to be IIR
even if we start with an FIR biorthogonal system. However, the IIR filters are guaranteed to be free
from poles on the unit circle. This means that, should they turn out to be unstable, a non-causal
implementation can be found which is stable [Opp89], [Ram88].

In Sec. 2.4 we use the techniques of Sec. 2.3 to decorrelate the subband signals. Unlike the
KLT, this decorrelation is for all time instants.

In Sec. 2.5 we derive some further necessary conditions on the decimation ratios {n } for perfect
reconstructability. These can be regarded as generalizations of the compatibility condition given in
[Hoa89] and [pp. 285 of Vai93]. Some of the technical details which arise in the proofs have been

moved to the Appendices (A—C) to provide a smoother reading.

2.1.2. Chapter—specific notations and conventions

Throughout the chapter, we will use the following notations. Integer M denotes the number of
channels of the nonuniform system (Fig. 2.1.1(a)). The integer L = lem (ng,7n1,...npm—1). Also,

gij = ged (ni,nj) throughout the chapter. The integers {k;} are numbers that satisfy

L= ko’no = k1n1 == kM._l’nM_]_. (2.1.4)

2.2. Equivalence of biorthogonality and PR property

For the study and design of uniform filter banks, there exist powerful tools such as the polyphase
formulation and the AC matrix formulation. In order to use them in a nonuniform filter bank, we
have to transform it into the equivalent uniform one [Hoa89], [Kov91]. This is shown in Fig. 2.1.1(b).

There are L branches (where L is the lcm of {n;}), and each of them has the same decimation ratio.
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The analysis filters are numbered as

So(z), S1 (Z), ey Sko_l(z), Sko (Z), ey (221)

and similarly for the synthesis filters Q;(z). Thus the analysis and synthesis filters are

Si(2) = 2™ Hy(2), Qr(z) = 27" Fp(2), (2.2.2)
where
-1 m—1
i=p+Y ki, 0<p<k-1, k=r+) kj, 0<r<kn—1L (2.2.3)

Here k; = L/n; and its meaning is clear; we just made k; delayed filters from each original filter
H;i(z), i.e., each new filter comes from one of M original filters. The biorthogonality (2.1.2) can be

rewritten as [Som93a]
Zhi(n)fz(mgiz —-n)=6(Gi-06(m), 0<i,l<M-1, meZ  (biorthogonality), (2.2.4)
n

where g;; =ged(n;,n;). This infinite set of conditions can be compactly written as a finite set of
conditions in the z-domain

(H,(z)Fl(z))l =6(i-1), 0<il<M-1 (biorthogonality). (2.2.5)

gil

Again, if Fi(z) = ﬁi(z), then the above property is called the orthonormal property and can be
written as

(H,-(z)ﬁ,(z)) lg —=6@i—1) (orthonormality). (2.2.6)

In this section, we will show that the most general form of PR for a maximally decimated filter
bank is a Riesz basis for [y space, formed by the analysis and synthesis filters. This issue has come
up in earlier work, but has not been shown or proved this way. The relation between filter banks
and wavelets and the role of orthonormality has been discussed in [Vet92], [Rio91], [Gop92], [Dau92]

and [Som93a]. This will be followed by the derivation of a number of corollaries.

2.2.1. PR implies biorthogonality of analysis and synthesis filters

Theorem 2.2.1. Let the system in Fig. 2.1.1(a) be a maximally decimated filter bank with

1

decimation ratios {ng};_o . If the filter bank has the perfect reconstruction property, the filters

form a biorthogonal system; that is they satisfy (2.2.5).
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Remarks.
1. This is a fairly subtle fact, holding only because of mazimal decimation. For example, consider
a two-channel undecimated system with filters Ho(2) = 1+ 271, Hi(z) = 1 — 271, Fo(2) =
Fi(z) = 1/2. Then we have PR, but not biorthogonality.

2. The converse of the above theorem also holds; see Appendix 2.B of [Vai93a].

Proof. Let S;(z) and Qx(z) be analysis and synthesis filters of the equivalent uniform filter bank.
They are related to H;(z) and Fy,(2) as in (2.2.2) and (2.2.3) (see Fig. 2.1.1(b)). Let S(z) denote
the AC matrix of the above analysis bank S;(z); that is [S(2)]mn = Sn(zW™) (Sec. 2.1.2), and let

E(z) be the corresponding polyphase matrix. These are related as [Vai93, pp. 234]
S(z) = WHA(2)ET (1), (2.2.7)

where A(z) = diag(1,z71,...,2z=(E=1). Similarly for the synthesis bank define Q(z) such that
[Q(2)]mn = Qn(zW™), and let R(z) be the polyphase matrix as defined in Sec. 2.1 We have

Q(z) = WA I(2)R(zh). (2.2.8)
Then -
——e
S(2)Q7(2) = WIA(z) (R(5)E(Y)T A ()W = WiW = L1 (2.2.9)

This is because R(z)E(z) = I, due to PR property. So we get [since S(z) and Q(z) are square
matrices]

Q(2)ST(z) = S(2)Q%(z) = LL. (2.2.10)

Notice that without the assumption of maximal decimation, the matrix A(z) would not be square,
A~'(2) would not exist and we would not have S7(2)Q(z) = Q(z)ST(z) = LI (which is an important
step in the proof!).
The condition ST(z)Q(z) = LI implies, in view of the definitions of S(z), Q(z) and (1.4.1),
that
(Si(2)Qu(2)) |, = 6 — k). (2.2.11)
Now suppose that i, k are such that [ # m in (2.2.3), i.e., that S;(2) and Q4(z) do not come from

the same original branch. Then (2.2.11) can be written as

(z”""’"'"Hl(z)Fm(z)> l =0, (2.2.12)

L
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for0<p<ki—1and 0<r <k, —1. With
= bimGim and N = biniGim, (2.2.13)
where g;,n, =gcd(ny, ny, ), this becomes
(z("b"""'b"")g‘"‘Hl(z)Fm(z)) lL =0. (2.2.14)
By multiplying (2.2.14) by 2¢ and using L = kN = kmbmigmi, we get

24 ((z(pbz,,.-—rbm;)ggm H, (Z)Fm (Z)) 1L> — (Z(pblm—Tbml+dkmbml)glm Hl(z)Fm(z)) lL =0,Vde Z.
(2.2.15)
It is shown in Appendix 2.A that (pbiym — Tbm; + dkmbm;) can take any integer value a, under the

conditions 0 < p< k —-1,0<r<k,,—1,and d € Z. Then

kibimgim

(zayth,(z)Fm(z)> l = (Za ((H,(z)Fm(z)) lg,m>> lk,b,m -0 VaecZzZ. (2216

Since this holds for all integers a, we can rewrite it as

(H,(z)Fm(z)) le =0. (2.2.17)

Let now S;(z) and Qx(z) come from the same branch, i.e., I = m. Then (2.2.11) means

(Z(p_")""‘Hm(z)Fm(z)) lL = (Z(P—r) ((Hm(z)Fm(z))j )) l =6(p—r). (2.2.18)

km

Now p — r can reach any integer in [—k., + 1, k;y, — 1], so that the last equation is equivalent to
(Hm(2)Fn(2)) |, =1. (2.2.19)

Together with (2.2.17), this implies biorthogonality (2.2.5).

2.2.2. Corollaries

Corollary 2.2.1. No two decimators can be coprime.

If any two n;’s are relatively prime, then their ged is 1 and we cannot satisfy the conditions for PR
with rational filters. This is because (2.2.5) now implies H;(z)F,(z) = 0 for | # m and this cannot

be satisfied with rational filters.
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Corollary 2.2.2. Completeness.

Definition 2.2.1. A set of vectors {x;}32, in an infinite-dimensional Hilbert space is said to be
complete if the zero vector is the only vector orthogonal to all of x;’s (pp. 6. [You80]).

¢

Assuming that the filter bank has the perfect reconstruction property, the completeness of the

filter bank follows immediately. To see this, let us write the reconstructed signal

M-1 oo ) M-1
zn)=>. 3 3 hink—m)z(m)filn—nik) = Y Y (a(—m), ki (m + nik)) fi(n — nik).
i=0 k=—oo0 m=—c0 =0 k

(2.2.20)
Assume there is a nonzero input z(n) such that z(—n) is orthogonal to all the analysis filters and
their n;-shifted versions. Then the above sum would be zero and the system would not be a PR
system. Similar conclusion can be made for the synthesis filters if we interchange the analysis and

synthesis filters (because PR is not violated by such an interchange).

Corollary 2.2.3. Linear independence.

Definition 2.2.2. A set of vectors 7 (n) = {fi(n — n:k)}5?, k € Z in an infinite-dimensional

Hilbert space is said to be linearly independent (or minimal) if none of 77k (n)’s lie in the closure of
the linear span of {mm(n)}i2s' m # K for I = J (see pp. 28. [You80] for the Banach space case).

¢

Since the synthesis filters form a biorthogonal system, it can be proved [You80] that the set of

sequences 7;x (n) is linearly independent. We will often say “filters Fj(z) and F;(z) are linearly inde-

pendent,” meaning that the corresponding time sequences and their shifts are linearly independent

in the above sense.

Corollary 2.2.4. Basis property.

In an infinite dimensional Hilbert space, completeness and independence of a set of vectors is not
sufficient to conclude that these vectors form a Riesz basis!. However, by using the further assump-
tion that the synthesis and analysis filters are stable (i.e., Y, |hi(n)| < oo and }_,, |fi(n)| < oo or
F;(e#), H;(e’*) exist and are upper bounded by a finite constant), we show that {f;(n —mn;)} 5"

and {h;(n — mn,-)}?ial V m € Z are bases for I, space. For this, we will invoke Theorem 9, p. 32,

[You80]. Since completeness and linear independence have been established earlier, it is sufficient,

T For the definition of a Riesz or unconditional basis, see [You80] p. 31. or [Chu92] p. 71.
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according to the above theorem, to show that 30 < C1,Cy < oo such that

M-1 M-1
3 Y i< am), frmni—n) > P < Cillz|l} and Y D | < z(n), hi(mn; —n) > |* < Coll|f3.
i=0 m i=0 m
(2.2.21)
In this discussion, all summations are from —o0 to oo unless indicated differently. Thus
M-1 M-1 , M-1
Y Y <am), frmni—n)>P=)" ) ] Y z(n) fi(mn —n)| =3 Y la(m)P, (2.2.22)
=0 m i=0 m n =0 m

where z;(n) is the n;-fold decimation of the convolution z(n) * f;(n). Using Parseval’s relation the
above can be rewritten as
M-1 oo M-1 1 2 )
S 3 I<a), flmni-n) > = 3 o [ 12 P
i=0 m=—oo =0 0
M-1 1 2 M-1 ] 9
< Z —/ |X(e"")Fi(eJ“’)|2dw < ||z(n)||2 max |Fy(e’)|” < C||lz(n)||3. (2.2.23)
= 2r Jo =5 welo.2n]
The first inequality follows because the energy of a decimated sequence is no greater than that of the
undecimated version. The proof for the analysis filters is similar. So, we really have a biorthogonal

basis formed by the set of n;-shifted versions of the synthesis and analysis filters.

Corollary 2.2.5. Unit energy implies orthonormality!

Consider the maximally decimated system [Fig. 2.1.1(a)]. Suppose the following two properties are

satisfied:

1. Perfect reconstruction property, and
2. All analysis and synthesis filters have unit energy, i.e., ., |hi(n)|> = ¥, |fi(n)]> = 1, for
0<i<M-1.
Then the synthesis filters satisfy orthonormality. In other words, eqn. (2.2.6) holds. To prove this,
note that the perfect reconstruction property implies biorthogonality (Theorem 2.2.1.), so that, in

particular, - hi(n)fi(—n) = 1. Now, Cauchy-Schwarz inequality says

Y )P Y I 2 3 m fi-m)| (2.2.29)

The right-hand side is unity, by the biorthogonality. The left-hand side is also unity if the analysis
and synthesis filters have unit energy. But equality in Cauchy-Schwarz inequality implies h;(n) =
%% fr¥(—n) for some 6;. Substituting in (2.2.4) we readily conclude that §; = 0 and that the set of

synthesis filters (equivalently, the set of analysis filters) satisfies orthonormality.
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Corollary 2.2.6. Generalization of Nyquist and power complementary properties.

For uniform filter banks (n; = M for all ¢) it is well-known that if the system is orthonormal
(paraunitary), the filters H;(z) and F;(z) are spectral factors of Nyquist(M) filters (or Mth band
filters) [Vai93, pp. 297]. In the more general (nonuniform, and biorthogonal case), this property is
replaced with the property that H;(z)F;(z) is a Nyquist(n;) filter. We can readily see this from the
biorthogonality condition (2.2.5) (Hi(z)Fi(z)) L,. ~1.

Next, for the uniform paraunitary filter bank,' it is well known that the analysis filters are power

complementary, and so are the synthesis filters [Vai93, pp. 296). For the general case (nonuniform,

biorthogonal) we have

>~ HEFE) = 1, (2:2.25)

(see [Vai93a]) which reduces to the power complementary property >, Hi(2)Hi(z) = M in the

uniform paraunitary case.

2.3. Orthonormalization of biorthogonal filter banks

From the second section, we know that if the integers {nk}fc‘gl are such that PR is possible, the
analysis and synthesis filters (and their shifted versions) form a biorthogonal basis. Under this
condition, does there exist a PR system with orthonormal filters? The answer to this question is in
the affirmative; we will present an orthonormalization process which preserves the filter bank-like
form of the system {h;(n — mn;), fi(n — kn;)} for 0 <i,l < M —1 and m, k € Z. If one wants just
to orthonormalize some set of vectors, the Gram-Schmidt technique is one way of doing this, but we
want more, namely to preserve the filter bank-like form of the system. We now show how to achieve
this aim. Our procedure is reminiscent of the Gram-Schmidt technique, but it converges in a finite

number of steps even though the space has infinite dimension.

2.3.1. Normalization condition or Nyquist condition

Let Fy(z) be a rational transfer function. Define
G(2) = ar(2™ ) Fr(2). (2.3.1)
Then Gi(2)Gr(2) = ag(z™)@x (2™ ) Fi (2) Fy(2), so that

(ak(z"")&k(z"")Fk(z)f‘k(z)) l = g (2)@x(2) (Fk(z)ﬁk(z)) Lk. (2.3.2)

Nk



32
Now if we choose ax(z) such that

1
(A@RE) |

ar(z)ax(z) = (2.3.3)
we get (Gk(z)ék(z)) lnk = 1. A function Gg(z) with this property will be called normalized.
This is different from the usual meaning of normalization of vectors in l;. In the time domain, the
above normalization condition means that the ny-shifted versions of g (n) (i.e., {gr(n —ing)}) form
an orthonormal set. Equivalently, Gi(z)Gx(2) is a Nyquist(ny) filter [Vai93, pp. 151]; that is its
impulse response coefficients h(n) satisfy h(ngi) = 0 for ¢ # 0.

The existence of ax(z) satisfying (2.3.3) is assured because of the following. We have
b 1 ~ l/m. 1 1/ng 1
= — . .34
(I‘k(Z)Fk(Z)) ln,, - EO k(2 W B (21 W) (2.34)

Since Fj (z)ﬁ;c (2) > 0 on the unit circle, each term in the above expression remains nonnegative.
Thus whenever Fj(z) is rational, the function (F;c (z)ﬁk(z)) J is rational and nonnegative on the
unit circle. Such functions can always be written as a productng(z)'d(z). The spectral factor a(z) (a
rational function, not unique) can be obtained by standard spectral factorization techniques. Now
take ax(z) = 1/a(z) and (2.3.3) is satisfied. The function a(z) can be chosen to have no poles
outside the unit circle (by choosing a(z) to have minimum phase), but what if a(z) has a zero on
the unit circle? Then ax(z) will have a pole on the unit circle! This potential instability will be
handled later on.

If two filters F;(z) and Fy(z) are orthogonal, will that property be preserved by the above

operation? Let G;(2) and Gi(z) be the normalized versions of F;(z) and F(z). Then

(6:@Gu(2) L, = aste™/om)au(z"/ow) (Fi@)Fi(2)) L, =0 (2.3.5)

=0

showing that orthogonality is preserved (notice that ng/gir and n;/gix are integers). Summarizing,
if we have a set of orthogonal filters {F;(z)}M5?, then the above normalization can be used to obtain

a set of orthonormal filters {Gi(z)}5".

2.3.2. Orthogonalization

Let {H(2), Fy (z)} 5! be a biorthogonal set of rational analysis and synthesis transfer functions

for a maximally decimated PR filter bank with decimation ratios {ni}i5'. We now describe a
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procedure to get a new set of rational transfer functions {Gj (z)}kl"fz?)1 which are mutually orthogonal,
i.e., satisfy

(Gk(z)é;(z)) 1 =0 fork,Il=0,1,...,M —1andk #1. (2.3.6)

gkl

We start by making Go(2) = Fo(z) and G1(z) orthogonal to Go(z). For this, let us look for G1(2)
of the form

Gl (Z) = F1 (Z) - ,301(2901)F0(Z). (237)

(G1 (z)@o(z)) lgm = 0 can be achieved if we set

(Fl (Z)%o(z)) 1901 . (238)
(Fo(2)Go(2)) g0

Clearly 8o1(z) is a rational transfer function. Then, G;(z) as in (2.3.7) remains a rational trans-

Bo1(2) =

fer function. This is how we start this orthogonalization process. Assume that we have made
Go(z),G1(2),...,Gs—1(2) orthogonal to each other in the sense of (2.3.6). In the s* step we want

to make G,(z) orthogonal to Go(z),G1(z),...,Gs—1(z). Assume G4(z) in the form

Gs(z) = Fy(z) — iﬂis(zg'i)Fi(z)- (2.3.9)
i=0

Let

L = g50Cs0 = §51Cs1 = *** = §g,5—1Cs,5—1- (2.3.10)

After expanding (3;,(z) into cs;-fold polyphase components, we get

Csi—1

Bis(2%%) = Y 2719 B (1), (2.3.11)

=0
80 G4(z) is of the form

8—1csi—1

Gi(2) =Fu(2) = Y D Bia(z")z79 Fi(2). (2.3.12)

i=0 1=0
We want to make G,(2) orthogonal to Gi(z) for £k =0,1,...,s — 1. In other words we want

8—1csi—1

(G,,(z)ék(z)) lm = (Fs(z)ék(z)) LM - ¥ (ﬂi,l(zl‘)z"g"Fi(z)ék(z)) 1 =0, (2313)

i=0 1=0 g
It is easily verified that (A(z2)) 4= 0 if and only if (z’"gA(z))lecy =0form=0,1,...,c—1.
Then, (2.3.13) can be written as

8—1cai—1

S5 Binlz) (zmg’k_lg"ﬂ(z)ék(z))lL = (zmoFy(2)Gi(2) ) L’ (2.3.14)

=0 [=0
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form=0,1,...,cqg—1and k =0,1,...,s—1. So we have Zf;& ¢y unknowns ;4 (2), and the same
number of linear equations. If the determinant of the system (which is a rational function of 2) is not
identically zero, we can solve the system of linear equations for ;5 (2)’s. If this is not the case, we
can keep decreasing the number of unknowns until we have a determinant that is not identically zero
(see Appendix 2.B). After solving it, we see that (3;,(z)’s are rational functions, so G,(z) will remain
a rational transfer function. Using the biorthogonal filter H,(z) and the time domain equivalent of
(2.3.9), one can show that the trivial solution G4(z) = 0 is excluded [(8is(29°¢)Fi(2)Hs(2)) In,= 0
for i = 0,1,...,5 — 1 and (Fs(2)H,(z)) dn,= 1, so that (G;(z)H,(2)) In,= 1 which implies that
G,(2) # 0]. At the end of this process, we have a new set of rational transfer functions {Gx(z)} ey

satisfying (2.3.6).

2.3.3. Stability

In this subsection we show that if the transfer functions resulting from the orthonormalization have
poles outside the unit circle, they can be moved inside, preserving the orthonormal and PR property.
We also show that in the process of orthogonalization and normalization described in Sec. 2.3.2 and
2.3.1, the poles will automatically be excluded from being on the unit circle.

First assume that after the orthonormalization we got {G} (2)}27' with some poles outside the
unit circle. For example, let 2o be a pole outside the unit circle. (1 — 27" 2z{*) has zeros at 20W},

for 0 < 1 < ng — 1. Define the product
Qr(z™) = (1 —z7™zg*)(1 — 27 ™20%) ... (2.3.15)

where zg, 21 ... are the poles of G} (z) outside the unit circle, and construct the allpass function

Qu(z™) (2.3.16)
Qr(zm)

This has all poles inside the unit circle. Now form a new set of functions as Gi(2) = (2™ )G} (2).

Y (2™) =

Then Gg(z) has no poles outside the unit circle. The new set satisfies orthogonality because, for
m # k,
(G@Gm(@)) | = (™)GL()Tm(z")Gn(2)) |
g

km Gkm
— g (27/96m )7, (m 9km) ( ;c(z)éim(z)) l —0. (2.3.17)
« gkml
-0
(Recall that ng/gkm and nm,/gkm are integers.) Normality is preserved too since
(G@G@) | =m@@ (Gi)G =) | =1. (2.3.18)
Ny R R nk‘

~~ ~~
=1 =1
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So, we have shown how to replace the poles outside the unit circle with poles inside, without
destroying orthonormality.
Avoiding poles on the unit circle.

Let us repeat (2.3.9) below, but call it P,(z) for notational convenience.

8—1
Py(2) = Fy(2) = )_ Bia(27) Fi(2). (2.3.19)
i=0

This function, in general, can have both poles and zeros on the unit circle. First, assume that it hasa
pole of order r at z, = e/“». It will be shown that this will be canceled in the process of normalization.
Recall that the normalized function G,(z) is constructed according to G,(z) = a,(2"*)P,(z), where
1
P()P(2) |

It is shown in Appendix 2.C that if P,;(z) has a pole of order r on the unit circle, then a,(z"*)

(2.3.20)

as(2)as(z) = (

ns

defined as per (2.3.20) will have a zero of order at least r at the same point. This zero will cancel
out the pole of P,(z), so that the normalized G,(z) will not have any pole at that point. We see
that G,(z) cannot have any pole on the unit circle coming from P,(2).

The other possibility is that a,(z™*) itself has a pole on the unit circle, i.e., (P,(z)ﬁ,(z)) l
has a zero on the unit circle. Assume that a,(z™) has a pole of order r at 2o = €/“°, and hence a;

z2oWk , 0 <k <n, — 1. We have

1

(rere) ], )1,

From this equation we conclude that a,(z™) can have a pole of order r at some point, on the unit

a,(z™)a(z") = (2.3.21)

circle, if and only if ((P, (z)ﬁ, (z)) Ll) Tn has a zero of order 2r at that point. For this to happen
P,(z) must have zeros of order at least r a‘t z = ZoW,’f’ for k =0,1,...,n; — 1 (for the proof see
Appendix 2.C). These zeros will cancel with the above mentioned poles of a,(2™*) when G,(z) is
formed. From this we can conclude that G4(z) cannot have any poles on the unit circle. Together

with the fact that poles outside the unit circle can be moved inside, we conclude that the described

procedure leads to stable filters.

2.3.4. Numerical examples

Example 2.3.1. Uniform system. As an example of the above described procedure, we or-

thonormalized a uniform, four-channel filter bank. The filters that we started with were all FIR,
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linear-phase, obtained from a two-level tree of two-channel filter banks. Each filter in the two-channel
module has length 10 ([Ngu89]). The resulting orthonormal filters are IIR and their numerator de-
grees are 28, 44, 140, 380 and denominator degrees 25,41, 77,377 respectively. We see that the orders
of the filters increase rapidly as we proceed with the orthonormalization process. The magnitude
responses [see Fig. 2.3.1 (a) and (b)] are more or less the same before and after orthonormalization.
Most of the polynomial coefficients after orthonormalization are very small and can be discarded

without harming the frequency response, but it deteriorates the orthonormality property.
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Fig. 2.3.1. Example 2.3.1. Magnitude responses of analysis filters,

(a) before orthonormalization, (b) after orthonormalization.

Example 2.3.2. Nonuniform system. We orthonormalized a three-channel filter bank with
decimation ratios 4,4 and 2. The filters that we started with were all FIR with lengths 28,28

and 10. After the orthonormalization, we got IIR filters with numerator degrees 100,28, 10 and
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denominator degrees 33,25, 9 respectively. Again their magnitude responses [shown in Fig. 2.3.2 (a)

and (b)] do not differ much.

The examples show that, while the above procedure is of theoretical interest, the resulting filters
are far from being efficient. The main aim of the section is to emphasize the existence of orthonormal
systems for nonuniform filter banks where biorthogonal systems exist, and then demonstrate the

orthonormalization technique.

(a)

0.1 0.2 0.3 0.4 0.5
Normalized frequency

10

/ m ®)
y o : 3

0.1 0.2 0.4 0.5
Normalized frequency

Fig. 2.3.2. Example 2.3.2. Magnitude responses of analysis filters

(a) before orthonormalization, (b) after orthonormalization.

2.3.5. Numerical considerations

In actually implementing the orthogonalization algorithm, one faces the problem of decimating IR
transfer functions [(2.3.5), (2.3.8), etc.]. Theoretically, we could expand the rational transfer function

into partial fractions, then expand each of them into a power series in z and retain every n* term.
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This does not yield numerically accurate results. There are several ways to avoid the factorization
of polynomials.

The first one is based on a state-space manifestation of the decimation. Namely, if A is a state
transition matrix in some realization of H(z), then A™ is a transition matrix of the decimated
system H(z) ln,. Now in order to get the denominator of the decimated system, we need to find the
characteristic polynomial of A™. Notice that the size of A™ grows linearly with the filter order.

Another method, again system theoretical, relies on the fact that a rational transfer function
(with no common factors in the numerator and denominator) of order N can be determined from
the first 2V 4 1 impulse response coefficients (it can be shown that the determinant of the system
is nonsingular [Kai80]). The impulse response coefficients of the decimated system can be obtained
from the impulse response of the original system, which can be easily obtained from the difference
equation described by that transfer function. The problem with this approach is that the matrix of
the system of linear equations, even though nonsingular, is typically ill-conditioned.

The third method is based on the frequency manifestation of the decimation. Namely, we know

that

(H(z)) L = (1/n;) g H(z/™w*). (2.3.22)

Now if we write H(z) as a ratio H(z) = N(z)/D(z), the denominator of the decimated system can
be written as
ni—1
Da(z) =n; [[ D(E/™wWk). (2.3.23)
k=0

So in order to get the denominator of the decimated system, we have to find FFT’s of the modulated
denominators of the original system D(zW*), multiply them, stretch n; times (i.e., decimate by n; )
and multiply by n;. The inverse FFT of the result will give us D4(z). Notice that here we have a
product of polynomials, which is appropriately implemented using the FFT. The critical factor is
the number of terms in the product. It depends on n; only, not on the order of the filter (as opposed
to the first method).

After we get the denominator, getting the numerator is easy. We can again use FFT techniques.
Calculate the sampled DFT of H(:W*), H(e/'W¥*) = %Eﬁ,—',‘x%, where w;’s are the sampling
frequencies (frequencies at which DFT is the sampled Fourier transform of the numerator and
denominator). We add all of these, divide by n;, and stretch n; times, to get the sampled DFT of
H(z) {n,= Hq4(z). Since we already know the DFT of the denominator of this sampled frequency

response, we can get the DFT of the numerator. The product of this sampled DFT and the DFT
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of Dy4(z) will give us Py(e?“') = Hy(e/“)Dy(e?“t). After doing the inverse DFT of this sequence,
we get the numerator polynomial P;(z). One has to pay attention to the number of points of FFT
(sampling density of DFT) to avoid aliasing in the frequency.

The third method yielded much better results than the second one, especially for high order
filters and large decimation ratios. This method was actually used for producing all the above

examples.

2.4. Complete decorrelation of subband signals

In the traditional transform coding, where the polyphase matrices of the corresponding uniform
filter bank are just constant unitary matrices (KLT for example [Jay84]), the subband signals z;(n)
are decorrelated for the same time instant. That is, E{z;(n)z}(m)} = 0 whenever i # j and m =n.
In the other extreme case where the filters are ideal brick wall filters (the polyphase matrix having
infinite order) the subband signals are completely uncorrelated, that is E{zi(n)z}(m)} = 0 whenever
1 # 3, for any choice of n,m.

In this section we will consider the problem of complete decorrelation by use of rational (finite
order) filters. We will show that the subband signals cannot be decorrelated in this way if we use
rational paraunitary filter banks (unless the input signal has severely restricted statistical properties;

see below).

2.4.1. Decorrelation with orthonormal filters

Consider a uniform system in which ny = M for all k£ (nonuniform systems have subband signals
which are not necessarily jointly WSS). Let the filter bank input z(n) be WSS with power spectrum
Szz(z), assumed to be a rational function of z. For any scalar input signal z(n) we can form a vector
signal x(n) = (z(nM) z(mM —1) .- z(nM — M +1))T. This vector signal is the output of
the delay chain in Fig. 2.1.2(b) after decimation, and is called the M-fold blocked version of the
input signal z(n). It is known [Sat93] that the power spectral matrix of this vector WSS process is

pseudo-circulant. Namely

IS:cz,O(z) Szz,l(z) tee Szz,M-—l(z)
27 8oz, M—1(2 Sez,0(2 v Spem—2(2)
Sxx(2) = o 1) ”:O( ) R (2.4.1)
z_ls:cz,l (Z) 2_1531,2(2) te Szz,O(Z)

where S, i(z) is the i** polyphase component of the autocorrelation function S,,(z). After passin
) g
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x(n) through the analysis bank polyphase matrix E(z), the output signal y(n) has power spectrum
Syy(2) = E(2)Sxx(2)E(2). (2.4.2)

If we want the subband signals to be decorrelated, then Syy(z) has to be a diagonal matrix. Fur-
thermore, if we use orthonormal systems, the polyphase matrix has to be unitary on the unit circle.
Thus, on the unit circle, (2.4.2) can be regarded as a unitary diagonalization of the Hermitian matrix

Sxx(€?). Now we recall that a pseudo-circulant matrix can be written as [Vai88a]

I(2)W wir-1(z)
Sux(z) = MD(z)—="2L 2.4.3
where T'(z) = diag(1,z~1/M,z=2/M __ =*7) and D is a diagonal matrix. Since the matrix
Lz ];V is unitary on the unit circle, it follows that the diagonal matrix Syy(e’) is identical to the

diagonal matrix MD(e’*) up to rearrangement of the diagonal elements. Ignoring this rearrange-
ment, we get Syy(e’“) = MD(e’”). Now assume that Sxy(e’“) is rational, and that we wish to
diagonalize it with the rational paraunitary matrix E(e/“). From (2.4.2) we see that Syy(e’“) and,
therefore, D(e’“) have to be rational. Now Eq. (2.4.3) implies WD(z)W]L = I'1(2)Sxx (2)T(2).
Using the pseudo-circulant property of Sxx(z) we conclude that the rationality of Sxx(z) and D(z)
implies that Sxx(z) has the form C(z)I. This means that the power spectrum of the input process
z(n) has the form S;,(z) = C(z). In other words, the autocorrelation R(k) = 0 unless k is a

multiple of M.

2.4.2. Biorthogonal decorrelation

Having shown that an orthonormal filter bank cannot in general be used for decorrelation, we will
decorrelate the subband signals using a biorthogonal filter bank. Assume again that z(n) is WSS.
Then the crosscorrelation between z;(n) and z;(n) is

rij(1) = rij(n,1) = Elzs(n)zj (n = )] = D Y hi(m)h (k)r(Ml + k — m). (2.4.4)

kE m

The subband signals are decorrelated if this is zero for i # j. Equivalently, in the z-domain,

Sij(2) = (ﬁj(Z)Hi(Z)S(z)) lM =0 for i#j (2.4.5)

where S;;(z) is the z-transform of r;(l).
Given a PR (biorthogonal) system with analysis filters H;(z), we show how to obtain a new

set of analysis filters such that the above holds. For this we apply techniques similar to the ones in
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Section 2.3, just simpler. Because the filter bank is uniform, the problem is actually the usual finite-
dimensional Gramm-Schmidt orthogonalization. New analysis filters will be Gi(2). Let Go(z) =
Ho(z). Assuming that we have decorrelated z;(n) and z;(n) for j # i and 0 <4,j < s —1, in the
sth step we put Gy(z) = Hy(z) — Ez;a Brs (2M)Gr(2). z4(n) will not be correlated to any of z;(n)
for i < g if

(H@GE@sE) |
(Gr@6u2)5@) |

Brs(2) = for 1=0,1,...,s—1. (2.4.6)
This way we get filters G;(z)’s which decorrelate subband signals. They can be stabilized using the
techniques of Sec. 2.3. The corresponding synthesis filters can be obtained by inverting the analysis

bank polyphase matrix (stability cannot be guaranteed).
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Fig. 2.4.1. Magnitude responses of analysis filters

(a) before decorrelation, (b) after decorrelation.

Example 2.4.1 As an example of the above decorrelation procedure, we take a lowpass AR(6)

process [Jay84] and a paraunitary two-channel filter bank [Vai88] with FIR filters of order 7 (filter
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8A). Fig. 2.4.1 (a) and (b) show the frequency responses of the original and modified analysis filters
that decorrelate subband signals. The resulting analysis filters are FIR of order 7 and 18. The
synthesis filters are ITR of orders 18 and 12. If one calculates the coding gain of the new system (see

[Jay84] for the definition), it turns out that it is less than that of the original filter bank.

2.5. The compatibility condition, and generalizations

We now present different types of necessary conditions for perfect reconstructability in nonuniform
filter banks. These can sometimes be used to quickly reject certain sets of integer decimation ratios
{n;} from being considered for perfect reconstruction. In all our discussions we assume maximal
decimation, that is E?io_l 1/n; = 1. The discussions of this section do not apply to the case of the

so-called block decimation [Nay93].

2.5.1. Compatibility

In Fig. 2.1.1(a), the reconstructed signal b (2) is given by

nk—l

M-1
@)=Y Fk(z)n—lk S Hu(W2)X (W), 2.5.1)
k=0 n=0

In order for each of the alias terms X (zW},),n # 0 to be canceled, it is necessary that for every k
and n there exist £ # k and m such that W2 = W. This requirement is called the compatibility
condition and is a necessary condition for alias cancelation (see [Hoa89], p. 285 of [Vai93] and the
corresponding solution manual for the derivation). If the set of integers {n;} satisfies this, we say

that it is a compatible set.

Statement of the Test

Assume that the integers n; are numbered such that ng <n, < ... <npy_1.

Step 1. Check if npr—a = npr—1. If no, then {n;} is not compatible. If yes, continue.

Step 2. Form the smaller set by collecting those n; that are not factors of ns—;. Then imagine
that this is the given set, and repeat the test, i.e., go to Step 1.
At some point, if the answer is no in Step 1, then the original set is not compatible. If we keep

getting yes in Step 1, then after a finite number of repetitions, the “smaller set” in Step 2 becomes
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empty. The original set {n;} is then compatible. Thus, the test always gives a decision in a finite
number of steps.

To demonstrate the test, consider the set (2,6,10,12,12,30,30). We have nas—2 = ny—1 = 30
so that Step 1 is successful. The smaller set of numbers that are not factors of 30 is given by (12,12).
This set again passes Step 1 successfully. The next smaller set is empty. Thus the test has been
completed, and the given set (2, 6,10, 12,12, 30, 30) is indeed compatible. It turns out that this set of
integers cannot come from a tree structure (binary or otherwise). For, if it did, then the first level of
the tree would have to be a two—channel system with decimators (2, 2). The second level then splits
the lower branch of the first level only, with the decimators (3,5,6,6,15,15). Since 3 and 5 do not
have common factors, this set of numbers could not have come from a tree-structured connection of
uniform filter banks.

It turns out that while the above set is compatible, it is still not consistent with another
necessary condition for alias cancelation (hence PR). This statement will be elaborated at the end

of the next subsection.

2.5.2. Generalizations

We can obtain further necessary conditions by looking deeper into the details of alias cancelation.
Thus consider the PR condition, expressed in terms of the L—channel equivalent uniform filter bank

(where L is the lem of n;’s; Sec. 2.1.2); it takes the form

So(2) $i(z) - Sp-i(z) Qo(2) L
So(z:WL) S, (z:WL) : : SL_I(:zWL) Ql:(z) _ 0 2.52)
So(zvi/',f'l) Sl(sz_l) SL—I(Z.Wf_l) QL—.I(Z) 0

By substituting for the L pairs of filters {Sk(z),Qk(2)} in terms of the original M pairs filters
{H(2), Fr(2)} using (2.2.8), we can rewrite this in the form

Hp(2)f(z) =[L 0 --- 0]7, (2.5.3)
where f(z) =[Fo(2) ... Fum—1 ]T and H(z) is an L x M matrix. The i** column of this matrix
has the form

[kiHi(z) O kiHi(zWn) 0 kHi(zW2) ... 0 kH;(zWm1) o], (2.5.4)

where 0 is a string of k; — 1 zeros. (Recall that k; are integers such that kin; = L). The compatibility

condition says that any nonzero row of Hy (z) should have at least two nonzero entries.
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Now notice that the decimation ratios ng,n1,...nap—1 of the M—channel nonuniform filter
bank may not all be distinct. Let us relabel them in terms of distinct integers, for convenience of
discussion. Thus let the decimators be

ILo,’rLo,...no, 11,1,”1,...7111 I’fK——lynK—l,---nK—lz (255)

No times N; times Nk _1 times

In this notation, n; are distinct integers and Ng + N1 + ... Ng_1 = M.

For example, let us fully understand the 0** column of the matrix Hy (2). If Ng = 2, then there
are two columns (zeroth and first) of the form (2.5.4), with the same decimation ratio no (and the
same ko). More generally, there are Np columns of the form (2.5.4) with the same no and the same
ko. These Ny columns have nonzero entries occurring in the same positions, namely 0t*, k", 2k&"
and so forth. Consider now another column, say the one corresponding to n;. This has nonzero
elements occurring at the locations 0, k;, 2k;, and so forth. Now compare this with the 0t* column,
and identify the locations where nonzero elements overlap. With the exception of the 0% location,
the first overlap of nonzero elements will occur at the location lem(ko, k;). Define

_ min#o lem (ko, k,)
= ko .

mo (256)

Then the nonzero elements of the leftmost column in the k§* 2kg", ... (mo — 1)k§" positions do not
overlap with any nonzero elements from any other columns, except of course, columns 1, 2, ... No.

We can isolate these nonzero elements in the first Ny columns of equation (2.5.3), and write

Ho(eWno)  Hi(eWn,) ... Hng—1(2Wp,) Fy(z)
Ho(ZW,%O) Hl(ZWgD) s HNo—l(ZWr%o) F1(Z)
) . ] ) . =0. (2.5.7)
Ho(ZW,:';O_l) Hl(zW:;O_l) e HNO_l(ZW,?;o_l) Frn,—1(2)
()
&z

A necessary condition. We will now prove that, if the number of rows mo — 1 > number of

columns Ny, then perfect reconstruction is not possible! So the condition
mj—1<N;, 0<j<K-1 (2.5.8)

is necessary for perfect reconstruction, where N; is the number of decimators equal to n;, and

_ mingy; lem (ki, kj)
= K }

m; (2.5.9)
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This is a generalization of the compatibility condition which merely said that any nonzero row of

H/ (2) should have at least two nonzero entries.

Proof of the necessary condition. Eqn. (2.5.7) implies that the columns of the matrix are linearly
dependent [unless all the F;(z)’s in that equation are zero, which is not possible in a maximally
decimated perfect reconstruction system]. If mg — 1 > Np, this means that the rows are linearly
dependent. Denoting the first row of the matrix in (2.5.7) as h(zWp,), the remaining rows are

h(zW2)) ... h(zWe~1). The linear dependence implies that

mo—1
h(zWp,) = Y ai(2)h(zW}). (2.5.10)

i=2

Since this holds for all z, we can replace z with ng‘OI to obtain

mo—2 mo—2
h(z) = Y a1 (@WiHhh(eWE) = Y Bi(2)h(zW},). (2.5.11)
i=1 i=1

But eqn. (2.5.7) says that h(zW}; )g(z) = 0 for 1 <4 < mg — 1. Using this in (2.5.11) we conclude
h(z)g(z) = 0. That is,

Hy(z)Fo(z) + Hi(2)Fi(2) + ...+ Hyy—1(2)Fny—1(2) = 0. (2.5.12)

But this cannot happen in a maximally decimated perfect reconstruction system. To see this note

that the biorthogonality condition (2.2.5) implies, in particular,

(HQ(Z)F()(Z) + H1 (Z)Fl(Z) +...+ HNo—l(Z)FNo—l(Z)) 1 = No, (2513)

no
which is not possible if (2.5.12) is true! This completes the proof of (2.5.8) for j = 0. The same

argument can be used to show that (2.5.8) is true for j =1,2,...,K — 1 as well.

¢

This test is strictly stronger than the test for compatibility. To demonstrate, consider the same
set (2,6,10,12,12, 30,30) from the end of the previous subsection. As shown there, it satisfies the
compatibility condition. According to the notation in this subsection, n;’s are distinct numbers and

we have K =5, L = 60 and
i 0 1 2 3 4
N 2 2 1 1 1
n; 30 12 10 6 2
ki 2 5 6 10 30
m; 3 2 1 1 1

Since mg — 1 = 2 = Ny, we conclude that PR is not possible.
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2.6. Conclusion

For a maximally decimated nonuniform filter bank, the perfect reconstruction (PR) property is
equivalent to biorthogonality. Using this fact we derived a number of properties of PR filter banks.
We then showed that whenever the decimation ratios are such that biorthogonality is possible, it is
in particular possible to obtain orthonormality. This was done by developing an orthonormalization
procedure. While reminiscent of the Gram-Schmidt approach, the procedure converges in a finite
number of steps and furthermore preserves the filter bank-like form of the basis functions. We
applied this technique to decorrelate the subband signals. Finally we considered the problem of
alias cancelation, and obtained a generalization of the so-called compatibility condition which is a

necessary condition for perfect reconstruction in maximally decimated systems.

2.7 Appendices

Appendix 2.A: Reaching arbitrary integers

In connection with equation (2.2.15), we will show that the quantity pbym — 7bmi + dkpmbm; can be
made to take any integer value by proper choice of the integer d, and the integers p, in the ranges
0<p<k—1,0<r <kp—1. For this recall the meanings of the integers by, b;, and L, namely,
eqns. (2.1.4) and (2.2.13). Since L = kiny = kyny, by definition, we have kibymgim = kmbmigim. S0
kibim = kmbm. Since by, and by, are relatively prime by construction, there exist integers p and 7
such that

Dbim — Ty = any desired integer a. (2.4.1)

We can always decompose p and 7 as p = p + nk; and 7 = r + ik, where 0 < p < k; — 1, and

0 <7 < kp, — 1. Substituting this into (2.A.1) and rearranging, we get
Pbim — Tby + dkmbm = a, (2.A.2)

where d = (n — ¢). Thus, we can write any integer a as above where p and r are in the stated range,

provided we can assign any integer value to d.

Appendix 2.B: Eliminating redundant variables

If the system of equations (2.3.14) has a determinant that is identically zero, we can reduce the size

of the problem as follows. In this case, there exists a;;(z), with at least one of them different from
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zero, such that
8—1 Ccai—

5% aate) (s B @) | = (2.B.1)

i=0 m=0
fori =0,1,...,s—1andl=0,1,...,ce —1. While it is not obvious that there are polynomials a;(z)

satisfying (2.B.1), this can be verified to be the case, by use of the Smith-McMillan decomposition
for rational functions [Kai80], [Gan59]. The previous equation can be rewritten as

=1 cpiml i=0,1,...,5—1
( ™Ik Gy (2) Z Z aa(z)z™ '“‘F(z)) l for all { . (2.B.2)
L

k=0 m=0 [=0,1,...,cse =1

This is equivalent to
8—-1
(ék(z) > A,—(zg"‘)Fi(z)) J =0 forall k=0,1,...,58—1, (2.B.3)
i=0 Gsk

where A;(z) = Zc" z7'ay(2°). Now, (2.B.3) implies that the assumed form (2.3.12) is redun-

dant; namely, we can discard some of B;,;(2%)’s. To see this, let a;7(z) # 0. Then (2.B.3) implies

Cai—1
Bros(22)z™ JﬂuF(z)+ﬂ”-’(z AN Z E Gim (25)2~™9% Fy(2) (2.B.4)

J(zl) &
m;eJ fOI‘i 1

is orthogonal to Gx(z) for k = 0,1,...,8—1. Then we can drop fj,5(zL)z~79:1 Fj(z) from (2.3.12) and
form a smaller system of linear equations. We keep doing this till the determinant is not identically

Z€ero.

Appendix 2.C: Poles on the unit circle

We will show that when a biorthogonal filter bank is orthonormalized, the resulting filters will

naturally be free from poles on the unit circle. We will do this in two parts.

Observation 1.

Let A(z) be a rational function with a pole on the unit circle, at zp = e“°. Let 7, be the order of
this pole. Then, in the neighborhood of 2, the function A(e/*)A(e’) behaves as

Ca
(ejw — eij)Ta (e—j“’ —_ e“]"”O)Ta )

A(e?)A () ~

(2.C.1)

This is the behavior of a pole of order 2r,. Since A(z)A(z) > 0 on the unit circle, we have c, > 0.
Now let B(z) be another rational function with a possible pole at the same point 2z, with order 7.
Then B(e?)B(e/*) can be expressed in a similar way. So

Cq Ch
(@5 —eio0)ra(e—3w — g—dwn)ra | (edo — eiwo)s (630 — g—dwnyre’

(2.C.2)

A(e?)A(%) + B(e7)B(e) ~
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Since ¢,4, ¢y > 0, we see that there can be no cancelations, and as w approaches wyp, the result behaves
like a pole of order = max(2r,,2r;). Similarly, if we have a sum of several nonnegative functions
having poles of various orders on the unit circle, the sum behaves like a pole of order equal to the
largest one.

A consequence of observation 1. Now consider the normalization step (2.3.21). The denominator
of a,(z™*)a,(z™) can be written as

ng—1

(P@B@)[, )], =2 T PEwEIREWL). (2.3)
D=5 2

Each term on the right-hand side is nonnegative on the unit circle. So if P,(z) has a pole of order
T at zo = e/“°, then the above summation still has this pole, with order > 2r. As a result, a, (z™)
has a zero of order > r. This means that when we form the normalized filter G,;(2) = a,(2™ ) P,(2),

this unit-circle pole will be completely canceled.

Observation 2.

From (2.3.21) we see that o, (2™*) will have a pole of order r at zo = e/“° if and only if

(roR@) ).,

has a zero of order 2r at z = zy = e/“°. Now consider (2.C.3). Each term in this summation is

nonnegative. Suppose the function P,(zW},) has a zero of order 7 at zp. Then
P,(e?¥ W,’f')ﬁs (e7“WPE ) = (e/ — eIw0)h (™9 — ¢=90)"* x (nonnegative function) (2.C4)

on the unit circle. If the summation in (2.C.3) has the factor (e/“ — ef«0)"(e=9w — e=dwo)r it ig
therefore necessary that rr > r for each k. That is, each of the quantities P,(2W*) has to have a
zero of order > r at zo. In particular, therefore, P,(z) has a zero of order > r at zp.

The conclusion is that if a,(2™*) has a pole of order r at zo = e/“°, then P,(z) has a zero of

order at least r at zp.
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Statistical Wavelet
and Filter Bank Optimization

3.1. Introduction

In [Dau88], Daubechies showed how orthonormal, compactly supported wavelets can be constructed
using paraunitary filter banks. They gave another sufficient, but not necessary, condition for the
orthonormality of wavelets generated from paraunitary filter banks. The equivalence of paraunitary
filter banks and wavelet tight frames was established by Lawton in [Law90]. Finally, two necessary
and sufficient conditions were given by Lawton and Cohen in {Law91] and [Coh90]. It was clear
that the relationship between filter banks and wavelets could be exploited for wavelet optimizations
[Zou93], [Pol90], [Vai88], [Tew92], and [Ode92]. In this chapter, we will deal with three different, but
somewhat related problems. The first two are concerned with errors in the wavelet decompositions
of random signals. The third one is the filter bank optimization for a higher coding gain. The
notion of multiresolution analysis was introduced in Ch. 1. Let us now explain the problems we will

analyze in this chapter.

Problem 1.

Let P,,f and Q,.f be the projections of f € L? onto V,, and W,, respectively. Then the
property 3. of MRA (given in Def. 1.2.1) says that lim,;, o Pnf = f. The error made by this
approximation at the mth level is f — Ppnf = Y pe,, Qcf- We can see that @, f provides the

additional information needed to go from the approximation Py, f to the finer Pp,.; f. If we want to
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approximate an input signal f with its projection at scale m, then the error is obviously a function of
the signal itself and the analyzing scaling function ¢(z). So we can try to choose a scaling function

¢(z) which will make some measure of the error smaller.

The relationship between filter banks and wavelets provides a nice parameterization of the
wavelets that can be constructed using filter banks [Zou93], [Pol90], [Vai88]. Using those parameter-
izations, we can optimize wavelets according to some criteria (smaller error in our case). In [Tew92],
the authors tried to tune the wavelets to a given input signal. They derive upper bounds on MSE
and try to minimize these bounds, rather than to minimize the MSE itself. Similar problems were
analyzed in [Ode92]. Explicit formulae for different norms of errors as functions of the input signal

and the analyzing scaling function were derived.

This setting is useful when we know the exact signal we want to represent with wavelets and
when we are willing to optimize ¢(z) for every particular input. Sometimes all we know about the
input signal are its statistical properties, in which case we want one ¢(z) to be optimal for a class
of signals. For example, the input can be some wide sense stationary (WSS) random process with a
given power spectrum. Then it may be desirable to tune the wavelets to this class of signals with a
given power spectrum so as to minimize some appropriately chosen measure of the error. Our first
problem is to extend the ideas and results of [0de92] to WSS random inputs. Statistical aspects of

wavelet analysis have also been considered in [Gol93].

Problem 2.

Filter banks offer a very efficient way of getting projections Pp, f and @, f onto any V;,, and
W for m < J, once P;f is known. So the major computational burden comes from calculating
the inner products (f,¢sx). In order to avoid it, Mallat suggested to approximate (f,¢sx) with
2-J/2£(27k), a scaled sample of the input signal (see [Dau92]). A method for the reduction of
this type of errors was proposed in [She92]. The idea is to pre-filter samples of the input signal by
a digital filter h,, so that the output 3, hn—k2~7/2f(277k) is a better approximation of {f, ¢ n)
than 2=7/2f(2=7/n). A formula for the MSE as a function of the input signal, analyzing scaling
function and the pre-filter, was derived in [Xia93]. It was observed in [Xia93] that it may be more
appropriate to optimize wavelets to some class of signals. A natural setting for this would be to
take into account statistics of the input (assumed WSS random process). So our second problem is

to extend the results of [Xia93] to this case.
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Problem 3.

One of the main applications of filter banks is data compression using subband coding. Consider
a uniform filter bank as shown in Fig. 3.1.1. The input signal z(n) is passed through the analysis
filters Hy(z). The outputs of those filters after the decimation are the subband signals zx(n). Those
subband signals are quantized, and errors are caused by this quantization. If we wanted to reduce
the quantization error in filter banks with some method similar to the above techniques for wavelet
optimizations, we should try to tune frequency responses of the filters to a particular signal or a
class of signals. So far, most authors mainly tried to approximate ideal brick-wall filters as much as
possible. In [Som93a] and [Aka91] statistical properties of the signals being processed were taken

into account.

Xo(n)+q (n) ~
A ey I e Q. —-IM—F. o
XK")}'%(“)
H,(2) M Q, M F.(2)
. ¢ Xy (n)+Gy(n) .
N
Hy—(2)—1tM Q- tM Fuos (2

Fig. 3.1.1. A uniform filter bank used for subband coding.

In [Som93a] authors did a direct optimization of the coding gain for an arbitrary M-channel uniform,
paraunitary filter bank. The problem with this approach is that the restriction to paraunitary
filter banks prevents us from achieving a bigger coding gain, as we will demonstrate later. Similar
approach, just for the case of two-channel filter banks, was taken in [Aka91]. In this chapter we
use the idea of pre-filtering to improve the coding gain of any paraunitary filter bank. Namely,
we put a pre-filter before and a post-filter after some paraunitary filter bank (FB). We then show
how to choose the pre- and post-filter so as to improve the coding gain. This way we end up with
an IIR stable biorthonormal filter bank which has much better coding gain than the original FIR
orthonormal FB. The output noise is not white as in the case of a PU FB. The pre-filter is actually

the filter used for half-whitening [Jay84].

We have to mention that the MSE is used in this chapter because of its mathematical tractability.
It is not the best measure of the error, but it is some indication of the error and it is commonly

used.
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3.1.1. Chapter outline

In Sec. 3.2 we deal with the first problem, namely, we extend the ideas and results of [Ode92]
to random inputs. The resulting MSE has a form similar to the one in [0de92], but the derivation
has to be modified for proper handling of random signals. As we said, we will consider the case of
orthonormal wavelets only. So, the projection of any f € L? onto Vi, is

(e <]

Pnf@@) =Y (f bmk)dmr(2)- (3.1.1)

k=—00

There is a subtle technical problem with this setting. Namely, we require that the input random
process is WSS, which is contradictory to the requirement that its ensemble members f(t) belong
to L?. However, if we constrain ¢(z) to be compactly supported, E|{f,¢mk)| < oo (E denotes
the statistical expectation of a random variable). For the same reasons, we have no convergence
problems in (3.1.1). We will find an expression for the error variance when f is approximated by
P;f. The assumptions we need to make in Sec. 3.2 will be explicitly stated at the beginning of the

section.

The second problem is dealt with in Sec. 3.3. We derive an expression for the error variance
when a WSS random process is being analyzed by wavelets and inner products in (3.1.1) are ap-
proximated by 3, hx—n2"7/2f(277n), where h, are filter coefficients of the pre-filter. Then, this
pre-filter can be optimized so as to minimize the error variance. At the beginning of the section,
we state the assumptions we use in our derivations. They may not be necessary, but they make
the derivations simpler and they do not severely restrict the scope of the results anyway. We calcu-
late the autocorrelation function, the power spectrum of the error and then integrate it to get the
variance.

In Sec. 3.4, we first derive a coding gain formula for a uniform biorthonormal filter bank. The
extension to nonuniform filter banks with integer decimation ratios is easy. We then use the Cauchy-
Schwarz inequality to increase the coding gain with a pre-filter. A very efficient implementation
scheme is proposed.

At the end of each section we present some examples to illustrate the theory. These examples
show that Daubechies’ wavelets are nearly optimal in the sense of Sec. 3.2, due to the maximal
regularity of the corresponding scaling functions. Examples for the third section show that an FIR
pre-filter of fairly low order can reduce the MSE by about 14 dB. The examples for Sec. 3.4 show

that we can get a significant improvement in the coding gain over any paraunitary filter bank with
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just two more IIR filters of low orders. The last two examples show that there are finite order
systems which have higher coding gains than the brick-wall filter banks with the same number of
channels. This also gives a technique for the design of stable IIR biorthonormal filter banks which

optimize the coding gain.

3.2. Statistical wavelet optimization

In this section we consider the wavelet decomposition of a class of signals. Our aim is to find an
expression for the error variance when the input f(t) is approximated by its projection Py f(t). The
meaning of projection is now slightly different from the one in Sec. 3.1. Since f(t) is not in L? (as
an ensemble member of a WSS random process), Py f is not a projection onto V, because Py f ¢ L?
with probability one (i.e., for almost every ensemble member f). However, because ¢(z) is compactly
supported, (3.1.1) is locally well defined, namely f(t) and Py f(t) are in L}, with probability one.
Then, for any finite ] C R Ellimjoe ||f — Y < f,00k > dakll2,r] = 0. We consider the case
M =2 only, because an extension of the result for M > 2 is routine. First, we derive an expression
for the autocorrelation function of the error r¢(¢,7) and show that it is actually a (CWSS)7 random

process. After averaging over the period T', we get the variance as the autocorrelation function

evaluated at 7 = 0.

Assumptions

1. The scaling functions ¢(t) are assumed orthonormal (its integer shifts), compactly supported
and in L! N L2. These are very weak constraints on compactly supported wavelets generated
by paraunitary filter banks (see [Dau92]).

2. We will assume that the input random process f(t) is WSS with a given power spectrum S(w).
We also assume that f(t) has finite mean and variance.

3. We know that S(w) > 0 and that S(w) € L, but we will also assume that S(w) € L2, so that
R(1) € L? as well.

3.2.1. Derivation of error variance

First, we will elaborate on the meaning of “projection onto V;.” The random variables

asp = 2772 / f()e* (27t — k)dt (3.2.1)
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have finite mean and variance. Then, since ¢(t) are compactly supported, for each t € I C R, there

are only finitely many nonzero terms in
Pif(t) =277 " amnp(2’t — k). (3.2.2)
k

Then we have E[ im0 | f(£)—27/2 3, asx¢(27t—k)|?] = 0,1.e., we have mean square convergence.
We want to get some measure of the error made when J is finite. For this, we form an error function

in the following way
e(t) = f(t) — Prf(t) = f(t) — 272> and(2/t — k). (3.2.3)
k

This is a CWSS (see below) random process, and because of the mathematical tractability, we will
work with MSE o2 = E|e(t)|?. The autocorrelation function of e(t) is E[e(t)e*(t — )]. To simplify
this, we need to substitute from (3.2.3), with asx given by (3.2.1). Thus
re(t,7) = E[e(t)e*(t — )]
= E[f(t)f*(t — )]

Y (50 [ r@etes- Bdz) |4 (2 (¢ =) )

-2 Ek: E [f*(t —7) ( / f(z)¢" (27 ~ k)dz)] #(27t — k) 324

+ S Y| [ [ 10w @l bee'y - l)dzdy]
X ¢(2J:- Ii)q)* @'t-r-1).
The expectations can be moved under the integrals (because E[|f(z)|?] is finite Vz € R and the
Fubini’s theorem [Rud87] can be applied) to get
re(t,7) = E[e(t)e” (t — 7))
= R(7)

-27 zk: ( / R(t—z)p(27z — k)d:c) ¢ (27 (t—1)—k)

(3.2.5)
—27 R(z —t+7)¢*(27z — k)dz ) (27t — k)
=(/ )

+ 227 R(z —y)¢* 27z — k)p(27y — 1)dzd
T3] e -newre -y
x¢(2't—k)¢* 27 (t-1) 1),

where R(7) is the autocorrelation function of the input signal, i.e., R(r) = E[f(t)f*(t — 7)].
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Lemma 3.2.1: e(t) as defined in (3.2.3) is a (CWSS)r with T =277,

Proof: See Appendix 3.A.

Now we can average 7(t,7) over the period T = 277 to get

T
R.(r) = % /0 re(t, T)dt.

Putting all this together, we get

R.(t) = R(T)

_92J _J * _ I xrod gy _

2 /0 zkj(/_ Rt-o)p(2's k)dz)qS(Z t—r) k)df
R;Rr)

92 _ x(od .. _ J,

2 /0 zk:(/R(x t+ 1) 27z k)dz)¢(2t k)dt
R;Rﬂ

2=J

J *x(9d . I T Jy x (eJ —7) - )
2 [ (f [ re v e -ney-oa W) (2t~ D" (26— )~ D

(3.2.6)

J/

R;Rﬂ

The variance is 62 = R(0). It is shown in Appendix 3.B that

Re2(0) = Re3(0) = 2

2

and
2—3J

2

Rea(0) = / S(w)|8(2~7w) P dw.

Putting (3.2.8) and (3.2.9) together, we get

ol = % /_0; Sw) (1 - |22 7 w)?) dw.

Notice that we have not assumed bandlimitedness of f(¢) (unlike in [Ode92]).

3.2.2. Discussion and an example

— [ swieeura

(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

From the simplified expression (3.2.10) it is easy to see the energy distribution of the error

and how it depends on the input power spectrum and the Fourier transform of the scaling function.

Notice that because ®(w) = [[r; ﬁH (e9“™") and H(z) is orthonormal, |®(w)| < 1 Yw € R.

Ideally, we would like to have |®(w)] = 1 Yw, so that o2 = 0. This is not possible because ||®||; = 1.
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Then the next best thing is to have ®(w) very close to 1 in the region where S(w) has the most
energy. This is also difficult to achieve unless S(w) is lowpass, because H(1) = 1 implies ®(0) = 1

(and H(1) = 11is a necessary condition, see [Dau92]). These are contradictory requirements on ¢(z).

Example 3.2.1. We first obtain the PU lattice for the Daubechies’ 5¢ scaling function (see [Dau92]
and [Vai93], Chapter 6). Then we re-optimize the lattice coefficients so as to minimize (3.2.10) under
the constraint H(1) = 1. Fig. 3.2.1 shows the power spectrum of the input random process (in this
case a continuous version of the bandpass AR(6) model of speech [Jay84]). The solid line shows the
original spectrum, while the dotted one shows the spectrum of the signal approximated with 5¢.

10

S(w)

o 1 2 3
(M)

Fig. 3.2.1. Example 3.2.1. A continuous version of the AR(6) model of speech (solid)

and its approximation at the finest resolution level (dotted).

Fig. 3.2.2 shows frequency responses of the lowpass filters which define scaling functions (the dotted
one is the Daubechies’ filter Hps(z) corresponding to 5¢, and the solid one is the optimized filter

H(z)).

dB

-100

0 0.1 02 03 04 0.5
Normalized frequency

Fig. 3.2.2. Example 3.2.1. Frequency responses of Hps(z) (dotted) and the optimized filter (solid).
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From these responses, we can conclude that the Mallat’s sufficient condition for the orthonormality
of the resulting scaling function is satisfied. Namely, H(e’“) has no zeros for |w| < /2, which
guarantees that the scaling function given by ®(w) = [[72, %H (e7“2™") generates an orthonormal
multiresolution analysis [Mal89].

Finally Fig. 3.2.3 shows the scaling function before (dotted) and after the optimization (solid).
We can see that the price paid for an MSE reduction is a worse regularity of the corresponding
scaling function. The MSE is now reduced by 10% only. This shows that the Daubechies’ wavelets
are nearly optimal for representation of lowpass random processes, since they have maximal flatness

at w = 0. All this is intuitively clear from (3.2.10).

(%)

Fig. 3.2.3. Example 3.2.1. Daubechies’ 5¢(z) (dotted)

and the optimized (solid) scaling functions.

3.3. Statistical pre-filter optimization

As stated in the introduction, we now extend the ideas and results of [She92] and [Xia93] to WSS
random inputs. First, we form an error sequence, obtain its autocorrelation, and check that this
error is actually a WSS random process. We then obtain its power spectrum and, finally, the error

variance.

Assumptions
1. Wavelets are assurned orthonormal, compactly supported and from L! N L2.

2. We again assume that the input f(t) is a WSS random process with power spectrum S(w).
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3. This process will be sampled, so we have to assume its bandlimitedness. Since we want to
approximate f(t) with Psf(t), let then S(w) be bandlimited to [—27m,27]. In order to avoid
the aliasing, we have to sample the input at least with frequency 27+1.

4. We will also assume that there exists a real constant C such that |R(r)| < C/|r|'T* (for
some o > 0) and that the pre-filter is BIBO stable, i.e., 3., |hn| < co. These assumptions
are sufficient to enable us to use the Poisson’s summation formula later in the derivation (see

Theorem 2.25. on p. 45 [Chu92)).

3.3.1. Derivation

Let f, = f(277n). The coefficients in the expansion (3.2.2)

ase =2 / F()6" (27t — k)dt, (3.3.1)

form a discrete WSS (see below) random process ajx. We want to approximate ayx with filtered

samples of the input, namely with

aJk = 2—']/2 Z hk_lfl, (3.3.2)
1

where h,, are filter coefficients of the filter that we want to design. The idea is to optimize the filter
coefficients h,, 5o as to minimize some cost function. The reason for inserting the scale factor 277/2

in the above formula is
Y / F) @t — k)it — F2TR)  for J— oo, (3.3.3)

so that

27/ / F@)¢* @7t — k)dt — 2772 f(27 k) (3.3.4)

if f(z) is continuous at 2 /k. We want to find some measure of how good the approximation in
(3.3.2) is. The approach is similar to the one in Sec. 3.2, with the difference that we deal with
discrete time random processes now. First, we form an error sequence ex = ajx — Gyg. This is a
WSS random process (as will be shown later). Again, because of its tractability, we will examine

the variance of this sequence 02 = 5= [ S, (e*)dw, where S,(e/“) is the Fourier transform of the
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autocorrelation sequence of ex. Let us start with the autocorrelation sequence
e(k,n) = Elereq_n]
=2’ [ [BU@F @16 - K’y - k+n)dady

_ / ; E[f(@)f*(2 D] hi_p_i$* (2’2 — k)dz (3.3.5)

_ / S E[f* @) @) b2’z — k + n)da
!

+277 z E [f(z_Jl)f*(z_Jm)] hr—1hy_p_m-

Im

Let R(T) = E[f(t)f*(t—7)] be the autocorrelation function of the input signal. The above expression

can be written as
e(k,n) =27 / / R(z -~ y)¢* (272 — k)¢(27y — k + n)dzdy

- / > Rz -27"Dhj_, 16" (277 — k)dz
1

(3.3.6)
- / Z R(2'Jl — :c)hk_.,¢(2"a: —k+n)dz
1
+277 ) R - m))ha—thi_ -
I,m
If we change indices of summations, we have
en = €(k,n) = €(0,n)
=27 [ [ Re— )¢ @22y + n)dody
- / > Rz -2, 19" (2 1)dz
1 (3.3.7)

- /E R(2771 - 2)h_1¢(27z + n)dz
1

+277 Y RQ (1 - m))h_ihZ .

I,m

We see that €(k,n) does not depend on k at all, so e, is a WSS process. The power spectrum of the

error is

S () = Zene'j”“. (3.3.8)

Technical details of the derivation are moved to the Appendix 3.C, where it is shown that

Se(el¥) = Z 527w+ 2mn27) [|®(w + 27n)|> — 2R (H(™)®(w + 27n)) + |[H(e/)*].  (3.3.9)
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The last expression can be written as
Se(e?) = S S(27w + 2mn2”) |@(w + 2mn) — H(e™)|". (3.3.10)
n

Because of the bandlimitedness of S(w) to [—277,27 7], for each w € R only one term in the above

sum is nonzero for any given w. The error variance is

1 T .
o2 = Elajk — Gk 2=¢=— Se (') dw (3.3.11)
27

or, using (3.3.10),

o2 = % " 5(27w) |2(w) — HE)[ dw. (3.3.12)

3.3.2. Discussion and an example

Formula (3.3.12) offers us insight into the frequency distribution of the error, what this approxima-
tion is all about, and how to improve it. First notice that we can make this error go to zero by
letting the order of H(z) increase indefinitely. Moreover, this can be done regardless of the random
process. Namely, from (3.3.12), we have

n

1
035

- S(2’w) sup |®(w)— H(e™)|Pdw=02 sup |®(w)— H(e)?, (3.3.13)

- we [-m,x W€ [—m,w

and we know that an arbitrary continuous function on [—7, 7] can be uniformly approximated by
trigonometric polynomials. So the main point of the section is to show how to design finite order
systems that minimize the error.

Notice that as J increases, S(2/w) gets concentrated more and more around w = 0, so that
H(e’*) = ®(0) = 1, i.e., running no filter at all, is already a good approximation. Also, if ¢(z) ~
d(z), then H(e/) = 1 is a good approximation, which is in accordance with (3.3.3) and (3.3.4)
(this was Mallat’s original motivation). So our problem is reduced to a weighted (by S(2/w)) L?

approximation of ®(w) by trigonometric polynomials.

Example 3.3.1. In this example, we take the bandpass AR(6) model of speech [Jay84] for the input
random process. For the scaling functions, we take Daubechies’ 3¢ and 4¢. We do not want the filter
H(z) to be too complex; in particular, we want it to be FIR (then the assumption )_ |hn| < 00 is
automatically satisfied). We will design the optimal pre-filter using the eigenfilter approach [Ngu93]|.

This method is very simple. The idea is that this error can be written as

o2 = hiph, (3.3.14)
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where h=(hg h1 -+ hy )T and P is a positive definite symmetric matrix. The error variance
will be minimized when h is the eigenvector of P corresponding to the minimum eigenvalue. To get

P, we will follow [Ngu93]. H(e’“) can be written as

H(e') = hie(e?) = ef (e%)h, (3.3.15)
where e(e/¥) = (1 e ... e~ INw)T Then |®(w)— H(e’“)|? can be written as
oy _ |26 ot N
|2(w) — H(e’)|* = W(h e(1)) — h'e(e’)
=hf Z((“g e(1) — e(el® )] E}((“’T;e’fa) - eT(ej“’)] h=hiP;(w)h (3.3.16)

Since P;(w) is a Hermitian matrix and we look for a real solution (real h,’s), we have hTPl(w)h =

hT§R{P1(w)}h. If we multiply this with S(2/w) and integrate, we get (note that H(1) = &(0) = 1)

o2 =hiPh, (3.3.17)
where
[Pl = 51; _" S(27w) [|8(w)P — R{®(w)}cos(kw) + cos(mw)]
+3{®(w) }[sin(mw) + sin(kw)] + cos((m — k)w)] dw. (3.3.18)

It is easy to calculate these elements [P]i,, using some method for numerical integration. Then
the eigenvector corresponding to the minimum eigenvalue of this positive semidefinite matrix is
the solution. It is easy to see that this can be applied to (3.3.12), without restricting S(w) to be
bandlimited. Fig. 3.3.1 shows the relative error (62/02) for Daubechies’ 3¢ (solid line) and 4¢
(dotted line) scaling functions [Dau92] as a function of the pre-filter length (o, is the variance of
the input signal). From the graphs, we can see that the error can be significantly reduced with very

low order FIR filters.
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(o] 5 10 15
Prefilter length

Fig. 3.3.1 Example 3.3.1 Relative error variance 02 /0?2
for Daubechies’ 3¢ (solid) and 4¢ (dotted) scaling functions

as a function of the pre-filter length.

3.4. Coding gain optimization

In order to derive an expression for the coding gain of a biorthogonal FB, the noise sources produced
by the subband quantizers are assumed white and uncorrelated. This is a reasonable assumption as

long as the subband signals are not too coarsely quantized.

3.4.1. Coding gain of a biorthogonal filter bank

Consider a uniform perfect reconstruction (PR) FB as in Fig. 3.4.1. The variances of the subband
signals z(n) are

2 _ 1 7

0% =5 S(e™)|Hy(e*))Pdw, k=0,1...,M -1, (3.4.1)

-

where S(e?¥) is the Power Spectral Density (PSD) function of the input random process.

xo(n)+q 1(n) ~
WA gy Y Q. I F g —"
x,(n)l-;-q1(n)
H.(z) —im Q. M| F, (2)
. " X () .
Hy—(2)—M Qs t™M Fu— (2)

Fig. 3.4.1. A uniform filter bank used for subband coding.
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The noise PSD function at the output of the k** quantizer is (see [Jay84])

Squk (ejw) = E[(Ik(n)qi(n)] = 02_%”02,‘ = ng, (3.4.2)

where by, is the number of bits allocated to the k** channel, C is some constant which depends on the
statistics of zx(n), and gx(n) is the noise sequence. After some WSS random process passes through
an expander, it becomes a cyclo-WSS process (see [Sat93]). The period of cyclo-stationarity is M.
Then we can average the variance over the period to get 02, , = %;L"H fr(n)||3. The subband noises
are uncorrelated and they remain such after passing through the synthesis filters. Then the output

noise variance is o%po = EM ! gut k- Using (3.4.2) and (3.4.1), we get

M-1
2pe = % 3 o2k ;ﬂ / |Fk(e"")|2dw— " S(e1)| Hi () 2dw. (3.4.3)
k=0 -m

The average bit rate is b = 1/M Z e o bk. If we quantized the input signal to this number of bits,

without any subband decomposition, i.e., just PCM coding, the noise variance would be [Jay84]

i S(e')dw. (3.4.4)

-7

1
Thom = C2 0y = C27"

So the coding gain, defined as the ratio of the above variances is

aPCM 272 [M S(ef)dw

0%pc i Tagl2esl [T |Fk<ew)|2dw§ JT_S(ei)|Hy (i) 2 dw

One of the optimization steps is an optimal bit allocation. We can make this step now and minimize
the denominator. The optimal bit allocation (see [Som93a]) turns the sum in the denominator into

a product. So we have the following expression for the coding gain under optimal bit allocation.

UPCM _ 3z J2, S(e™)dw (3.4.5)
TR 4.

7580 ([ ik I, Bl Pdudk [, S(e) Hele)Pdw) '

This coding gain formula is valid as long as the subband noises are white and uncorrelated.
3.4.2. Pre-filters for PU filter banks

Consider the class of pre-filtered PU (PPU) FBs obtained by putting pre- and post-filters around
a PU FB {Pi(z),Qr(2)} (see Fig. 3.4.2). The aim of this subsection is to find a PPU FB which

maximizes coding gain.
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x(n)

X@ﬁ @ P,@) —{iM Q,@ P e —
P, @Mt~ a,@ |

P, (2)—M MHQ,-(2)

PU filter bank
Fig. 3.4.2. Filter bank with pre- and post-filters.
First, notice that maximization of the coding gain is the same as minimization of the denomi-

nator of (3.4.5). From the Cauchy-Schwarz inequality it follows that

L3 T T 2
o [ 1B ran [ sEmE P> (5 [ |Hk(ef“>Fk(eN)|\/s<ef~)dw) ,
-_T -_T -
(3.4.6)
with equality achieved if and only if
|He(e7)|\/S(ei@) = M| Fi(e?)],  for 0<k<M -1, (3.4.7)

for arbitrary choice of Ax # 0 (e.g., \x = 1 Vk). Notice that the PSD function is S(e/*) > 0, so that
its square root is well defined.

Since Hy(z) = Pp(2)P(z) and Fy(z) = Qk(2)/P(2), we have Hy(2)Fr(z) = Pi(2)Qx(2). So
the right-hand side in (3.4.6) depends only on the product Px(2)Qx(z) and is independent of the
pre-filter P(z). Thus, if the pre-filter P(z) can be chosen to achieve equality in (3.4.6) for all &, it will
maximize the coding gain for a fixed filter bank {Px(z), @k(z)}. This observation is true whether the
sandwiched system {P(z), Qx(2)} is orthonormal or biorthogonal. However, when {P;(z), Qx(2)} is
orthonormal, equality in (3.4.6) is achievable for all k. To see this note that (3.4.7) can be rewritten

as

PP e)VEE = | s Qule)

When {Pi(z), Qx(2)} is an orthonormal filter bank, then Qx (/) = P; (/) for perfect reconstruc-

. (3.4.8)

tion [Vai93]. So the condition (3.4.8) for equality reduces to
|P(e)] = [1/S(e7)]/* (3.4.9)

and is independent of k. The coding gain (3.4.5) becomes
= [" S(e™)dw

(5" & 7, IPu(er) 2 /BT du

Gppu = (3.4.10)

)2/M'
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Summarizing, we have proved:

Theorem 3.4.1. Consider the class of all PR FBs that can be obtained from the structure in Fig.
3.4.2, where {Pi(2), Qr(2)} is a PU FB. Then, the pre-filter which maximizes coding gain will satisfy
(3.4.9).

o

The coding gain with the optimal pre-filter is given by (3.4.9). The orthonormal filter bank that
maximizes this coding gain is the one that has maximum coding gain for an input with the power
spectrum \/Wf“). There are techniques to identify such a system based on the work by Unser
[Uns93]. We shall not go into detail of this here. Summarizing our main point, if we wish to find
an optimal filter bank of the form in Fig. 3.4.2, where {Py(z), Qk(2)} is orthonormal, we construct
P(e¥) according to (3.4.9) and construct {Py(z),Qi(2)} to be the orthonormal filter bank that
maximizes the coding gain for an input with power spectrum /S(e#*). So the optimization of P(z)

has been decoupled from that of {Px(z), Qx(2z)}. This establishes the following corollary.

Corollary 3.4.1. Putting pre- and post-filters as given by (3.4.9) around any PU FB {P(2), Qx(2)}
will not decrease its coding gain. It will strictly increase the coding gain if the input spectrum is

not piecewise constant.

An insightful way to understand the above corollary is as follows. If we put Fi(e/) = P;(e/*) and
Hi(e?*) = Py(e7%) into (3.4.5), and use the fact that PU filters have unit energy, then after optimal

bit allocation we get the coding gain of {Px(2), Qk(z)} with input z(n)

L ™ S(edVdw
Gpy = 2z /o SE) T (3.4.11)
(M & 7, Pu(ei) S (o) dw)
The ratio of the two coding gains
1M
M-1 1 m j 2 j
5= S |Pe(e79)|?S(e?)dw
n=Grpu/Gru = [] 2 7{ | : | : 5 (3.4.12)
i=0 \ (3 I, 1Pu(e?) /37w
satisfies n > 1. This is because for each k£ we have
1 /7 . I ; ;
(3 [ e rvE@mas) < o [ i Pse s, (3.413)
— -7

with equality if and only if S(e’“) is a constant over the support of Py (e/“). This follows from the

Cauchy-Schwarz’s inequality. We see that this simple system always outperforms any PU system,
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as long as S(e’“) is not constant where Py(e/“) # 0. This improvement in the performance is more

significant as S(e’“) has more non-constant behavior.

Relation to half-whitening. A well-known data compression technique called half-whitening is
described in [Jay84]. Here, a signal z(n) is first pre-filtered with a filter H(z), then quantized and
post-filtered with 1/H(z). Under mild assumptions on the joint statistics of the signal z(n) and
the quantizer noise, the best pre-filter (to maximize the output signal to noise ratio) is such that
|H (/)| = [1/S(e’“)]*/4. Our result in Theorem 3.4.1 shows that a similar result is true if the
quantizer is replaced with a paraunitary subband coder. If the filter bank {Pk(z),@k(2)} is not
orthonormal, then the preceding results are not true. For example, if {Px(2), Q«(z)} were biorthog-
onal rather than orthonormal, then the insertion of P(z) and 1/P(z) with P(z) as in (3.4.9) could
even decrease the coding gain. Here is a way to visualize such a situation: Suppose {Px(z),Qx(2)}
is itself a biorthogonal filter bank obtained by sandwiching an orthonormal filter bank between an
optimal pre-filter (3.4.9) and a post-filter. If we now insert another pair of P(z) and 1/P(z) (with
P(z) still given as in (3.4.9)), it can only decrease the coding gain! Theorem 3.4.1 and Corollary

3.4.1 should not, therefore, be regarded as a simple extension of the half-whitening result.

Relation to Prediction Gain. In order to give an intuitive feeling why this scheme works, let us

look at the following expression

M-1 P 1/p /M
(H (%/ |Pk(ej"’)|2S"(ej"’)ckd) ) . (3.4.14)

k=0 -
Notice that when p = 1 this is the denominator in (3.4.11) (the case of PU FB), and when p = 1/2 it
is the denominator in (3.4.10) (the case of PPU). Now consider the theoretical bound on the coding
gain, namely the prediction gain.

o2
== (& I log, (S ))da} (3.415)

The denominator here can be obtained from the expression (3.4.14) as the limit when p — 0. For

this, note that 5 [ | Pr(e’*)]?dw = 1 and Y=t Pe(ef“))2 = M, since {Pi(2), Qi(2)} is a PU FB.

Then (see [Rud87])
M-1 1 p - ' 1/p 1/M
Jimy ( 11 (5 [ merrsriw) )

G

- Cﬁ e {50 [ 1P loge<s<ef~’>)dw}) h
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ek [ TR ) - o %/

—_ , -
~~

™

logc(S(ej“’))dw}. (3.4.16)

=1
So we improved the coding gain of a PU system (which corresponds to p = 1) by finding the structure
in which p = 1/2. If there existed a structure corresponding to p < 1/2, it would further improve
the coding ga,inT. The examples below will demonstrate that our technique approximately halves
the gap between the performance of a PU system and the prediction gain bound (3.4.15) on a dB

scale.
3.4.3. Examples

Example 3.4.1. DCT filter bank with pre-filtering. The above developed technique will
be applied to a very simple PU FB. Let {Px(z),Q«(z)} be a DCT FB, i.e., the one in which the
polyphase matrix E(z) is the DCT IV matrix [Yip87]. The DCT filters have poor attenuations. Fig.
3.4.3 shows [1/5(e?¥)]!/4, the test function chosen for this example (dotted curve). The solid curve
is its 2"¢ order rational approximation (i.e., P,(z) is a 2" order filter). The input PSD function
S(e7*) was the lowpass AR(5) model of speech [Jay84]. Fig. 3.4.4 shows the coding gain for different
FBs. We can see that even pre-filter alone (without any FB) gives some coding gain (see Ch. 7 in
[Jay84]). The coding gain changes only slightly if the ideal pre-filter [1/S(e?*)]'/* is approximated

by a 2"¢ order rational filter.

1.5 ¢

S(@) 1|
@

05 | -

(o]

o 0.1 02 03 04 0S5
Normalized frequency

Fig. 3.4.3. Plots of S~'/4(e#¥) for a test example (dotted curve),
and a rational approximation |P,(e’“)| (solid curve).

The approximation filter P,(e#“) is a 2"¢ order IIR filter.

t 1t can be shown using Jensen’s inequality (see [Rud87]), that as p decreases, the coding gain

can only increase.



68

Notice that the coding gain of PPU FB approximately halves the gap (on a dB scale) between the

coding gain achieved with the PU FB and the prediction gain bound on the coding gain given by

(3.4.15). The next example is striking in the sense that a finite order filter bank performs better

than a brick-wall FB.

Prediction gain bound
e Profiltared brick-wall FB
7 Py e
L
T
-
- =
6 fr &7
i Brick-wall FB
il DCT with the ideal prefilter
7
G(M) 5 DCT with a 2" order prefitter
DCT without a prefilter
\ Prefitter only

2 "
2 4 6 8 101214161820

Number of channels M

(b)

Fig. 3.4.4. Example 3.4.1. Coding gain of DCT filter banks

as a function of the number of channels, with and without pre-filters.

Example 3.4.2. Tree structured filter bank with pre-filtering. In the previous example, the

DCT filters had poor frequency responses. In this example, we design tree structured FBs (number

of channels M is a power of 2) using a two-channel PU FB as a basic building block. The filter

length of each filter in the two-channel module is 8 (8A from [Hoa89]). We use the same 2"¢ order

approximation of [1/5(e)]'/* as in Fig 3.4.3.

GM)

7.5
Prediction galn bound
72—
e
6.5
Plain FB
6 FB with a 2™ order prefilter
FB with the Ideal prefilter
Brick-wall F8 without a prefiiter
5.5
5 PR

2 4 6 8 10 12 14 16
Number of channels M

Fig. 3.4.5. Example 3.4.2. Coding gain of tree-structured filter banks

as a function of the number of channels, with and without pre-filters.
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Now we can see in Fig. 3.4.5 that the PPU finite order FBs (for M = 2,4) perform better than the
corresponding ideal brick-wall FBs, which shows that an ideal brick-wall FB does not necessarily

maximize the coding gain for a given number of channels.

3.5. Conclusion

We extended the techniques developed in [Tew92], [Ode92] for the design of an optimal scaling
function for the representation of a class of signals. We derived an expression for the error variance
and gave some examples to show how those expressions can be used in the design process. Similarly,
an idea of [She92] and a technique of [Xia93] were extended to the statistical case. The idea of
pre-filtering is applied to the problem of filter bank optimization to give a higher coding gain when
the input is a random process with a given power spectrum. We saw why this pre-filtering improves

the coding gain.

3.6. Appendices

Appendix 3.A: Proof of Lemma 3.2.1

In order to check for the cyclo-stationarity, substitute ¢ + 7" instead of ¢ in (3.2.5) and rearrange it

to get

re(t+7,7) = R(1)

‘2?(/R(t-@-ﬂ)w”(x—ﬂ—k+2’T)dm) ¢ (2 (t—7) - k+27T)
-2’;(/R((w—T)—t+r)¢* (2’(z—T)—k+2JT)dx> ¢(27t — k+27T)

+2 Y ([ [a@-1)-G-1)6 (@ 1) -k +2T) 627 (=T~ 1+2T) dedy)
k,l

x ¢(27t —k+2/T)¢* (27 (t — ) — 1+ 2T).
(3.A.1)

Now, if we change variables in the integrals according to £ — T' = u, and use y — T = v in the third,
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we get
re(t+ T,7) = R(7)
27y (/R(t—u)¢(2"u— (k—2JT))du> ¢~ (27 (t—1) - (k—2'T))
k
27y (/ Ru—t+71)¢* (27u— (k-2'T)) du) ¢ (27t - (k—27T)) (3.4.2)
k
+227 R(u—v)¢* (27u— (k—2'T)) ¢ (27v — (1 - 277)) dudv
>(// (@u= (k=21 6 (2% - )
x¢(27t— (k-2'T))¢" (27 (t — 1) - (1 - 27T)).
Using the invariance of the basis {¢(z —n) | n € Z} under integer translations, we see that

whenever 2/T is an integer we can change indices of summations n = k — 2T and m = [ — 2/7T.

Then (3.A.2) becomes (3.2.5), i.e., r¢(t + T,T) = re(t,7). The smallest T for which this is true is

the period of cyclo-stationarity of r(¢,7) and it is Tynin = 277 (see [Wor90)).

Appendix 3.B: Derivations for Section 3.2
We will handle terms one by one. Note that
F (4" (272 — k)" = 277 9(—27Tw)eitwr™

and

F(R(t — 1)) = e “*S(—w).
Then by the Parseval’s equality, we have
2~/ jy(t—k2” J
/ R(t—2)9(2"s ~ K)o = = / e IVE=k2") §(_y) (2773 dy.

When we put this into the second term in (3.2.7), we get

2_J 27 . —J
Rex(1) = — Y [ e VTR G(—y)B(~27Ty)¢* (27 (¢ — 27T k) — 27 P)dydt.
2(7) 27r/0 4 /e (=y)2(-2""y)¢"(2°(¢ ) = 2°7)dy

Now, because |®(w)| < 1, we have
o—J
| [Siscueeaie@ e - - kide
k
9=J
< /0 / S(-0) 16027 ¢ = 7) = Wl

= [ T - -kl [ sy < oo,
0 k

(3.B.1)

(3.B.2)

(3.B.3)

(3.B.4)

(3.B.5)
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so that we can interchange the orders of integrations and summation as we wish, because of Fubini’s

theorem. Then (3.B.4) becomes

Re(1) = 2’ / S(-y)e(-277y) Y / & e~ IVE-2""R gx (9 (¢ — 2T k) — 27 7)dtdy.  (3.B.6)
¢ 2w — Jo

Now notice that

2-J )
> / e IVE=2""R) gx (97 (4 27T k) 27 7)dt = / eIty (27 (¢t —1))dt = 277 @ (-2 y)e™ V",
k 0 —00
(3.B.7)
by putting k = 277 in (3.B.1). Finally, (3.B.6) becomes
2-2J -J, N2 —jyTr
Ra() = 2= [ s-ple-2-y)Pe vy, (3.B.)
and
2—2J
R.(0) = o / Sw)|@2 7 w). (3.B.9)

Now we go to the third term in (3.2.7). In a similar way [see (3.B.5)], if we use the Parseval’s

identity, we get

_2;J 2 e—d t=2""k—1)§*(9—J Jy
R =5 [ 2 (fswe ¥ (2 y)dy ) o2t - K

-J it
=5 / S@)eTE (277) Y /0 eI g(27 (¢ — 27 k) dt dy
k

”

F(8(278)=2-7 8(2~7y)

2-2J ,
= / S y) P dy, (3.5.10)

2

i.e., the second and third terms in (3.2.7) are the same.
There is only one term left. Consider the double integral in the fourth term. Using Parseval’s

equality, it can be written as

/ (/ R ~y)9(2y - l)dy) ¢ 27z — K)da

= % / F (R(z) * ¢(27z — 1)) (2-J e‘jk“2_1‘1>(2"‘]u))* du (3.B.11)
9—2J
2T
where f * g denotes the convolution of f and g. Substitute this back into the fourth term in (3.2.7)

/ S(w)e=92" =15 (2~ ) du,

and get
2—2J

Rea(r) = == /0 2- > ( / S(u)|<1>(2-Ju)|2e—12""<’-k>du> #(27t — k)¢ (27 (t — 7) — D)dt.
N
* (3.B.12)
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Again, because of a compact support of ¢(t), IM € R such that

>

k,l

o2t — k)p* (27t — 1) — l)\ <M Vt,r,ueR. (3.B.13)

Then, since |®(u)| < 1 and S(u) € L!, we can interchange the orders of integration with respect to

t and u and summations. So we get

Res(r) = 22 / S(u)|®2 7u)? / i > o7t k) (27t —7) - 1)e=327"u=R) | dtdy.
€ 2T 0 ki
(3.B.14)

If we now put | = n + k and pull the integral under the summation with respect to k, we have

—2J
Rea(r) = 2% / S(u)| @2 u)?

- (3.B.15)
xy ( ¢ (t—277k) Y ¢ (2 (t—27k) — 277 - n)e—ﬂ"""dt> du.
k Y n

Again .
Z/ (27 (t - 277k) 3 6727 (¢ — 277 k) — 277 —m)e=3 vy
£ V0 n
- / 6271 3 6" (27t — 27 — e v, (3.B.16)

The order of integration and summation can be interchanged, and if we apply the Parseval’s identity

to the last expression, it becomes

oy 272 o
ze—ﬂ Junﬁ/|¢(2—Jy)‘2e—J2 "(2"r+n)ydy

n

n(y)
—j2~un Sl -J 2 _—jr(y+2rk2?) | ,—j2=7ny
=Ze s Z|11>(2 y + 2mk)|e e dy
n T J-2in k
=277 Z |2~ u + 21rk)l2e_j7(“+2""21) a.e. (3.B.17)

k

because n(w) € LP([—m,x]) for Vp > 1 and its Fourier series converges to it almost everywhere (a.e.).
Then
2-3J .
Req(r) = T /‘S'(u)|‘1>(2"‘]u)|2 Z |®(2 7 u + 27rn)|ze”'(212""+“)du. (3.B.18)
n

So,

Re4(0) = 2

-3J _J 9
- / S(w)|®2w) 2dw, (3.B.19)

because Y, |®(277u + 27n)|? = 1 by the orthonormality (see [Dau92]).
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Appendix 3.C: Derivations for Sec. 3.3

We will handle each of the four terms in (3.3.7) separately. Let us start with the first one. By the

Parseval’s identity, we have
27 / /R(z —y)¢*(272)p(27y + n)dedy = —2—11? / /S(u)e‘j“yQ*(2_Ju)¢(2Jy + n)dudy. (3.C.1)
Now, since [ [ |S(u)®*(277u)¢(2”y +n)|dudy < oo, we can integrate with respect to y first and get
s1@) =2 Y e [ [ Ria—1)6"(2'0)0(2"y + n)dzdy
n

= -21; ;e_j"“’ /S(u)<1>*(2"]u) (/ eI (2ly + n)dy) du

_J . -
=5 Z e Imw /S(u)<I>"(2_Ju)e’"“'2 J<I>(2’Ju)du (3..2)

—J
=2y emer(swleEwl) (-2 n)

_J . =
=22—7r i ’">(2’“>f(5(u)|<1>(2-Ju)|2)(z-Jn).

|R(T)| < C/(1 +|7|'T*) implies that S(w) is continuous. This with the fact that S(w) and ¢(z) are
compactly supported implies that sufficient conditions for the application of the Poisson’s identity

are satisfied (see [Chu92] p. 45)
27raz f(w+2man) = Z F(n/a)ed™/, (3.C.3)
n n

where F(w) = F(f). If we put f(w) = S(w)|®(2"7w)|?> and a = 2’ into (3.C.3), then (3.C.2)
becomes

Sy (7)) = Z S(27w + 2mn2”)|®(w + 2mn)|?. 3.C4)

As for the second term in (3.3.7), first note that by the Parseval’s identity we have

-J

/ R(z - 271)¢* (2/x)dz = 22_77 S(y)®* (2 y)e V2 "ldy. (3.C.5)

Now the Fourier transform of the second term in (3.3.7) can be written as

. —J . 3 —_—
S2(e]w) — —22_7,- Ze—an Z h:n—l / S(y)e—1y12 J(I)*(2_Jy)dy
g " ! . ) (3.C.6)
D e / TS ()2 (27y) D hTeT M dy.
l

~Tor
n
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The order of integration and summation could be exchanged because we assumed ) |h,| < co and
S(y)®*(2~7y) € L. Let H(e’*) =Y, hne™9"?, then we have
2—J : o—J o—d
So(w) = 2= T e [ us)e @ Iy e )y
n
2—J : P ¢ i9—J
=2y / eI VS (y)@* (2~ ) H* (2 V) dy (3.C.7)
_J 2y —
- _22_ YT E (Sw)er @ w) i (7)) (n/27).
T
n

If we put f(w) = S(w)®* (2 /w)H" (e/277%) and a = 27 into (3.C.3) (notice that f(w) satisfies the
conditions for application of the Poisson’s formula), we get

Sa(e™) = =Y S(27w + 2mn27) 8" (w + 2mm) H™ (7 12))
. (3.C.8)

= —H*(e/¥) Z S(2'w + 2mn2”)®* (w + 27n),
n
because H(e/“) is a periodic function with period 27. The third term is just a complex conjugate

of the second one, i.e.,
S3(el¥) = —H (&) Z S(27w + 27n2”)®(w + 2mn). (3.C.9)
n

Finally, for the last term, we can write

Sa(e™) =277 e ™ N RQ27I(I - m)h_th¥,_,

l,m

=2"7Y "R/ - m))h_™ (Z h_n_me‘j“’(""_’”))

l,m

(3.C.10)
=277 R@N)h__me M eI H (1)
l,m

=277 3" RE@ ) H()? = 277 |H(e) 2 Y RE@ I D)e 3.
1 l

The orders of summations can be switched because of assumed sufficiently fast decay of h, and

R(n). Now we use the Poisson’s summation formula [put F(z) = R(z) and a = 2’ in (3.C.3)] to get
Y RN =27 Y 527 (w + 2n1)). (3.C.11)
1 1
Substitute this into (3.C.10) and get
Sa(e?) = |H(e™)[? ) S(27 (w + 2nl)). (3.C.12)
!

The orders of summation could be switched because of the absolute convergence of the corresponding

series.
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Generalized Sampling Theorems

In Multiresolution Subspaces

4.1. Introduction

Ever since Mallat and Meyer [Mal89, Mey87] came up with the concept of Multiresolution analysis
(MRA), it has been an interesting field for extension of results obtained in other frameworks. One
example is the sampling theory. Originally, the theory was developed for uniform sampling of
bandlimited signals [Whil5]. A couple of decades later, the research was concentrated on nonuniform
sampling [Pal34]. In the second half of this century, those ideas were extended to random processes
[L1o59]. All these results hold true for the class of bandlimited signals. What are other classes
of signals where we can develop similar theory? A more general setting is the class of so called
Reproducing Kernel Hilbert Spaces (RKHS) [Ya067] (see Appendix 4.A). It turns out that the
wavelet subspaces (MRA subspaces) are RKHS (under very mild restrictions on the scaling function)

[Wal92]. MRA was described in Sec. 1.2.

In sampling theory, there are two problems that one has to deal with. The first one is that of
uniqueness. Namely, given a sequence of sampling instants {t,}, can we have {f(t»)} = {g(tn)} for
some f(t) # g(t) and f,g € H (H is the underlying RKHS)? If this cannot happen, we say that {t,}
is a sequence of uniqueness for 7. The other problem is that of finding a stable inversion scheme.

This means, given some sequence of uniqueness {¢,}, is it possible to find synthesizing functions
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Sn(t) € H such that two things are true. First,

F&y =Y f(ta)Salt) VF(t) €H, (4.1.1)

n=—oo

and, second, if {f(tn)} is close to {g(tn)}, then sois 3, f(tn)Sn(t) to >, g(tn)Sn(t), in norms of
the corresponding spaces. It is possible that no stable reconstruction exists even though uniqueness
part is satisfied (see [Jer77)).

As we already mentioned, Walter showed in [Wal92] that V;,, are RKHS, under very mild
conditions on the decay and regularity of ¢(t). He further shows that a stable reconstruction from
samples at t, = n is possible and constructs the synthesizing functions S,(t)’s. Janssen [Jan93]
extended Walter’s result to the case of uniform non-integer sampling. Neither of these schemes
allows for both ¢(t) and synthesizing functions S, (t)’s to be compactly supportedT, unless ¢(t) is of

a restricted form (characteristic function of [0,1] or its convolution with itself, for example).

4.1.1. Aims of the chapter

In this chapter, we extend Walter’s work in several directions. We extend it to:
1. Periodically nonuniform sampling;

. Reconstruction from local averages;

Oversampling;

Reconstruction from under-sampled functions and their derivatives;

Multi-band or multiscale sampling;

o o p o

Uniform and nonuniform sampling of WSS random processes.

One of the motivations for these new schemes is the desire to achieve compactly supported syn-
thesizing functions. Periodically nonuniform sampling can guarantee compactly supported S,(t)’s
under some restrictions as we explain in subsection 4.2.3. In order to overcome those restrictions of
periodically nonuniform sampling, we introduce local averaging. This scheme can guarantee compact
supports for S, (t)’s under milder constraints. Local averaging offers some additional advantages. It

has good noise sensitivity properties and some compression capabilities, as we show in subsection

T In the future, whenever we talk about compactly supported synthesizing functions, we assume
that ¢(t) is compactly supported as well. Cases when S,,(¢)’s are compactly supported at the expense

of not having compactly supported ¢(t) are not considered.
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4.2.4. At the expense of a slightly higher sampling rate, oversampling can always guarantee com-
pactly supported S, (t)’s. This is shown in subsection 4.3.1. There are situations where besides f(t),
its derivative is available as well. In these cases, we can reconstruct f(t) from samples of f(t) and
f'(t), at half the usual rate. In subsection 4.3.2, we show how this can be done. If it is known that
f(t) belongs to some subspace of V;,, this additional information can be used to sample f(t) at a
lower rate (sampling of bandpass signals, for example). This problem is treated in subsection 4.3.3.
An application of some of the above mentioned methods to efficient computation of inner products in
MRA subspaces is explained in subsection 4.3.4 (also, see the next subsection). Finally, in subsection
4.3.5, we analyze what happens if we make errors in sampling times, namely, if, instead of sampling
at {tn}, we sample at {t;,}. We will show that this error can be controlled by § = sup,,c z |[tn — t,|.

All the above problems are embedded in the framework of multirate filter banks. We give suffi-
cient conditions for the existence of stable reconstruction schemes and explicitly derive expressions
for synthesizing functions. The theory of FIR filter banks is used to obtain compactly supported
synthesizing functions.

In section 4.4, Walter’s idea is extended to random processes. Things are little different now.
First, we have to specify a class of random processes for which we want to develop the theory. So far,
mainly wide sense stationary (WSS) random processes were considered [L1059]. The autocorrelation

function of random process {f(t), —0o < t < oo} is defined as

Rys(t,7) = E[f(t+ 1) f*(8)], (4.1.2)

where * denotes complex conjugation and E[] statistical expectation. When Ry;(t,7) does not
depend on t, we call it a WSS random process. We assume that Rj;(r) is the inverse Fourier
transform of the power spectral density (PSD) function Sys(w). In Sec. 4.4, we will use assumptions
that will insure that the Fourier transform of Ry;(7) exists (for the relationship in a general case,
see [Doob3]). Now we can characterize a random process in terms of its autocorrelation function.
For example, a random process is bandlimited if its autocorrelation function is bandlimited. In this
chapter, we consider WSS random processes whose autocorrelation functions belong to some space
related to wavelet subspaces. The problem of reconstruction has two meanings now. First, we can
talk about the reconstruction of a random process itself, i.e., existence of functions S, (t) such that
F(t) =3, f(tn)Sa(t) in the MS sense, i.e., limy_ o0 E[|f(t) — 271:]:—1\/ F(tn)Sn(t)]?] = 0. The other
interpretation is a reconstruction of the PSD function Sy¢(w). We show that a random process itself

cannot be reconstructed if the synthesizing functions are assumed to be integer shifts of one function,
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unless, of course, the process is bandlimited. However, the PSD function can be reconstructed, and
we show how. This is done for uniform sampling in subsection 4.4.1. Deterministic nonuniform
sampling of a WSS random process does not give a WSS discrete parameter random process. That
is why we introduce randomness into the sampling times (jitter). Nonuniform sampling of WSS

random processes is considered in subsection 4.4.2.

4.1.2. The new results in the perspective of earlier work

An actual implementation of the MRA requires computation of the inner products ¢, = cp,n =
(f(t), #(t — n)), which is computationally rather involved. Mallat proposed a method that gives an
approximation of ¢g , by highly oversampling f(t). Daubechies suggested another method (another
interpretation of Walter’s theorem) that computes cp,, exactly, but involves convolutions with IIR
filters. Shensa [She92] proposed a compromise between the above two methods. It has moderate
complexity and nonzero error.

All of the above mentioned methods involve sampling of signals in V,. Since our work is about
sampling in MRA subspaces, we apply some of the results obtained in Sec. 4.2 and 4.3 to the
problem of computation of ¢y ,’s. In subsection 4.3.4, we give a qualitative comparison of the new
and existing methods in terms of complexity, sampling rate and approximation error. While all our
methods have zero error and pretty low complexities and sampling rates, periodically nonuniform

sampling scheme achieves zero error at the minimal rate with FIR filters (lowest complezity).

4.2. Discrete representations of deterministic signals

In this section, we consider different discrete representations of functions in MRA subspaces V,,. We
work in Vj only, since all the relevant properties are independent of the scale (see [Wal92]). Other
Vi and W}, subspaces will be considered in the case of multi-band sampling (next section). Let us
first state assumptions and make some preliminary derivations. Certain definitions and theorems

from the analysis that we use are given in Appendix 4.A, for the reader’s convenience.

4.2.1. Assumptions and preliminary derivations

We assume that {¢(t —n)} forms a Riesz basis for V5 C L2(R). In order to show that Vj is a RKHS,

Walter assumes that ¢(t) is continuous and that it decays faster than 1/|¢| for large ¢, i.e., there
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exists C > 0, such that |p(t)] < C/(1 + |t|)! ¢, for some € > 0 (see [Wal92]). Janssen derives his

result under weaker assumptions, namely, that ¢(t) is bounded and that
D It —n) < Cs (4.2.1)
n

converges uniformly on [0,1]. Note that this assures us that ¢(t) € L}(R) and {¢(t —n)} € I' C I?
for all t. Also, the Fourier transform of ¢(t) is well defined and is a continuous function (see [Chu92]).
Since {¢(t —n)} is a Riesz basis for Vp, then for any f(t) € Vo there exists a unique sequence

{cn} € 12 such that

f&) = cad(t —n). (4.2.2)
If the sampling times are t, = n + u,, then
fltn) = cxd(tn —k) =D ckd(un +n—k). (4.2.3)
k k
Let
By, (€)=Y P(un + k)e 7 (4.2.4)
k

be the I'~Fourier transform of {(un + k)}T. Note that ®(e’*) is a BIBO stable filter because of

(4.2.1). In the rest of the chapter, we will frequently use the following lemma.

Lemma 4.2.1. Samples f(t,,) can be written as follows:

f(tn) = 511; _W C(e8°)®,, (7)™ dw. (4.2.5)

Proof: If we substitute ¢y = 5= [ C(e/*)e’*dw in (4.2.3), we have
F(t) = % )9 / C(7)e™ §(un + 1 — k)dw = '2% / C(6*)®, ()™ dw.  (4.2.6)
g o T

The order of integration and summation can be interchanged because >, [ |C(e?)p(un +n —

k)|dw < 0o (remember that C(e*) € L¥[—, 7] C L[, ] and {$(un + k)} € I)}.

T In our notation, F(w) is the Fourier transform of a function f(t) in L'(R) or L2(R), whereas,

F(e?¥) is the Fourier transform of a sequence {f,} from /! or 2.
! This argument for the interchangeability of integrals and/or sums will be often used without

explicitly stating it.
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o

Let us say a few words about the type of convergence in (4.2.2). Riesz basis property guarantees
L2—convergence of the sum in (4.2.2), so that f(t) is determined only almost everywhere (a.e.). Even
though sampling of functions defined only a.e. is meaningless, it is a well-defined operation in our
case because the sum in (4.2.2) converges uniformly on R. To see this, use (4.2.1) and (4.2.2), to

get
1/2
IF ()] < (2 le(t - k)l2> llekll2 < Clifll2, (4.2.7)
k

where the second inequality is obtained using the definition of a Riesz basis. This relationship
transforms L2-convergence into uniform convergence. Since we already know that the sum in (4.2.2)
converges in L? sense, it readily follows that it actually converges uniformly. Therefore, sampling of
f(t), as given by (4.2.2), is well-defined. In the rest of the chapter, we will consider the pointwise
convergence of (4.2.2) and not worry about this anymore. Our main concern will be to get sequences

{cn} from {f(t,)} in a stable way. The next subsection is a review of Walter’s and Janssen’s work.

4.2.2. Review of uniform sampling in wavelet subspaces

We will use an abstract setting for the sampling theory. It offers us a unified approach to all
the problems in this and the following section. So, let us first explain this approach. The idea of
sampling in wavelet subspaces is to find an invertible map between {c,} and {f(¢»)} in (4.2.3). More
generally, we want to find invertible maps between {c,} and some other discrete representations of

functions in Vj. Let us define this map.

Definition 4.2.1. By 7 we denote an operator from [? into [2. It maps sequence {cn} to {dn},
where {d,.} is some discrete representation of f =Y, cp,¢(t — n).
¢
When we talk about sampling theorems, we have {d,} = {f(tn)}, whereas in subsection 2.4,
{d,} will be a sequence of local averages. Because of the Fourier transform isomorphism between
12 and L?[—n,7], we can think of 7 as a map of L?[—m,n] into itself. In this basis, 7 is just
a multiplication operator [from (4.2.5), action of 7 is multiplication by ®,(e’“), in the case of
uniform sampling]. The following theorem is borrowed from [Jan93] just for the completeness of the

presentation (the proof can be found in [Jan93]).

Theorem 4.2.1. (Janssen) Let t,, = n+u, for some u € [0,1). Operator T : {cn} = {f(tn)}, maps
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12 into 12 for any f € V. Furthermore, 7! is bounded, if ®,(e?) # 0 for all w € [—,7].
¢

This theorem can be visualized as in Fig. 4.2.1. So we see that this sampling theorem has a

rather simple engineering interpretation in terms of digital filters.!

f(t,
SN rryony B BN p y royon g L

Fig. 4.2.1. Filter representation of uniform sampling.

Remarks.

1. There are some interesting connections to regularity theory. Notice that the condition from the
above theorem, in terms of [Jan93], is that the Zak transform of ¢(t), (2T ¢)(u,w) # 0 a.e. This
condition is the same as Rioul’s condition [Ri092] for the optimality of his regularity estimates.
So if there is a u € [0,1) such that (27 ¢)(u,w) # 0, then Rioul’s regularity estimates are

optimal, and f(t) can be reconstructed from {f(n + u)}.

2. The synthesizing functions S,(t) have been derived in [Wal92] and [Jan93]. They have the
following shift property

Sa(t) = S(t — n), (4.2.8)

where S(t) = 3, ¢5 “¢(t — k) and {¢; ¥} = F~! (1/@u(e™)).

3. When &,(e/) turns out to be a rational filter, it is obvious that if ®,(e/*) # 0, then 1/®,(e/*)
is stable (possibly non-causal).

4. Evidently, we cannot make both ®,(e/“) and 1/®,(e’“) trigonometric polynomials, unless
®,(e’) = e~7%_ Therefore, if ¢(t) is compactly supported [i.e., if ®,(e’*) is a trigonometric
polynomial|, S(¢) cannot have compact support. This negative conclusion does not hold in the

schemes we propose.

4.2.3. Periodically nonuniform sampling

Now we consider the case of periodically nonuniform sampling. For this, let us choose u, € [0, L) for

T In this chapter, z is just a formal argument, and it stands for /. ®(z) should not be interpreted
as Z-transform in the conventional sense [Opp89]. Most of our signals are assumed to be in 2, so

that their Fourier transform exists in I sense only.
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m=0,1,...,L —1, and set tyL+m = kL + upy. From the abstract point of view that we developed
in the previous subsection, 7 can be viewed as the analysis filter bank of an L-channel maximally

decimated filter bank (see [Vai93]). To see this, notice that f(txr+m), using Lemma 4.2.1, is

s

Ftrnom) = % / L O(e) 8, () du, (4.2.9)

-

where ®,,(e9¥) = ®,,_(e/*) for m =0,1,...,L — 1. In terms of multirate filter banks, {f(trr+m)}

is the m** subband signal in the following filter bank.

Fig. 4.2.2. Filter bank interpretation of periodically nonuniform sampling.

There is no fundamental difference between this scheme and that of Janssen. Fig. 4.2.1 is a
trivial 1-channel filter bank. The aim here is the same. We want to get back {c,} from {f(t,)} in a
stable way ({f(txr+m)} € I? for m = 0,1,..., L — 1, therefore, {f(t,)} € {? as well). In Fig. 4.2.1,
we inverted filter ®,(z). Here, we have to find a stable synthesis filter bank (inverse of the analysis

filter bank) t. For this we will use standard techniques from the multirate filter bank theory. Let

L-1 L-1
Pm(2) = Z z_kEmk(zL) and Gm(2) = Z szkm(zL)
k=0 k=0

be the polyphase decompositions of analysis and synthesis filters (for more discussion on polyphase
decompositions, see [Vai93]). Then we define the polyphase matrices as [E(2)]; = FExi(z) and
[R(2)]xi = Rki(2). So, when this filter bank has perfect reconstruction (PR) property, the operator
T and its inverse 7! can be represented by E(z) and R(z) respectively (see Fig. 4.2.3). Now
that we have this filter bank interpretation of 7", we can return to the problem of uniqueness and

stability.

T Stable in our context does not necessarily mean BIBO stable. We want a bounded transfor-
mation of [2 into [2. However, it turns out that if the synthesis filter bank is BIBO stable, i.e., if
the filter coefficients are in I, then it also represents a bounded transformation from 12 into [2; see

Appendix 4.A.
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Lemma 4.2.2. In the case of periodically nonuniform sampling, {¢,} is a sequence of uniqueness if
E(e?¥), as defined above is nonsingular almost everywhere (a.e.).

¢

Proof: Let ¢y = [ckr Ckr—1 -+ Ckp—r+41]” and fr = [f(ter) f(ter+1) -+ fltererz—1)]T
be blocked versions of {cx} and {f(tx)}. Then, using Noble identities (see [Vai93]), the system from
Fig. 4.2.2 can be transformed into that in Fig. 4.2.3.

f
Cy k Ck
LR \ \ e
4 = hy
y4 z
E (2) R (2)
I : :

Fig. 4.2.3. Polyphase representation.
Notice that ||ck|l3 = |lex]l3 = X4 clc;c and that f(e?“) = E(e’“)c(e’¥), where c(e/¥) =
Srcke * and f(e’) = ¥, fre 7k [f(e/“) and c(e’¥) are elements of (L?[~m,7])L]. Again,
using Parseval’s equality, we have

1 4 i i
1561 = 166113 = S gt = o= [ #hei)ter )

& -7
=% /_ ol ()BT () B(e o(e)dw. (4.2.10)

If Ef (e7%)E(e7%) (a positive semidefinite matrix) is nonsingular a.e., ||fk|]2 can be zero if and only
if cf (e?“)c(e?) = 0 a.e., which implies that {c} is a zero sequence itself.

¢

The question of stable reconstruction can be answered using Wiener’s theorem (see Appendix

4.A, and [Rud87]). What we want is BIBO stable E~!(e/*) = R(e/¥).

Lemma 4.2.3. A stable recovery from periodically nonuniform samples {f(t,)} of any f € V; is
possible if there exist BIBO stable synthesizing filters G¢(z). This will be the case if and only if [det
E(e?“)] #0 for all w € [, 7].

¢

Proof: Since entries of E(e’) are Fourier transforms of {* sequences, so is the determinant [det

E(e’)] (operation of convolution is closed in I, as explained in Appendix 4.A). Now by the Wiener’s
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theorem, convolutional inverse of [det E(e/*)] is in I*, if and only if [det E(e?“)] # 0. Then the
entries of E~!(e7“) are Fourier transforms of I* sequences. This means that R(z) is a MIMO, BIBO

stable system and therefore c(e’“) can be recovered from f(e/“) in a stable way.

o

Remark. The existence of FIR perfect reconstruction filter banks allows for the possibility of having
both ¢(t) and S, (t)’s compactly supported, unlike the schemes in [Wal92] and [Jan93]. In particular,
if &,,(2) = Ef;é (4m +n)z~" for m = 0,1,...,L — 1, then the polyphase matrix will be just a
constant matrix. In this case, the inverse filter bank is guaranteed to be FIR. This constraint on

the number of channels will not be necessary in the schemes we propose next.

Expressions for synthesis functions

Let us now construct synthesis functions and show that they have some shift property as well.
Gr(e?) = 3, gke 7™ are the synthesis filters in our perfect reconstruction (PR) filter bank (see

Fig. 4.2.2). The PR property implies that (see [Vai93])

L—-1
en =33 Fltar4r)ghsons- (4.2.11)
k=0 n
Then the reconstructed function is
L—1 L-1
F& =D Fltnrsr) Y 05 nrdt —m) =D f(tnr4k)Skn(t). (4.2.12)
k=0 n m k=0 n

If we define Sk(t) = 3, gk, ¢(t — m), then
Sen(t) =) gk ¢t —m+nL—nL)=Si(t—nL), 0<k<L-1. (4.2.13)
m

So all the synthesizing functions are obtained as shifts of L basic functions. The above lemmas are

summarized in the following theorem.

Theorem 4.2.2. Let ®,,(z) and E(2) be analysis filters and their polyphase matrix as shown in Fig.
4.2.2 and 4.2.3. A stable reconstruction of {c,} from the samples {f(t,)} exists if the determinant
[det E(e7“)] # O for all w € [—,7]. Furthermore, all synthesizing functions are shifts of L fixed
functions, as given by (4.2.13).

o

Next, we are going to illustrate the above theory with some practical examples. Before this, let

us first give a short summary of the algorithm.
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Summary of the algorithm for recovery of {c,} from {f(t,)}
1. Choose up, € [0,L —1), for m =0,1,...,L —1.
2. Obtain filters &, (e“) = 3, ¢(n + um)e™™ and form E(z).
3. Find E~!(z) (provided Theorem 4.2.2 is satisfied) and calculate synthesis filters G, (e7*)’s.

4. Construct synthesis functions Sk, (t)’s as given by (4.2.13).

Example 4.2.1. Consider the MRA generated by linear splines (see [Chu92]). The scaling function
is

t, for0<t<1,

o(t) = {2—t, for1<t<2,

0, otherwise.
We are interested in the case where there exist compactly supported synthesizing functions. For
this, let us choose L = 2, ug = 0 and u; = 0.5. Fig. 4.2.4 shows ¢(t) and samples ¢(n + u,,) which
determine filter coefficients. Namely, from (4.2.4), ®,(2) = >, é(n + um)z™ = >, ¢Tz7", so
that ®o(z) = 27! and ®1(2) = $(1+271).

o N
0, 0,

0 05 1 15 2 ¢

Fig. 4.2.4. Linear spline and its samples at 7 + .

0 1
1/2 1/2

(_11 (2)) Then the synthesis filters are Go(z) = z — 1 and G1(z) = 2. The synthesis functions are

So(t — 2n) and Sy (t — 2n), where So(t) = (t + 1) — ¢(¢) and Si(t) = 26(2).

The polyphase matrix is E(z) = ( ) The inverse of E(z) is R(z) = E71(2) =

Example 4.2.2. Let us now consider the case of quadratic splines [Chu92]. The scaling function is

t2/2, for0<t<1,

6(t) = —(t—3/2)2+3/4, for1<t<2,
1(t-3)?, for2<t<3,
0, otherwise.

As usual, we want to have compactly supported synthesizing functions. Since ¢(t) is supported
on [0,3], we choose L = 3 and uo = 0, u; = 1/3, and up = 2/3. Then ®o(z) = $(z7! + 272),

®1(z) = f5+ 1oz + 2272, and ®5(z) = 2 + 33271 + £2~2. The polyphase matrix and its inverse
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are
0 /2 1/2 13/4 -9 27/4
E(z)= | 1/18 13/18 2/9 and EYz)=R(z)=|-5/4 3 -3/4
2/9 13/18 1/18 13/4 -3 3/4

From R(z) we get Gi(z)’s and synthesizing functions Sp(t — 3n), S1(t — 3n) and S5(t — 3n), where
So(t) = Ba(t) — St + 1) + LB¢(t + 2), S1(t) = —9¢(t) + 3¢(t + 1) — 34(t + 2), and Sa(t) =
Fot) - ot +1) + 3ot +2).

So, we see that the actual implementation of the algorithm can be simple. The above examples
show how we can achieve compactly supported synthesizing functions, but the problem is that if the
support of ¢(t) contains interval [N1, No] (N1, N, are integers), then we need L > N, — N; channels.
In other words, the number of channels L, necessary for E(z) to be a constant matrix, grows linearly

with the length of the support of ¢(t).

4.2.4. Reconstruction from local averages

In this subsection, we consider another discrete representation of functions in V. The motivation for
this subsection comes from [Fei94], where it was shown that a bandlimited function can be recovered
from its local averages. We extend this representation to wavelet subspaces. This scheme offers
three advantages over the previous ones.

1. Compactly supported synthesizing functions. If ¢(t) is compactly supported, then we can guar-
antee existence of compactly supported synthesizing functions S,(t)’s. Unlike in the case of
nonuniform sampling, we can guarantee this even when we have only two channels, regardless
of the length of the support of ¢(t).

2. Shaping of the frequency response. We have a complete control over the shape of frequency
responses of analysis/synthesis filters. Namely, we can force filters ®,,(z) to be anything we
want (provided, a length constraint is satisfied).

3. Robustness. This scheme has reduced sensitivity towards the input noise, compared to pure

sampling.

In the first part of the subsection, we make introductory derivations, similar to those in the case
of uniform and periodically nonuniform sampling. Then, at the expense of a small increase in
complexity, we modify the scheme in order to gain control over the filter coefficients of ®,,(z)’s.

This discrete representation has the same average rate of sampling as in previous sections.
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The main idea is to find ways of reconstructing f(t) not from samples f(tx), but from local

averages ay = ftt:fﬁ f(t)dt around t;, (as shown in Fig. 4.2.5). In this uniform case we can choose

A=1/2and ty =k+1/2+u. Then
k+14u k+1+u
ai = / f(t)dt = / chqb(t —n)dt. (4.2.14)
k k+u n

+u

te1—A txg Tt +A A g A kA Txy Uiy +A
Fig. 4.2.5. Local averaging scheme.

If ¢f = kk_::"'“ #(t)dt, then (4.2.1) implies that {¢¥} € I'. {ax} can be viewed as a convolution
of {cx} € 1% and {¢}}, so that {ax} € I2. Therefore, its Fourier transform A(e’*) =Y a,e™™ is
well defined. Then, just as in the case of uniform sampling (subsection 2.2), we have the following
relation

A(e™) = C(e“)@u(e™),
where, now, ®,(e’?) = Y, ¢¥e~7™ is the Fourier transform of {¢%}. The only difference from
the case of uniform sampling is that operator 7 now maps sequence {cx} into the sequence of local

averages {ar}. So, this system is the same as that in Fig. 4.2.1, except for the definition of &,(z)

and the meaning of its output {ax}. Therefore, we have the following theorem.

Theorem 4.2.3. If ®,(e’“) as defined above is nonzero on [—, 7], then the representation of a
function f € Vj by its local averages ay is unique. Moreover, there exists a stable reconstruction

algorithm.

¢

Remark. This scheme has the same problems as that of uniform sampling. Namely, S, (t)’s and

¢(t) cannot be simultaneously compactly supported.

Let us now consider periodically nonuniform averaging. The idea is to partition the interval

[0, L] into L subintervals I,,, m = 0,1,...,L — 1. The sequence of local averages is defined as

AkL+m = / f(t)dt. (4.2.15)
kL+Ip,

t This integral exists because f(t) € L2 ([u,u+1]) C L' ([u,u + 1)) for all u € R.
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Let g7t = [, o(t)dt and () = 30, 41re™7™. Using this notation, we have

AnL4m = /nLHm ; ck(t — k)dt = Zk: CkPrt—k- (4.2.16)
This equation can be viewed as a convolution of {c;} with {¢}'} followed by L-fold decimation.
Accordingly, in the frequency domain, this means Apm(e7) = (C(e*)®m(e¥)) | ,, where A(z) =
> t=a 2 ¥ Ax(2L) is the polyphase decomposition of A(z), and 1, denotes L-fold decimation. The
situation is completely identical to that in the case of periodically nonuniform sampling (shown in
Fig. 4.2.2), and Theorem 4.2.2 holds true for this case (only filters ®,,(e?“)’s are obtained in a
different way). Again, if ®,(e?“)’s are FIR and such that the synthesis filter bank is FIR as well,
the synthesizing functions will be compactly supported.

But if everything is the same as in the case of nonuniform sampling, what is the point of doing
all this? The answer is given in the rest of the subsection: at the ezpense of a little more complezity,
we will be able to force filters ®,,(e’) to be anything we want.

Nonuniform sampling gave us very little control over the filters ®,,(e’“). Consequently, it is
unlikely that filters ®,,(e’“), in that scheme, will have an FIR inverse filter bank (unless we choose
L big enough to make E(z) a constant matrix). In order to make this happen for any L > 2, we have
to work a little harder. For this, notice that what we have done so far, in this section, is equivalent
to finding inner products of f(t) and windows wg(t — nL) where w(t) = x1, (t) is the characteristic
function of the interval I. If we use some other window, can we use this freedom to make sure that

the filter bank has an FIR inverse? We will show that the answer is in the affirmative.

Let ¢(t) be compactly supported on an interval [0, N]. We divide [0,1] into N subintervals Iy,

k=0,1,...,N — 1. Let the windows be piecewise constant functions
N-1
wm(t) = Y amixn(t). (4.2.17)
1=0

We are going to show how coefficients a,,; can be used to gain more control over filters ®,,(e’“)’s.
Let {Hm(e’*)} and {Gm(e?“)} be analysis and synthesis filters of an FIR PR, L-channel filter
bank. We assume that filters H,,(e/“) have lengths N. Note that, except for the length constraint,
{Hm(2)}, {Gm(e*)} is an arbitrary FIR PR filter bank.
The idea is to choose a,,;’s so that ®,,(e’”) = H,,(e?). Let us see how to achieve this. The

filter coefficients of ®,,(e7*) are ¢7 = [ wy, (t)$(t + n)dt. Using (4.2.17), this can be written as

N-1 N-1
8 =3 om [ B0+t =3 amra (4.2.18)
1=0 L 1=0
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where v = [, 1, #(n + t)dt. Now, there are L systems of linear equations (for m =0,1,...,L - 1),
each in N unknowns ay,;, [ = 0,1,...,N — 1. All these systems have the same system matrix
[T]nt = yni- X T is nonsingular, there is a unique solution for a,,;’s. If ' turns out to be singular
(which is very unlikely), we can change subintervals I; and get a nonsingular I' (almost surely).
This way we can shape filters ®,,(e/“) into anything we want. The synthesizing functions can be
obtained from {G(z)} as in the previous subsection [see (4.2.11-2.13)]. Even though the equations

look messy, application of the algorithm is pretty straightforward. Let us summarize the steps.

Summary of the algorithm
1. Partition interval [0, 1] into IV arbitrary subintervals Ij.
2. Form the matrix I' with entries [[],; = || I ¢(n +t)dt. I T is singular, go to step 1; otherwise,
determine ay,’s from the filter coefficients of desired filters {H(z)}.

3. Determine synthesizing functions Sk, (t)’s from {Gr(z)} as given by (4.2.13).

We demonstrate the algorithm on simple examples of spline generated MRA's.

Example 4.2.3. Let the scaling function be the linear spline, as in Example 2.1, and let L = 2 (two
channels), Iy = [0,0.5] and I; = [0.5, 1]. Entries of I are easy to calculate. They are the areas shown

in Fig. 4.2.6. More precisely, 700 = 711 = f:s ¢(t)dt = 1/8, o1 = 710 = fol.s =3/8.T =34 (; i’)

is nonsingular and its inverse is I~! = (_31 _31) .

1

/ 3/87
1/ | T

0 | 2

Fig. 4.2.6. Areas under ¢(t) over intervals I;

are entries of T'.

Suppose we wish to choose windows wy (t) such that ®4(z) = Ho(z) = 715(1 +271) and ®;(2) =

Hq(z) = 715(1 — 2z71) (®o(z) and ®;(2) are analysis filters of the simplest two-channel paraunitary
- . a0\ _ po1 (V2N _ (V2

filter bank). Then the coefficients a,; are obtained as ( ) =T (1 / Va) =2 and

o1

(0‘10) = p-! (_11//\{/55) = (_2%}/;) So the windows are wp(t) = v2 X[o,1](t) and w(t) =

ay
2/2(— X[0,1/2](t) + X[1/2,1])- Since ®4(z) form a paraunitary filter bank, the synthesis filters are time

reversed versions of ®x(2)’s, i.e., Go(z) = %(z + 1) and G1(z) = %(—z + 1). So, the compactly
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supported synthesizing functions are Sp(t — 2n) and S; (t — 2n), where Sq(t) = %(q&(t) + ¢(t + 1))
and S;(t) = \/%_(¢(t) — ¢(t + 1)). This example shows how easy it is to shape filters ®#(z)’s. In a
similar way, if we consider some scaling function with a bigger support, we can have longer filters
with better frequency responses.

Example 4.2.4. In this example we want to show that the number of channels may be smaller than

the length of filters ®,,(2)’s. For demonstration, we choose quadratic splines as given in Example

4.2.2. Choose L = 3, and Iy = [0,1/3], [, = [1/3,2/3], and I, = [2/3,1]; it is straightforward to

check that
1 1 7 19
I'=— (34 40 34
162\ 19 7 1

is nonsingular. So we can force filters ®,,(2) to be any desired filters of length 3. Notice that there
are no assumptions about the number of channels. In particular, compactly supported synthesiz-
ing functions can be guaranteed with a two-channel filter bank (unlike in the case of periodically

nonuniform sampling). All this generalizes for ¢(t)’s with bigger supports.

Remarks.

1. Complezity price. Notice that the windows wg(t) are step functions and it is not necessary to
do true inner products. A simple “integrate and dump” circuit with weighted output will do.

2. An additional advantage. We wanted a complete control over the filters ®¢(z) in order to
be able to guarantee compact supports for the synthesizing functions Sy (t)’s. However, this
freedom can be used to achieve even more. Namely, we can design ®,,(z)’s with good frequency
characteristics and then use standard subband coding techniques for signal compression.

3. Limitations. This extended local averaging technique works for compactly supported scaling
functions only. As the length of the support of ¢(t) increases, we have to subdivide interval [0, 1]
into more and more subintervals. This makes the scheme more and more sensitive to errors in

limits of integration.

At the beginning of the subsection we announced three main advantages of local averages over the
previous schemes. So far, we justified the first two. Intuitively, it is clear that if the input signal
f(t) is contaminated with a zero mean noise n(t), local integration will tend to eliminate the effect

of the noise. This can be more rigorously justified, and the details are provided in Appendix 4.B.
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4.3. Further extensions of sampling in wavelet subspaces

In this section, ideas of sampling in wavelet subspaces are extended to three more cases. Namely,
we consider oversampling, derivative sampling and multi-band sampling. As in Sec. 4.2, we mainly
work in Vp, except for the multi-band case. All the assumptions from subsection 4.2.1 are kept, and

whenever we make some additional assumption, it will be explicitly stated.

4.3.1. Oversampling

We already saw two schemes in which both ¢(t} and Sy, (¢)’s can be compactly supported. Here, we
introduce another such scheme, oversampling. So far we considered L-channel maximally decimated
filter banks only (Fig. 4.2.1 is a special case with L = 1). Let us see what happens in the case of
non-maximally decimated filter banks. Instead of doing derivations for the most general case, we
will demonstrate the idea on the example of a two—channel non-decimated filter bank. For this, we
choose ug,u; € [0,1) and ug # u;. Sampling f(t) € Vo at all points n + ug, n + u;, we get two
sequences, {f(n +wuo)} and {f(n +u1)}. We know from subsection 4.2.2 that f(t) can be recovered
from either of these two sequences (provided conditions of Theorem 4.2.1 are satisfied). The idea
is to use the redundancy to achieve reconstruction of f(t) with compactly supported functions.
Let ®;(e’) = 3=, ¢(k + us)e™7* for i = 0,1. Using our abstract approach, this situation can be

represented as in Fig. 4.3.1

Fig. 4.3.1. Filter bank interpretation of oversampling.

Now, if ®;(z) are polynomials, Euclid’s algorithm guarantees existence of polynomial G;(z)’s if
and only if ®o(z) and ®,(z) are coprime. In the general case, when ®;(z)’s are not necessarily FIR,

the following theorem gives us solution to the reconstruction problem.

Theorem 4.3.1. For the system in Fig. 4.3.1, operator 7, maps L%[—m,7| into L%[—m,7] x
L[—m, 7). If |®o(e/)| + |®1(e?)] # O for all w € [~7, 7], 7 has a bounded inverse. Furthermore,
if ¢(t) is compactly supported, there always exists an FIR inverse, so that S,(t)’s can be compactly

supported.
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o

Proof: In this case, operator 7 is a 2 x 1 matrix whose entries are Fourier series of I' sequences. It
is easy to see that 7 maps L?>[—n, 7] into L?[—m, 7] X L?[—m, ]. What we need is a bounded inverse
operator 7~1. If we can guarantee that there always exists a 1 x 2 matrix [(Go(z) Gi(z)) in our
notation in Fig. 4.3.1), whose entries are Fourier transforms of sequences in I}, then we are done
(see Appendix 4.A).

For the case of polynomial ®;(z)’s, Euclid’s algorithm guarantees existence of polynomials G(z)
and G1(z) such that ®0(2)Go(z) + ®1(2)G1(z) = 1, provided ®o(z) and ®;(z) are coprime. The
same is true for rational ®;(z)’s.

In the general case, an extension of the Wiener’s theorem (basic Wiener’s theorem is stated in
Appendix 4.A) is as follows. If |®g(e?¥)| + |®1(e?¥)| # O for all w € [—m, 7] and ®o(e?), ®1(e)
have absolutely summable Fourier series, then there exist functions G;(e’“) (i = 0, 1) with absolutely
summable Fourier series, such that ®o(e/“)Go(e’) + @1 (e/“)G1 (/) = 1 (see [Vid85] for the proof).

¢

Remarks.

1. Local averages. It is clear that we can conceive the idea of oversampled local averages. Namely,
let us divide the interval [0,1) by some u (0 < u < 1) and consider following sequences af, =
7 f(t)dt and @l = f:_:'i f(t)dt. Then, we can have a similar structure as in Fig. 4.3.1, and

a theorem analogous to theorem 4.3.1. holds.

2. Oversampling at a lower rate. Compact supports of ¢(t) and S,,(¢)’s can be guaranteed even if
we oversample at a lower rate. In the discussions above, we considered a non-decimated two—
channel filter bank. However, both Euclid’s and Wiener’s theorem can be generalized for the
matrix case. For example, if we choose L points ug, u1,...,ur—1 € [0, M] and sample at txrrim
form =0,1,...,L — 1, the scheme can be viewed as an L-channel filter bank, with decimation
ratio M < L. The operator 7 is an L X M matrix E(e’“) whose entries are Fourier transforms
of I! sequences. In the case of polynomial matrices, an extended Euclid’s theorem guarantees
existence of a polynomial inverse M x L matrix if rank [E(e*)] = M for all w € [—, 7]. More
generally, an extended version of the Wiener’s theorem guarantees the existence of a bounded
inverse operator 7! if rank[E(e/“)] = M for all w € [, 7). Sampling rate in this case is
L/M > 1. So we see that compact supports for ¢(t) and Sy, (t)’s can be guaranteed if we sample

at rate 1 + € for any € > 0.
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4.3.2. Reconstruction from samples of functions and their derivatives

It is well known that a bandlimited function f(t) can be recovered from samples of f(t) and its
derivative at half the Nyquist rate (see [Jer77] for further references). In this subsection, we want
to show how this idea can be extended for the case of wavelet subspaces. This problem can be
treated the same way as that of periodically nonuniform sampling. We will derive expressions for
the analysis bank filters, since that is the only difference from subsection 4.2.3. Let us demonstrate
the idea on the example of reconstruction of f(t) € V; from the samples of f(¢) and its derivative
at rate 1/2.

We assume that the scaling function ¢(t) is compactly supported and that it has a derivative
¢'(t). It is also assumed that ¢'(t) itself satisfies Janssen’s conditions stated in subsection 4.2.1.
Consider uniform sampling, i.e., t, = n + u. The above assumptions enable us to differentiate

(4.2.2) term by term and get

f'(tn) = Y cud'(tn — ). (4.3.1)
k
Using Lemma 4.2.1, we have
Ftn) = % _"" O () Bo(e)dw and  f'(ty) = 51; :r IOy (),  (4.3.2)
where
Bo(e?¥) = Z d(u+n)e™ ™ and &,(eV) = Z ¢'(u +n)e ™. (4.3.3)
n n

From [Jan93), we know that f(t) can be reconstructed from {f(¢,)}. This means that the sequence
of derivatives {f'(t,)} is redundant. The idea is to use this redundancy to reconstruct f(t) from sub-
sampled sequences {f(t2,)} and {f'(t2n)}. Notice that this scheme corresponds to a two—channel
maximally decimated filter bank with ®¢(e’“) and ®;(e’“) as analysis filters. So everything is the
same as in Fig. 4.2.2, and Theorem 4.2.2 provides us with conditions for the existence of a stable
reconstruction. Namely, stable reconstruction is possible if the polyphase matrix of ®(e’“) and
®,(e?) is nonsingular for all w € [, 7).

This can be easily generalized to the case of higher derivatives. Assume that the scaling function
#(t) and its M — 1 derivatives satisfy Janssen’s conditions from subsection 4.2.1. Then f(t) can be
reconstructed from the samples of f(t) and its M — 1 derivatives at 1/M?®* Nyquist rate, provided
conditions of Theorem 4.2.2 are satisfied. Synthesizing functions can be constructed as in subsection

4.2.3. Let us illustrate the above derivations on the case of quadratic splines.
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Example 4.3.1. Consider the MRA generated by the quadratic spline as in Example 4.2.2. Then
#(t), its derivative and integer samples are shown in Fig. 4.3.2. From the figure it is easy to see that
Bo(z) = X, d(n)z~" = 1/2(z7! + 272) and ®1(2) = ¥, ¢'(n)z™™ = 271 — z72. The polyphase
_ 2712 1/2 . . z —z/2 .
matrix is E(z) = 1) Its inverse is R(z) = 112 ) so that FIR synthesis filters
are Go(z) = z+22 and G1(2) = 2/2—22/2. Finally, synthesis functions are So(t—2n) and S (t—2n),

where So(t) = #(t + 1) + ¢(t + 2) and S1(t) = $(t + 1) — 3(t + 2).

b7(L)
b(L)
o 1 2 3 t

Fig. 4.3.2. ¢(t), ¢'(t) and its samples at integers.

Remark. If one uses longer filters, E7!(z) may turn out to be IIR. In that case, one can use
techniques of nonuniform sampling or reconstruction from local averages together with sampling of

derivatives to insure compactly supported synthesizing functions.

4.3.3. Multi-band or multiscale sampling

Consider a signal F(w) as in Fig. 4.3.3. If F(w) is regarded as a lowpass signal, minimum necessary
sampling rate is 2w,. If it is regarded as a bandpass signal, it can be verified that aliasing copies
F(w + kw,) caused by sampling at the rate w, do not overlap. Therefore, minimum sampling rate

in this case is w;.

F(oto) | F(o) F(o-o)

]
G o ®
Fig. 4.3.3. An ideal bandpass signal and its aliasing copies.

The aim of this subsection is to find what the equivalent of this situation in wavelet subspaces is.
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Spaces Vj, roughly speaking, contain lowpass signals, whereas W} spaces contain bandpass
signals. So far, we have examined lowpass signals only (ones that belong to ;). Necessary sampling
rate for exact reconstruction was unity. We will show that if a signal does not occupy the whole
frequency range that Vp covers, it can be sampled at a lower rate. For example, if f(t) € W_1, we
can sample it at the rate 1/2. More generally, assume that f(t) € W_1 + W_a + -+ + W_; C Vb

This means that there are sequences {c_1.}, {c-2,n},.--,{c—sn} € {? such that

f@t) = i > n2¥ (24t - n). (4.3.4)

k=—J n

From Walter’s work, we know that since f(t) € Vp, it can be recovered from its integer samples.
Here, the aim is to exploit the fact that f(t) belongs to a subspace of V; and sample it at a lower
rate. As in previous subsections, the idea is to find an invertible map from the sequences {ck,n} to a
sequence of samples of f(t). For this, let us sample f(t) at tg.n = n2 % +ug, k= —-J,—J+1...,-1,
where uy, € [0,27%). Intuitively, this rate should be enough, since we can project f(t) onto each of
Wy’s and then sample those projections at rates 2%. As in the previous sections, we would like to
find a nice interpretation of the operator 7 in terms of digital filter banks. The problem is that
inputs {ck} and outputs {f(tx,n)} operate at different rates for different k’s (viz. 2¥). In order
to simplify analysis that follows, let us find some equivalent system where all the inputs/outputs

operate at the same rate. For this, let
Cr(e) =) cene™™  and  Fpn(e™) =) f(tmn)e 5" (4.3.5)
n n

be the Fourier transforms of {ck,n} and {f(tm,n)}. In order to bring all these signals to the same

rate, we expand Cj(e’“)’s and F(e’“)’s into their 2/+*-fold polyphase components

274k _q 27 +k_1
Ck(ejw) - Z e_jWICk,l(eju2J+k) and Fk(ejw) — Z e—jwle’l(ejuz-l+k), —J<k< -l

=0 =0
(4.3.6)

Now that all the inputs and outputs are brought to the same rate, our system can be represented

as that in Fig. 4.3.4.
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C.i0(2) F.i0(2)
C..(2) . —F..(2)
C_1,2‘_“1 (2) - 52 (2)
C 2042) F (Z) ] Fo0(2)
C.q(2) - : Fu1(2)
C_J (Z) F-J (Z)

Fig. 4.3.4. Polyphase representation of a MIMO nonuniform filter bank.

Let us find the entries of F(z). Using (4.3.4), the ¢** element of F,,,(z) is

-1
F@ ™t um) = 3. D 2252 - 27M + u)). (4.3.7)
k=—-J 1

Substituting ¢ = 2/7™n + p in the above expression and using cx; = % 7. Ck (e3w2 ™" )edw2™ " gy,

we get
f@In+2""p+un) =
-1 _
27k2 7 jw2 ™k jw(2= k127 k(oJ k jw2?’
= Z Cr(e?* ) Ze""( g2k @2In +27"p — 274 + uy) | €4 "dw.
ve—y 2 Jen 1
(4.3.8)
Finally, after expanding Cx(e*“2 " )’s into their 27+¥-fold polyphase components, we get
—1 27tk . s
f@n+2mptum) = Y Z C'k, (€2 ) H P (7% )el? " dw, (4.3.9)
k=—J 1=0

where H,'B'fl”’(ej“’rk) = 2k/2=3w2 M 3 g=jw2 ™ ng(2k(2-Mp 4 2~kn L u,,)). Therefore, the output

polyphase components are

-1 27tk
Fm’p(ejw) — ( Z Z Ck’l(ejw2J)H;r:,l,P(ejw2-k)) j'
2J

k=—J 1=0
—1 9J+k_4
=k;J ; Cra(@) (BT ) | .- (4.3.10)

Hence, the entries of the matrix F(2) in Fig. 4.3.4 are [F(2)]i,,;, = (H,':l’"(z)) LHk, where i; =
24 — 2J+m+l 4 py and i = 27 — 27Fk+ 1. As before, the MIMO version of the Wiener’s theorem

[Vid85] gives us sufficient conditions for the existence of a stable inversion scheme.
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Theorem 4.3.2. If a function f(t) € W_;, + W_i, + -+ W_;, CVo (1 <41 <ip<...<iy)is
sampled at the rate 27% +27% 4 ... +27% < 1, then there exists a stable reconstruction scheme if

F(e’), as defined above, is nonsingular for all w € [—,7].

¢

Remark. Notice that if the projection of f(t) onto some of Wy’s is zero, we can drop the corre-

sponding term Cj(e’“) and sample at an even lower rate.

Synthesizing functions can be determined from F~'(z) as follows. Let G(z) = F~!(z) and
Gkl (2) = [G(2)]i,.iy, Where iy = 27 — 27+F+1 L [ and iy = 27 — 2/¥™+! . Then
m,n 1,42

-1 9d+m_3

Chortiprt = 3, D S gk - ) fR7q+27"n +un), (4.3.11)

m=—J n=0 q
where G5!, (2) = 2, g5l (p)27P. Also

—1 27+

=3 3 3 crammpu2 P2kt — 27 p 1), (4.3.12)

k=—J I=0 p

Substituting (4.3.11) into the last equation, we get

-1 2J+tm_
=Y 3 > f@q+27n+um)SE (1), (4.3.13)
m=—J n=0 q
where
-1 27tk
Se.0 =5 3 Sk 2@kt - 27 p —1). (4.3.14)

k=—J 1=0 p
These synthesizing functions have a shift property as well. Notice that S&71(t) = Sg, ,.(t — 27),
i.e., all the functions are obtained as shifts (for 2/) of 2/ basic functions S2, ,(t) = Spm,a(t) for
n=0,1,...,2*" and m = —J,—J + 1,...,—1. Using Sy, n(t), the synthesis algorithm (4.3.14)
can be written as

—1 2Jtm_3

=Y 3 Y f@qg+2™n 4 um)Smalt —279). (4.3.15)

m=—J n=0 q

This provides the formula for f(¢) in terms of the samples f(ty k).

Example 4.3.2. Let iy = 1 and i = 2 in Theorem 4.3.2. Then our function is f(t) € W_;UW_y C

Vo. The situation is schematically sketched in Fig. 4.3.5.



Fig. 4.3.5. W_; UW_, C V} in the frequency domain.

In this case, matrix F(e’*) is of the form
(FZ8E) |, (HZ9E) |, HI38E)
Fei) = | (HZbg(e) |, (HZDiE™) |, HI33()
(BZ20e) |, (HZ2e) 1, HI3gE™)
Entries Hy ;" (e7*) are functions of the chosen ¢(t) and %(t), i.e., the underlying MRA. If [det F(e’*)]

turns out to be nonzero for all w € [—, ], then F~1(e/¥) is stable and we can obtain synthesizing

functions as given by (4.3.11-4.3.15).

4.3.4. Efficient computation of inner products in MRA

As one of the inventors of MRA, Mallat was the first to face the problem of computing inner products
ckn = (F(), Pr.n(t)), where ¢y o(t) = 25/2¢(2Ft — n). There exist computationally a very efficient
method for getting ck , from co ,, for any k < 0, the so called “Fast Wavelet Transform” (FWT) (in
other words tree structured filter banks). So the problem is to compute cp . Mallat showed that
under mild conditions on regularity of f(t), the samples f(n/2”) approach c;, when J — co. But
obtaining coefficients ¢y, was an intermediate step in reconstructing f(t) from its samples (or local
averages) in the methods we developed earlier. This means that the schemes we proposed can be
used for computation of inner products (f(t), ¢(t —n)). In the rest of the subsection we will compare

our methods with the existing ones.

Existing schemes. Instead of computing inner products, Mallat samples f(t) at the rate 27
(notice that this is, usually, a much higher rate than necessary if f(t) € Vp) and then uses FWT
to get co,» and other lower resolution coefficients. So in this case, we have very high sampling rate,
moderate complexity and relatively good approximation of true inner products. Daubechies (p.
166 of [Dau92]) outlined a method of getting cy, , from the integer samples f(n). Walter [Wal92]

provided detailed derivations for this method in the context of sampling in wavelet subspaces. In
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terms of subsection 4.2.2, Theorem 4.2.1 says that the coefficients ¢y, can be exactly determined
from samples of f(n) (unit rate) by filtering them with 1/®(e’“) (provided ®(e’*) has no zeros
on the unit circle). However, the problem is that 1/®(e’*) is an IIR filter and one has to make a
truncation error. Shensa [She92] proposed a method that is somewhere in between the above two.
His idea is to approximate the input f(t) by TOE >, f(n)x(t —n). It is easy to see that the inner
products (F(t), ¢(t — n)) are filtered integer samples f(n). The main problem with this method is
in finding a good approximation f(t) of f(t), which is the only source of errors. Let us now see how

our methods perform in terms of complexity, sampling rate and approximation error.

New schemes. Mallat’s algorithm has a rather low complexity. So, from the point of view of
complexity, direct computation of inner products and Mallat’s algorithm are two extreme cases. The
gap between those two extremes is bridged by our local averaging scheme. It has higher complexity
than Mallat’s algorithm, but it gives zero error and minimal possible rate, and it has some other
nice features, as explained in subsection 4.2.4. Mallat’s and Daubechies/Walter algorithm are two
extreme cases in terms of the sampling rate. While Daubechies/Walter algorithm has a higher
complexity, it has minimum possible rate and very small error. The gap between those two methods
in terms of the sampling rate is bridged by our oversampling scheme. In its simplest form (for

sampling rate 2) it is just Euclid’s algorithm, as was described in detail in subsection 4.3.1.

ALGORITHM SMALL LARGE

DIRECT
COMPUTATION OF 5
INNER PRODUCTS M.

MALLAT'S
APPROXIMATION
BY SAMPLES

SHENSA'S
ALGORITHM

DAUBECHIES/WALTER | {3
ALGORITHM
L]
LOCAL AVERAGES I
OVERSAMPLING

2
L]
NONUNIFORM 5
SAMPLING -

[l compPLEXITY RATE [ | ERROR

Fig. 4.3.6. Qualitative comparison of different methods for computing cp,»’s.
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It achieves zero error with negligible complexity (FIR filtering) T at the expense of a slightly higher
sampling rate (still small compared to Mallat’s 2/ >> 2). Finally, nonuniform sampling, when E(z)
is forced to be a constant matrix, achieves minimal sampling rate, small complexity (FIR filtering)
and zero error.

Depending on the application, one or another scheme that we propose gives results better than
any of the previous schemes. In particular, all our schemes achieve zero error and use FIR filters.
The above discussion is summarized in Fig. 4.3.6. It shows relative merits of the schemes in terms
of computational complexity, sampling rate and approximation error. It should be mentioned that
all the above discussion holds true only for the case when we know that f(t) € Vo, otherwise, we

make an “aliasing” error [Wal92].

4.3.5. Errors in sampling times

Here, we want to see what happens if we reconstruct f(t) thinking that the sampling times are ¢,
but actually, they are t!, # t,. It will be shown that the error is bounded and tends to zero when
t;, = tn. In this subsection we assume that ¢(t) is compactly supported on an interval of length D
and that it satisfies |¢(t+h) — ¢(t)| < C|h|® for every t and some 0 < a < 1 (i.e., ¢(t) is Lipschitz(a)

continuous). So let the actual sampling times be
t =ty + 6, (4.3.16)

where |0, < 8. Then we have

|f(tn) — f(tn)] = Xk: ck(¢(tn — k) — o(t, — k)| (4.3.17)
From the last equation and the Cauchy-Schwarz’s inequality, we get
If () — f(ER)]]2 = Zn: |f(ta) = F(tR)1* = Xn: ;Ck(cb(tn — k) — o(t;, — k)) 2
< D*sup|@(tn) — d(tn)* Y leal* < K?|lenll3 sup [tn — tn|** < K]leal2 6% (4.3.18)

k

where K is some constant. Because of the stability of the reconstruction algorithm, we also have

£ (t) = F®)ll2 < const. 6%, (4.3.19)

T When we say FIR filtering, it is assumed that ¢(t) is compactly supported.
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where f(t) = ¥, f(t,)Sa(t). The last inequality means that the L? norm of the error can be

controlled by 6. As for the supremum norm of the error, we use (4.2.7). Then, it is immediate that
sup | £(t) — f(t)| < const’. 6°. (4.3.20)
t

We see that both L? and supremum norms of the error can be controlled by 6.

4.4. Sampling of WSS random processes

The problem of sampling of random processes was thoroughly investigated by the end of the 1960’s.
Uniform and nonuniform sampling of WSS and non-stationary bandlimited random processes was
considered (for an overview, see [Jer77]). In this section we want to look at the problem of uniform
and nonuniform sampling of WSS random processes related to wavelet subspaces.

Let us first specify more precisely the class of random processes that the derivations will apply
to. Let @4 (t) be the deterministic autocorrelation function of ¢(t), i.e., ¢o(7) = [ S(t + 7)¢*(t)dt.
Since ¢(t) € L*(R) N L?(R), then ¢,(r) € L*(R) N L2(R) as well. Also, the Cauchy-Schwarz’s
inequality implies |@q(7)| < ||#(t)||3 < oo for all 7 € R. We keep assumptions from Sec. 4.2, namely
that {¢(t —n)} is a Riesz bases for Vp = span{¢(t — n)} and that ¢(t) satisfies Janssen’s conditions
from subsection 4.2.1. We will consider random processes whose autocorrelation functions have the

following form
Rps(t) =) cadalt —n), (4.4.1)
n

where {c,} € I!. The above series converges absolutely and uniformly on R, so that samples of
R;s#(7) are well-defined. Notice, in particular, that {c,} € ' implies that R;s(r) € L'(R) and
Rgs(n) € I'. Therefore, the Fourier transform of R;s(r) exists and is equal to Sfs(w) (we also
assume that Rs;(7) is the inverse Fourier transform of S¢;(w)). The PSD function has the following
form

S5(w) = C(€7)®a(w), (4.4.2)

where C(e7“) > 0 and ®,(w) = |®(w)|?.

In the first part we are going to consider uniform sampling of random processes from the specified
class. We show that the PSD function can be recovered, but not the random process itself, unless
it is bandlimited. In the second part, we consider nonuniform sampling. We have to introduce
randomness into the sampling times in order to preserve wide sense stationarity of the sampled

random process. As in the case of uniform sampling, we show how to reconstruct the PSD function.
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4.4.1. Uniform sampling

Consider random processes {f(t), —0o < t < oo} with autocorrelation functions Rs¢(7) of the form

(4.4.1). The discrete parameter autocorrelation function is

rt(m,n) = E[f(n +m)f*(m)] = Ry (n). (4.4.3)

Since r47(m,n) is not a function of m, {f(n)} is a discrete parameter WSS random process.

Let s77(e’“) = ¥, Sys(w+27n). Then the Fourier coefficients of sz z(e“) are integer samples
of the autocorrelation function Ryss(7), ie., rsp(n) = Rsp(n) = 5= [ ss7(e?)e’™dw. Since
r57(n) € 11, s57(e?*) is the sum of its Fourier series, i.e., sy7(€?*) = 3, 75 (n)e™i™. We will use
this relationship later on.

First, we show that the random process { f(t)} cannot be reconstructed from the samples { f(n)},
if the synthesizing functions are restricted to be shifts of one function (unless, of course, the random
process is bandlimited). In order to show this, assume the contrary. Let there be a function

g(t) € L?(R) such that {f(t)} is equal to Y, f(n)g(t — n) in MS sense. The error random process

e(t) = f(t) = ) _ f(n)g(t — n) (4.44)

has autocorrelation function

Ree(t,7) = E l(f(“-f) - fmg(t+7— n)) (f*(t) =Y gt - n))]

= Ry;(r)=)_ Rys(t+1—n)g"(t—n)—Y  Ry;(n—t)g(t-+7—n)+ )  Rss(n—m)g(t+r—n)g"(t—m).

i " " (4.4.5)
It is easy to check that Ree(t + 1,7) = Ree(t,T), so the error is a cyclo-WSS random process
with period T = 1. We can average Re.(t,7) over T, to get the autocorrelation function Re.(7).
Its variance is the value of Re.(7) at 7 = 0, i.e., 02 = Re(0). Now, using the relation Rs;(7) =

5= [ €/™ S} f(w)dw, we have (the order of integration and summation in the last term can be switched

because {Ryss(n)} € 1)

o® = Rff(O)—/Rff(t—n)g*(t—")dt—/Rff(n—t)g(t—ﬂ)dt+z Rs5(1) /g(t—l)g*(t)dt- (4.4.6)
l

Using Parseval’s identity, the above expressions can be simplified to

o = o / St (w) (1 ~G"(w) - Gw) + Y 1G(w + 27rk)|2) du. (4.47)
k
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This cannot be zeroed for any choice of G(w) unless ¢(t) is bandlimited.

Even though we cannot recover the random process in MS sense, we can still recover the PSD
function S ;(w). We know that ry7(n) = Ryz(n) and that sz¢(e?) = 3 Sys(w+2mk). Substituting
the special form of Sy¢(w) into the last formula, we get

srr(e?) =5 C(e)|@(w + 27k)|* = C(67) Y |B(w + 27k) . (4.4.8)
k k

Since spf(e?) =Y, rss(n)e=i", we can recover C(e’*) as follows

Jwy Zn Tif (n)e—jnw
Ce) = SR (4.4.9)

Notice that the division is legal, because of the following reason: {@¢(t—mn)} is assumed to form a Riesz
basis for its span. Therefore, there are constants 0 < A < B < oo such that A < Y, |®(w+27k)|? <

B a.e., and the result of the division is in L?[—,n]. Finally, the reconstructed spectrum is

— Zn Tff(n)e_jnw 2
S(w) = = |<I>(w+27rk)|2|q>(w)| . (4.4.10)

The above derivation can be summarized in the following theorem.

Theorem 4.4.1. Let autocorrelation function Rys(7) of random process {f(t)} be of the form
(4.4.1). The PSD function S;;(w) = C(e/)®(w) can be recovered from integer samples {rss(n)} of
Ry¢(7), as given by equation (4.4.10).

¢

Remark. If {¢(t —n)} forms an orthonormal basis, then ), |®(w + 27k)|> = 1 a.e., and the above

equation simplifies to

Sprw) =|BW)* Y rss(n)e ™, (4.4.11)

4.4.2. Nonuniform sampling

It can be easily seen that a deterministic nonuniform sampling of a random process produces a
non-stationary discrete parameter random process. In order to preserve stationarity, we introduce
randomness (i.e., jitter) into the sampling times. These, so called stationary point random processes,
were investigated in [Beu66]. One special case is when the sampling times are t, = n+ u,, where u,

are independent random variables with some distribution function p(u). Let v(w) = E,[e™/““] be
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its characteristic function. The autocorrelation sequence of the discrete parameter random process

{f(tn)} is

711, ) = Bu (Bl i) £ ()] = Bl By pomin—tm)] = 5 [ S3@)Bulifrim=ume]einei

(4.4.12)
Since uy’s are mutually independent, we have
Eu[eju""'mwe—ju’"w] = { Il’y(w)|2a ﬁ;‘ : f g ,
so that we finally get
o= [y (W)PSss(w)dw, if n #0;
ris(msn) = (4.4.13)
3 J St (w)dw if n=0.

Since 7¢7(m,n) is independent of m, {f(t,)} is a WSS random process and we will just leave out
index m in (4.4.13). Our PSD function has a special form Sy (w) = C(e’*)|®(w)|?, and putting this
in (4.4.13), we get

1 . . 1 [ . .
risn) = 5 [ @ h@PCER)IBW)P = 52 [ C(E) 3 Iw+2mk) 8w+ 2mb) P,
—r p
(4.4.14)
for n # 0. It is clear now how to recover the PSD function. First, we recover C(e’*)

r0)+ 5 o, rys(m)eine
Yk YW + 27k) 2| @(w + 27K) |2’

C(ev) = (4.4.15)

where

1 7 > [®(wt2mk)|? "
"'ff(o) o f—7r Ek v(w+2nk)®(w+2mk)|? En;o 7'ff(n)e I dw

—l—f >, @ (wt2mk)|?
2r J—m 3 |y(wt2mk)®(w+2mk)|?

r(0) =

Then the original PSD function is

S r(0) + X » rrr(n)e” g
11(@) = S @+ 27rk)|2|f1>(w n 27rk)|2|

(W)|?. (4.4.16)

We summarize these derivations in the following theorem.

Theorem 4.4.2. In addition to assumptions of Theorem 4.3.1, assume that there is a random jitter
and that its statistics are known. Then the PSD function can be recovered from nonuniform samples
{f(tn)} of random process {f(t)}, as given by equation (4.4.16), where r¢(n) = E[f(tm+nf*(tm)]-

o
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4.5. Conclusion

In the first part of the chapter, we considered different discrete representations of functions in wavelet
subspaces. We examined periodically nonuniform sampling, local averaging, oversampling, sampling
of functions and their derivatives, and multi-band sampling. We used some of these new schemes
to achieve compact support of both ¢(t) and S, (¢)’s which was not possible with previous schemes.
We gave sufficient conditions for uniqueness and stability of the inversion schemes. We showed how
some of the new schemes can be used for efficient computation of inner products in MRA. In the
second part, we considered WSS random processes whose autocorrelation functions belonged to a
space related to multiresolution subspaces. First, we considered uniform, integer sampling. We
showed that a random process itself cannot be recovered if we want to do it with integer shifts of one
synthesizing function (except in the bandlimited case). However, the PSD function can be recovered
from the sampled random process. Then we considered jittered nonuniform sampling and showed

how to reconstruct the PSD function in this case.

4.6. Appendices

Appendix 4.A: Definitions and Theorems From Analysis
This appendix contains some definitions and theorems from analysis that we use in the paper.
It is intended to provide readers with a quick reference. For more detailed discussion, see the

corresponding references.

4.A.1. Reproducing Kernel Hilbert Spaces

Some Hilbert spaces have an additional structure built in. Functional Hilbert spaces are one such
example. Here is the definition from [You80].

Definition 4.A.1. Let H be a Hilbert space of functions on X. H is called a functional Hilbert space
if “point-evaluation” functionals ®,(f) = f(z) are bounded on H,V z € X.

It can be shown that in this case there exists a function K (z,y) on X x X, called reproducing
kernel, such that f(z) = (f(y), K(z,y)), for all f € H. Here (-,-) denotes the inner product in H.
In this case, A is called a Reproducing Kernel Hilbert Space (RKHS).

For a more detailed discussion of the role of RKHS in the sampling theory, see [Jer77] and

references therein.



106

4.A.2. Fact From the Analysis

1.

Fourier Transform. The Fourier transform, as usually defined, exists for functions in L!(R)
only. However, it can also be defined on L?(R) and in this case it is an isometrical isomorphism
from L2(R) onto itself. In this case, any equality is understood in L?-sense. Many equalities
in this paper are in L?-sense and it is usually clear from the context. The same is true for the
Fourier transform of sequences in I2 as well [Chu92].

Convolutions. As we mentioned in Sec. 2, stability in this paper does not mean BIBO stability.
All we really need is that 7! is a bounded linear transformation from 2 into itself. However,
if F(z) is a representation of 71, and if F(z) is BIBO stable, it implies that 7 ! is a bounded
transformation of 2 into itself. This follows from the following theorem.

Theorem 4.A.1. [Rud87] Let f(t) € L? and g(t) € L' (1 < p < 00). Then the convolution
f(t)*g(t) € LP. As a special case, the convolution of a sequence from I* and a sequence from I? is
asequenceinl? forall1 < p < oo.

Wiener’s Theorem [Rud87]. From the previous theorem, it is clear that the operation of convo-
lution is closed in I'. Wiener’s theorem gives us a necessary and sufficient condition for the exis-
tence of a convolutional inverse of some {z,} € L

Theorem 4.A.2. A sequence {z,} € I! has a convolutional inverse {y,} € I* if and only if

Y, Zne™ # 0forallw € [—m, 7. In this case, W =3, yne I,

Appendix 4.B: Sensitivity to the input noise

In this appendix, we show that “local averages” scheme is indeed less sensitive to the input noise

than sampling. In the analysis that follows, we use the additive noise model. The setup is shown in

Fig. 4.B.1.

f(t)

n(t) n(t)

1 /k+T N 3/ ak+e k f(t) f(tx) + n(t)
T Ji tk tk

Fig. 4.B.1. Block diagrams of local averaging and sampling schemes.

For fair comparison, we scale outputs of the integrator by 4. We assume that noise n(t) is a zero

mean, WSS random process with finite variance and autocorrelation function R, (7). In the case
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of sampling, the output is not f(tx) as we expect, but f(tx) + n(tx). So the error term is simply a
sample of the noise n(t). Variance of this error is 02 = E[|n(tk)]?] = Rnn(0). In the case of local

averaging, the noise passes through the integrator. The output is & |, kk +T( f(t) + n(t))dt. Then the

k+T .
error term eg = 7 [, +T n(t)dt has variance

9 1 (T 1 (T
o,=F [T/ n(t+k)dtT/0 n*(s + k)ds

0

T T T
- /0 /0 Rn(t = $)dtds = /_ (T = ) Ban(r)dr. (4.B.1)

We also know that |Rp,,(7)| < Rnn(0) for all 7 € R. Therefore, it follows that

2 T
o2 1 T\ Ran(T)
4 - - — < D.
0_2 T/_T (1 T) er(o)d‘r_l, (4.B.2)

i.e., error due to noise in the local averages scheme has variance smaller or equal to that in the case

of sampling. It is equal if and only if R,,(7) = Rnn(0) for all 7 € [T, T1.
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Concluding Remarks

In this chapter, first, the main results of the thesis will be summarized. Then, open problems and
future research directions will be discussed.

Nonuniform filter banks were the main topic of Chapter 2. Even the most trivial issues in the
uniform filter bank theory become very difficult and often intractable in the case of nonuniform
filter banks. We restricted our attention to the existence problem and the relationship between
biorthogonality and perfect reconstruction. Using an explicit construction technique, it was shown
that whenever the decimation ratios are such that a biorthogonal PR is possible, then there exist
orthonormal filters which achieve PR, as well. The technique developed for the orthonormalization
process is used for the decorrelation of subband signals in uniform filter banks. Finally, we presented
several necessary conditions that have to be satisfied by the decimation ratios in order that PR can
be achieved with rational filters.

In the third chapter, optimality of wavelets and filter banks for signal representation in a
stochastic setup was discussed. First, adaptation of a scaling function for the representation of WSS
random processes was considered. A cost function was derived. Next, we discussed the design of
prefilters for reduction of errors in MRA, again, when the input signal is a WSS random process. In
the last part, we analyzed compression capability of PU and biorthogonal filter banks. We showed
that a significant improvement in the compression performance of any PU filter bank can be achieved
by simply putting a pre- and a post-filter.

Different generalizations of wavelet sampling theorem were considered in the fourth chapter.

By allowing for periodically nonuniform sampling grid, we were able to construct compactly sup-



109

ported synthesizing functions. This was not possible with previously existing schemes (in the case of
orthonormal MRA). We also showed how functions in MRA subspaces can be recovered from their

local averages, derivative samples, etc.

5.1. Open problems

In the area of nonuniform filter banks, there are many unsolved problems. There is no known
necessary and sufficient condition on decimation ratios for PR with rational filters. There are no
design techniques even when we know that it is possible to have PR with rational filters (except
when the decimation ratios come from a tree). It goes without saying that there are many open
problems in the theory of MD (non)uniform filter banks. Connection of nonuniform filter banks and
the wavelet bases that they give rise to has not been examined. Again, the main reason for this is
the lack of nontrivial, nonuniform filter banks. Out of all these open problems, the most important
one is that of finding some useful designing techniques.

Elementary analysis of the performance of a filter bank when used as a subband coder is rather
straightforward. It is known that PU filter banks are asymptotically optimal as the number of
channels goes to infinity. For finite number of channels, not much is known. There is no theoretical
bound on the coding gain of an M-channel subband coder. For the case of PU filter banks it is
possible to find the best M-channel filter bank. However, the solution over the class of all PR
filter banks is not known. Most widely used criterion for the performance of a coding scheme is the
MSE, despite the fact that it poorly matches the characteristics of the human perceptual system.
Therefore, some more appropriate measure of performances is needed. Then filters in a filter bank
should be optimized according to a new criterion.

In the area of mathematical wavelet analysis, every day many questions are being answered
and even more new questions are being asked. Therefore, it would be very difficult to mention all
of the directions of research in connection with wavelets, so we will mention only a few directly
concerned with sampling in MRA subspaces. We extended sampling theory for the case of periodi-
cally nonuniform grid. One open problem is to find a sampling theorem for an arbitrary nonuniform
sampling grid. All sampling theorems for MRA subspaces assume that the signal belongs to a given
subspace. If it does not, then there is an aliasing error. Reduction of this error is an interesting

research problem. Another possible research topic would be MD sampling in wavelet subspaces.
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