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Abstract:

The thesis addresses problems that surfaced as part of the proposal to deregulate
access to railroads in Sweden. Skepticism exists about the feasibility and

efficiency of competitive processes for access to the publicly owned track network.
The skepticism is related to the capacity of any competitive process to solve

certain technical problems that stem from performance criteria (efficiency, safety),
informational requirements (values of track access are initially known only to the
operators) and computational requirements. In the thesis, auction-like processes are
developed for allocating the rights to operate trains on the track and for procuring the
necessary computational effort to solve a related optimization problem inherent in the
track auction process. The processes are tested in a series of human subject laboratory
experiments. The data are examined to determine the degree to which the evaluative
criteria are met and the degree to which the performance of the processes are

consistent with the behavioral principles on which they are based.
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CHAPTER 1. Introduction and Overview

1.1 Introduction

The research in this thesis is concerned with identifying and testing a process for the
allocation of access to a railroad track network. Specific economic and technical
issues are identified that are of interest in current debates concerning railroad
allocation in Sweden. These issues provide a very specific application framework
that challenges any institutional design effort and guides the research of this thesis.
The thesis rests on the assumption that progress in understanding institutional
processes to solve general problems can best be attained by the study of specific
examples, together with the related study of the institutions and processes that are
naturally suggested by the issues that the examples force. The hope is that issues
emerging from the examination of the specific application framework will facilitate a
deeper understanding of theory and institutions than will be achieved by a study of

general issues alone.

This chapter serves as an introduction to a specific allocation problem considered in
the thesis: the problem of decentralized allocation of access rights on a railroad. The
chapter is divided into four sections. The next section is an introduction to the
applied problem. That section is followed by a brief discussion of other studies that

contain mechanisms that might be applied to the same problem. Those studies
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contain many elements that are used in the institutions that are proposed in this study.

Hopefully, the institutional process and theory discussed in this thesis will ultimately
contribute towards a more comprehensive understanding of resource allocation
processes and general theories regarding how these processes function. The third
section is a discussion of a general background problem of the allocation of uses of
shared resources that sets the stage for all of these studies and a great many more.

The final section is a detailed outline of the chapters of the thesis.

1.2 Decentralization of Swedish Railways

In 1992, Swedish Parliament voted to privatize and deregulate railroad operations'.
The agency responsible for rail operations, Banverket, will retain ownership of the
track. The Parliament ordered Banverket to identify a mechanism that would tend to
allocate access of track to those who valued it the most. At this point researchers are
investigating different processes for allocating access to interested agents. The
existence of such a mechanism and the likelihood that such a mechanism would be
superior to systems of administratively based rules is unknown and a point of political

controversy>. The previous mechanism for allocation of the Swedish railways

1" This was part of the budgetary bill for 1992, prop.1991/92:100, sup. 7.

2 Ina transportation committee report (SOU1993:13. 3(kad konkurrens pa jarnvégen” [translated:

Increased competition in the railway industry]), some criticisms of market based systems include
claims that “Allocation models based on price mechanisms have not yet been developed in the sector,”
and that “The absence of any international experience is seen as the strongest argument against an
allocation model based on pricing systems.” (Translation provided by J.E. Nilsson, personal
correspondence). A consulting report prepared for the Swedish transportation committee by Coopers
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involved a system of priorities for trains. There is a desire by opponents of

decentralization to retain the priority scheme, whereas proponents of decentralization

would like to discard it.

Major issues in this debate are outlined in Chapter 3. These issues set forth the
challenge for those that would offer any decentralized process as a réplacement for the
current system of priorities. A presumption is implicit in the arguments of
decentralization critics that no set of decentralized institutions can perform the tasks
they pose. It is at this joining of arguments that laboratory methods become
important. Laboratory evidence for the existence of such an allocation mechanism
would be useful in the following sense: If it can be shown that decentralized
mechanisms exist for laboratory testbeds that solve some of the types of technical and
economic problems inherent in the railway allocation problem, then such
decentralized options for solving the Swedish problem can not be dismissed
immediately as being impossible or impractical, without further study. Arguments
that decentralized mechanisms for rail allocation simply could not possibly exist
because of such technical or economic problems could be refuted using the evidence
from the laboratory demonstration. This would move the argument in the following

sense: by showing that decentralized allocation is possible in the laboratory, it can no

and Lybrand is also mildly critical of pricing. Coopers and Lybrand begin by explaining that auction
based market pricing tends to result in allocation to the user who values the item the most, but “...
auction can not be used for railway capacity since there are no independent units of capacity to bid
for.” (p.293) The claim is that the difficulty is commodity space related: “These train paths can not be
treated as independent units, since they are not interchangeable, and depend on the specification of all
other paths in the integrated timetable. There is therefore no common unit of capacity on a mixed-use

railway which can be allocated to owners, priced and traded among a number of buyers and sellers.”
(p-291)
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longer be claimed that either (i) no example of decentralized allocation process for

railroad scheduling problems exists, or that (ii) decentralized allocation is impossible
on general principles (in which case it would also be impossible in the laboratory).
This would force opponents of decentralization to more closely consider either the
possibility of decentralized allocation or the issues preventing it. The goal of the
research is not to solve the Swedish rail problem in the laboratory, but instead to
simply move the argument - to show that decentralized allocation processes are not

necessarily impossible and are worth additional study.

This thesis provides such a demonstration. The demonstration has two major
objectives. The first objective is to show existence: an allocation mechanism can be
found that performs as desired in the laboratory testbeds. The second objective is to
show design consistency: that the mechanism works according to behavioral

principles that are consistent with the design.

The substance of Chapter 5 is to describe such a process. However, the question of
existence should address something more than one example of a single mechanism.
The more robust the example, the more the burden of pfoof is pushed to critics of
decentralization to explain or expand upon their claims. In addition, a more robust
example can serve as a starting point for researchers who wish to develop a process
for actual use in the field. If a decentralized process exists, several robustness issues

become relevant: Is the example capable of being generalized to more complex
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environments or do inherent technical limitations exist? Does the mechanism always,

usually, or seldom produce efficient outcomes in the testbed environments? If
efficient allocations do not always occur, can conjectures be formed regarding the

causes of inefficient outcomes?

The question of robustness also prompts an investigation of design consistency. If the
agent behavior observed in an institutional process is consistent with theoretical
models upon which the design of the institution is based, then robustness might be
expected to extend to parameter values not actually tested in the experiments. For
instance, if efficient allocations occur when the mechanism reaches an appropriate
type of equilibrium (e.g., competitive equilibrium, Nash equilibrium, dominant
strategy equilibrium), then a test for design consistency would include a test to see if
the mechanism reaches these equilibria. Equilibrium concepts are introduced in

Chapter 2 and Chapter 5. Tests are conducted in Chapters 6 and 8.

Another important robustness consideration involves the problem of size. The idea is
that although the processes are not tested in environments having as many tracks or
trains as the Swedish rail system, it is in principle possible to design processes that are
somewhat robust to increases in scale. Chapter 4 partially addresses the size issue by
showing how the structure of the feasible set might allow a parallel computing
approach to scheduling. Chapter 7 extends the discussion to a process that involves

procured computation.



The conclusion of the thesis is that an institution exists that, at least in the laboratory,
performs as required. Efficiency is extremely high (97% average) in the Chapter 6
experiments, and fairly high (above 90% average) in the more complex experiments
of Chapter 8. Techniques to deal with computational difficulties, described in
Chapter 7, can be seen working, as expected, in the experiments of Chapter 8.
Design consistency is very strong in the experiments of Chapter 6. Design
consistency in Chapter 8 is strong in some areas but not in others. Problems seem to
be associated with agents who have the high value for multiple trains, perhaps
identifying a type of “network monopoly” problem. Chapter 9 provides the bulk of
concluding remarks, by returning to each of the issues introduced in Chapter 3 and

explaining how they were handled in the research.

1.3 Related Experimental Studies

The railroad allocation problem combines an information revelation problem with a
special mathematical framework: that of a knapsack problem. Three other

experimental studies® take a very similar technical approach to allocation problems.

> In particular: allocation of airport slots in Rassenti, Smith, and Buifin (1982); allocation of

“uancertain and unresponsive” resources in Banks, Ledyard, and Porter (1989); and the assignment
problem of Olson (1992) and Olson and Porter (1994). There are a large number of other studies that
address similar problems of shared resources and also discuss other application frameworks where
computer assisted market or auction processes are developed. The AUSM institution developed in
Banks, Ledyard, and Porter (1989) was later used by Plott and Porter (1990) to study the allocation of
resources on the planned NASA space station. A number of studies involve transportation applications
and complementary goods. Grether, Isaac, and Plott (1981) were the first to experimentally examine
the possibility of allocation of airport slots through independent markets. Access to resource pipelines
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The information revelation problem is the classic private values environment. A brief

description of the three studies will be provided, and then important facts relevant for

creating a decentralized allocation mechanism for railroads will be discussed.

Rassenti, Smith, and Bulfin (1982) consider a combinatorial sealed bid auction for
allocating airport takeoff and landing slots when flights require packages of such
slots. In the RSB study, the knapsack problem enters because the mechanism
maximizes a set of bids for flights relative to the constraints that flights do not over
demand airport slot resources. Banks, Ledyard, and Porter (1989) compare various
mechanisms (markets, the Iterated Vickrey Groves (IVG) mechanism, the Adaptive
User Selection Mechanism (AUSM)) for allocating resources when agents have
preferences over packages of the resources. The knapsack problem enters in the IVG
and AUSM mechanisms because agents bid on packages of resources and the
mechanisms involve finding a set of bids to accept that maximize bid revenue while
satisfying the supply constraints. Olson (1992) and Olson and Porter (1994) consider
the assignment problem, an allocation problem where each agent receives a single
resource from a set of resources. Bidding mechanisms for the assignment problem

include the knapsack constraints specifying that each user may be allocated only one

of the resources.

has been considerd by Plott (1988); McCabe, Rassenti, and Smith (1992); and Rassenti, Reynolds and
Smith (1994). Plott considers a type of tantonnement, whearas the later papers are computer assisted
markets. Ledyard, Porter, and Rangel (1994, forthcoming) are analyzing a set of computer-assisted
barter markets actually used to allocate space and other resources on the Cassini space probe mission.
Nilsson (1994) is experimenting with iterated Vickrey-Groves allocation mechanisms for access to
railways, using methodology and techniques similar to those introduced here.



ﬁnlike the other studies, Olson (1992) considers the theoretical possibilities for non-
monetary allocation mechanisms. Several such schemes exist involving “chits” and
rough equivalents of ranking or voting. Often they are used within a larger institution
where money-based internal markets are not thought to be feasible (such as the case
with project groups at NASA). Obviously, one reason agents might prefer these
schemes over a more efficient, money based scheme is that the non-monetary

processes allow agents to escape monetary payment for the resources being used.

An important insight from Olson is that an incentive compatible, non-monetary
scheme for allocating access to railroads, where each agent’s access is limited to
running one train*, would, at best, perform like the old priority scheme. Olson shows
that the Gibbard-Satterthwait theorem for social choice implies that any non-
monetary, incentive compatible allocation mechanism for the assi gnment problem is

equivalent to a serial dictatorship.

In serial dictatorship, agents take turns choosing their most preferred allocation until
all agents have an assignment of resources. This mechanism is essentially a priority
scheme where agents choose in order of their priority ranking. The serial dictator
priority scheme differs somewhat from the priority scheme used to allocate the

Swedish rail systems: in serial dictatorship agents have priority to choose trains or

*  The one-train constraint could be envisioned as a type of anti-monopoly or fairness constraint. In

any event, the constraint is necessary to impose it to make the rail allocation problem into the type of
general assignment problem studied by Olson.
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other resources; in the second scheme it is the trains which have priority. Like the

prioritized rail system, the efficiency of serial dictatorship depends substantially on
the particular assignment of priorities. If priorities are assigned correctly, the
efficiency can be quite high, even optimal. If priorities are assigned randomly, then

the efficiency is generally quite low.

Two general classes of institutions utilizing monetary transfers are market-based and
auction-based mechanisms. In laboratory experiments for shared resources involving
knapsack problems, more success has been obtained through auction-based

mechanisms than with market-based mechanisms.

In a market-based mechanism, agents would be given some initial endowment of rail
resources’ and would be allowed to trade resources and cash in a set of independent
markets. The prices in each market are set by the agents through their bid and ask
offers. Banks et al. suggest that independent markets could be inefficient when agents
have preferences over packages of resources. In their independent market
experiments, goods are strong complements with indivisibilities. Banks et al.
purposefully choose preferences such that prices that support the optimal allocation
as a competitive equilibrium do not exist. If resources correspond to the right to have
a train at a particular section of track and a particular time, a package of several

resources might be necessary in order to be able to run a train. Preferences of train

> In particular, the endowment of resources that existed under the status quo is typically suggested as

a means for obtaining cooperation from all agents.
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operators over resources would likely involve a strong complements case such as

Banks et al. constructed. In such cases independent markets can not be expected to
provide efficient allocations. In a series of experiments, Banks et al. show that

market inefficiencies do in fact occur.

In an auction-based mechanism, agents would submit bids on either trains or on
packages of resources necessary to run trains, depending upon the rules of the
mechanism. The auction outcome is to allocate resources to a set of high bidders,
determined through solution of the knapsack problem. The specific auction rules vary

in the different experimental studies and will now be considered in a bit more detail.

Banks et al. show that in the same strong complement environments that caused
inefficiency in the independent markets case, two auction-based mechanisms produce
more efficient allocations. These mechanisms are the Iterative Vickrey-Groves (IVG)
and the Adaptive User Selection Mechanism (AUSM). Both of these auction
mechanisms are iterative mechanisms in which bidding on packages of resources
continues over several stages. Rassenti, Smith, and Bulfin, in a somewhat earlier
paper, propose a type of sealed bid auction over uses of éhpon slots and consider

fairly similar types of strong complement environments.

The IVG mechanism is implemented in the Banks et al. experiments as the following

tantonnement (i)-(iii): (i) All agents submit bids over all packages of resources. (ii)
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The allocation of resources that maximized the sum of the bids is computed along

with a set of Vickrey-Groves second-prices, and this information was relayed back to
agents. (iii) The auction continues in batches until no one changes their bid. Bids on
packages of resources can be raised or lowered. The IVG mechanism has a dominant
strategy, incentive compatible equilibria based on a special second-price payment
rule. It is in each agent’s best interests to bid his or her value for the resource
packages because the bid determines only an upper bound on price. The actual price is

determined by excluded agents’ bids.

The AUSM mechanism is an increasing, first price iterative auction in packages of
resources. Agents specify their bids for packages of resources. As bids arrive, the
allocation of resources that maximizes the sum of the bids is computed. Once bids
exhaust supply, a new bid is either accepted and several old bids rejected, or the new
bid is rejected. The auction ends when no agent makes an acceptable bid for a given
period of time. The efficiency of the AUSM mechanism is shown to be substantially
higher than the efficiency of markets. Banks et al. consider a variation of the AUSM
mechanism in their experiments that further increases efficiencies in their
experimental findings: the AUSM/Q mechanism. In AUSM/Q, rejected bids go to a
queue. The queue is a bulletin board where agents may recombine rejected bids with
their own bids and create new, group bids. The queue enables higher efficiencies by

permitting cooperation that in many cases is necessary to displace large packages.
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While AUSM/Q does not guarantee that such cooperation will occur, such

cooperation is impossible under AUSM.

A sealed bid auction mechanism for airport slots is proposed by Rassenti, Smith, and
Bulfin where the bids are on flight paths and the constraints take into consideration
the takeoff and landing slot requirements. This mechanism can be converted to one
involving trains quite easily: the terms “train path” can be substituted for flight path
and the “train track resource requirements” can be substituted for the takeoff and

landing slot requirements.

All of the auction-like processes mentioned above have the need to solve a knapsack
problem to determine the set of bids that are accepted. The knapsack problem is an
NP-complete computational problem that should be considered a serious challenge for
the designer. NP-complete computational problems have the property that as a
problem size variable increases, the computer time required for solution quickly

outgrows even the best facility.

Because the computational issues involve costs and tradeoffs®, an economic approach

is necessary. What is being suggested here is not solely the need to consider the

For example, an agent might already have private information about the solution to a particular

knapsack problem. There would be a tradeoff between getting the cost of getting agents to reveal such
information and the cost of using computing machines. Often the issue of computation is considered
technical in nature (e.g., the computer program is not fast enough) and solutions are also technical (e.g.,
change the algorithm, use approximations, increase CPU speed or memory). These technical solutions,
however, also imply certain economic costs as well as benefits.
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feasibility of an institution’s computational requirements’, but also the need to

consider how those requirements are generated and satisfied. There is a demand and
supply of computation in institutions, a sort of secondary economic allocation
problem that may sometimes need to be considered. In most cases inefficiency in this
secondary problem is unimportant in comparison with the need for efficiency in
allocating the primary resources. With NP-complete problems like knapsack, the
importance of the secondary problem can grow quite rapidly. To give an example of

what is meant, consider the following two approaches taken in the literature:

Rassenti et al. claim computational feasibility for their mechanism given estimates of
the number of variables required in the airport slots application. They do not address
the problem of what may happen should scale increase in the future. Consider how
computational demand and supply incentives may be inappropriate in this mechanism.
Agents in the combinatorial sealed bid auction may submit as many bids as they wish.
As they do so, the computational cost of the knapsack problem is increasing, perhaps
exponentially. The agents, however, do not pay any of the computational cost.b
Computation is supplied by the seller or airport authority until it is infeasible for them
to do so. Therefore, agents may over demand computation relative to what is optimal

for a particular case.

7 The need to consider the computational requirements of an economic institution dates back at least

as far as Hayek (1935), who uses computational requirements as an argument against the possibility of
efficient socialism.
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Banks et al. with the AUSM queue, allow agents to voluntarily perform the task of

solving much of the knapsack problem. The queue consists of a list of rejected bids
that individually can not beat any accepted bid. However, combinations of rejected
bids might beat an accepted bid, and agents are allowed to search the queue and
resubmit such combinations. Any agent who has rejected bids in the queue is
essentially demanding computational resources, and any agent searching the queue for
recombination opportunities is supplying computational resources. The only
incentive to the agents for performing the search is the possibility of receiving an
improved allocation. Therefore, computation is being supplied only when moderately

cost-effective, and primarily by those agents who are also demanders of computation.

One would expect the efficiency of the computational process to be better in
AUSM/Q than in the combinatorial sealed bid auction, because the supply of
computation in AUSM/Q is responsive to cost. Demand for computation may not be
responsive to costs, but in AUSM/Q not all demands are necessarily satisfied by the
suppliers. Overall it would appear that AUSM/Q is an improvement, since it does

address the computational problem in a way that AUSM alone does not.

The successes and failures in the various experiments suggest some direction for
constructing an efficient, decentralized mechanism for allocating access to railroad
track. Hints from the previous studies can suggest how an efficient allocation

mechanism for access to railroad tracks might be constructed.
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The evidence would seem to indicate that sealed bid auctions are less desirable for
two reasons: The Rassenti et al. experiments produce somewhat lower efficiencies
than the Banks et al. AUSM/Q experiments, suggesting that an iterative auction
approach allows bidders to better coordinate their actions. The Rassenti et al. bid
message space is also too large to be practicable: each agent must communicate
contingent bids for all possible routes on which they are interested. In the iterative
auction mechanisms, agents quickly learn the routes on which they do not have high
values. In this way the number of routes on which an agent must bid is greatly

reduced.

The particular elements that are influenced from the literature are the choice of an
auction-like mechanism rather than a market-like mechanism (from Banks et al.
demonstration of poor market performance in the presence of complements), the need
to structure the problem so that the effects of complements are minimized, and the
need to c;onsider both the computational requirements and the computational

economics of the mechanism.

Varying the approach taken here from that in previous studies creates the opportunity
for both successfully demonstrating existence of a decentralized allocation

mechanism for accessing railroad networks and for contributing towards general
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knowledge in the allocation of shared resources. The next section will briefly

consider these general issues.

1.4 The General Problem of Shared Resource Allocation

A railroad can be thought of as an example of a shared resource. Several agents can
share access to the tracks, relative to some intercompatibility constraints, e.g.,
collision avoidance and safety criteria. A shared resource allocation environment
might be characterized using three crude properties that the railroad allocation
problem shares in common with some of the allocation problems considered in other

studies:

. There is a shared facility with a finite number of alternative uses and agents
who value these uses. There is a set of compatibility constraints indicating the limits

of the facility in supporting the different uses.

° Information concerning the value of possible uses of the shared facility is
dispersed among the agents in the environment. Different institutional processes (e.g.,
markets, auctions, voting, surveys) will result in differing degrees of revelation of

values from agents.

° Given a value for each use of the facility, the optimal set of uses is defined as
the set that maximizes the sum of the agents’ individual values for the different uses

of the facility, while satisfying the compatibility constraints. This maximization
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problem, given the values, is an integer programming problem known as the knapsack

problem. The maximization problem itself can become very difficult, regardless of

how? the individual agents’ use values are obtained or approximated.
g pp

The fact that a pattern of common properties can be identified in the experimental
literature for vastly different applications suggests the possibility of starting with
these common properties and discussing general techniques for the allocation of
‘shared resources’. The primary goal of this research has to do with demonstrating
the existence of decentralized mechanisms for allocating access to a railroad, a
specific type of shared resource. In accomplishing this goal, some headway will be

made towards addressing the general issues.

This research, which is primarily the study of a specific decentralized mechanism for
a special environment, has distinguishing properties that separate it from the other
studies. This allows for the study to be interpreted as a contribution towards the more
general problem involving the allocation of shared resources. As suggested in the
conclusion to the previous section, two important distinguishing properties involve

the commodity space and the handling of computational complexity.

¥ In particular, the knapsack problem exists independent of the allocation mechanism and

independent of the informational issues. It can be ignored by some institutions, e.g., random selection
or lottery, but it can not be avoided if efficiency is a goal of the institution. For example, if a central
authority attempts to calculate individual’s values for various uses through some combination of

engineering and econometric analysis, the knapsack problem must still be solved to obtain the best set
of uses.
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In other studies, a set of exclusive resources available within the shared resource were

already defined. An agent’s use of the shared resource required packages of the
exclusive resources. Agents had to be allowed to make contingent package bids to
avoid problems associated with complements. The knapsack problem is introduced
through the need to maximize the sum of bids in an auction, where bids are

contingent on receiving entire packages.

A similar perspective can be taken for the allocation of access to railroad tracks. In
such a case the exclusive resources would be the use of individual, short, train track
segments for brief segments of time. A train would require a package of these

resources in order to be allowed to run out its schedule on the tracks.

A somewhat different approach can be taken by assuming that all infeasibilities on
the track are the result of a conflict between two trains. The exclusive resources
produced by the shared set of tracks are defined to be the rights to ruﬁ particular
trains. The problem of complementary resources vanishes so long as agents have
additive preference values over sets of trains. The knapsack problem remains,
because given a set of bids for the trains, not all combinations of trains are possible

and maximizing bid revenue for an auction will involve a set of integer constraints.

The knapsack problem would appear to be inevitable so long as the resource is

allocated through an auction which maximizes the sum of bids. Since the knapsack



19
problem is known to be an NP-complete computational problem, - approximations

might eventually be necessary, and it is important that these be carried out in an
unbiased manner. In addition, it is desirable to end computations when marginal

computational cost outweighs any allocational benefits.

This research addresses computational issues by the same approach used to decide
resource allocation issues: an auction. The task of computing approximate solutions
to the knapsack problem is delegated to the agents through a type of procurement
auction, called the Computation Procuring Dutch Auction (CPDA). In this
procurement auction the solution to the knapsack is computed solely by the agents.
Agents receive a reward for supplying information concerning changes to the
allocation that improve the sum of bids. The reward is bounded by the amount of the
improvement, so that supply of computation reacts to computational costs. Only one
agent can get the reward for a given piece of information, so there is a competitive
pressure to be the first to submit. Information supplied by agents is made public. In
this way, the procurement auction is structured to encourage both competition and

cooperation in solving the knapsack problem.

Further details of the technique are left for Chapter 7, along with a crude theory of its
operation. CPDA can probably be generalized to other allocation environments,
although it is defined in terms of the rail allocation problem. Chapter 8 consists of a

test of BICAP+CPDA in the experimental laboratory.
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’i‘he remainder of the research is largely concerned with the application framework:
demonstrating existence of a decentralized allocation mechanism for access to
railroads. One of the advantages of such an approach is the ability to occasionally
bypass large general problems by returning, when necessary, to specific properties of

the application framework of railroads.
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1.5 Outline of Chapters
Chapter 2 introduces terminology and notation upon which the thesis is based. Terms

such as “environment” and “mechanism” are discussed and defined here.

Chapter 3 defines a set of performance function requirements releva_.nt to the debate
over decentralized allocation of railroads. Basic concepts such as trains, tracks,
allocations and feasibility of allocations are discussed and formalized. A series of
experimental testbed environments is defined that reflect these issues. Each testbed
consists of a set of train routes and agent train values. These testbeds will be the ones
used in later experiments. The testbeds are crucial, and must be simple enough for an
initial investigation while still containing essential difficulties thought to be
problematic in railroad allocation. They are the economic environments that provide

the properties that will “stress test” the mechanisms developed in the later chapters.

Chapter 4 shows that essential characteristics of a feasible set of allocations for
railroad environments can be described by a set of “binary conflicts.” The binary
conflicts can be represented by a binary conflict graph. This graph has certain useful

properties, which may aid in necessary computations in the mechanism.

Chapter S describes a mechanism, the Binary Conflict Ascending Price (BICAP)
mechanism, which is designed to yield high efficiency allocations in binary conflict

environments. BICAP is essentially an auction where the constraints implied by the
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binary conflicts are taken into account. The BICAP mechanism is first defined, and

then a crude theory of its operational properties is presented. BICAP does not have
good computational properties, because computation is supplied centrally without

regard to cost. This computational difficulty is addressed in Chapters 7 and 8.

Chapter 6 describes the results of initial laboratory experiments that apply the BICAP
mechanism of Chapter 5 to a simple testbed from Chapter 3. The experiments show
that BICAP produces allocations of extremely high efficiency and that it appears to
exhibit design consistency: it works for the reasons discussed in BICAP’s theory of

operation as defined in Chapter S.

In Chapter 7 the difficulties that might arise due to computational complexities
involving size and schedule interdependencies are considered. -Chapter 7 suggests a
Computation Procuring Dutch Auction (CPDA) for dealing with problematic
optimization computations required by BICAP. CPDA not only procures the
computation needed to compute potential allocations in BICAP, but also determines
when the mechanism should terminate. A theory of operations is developed for
BICAP+CPDA showing that such computation should téke place and in a cost

effective manner.

Chapter 8 describes the results of experiments that apply the BICAP+CPDA

mechanism of Chapter 7 to the three-track testbeds from Chapter 3. The goal is to
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show that BICAP+CPDA performs as well as BICAP even though computation is

done by the agents rather than by a central authority. Three categories of results are
addressed: performance of BICAP+CPDA allocations, performance of CPDA in
inducing computation by agents, and comparison of final bid prices and bidding
behavior in BICAP with and without CPDA. BICAP+CPDA produces favorable
results in the performance categories, but allocation efficiency is not as high as in the
BICAP experiments. The BICAP+CPDA closing prices are very close to the closing
prices BICAP produced in the cases where the testbeds are comparable. Some
puzzling results concern the observation that BICAP+CPDA fails to reach one stage
Nash equilibria outcomes (defined in Chapters 2, 5) that BICAP without CPDA does
reach in comparable environments. The failure to reach one stage Nash equilibria is
partially explained in terms of a type of local monopoly power present in the agent

incentive parameters in the testbeds.
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CHAPTER 2. General Notation and Concepts

As noted in Chapter 1, the problem of allocating access to a railroad involves an
information and incentive problem and a computational problem. The purpose of this
chapter is to introduce notation that allows a formal discussion of the railroad
allocation problem and the institutional processes that are developed in the thesis.
The notation chosen is fairly standard in the mechanism and social choice literature.
The concepts that are found in the literature are very general and facilitate a rigorous

representation of institutional and behavioral processes.

The idea that information is dispersed among agents in an economy is modeled by an
economic environment e=(e,...,.ei,...) [ Hurwicz(1960) ]. The different sections of
this chapter will provide interpretations of such abstract concepts. A set of agents J
are participants in the economic environment. Each agent ie! is described by private

characteristics €; . As will be made clear in the next section, each agent’s

®  The literature is quite broad and covers a number of interesting applications. Hurwicz (1960)

introduces the model used here for economic environments and also introduces a tantonnement model
of institutional processes he calls an adjustment process. Reiter (1977) defined a mechanism originally
as a summary of the adjustment process. Smith (1982) extends the mechanism model to cover
institutions that do not equilibrate like a tantonnement. The environment model is used in other related
disciplines such as social choice. In the social choice literature, an environment consists of agents and
their (private) preferences. One can then ask whether social preferences are well defined and whether
social choice processes are incentive compatible. A good summary to the mechanism literature can be
found in Groves and Ledyard (1984). There are important later developments regarding processes that
are based on Nash equilibria models of behavior: Moore and Repullo (1988) provide an existence
proof that almost any social choice rule can be implemented as a mechanism in subgame perfect
equilibria. Palfrey and Srivastava consider implementation in undominated strategies. The Nash
equilibrium implementation results are in general much more permissive than the dominant strategy
implementation summarized in Groves and Ledyard (1984). Therefore, models of agent behavior in this
research will concentrate on Nash-type models.
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characteristics are private information for that agent. Agent’s characteristics usually

include preferences, technology, and initial resource endowments, but can include any
other characteristics that are important in modeling agent behavior. The economic
environment completely characterizes all the important issues of an allocation

problem, and is the basis of all subsequent analysis.

Section 2.1 defines the term ‘railroad network’ for the purposes of the formal
definitions, and gives a brief example. The class of economic environments for the
railroad network is defined in section 2.2. After defining this class of environments,
additional definitions are built upon the environment in the following order: -Section
2.3 defines the feasible allocations of resources for the railroad environment. Section
2.4 defines standard performance criteria, e.g., Pareto-optimality, for allocations
based on the agents’ preferences in the environment. Section 2.5 defines an iterative
mechanism model for describing institutions for allocating the railroad. Section 2.6

defines concepts related to individual and aggregate agent behavior in a mechanism.

2.1 Physical Feasibility Requirements for Railroads

The most common use of a railroad network is to support a train traveling between
two locations. It is important that a model of a railroad’s physical constraints take
into consideration all uses (e.g. track maintenance) and not just uses for trains. For

that reason, a railroad network is defined as a type of shared resource that has private



26
‘uses’. This concept of a use is distinct from the resources that might facilitate or

enable that use.

As an example of a use f, consider a train following a specific path over the tracks.
At every moment in time the train has a position on the tracks, a speed, and a length.
Anothér example of a use would be a maintenance crew clearing debris, or perhaps
ice, from the track. For the most part, uses will be exclusive. This means that at most
one agent may use the railroad network in that very specific way. For example, if f is
a train at a specific position on the track, it is physically impossible for another train
to be at the same position for the trivial reason that two objects can not be at the same
exact place and at the same time (a collision between trains will be something
different and will be discussed later). The set of all uses of the railroad network (or,
perhaps, all the uses of interest, or all the permitted uses, etc.) will be called F. A

formal definition follows:

Definition. A use fe F is an application that is feasible in the absence of other uses,

and exclusive in the sense that an application consisting of two instances of f is not

feasible.

An agent ie] might not use the railroad network at all, or might use the network for
just one use (or train), or might have a whole fleet of trains on the network. The set

of uses of the network by agent ieI will be called agent i’s individual schedule F;.
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The system schedule Fs will be the set of all uses of the network by any agent. For

example, if agent 1 runs train A, and agent 2 runs trains B and C, then the individual
schedule run by agent 1 is F;= { A }, the individual schedule run by agent 2 is

F,={B,C} and the system schedule is Fs = { A, B, C }. A formal definition follows.

Definition. An individual schedule F; is a set of uses by the agent iel. A system

schedule Fs c F is a set of uses by all agents i€l i.e. Fg = Ui Fi .

A railroad can be described as having a set of uses F and a family of feasible system
schedules .S. The family of feasible system schedules indicates what sets of trains or
other uses are permissible together on the railroad network, and is partiaﬂy due to
physical constraints and partially a policy issue. Safety criteria and similar issues will
play a crucial role in determining the exact form of the set of feasible system
schedules, and these safety criteria may be somewhat dependent on the terrain and
other specifics of the tracks involved. Here these terms are merely defined, with

further investigations delayed to chapters 3 and 4.

Definition. A railroad network can be described by an ordered pair (F, S): a set of
uses F and a family of feasible system schedules Sc 2. A feasible system schedule

is a system schedule that passes all safety and other requirements for implementation.
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As an example, once again consider three trains, A,B, and C, but now place some

restrictions on what is considered feasible. Uses A and B are northbound trains with
well defined timetables. Use C is a southbound train with some well defined
timetable. According to the definitions above, F consists of the set {A,B,C}.
Suppose the system schedule {A,C} involves a fatal collision between the trains A
and C, and therefore is not feasible for implementation. Then {A,C} ¢ S.
Alternatively, the system schedule {B,C} may involve trains that leaves at times far
enough apart that there is no possibility of collision. In that case, {B,C} € S. The
important properties of the railroad network, in terms of what is or is not feasible, are

completely characterized by (F, .S).

2.2 The Railroad Economic Environment

To consider a ‘railroad allocation problem’ as separate from the allocation of the
economy as a whole, a particular economic problem is isolated and exogenous

influences will be summarized as parameters of the problem.

Begin by considering only those agents directly involveci in the allocation process.
For railroad allocation, this consists of a track authority, who will be called agent
S(seller), and asetI ={ 1,2,3,4,...,111} of train operator agents (buyers). The effect
of all other classes of agents (e.g., agents purchasing cargo or passenger services from

the train operators) will be assumed to be summarized in the valuations of the trains
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for the agents in I. How the model takes into account agents values for trains will be

discussed shortly.

The agents in I acquire track access from agent S, who owns or manages the rail
network. The agents in I use track access as a factor good, along with other factors
such as engines and cars, in order to operate trains on the track. The agents then sell
tickets, transport cargo, or provide some valuable product or service resulting from
their train operations. These sales occur at some other ‘train output’ market, the exact

nature of which will be omitted from the scope of the model.

Under certain simplifying assumptionsw, the implications of these ‘train output’
markets can be summarized as a matrix V giving the revenue of each agent for
operating each train. The element Vs € R would give agent j’s net revenue for
operating train f € F . Agent j’s revenues for the various trains is summarized as a
vector of train values V;, Each agent’s vector of train revenue values is assumed to be
private information for that agent and known with certainty’', at least initially, only by

that agent. As mentioned above, the matrix V is assumed to summarize a number of

1 The assumptions are that the net revenue to an agent for operating trains is separable across agents

(i.e., no externalities), and the net revenue is additive over trains operated by an agent.

"' Assuming train revenues are known with certainty is primarily a simplifying assumption, but may

have an additional interpretation relevant for deregulation in Sweden. Coopers and Lybrand point out
that large number of commuter rail services have a single buyer, the local or regional government who
subsidizes the services (p. 281). If the subsidy is fixed and costs of operation are known fairly well,
then the revenue an operator would expect from operating these services may be known quite well,
perhaps even with certainty.
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parameters not included in the model: all economic incentives for running a train

except for the payment to acquire track access.

As the seller is a public agency, it will be assumed that the seller’s characteristics are
public knowledge. In addition, certain physical constraints about operation of trains
on the track will also be considered public knowledge, e.g., how collisions and safety
violations between trains can be determined. The seller’s policies concerning the use
of the track and the rules of any process by which resources are allocated to the agents

are all assumed to be public knowledge.

There are many policies by which the seller could allocate access to the track. A
fairly broad class of policies of interest involves the seller dividing up the railroad
network into resources or rights of some type, which then might be sold or otherwise
allocated to the agents. This set of resource rights will be called A. The rights
allocated to agent i will be called A;. It is important to realize that the choice of A is
part of the policy debate. Different choices may lead to different conclusions later
regarding the possibility of decentralized trade, safety, or other considerations (in
particular, the definitions of A and the other policy variables that follow will leave
open the possibility of infeasible system schedules or other problems that might result
from poor policy choices). The Coopers and Lybrand report can be interpreted as
taking the position that there may be no ‘suitable’ choice of A. Disregarding

‘suitability’ for now, it must be clear that many choices are possible: A could consist
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of the rights to operate trains for one hour intervals on specific miles of tracks, or A

could consist of several types of permits that must be obtained from separate

agencies, or A could consist of a priority ranking, etc.

The types of resource rights that are of interest here will have a separability property.
The set of rights that an agent must obtain to run a train will be independent of the
rights or trains run by any other agents. Associated with an agent buyer in possession
of a set of rights A; will be a set of uses as dictated by the resource policy. An
individual buyer, with resource rights A;, will be permitted to choose any desired
schedule from the uses in ['s(A;). The notation I'g(A;) represents a set of uses that is
available to buyer i by virtue of access to resource rights A;. The mapping I'y from
resource rights to uses, like A , is a policy variable. It serves to define the meaning of
the resource rights to the agents. For example, if A consists of permits that must be
obtained from a number of agencies, then I'g(A;) consists of the set of trains for which
all the permits have been obtained. If A consists of permissions to use specific
tracks for specific time intervals, then I's(A;) consists of all trains that can be run

using only the track time intervals in A;. The agent may then pick any subset of these

trains to run on the tracks.

In addition to the constraints on the operators, the seller may be disallowed from
selling certain combinations of resources, e.g. those likely to result in a collision or

hazard. It may be desirable, as part of a policy, to allow the seller to distribute the
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rights to run trains {A,B,C} or {D,E,F} but not {A,B,C,D,E,F} because in the later

case some collisions will occur. The family of allowed resource distributions can be
thought of as a family T's ¢ 2* consisting of subsets of A indicating what sets of

resources may be sold.

The ideas discussed roughly in the three preceding paragraphs can be formalized in

the following definition of a resource rights policy.

Definition. A resource rights policy for the railroad network (F, ) consists of a
triplet (A, I's , I's), where
A is a set of resource rights.
Each resource right may be either:
retained by the seller, or
provided to at most one agent i l.
p:2% > 2F isthe buyers’ technological constraint.
An agent i/ is allowed to operate the individual schedule F; if and
only if agent i obtains resource rights A; such that F; < I'g(A)).
I'sc 27 is the seller’s technological constraint.
A sale of the resources in A; to each agent i€ is permissible under the

technology I's if and only if As € T's, where Ag= Uicr A
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Once a resource rights policy has been defined, a commodity space also exists, and
consists of individual schedules, individual resource rights allowing those schedules,

and a numeraire (cash). This commodity space is defined below:

Definition. An agent commodity bundle consists of a triplet (Fi,Ai,Xi)e 2F@2" @R,
where:

F; c F is an individual schedule,

Ai © A is a set of resources, and

X is an amount of a numeraire good (cash).

Once a commodity bundle for an agent has been defined, it is possible to define more
standard notation in a manner common in the mechanism literature. In the literature
an agent is typically defined as having preferences over commodity bundles, an initial
endowment commodity bundle, and a means (if any) of changing certain bundles into
others. Each of these three agent characteristics will be briefly discussed. An agent is

defined as having preferences over commodity bundles.

An agent, for instance, may prefer $300 and running train route A to $500 and
running train route C, because train route C will yield more than $200 more operating
profit than train route A. Recall that the matrix Vjs gives the dollar value to agent i of

running train f. In this case, an agent’s preferences are over the individual schedules
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and numeraire goods. Agents prefer different bundles of resource rights only to the

extent that it affects what individual schedules are permitted.

It will be assumed that agents start with no initial endowment of resource rights and
an empty individual schedule. The reader is reminded that one of the goals of the
thesis research is to find a suitable resource rights policy and an institution for

allocating the rights to the agents.

The ability of agents to transform commodity bundles will be limited to what is
obviously implied by the resource rights policy. That is, if an agent has accumulated
resource rights that allow choices of schedules in {A,B,C}, then the agent may change
his individual schedule to {A}, or {A,B}, or {A,B,C}, or &G, or any other subset of

{A,B,C}.
We are now prepared to discuss the general notation that was described by Hurwicz.

Definition. An agent characteristic ex = (2 , Wk, Yx) consists of a transitive
preference relation 2 over commodity bundles, an initial endowment commodity

bundle ax , and a rule Yy indicating an agent’s feasible transformations of the

commodity bundle.
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A set of agents, a railroad network, a resource rights policy, and a matrix of agent

train values form a complete specification of the economic environment, in the sense
of Hurwicz (1960). The economic environment summarizes the “initial conditions”
present before the agents and seller interact through some allocation institution or
mechanism. The information in the economic environment will be necessary to be
able to discuss the features and likely outcomes of mechanisms to be defined later in

the text.

Definition. An Additive Separable Railroad Economic Environment e for a set of
agents I, in a railroad network (F, .5) , with a resource rights policy (A, I's , I's) ,
and agent train values V , is defined as a list e=(es ; €1 , ..., e of agent characteristics
ex = (2, O, Yk ), where:
for agent S,
(F{ A X") 25 (Fi,A,x) if and only if X" 2 x
s = (3,3, Xs0)
Under vs a seller may transform the initial commodity bundle @ to
s’ = (D, As, Xso ) if and only if Ag € Ts
for agents iel,
(FY A x) 20 (FiAixi) if and only if (x," + Zy,) 2 (x,. +> V,.f)
feF, fefk,

;= (9, D, Xi)
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Under v; agent ie I may transform a commodity bundle (F;,A;,x;) into

(F i’,Ai,Xi) if and only if F, i, € FB (Ai )

2.3 Allocations and Feasibility

Following Hurwicz, an allocation consists of a commodity bundle for each agent in

I+{S}.

Definition: An allocation a for a railroad economic environment is a list
of commodity bundles. a=(as; ai , ... , a;), where:
(i) for each agent jel
a; = (Fj, A, t;) where
Fjc F indicates the individual schedule of uses for agent j.
A; c A indicates the resource rights allocated to agent j, and
t; € R indicates agent j’s cash transfer'?
(ii) for the seller S,
ag = (Fs, As , ts) where
Fs is the system schedule of uses of the railroad network.
Asc A indicates the track resources supplied by the seller.

ts € R indicates the seller’s net cash transfer.

2 1t is necessary to select a standard for determining the sign of the transfers ‘t". The sign of the

change in the agent’s cash holdings will determine the sign of the transfer. That is, “+* indicates that the
agent receives money, and ‘-’ indicates that the agent pays money.
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Note that an allocation, as defined, is just a list of numbers and sets. Very few

constraints are imposed. For example, there is no restriction in the definition above
requiring the cash transfers balance out, or for the system schedule to equal the union
of the individual schedules. A feasible allocation is an allocation that actually is
consistent with the interpretations of each element given above. A feasible allocation
will have to satisfy two groups of constraints: budget constraints and physical

compatibility constraints.

The budget constraints are concerned with establishing that an allocation conforms to
basic definitions of system vs. individual schedule, seller resource provision vs. agent
resource rights , and balance of cash transfers (total (negative) transfers of buyer
agents to obtain resources plus the sellers transfer equals zero) and with the
constraints regarding the resource rights policy (A, I's , I's) (that buyers individual
schedules are permitted given their resource rights, and that the seller only distributes
an allowed set of resources). The budget constraints do not guarantee feasible system

allocations. Information about F or S does not appear in the budget constraints.

The physical compatibility constraints are concerned with establishing that an
allocation results in a feasible system schedule for the railroad network (F, S).

Identical uses may not appear in multiple agents’ individual schedules and the system

schedule must be one of those in the family .S
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Note that the physical compatibility constraints do not guarantee that the budget

constraints are satisfied, just as the budget constraints do not guarantee that the
physical compatibility constraints are satisfied. As mentioned before, the set of

feasible allocations will satisfy both sets of constraints. The formal definitions are

provided below:

Definition: The budget constraints (B1)-(B6) imposed by a resource rights policy
(A, T's, I's) upon an allocation a=(as ; a1, ... , ;) are:

(B1) Ase I's (seller’s production constraint)

B2) VjkeI,jrk= AN A= (exclusivity of track resources)

(B3) U, A; =A; (budget balance in track resources)

(B4) - t; =t; (budget balance in cash)
jel
(B5) F; < T's(A;). (buyer’s resource use constraint> )

(B6) Fs = Ujer Fi (system schedule definition)

Definition. The physical compatibility constraints (P1)-(P2) imposed by a railroad

network (F, .S') upon an allocation a=(as ; a; , ... , ;) are:
(P Vjke I,j#k:)Fj NF=C

P2) (Vier F) e S

3 Note that a budget constraint for the buyers (of the form t; < wyx ) is not imposed. Effects of low

initial endowments were not considered to be of interest in this study: demands of sufficiently endowed
buyers or buyers with good access to capital markets will not be affected by this type of constraint.
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Definition. The set of feasible allocations F(e) is the set of allocations that satisfy

both the budget constraints and the physical compatibility constraints.

To hint at things to come, it might be possible to be able to choose the resource rights
policy so that every allocation that satisfies the budget constraints also satisfies the
physical compatibility constraints. How this might be accomplished is delayed for
discussion in Chapter 4, where the notions of resource policies and feasibility will be

revisited.

2.4 Measures of Allocation Performance: Value, Optimality, and
Efficiency

Recall that the process desired by the Swedes is one that allocates the use of track to
those who value it the most. Below, it is shown that this is consistent with
maximizing the sum of seller’s and buyers’ profits and with Pareto-optimality.

One claim in the debates has been fhat there may be conflicts between ‘commercial’
and ‘socio-economic’ goals'*. This section shows that the ‘commercial’ goal of
achieving Pareto-optimal allocations is identical to the ‘socio-economic’ goal of
maximizing the total value of the usage of the trains. Of course, there may still be

conflicts between ‘commercial’ and ‘socio-economic’ goals if important externalities

exist (e.g., pollution) and also depending on precisely what it means to maximize

' Coopers and Lybrand state that “... One of the potential difficulties with introducing competition

into the rail industry is the conflict between the commercial way in which operators are expected to
make decisions and the socio-economic role of Banverket (the rail agency) as provider of the
infrastructure. Operators will wish to make decisions which, at the margin, are in their commercial
interests, while Banverket, and many of the buyers of passenger services, will wish to ensure that social
benefits are maximized.” (p.283)
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social benefits in the Swedish sense. For this initial study externalities are assumed to

be nonexistent, and the goal of the next few paragraphs is to characterize the Pareto-
optimal set of allocations and the related efficiency measure to be used in evaluating

the experimental results.

Definition. The agent’s profit T1;(a;V) of agent jeI at a feasible allocation aec 7 (e)

18

Mj(aY) = [ZVI,} +1;.

feF;

Definition. The total value v(a;¥) of a feasible allocationa e I (e) in an

environment e is V(a; V) = Z z Vi .

jelI feF,

Proposition 2.1. The total value v(a;V) of a feasible allocationa € I (¢) in an

environment e is equal to the sum of buyers’ profit and the transfer to the seller.

Wa; V) =+ Y (@Y .

jel

Proof. By definition v(a; V)= . D'V,

jel feF;

Because a is feasible the budget balance condition (B4) ¢, + th =0 is
jel

satisfied. Therefore, add this equation to both sides of v(a; V) yielding
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V@ V) =1+ 2,0+ DV,
jel feF,

From the definition of profit IT; ,

va V) = f+ 3 I (a:¥)

jel
Definition. The Pareto-optimal set of feasible allocations P(e) in an environment e is
the set of feasible allocations having the property that there exist no feasible

allocations that make all/one' agents better off while making none worse off.

Proposition 2.2. P(e) = { ae F(e) : a maximizes v(a;V) }.

Proof. It must be established that (i) a € J(e), a maximizes v(a;V) = acP(e),
and (ii) ac P(e) = a € F(e), a maximizes v(a;V)

(i) If a maximizes v(a;¥), then there are no feasible allocations which provide
larger total profit. Any other feasible allocation must have equal or lower total profit.
Therefore, any other feasible allocation must either produce revenues equivalent to a
or must make at least one agent worse off. Therefore, a € Pl(e).

(ii) From the definitions it is known that ae P(e) = ae F(e). Suppose ae P(e)
and a does not maximize v(a;V). Then let a’e J(e) maximize v(a’;V). Since

v(a’;V) is invariant to balanced transfers, set the transfer so that each agent receives

15 When the environment has transfers of divisible cash, the Strong and Weak versions of Pareto-

optimality are equivalent. If an agent can be made better off while making no one worse off, then by
adjusting transfers all agents can be made better off. If all agents can be made better off, then by
adjusting transfers the group gain can be distributed to one agent. If payoffs are made in discrete units
(as is done later), then some slight modifications to this proof are necessary and only Weak Pareto-
Optimality can be implied.
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* what would have been received under allocation a, plus an equal share of the

difference between v(a’;¥) and v(a;¥). Then a’ is a Pareto-improvement to a. But
this is a contradiction to the assumption that ac P(e). Therefore, the assumption that
there exists an allocation ae P(e) that does not maximize v(a;V) is false.

Therefore, a€ P(e) = a maximizes v(a;y).

Notice that the Pareto-optimal set of allocations /(e) does not in general contain
“corners” such as giving all the rights to run trains to one operator. Corners can only
be an artifact of a particular choice of ¥ . Corners do not occur in general because
cash transfers are not bounded in the feasible set of allocations. If the feasible set of
allocations included a cash budget constraint for the buyers, then corner solutions
could occur more easily. The lack of bounds on cash transfers implicitly assumes that

operators can always access capital to buy out inefficient operations.

The lack of corner solutions means that the Pareto-optimal set of allocations usually
contains a single unique set of permitted trains and an agent to operate each train

permitted on the track'S. Different Pareto-optimal allocations differ only in the cash
transfers that agents must pay to receive allocations. Because of this uniqueness, the

standard concept of efficiency can be defined.

' Inthe experiments, ties in total redemption value between different schedules were not permitted

when the train values ¥ were generated. This will be discussed more fully in Section 3.4: Testbed
Preferences for Trains. Even with ties, notice that the efficiency formula will give the same result since
only the total value is relevant.
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Definition. The efficiency of an allocation a in the environment e, denoted Eff(a,e), is

defined as the ratio Eff(a,e) = v(a;V) / v(a";V), where a’ is any Pareto-optimal

allocation a’e P(e).

2.5 Mechanisms for Rail Allocation

The term mechanism indicates a formal model of an institution. The mechanism
formalism defined here is quite general and proceeds similar to Smith (1982).
Mechanisms are defined as a type of state-machine'’. The class of mechanisms of
interest to the railroad allocation problem will be narrowed shortly so that issues of

behavior and equilibria can be more easily addressed.

Definition: An iterative mechanism (M.,S,s0,8*,C,0*,T) for a class E of economic

environments with agents I and feasible allocations F(e) consists of:

(i) A set M consisting of messages
M; c M denotes the messages that agent i may send.

M includes messages by nature (e.g., that time has elapsed).

(ii) A set of states S

17 A state-machine is a machine whose description is summarized by a set of states and a rule

explaining how the state evolves, perhaps under the presence of outside stimuli. The state-machine
approach is useful for describing a number of physical, mathematical, biological, and cognitive
processes. The “object oriented programming” revolution in computer languages (such as C++)
aessentially involves forcing programmers to model the modules of their programs as families of state-
machines. Marschak (1977) suggests that state-machines could be used to describe economic processes
and mechanisms in his discussion of Reiter (1977).
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(iii) An initial state soe S

The mechanism begins operation in the initial state.
(iv) Set of Terminal States S*
Indicates states where the mechanism terminates and produces an
outcome.
" (v) Agent Feedback Information i(s)
Each agent j receives information {(s) about the state s.
If {j(s)=s for all agents j, then the state is public information.
(vi) Outcome Allocation Rule O*: §% — 7 (e)
Associates each terminal state with a feasible allocation.
(vii) Transition Rule: T: § ®M—-S
indicates how the state evolves when messages are received.
(viii) The following algorithm
Begin Mechanism
Step 1: Set the state of the mechanism s=sp.
Step 2: While s¢ S* , repeat the following block of steps
Step (2.a): Wait for a message m to be received.
Step (2.b): Update the state according to the transition
rule: s™=T(s"¢,m).

step (2.c): Send the agents information {;(s™").
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Step 3: [When this step is reached, se §* ] Calculate an outcome

allocation 0*=0*(s) according to the final state the mechanism
reached.

Step 4: Send the outcome allocation information o* back to the
agents.

End Mechanism

A specific class of mechanisms, called Soft Terminating Iterative Mechanisms
(STIMs), terminate only when activity ceases for a given period of time. Because of
the termination rule, one-stage Nash equilibria and Core states of STIM mechanisms

are fairly straightforward to identify.

Definition: An iterative mechanism is a soft-terminating iterative mechanism (STIM)

if the following conditions are satisfied:
(i) The mechanism state can be written s=(1,--) where -- represents other
state variables. The initial state s;=(Tp,--) has Tp> 0 . The variable 7 is
called the mechanism timer.
(ii) The set of terminal mechanism states $* ={se S: 1=0}, i.e., the mechanism
terminates if and only if the mechanism timer T reaches zero.

(iii) The transition rule T resets T to 1o whenever any other state variables are

changed.
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(iv) The message space M and transition rule T allow for a time message from

nature that decrements the value of 1.

(v) The transition rule T affects 7 only through (iii) and (iv) above.

2.6 Individual Agent Behavior

This section briefly touches on some notation and concepts that will be more fully
developed in Chapter 5 and 7 regarding the types of behavioral models used in the
thesis. These models begin by making some definitions regarding potential outcomes
and allocations at each state of the mechanism. Soft terminating mechanisms can be
modeled by considering beliefs and behavior when the mechanism timer T is very
small and about to expire. The definitions below describe a myopic form of
expectations: they are based on what would occur if no agent takes any additional
action. An agent is modeled as choosing between whether to allow the mechanism to

terminate or whether to take some action that will prevent termination.

Definition. For a STIM, the potential allocation OF(s) at a state s is the value of the
outcome rule O(s/t=0) where s/7=0 indicates the terminal state obtained by setting the

T component of s equal to 0.

Definition: An agent’s potential profit 7 (s;V) at a state s in a is the profit the agent

would earn under the potential allocation, an (s;¥) =TIi( OP(s) 'Y
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It is possible to classify messages available to agents by their affect on the mechanism

state and the potential allocation. This approach is motivated by an observation of
actual behavior rather than by any formal theory. The definitions, however, are useful

in describing possible stopping points of the mechanism.

Definition. In a STIM 7 at each state s the message space M can be partitioned into

three subsets of messages:
() the set of pivotal messages Mn(s); These messages change the mechanism
state and potential allocation.
Mr(s) = {m e M:OF(T(s,m)) # O°(s)}
(i1) the set of neutral messages Mx(s); These messages change the mechanism
state but do not change the potential allocation.
Mx(s) = { meM : OP(T(s,m)) = O(s) , T(s,m) #s }
(ii1) the set of null messages Mg(s); These messages change neither the state
nor the potential allocation.

Mg(s) = { meM : T(s,m)=s }

Statements regarding equilibria in mechanisms can be phrased in terms of the

properties of available pivotal or neutral bids and the measure of potential profit:
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Definition. In an environment e, the set of Nash-1 Stationary Equilibria,

NE1(#,V,m), of a soft-terminating iterative mechanism %7 is the set of states s such
that there do not exist pivotal messages that can increase some agent’s potential

profit:

NEI(M,V, ) ={seS:Vjel,Vme(Mn@s)NM),TyT(sm)Y) <'i(s;¥) }.

The NE1 concept could be easily generalized to include sets of bids from a single
agent. For the purposes here, there is no advantage to the additional notation at this
point. NE1 outcomes represent possible stopping points of the mechanism because
no agent has a pivotal message to send that increases its immediate potential profit. If
an agent did have such a pivotal message, it is reasonable to expect the agent to
submit it and the mechanism to continue. Therefore the only “reasonable” stopping

points must be NE1.

Definition. In an environment e, the set of Core outcomes of a soft-terminating
iterative mechanism %] Co( ¥, e, il ), is a set of states s such that, for any coalition of
agents and any set of messages from the coalition of agents, an increase in the

potential profits of all agents in the coalition is not possible.

Consider briefly the nature of dynamic processes that might lead to NE1 or Core

outcome states. Together with the previous definitions of pivotal, neutral, and null
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messages, it is possible to define processes that might explain how equilibria such as

NE]1 or Core are reached.

A pivotal process is a particular description of dynamic agent behavior where agents
always submit a bid from an available potential profit increasing pivotal bid sequence
rather than allowing the mechanism to terminate. In Chapter 5 it will be shown that
such a process yields NE1 outcomes in a particular auction-like process.
Unfortunately, there will probably be many more NE1 than Core outcomes, and it is
desirable that a mechanism has a possible dynamic that will lead agents away from
inefficient NE1 to the Core. The strong neutral process , defined in Chapter 5, fills

this need and is described briefly in the next paragraph.

Recall that in a STIM, any non-null message will reset the timer. In the absence of
potentially profitable pivotal messages for individuals, as is the case at an NE1, agents
might negotiate joint behavior by submitting neutral bids. These messages would
both act as signaling behavior from one agent to another and reset the mechanism
timer so that other agents could have time to consider their situation. Eventually the
series of (individually) neutral messages might form a pivotal joint message and move
the mechanism state towards the Core. This dynamic, which relies on the submission
of neutral bids, will be called the strong neutral process and will be shown, in

Chapter 5, to possibly lead to more efficient outcomes than the pivotal process.
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CHAPTER 3. Performance Requirements and the Elements of
Experimental Testbeds

Figure 3.1 shows a map of the rail network in Sweden. Much of the track in
outlying areas is single track, which can only support travel in a single direction at a
time. Double track can be thought of as equivalent to two single tracks, and is
typically used to provide bi-directional traffic flow. Gothenburg and Malmo are
major seaports, and are connected to Stockholm by double track. Many of the rural
areas have only single track. The network of rails is complex even though Sweden is
a relatively small country, and it follows immediately that size and complexity due to

size are serious problems.

This chapter is organized as follows: Section 1 is devoted to introducing basic
concepts regarding trains, schedules, allocations, and feasibility. Physical constraints
are introduced that the allocation process must satisfy. Section 2 defines a list of
important economic and technical issues in the debates over rail decentralization and
defines a rail scheduling problem that contains all of these issues. This list of issues
and the associated testbed form the central problem to be considered in the rest of the
research. Section 3 is devoted to issues of size and computational difficulties due to
size, and creates several experimental testbeds of varying size and complexity using
the rail scheduling problem of Section 2 as a building block. The mechanism design
and experimentation efforts of the remainder of the thesis are organized around these

testbeds.
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3.1 Basic Physical Requirements: The Feasibility of Train Schedules

As multiple tracks can be considered to be a collection of single tracks, it
would appear sufficient to consider, at least initially, the scheduling problem for
single tracks in isolation. - Also, since over 80% of the total track mileage in Sweden
is single track, a study of scheduling on single tracks is directly relevant to much of
the network. Figure 3.2 shows a very simplified rail scheduling diagram for a small
period of time on a hypothetical single track rail line. The horizontal and vertical
axes of the scheduling diagram correspond to time and location respectively. The
vertical line has a location, Stockholm, at the bottom and a location, Borlange, at the
top. At the middle point of the line, Uppsala, a single sidetrack is assumed to exist!®,

The locations on this simple system of railroad tracks can be indexed as the set X.

A single train can be interpreted as a function from time to a location on a

system of tracks. In the notation to be used, a train is a function, f(t), where t is

8 In reality, the Borlange to Stockholm route is an important traffic corridor and has multiple track,

not single track as used in the above scheduling diagram. The use of names of major Swedish cities
here and elsewhere is solely for motivating the examples. The locations could have been called City X
and City Y and Sidetrack Z, but with the trains also using letter names one quickly runs out of letters.
The reader is reminded that the purpose of the research is not to simulate decentralized allocation of
the actual Swedish rail network. Instead, the purpose of the research is but an initial exploration of the
possibilty of decentralized allocation of a rail network. The research is being motivated through a
series of example “testbed” rail network environments rather than appeal to the actual rail network in
use in Sweden.
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understood to be an element of a well defined set'>, T, such as time of day and {(t) is

understood to be a point on a graph representing locations, X, on a system of railroad
tracks. For example, in Figure 3.2 the line G represents a train that starts early and
moves from south to north along the track. The curve A is a train that would start
later than G and travels faster reaching Borlange before G would arrive. Curve B is
also a train that moves from south to north, but the horizontal portion indicates that it
pulls to the sidetrack and stops at Uppsala. Curve C is a train that would start in the
north and move southward along the tracks. Seven different trains are shown in

Figure 3.2.

From the figure, a notion of feasibility of an allocation can be obtained. If
both trains A and train C operated, therg would be a head-on collision at the location
and time of intersection of the two lines. Similarly, C and G would involve a
collision as would A and G. Because A is faster than G, it would run into the rear of
G at the time and location of the intersection. Some collisions can be avoided if a
sidetrack exists. Thus trains B and C do not collide because B pulls to the sidetrack
at Uppsala and lets train C pass. Notice the line representing train B is horizontal,
indicating that the train is not moving. The train waits for train C to pass before

continuing on to Borlange.

1 In this notation I ignore the fact that only certain functions can represent trains. Technical

restrictions (e.g., piecewise continuity) on the mathematical representations are not imposed because
they play no real role in the analysis that follows.
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Trains and collisions are not the only consideration for feasibility. Track

congestion can be a problem especially if equipment failures occur. Stopping
distances require a safety margin between trains, especially in the winter when friction
is low. Thus feasibility can involve constraints that require that either train A or train
B can operate, but not both. These two trains would leave Stockholm so close

together that safety regulations would be violated.

A feasible schedule is a set of trains that do not collide and do not violate
other side conditions like safety regulations. Constructing the set of feasible
scheduleszo, i.e., those with no collisions, is essentially the construction of a
"production possibility set" for use of the track. As might be obvious from Figure
3.2, the set of feasible schedules and thus any production possibilities set, is neither
smooth nor convex. In Chapter 4, analysis of the feasible set will reveal a “binary
conflict property” that will be useful in characterizing the feasible set and in the
construction of the BICAP allocation mechanism in Chapter 5. For now it is
sufficient to note the requirements that the application framework of railroads
imposes on the feasible set: that collisions must not occur, and that other constraints

can be included as necessary.

2 Which will be a set of sets.
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3.2 Technical and Economic Issues: Performance Requirements

Historically, scheduling has been seen primarily as a technical problem and
not as an economic/political problem. Without the aid of computer technology?',
scheduling is an incredibly complicated task, and has concentrated on identifying a
feasible schedule and then modifying it incrementally when changes are necessary. In
Sweden, scheduling has typically consisted of ranking trains in priority and then
resolving conflicts as they occur (requiring one train to wait or excluding trains) based
on the priority ranking. Schedules are fine tuned by rules developed in
administrative committees, and new services are added incrementally into previous

schedules as possible.

The priority system has been criticized for many reasons, many of which can be

summarized as saying that access to track is not allocated to the users who value

2

access the highest??. The system is defended by those who hint that because of

3 For a discussion of computerized rail scheduling techniques, see the review article of Petersen,

Taylor, and Martin (1986). Many models of rail operations seem to fix trains at their maximum
possible speed while in motion. A notable exception is Kraay, Harker, and Chen (1989), who study
how train speed should be varied to meet an objective function based on travel time and fuel
consumption given the constraints that trains must stop for meets and passes to occur. In general, this
literature assumes the viewpoint of a central dispatcher who wishes to maximize some function, and has
some sort of administrative powers. The literature does not address issues of decentralized agents with
conflicting objectives that are determining the allocation through some competitive process.

22 The current system of priorities involves three classes. The priority ranking order is express trains

first, general passenger trains second, and freight trains third. Coopers and Lybrand admit that
“Unfortunately, such a hierarchy of priorities, if rigidly applied, can not allways reflect the relative
value of services, since there are some marginally profitable inter-city (passenger) services and some
highly profitable freight services.  In general they claim that the priority ranking does approximate the
general trend in the cost of adjusting schedules: the freight train usually has less strict scheduling and
can be delayed at lower cost than the passenger train.
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certain technical features, nothing else is likely to work (see note [2] above). No one

can be quoted as taking such an extreme position, but the references to “lack of
international experience” with any alternate institutions indicate that a type of
skepticism exists that any new process needs to overcome before it can be seriously
studied. This section contains ten issues that have surfaced in the controversy. The
first six are issues raised by those who defend the current system of priorities against
those who advocate decentralized and competitive access to the use of tracks. The
final four are issues raised by those who criticize the system of priorities as being

insensitive to efficiency improving possibilities.

In discussing the issues, the railroad system in Figure 3.2 will be used to illustrate the
points. In addition the values in Table 3.1 will be used. Table 3.1 outlines values
placed on trains by ten potential users numbered as agent 0 through agent 9. Each

agent has an additive preference for the seven trains labeled A through G.

The issues listed here and the example from Figure 3.2 and Table 3.1 are more than
just an illustration. The set of train schedules from Figure 3.2 will be used in the
next section to define the 1T7% experimental testbed. The 1T7 testbed will be used in

the experiments of Chapter 5, and as a building block in creating the three-track

2 Train schedules in the experimental testbeds are identified by a number indicating the number of
tracks, then “T,” then the number of trains under consideration. Since Figure 4 has one track with
seven proposed trains, it will be called the 1T7 testbed. While many other scheduling environments are
also possible with one track and seven trains, the only such scheduling environment used in the
discussion in the thesis is the scheduling environment of Figure 4. Therefore the reader should
interpret the term “1T7 testbed” as referring to the particular train schedules shown in Figure 4.
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testbeds that are used in the experiments of Chapter 8. The preferences in Table 3.1

are taken from one of the patterns of preferences that will exist in the experimental
testbed. The point of this section and the next is not only to explain the controversy

but to also show that the controversial elements are actually present in the testbed.

Non-Track Constraints. How can safety considerations and other non-track
constraints be guaranteed if decentralized competitive allocation takes place?
Consider again Figure 3.2. It is stated on Figure 3.2 that trains such as the pair A and
B, the pair C and D and the pair E and F are too close and thus can not be operated
together. If one runs then the other can not run without violating a safety standard.
This a constraint on the Feasible Set of Allocations and any mechanism for allocation
must be capable of recognizing such constraints. Efficient allocation would require
that no such pairs operate and that any process of insuring that non-track constraints

be satisfied should not prohibit more than is necessary.

Schedule Interdependency. The network in Figure 3.2 suggests the many
complications that arise from schedule interdependencies™. Suppose agent 1
operates early from Stockholm and from a choice of A or B wants to take A. Agent 2
operates from Borlange early and prefers C from a choice of C or D. However, 2 is

persuaded by 1 to choose D, which does not conflict with A. However, a choice of

2 Coopers and Lybrand state: “There is a high degree of interdependence between trains sharing the
same network. Trains canrnot easily pass each other, particularly on the single track lines which make
up a high proportion of Sweden’s network. Neither is there space for trains to queue. Therefore, a
change in the plan for one service often means that the plans of many other services have to be altered
to fit and provide a workable timetable.” (p.291)
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D has an impact on agent 3 who operates from Stockholm at a time later than 1, and

who wants to choose E from the two options available, E and F. If agent 2 runs train

D, then agent 3 can not run train E because they are in conflict.

Revelation of Values. How can the private values of independent train operators
become exposed and used in a competitive process?®> A type of “free rider problem”
or a game of “chicken” seems to exist. Consider an agent that would like to
implement train G. This train is in conflict with all of the trains in the set

{ A,B,CD,EF ‘}. If G is to operate, it must somehow preclude all of these trains, or
if one or more of these trains operate, then train G must be precluded. If the set of
rights to operate trains {A,B,C,D,E,F} are held by different operators, then they must
either be paid, thereby creating a “holdout problem” for the operator of G who must
strike a price with each individually, or if the operator of G has the right to operate,
then these different operators must collectively pay the G operator, thereby creating a
type of public goods problem among themselves. In both cases the independent

operators could have an incentive to misrepresent their true values of operations.

Resource and Market Fragmentation. If a classical market process is to be used, then

the number of potential markets would be large. How would the resources be

®  Coopers and Lybrand are concerned with insuring that the market process is not abused.

“(bidding) process ... will need to address a number of practical issues, including: (a) limiting the
potential for gaming by operators by providing misleading information, such as understating or
overstating requirements, aimed at influencing other operator’s bids during the various stages of the
bidding process.” The interesting question is why they do not believe that such problems would plague
an administrative system. In the auction process to be studied, agents bid on pre-specified routes, so
misspecification of routes is not an important concern at this point. Agents could underbid or overbid,
but there are consequences for bidding too little or too much.
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defined? It is possible to divide the tracks into mile by time squares and have a

market for each. Given the system represented by Figure 3.2, a natural division would
have the track divided into three segments (Stockholm - Uppsala, sidetrack at
Uppsala, Uppsala - Borlange) and time divided into four segments (morning, mid-day,
evening and night). This would create 12 resources. For the example this number of
markets might not be so onerous, but for more complex tracks this is going to require
a large number of markets, possibly raising transactions costszé to both operators and

the seller.

Strong Complements. If the “multiple independent market” approach mentioned in

the paragraph above is used, then some resources will be strong complements. As a
result, competitive equilibria may not exist that support the Pareto-optimal outcome.
In addition, complements can cause difficulty in dynamic models of market price
convergence.”’ To demonstrate some potential difficulties, only a static notion of
equilibrium is necessary. Consider the following example of the problems involved
when strong complements are combined with indivisibility in a railroad allocation

problem.

% Coopers and Lybrand assert that “The transactions costs of developing and managing the process

for an effective price-based system are likely to be high and may offset any efficiency gains over an
administered system based on rules and negotiation ...” (p.294)

27 Arrow and Hurwicz(1958) discuss the dynamic stability of market prices in the two-goods case

and conclude that complements and stability are mutually exclusive.
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Suppose only routes G, A, and E from Figure 3.2 are of value and that the commodity

space is as defined above. Under the circumstances assume that the whole track is
sold and as defined by two times of day, morning and mid-day. This gives only two
commodities. Assume that agent 1 is willing to pay $10 for both the morning and
mid-day use in order to operate G, but otherwise places no value on the tracks.

Agent 2 would pay $7 for either the morning or the mid-day in order to run train A or
train E but does not want to run both. The optimal allocation is for agent 1 to own
both and for agent 2 to have neither. Yet, competitive prices for both morning and
mid-day must be above $7 to exclude agent 2, but at such prices agent 1 does not wish

to buy. The optimum can not be supported as a competitive equilibrium.

Competitive Equilibrium Existence. The presence of strong complements and
indivisibilities can affect the existence of any static competitive equilibria. In the
previous example involving strong complements, no competitive equilibria exist®,

At any set of prices there will always be excess demand or excess supply of track time
slots. It was shown in the previous example that the optimal allocation (where both
slots are allocated to agent 1) can not be supported as a competitive equilibria
because at prices where agent 1 will demand both slots, agent 2 will demand one of

the slots as well. For prices where agent 1 does not demand but agent 2 does, agent 2

% Coopers and Lybrand do not consider a market model where tracks access is broken up into small

time-distance segments. But they do claim that “The process for defining the products to be traded is
complex, it is difficult for market-clearing prices to emerge, and attempts to simplify the task may lead
to inefficient distortions.” (p.293) The non-existence of market clearing prices may be a real problem
if strong complements are involved.
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demands only one slot. This leaves an excess supply of one slot. Therefore, there are

no competitive equilibria prices, as all prices lead to excess demand or supply.

Now consider some issues from proponents of decentralization. Decentralized
allocation might improve upon some known failings of the (previously used) priority
system of allocation. If efficiency is 100%, then the mechanism would circumvent all
such failings, but substantial improvements might still be gained from an inefficient

mechanism that avoids certain major difficulties about to be discussed.

Priority and Substitution Between Users or User Types. Suppose an agent is given

priority over other agents. If G is the most valuable route to any user with priority
then it would be implemented. For example, if agent 0 is given the right of priority
for a single train such as G then, as can be ascertained from Table 3.1, train G would
operate at a value of 1604. But there are many options that have greater value than
G. In particular, B, C, and E held by agents 1, 0 and 2 respectively have a combined
value of 3022. Under the priority system, there is no incentive for the three trains run

by different users to be substituted.

Priority and Combining Trains. Suppose that fast trains have priority over slow

trains and that agent O is operating fast trains but had no priority for a slower train
such as G. As can be seen from Table 3.1, the value for G to agent 0 is 1604. The

best feasible fast trains to this agent is the set of three trains {B,C,E}, that total in
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value to 1134. The agent has no incentive to combine trains if the result is a slower

train because priority, and thus the trains, would be lost.

Priority Gives no Incentive to Wait. If agent 7 has priority with north to south fast

trains, then the agent has no incentive to delay and wait. Given the preferences of
Table 3.1, agent 7 would operate train A even though another agent such as agent 0
must delay and run train D rather than train C. Agent O values train C by a difference
of 337 over D while agent 7 values A , which forces agent 0 to delay, to train B, in
which agent 7 waits, by only a margin of 102. Thus an allocation in which Agent 7
waits as opposed to Agent 0 would increase total value by 335. With priorities there

is no incentive for this to take place.

Priority Systems Do Not Respond to Changing Circumstances. If the track authority
always assigns priorities correctly, then an efficient allocation is often possible and
depends on the ability of the priority rule system to span all feasible schedules.
However, to assign priorities correctly, the track authority must gather the necessary
information from independent operators or operating divisions in order to make these
decisions. It may not always be in the interests of the operators to truthfully reveal
this information. Furthermore, as circumstances change, the information must be
gathered again and again. - Apparently, the criticism that "access to track is not
allocated to the users who value it the most" directly attacks the ability of the track

authority to gather this information using the current administrative processes.
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Changing circumstances in the testbeds are introduced by using the additional sets of

train values in Table 3.2 that, in experiments, would be used in different periods.

3.3. Size and the Experimental Testbeds

'To address the problem of size, several experimental testbeds are required in
which size and computational difficulty related to size are varied. The effort of
section 3 identified a set of non-size issues that proponents and opponents of
decentralization feel are important in rail allocation. The set of train schedules and

redemption values defined in the previous section will be known as the 1T7 testbed.

As the 1T7 testbed contains economic problems thought to be important in
arguments concerning decentralization, the question is how to build upon this
environment by both maintaining all of its current technical and economic difficulties
and increasing the size and complexities inherent due to size. Two larger testbeds
that will be constructed from the 1T7 testbed will be known as the three-track
testbeds, and, in particular, the 3ST7 and 3NST?7 testbeds (3 tracks, Separable or Non-
Separable, 7 trains per track). The 3ST7 testbed will consist of three copies of the
IT7 testbed on three separate, independent tracks. This results in increased size over
the 1T7 testbed as there are now 21 trains instead of 7 trains. The 3NST7 testbed
consists of the same three copies of the 1T7 testbed with interdependencies between

the schedules of trains on the different tracks. This results in increased size over the
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1T7 testbed, but also increased schedule interdependencies over the 3ST7 testbed.

Not only is size increased but also the computational difficulties due to the additional

schedule interdependencies.

The 3ST7 testbed is constructed as follows. Consider the railroad scheduling
diagram of Figure 3.3. The system of tracks consists of three geogfaphically isolated
single track lines. One track line connects Stockholm to Borlange (in the central part
of Sweden), the second track line connects Umea to Lulea (in northern Sweden), and
the third track 1ine connects Malmo to Gothenburg (in southern Sweden). The three
single track lines are assumed to be geographically isolated and not interconnected.
Because of the separation, there are no constraints which affect scheduling on one
track given scheduling on a different track. Suppose that for each line operators are
interested in running trains exactly like the trains A-G of the 1T7 testbed. On the
Stockholm-Borlange line call these trains A-G, on the Umea-Lulea line call these

trains H-N and on the Malmo-Gothenburg line call these trains O-V.

Because there are now three times as many trains, three times as many train
redemption values are needed. The redemption values for the 1T7 testbed are reused
for the three-track testbeds in an obvious way: each independent of the three-track in
the three-track redemption values takes its train redemption values from a different set
of redemption values for the 1T7 testbed. The correspondence between the

redemption values in the two testbeds is given in Tables 4-6.



Clearly, this environment still addresses all the issues of the previous section,
but size has been increased through duplication. This increase in size should not
introduce new economic problems, if formulations of the feasible set of allocations
and formulations of allocation mechanisms in the next chapters can exploit the nature

of this duplicated environment.

As well as suggesting behavior to be expected of characterizations of
mechanisms and feasible sets, the nature of the 3ST7 environment suggests that
further modifications are necessary to the testbed to claim that the problems of
increased size have actually been adequately addressed. One of the primary
computational problems related to size is the issue of schedule interdependency. It is
this issue that complicates the form of the feasible set of allocations in section 2. To
increase schedule interdependency, it is necessary to add scheduling conflicts to the

diagrams above and cause scheduling on the three independent tracks to become

interdependent.

The 3NST?7 testbed starts with the 3ST7 testbed ‘and adds conflicts between
trains on different track lines. This can be motivated as follows: the cities in the
diagrams finally become part of a larger rail network. The 21 trains in the scheduling
diagram are expanded to include new service areas. In these new areas additional

conflicts occur between trains. It should be clear that with enough additional tracks
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and enough extension of the time period, any set of additional conflicts could have

been chosen for study. The conflicts between the pairs of trains in

{(AH),(AJ ),(AO),(BP),(CI),(CK),(CQ),(DR),(ES),(FT) } were chosen because of
their effect of greatly increasing the interdependence of schedules among the trains
rather than for their ability to represent any particular configurations of trains and

track.

3.4 Testbed Preferences for Trains

The train values ¥ for the different periods of the 1T7 testbed are given in Table 3.2.
The 35T7 and 3NST7 testbeds also use these values. As was previously discussed,
each period of the three track experiments took train values from three of the periods
from the one track experiments; the details of this can be found in Tables 3.3-3.5.
The details of why and how these particular values were generated will now be

addressed.

Issues in section 3.2 play a major role in defining certain patterns of train values that
are of particular interest in the Swedish debate. The question of whether a
decentralized allocation institution can perform well in terms of numerical efficiency
does not constrain the form that the train values take. What constrains the form of
the train values is the need to question the performance of the institution, in the

laboratory, with regard to the specific issues and situations of the previous section.
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In the testbed the train values are determined by five of these constraints. Each of

these constraints and situations will now be briefly discussed.

Priority and Waiting. One criticism of priority rules is that no one with priority ever
has the incentive to wait. To advance the argument, it is necessary to test whether the
decentralized institution can avoid this problem. The criticism of priority contains an
implicit assumption about the value of trains, that waiting decreases train value but
the priority rule does not always make the right trains wait. A test of the
decentralized institution is only interesting when this assumption is satisfied. If the
trains B,D,F are interpreted as delayed versions of the trains A,C,E respectively, then

a natural condition is that for each agentieI, Vis > Vg, Vic> Vip, and Vig > Vir.

Revelation of Values and Coordination. Recall that an interesting coordination

problem exists when Vig is very large for some agents, but train G is not optimal.
Investigation of these cases requires that the value of G be high enough so that the
coordination problem exists, but not so high that G is in the optimal allocation. A

value of G around 60% of the optimal allocation value was generally chosen.

Revelation of Values and Conflicts of Interest. Each agent may have the maximum

value (among all agents).for up to one pair of {A,B}, {C,D}, and {E,F}. Allowing
agents to have the high value for both trains in a conflicting pair enables the study of

agent bidding behavior when he might be in a situation to bid against himself. Note
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that in the 3 track testbed experiments, an agent might have up to three pairs of high

values, one pair on each track.

Efficiency and Salience. For efficiency to be a salient measure, there must be some
separation between the values of the best and second best outcomes. To put this
another way, if the efficiency of the 2nd best allocation is 99.9%, it would not be
significant from an efficiency viewpoint which allocation was chosen. The values
were constructed so that there was such a minimum separation, about 500 francs

(experimental currency) or $2.50-$5.

Elimination of Experimenter Effects. It is desirable to try to eliminate any unintended
consistent bias on the form of train values due to the experimenter. For this reason
the train values were chosen at random by computer, until the four constraints above

were satisfied.
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Figure 3.1: Map of Swedish Rail Network.
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Figure 3.2: The 1T7 Testbed Rail Environment.
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Non-Track Constraints:

Trains A and B may not both be scheduled to run.
Trains C and D may not both be scheduled to run.
Trains E and F may not both be scheduled to run.
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Figure 3.3: Train Schedules for the Three-Track Testbeds.

Non-Track Constraints:

A and B may not both be scheduled.
C and D may not both be scheduled.
E and F may not both be scheduled.

Non-Track Constraints:

H and I may not both be scheduled.
J and K may not both be scheduled.
L and M may not both be scheduled.

Non-Track Constraints:

O and P may not both be scheduled.
Q and R may not both be scheduled.
S and T may not both be scheduled.




Table 3.1: Example Values for Trains

71

AgentId# | A B C D E F G

0 332 232 878 708 746 426 2619
1 946 521 321 241 739 265 2491
2 302 198 307 270 1013 645 1329
3 1699 645 307 206 306 217 509

4 1282 454 1634 1447 341 134 2543
5 801 354 933 465 936 561 2339
6 389 242 387 117 583 348 423

7 320 132 1405 974 528 360 594

8 708 332 309 188 1635 1421 2005
9 372 277 341 138 395 284 1549
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Table 3.2: Train Redemption Values Vj; For Each Period in the 1T7 Testbed

Period 1

Agentid# | A B C D E F G

0 332 232 878 708 746 426 2619
1 946 521 321 241 739 265 2491
2 302 198 307 270 1013 645 1329
3 1699 645 307 206 306 217 509
4 1282 454 1634 1447 341 134 2543
5 801 354 933 465 936 561 2339
6 389 242 387 117 583 348 423
7 320 132 1405 974 528 360 594
8 708 332 309 188 1635 1421 2005
9 372 277 341 138 395 284 1549
Period 2

Agentid# | A B C D E F G

0 368 133 683 346 320 108 1604
| 1124 980 319 269 340 291 93

2 303 219 335 168 1359 641 373
3 305 171 371 149 524 177 466
4 403 325 463 237 475 382 124
5 692 487 320 267 1027 515 1625
6 405 315 370 194 375 284 570
7 413 311 417 343 430 377 531
8 558 340 354 270 577 224 304
9 362 154 320 96 312 206 1710
Period 3

Agentid# | A B C D E F G

0 425 365 360 116 500 310 598
1 319 241 337 263 463 194 1843
2 528 382 350 117 { 306 206 1570
3 1858 615 840 662 384 264 412
4 456 376 1227 964 315 105 206
5 660 405 342 217 328 169 1336
6 413 227 314 248 368 257 382
7 448 290 371 274 943 774 1387
8 312 267 1025 657 482 341 247
9 300 109 451 244 309 257 1731
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Period 4
| Agentid# | A B C D E F G

0 1020 410 788 594 356 187 48

1 883 553 1193 381 537 310 392
2 516 334 768 385 309 106 1533
3 362 147 446 151 455 249 1401
4 496 348 303 128 1300 430 918
5 334 258 312 228 300 174 1386
6 516 222 386 139 1067 812 2057
7 366 157 309 245 652 290 607
8 319 158 597 499 306 247 1135
9 1371 1105 615 439 410 277 130
Period 5

Agentid# | A B C D E F G

0 680 501 347 121 318 283 1589
1 645 302 302 121 {1 340 299 606
2 341 189 699 518 363 153 1636
3 365 151 599 193 873 557 1039
4 650 246 505 255 576 300 1395
5 2108 700 384 263 321 175 1616
6 436 349 726 235 580 356 1999
7 568 438 1162 873 369 246 34

8 301 103 465 194 570 281 1295
9 648 527 760 634 315 267 1470
Period 6

Agentid# | A B C D E F G

0 438 342 353 176 1005 603 514
1 565 398 419 151 405 141 114
2 788 459 675 334 514 360 67

3 300 219 462 179 389 305 214
4 305 111 671 327 342 218 143
5 374 294 669 272 785 471 864
6 527 360 385 218 500 245 1340
7 309 174 347 124 690 243 956
8 408 340 325 231 342 227 645
9 353 210 1341 749 645 397 724
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Period 7

Agentid# | A B C D E F G

0 1444 581 308 174 452 270 401

1 480 288 337 224 838 554 54

2 1685 550 648 292 509 418 41

3 635 558 301 127 473 283 710
4 305 220 1071 931 486 266 1260
5 971 394 538 256 335 218 698
6 740 614 415 319 519 301 25

7 835 447 315 127 361 229 331
8 540 341 307 144 517 211 174
9 325 198 316 107 557 169 1133
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Table 3.3: Redemption Values for Period 1, Three-track Testbed Environments

Project Highest Redemption Id # | Redemption values equal to those in
Value 1T7 environment
Train Period
A 1699 3 A 1
B 645 3 B 1
C 1634 4 C 1
D 1447 4 D 1
E 1635 8 E 1
F 1421 8 F 1
G 2619 0 G 1
H 1124 1 A 2
I 980 1 B 2
J 683 0 C 2
K 346 0 D 2
L 1359 2 E 2
M 641 2 F 2
N 1710 9 G 2
8] 1858 3 A 3
P 615 3 B 3
Q 1227 4 C 3
R 964 4 D 3
S 943 7 E 3
T 774 7 F 3
U 1843 1 G 3
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Table 3.4: Redemption Values for Period 2, Three-track Testbed Environments

Project Highest Redemption Id# | Redemption values equal to those in
Value 1T7 environment
Train Period
A 1371 9 A 4
B 1105 9 B 4
C 1193 1 C 4
D 594 0 D 4
E 1300 4 E 4
F- 812 6 F 4
G 2057 6 G 4
H 2108 5 A 5
I 700 5 B 5
J 1162 7 C 5
K 873 7 D 5
L 873 3 E 5
M 557 3 F 5
N 1999 6 G 5
0 788 2 A 6
P 459 2 B 6
Q 1341 9 C 6
R 749 9 D 6
S 1005 0 E 6
T 603 0 F 6
U 1340 6 G 6
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Table 3.5: Redemption Values for Period 3, Three-Track Testbed Environments

Project Highest Redemption Id # | Redemption values equal to those in
Value 1T7 environment
Train Period
A 1685 2 A 7
B 614 6 B 7
C 1071 4 C 7
D 931 4 D 7
E 838 1 E 7
F 554 1 F 7
G 1260 4 G 7
H 1858 3 A 3
I 615 3 B 3
J 1227 4 C 3
K 964 4 D 3
L 943 7 E 3
M 774 7 F 3
N 1843 1 G 3
0 1371 9 A 4
P 1105 9 B 4
Q 1193 1 C 4
R 594 0 D 4
S 1300 4 E 4
T 812 6 F 4
U 2057 6 G 4
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CHAPTER 4. Characterizing Feasible Allocations of Trains: The Binary
Conflict Property

Before mechanisms for allocation can be discussed, a representation of the set of
feasible schedules S for a railroad network (F , .S) is necessary. In particular .S or a
simple function that will provide it is needed for all the experimental testbeds. A
specification for the resource rights policy (A, I's , I's ) may also prove helpful in

simplifying the construction of an allocation mechanism.

The chapter is organized as follows. Section 4.1 examines two simple choices for a
resource rights policy, and makes a decision regarding what rescurce rights policy
will be chosen for the research. Section 4.2 examines a special property of the set of
feasible schedules of the Chapter 3 testbeds. This property will be used to
characterize the feasible set in the chapters that follow. Section 4.3 further examines

the properties of binary conflicts, via an examination of a related graph.

4.1 Choosing a Resource Rights Policy

Consider two simple choices of a resource rights policy. Resources could be
specified as either the right to run entire trains or the right to use specific slots of
track-time. Setting up the set of resources in the latter manner will result in a large

number of resources. Strong complements and other undesirable properties will be
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present, as shown in examples of Chapter 3. In addition, Banks et al. (1989) consider

éxactly such a specification for allocating “uncertain and unresponsive” resources on
NASA missions. They resolve many of the difficulties involving strong complements
by allowing all-or-nothing bids contingent on receiving an entire bundle of resources.
Such an approach has an immediate interpretation in terms of trains: one defines a
resource for the use of each location X on the track at each time T, so that‘A=X®T.
Resources would also have to be defined so that non-track constraints could be
satisfied. Bids would involve agents specifying a willingness to pay for a specific all-
or-none package of resources. As this study is not an attempt to duplicate their work,
a somewhat different approach will be taken: a resource will be the right torun a
given train on the tracks, so that A=F. The major effects of this choice of resources

upon the definitions of section 2.2 are considered below.

Definition. A direct resource rights policy (A, I's , I's ) for a railroad network (F , .S)

satisfies:
A=F,
Te(A)=A", VA'cA (=F)

Is=S

Proposition 4.1. If any subset of a feasible schedule is also a feasible schedule, then
for a direct resource rights policy on a railroad network, the physical compatibility

constraints are implied by the budget constraints
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Proof. It will be shown that budget constraint (BS) and (B2) implies physical

compatibility constraint (P1), and budget constraints (BS), (B6) , (B3) and (B 1) imply
physical compatibility constraint (P2).
Starting with budget constraint (B5)
F; cTs(A), and since in a direct resource rights policy, I's(A’) = A’, then
F; c A;. This implies ( F;n Fy ) < ( Ajn Ay), but budget cbnstraint (B2)
states
B2)Vjkel,jzk=> AN A=0D
which implies Vj,k € I, j#k = F;n F, = @,

This is physical compatibility constraint (P1).

Starting from budget constraint (B5) and F; c A;, and applying it to
(B6) Fs = Ujer Fi , yields Fs  Ujer A;.

But (B3) and (B1) say that Ujer Aj=Ase T, so

Fsc Ase T5s.

But in a direct resource rights policy I's= .S, so if .S has the additional
property that

F'scFs,Fse S F'se S

then physical compatibility constraint

(P2) (Uicr Fi ) € S is satisfied o
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Proposition 4.1 implies, under suitable assumptions, a direct resource rights policy

will allow the search for a resource allocation mechanism to be confined to those that
satisfy budget constraints. It is unnecessary to consider mechanisms that take further

steps to insure physical compatibility.

The assumption that all subsets of feasible schedules are themselves feasible
schedules is equivalent to the idea that infeasibility is the result of a conflict between
uses or trains. In the case of trains, it would appear that collisions and other types of
infeasibilities can be described by a set of two-train, or binary conflicts. This idea is

more fully investigated in the next section.

4.2 Conflicts and The Binary Conflict Environment

If the basic allocational unit is the right to run a train, the form of the
constraints on the feasible set of allocations are closest to the constraints considered
in the airport slots problem of Rassenti, Smith, and Bulfin (1982). The constraints
are integer programming constraints indicating that certain combinations of (train
schedules, airplane schedules) are infeasible. Both the rail allocation and the airport
slots problem have a conflict property : an allocation is infeasible if and only if it
contains a conflict. The feasible sets for the specific testbed environments developed
in Chapter 2 are shown to have a binary conflict property which will be exploited in

the design of the mechanism and the experiments.
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The binary conflict property is that infeasibility of a schedule necessarily

involves a conflict between two trains. If many trains collide, then two trains also
collide and two is unacceptable. If many trains travel too close, then two trains travel
too close and two is unacceptable. Thus any conflict implies that a pair is in conflict.
This is an assumption which is known to be true only in the testbed environments.
Whether it is true in the field is a question for railroad engineers, but one suspects that
suitable specifications of the sets of times and locations could cause all conflicts to be

of the binary type. Much depends on the exact form that the non-track constraints

take.

A Binary Conflicts Technical Environment as applied to a rail allocation
problem is defined as a quintuplet BCTE(T, X, I, F, C). Tisaset of times
necessary to describe the paths of trains. X is the system of tracks, the set of
locations for trains. I is the set of individual agents that would like to have access to
the tracks. F is a set of all trains that might operate on X, i.e., Fc{ f(t): T > X }.

C is a set of binary conflicts, a subset of F ® F, that specifies pairs of trains that are
incompatible. Incompatibility means that the two trains would collide if run or that

if the two trains run then some other safety standard would be violated. For example,

if y=fA(t) = fB(t) then the two trains A and B would collide at location y at time t. If
all trains are compatible, then C is the empty set. Symmetry would be a natural

property of C .
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As shown in the following definition, only the sets I, F and C from the binary

conflict technical environment BCTE( T, X, I, F, C) are necessary to determine the

set of feasible schedules.

Definition: In the case of binary conflicts , the binary conflicts feasible set of
schedules Sec(F,C) is the set of train schedules with no conflicts. That is,
SdFO)={FPcF:(FPOF) m C = }. The binary conflicts feasible allocations
See(ILF,C) are the allocations under the direct resource rights policy that satisfy the

budget constraints defined in Chapter 2, using (F, Sz(F,C) ) as the definition of the

railroad network.

4.3 Properties of Binary Conflict Technical Environments: The Binary
Conflict Graph

Because of the nonconvexities, the concept of a binary conflict environment and the
use of the graph theoretic formulations will facilitate the computation of solutions to
the problems that will exist. A binary conflict graph contains, in graphical form,
the essential features of a binary conflict environment necessary for determining
feasibility. Each train in F is represented as a point in the graph and each conflict in
C is represented as a line that connects the pair of points representing the conflicting

pair of trains. The only significant parts of the graph are the points and whether given

points are connected by lines.
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The physical arrangement of points on the graph or the fact that lines cross

each other is coincidental and does not convey any additional information. It is
important to realize that the graph simply conveys information about a binary conflict
environment. It is not an extension to the environment. Any general statement about
properties of the graphs is actually a statement about binary conflict environments in
general, although it may be easier to see the logic of the statements by looking at the

graphs.

Figures 6 , 7 and 8 show the binary conflict graph for the 1T7, 3ST7 and 3NST?7
testbeds respectively. Some useful properties of these graphs for the different

testbeds become immediately apparent.

One of the most useful properties of the binary conflict graphs is that the exclusion or
inclusion of a train from a schedule immediately results in another binary conflict
graph. For instance, if train A is included in a schedule in the 1T7 testbed, then we
know that all the trains that conflict with A are infeasible: namely trains B and C.
Trains B and C and the lines representing conflicts due to B énd C can then be

removed from the binary conflict graph resulting in a reduced allocation problem.

Notice in all the testbeds, schedules of trains A and E are interdependent in the
following sense. Suppose that the current schedule has trains {B,C,E} running, but

because of problems train A must be substituted for train B. If train A is run instead
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of train B, then train C can not be run and train D could be run instead. Running train

D, however, would preclude train E. Thus a decision to run train A can affect the
decision of whether or not to run train E even though trains A and E do not conflict
directly. Schedule interdependency is only possible if the trains share some mutual
conflicts, that is indicated in the conflict graph in the figures by a path of lines from
train A to train E. This suggests a general method for using the binary conflict graph

to determine whether schedules are interdependent:

Test for Schedule Interdependence: In order for the scheduling of train x to affect the
feasibility of scheduling another train y, it is necessary and sufficient that, in the
conflict graph, either (i) train x and y are directly connected by a line; or (ii) there is a

path of lines in the conflict graph going from x, through other points, and ending at y.

If schedules are not interdependent, then they are independent. In the binary conflict
graph this is indicated by a lack of line paths. Because the tracks in the 3ST7 testbed
are defined to be geographically isolated, scheduling of trains on one track is
independent from scheduling on another track. In particular, scheduling of trains
{A....,.G}, { H,...,.N} and {O,...,U} are mutually independent. This is indicated in the
binary conflict graph by the fact that there these groups of trains are path
disconnected. There is no line path from a point in {A,...,G} through any other points
in the conflict graph to a point in {H,...,N} or {O,...,U}. This observation suggests a

test for schedule independence based on conflict graphs:
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Test for Schedule Independence: If X; and X are subsets of the conflict graph and
there is no path of lines in the conflict graph connecting any point in X; with any
point in X5 then the feasibility of scheduling trains in X is completely independent of

the trains scheduled in X, and vice-versa.

Information concerning whether two groups of trains can be scheduled independently
without consideration of each other is an important piece of informationrfor an
allocation mechanism, as is being able to easily construct a reduced allocation
problem when decisions regarding a few trains have been made. The binary conflict
graphs doubtlessly have other properties that can aid in the design of optimization

processes for markets or other institutions.
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Figure 4.1: Binary Conflict Graph for the 1T7 Testbed Environment




88
Figure 4.2: Binary Conflict Graph for the 3ST7 Testbed Environment
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Figure 4.3: Binary Conflict Diagram for the 3NST7 Testbed Environment
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CHAPTER 5. The Binary Conflicts Ascending Price (BICAP) Mechanism

While the BICAP auction was not developed through the application of mechanism
theory, the language of that theory is useful for describing the auction. Consequently,
much of that language is used in this chapter. A mechanism involves three essential
rough elements: a set of feasible outcome allocations, a message space through which
agents interact with each other and with the allocation authority, and an algorithm
specifying when messages are sent and received by the mechanism and how they
eventually determine an outcome from the feasible set of allocations. In Chapter 4 the
feasible set of allocations for rail allocation was shown to be derived from binary
conflicts. The rail allocation mechanism now presented in this chapter, the Binary
Conflicts Ascending Price Mechanism [BICAP], essentially implements an auction-

like process in an environment with binary conflicts.

In the BICAP mechanism each agent submits bids for trains in a continuous time
auction. The highest bid on a train prevails as the potential winner and cancels all
lower bids for the train. At every point in time the poteﬁtial allocation is a set of bids
that has no conflict and has the maximum sum of bids of any feasible allocation. The
process of bidding continues until some pre-specified time has elapsed with no bids

taking place. Formally the mechanism is defined as an iterative mechanism (see

Chapter 2).
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5.1 Formal Specification of the Binary Conflict Ascending Price
Mechanism

Using the notation developed in Chapter 2, the essential elements of the Binary

Conflict Ascending Price (BICAP) mechanism are as follows:

1. The message space M consists of:
the bid messages (b,f);
be R is an amount offered by agent i€ on the train route fe F.
a message from nature indicating the elapse of time
2. A mechanism state s=(1,B,H,P [B,H] ) consists of
7: the time remaining in the auction
B : a vector of highest bid prices; BfeR" is the high bid for train f € F.
H : a vector of high bidders; Hg e 1is the high bidder for train f € F.

P*[B,H] : the potential allocation as a function of B and H

The set S of mechanism states is the set of all s.

3. The initial mechanism state so=(T=To,B=0,H=0, P *[B,H]=null allocation).
At the start of the mechanism:
The timer 7 is set to T seconds.

The high bid prices B and bidders H are set to 0.
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The potential allocation is the null allocation that all agents receive nothing

and pay nothing.

4. The set of terminal mechanism states S* is the subset of S obtained by making the

restriction 1=0, i.e.,
§* ={s*e§: 1=0}.
The mechanism terminates as soon as the mechanism timer reaches O seconds.

BICAP is a soft terminating mechanism as defined in Chapter 2.

5. Throughout the auction the binary conflict technical environment (F,C) and the
mechanism state variables 1, B, H, and P* [B,H] are all common knowledge. The

agent feedback information functions are defined so that the mechanism state is

publicly broadcast whenever it changes.

6. At aterminal state s*e S$* , the mechanism outcome allocation rule is

O*(s*) = P *[B,H].
This is equivalent to saying that when the mechanism terminates, the potential

allocation becomes the actual allocation.

7. The mechanism transition rule T:S®M—S that describes how the mechanism state

evolves in response to messages is specified as follows:

If m= bid message (b,f); then:
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If b <B¢: T(s,;m)=s [ bids lower than the current bids have no effect ]

If b > B¢: s™"=T(s,m), where
components of s™" are denoted by the “new” superscript:
™V =1 [ the timer is reset ]
B™=b [ the bid becomes the new train high bid ]
H™¢ = [ the bidder becomes the new train high bidder ]
P *[B,H] must be recomputed from B"" and H™" .

If m = time message from nature, then T =1 - 1.

Determination of £ *[B,H] is by Centralized®® Optimization . The mechanism
involves centralized optimization if £ *[B,H] corresponds to a feasible allocation that
maximizes the sum of stated willingness to pay Bs.

Thatis, P *[B,H] = (as; a1,..,2,) € FdI, F, C) ;3= (A;,t)e 2" @R

(i) As maximizes 2 B,

feAs

(i) ts= Y B,

feAg
(iii) Vjel, Aj=As " {fe F : Hi=j }

(iv) Vjel, ty=-Y B,

feA,

¥ The term centralized here refers to the way in which optimization is performed. In Centralized

Optimization some central authority in charge of the market must bear the cost of calculating the
potential allocations given the current bids and communicating this information to the buyers. Because
the scheduling problem is NP-complete, this cost could increase exponentially with the number of
trains. Some type of decentralized optimization or approximation scheme for the potential allocations

might be an appropriate topic for future research should computational cost issues be considered a
serious problem.
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In summary, the mechanism works as a set of simultaneous ascending auctions. Each

auction is for a different train fe F, and so there could be as many auctions as there
are possible trains in F. A bid is submitted in real time, and with each bid the
mechanism determines if the new bid is higher than the old bid for the train on which
the new bid was submitted. Only the highest bids are kept as information by the
mechanism. After the high bid changes on any train, the mechanism then determines
the set of trains that maximize the total value of the track sale given the existing bids.
This set of bids is announced by the mechanism as the potential allocation. The
potential allocation becomes the outcome if no more bids arrive during some pre-

specified period of time.

5.2 Models of Performance and Agent Behavior

In this section, some behavioral models of the BICAP mechanism will be constructed
and examined. Performance of the system will be evaluated primarily in terms of its
capacity to produce an efficient allocation. The modeling will be used as a check for
design consistency. The question is whether the mechanism is operating according to
the principles that were the underpinning of the design. Since there is no fully
worked out theory about the behavior of such complex mechanisms in complex
environments, an approach less ambitious than a general and rigorously tested theory
must be used. The questions that the models will help answer are does it work and

does it work for the right reasons. If it works but for the wrong reasons, then one
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should be very cautious about whether or not it might work in other environments in

which it had not been tested, especially environments more complex than the simple

laboratory testbeds.

The primary evaluative tool will be the efficiency of the final allocation as defined in
section 2.4, The system will operate at 100% efficiency if the sum of the private
values of operators in the final allocation is the maximum possible over the feasible
possibilities. Notice that under the conditions of the environment this is not a simple
task. The Values of agents are known only to themselves and they are never asked to
communicate these values to anyone. Thus the process must behave as if it knew the
values and as if it could solve the related constrained maximization problem even

though the values are never communicated as such.

The modeling effort developed in the following paragraphs rests upon the NE1
concept developed in section 2.6 together with conditions for which the mechanism
will converge to suéh an equilibrium. There are many such equilibria, not all of
which are efficient. A testable conjecture is developed about how the mechanism,
might, nonetheless, still reach the efficient equilibria. Finally, implications for
revelation of values and closing prices are discussed. As will be discussed in the
experimental results of the next chapter, much of the behavior of the mechanism is

captured by these simple models.



96
The modeling effort begins by applying the Nash-1 Stationary equilibrium concept to

the BICAP mechanism. The definitions in section 2.6 are for abstract classes of
allocation mechanisms, and need to be applied to the BICAP mechanism in particular.
Recall that in these models, agent behavior is a function only of the environment
(through agent’s private values V; ) and the current state F(T,B,H , P *[B,H]) of the
mechanism™. The bids in the BICAP mechanism are classified by similar (but not
identical) criteria to those developed in Section 2.6 for messages. The strong pivotal,
strong neutral, etc., bid message categories for the BICAP mechanism are given in
the table below. These bid message categories play a central role in defining the
Nash-1 stationary equilibria (NE1) of BICAP along with various associated

behavioral assumptions and processes.

BICAP Bid Classifications. Bids (b*.f*); are classified according to their effect on the

potential allocation to agent i:

(1) A null bid satisfies b* < Bg . A null bid is a bid for a train that is lower
than the current bid for that train. Null bids are ignored by the BICAP mechanism.

(i) A strong pivotal bid satisfies By < b* < Vi and Ti(T((b*,f*),8)) > Ti(s).
It results in a change in the potential allocation and an increase in agent i’s potential

profit.

(iii) A strong neutral bid satisfies B+ < b* < Vi and

% In particular it is important to remind the reader that the models of behavior do not allow strategies

to be conditioned on full histories of the mechanism or beliefs about others strategies or train value
vectors. This does preclude many types of strategic behavior. Nevertheless the analysis will be
confined to this limited set for purposes of definitions and modeling.
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o i(T((®*,F*%),8)) = TT5i(s). It leaves the potential allocation and agent i’s profit

unchanged, but does replace the current bid for the train f* and could, possibly,
increase the agent’s potential profit if the bid were to become included in the potential
allocation at a later time.

(iv) A dominated bid satisfies either b* > Vs or Tt (T((b*,F),8)) < TT© i(s).
It is a bid that either lowers agent i’s potential profit or is capable of doing so should

the potential allocation change so that the bid is accepted.

The definition of NE1 equilibria in Section 2.6 involves the absence of pivotal
mechanism messages that are profitable for any agent. Using the BICAP bidding
classification above, the abstract NE1 definition can be restated for BICAP as

follows:

Nash-1 Stationary Equilibria. NE] states of the BICAP mechanism are those for

which no pivotal bids exist for any agent.

Proposition 5.1.  In the testbed environment NE1 exist.

Proof: The allocation and bids resulting from every agent bidding its value Vj for
each train f is trivially NE1. Because of the first price rule and the fact that bids must
be increasing, no opportunity for profit exists, and the result is therefore NE1.

Therefore, NE1 outcomes always exist. e
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Corollary 5.1.1  The efficient outcome, the one that places the trains in the hands of

agents with the highest values, can be supported as a NE1.
Proof: The proof of 5.1 describes an NE1 that would yield the optimal allocation,
because the bid maximizing potential allocation is trivially the optimal allocation

when the bids are equal to the values V. o

Two types of “gradient processes” will be introduced, the pivotal process and the
strong neutral process, along with underlying behavioral assumptions that support
them. The idea is that if agents follow a type of “gradient method” that involves
making pivotal bids when they exist, then the stopping point of BICAP will be an
NE1 defined above. The idea is not necessarily that agents optimize over all pivotal
bids, but simply that agents select some pivotal bid to avoid ending the mechanism,
and that agents avoid submitting dominated bids as either a strategy or a mistake. The

following paragraphs will make the ideas clear.

The Strong Pivotal Offer Hypothesis (SPOH). An agent is said to satisfy the strong

pivotal offer hypothesis if the agent never submits dominated bids and the agent
always submits some pivotal bid available to him, rather than let the BICAP auction

end.

The Exhaustive Offer Hypothesis (EOH). An agent is said to satisfy the exhaustive

offer hypothesis if the agent never submits dominated bids and the agent always
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submits some strong pivotal or strong neutral bid available to him, rather than let the

BICAP auction end.

Note that an agent satisfying the EOH also satisfies the SPOH, because the behavioral
hypothesis in both cases requires that the agent not allow the auction to end when a
pivotal bid is available. Dynamic processes are assembled below by assuming that

all agents in the mechanism bid in according to the SPOH or EOH.

Definition. Group agent behavior under BICAP is said to correspond to a pivotal

process if all agents satisfy the Pivotal Offer Hypothesis.

Definition. Group agent behavior under BICAP is said to correspond to a strong

neutral process if all agents satisfy the Exhaustive Offer Hypothesis.

The hypotheses suggests one way in which NE1 outcomes might occur in practice.
An absence of dominated bids will guarantee that the process terminates. If
individuals do not pass up the opportunity to make pivotal bids then the process will
terminate at a NE1. Thus, if the number of pivotal and strong neutral bids vastly
outweighs the number of dominated bids, then it is reasonable to expect that the

result will be at or close to an NE1 outcome.
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However, to get convergence to a NE1, BICAP must stop. Neither the SPOH or EOH

guarantee this. For example, if two agents had a value of 100 for an item, an infinite
sequence of bids such as 99.9, 99.99, 99.999, ... by the two agents would satisfy
SPOH but not result in a stopping point for the mechanism. One way to obtain a
stopping point is to require finiteness and discreteness in the train values and the
BICAP bids. The discreteness requirement below places a constraint upon both the
bids in the BICAP process and on the types of private value environments that must

be satisfied for the results that follow to be true.

Discreteness Requirement. There is a minimum unit with which payments and values
can be measured. The train value matrix V is finite and integer valued with respect to
this unit of measurement. Bids in the BICAP mechanism are required to be integer

valued and finite with respect to this unit of value.

Proposition 5.2. If the discreteness requirement is satisfied and BICAP follows a

pivotal process, then the outcome will be NE1.
Proof. First it must be shown that (i) an outcome exists, then it must be shown that
(ii) the outcome is NE1.

(i) For an outcome to exist the mechanism must stop at some set of bids. Only
non-null bids allow the auction to continue. Under the SPOH agents do not make
dominated bids. Because of the discreteness requirement, there are only a finite

number of non-dominated, non-null bids possible. In particular, if redemption values
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for k trains are bounded by v, then a sequence of no more than kv non-dominated,

non-null bids can occur. Therefore, the auction will stop at some set of bids and so an
outcome exists.

(i1) Whenever a pivotal bid exists for some agent, the SPOH implies that the
agent will submit the pivotal bid and cause the auction to continue. Therefore when
the auction ends, the SPOH implies the absence of pivotal bids for all agents. Recall
that when no pivotal bids exist for any agent, that is the definition of an NE1
outcome.

Therefore, given discreteness and agents following a pivotal process, the outcome

exists and is NE1. o

Although Proposition 5.2 shows how NE1 outcomes might be obtained, convergence
to an allocation supported by an NE1 is not necessarily satisfactory performance. For
example, in the experimental testbeds, a high bid on train “G” could represent an
NE! outcome even if “G” were not in the optimal allocation. Since “G” conflicts
with many other trains, it could be the case that a single agent acting on his own
could not profitably bid high enough to change the potential allocation. In such a
case, there exists a coalition of agents who could bid on the different trains that
conflict with “G” and change the potential allocation, even though no agent
individually can affect the outcome in their favor. Perhaps some of the agents might

bid cooperatively in these circumstances, thereby avoiding suboptimal NE1 outcomes.
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Rather than allowing the market to close when an agent can not make a pivotal bid,

the agent might submit a strong neutral bid, precommitting himself to a higher level
of potential payment on some unallocated train. This might occur as a type of

negotiation or signaling with the other agents or it might be a reflex reaction to the

current bids.

The strong neutral process captures some of this intuition about how inefficient
equilibria might be avoided.. The idea is that if all agents submit all available strong
neutral bids, then this will tend to move the mechanism state away from some of the

suboptimal NE1 outcomes. This idea is made formal by Proposition 5.3.

Proposition 5.3. If the discreteness requirement is satisfied and BICAP follows a
strong neutral process then the outcome will be a 100% efficient, optimal NE1 if and
only if strong neutral bids can disrupt every inefficient NE1 that can be reached with
undominated bids.

Proof. A strong neutral process is also a pivotal process by definition. Therefore,
from Proposition 5.2 the BICAP outcome must be a NE1. First sufficiency will be
shown and then necessity. The strong neutral process méy only stop when all pivotal
and strong neutral bids have been submitted. If whenever an inefficient NE1 is
reached there exists a set of strong neutral that will change the BICAP outcome, then
the process can not stop at an inefficient NE. Since the process must stop at some

NEI1 (by Proposition 5.2), it must stop at the 100% efficient NE1. This shows that the
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condition above is sufficient to obtain a 100% efficient NE1. The condition is

necessary because the strong neutral process could otherwise reach an inefficient
NEland then stop, if some strong neutral bids available at the NE1 were not capable

of disrupting it. e

The conditions of Proposition 5.3 may or may not be met. If the conditions are not
met, the likelihood that the BICAP mechanism will stop at an efficient or an
inefficient NE1 is not known, but can be considered as an empirical question to be
answered by the data. For now it is possible to briefly explore some conditions under
which the conditions of Proposition 5.3 are met. Examples exist where the conditions

are not met’’.

To meet the conditions of Proposition 5.3 it is necessary to identify a new sub-class of
bids, path-undominated bids, that includes all the pivotal bids but only some of the
strong-neutral bids. Since the strong neutral process can not end with pivotal or
strong-neutral bids unsubmitted it can not end with path-undominated bids not

submitted. The path-undominated bids will be used in Proposition 5.4 to identify

3 Consider the following situation: the trains in the 1T7 testbed have current bids of A-400, B-400,

C-350, D-450, E-100, and F-450. Suppose agent 1 has the high redemption values on trains A and E of
1000 on each and AE is the optimal allocation. To secure the allocation A, agent 1 need only bid 401
on A. To secure the allocation E, agent 1 need only bid 451 on E. But to obtain AE agent 1 must bid at
least 751 for A and 901 for E. A sequence of pivotal bids that secures allocation AE is for agent 1 to
bid 751 for A and then to bid 901 for E. However, consider instead what happens if agent 1 bids 401
for A. Now if the agent bids either 452 for E or 901 for E, he makes a dominated bid. If the agent tries
to increase the bid on A to 901, that is also a dominated bid. In this situations BICAP could be stuck at
an inefficient NE1 outcome and strong neutral or pivotal bids will not necessarily remedy the situation.
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when a set of bids that are simultaneously strong-neutral could be submitted as a

sequence3 2 of strong-neutral and pivotal bids.

Definition. A path from s to s’ is a sequence of states and bids
{ (s(t) ; (B(),F(t))jp ) : t=1,...,T } such that:

@ s(1)=T(s,(b(1), 1)1y

() s =T(s(t-1),0b0.f(1);p), 1 <t<T

(i) s =s(T)

Definition. A bid (b,f); is path-dominated at a BICAP state s if there exists a path
from the state s to any state s’ where:
(i) the potential allocations at s and s’ are the same, i.e. /=P’

(>ii) (b,f); is a dominated bid at state s’.

Definition. A bid is path-undominated at state s if it is not path-dominated at s.

Proposition 5.4. At some BICAP state s, let £ be a set of path-undominated bids.

Then any ordered sequence of bids £ = { (by f1)i1 , ..., (br,f)ik } < £, where the

32 This issue can be motivated with a simple example. Suppose at some instant it is a strong neutral bid
for agent 1 to bid 1000 on A and agent 2 to bid 1000 on E, because either of these bids would not affect
the potential allocation alone. Suppose, however, the joint effect of these two bids is to lower potential

profits for both agents by changing the potential allocation away from an allocation that is very

profitable for them by changing the potential allocation from something else to AE. So, as soon as one

bid is submitted, the other bid becomes a dominated bid, not a strong neutral bid, for the remaining
agent. From this example, one can see that simultaneous sets of strong neutral bids are sometimes not
implementable as sequences of strong neutral bids.
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last bid and only the last bid (bk,fx)ik € £°° changes the potential allocation has the

property that each bid 1,...,K-1 is either null or strong neutral in the order it is
submitted and bid K is either pivotal or strong neutral when it is submitted.

Proof. Since it is assumed that the bids 1,...,.K-1 in the sequence £ do not change
the potential allocation, and it is known that, that the bids are not dominated bids,
then the bids must be strong neutral bids or null bids. Before bid K is submitted the
potential allocation is the same as when bid 1 is submitted, so since bid K is path-
undominated it can not be a dominated bid. Since bid K changes the allocation, it is

not a null bid. Therefore bid K is either a pivotal bid or a strong neutral bid. e

Lemma 5.5. Let BICAP be at a state s with bids By, potential allocation /2, and

potential profits 7; for each agent. Vi is the private value agent i receives for running

train f. Then

ZBf +2ni =v(AY)

feAg iel

Proof.

From the definition of allocation value in Section 2.4,

WA =33V,

iel feA;
From the definition of profit (also in Section 2.4),

T, =IL(PY)= Z(V,f - By)

feA;

Soym, =3 2V -B)=v(A¥)-, ZBf

iel iel feA; iel feA;
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The last double sum is the sum of the bids on trains allocated to a certain

agent i, summed over all agents i. But since a train may be allocated to at most one

agent, this is just the sum of bids on trains that are allocated to someone, the sum

ZBf . Therefore, Zni =0l V) - ZB , O , rearranging terms,

FeAs iel feAs

2B 21, =0 V)

feAs iel

Proposition 5.6. For any pivotal process let a* represent an inefficient allocation that

can be supported as a NE1 of the process. Suppose at allocation a*, the bids satisfy
Bt > V(z)f , where V(2)f is the 2nd highest social value Vj for the train f among the
agents iel. If the optimal allocation provides each agent with the rights to at most one
train route® in F , then a set of path-undominated bids & exist for the agents that
change the potential allocation away from a*.
Proof.

Let a*=( Aj* , t;* ) be the allocation at state s*.

Suppose at this NE1 state, & consists of all the non-null bids in the collection

{(b=Vi-m", Di:iel, feF- A ,n = 3V, —B, * }. Note that " is the

feA*

potential profit for agent i at the potential allocation a*. The set of such constant-

profit bids has the following properties:

B TItis not very difficult to apply the scheduling independence concepts from Chapter 4 to expand the

applicability of the proposition to include cases where each agent has the rights to at most one train
route from each disconnected subgraph of the binary conflict graph. This is not done here because it
would complicate the notation of the proof and is not essential at this point.
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@) The bids are path-undominated bid at B¢*. As long as the allocation

is a*, the bids, if accepted, always maintain the profits that existed under allocation a*
at bids B¢*.

(i)  To show that the set of bids 4 causes the allocation to change from a*,
it is necessary and sufficient to show that after the bids in £ are submitted, a different
set of trains, Ag’, has a higher sum of bids than the set of train Ag* that are allocated at
a*. Create any path starting from s*, using all the bids in £. Let the endpoint of this

path be the state s**, and the bids at s** be Bf**.

In a pivotal process no one submits a dominated bid, so by definition each agent can
only bid as high as their redemption value. Therefore, for each train fe F the high

bidders Hf* at bids B¢* and the high bidders H¢** at bids B¢** must be the same, the

agent with the highest social value for the train f.

It can now be shown that the set of trains ASO allocated at the optimal allocation a®
gives a higher sum of bids at B¢** than the set of trains Ag*, and therefore the
allocation must change away from a*. To show this, it will be posed as a logical

question (5.5.1) and the proof will proceed by identifying an equivalent inequality that

is true.

Is (2@**){2@**} ? (5.5.1)

feAs® feAs*
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To begin, it is useful to establish that 4 does not contain bids on the trains in Ag .

Because B* > V(z)f , there do not exist agents i€l and trains fe F for which fe As* .
fe A;*, and Vi > Bs*. Note that these conditions are necessary (but not sufficient)
conditions for a bid to be in £, so there are no bids on any of the trains in Ags" in 4.

Therefore, Be**=B¢* VicAg (5.5.2).

Applying (5.5.2) to (5.5.1) yields the condition:

(5.5.1) true if and only if (5.5.3) : ( Y B, * *J > [ Y B, *) (5.5.3)

feag® feAg*

Apply Lemma 5.5 to both sums in the inequality in of 5.5.3. Let 7;* be the profits at
the allocation a* with bids B¢*, and let ni**o be the profits at the allocation a° with

bids B¢**. Then, (5.5.1) true if and only if

(5.5.4):0(a% V)= Y1, **° >v@*V)- Y, * (5.54)

iel iel

Since v(a?;V) > v(a*;¥) by assumption, a sufficient condition for (5.5.4) to be true
can be found: (5.5.4) true if Viel condition (5.5.5) below is true:

**¥0 < m* (5.5.5).

The proof proceeds by partitioning I into four subsets Ioo,0o 1,I1 0, I1,1 Where (5.5.5)

will then be shown to be true in each subset. Define the four subsets as follows:
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Lo ={iel: A'=0=A°}

(5.5.5) is trivially true V ie Iy, since m**© = m* = 0.
I={iel: A'=@#A°)

In these cases m;* = 0, and this implies that Scontains bids where these
agents in Iy bid their entire social values V. Therefore, m**° =0 Vie Iy, and
(5.5.5) holds here as well.

Lo={iel: A’ #@=A°}
(5.5.5) is trivially true V ie I, , since m**C = 0 < m;*.
Iy ={iel: A"+ @, A° 2 @)

Showing (5.5.5) is true V i€ I ; is somewhat more complicated than
the previous three cases. The easiest way to prove it is to assume that it is not true and
look for a contradiction. Assuming (5.5.5) is false for some i, 3 i € I, ; such that
7**%0 > m*. Now at the optimal allocation it is assumed that each agent is allocated at
most one train. Suppose that for the agent i above, this is the train f. Then for
*+0 > T;* it must be true that the highest bid agent i ever submits on train f satisfies
b < Vis- m*. But this can not be true, since the definition of £ implies that
Bf** 2 Vi - m*. Therefore there is a contradiction and (5.5.5) can not be false for

any ie I, and so (5.5.5) must be true V ie I ;.

Because the union Ing U Ip; Ul 0\l =1, this shows that (5.5.5) is true Viel.

Therefore (5.5.4) is also true, and so (5.5.1) is true. (5.5.1) says that at the bids B¢**,
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the allocation a* no longer gives a maximum sum of bids. Therefore the allocation

will change. o

These theoretical results give empirical predictions for the chapters that follow. They
would predict BICAP to reach efficient NE1 outcomes in the 1T7 and 3ST7 testbeds
but not necessarily in the 3NST7 testbeds. In the 1T7 and 3ST7 testbeds each agent,
at the optimal allocation, receives at most one train in the 1T7 testbed and one train

per independent track in the 3ST7 experiments. In the 3NST7 testbeds agent receive

multiple trains on interdependent tracks at the optimal allocations

Whether the strong neutral process or the pivotal process is more descriptive of the
actual behavior is an empirical question. These questions, along with the question of
overall performance of the mechanism, will be addressed by the experiments of the

next chapter.
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CHAPTER 6. An Experimental Investigation of the BICAP Mechanism

This chapter details the results of laboratory experiments where the mechanism of the
previous section was applied to the environment of 1T7 testbed environment from
Chapter 3. Only the 1T7 testbed seemed appropriate for initial testing. If the
mechanism performed well by generating efficient allocations and doing so for
reasons consistent with the theory of operations of BICAP, then and only then would

tests with the larger testbeds be appropriate.

The results of the experiments confirm that, in fact, a decentralized mechanism can
solve some of the technical aspects of the rail scheduling problem and yield efficient
allocations. In the laboratory experiments, BICAP allocations are 97% efficient on
average. Design consistency appears strong: Outcomes correspond to one-stage
Nash equilibria. Evidence exists that the process of convergence is essentially as
captured by the pivotal process introduced in the previous section. In addition,
inefficient NE1 seem to be avoided because of a high degree of revelation in the bid

prices.

6.1 Methodological Details

The experiment was conducted using the one track testbed scheduling problem and

train values substantially as discussed in Chapter 3. Two additional trains, H and I,
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were added to the testbed that had no conflicts or interaction with the other trains.

.These trains were included both as a control and as a means to provide some of the
agents who could not, because of their redemption values, profitably obtain a train in
A...G an opportunity to obtain train H or I instead. The trains H and I should not have
affected the experimental outcomes for A-G and do not affect the validity of the
testbed in addressing the issues listed in Chapter 3. If anything, they add a control to
the experiment: Because the trains have no conflicts and are always allocated, BICAP
acts like an iterative 1st price auction for these two trains. If BICAP had failed to
produce efficient allocations for trains A through G, then perhaps bidding behavior on

trains H and I could provide clues as to errors that may have occurred.

Although the BICAP mechanism was implemented as defined in Chapter 5, the
formal features of the mechanism in Chapter 5 leave unspecified choices which must
be made to implement the mechanism on a computer network. These choices involve
details in the development of computer software for use by human agents: layout of
keys and screens, the detail of error messages when invalid actions are taken, etc.
Each agent was stationed at a personal computer that was attached to other agents
through a token ring network. Figure 6.1 is a representation of the screen as seen by a
subject. In the experiment the options of value were called projects as opposed to
trains. On the actual screen, different project lines were in different colors to aid in
reading the table. The status column indicates the potential allocation. If a bidder had

a high bid for one or more projects, those bids were tagged on the screen, as is project
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"C" in Figure 6.1. Bids are entered by pressing the key corresponding to the project,

and then entering a value. The bid value and project may be edited, or the bid may be
deleted. A special key (F1) must be pressed to actually send the bid into the
mechanism, at which point it is checked against the high bid. If the new bid beats the
high bid, it is sent to the other screens and becomes binding (if accepted in the final

allocation) until replaced by a higher bid.

When entering bids into the experimental software, subjects had difficulty with
typographical errors. It was easy for subjects to create typographical errors by
forgetting to hit a key that deleted previous input. This tended to cause false large
bids to be entered into the system, such that a subject would lose $10 to $50 if forced
to honor the bid. When such an error occurred, the experimenter reset the
experimental software. The subjects were instructed that the period would start over
and that they should continue using the same incentive value sheet. The possibility
exists that subjects created false typographical errors to delay the mechanism, but
there are no obvious profit opportunities from using such a delay strategy since
incentives are the same when the period is restarted. Only the error free run of each
period was considered valid data. It is possible that there are effects of comfort and
ergonomics, and that different arrangements of command keys and display screens

could result in better performance by allowing the agent to focus better on the task at

hand.



114

A total of three experimental sessions were conducted. Subjects were Caltech
students recruited through an announcement on the campus computer network.
Procedures in each of the three experiments are essentially identical. Each of the
three sessions lasted approximately 2 to 2 1/2 hours and required ten subjects. Each

session consisted of seven periods.

Each subject received common instructions included in Appendix A, as well as an
individual incentive table and common supplies (e.g., scratch paper, pocket
calculator). Because of space, the individual incentive information tables were not
included in Appendix A, but are essentially individual sheets showing each agent their
train redemption values from Table 3.2 of Chapter 3. Each table consisted of 20
pages. Each page consisted of an individual firm's incentives for the routes (projects)

for one period. Only the first 7 pages were actually used.

No mention is made of trains or scheduling in the experimental instructions. The
language of the experiment is "project” for train route, and "combination of projects"
for train schedule. Language was chosen to make the eiperiment independent from
the specific industrial application, in an attempt to eliminate any effects of pre-

conceived notions subjects may have about railroad operations.
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6.2 Experimental Results: Performance

Table 6.1 summarizes the experimental parameters and results simultaneously. Only
the highest and second highest redemption values are thought to be important for
determining prices, allocation and strategic behavior. There are seven different
periods (different redemption value parameters) that were repeated in identical

sequence in three different experiments.

The Table is read as follows. The first row contains for the first period (of all three
experiments) the high redemption value for each of the nine individual routes, the
identification number of the agent that held the high value, and thé optimum system
schedule that is the maximum valued feasible schedule. Reading across the row, the
optimal schedule is {A, D, F, H, I}; and the maximum redemption value for route A
is 1699 held by participant number 3, etc. Row 2 contains the second highest
redemption values. Row 3 shows the actual schedule that resulted in period 1 of
experiment 1 ({A,D,F,H,I} - which was optimal), and it shows, for example, that the
maximum bid for route A was 1300 tendered by participant 3. Rows 4 and 5 show
the period 1 data for experiments 2 and 3 respectively. Row 6 starts the enumeration

of the same data for period 2. The table continues through period 7.

The first result suggests that the mechanism is successful in producing efficient

allocations for the rail allocation problem. Efficiencies are calculated from the table,
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using the standard definition of efficiency from section 2.4: the efficiency is the ratio

of the total of redemption values for agents at the outcome allocation divided by the
maximum possible total value of redemption values. The maximum possible total is

attained at the optimal allocation.

Observation 6.1. The outcome allocations produced by the mechanism are often

100% efficient. Inefficient outcome allocations occasionally occur. Efficiency for the

IT7 testbed routes A-G averaged 97%.

Support. The table directly supports three statements concerning efficiency. (i)
Inefficient outcomes are rare. In 18 out of 21 experimental trials, the mechanism
resulted in the optimal allocation. Only 3 of the 21 trials, only period 2-experiment
3, period 3-experiment 2, and period 5-experiment 3 resulted in allocations that were
not optimal. Thus, for trains A-G the efficiency is 100% in 86% of the
experimental trials. (ii) For the 3 inefficient trials in periods 2, 3, and 5, efficiency
for trains A through G is at 0.82,0.65, and 0.93 respectively. This yields an average
efficiency of 97% for trains A-G for the experiment. (iii) Trains H and I are always

allocated in the optimal manner. o
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6.3 Experimental Resulis: Design Consistency

Given that the mechanism is efficient, the question of design consistency is now
addressed. It is not sufficient that the outcomes are efficient, but rather they should
be efficient for theoretically understandable reasons. This increases the guarantee
that the mechanism will behave similarly in other environments that are untested but

theoretically similar.

To begin this examination, Table 6.2 represents a measure of ‘distance’ of outcomes
from NE1 outcomes in terms of the potential pfofitability of pivotal responses. The
‘entries in the Table are the maximum potentially profitable pivotal response available
to any agent. In a sense the entries are the maximum opportunity cost of stopping
(assuming that the process would go only one step more). For each agent, a search
was made for the most potentially profitable pivotal bid at the final bid prices for each
period. A maximum was then taken over all the agents for that period, and the
amount of this potentially foregone profit along with the agent id number with the
corresponding pivotal bid opportunity were tabulated and entered in Table 6.2.
Entries of zero correspond to NE1 outcomes, since a zero entry is only possible if
there are no remaining pivotal bidding opportunities at the close of each trial.
Positive entries represent possibilities for profit, and are stated in Francs. (Franc

conversion rates varied; in the experiments francs were worth $0.005-$0.02 or so.)
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Typically in experiments there is an unknown variable subjective cost for getting

égents to take any action. That is, if only $0.10 is to be made by pressing the keys, it
is possible that the agent will not take any action. Taking these costs into
consideration suggests a classification of outcomes from Table 6.2 into strict NE1 and
“thick indifference” NEI1 type outcomes. Consideration of both as degrees of NE1

behavior yields Observation 6.2.

Observation 6.2. Outcomes tend to be NE1 Equilibria of the one stage game.

Support. Consider the entries in Table 6.3 that are a classification of the outcomes
taken from Table 6.2. A little over one-third of the periods results in strict NE1.
Approximately 71% have deviation less than 50Fr ($0.25-$0.50). This leaves only
29% of the periods resulting in outcomes that were not NE1 or “near” NE1 in the

sense that the maximum opportunity cost of a move was low. e

The property is strengthened by the fact that the outcomes that are near NE1 tend to
be core outcomes. Given the bids expressed in the mechanism at the final outcome,
no coalition could construct a joint bid unavailable to members acting alone, that

would produce benefits for some members of the coalition and hurt none of the other

members of the coalition.

Observation 6.3. Outcomes tend to be in the core of BICAP.
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Support. Core outcomes are NE1 outcomes that are coalition-proof in the sense that
a coalition of members has no profitable opportunities available to it at the final
prices and allocations that the individual members could not carry out unilaterally.
This result was obtained by brute force, i.e., a computer algorithm was used to do an
exhaustive search over all coalitions for profit opportunities, given the final prices and
allocations in each trial. No additional opportunities for profitable bids, outside those

available to individual agents, were found. e

An efficient outcome does not require NE1 behavior, just as NE1 behavior does not
guarantee efficiency due to the existence of multiple equilibria. However, if the
conjectures behind the design of the mechanism presented in the preceding section are
correct, one would expect there to be a correlation between NE1 and efficiency. An

examination of the inefficient outcomes yields the following observation:

Observation 6.4. Inefficient NE1 do not occur.

Support. In the environments studied, inefficient outcomes coincide with failure to
converge to an NE1. Period 2-experiment 3, period 3-experiment 2, and period 5-
experiment 3 resulted in inefficient outcomes. In Table 6.2, these three trials account

for the three largest deviations from an NE1 outcome. ®
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Corollary Observation. If outcomes are inefficient then they are not NE1. e

The Corollary above together with Observation 6.2 present natural questions. Why
does the process result in NE1 outcomes and why among those does it seek only the
efficient outcome? Is this a lucky accident or is it related to the game theoretic
structure of the problem? The answer to the first question is suggested by the NE1
convergence property of the discrete pivotal process shown in Proposition 5.2. The
answer to the second question is more elusive, but the other propositions in Chapter 5
support the idea that some inefficient NE1 might be avoided by the strong neutral

process.

To facilitate an investigation of the bidding dynamics, Table 6.4 was compiled.
Every non-null individual bid was recorded by a computer during the experiments.
Classifications of these bids into the strong-pivotal, strong-neutral, and dominated
categories are done and recorded in the Table. This analysis yields the following

observation.

Observation 6.5. Convergence to NE1 is governed by the discrete pivotal process.

Support. 1If the process is operative, then convergence will be to an NE 1 by virtue of
Proposition 5.2. Two assumptions of the process involve behavior. One of the

assumptions, is that individuals will not let the process stop if strong-pivotal bids
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exist. The tendency for this property to be satisfied is established by Observation 6.2.

The second property is that individuals not tender dominated bids. The data in Table
6.4 reveal that dominated bids account for 0-6% of the bidding activity. Thus the
tendency of bidding behavior is to tender non-dominated bids as required by the
process. With the tendency for both of the properties of the process to be satisfied,

one can conclude that it is operative and thus characterizes equilibration. e

Because the assumptions for the class of discrete pivotal processes seem to be
satisfied, a search of the bidding data is now conducted to see if the type of dynamics
in operation can be narrowed further. Observation 6.6 shows that the strong neutral
bid processes are good candidates. The case is made by eliminating from
consideration those dynamics that suggest no bids will be made unless it changes the
state in a favorable way for an agent. Strong neutral bids are those (non-dominated
bids) that place the bidder as the high bidder for a train that is not part of the potential
allocation even after the bid is tendered. Thus, the bid does not change the potential
allocation. Such bidding is not explained by the pivotal process dynamics, so the
concept adds behavior that is otherwise absent from consideration. The data from
Table 6.4 will be used to show that strong neutral bids are frequently made. The data
from Table 6.5 will be used to show that the dynamics exhibit no tendency to stop at a

NE1 the first time such a state is reached.
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Observation 6.6. From among many possible discrete pivotal dynamic processes, the

class of strong neutral processes receives support as an explanation of the

convergence path.

Support.  First, strong neutral bids exist as a substantial feature of bidding behavior.
On average, strong neutral bids consist of approximately one-third of all bidding
behavior. Note from the Table 6.4 that in some periods there are more strong neutral
bids than pivotal bids, and in others, vice versa. Thus, even though with the same
period parameters, different experiments can have substantially different ratios of
pivotal bids to neutral bids. A tendency exists for a substantial portion of bids to be
strong neutral. Second, a tendency exists for the dynamics to not stop at NE1 when
they are attained. Thus, the dynamics tend to not be the discrete pivotal processes
that limit behavior to NE1 reaction functions. Table 6.5 examines the frequency with
which bids place the mechanism at an NE1 intermediate outcome. No attempt is
made to distinguish between NE1 outcomes that support the same allocation, but
differ slightly in bid price, and those that produce different allocations. According to
Table 6.5, either the mechanism never reaches an NE1 outcome, or it passes through
multiple NE1 outcomes. Only in 2 of the 21 cases, namely period 3-experiment 3, and
period 6-experiment 2, does the mechanism stop at the first NE1 outcome reached.
Since the class of discrete processes where strong neutral bids are not used must stop
at the first NE1 outcome encountered, those dynamic processes can be discarded

from consideration. Thus, the presence of multiple NE1 intermediate outcomes and
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the use of strong neutral bids at intermediate NE1 outcomes suggest a refinement like

the strong neutral process. o

The fact of efficiency, when taken with Observations 6.5 and 6.6, creates an
interesting picture of the dynamics. The mechanism wanders over the allocations
until the optimal set of trains is discovered. The bidding then proceeds to advance
until an allocation of the set of trains and a set of bids is attained that supports the
optimal as an NE1. The process of the ‘discovery’ of the optimum must be
associated with a process of preference revelation and coordination. We have no
rigorous theory about how this might take place, but the intuition rests on the
submission of strong neutral bids that reveal the social opportunity cost of the
allocation. The basic intuition is that strong neutral bids will be made as a type of
negotiation process driven by the possibility that the auction will terminate unless a
bid is made. By making bids on unallocated trains, an agent is contributing to the
‘public good’ of defeating the current allocation. The strong neutral bid process
holds that a person will reveal rather than let the market close. When the possibility
for strong neutral bids is exhausted, then all excluded agents have revealed the
maximum any would ever be willing to pay for the excluded trains. Since the
potential allocation is of higher value than any allocation possible from the excluded
trains, the final allocation must necessarily be efficient if the excluded agents are fully

revealing their willingness to pay.
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If the NE1 property of the dynamics of the discrete pivotal process guarantees that the

high value bidder has the final standing bid for allocated trains; and, if the high value
bidder has the final standing bid for excluded trains, then whatever trains are
allocated will be allocated to those who value them the most. The only question is
how the proper set of trains might be chosen. If, in addition, the excluded agents bid
as high as their redemption value, then the operation of the BICAP mechanism
assures that the proper allocation will be chosen and that an efficient allocation will
be the final result. Thus, several measurements of value revelation are suggested by
this logic. For excluded trains, does the high value bidder have the final standing bid?
How high is this bid, either as a percentage of the agent's redemption value or as a

distance from it?

A complication in the parameters makes analysis difficult. Often an agent will have
high redemption values on a pair of trains that are in conflict. In this case, it may not
be to that agent's advantage to have the high bid for both trains, since he would, in
effect, be bidding against himself. An opportunity cost exists for the agent that
lowers the agent's willingness to bid on the excluded train by the amount of potential
profit on the allocated train for which he has the standing high bid. This potential
profit would be foregone if the allocation switched to the other train. Thus the data
can be divided into the ‘clean cases’ for posing the questions and the ‘unclean cases’.

The clean cases are selected pairs in selected periods where the conflicts happened to
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not exist. The revelation conjecture that follows summarizes the weight of the

assessment of clean cases.

Revelation Conjecture. Social opportunity costs of allocation are revealed through

the operation of the BICAP mechanism.

Support. Different agents have the high value for trains A and B in period 7, for
trains C and D in period 4, trains E and F (also) in period 4, and for train G in periods
{1,2,3,5,6 }. In all other periods the same agent will have high values for a pair of
conflicting trains. In period 7, train B is excluded from the allocation, and in period 4
trains D and F are excluded while G is excluded in all periods. Aggregation over the
periods and trains above provides 24 excluded train “clean cases” for analysis of the
conjecture. In these cases the high value individual tends to hold the high bid and
also reveals the value to the mechanism. The results are: (i) the high value agent
has the high closing bid in 18/24 or 75% of the 24 excluded train cases; (ii) on
average the excluded agent bid 93.8% of the high redemption value for the 24

excluded train cases**. Thus, the social opportunity cost is revealed in these cases.

The “unclean cases” are more difficult. Revelation behavior is different when the
holder of the high redemption value for one train that is included in the potential

allocation also holds the high redemption value on another train that is excluded from

3% The overbid by agent 10 in period 4, experiment 2, train D was counted as a bid for the full

amount of the redemption value, 594, and not the amount of 920 which was bid. Using the amount of
920 would have raised this figure still further.
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the potential allocation. If all unclean cases are aggregated (all cases in which the

high value agent has the high value for a pair of conflicting items), then in a total of
33 out of 60 cases the high value agent has the final bid on the excluded item in the
pair. Thus in 27 of 60 unclean cases, the high bidders on the excluded items are not
the agent with the highest redemption value. In this sense the social opportunity cost
information is not revealed to the mechanism. However, the revelation is as one
might expect in an auction-like process: if the high redemption value agent does not
bid, the agent holding the second highest redemption value can be expected to do so.
The second high value agent has the final bid on the excluded item in an additional 18
out of 60 cases. Bid revelation by one of the top two value agents then yields a total
of 51 out of 60 cases. This suggests that while agents may not bid as high as the
highest redemption value on excluded routes, the second highest redemption value

holder is being revealed.
The natural question now is whether the redemption values are being revealed. For
this a measure is developed.

For each train, set

do(f) = max (0, 2nd highest redemption value for f - B(f) )
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If the final bid is above the second highest redemption value, then d2(f)=0. d2 is thus

a measure of the amount by which the bid is less than the second highest redemption

value.

Table 6.6 compares bid prices with redemption values, in such a way as to pool data
across all periods. On average, when optimal allocations occur, revelation of values
is near the second highest redemption value. This occurs to within an average of
10Fr on allocated routes and 28Fr on unallocated routes. Depending upon the
individual this amounts to something on the order of a nickel to a quarter on an item

that is worth several dollars. e

The pattern of results provides much evidence of design consistency. The reasons for
the efficient allocations are for theoretically understandable reasons. Agents do not
limit their behavior to reaction functions that only make themselves better off. They
take actions that make no changes in their own well-being but, depending upon the
actions taken by others, might make themselves better off. This dynamic leads away
from inefficient allocations that otherwise might exist as equilibria. The nature of
BICAP is such that it pits competitors against each other such that values become
revealed to the mechanism and then it uses that information to move the system in a
dynamic in the direction of optimal allocations. The analysis also suggests that the
nature of potential inefficiencies might be related to agents with the high value on

multiplé trains that conflict. Having a degree of ‘market power’ they might not bid
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against themselves, and as a result they prevent some degree of information

revelation. This lack of efficient operations is clearly a parameter issue and not an
issue related to the principles upon which the mechanism design rests. Nevertheless,
it is important to note that while from the point of view of design consistency this
issue surfaces, it was not generally a problem in the operations of the mechanism

since the mechanism operated at near 100% efficiency.
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Figure 6.1: BICAP Computer Screen

id number: 7

Project | Current High | Bidder ID# | Status
Bid

A 225 3 ACCEPTED
B 438 3
C 80 7 <- yours
D 500 8 ACCEPTED
E 300 9
F 290 2 ACCEPTED
G 600 5
H 50 1 ACCEPTED
1 75 4 ACCEPTED

To enter a bid for a project, press its corresponding key A-I.
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Table 6.1: Closing Prices, Allocations, and Redemption Values for 1T7 Testbed

Experiments
Period High A B C D |E F G |H I
Feasible
Package
1 - high ADFHI | 1699- | 645-3 | 1634- | 1447- | 1635- | 1421- | 2619 | 1432 | 1318-
redemption 3 4 4 8 8 -10 | -5 5
values
1-2nd BCEHI | 1282- | 521-1 | 1405- | 974-7 | 1013- | 645-2 | 2543 | 888- | 1231-
highest 4 7 2 -4 9 10
redemption
values

1 - datafrom | ADFHI | 1300- | 601-1 | 1401- | 1295- | 731-1 | 800-8 | 2601 | 890- | 1250-

experiment 1 3 4 4 -10 {5 S

1- datafrom | ADFHI | 1300- | 520-1 | 1300- | 974-4 | 1112- | 900-8 | 2600 | 888- | 1250-
experiment 2 3 7 8 -10 {5 5
1-datafrom | ADFHI | 1500- | 520-1 | 1000- | 1000- ] 1100- | 1000- | 2615 | 900- [ 1250-
experiment 3 3 4 4 8 8 -10 5 5

2 - high BCEHI | 1124- | 980-1 | 683- | 346- | 1359- | 641-2 | 1710 | 430- | 259-6
redemption 1 10 10 2 -9 5

values

2- 2nd highest | BCEHI | 692-5 | 487-5 | 463-4 | 343-- | 1027- | 515-5 | 1625 | 319- | 1734
redemption 7 5 -5 9

values

2 -datafrom | BCEHI | 1090- | 486-1 | 610- | 340-7 | 1030- | 514-5 | 1610 | 320- | 240-6

experiment 1 1 10 2 -9 5

2 -datafrom | BCEHI | 1000- | 500-1 | 660- | 330- | 1000- | 505-5 | 1660 | 320- | 190-6
experiment 2 1 10 10 2 -9 5

2 - data from | AEHI 1100- | 400-5 | 682- | 345- | 1059- | 300-4 | 1610 | 333- | 200-6
experiment 3 1 10 10 2 -9 5

3 - high ADFHI | 1858- | 615-3 | 1227- | 964-4 | 943-7 | 774-7 | 1843 | 886- | 849-8
redemption 3 4 -1 2

values

3-2nd BCEHI | 660-5 | 405-5 | 1025- | 662-3 | 500- | 341-8 | 1731 | 757- | 759-5
highest 8 10 -9 6

redemption

values

3 -datafrom | ADFHI | 1050- | 600-3 | 1100- | 811-4 [ 500-7 | 341-7 | 1840 | 700- | 790-8

experiment 1 3 4 -1 2
3-datafrom | BCEHI | 675-3 | 381-5 | 1025- | 656-8 | 600-7 | 400-7 | 1830 | 786- | 790-8
experiment 2 4 -1 2

3 -datafrom | ADFHI | 1000- | 364- [ 1050- | 675-4 { 550-7 | 350-7 | 1560 | 786- | 770-8
experiment 3 3 10 4 -2 2
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period high A B C D E F G H I
feasible
package
4 - high BCEHI | 1371- | 1105 | 1193- | 594- | 1300- | 812-6 | 2057 | 1123 | 1258-
redemption 9 -9 1 10 4 -6 -3 2
values
4-2nd BCEHI | 1020- | 553- | 788- { 499-8 | 1067- | 430-4 | 1533 | 254- | 368-5
highest 10 1 10 6 2 8
redemption
values
4 -datafrom | BCEHI | 1000- | 726- | 790-1 | 594- | 1050- | 500-6 | 1450 | 400- | 400-2
experiment 1 10 9 10 4 -6 3
4 - datafrom | BCEHI | 901- | 600- | 730-1 | 920- | 1299- | 805-6 | 2040 | 300- | 458-2
experiment 2 10 9 10 4 -6 3
4 - datafrom | BCEHI | 1150- | 550- | 800-1 | 500- | 1100- | 255-9 | 1900 | 260- | 458-2
experiment 3 9 9 10 4 -6 3
5 - high ADFHI | 2108- | 700- | 1162- | 873-7 | 873-3 | 557-3 | 1999 | 755- | 1102-
redemption 5 5 7 -6 4 4
values
5-2nd BCEHI | 680- | 527- [ 760-9 | 634-9 | 580-6 | 356-6 | 1636 | 554- | 758-9
highest 10 9 -2 6
redemption
values
5-datafrom | ADFHI | 1320- | 525- | 932-7 | 654-7 | 850-3 | 360-3 | 1589 | 550- | 800-4
experiment 1 5 9 -10 | 4
5-datafrom | ADFHI | 1101- | 527- | 800-7 | 634-7 | 750-3 | 360-3 | 1999 | 555- | 800-4
experiment 2 5 9 -6 4
5-datafrom | ADFHI | 1500- | 520- | 1135- | 520-9 | 700-3 | 360-3 | 1995 | 575- | 760-4
experiment 3 5 9 7 -6 4
6 - high BCEHI | 788-2 | 459- | 1341- | 749-9 | 1005- | 603- 1340 | 358- | 676-6
redemption 2 9 10 10 -6 1
values
6 - 2nd BCEHI | 565-1 | 398- | 675-2 | 334-2 | 785-5 | 471-5 | 956- | 353- | 394-1
highest 1 7 6
redemption
values
6 - datafrom | BCEHI | 701-5 | 425- | 676-9 | 310-4 | 791- | 400-5 | 1340 | 353- | 450-6
experiment 1 2 10 -6 1
6-datafrom | BCEHI | 700-2 | 409- | 700-9 | 334-2 | 800- | 360-2 | 1300 | 355- | 400-6
experiment 2 2 10 -6 1
6 - datafrom | BCEHI | 700-2 | 400- | 750-9 | 400-9 | 780- | 400-5 | 1000 | 353- | 400-6
experiment 3 2 10 -6 1
7 - high ADFHI | 1685- { 614- | 1071- | 931-4 | 838-1 | 554-1 | 1260 | 1483 | 1465-
redemption 2 6 4 -4 -10 10
values
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7 -2nd ADFHI | 1444- | 581- | 648-2 | 319-6 | 557-9 | 418-2 | 1133 | 164- | 392-3
highest 10 10 -9 8

redemption

values

7-datafrom | ADFHI | 1450- | 560- | 610-1 | 350-4 | 730-1 | 410-1 | 710- | 165- | 396-
experiment 1 2 1 1 10 10

7 - datafrom | ADFHI | 1485- | 551- [ 600-4 | 400-4 | 570-1 | 370-1 [ 700- | 221- | 391
experiment 2 2 10 3 10 10
7-datafrom | ADFHI | 1485- | 510- | 648-2 | 450-4 | 625-1 | 420-1 | 1133 | 170- | 400-
experiment 3 2 10 -9 10 10
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Table 6.2: Unrealized Profitable Opportunities at Closing in 1T7 Testbed

Experiments

Period | Experiment 1 : Experiment 2 Experiment 3
Possible Profit | Id # | Possible Profit | Id# | Possible Profit | Id#

1 0 0 0

2 0 26 5 538 1

3 56 6 913 3 0

4 16 6 57 0 10 6

5 30 6 105 7 352 7

6 0 0 4 5

7 7 5 47 5 0
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Table 6.3: Classification of final allocations as NE1 equilibria

‘d’ corresponds to the unrealized individual profit opportunity in Table 6.2.

Equilibrium Classification #cases
Strict NE1 equilibrium (d=0) 8

NE1 if subjects have thick indifference 7
(1<d<50)

Borderline cases (d=56,57) 2

Not NE1 (d>100) 4
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Table 6.4: Classification of individual bids

Period Experiment | Bid Event
Counts
Dominated | Neutral | Pivotal
1 1 6 121 83
2 2 20 60
3 1 28 45
2 1 12 101 91
2 1 44 63
3 0 42 90
3 1 4 104 111
2 3 81 142
3 0 19 73
4 1 2 12 25
2 4 54 74
3 1 27 62
5 1 3 46 93
2 3 66 93
3 2 36 70
6 1 4 15 74
2 6 34 129
3 0 21 66
7 1 1 44 94
2 6 37 75
3 1 17 24
Totals 62 969 1637
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Table 6.5: NE1 Outcomes During Each Period

Period Experiment | Reached
NE1
Outcome
States
Strict Near (d<50)
(d=0)
1 1 17 17
2 9
3 8 9
2 1 6 19
2 0 4
3 0 0
3 1 0 0
2 0 0
3 1 3
4 1 0 10
2 0 0
3 0 2
5 1 0 13
2 0 0
3 0 0
6 1 4 10
2 1 7
3 0 4
7 1 0 4
2 0 1
3 4 8
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Table 6.6: Comparison of Bid Prices and the Second Highest Redemption Values

Optimal Allocated | #Trials GA) [ GB) [ HO) [ D [ GE [ &® [ &G [ b | 4,0
Schedule Schedule
ADFHI ADFHI 11 Avg | O 158 | 446 | 104* | 256* | 0.7* | 97.6 | 5.6 0.1
Max | O 71 405 114* | 282* | g* 433 | 57 1
BCEHI BCEHI 8 Avg {174 | 0.5 7.3*% 5.0 6.1 549 1123 ] 0 0
Max | 119 | 3 58* 24 27 175 83 0 0
BCEHI AEHI 1 - 0 87 0 0 0 215 15 0 0
(period 2-
exp. 3)
ADFHI BCEHI 1 -—- 0 24 0 6 0 0 0 0 0
(period 3-
exp. 2)

Note: * --- This deviation value is entirely due to one experimental trial.
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CHAPTER 7. Decentralized Computation in BICAP: The Computation
Procuring Dutch Auction (CPDA)

When BICAP is used in a computationally difficult environment, the calculation of
potential allocations that maximize bid revenue may excéed the limits of
computational facilities and cause the mechanism to fail. One type of failure is for
the algorithm to stop functioning due to need for additional computing resources, e.g.,
memory. A more typical mode of failure might be that the optimization algorithm
exceeds a reasonable time limit for computation. Another way to say this is that the
use of centralized optimization in BICAP results in a mechanism that can overdemand
computational resources relative to what is economical. Not only may the level of
computation be too high, centralized optimization may not necessarily produce the
calculations at lowest cost if the mechanism authority (the seller) does not keep
abreast of all the latest technical innovations in computers and algorithms to do the

optimizations.

One means for decentralized computation is some type of procurement auction. Such
an auction might tend to identify the low cost agents, who would be given an
economic incentive to perform the computations. This chapter formalizes this
technique as the Computation Procuring Dutch Auction [CPDA]. The BICAP
mechanism of Chapter 5 is then modified in a minimal way to include CPDA. The

new mechanism obtained in this way will be referred to as BICAP+CPDA.
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This chapter is outlined as follows. Section 7.1 gives an informal introduction to the
CPDA technique, section 7.2 formally applies it to BICAP, and section 7.3 gives a
theory of CPDA’s operation. A short sketch of the intuition behind BICAP+CPDA

follows, which will be expanded upon in section 7.3.

If one assumes that CPDA works as well as centralized optimization, then,
theoretically, it can be shown that the minimal modifications in BICAP necessary to
include CPDA do not substantially alter bidding incentives. Can one expect CPDA to
function well, i.e., do potential allocations under CPDA correspond to those that
would have been calculated by computer? It is difficult to answer this question, but
one can show the following: Under CPDA, if agents believe that their peers have
similar information, then it is often® a dominant (in the sense of increasing profits)
strategy for the agents to submit known improvements to the potential allocation. In
cases where it might seem that an agent has a perceived conflict-of-interest, the
proposal bonus for submitting the improvement eventually exceeds the loss accruing
to the agent. The BICAP+CPDA mechanism will then be tested in Chapter 8 to see to

what extent the theoretical assertions can be verified in the laboratory.

% The Improvement Characterization Theorem, in this chapter, provides this result.
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7.1 The Computation Procuring Dutch Auction [CPDA]

This section informally describes the Computation Procuring Dutch Auction [CPDA].
CPDA is a Dutch clock auction for procuring computational activities in a
mechanism. CPDA transfers the computationally difficult task, that of searching all
feasible allocations for those that maximize the sum of the current bids, from the
mechanism authority (the seller) to the agents. Agents are then provided with
incentives that may encourage them to perform the search in a manner that forces

them to consider costs and benefits of such activities.

Under CPDA, the mechanism supplies to agents the information they need to search
for improvements to the potential allocation. The set of high bids and the conflicts
between trains are public knowledge as well as the current potential allocation. The
potential allocation is initially set to the null allocation where no one receives the
rights to run any train. Agents propose improvements to this allocation. An
improvement consists of a feasible set of trains that would produce higher bid
revenue, given the current bids, than the current potential allocation. Submission of an
improvement changes the potential allocation. The agent submitting the improvement

receives a proposal bonus, which is a percentage of the instantaneous increase® in bid

3% As improvements are submitted, some agents may also wish to raise their bids. This further raises

the bid revenue to the seller, and one could argue that this increase in revenue is in part due to the
submission of the improvements. In calculating the proposal bonus, only the increase in bid revenue
given the current bids is considered.
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revenue resulting from the improvement. This percentage is called the bonus

percentage.

The bonus percentage starts at 0% and increases slowly up to 100% as time passes
without bids or improvements being submitted. When a bid or improvement is
submitted, the bonus percentage is reset to 0%. In this way the bonus percentage

causes the incentive scheme above to act as a Dutch clock auction.”’

The goals of CPDA are to encourage both cooperation and competition between
agents in submitting improvements and to also cause the amount of resources devoted
to searching for improvements to respond to benefits and costs of such activities.
Briefly consider the intuition behind how these goals might be accomplished under
the above specified incentives. The intuition below will be developed into a theory of

operation in a later section, after CPDA is merged into the BICAP mechanism.

CPDA encourages cooperation by making public knowledge any improvements to the
potential allocation that are submitted. CPDA creates a parallel processing
environment where agents willingly compute increasingly better approximations.
CPDA encourages competition through the Dutch clock auction structure of the
incentives: since only one agent will be paid for an improvement, it is to an agent’s

advantage to hold back information regarding improvements only until he or she

37 If the bonus percentage did not reset when bids are entered, then an agent could submit a bid

which would change the bid maximizing potential allocation, immediately submit an improvement.
This would effectively give the bidder a discount on his bid, perhaps a very lage discount.
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believes other agents might also have the knowledge and be about to submit it. Such

competition helps to lower computational cost by encouraging computation by the
fastest least cost agents. Because bonuses paid to agents for finding improvements
are always less than the change in bid revenue, agents must consider the benefits and

costs of searching for improvements in their decision to undertake computational

tasks. -

One potential difficulty with CPDA is that duplication of computational effort
among agents is possible. Agents competing for proposal bonuses might choose to
simultaneously work on finding similar improvements. Practical, incentive
compatible coordination mechanisms to avoid this problem might be difficult to
construct. This research simply defines and tests CPDA and does not attempt to solve

this coordination problem.

7.2 Modifying BICAP to Include CPDA

This section details the changes made in the BICAP mechanism to include CPDA.
Recall that a mechanism involves three essential elements: a set of feasible outcome
allocations, a message space through whjéh agents interact, and an outcome rule that
specifies how these messages determine a unique outcome from the feasible set of
allocations. In the BICAP mechanism each agent submits bids for projects (trains) in

a continuous time auction. The highest bid on a project prevails as the potential
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winner and cancels all lower bids for the project. The process of bidding continues

until some pre-specified time has elapsed with no bids taking place. These features of
the BICAP mechanism are retained in the BICAP+CPDA mechanism. The only
changes made are those necessary to allow agents to take over the task of determining,
through the CPDA incentive process, the potential allocation. Formally, the
mechanism is outlined by the following statements, much of which is reproduced

from the BICAP discussion of Chapter 5.

The essential elements of the Binary Conflict Ascending Price with Computation

Procuring Dutch Auction (BICAP+CPDA) mechanism are as follows:

1. The message space M consists of the following messages®® for each individual:
Bids (b,f);; b is a bid (in cash) by agent i for the train route f.
System Proposals [Q];; [Q]; is a request by agent i that the allocation be
changed so that the trains in Q ¢ F are allocated to their respective high bidders.

A time message from nature indicating the elapse of time

2. A mechanism state s=(1,B,H, P, v) consists of

(i) the original BICAP state variables 1, B, H, P

(ii) a vector of earnings v of agent proposal bonuses

The different symbols ‘()" and ‘[]* will help to distinguish the messages in discussions that follow.
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3. The jnitial mechanism state so = (1=70,B=0,H=0, £ *=null allocation,v=0).

At the start of the mechanism:
(1) The variables 1, B, H, P° are set as they were in BICAP.

(it) The agent proposal bonuses are set to zero.

4. The set of terminal mechanism states S* is the subset of § obtained by making the
restriction 1=0, i.e.,
S* = {s*eS§: 1=0}.

Like BICAP, BICAP+CPDA is also a soft terminating mechanism.

5. Throughout the auction, (X,I,F,C), and the mechanism state variables 1, B, H. , and

P* are all common knowledge. The agent feedback information functions are
defined so that these elements of the mechanism state are publicly broadcast

whenever it changes. This is also exactly as is in BICAP.

6. At aterminal state s*eS*, the mechanism outcome allocation rule is

O*(S*) - p* “+” v.
The outcome allocation consists of the allocation £ * of rail resources and money

transfers added*® to the monetary transfers necessary for the agents to receive their

CPDA proposal bonus earnings v from the seller.

* There are two ways to handle the payment of the CPDA proposal bonuses. Either they can be

incluc.led in the specification of P or they can be made separate. If they are made separate, then
technically the cash component of the outcome allocation from the mechanism is the sum of the train
and transfer payment allocations in BICAP and the proposal bonus allocationsin CPDA.
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7. The mechanism transition rule T:S®M—>S that describes how the mechanism state

evolves in response to messages is specified as follows:
If m = bid message (b,f); from agent jeI, then:
If b > B: s™"=T(s,m), where components of s™" are denoted by the
“new” superscript:
TV =1, [ the timer is reset ]
B™=b [ the bid becomes the new train high bid ]
H™ =] [ the bidder becomes the new train high bidder ]

Iffe As, P™" changes from P so that:
Ny =AMy —{f}
A = (£} U A

tjnew = Z Bf'new

(£ H =)
t™" = ts + (b - By)
Otherwise, P ™ = p".
Ifb<Bs:

T(s,m)=s [ bids lower than the current bids have no effect ]

If m = system schedule proposal message [Q]; , then:

If

@®Q0)NC= [Proposal is Feasible ]
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and

zBf >1; , where ts is the seller’s transfer from /. [Improving]
1@

then
s"" = T(s,m)
where
P = (as™ ;2™ ..., an™") e Tee/LF,C) ;
Vke+{S}, ac= (A", ") e 2F @ R :
(i) As™ =Q [ system schedule proposal is accepted ]

(i) "™ = Y B,

FeAs™™
(iii) Viel, A™ = A&  {fe F: Hi=j )

(iv) Viel, "=~ Y B,

fEAj"m

Vit =i+ ((To- Do) (ts™V - tg)

If m = time message from nature, then T"% =1 - 1.

Remark. Combining the Chapter 2 definitions with (1)-(7) above, the potential profits
vector an(S;_Y) in the BICAP+CPDA mechanism is, by definition,

Y =T 0%(s); V) =TI( P; V) +v.
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Definition. ©'"(s;¥) =TI( £; V) and n(s)=v. The term train potential profits or

BICAP potential profit refers to nTP(s;X) =TI( P; ¥ ) and CPDA bonuses or proposal

bonuses refer to 1 (s)= v. Notice that nP(s;X) = nTP(s;X) + 1 (s).

7.3 Modeils of Performance and Agent Behavior

The original analysis of the BICAP mechanism involved identification of NE1
outcomes and conjectures regarding dynamic processes that might cause the
mechanism to select the NE1 that yield the optimal allocation. All of the analysis
involiring bidding carries over, given a key assumption: that CPDA does, in fact,
induce agents to calculate and submit improvements to the potential allocation so that
the final potential allocation is virtually equivalent to that expected under BICAP’s
system of centralized optimization. This section will be concerned with trying to

justify such an assumption. To begin, a few definitions are needed.

Definition. The set of feasible improvements at state s, denoted FI(s), is the set of
non-null proposal messages for the BICAP+CPDA mechanism (i.e. those that
increase the sum of the bids of the allocated trains):

Fi(s)={Fs cF:T(s,[ Fs]) #s }.

Definition. The set of known improvements for agent j at state s, KI;(s), is the subset

of FI(s) that agent j may propose (or is “aware of”).
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The following definition and remark show that, along a bidding path where the agents
are fully aware of the implications of their bid on the bid maximizing potential

allocation, a model of “search” for improvements is unnecessary.

Definition. Suppose, in BICAP+CPDA, agent i submits a BICAP-pivotal bid (b,f);
that changes the bid maximizing system schedule from As to As”. Agent i is referred
to as the inside bidder until either: (i) other bids are submitted, by any agent, that
change the bid maximizing system schedule, or (ii) the improvement message [As'];

is submitted by some agent j. The improvement message [As]; for agent i is called

the inside improvement.

Proposition 7.1. If inside improvements are always known improvements for inside
bidders, then a potential-profit maximizing inside bidder will always submit the
inside improvement rather than let the mechanism terminate.

Proof. Submitting the inside improvement always improves the inside bidder’s
potential profit. Failing to do so leaves uncaptured the potential profit that the bid
was meant to capture. Therefore a potential-profit maximizing agent will always
submit any inside improvement when he is an inside bidder, rather than let the

mechanism terminate. o
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In difficult computational environments it is possible that a bidder will not realize all

the implications of his or her bid, and will not submit an associated improvement.
This creates the possibility that some improvements will not be submitted unless
some agent searches for them. It is then necessary to investigate and characterize

search and reporting processes. To begin, consider the following definitions.

Some feasible improvements will raise potential profits for an agent, and some will
not. If agent j believed with certainty that another agent was about to submit a known
improvement that would lower agent j’s potential profit, then agent j would have a
dominant strategy to submit the improvement before the other agent. In that way,
agent j would at least gain the proposal bonus from the improvement. This is similar

to avoiding a sunk cost fallacy4°.

The above argument suggests that one possible theory of operation of CPDA could

be built on two hypotheses:

Complete Search Hypothesis. There exists a T. > 0 such that when the mechanism

timer is at T < T¢ , UjelKIj(s) = FI(s).

0 Agent J behaves like he is avoiding a sunk cost fallacy, where the “sunk cost” is the potential profit

j would obtain from a potential allocation that is transient. The fallacy in this case is that j’s claiming
the proposal bonus causes the loss of the potential profit from the previous potential allocation. While
de facto true by the rules of the mechanism, we are assuming that had j not submitted the improvement,
someone else would, and the potential profit from the previous potential allocation would still be lost
bu t agent j would not have gained the proposal bonus.
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Full Reporting Beliefs Hypothesis. There exists a T.> 0 such that when the

mechanism timer is at T < T, , each agent jeI believes that every known improvement

KIj(s) will be submitted by some other agent unless precluded by another submission.

Proposition 7.2. Under the hypotheses of Complete Search and Full Reporting

Beliefs, the mechanism can only terminate when the potential allocation is the bid
maximizing potential allocation.

Proof. Under the condition that the potential allocation is not the bid maximizing
potential allocation, it will be shown that the mechanism can not terminate. This
implies that the mechanism can only terminate at a bid maximizing potential
allocation. Suppose that the potential allocation is not bid maximizing. Then feasible
improvements exist. For the mechanism to terminate, the mechanism timer T must
reach zero. When the mechanism timer falls below 7. , under the Complete Search
hypothesis some agent will know any feasible improvement and under the Full
Reporting Beliefs hypothesis each agent will have a dominant strategy to submit
some known improvement. The first submission will reset the mechanism timer, and
the process will repeat. Therefore, the mechanism can not terminate until the set of
feasible improvements is empty. This occurs at a potential allocation that maximizes

the sum of bids. e

The two hypotheses used to obtain the result are quite strong and probably are not

satisfied by the human agents in the experiments. Note, however, that full reporting
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beliefs is a self-sustaining hypothesis in the following sense. Consider a Bayesian

agent who has beliefs over what known improvements will be submitted, and who
updates beliefs via Bayes rule. A Bayesian agent whose beliefs are characterized by
full reporting beliefs never tests those beliefs. To test his beliefs the agent would have
to find an improvement, refrain from submitting it, and then observe the mechanism
terminating with no one submitting it. Since the agent has a dominant strategy to
always submit improvements, the agent who has full reporting beliefs never tests or

changes his beliefs.

Proposition 7.2 is unsatisfying in its assumptions about beliefs. Another model can be
created to predict success of CPDA. The model now developed will begin by
strengthening the search hypothesis to the Universal Search Hypothesis below but the

model will not assume the Full Reporting Beliefs Hypothesis.

Universal Search Hypothesis. There exists a T. > O such that when the mechanism

timer is at T < T, KIj(s) =FI(s) Vjel.

Now assume that agents do not submit improvements that will lower their potential
profit and do submit improvements that will increase their potential profit. If the
Universal Search Hypothesis is assumed, will all known improvements be submitted?
Will the mechanism potential allocations still reach the bid maximizing potential

allocations? To answer these questions, it is necessary to examine whether
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improvements exist that do not improve potential profit for any agent. Such

improvements will be called universally opposed because no agent would be willing

to submit it.

Definition. An non-null improvement message [Q); is universally opposed at a state
s’eS in BICAP+CPDA if the total of the train potential profit change and the
maximum possible CPDA proposal bonus is non-positive for every agent, i.e.

Vi, Am' = (m (T Q1Y) - mT(s5Y) ) + (157 t5') < O, where:

ts” is the total transfer to the seller at the potential allocation at state s”=T(s’, [Q])),

and ts’ is the total transfer to the seller at the potential allocation at state s’

The success of CPDA hinges on the set of universally opposed improvements being
small or having some other interesting property. It will be shown that universally
opposed improvements lower the sum of the values of the trains that are allocated
(potential allocational efficiency) even though the sum of the bids is increased.*! This
is an interesting result because none of the agents actually know which improvements
raise or lower the sum of the values of the trains. Different trains are generally
allocated to different agents and the train value information is private. Nevertheless,
all universally opposed improvements have this property. The mechanism causes

agents’ incentives to take this information into account even though no agent need

“! This is possible when there are high bids for train routes that are inefficient. An extreme example

is the mistake of large overbidding on a worthless route.
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realize consciously that this is happening.** By avoiding these improvements, CPDA

could possibly have the effect of raising the efficiency of the mechanism outcome

allocation.

Theorem (Improvement Characterization Theorem). At a BICAP+CPDA mechanism

state s’, a non-null improvement message [Q] is universally opposed only if two
conditions (i)-(ii) are met:
@) m (T [C11Y) < m™(s3Y) V iel
[ each agent’s train potential profits is lowered].
(i) V(O"(T(s",[@1)Y) < v(O°(s):Y)
[ total value of the potential allocation is lowered]
Proof. Let’ denote relevant variables before the improvement is submitted and ”/
denote relevant variables after the improvement is submitted. For instance,
s”=T(s",[@,). In particular let v'= D(OP(s’);X) and v”= v(O°(s”) ;¥) be the total
redemption values of the potential allocations before and after the improvement is
submitted. By definition, a non-null proposal message [Q]; is universally opposed if
Vi,
Am = (M (T IQRY) - W 5Y) ) + (17 +ts7) <0,
Recall that the first term, in parenthesis in the sum, is the change in train potential
profit for agent i under the improvement. The second term in the sum is the maximum

possible bonus agent i could receive under CPDA for the improvement.

2 Therefore, an infomration transfer process similar to the one Hayek(1945) described for markets

would seem to be at work.
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I;Tor a non-null improvement, the BICAP+CPDA transition rule T(s’,[@]) implies that
ts” > ts”. Therefore the second term above, ( ts” -ts’ ) , is necessarily positive. The
first term, the train potential profits, must be negative to cancel out the incentive from
the second term; otherwise some agent will have positive potential profit from the
improvement and have a dominant strategy to submit the improvement. Condition (i)
says that this first term is negative for all agents, and therefore is a necessary

condition for an improvement to be universally opposed.

To show Condition (ii) is necessary, we use the same technique as in Proposition 5.6:
that total bid must equal the total redemption value v of the allocation minus the sum

of all agents’ train profits. This is an accounting identity and is true no matter what

the allocation is. Symbolically:

”
ts =,D//_znjn’(s”)

jel
ty =v =Y w7 (s)
jel
Then, applying this accounting identity to Am;, we initially have
A = (m (")) - w5 ) + (157 +s)

and after the substitution for tg above, we have

A" =@ (") -n T (V)0 = Y n T (5T V) -7 = Y n T (5% V)

jel jel

regrouping terms
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ATC,-P =(,D”_D/)_Z(njﬂ’(sﬂ;z)_njﬂ’(sl;z)) )

jel
J#i

Note that the first term is just the change in total redemption value under the
allocation. The second term is minus the sum of all potential profit changes for all
other agents except i under the improvement. However, we know that all potential
profit changes for all other agents are negative, so the term in brackets is negative and
makes a positive contribution to Ar. Therefore, v"<V' is a necessary condition for an
improvement to be universally opposed, and this condition is the same as condition

(ii) above. e

It is important to point out that condition (i) of the theorem predicts the absence of
universally opposed improvements in the experimental testbeds that were constructed
in Chapter 3. In the experimental testbeds, all allocations leave some agents with no
trains. Because there are always agents who receive no train rights, condition (i) is
never satisfied because there are some agents whose train potential profits do not
strictly decrease. This means that in the experimental testbeds, agents only need to be
capable of Universal Search for CPDA to function successfully. Reporting must

automatically follow since no improvement is universally opposed.

The next chapter will experimentally test the performance of BICAP+CPDA in the
three-track testbeds, and this will allow an opportunity to investigate whether

theoretical expectations adequately explain behavior of human agents.
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CHAPTER 8. An Experimental Test of the BICAP+CPDA Mechanism

Three questions of primary interest to be addressed by the next series of experiments
are whether the BICAP+CPDA mechanism performs as well as the BICAP
mechanism in efficiency of allocation, whether computation under BICAP+CPDA is
performed in a timely manner and at low cost, and whether there are any noticeable
differences in distribution of surplus or bidding behavior under the BICAP and
BICAP+CPDA mechanisms. The first two questions are primarily performance
issues, and the last question, the comparison test, addresses some elements of design

consistency.

The comparison empirically examines the assumption that BICAP+CPDA is a
minimal modification of the BICAP bidding incentives. Recall that the idea behind
BICAP+CPDA is to improve computational performance but retain as much of the
original bidding incentives that made BICAP efficient. If the incentives are the same

b

then one might reasonably expect the economic results to be the same as well®*,

“* " In the interest of completeness, note that such a statement is actually being tested along with the

performance of BICAP/BICAP+CPDA. The comparison relies on at least two auxilliary assumptions:
(i) that incentives for running trains on each train track line in the testbed environment of the 3ST7
experiments faithfully duplicate the incentive structures that existed for operators of trains A-G in the
IT7 testbed environment and that the different train track lines are indeed independent of each other,
and that (ii) nearly identical incentive structures produce nearly identical results. In paricular (ii)
assumes that a number of details (time, place, personal identity of agents, wording of instructions) that
are different between this series of experiments and the BICAP experiments do not matter. If the
results are compared between BICAP+CPDA experiments using the 3ST7 testbed above and the 1T7
experiments, and fundamental aspects of the results are nearly identical, then the Assumptions (i) and
(11) must have been satisfied to a reasonable degree. ’
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The experimental results show that BICAP+CPDA performs almost as well as

BICAP. Efficiencies will be high, but not as high as BICAP in the 1T7 testbed
experiments. Decentralized computation of potential allocation calculations will be
shown to be working well. The BICAP+CPDA mechanism will produce very similar
total revenues in the comparable portions of the 3ST7 and the 1T7 testbed
environments, and thus BICAP and BICAP+CPDA might be said to have equal
political compatibility at least in terms of revenue production for the government
track owner™*, There will be some puzzling mixed results in the design consistency
section. Overall, however, BICAP+CPDA could be given a positive evaluation. The
experiments also provide a proof of principal that CPDA can be added to a
mechanism to decentralize mechanism computation without hurting allocation

performance.
8.1 Experimental Methodology

The experiments involve testing the BICAP+CPDA mechanism of Chapter 7 in the
three-track testbed environments from Chapter 3. Recall that there are two different

three-track testbeds, labeled 3ST7 and 3NST7. The 3ST7 environment is nothing

“ Ledyard points out that it could be the case that it is common knowledge that mechanism A is
more efficient than mechanism B, but transition from mechanism B to mechanism A is politically
infeasible because such a transition would change the distribution of surplus away from agents or
groups of agents that are decisive about what mechanism is used for allocation. To recognize this
problem, he defines a change in mechanism to be a ‘politically compatible’ transition if it does not
make any politically decisive coalitions worse off. Unless a mechanism leaves everyone indifferent or
everyone better off, political compatibility will depend on the political environment. If the
BICAP+CPDA experiments produce very similar results to the BICAP experiments, (e.g., efficiencies,
revenue generated for the seller, closing prices are nearly identical), then the opportunities of any agent
are the same either under either BICAP or BICAP+CPDA, and the political compatibility of the two
mechanism, when compared against some status quo must be similar. This criterion may be important
for those who wish to use BICAP, BICAP+CPDA, or something similar to replace the priority system
for allocation of track time in Sweden.
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more than three independent copies of the 1T7 testbed environment used in the

Chapter 6 experiments, but operating on separate tracks. Direct comparisons of
economic variables, such as total revenue, will be made between the Chapter 6
experiments and the 3ST7 experiments reported here. Similarity in results between
BICAP and BICAP+CPDA is expected. The 3NST7 testbed is the 3ST7 testbed with
additional conflicts between trains on the previously separate, independent train
tracks. Because of the additional conflicts, the 3NST7 experiments are not
economically comparable. Experiments with the 3NST7 testbed do demonstrate the
response of the BICAP+CPDA mechanism to a more difficult computational

problem.

The BICAP+CPDA mechanism was implemented for the most part as specified in
Chapter 7. One important variation is there is a set Ip of agents who are allowed to
propose improvements, and this is varied in the two 3ST7 experiments. This variable
tests effects of CPDA and does not affect underlying properties of the rail testbeds.
The 3ST7-1 testbed uses I=Ig, which means that any agent could propose an
improvement. In the 3ST7-2 testbed I, consisted of three special, independent agents
{#21,#22,#23} who do not otherwise take part in the experiments (i.e., they do not
have redemption values for trains and are not buyers), and so only these three agents
could propose improvements. In the 3NST7 environments there is only one

specification: Ip=Ig.
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Varying Ip enables one to see how limiting the set of proposers affects the mechanism

outcome. In particular, does the mechanism provide sufficient incentives for
otherwise indifferent agents to submit proposals for improvements? Can these agents,
being small in number, extract a large portion of the surplus through some type of

Cournot effect? This variation only occurred for the 3ST7 testbeds.

The rules of the BICAP+CPDA mechanism are implemented in the experimental
instructions essentially as described in Chapter 7, albeit in a simplified form. The
agents saw these rules, simplified and reworded, in their instructions, which are
included in the Appendices B and C. Essentially the procedures are virtually identical

to those of the experiments in Chapter 6.

Computer screens displaying the mechanism were substantively equivalent to the
BICAP screens in Chapter 6 except that 21 trains were displayed instead of 9, and a
special command for submitting improvements to the potential allocatioh was added.
The agent’s computer system would check and report on validity of an improvement
when it was submitted, and invalid improvements were rejected with an appropriate
error message. However in no way did the computer equipment suggest
improvements to agents. Agents had pencil, paper, calculator, and their own personal

abilities upon which to rely to try to find improvements to the potential allocation.
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Experiments were carried out using Caltech undergraduate and graduate students as

agents. The students were recruited through an announcement on a campus computer
network. A total of four experimental sessions were conducted, one session of 3ST7-
1, one session of 3ST7-2, and two sessions of 3NST7 that are labeled 3NST7-1 and
3NST?7-2 for consistency. Each session lasted approximately two to three hours and
procedures in each of the four experiments were essentially identical. Table 8.1

summarizes the testbed parameters for each experiment.

Results will be»discussed in the following order: first, performance measures of the
final allocations will be addressed, then performance measures involving the
computation of potential allocations. Then, a comparison with BICAP is conducted.
The total revenue and bidding behaviors are compared between the results from the
3ST7 testbeds and the results from the 1T7 testbed. As BICAP+CPDA is supposed to
be a minimal modification of BICAP, it is expected that these behaviors are similar.
The resulting similarity in size and distribution of surplus would also suggest that
BICAP and BICAP+CPDA are equal in Ledyard’s criterion of political compatibility.
Finally, an examination of design consistency issues examines classifications of

bidding behavior and NE1 stationary equilibria.
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8.2 Experimental Results: Allocational Performance

Two measures of the efficiency of allocations in the experiments using the
BICAP+CPDA mechanism are presented in Table 8.2. The first measure is the
standard measure of efficiency defined in section 2.4, which was used in describing
the BICAP experimental results in Chapter 5. The second measure is a rank measure
of the total redemption value against redemption values in a special class of maximal
agent allocations, defined formally below. This rank measure is a new concept
developed here, and incorporates some information missing from efficiency ratios*.
First, the maximal rank measure will be formally defined and then compared with the

use of efficiency ratios. Then the data in Table 8.2 will be evaluated.

Definition. A maximal agent allocation a* has the property that agents hold the high
social value Vi for every train that they are allocated under a*. That is,

ViGI, fe Ai R Vif = MaXjer ij .

* One criticism with the use of efficiency ratios is that it does not give an idea of the difficulty of

finding or negotiating superior allocations. While efficiency is one way of ranking allocations, it
provides no clue of whether a specific outcome, say an efficiency of 0.80, is very good or very poor.
To determine whether 0.80 efficiency is good or poor an economist often needs to understand
economic aspects (e.g., are there public goods, externalities, or other economic phenomena that make
negotiating difficult?) as well as computational aspects (e. g., is it difficult to search for a better
allocation? are there many better allocations or only a few?) of the environment. The rank in maximal
agent allocations is a measure of performance that incorporates some of the information above, in

particular a measure of the number of allocations that are superior, into the measurement.
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Definition. The maximal rank Mrk(a*) of an allocation a* is

(i): for maximal agent allocations a*, the order a* appears in the set of
maximal agent feasible allocations sorted by efficiency, with the optimal allocation
being rank 1, the second most efficient allocation being rank 2, etc.

(i1): for allocations a* that are not maximal agent allocations, the maximal
rank is defined via interpolation. Let a*y be the maximal allocation whose efficiency
is closest to, but above or equal to Eff(a*). Let a*; be a maximal allocation whose

efficiency is closest to, but below Eff(a*).

Mrik(a*) = BI@) ~ Eff (@ * ) Mrk(a*y) + (Eff (a*y) - Bff @) Mrk(a*,)
Eff(a* )~ Effa*,)

Here are some simple examples of calculating Mrk(a*). The optimal allocation is
assigned the rank ‘1’. The next best maximal agent allocation is given the rank ‘2’
and so forth. Allocations that are not maximal agent allocations have a fractional
rank indicating that its total agent redemption value is between the values for two
maximal agent allocations. For example, if the experimental allocation has a total
redemption value of 5679, the 20th maximal agent allocation has a total redemption
value of 5680 and the 21st maximal agent allocation has a total redemption value of
5670, then the ranking would be 20.1, indicating that the experimental allocation is

10% of the way between the 20th maximal agent allocation and the 21st maximal

agent allocation.
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Figure 8.1 compares Eff(a*) with maximal rank, Mrk(a*) using the 3NST7-1 period 1

testbed as a motivating example. Notice that all of the maximal rank allocations are
above 0.5 in efficiency. The slope change in Fig 8.1 near the optimal allocation seem
to indicate more difficulty of getting an allocation, with say Eff(a*)>0.95, where there
are few maximal agent allocations compared to getting an efficiency of Eff(a*)>0.85

where there are many maximal agent allocations.

In the experiments, BICAP+CPDA performed fairly well in all testbeds in terms of
both Eff(a*) and Mrk(a*), although some initial periods do yield low efficiency
results. The low efficiency results are due to agents submitting dominated bids. Some
agents bid a higher amount than their redemption value on the train. An open question
is whether this might be a learning effect*® that would go away with more periods or
better training. Table 8.2 shows the optimal allocation, the experimental result, and

its ratings under the two performance measures.

In cases where the efficiency is low, overbidding was a problem in the 3ST7-2
experiment, especially in the first period, where agent 0 overbid and acquired trains
A, P, and Q that should have been purchased by agents 3, 3, and 4 respectively.
Trains where overbidding caused lower efficiencies are indicated with a “*’ in Table

8.2. A summary of overbidding in the various experiments is given in Table 8.3. If

% Sometimes agents tend to try unusual or unprofitable strategies more often in the first period(s) of

an experiment, and then adopt more rational strategies as they learn about incentives. In principle, a
series of new experiments with the order of the periods reversed could distinguish between a learning
. effect and phenomonae that are dependent on the testbed environment
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overbidding is considered to be a type of agent error in the experiment“, then overall

the efficiencies are fairly high when agents do not commit these errors. This

observation is summarized as Observation 8.1.

Observation 8.1. The outcome allocations produced by the BICAP+CPDA

mechanism tend to be high in efficiency.

Support. From Table 8.2, in 8 of the 11 cases efficiency is above 0.93 and allocation
rank is above the 4th maximal agent allocation out of (3ST7 125 / 3NST7 139)
feasible maximal agent allocations. In the remaining 3 cases, efficiency is 0.82
(3ST7-1 period 01), 0.67 (3ST7-2 period 02) and 0.77 (3NST7-1 period 03) and
allocations ranks are poor. The first two inefficient cases seem to be largely due to
overbidding by certain agents, but the third inefficient case can not be explained by
overbidding. By experiment, the average efficiencies are 0.933 (3ST7-1), 0.869
(3ST7-2), 0.892 ( 3NST7-1), and 0.973 (3NST7-2). Over all experiments and

periods, the average efficiency was 0.912. o

In comparison to the earlier BICAP experiments, BICAP+CPDA is measurably lower
in average efficiency but still does quite well. Recall that only the 3ST7-1 and 3ST7-

2 testbeds have the structure of conflicts and redemption values of the three

41 In individual BICAP or BICAP+CPDA periods overbidding should never be profitable.

Overbidding decreases profitability for several agents, especially the one overbidding, in the period
that it occurs. Because redemption values are different across periods and because this is common
knowledge among the agents, it is expected that “repeated-play” effects are minimal and are not a
factor in explaining overbidding. The only remaining source for overbidding is agent etror.
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simultaneous independent periods of the 1T7 testbeds used in the BICAP

experiments, so comparisons can only take place between the BICAP/1T7 and
BICAP+CPDA/3ST7-1,2 treatments. The comparison is summarized as Observation

8.2.

Observation 8.2. (2.1) The outcome allocations produced by the BICAP+CPDA
mechanism in the 3ST7 environments are not as efficient, on average, as the
allocations produced in the BICAP mechanism experiments in the 1T7 testbeds. (2.ii)
However, examples exist for certain individual trains and periods, where

BICAP+CPDA does produce higher efficiencies than BICAP did.

Support. (2.i) Recall that each of the three groups of trains, {A..G}, {H..N}, and
{0..U}, in the 3ST7 testbeds corresponds to the trains {A...G} from different periods
of the 1T7 testbed. From Chapter 6, the average efficiency of the BICAP allocations
for trains A-G was 0.97 whereas the average efficiency in the 3ST7 testbeds for
BICAP+CPDA is 0.90. (2.ii) Here is one example where BICAP+CPDA
outperformed BICAP. In BICAP, experiment 3-period 2, trains { A,E} are allocated
but the optimal allocation is for trains {B,C,E} to be allocated. In the BICAP+CPDA
experiments the redemption values and conflicts for these trains are duplicated in
period 1 of both 3ST7-1 and 3ST7-2 experiments. The trains A and E in the Chapter
6 experiments correspond to H and L, respectively, here, while B,C,E in the Chapter

6 experiments corresponds to LJL here. In both 3ST7-1 and 3ST7-2, {I,J,L} is part
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of the BICAP+CPDA mechanism allocation. Therefore, BICAP+CPDA produced the

efficient allocation of these trains wherecas BICAP did not. e

Averaged data indicates that the 3NST7 testbeds produced higher efficiency results
than the 3ST7 testbeds, but because of the overbidding it is interesting to look at data
conditional on high efficiency of allocation (say above 0.90). The idea is to look at
mechanism performance in a regime where it would appear that agents understand the
incentives and the mechanism is performing adequately. Conditional on high
efficiency, the opposite is true. Allocations in the 3ST7 testbeds are of higher
efficiency and allocation rank than allocations in the 3NST7 testbeds. The difference
is small in terms of absolute efficiency, but larger when allocation rank is examined.
If computational difficulties affect allocations, then this effect is in the direction
expected. In the two 3ST7 testbeds, the proposers were all agents in 3ST7-1 but
restricted to three non-buyers in 3ST7-2. Conditional on high efficiency, 3ST7-1
allocation performance is higher than 3ST7-2. Again the effect is small but

suggestive. Observation 8.3 summarizes these findings.

Observation 8.3. Conditional on high efficiency (>0.90), BICAP+CPDA mechanism

allocation performance is higher in the 3ST7 environments than in the 3NST7
environments. Performance also decreases in the 3ST7 environments when the set of

agents who may propose mechanism improvements is restricted.



168
Support. The high efficiency requirement eliminates 3ST7-1 period 01, 3ST7-2

period 01, and 3NST7-1 period 03. In the remaining 8 periods, allocation rank in
maximal allocations averages 1.295/125 for the 3ST7-1 environment (anyone may
propose improvements), 1.785/125 for the 3ST7-2 environment (only the 3 non-
buyers may propose improvements), and 2.52/139 for the 3NST7 environments. In
terms of efficiencies, the relevant conditional averages are 0.988 for 35T7-1, 0.967

for 3ST7-2, and 0.963 for 3NST7-1 and 2 combined.

Given that efficiency is high, there appear to be small effects relating efficiency to
who may propose improvements and effects relating efficiency to the computational
difficulty of the environment. The fact that efficiency goes down when the number of
proposers is reduced indicates the importance of having many agents competing to
submit potential allocation improvements. The fact that the efficiency goes down
with computational difficulty is probably a predictable tradeoff in computationally

difficult environments.

The next area of performance to be investigated is computational performance.

8.3 Experimental Results: Computational Performance

Measures of computational performance specific to computer technology are not

applicable to-describing the computational performance of human agents in
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BICAP+CPDA. Clearly any computer could have found the bid maximizing potential

allocation in this environment much faster than the agents, who were working with
calculators and pencil and paper. Consideration of the goal of the computations

yields some more appropriate measures of performance.

The goal of the computations in BICAP+CPDA is to find the potential allocation
yielding the highest possible total bid revenue, given a set of current bids. In finding
potential allocations, a reasonable tradeoff between computational cost and the total
bid revenue for the potential allocation is expected. In these experiments,
computational cost is internal to the agents, who perform computations by hand.
There is no way to know an agent’s internalized computational cost in the experiment,
but the cost of the computational incentives paid to the agents can be measured. In
simple environments, the bid maximizing potential allocation should be found and the
computational incentives paid to agents should be low. Three measures of
computational performance will be examined in this chapter: proposal computational

efficiency, improvement lag, and cost of proposal improvements.

Definition. The proposal computation efficiency Pce(s) at a state s in BICAP+CPDA,

2B,

feAs

max

{As CF(As ®A5)INC=0) fep

is the ratio Pce(s) =

2 7 of the sum of bids at the current
I

potential allocation to the sum of bids at the bid maximizing potential allocation.
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Proposal efficiency is the ratio of the sum of agent’s current bids for the current
potential allocation to the maximum possible sum of agent’s current bids over all
feasible allocations. When the proposal efficiency is 1.0, the potential allocation is
the bid maximizing potential allocation®®, Figures 8.2 through 8.5 show the proposal
efficiency as a function of time in the experiment. Notice that in each graph the
proposal efficiency reaches 1.0, then experiences short down turns and then returns to
1.0. The short down turns are caused by bids that change the bid maximizing
potential allocation away from the current potential allocation, and the returns to 1.0
can be caused either by agents’ submission of improvements or by agents’ submission
of bids that return the bid maximizing potential allocation to its previous value. To
determine which of these is the case requires a more detailed examination of the data,

and further definitions.

Table 8.4 lists all bids that changed the bid maximizing potential allocation and all
improvements to the potential allocation for Period 1 of the 3ST7-1 testbed
experiment. The table is read as follows: Experiment Time measure time in seconds
for the experiment. Only differences in the time variable are significant ; the starting
value is not necessarily zero at the beginning of the experiment. The potential

allocation is the current potential allocation submitted by agents through CPDA. The

“® Warning: Do not confuse the concepts of bid maximizing and social value maximizing allocations.

The bid maximizing potential allocation is not the same concept as the optimal allocation or allocation
of highest social efficiency. The bid maximizing potential allocation depends on the current bids and
there may be high bids for trains that are only present in inefficient allocations. The optimal (social)
allocation does not depend on the current bids, but on the agents private values V.
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ID# column indicates the agent that submitted a bid and changed the bid maximizing

potential allocation, or that submitted an improvement and changed the potential
allocation. The bonus percentage column gives the incentive rate on the CPDA clock
at the time when the improvement was submitted. In the interests of space, only one

table is provided.

From Table 8.4 one can see that, at the beginning of the period, the potential
allocation computed by agents does not exactly track the changes in the bid
maximizing potential allocation. However, beginning at T=1962 the bid maximizing
potential allocation and the potential allocation matched, and whenever the bid
maximizing potential allocation changed, an improvement was submitted to update

the potential allocation to the new bid maximizing potential allocation.

To measure the degree to which the potential allocation tracks the bid maximizing
potential allocation, the improvement lag is defined below as the time between the
bid maximizing potential allocation changing and an improvement being submitted so
that the potential allocation changes to match it. If the bid maximizing potential
allocation changes two or more times without the potential allocation tracking the
change, then that bid maximizing potential allocation is said to be skipped. These

definitions will now be made more precise.
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Definition. The improvement lag is the total elapsed time between two ends of a path

of bid and improvement messages that have the following properties:
(i) the path starts at a state s where Pce(s)=1.
(ii) the first message in the path is a bid that changes the bid maximizing

potential allocation.

" (iii) no other bid message in the path changes the bid maximizing potential

allocation.

(iv) the last message in the path is an improvement proposal message that

returns proposal efficiency to 1.

Definition. A p'ath satisfying (i), (ii) and (iv) above but for which (iii) is false is said

to involve skipped improvements.

Recall from Chapter 7 that an agent who by submitting a bid changes the bid
maximizing potential allocation is called the inside bidder, reflecting the possibility
that this bidder knows that his bid changed the bid maximizing potential allocation.
Inside bidders have an interest in submitting improvements and changing the potential
allocation so that their bid is included in the allocation. Tables 8.5 through 8.8 detail
the time series of proposal efficiency lags, the id numbers of the inside bidder and the
agent proposing the improvement in the various experiments. Skipped N in the time

column indicates the number N of bid maximizing potential allocations that were
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skipped before the potential allocation once again matched the bid maximizing

potential allocation.

The tables and figures suggest the following result regarding computational

performance:

Observation 8.4. Under CPDA, agents’ submission of improvements causes

potential allocations to reach and track the bid maximizing potential allocations.
Support. From Figs. 8.2 through 8.4 it is seen that the proposal efficiency rises to 1.0
and then stays close to 1.0 for all experiments. Tables 17 through 20 reveal that once
Pce reaches 1.0, the potential allocation tends to track the bid maximizing potential
allocation. Few bid maximizing potential allocation changes are skipped after the
initial convergence, and the improvement lags are often quite low (under ten seconds

in over 50% of cases in the tables).

The previous result states that the CPDA incentives are producing high quality
computational outcomes in a timely fashion in both the 3ST7 and 3NST7

environments. For the next result the cost of eliciting these outcomes is examined.

Table 8.9 presents the earnings for each agent due to proposal improvement bonuses.
Due to a bug in the experimental software, agents sometimes earned more than these

amounts for improvements submitted simultaneously with other agents. Only the first
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agent was supposed to receive a bonus, but the software error created a situation

where a second agent could also receive a bonus if they pressed the keys almost
simultaneously with the first agent while the screen was updating. The erroneous
bonuses were removed from the data and are not reflected in the table above, but they
may have affected behavior. When the error occurred bonuses were somewhat larger
than specified in the rules. The error became noticeable to the agents during the
“3NST7” testbeds, but would appear to cause an incentive to wait and not submit
improvements, instead waiting for another agent to do so and then trying to time entry
to collect the larger bonus. The bug would tend to raise proposal efficiency lags and
with it proposal improvement earnings. Nevertheless, earnings from CPDA proposal

bonuses are low, which is stated as Observation 8.5.

Observation 8.5. Under CPDA, cost of paying incentives for computing potential

allocations is low.

Support. The total cost of incentives paid to agents under CPDA, as a percentage of
total bid revenue, was below 3% in each period for all 3ST7 testbed experiments and

below 4.9% in each period for all 3NST7 testbed experiments. o

One reason for having the set of proposers be three independent proposers in 3ST7-2
instead of all agents as in 3ST7-1 and 3NST7-1,2 was to see if a small set of agents,

responsible for the potential allocation, could reach some type of collusive outcome.
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If agents in Ip withhold submitting improvements to the potential allocation until the

CPDA clock gave a near 100% bonus rate, they could extract large amounts of
surplus as CPDA computational incentives. Table 8.9 shows that this is not the case,

and this is stated as Observation 8.6.

Observation 8.6. Under CPDA, small sets of [Ipl >=3 proposers are sufficient for

competition in submitting improvements. No evidence exists that when [Ipl =3,
proposers were able to collude and gain higher CPDA incentives than would be

available in a competitive environment.

Support. From Table 8.9, in the 3ST7-2 testbed, which had only three agents capable
of proposing improvements, the total cost of CPDA incentives was the lowest of all

testbeds and ranged from 0.2% to 0.6% of total bid revenue. o

The discussion will now turn to results regarding revenue generation and
closing bid prices. The preceding results show that BICAP+CPDA is about as
efficient as BICAP, and that CPDA works well in providing economic incentives for
computational activities. To demonstrate that BICAP+CPDA is a successful
modification of BICAP, it remains to show that revenue to the seller and opportunities
for purchasing train rights in the two mechanisms are roughly equivalent. The intent
is to take a first step in showing that modification of BICAP by adding CPDA did not

alter incentives for bidding in any noticeable way and that bidding behavior under
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either mechanism is virtually identical. If this is true then one would expect

BICAP+CPDA to produce efficient allocations in any situation in which BICAP

produces them.

8.4 Experimental Results: Does CPDA Alter BICAP Revenue
Generation and Closing Prices?

The results in this section are based on a comparative study of the
BICAP+CPDA experiments and the BICAP experiments. It will be shown that total
revenues and train prices generated by the BICAP+CPDA mechanism in the 3ST7
environments are generally fairly close to those that occurred in the BICAP
experiments®. If the changes in the BICAP mechanism necessary to include CPDA
have only minimal consequences for bidding behavior, then one would expect
revenues and prices to be similar in similar testbeds across the two sets of

experiments.

The experiments show that incorporation of CPDA into BICAP does not radically
alter the ability of the mechanism to raise revenue or the likely distributions of
surplus. Since these important economic properties are unaffected, this supports an
argument for the study of the incorporation of decentralized computation into other

electronic market institutions that have been proposed.

4% 1t is not meaningful in an economic sense to directly compare the 3NST7 environment revenues

and train prices with those from the 3ST7 or 1T7 environments. Although the redemption values are
the same, the conflicts are different, and the sets of feasible allocations based upon the conflicts are
different. This changes the optimal allocation and the set of prices that support it.
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Table 8.10 compares bid revenues predicted from the BICAP experiments with the
BICAP+CPDA bid revenues in the 3ST7-1 and 3ST7-2 testbed experiments. Recall

| that each period in the 3ST7 testbeds corresponds to three periods in the 1T7 testbeds.
The average predicted revenue for a period in the 3ST7 testbed consists of the
averages, across all BICAP-1T7 experiments, of the sums of bid revenues attained in
the three corresponding™ periods of the BICAP experiments that make up one period
of the BICAP+CPDA experiments. Standard deviations are calculated for these
average revenue predictions using the BICAP data. Because sample sizes are small
(only three BICAP experiments), the sample standard deviations are provided as a
rough measure of variability of the results and not as a tool for making rigorous
statistical inferences. This variation might be economic or procedural in nature, and
might be a possible indicator for variability in revenue in the new experiments as
well. From the table one can see that the 3ST7 testbed revenues are within a few
standard deviations of the predictions made using the BICAP-1T7 data. That suggests

the following result:

Observation 8.7. In simple environments having identical (but relabeled) conflicts

and redemption values, total bid revenue produced by .the BICAP+CPDA

mechanism is close to the total bid revenue produced by the BICAP mechanism.

% This correspondence was defined and discussed in the testbed constructions of Chapter 3, most

notably Section 3.3 and Tables 3.3 to 3.6.
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Support. Table 8.10 compares the BICAP revenues to the BICAP+CPDA revenues.
Differences appear to be on the order of a few standard deviations in a small sample
size. Half (3/6) of the 3ST7 experimental testbed periods produce revenues within
1.0 standard deviations of the revenue predictions, and (5/6) of the 3ST7 experimental
testbed periods produce revenues within 3.0 standard deviations of the revenue

predictions.

Table 8.11 shows a comparison of mechanism closing bid prices for trains in the
BICAP experiments and the BICAP+CPDA 3ST7 testbed experiments. The BICAP
price data is averaged, relabeled to correspond to its role in the new testbed, and
presented alongside counterpart data produced in the 3ST7 testbed environment”".
To give an idea of the variance in the BICAP data, which might be due to either
economic or procedural effects, the sample standard deviation is given alongside the
average. Once again, small sample sizes and unknown error distributions make it
impossible to extract statistically rigorous inferences from the data, so such
inferences will not be attempted but are a topic for future work. However, one can
make a rough examination to see to what extent prices in the two BICAP+CPDA
3ST7 experiments are in the range produced in the BICAP-1T7 data. This rough

examination yields the following observation.

' For example, period 2 train C in the 1ST7 testbed corresponds to period 1 item J in the three-track

testbed environments. Recall that the relationship between trains in the two environments is discussed
in Chapter 3.
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Observation 8.8. In environments having identical (but relabeled) conflicts and

redemption values, the majority of final bid prices for trains produced by the
BICAP+CPDA mechanism tend to be close to the final bid prices for trains produced
by the BICAP mechanism.

Support. In Table 8.11, there are six trials, two experiments 3ST7-1 and 3ST7-2 and
three periods for each experiment. In each trial there are 21 trains. In four of the six
trials, a majority of the trains have closing bid prices that are within one standard
deviation of the BICAP train closing bid price results. Overall, two-thirds of the
trains have closing bid prices that are within two standard deviations of the BICAP

results. e

Additionally, many of the outlyers in Table 8.11 can be explained by overbidding in
the new experiments or unusually small variance in the BICAP experiments. In 6 of
the 33 cases where train closing prices were further than two standard deviations of
the BICAP results, an agent overbid his/her redemption value. While there may still
be a significant deviation for some of the cases, most of the cases produce closing bid

prices under BICAP+CPDA are reasonably close to those produced in BICAP.

By showing that the revenues generated by BICAP+CPDA are close to the revenues
generated by BICAP in similar environments,-one can argue that a seller trying to
decide from this data which mechanism to use on the basis of revenue generation

alone would be hard pressed to show conclusive reasons for preference of BICAP
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over BICAP+CPDA or vice versa. Buyers who might have a political input into

what mechanism will be used would also have a difficult time showing, from this
data, that the mechanisms produce any sort of bias in closing prices. Opportunities
for revenue for the seller and for purchasing trains for the buyers remain much the
same under both the BICAP and the BICAP+CPDA mechanisms in the simple
environments tested here. The importance of these results is that it shows that a smart
market mechanism can be modified to go from centralized computation (BICAP) to
decentralized computation (BICAP+CPDA) without somehow perverting the
allocational performance of the mechanism. This strengthens the need for similar
study of other smart market mechanisms, especially those actually under

consideration for use in high computational cost environments.

It is not sufficient, however, to show that the mechanism performs well in both
allocation and computational respects and that closing bid prices are unaltered by the
CPDA modification. It is also necessary to show that design consistency is
maintained, that the modifications have not changed basic aspects of bidding behavior
and Nash-1 Stationary Equilibria (NE1) on which the initial theoretical predictions of

BICAP’s high efficiency rest. That is the purpose of the next section.
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8.5 Experimental Results: Design Consistency and the NE1 Puzzle

Examining the BICAP+CPDA experiments for design consistency produces mixed
results. Bidding behavior in the BICAP+CPDA experiments seems to roughly
correspond to the strong neutral process, but NE1 outcomes are not being attained. In
the only case where a NE1 outcome was attained, the outcome was not 100%
efficient. This contrasts against the Chapter 6 BICAP experiments where most
outcomes were at or near>> NE1 and every outcome that was not a 100% efficient
outcome was also not an NE1 outcome. Thus while the efficiencies of
BICAP+CPDA are almost as high as the efficiencies in BICAP, and the closing bid
prices for BICAP+CPDA in the 3ST7 testbeds are very similar to those obtained in
the BICAP experiments, theoretical design consistency is not as strong with the
BICAP+CPDA mechanism as with the BICAP mechanism. The difficulties above,
that inefficient NE1 are occurring and that NE1 are not obtained as often, will be
referred to as the NE1 puzzle. The purpose of this section is to provide the data

leading to the NE1 puzzle, evaluate its relevance, and suggest a partial explanation.

Table 8.12 shows that the majority of bids in the BICAP+CPDA experiments are

pivotal and neutral bids.

However, agents are leaving some pivotal bids unsubmitted, and NE1 profiles of bids

are not being reached when the mechanism terminates. Table 8.13 shows the

2 “Near NE1’ means that pivotal bids were worth no more than 50Fr.
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unsubmitted pivotal bids that existed for each agent at the close. A “---” means that

an agent did not have any pivotal bidding opportunities at the close. Notice that there
is often at least one agent who, instead of allowing the mechanism to close, could
profitably bid on some trains, increasing their potential profit by several dollars over
what they received in the experiments. The only exact NE1 equilibria occurred in
period 1 of the 3ST7-1 testbed. However, this NE1 equilibria resulted in an

inefficient allocation.

One difference between the 1T7 and the three track environment is that, in the three
track environments, agents may have the high value Vi¢ on several trains. In the 1T7
environment the agents may have a high value of V¢ on at most two trains, and these
are trains that conflict and are not jointly feasible. It turns out that the agents who
have high values on multiple trains are associated with these initially puzzling design
consistency results. These agents will be referred to as multitrain agents. To examine

this effect, first a few definitions are needed.

Definition. The high value count HVC(i) of an agent icI is the number of trains fe F

for which i has the high value, i.e. m;=| {feF : Vjel Vi> Vie }

Definition. An agent ic1 is a multitrain agent if HVC(i) > 2 .
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Examples of multitrain agents not submitting pivotal bids exist in the original BICAP

experiments. The non-NE1 outcomes in Period 2-Experiment 3, Period 3-
Experiment 2, and Period 5-Experiment 3 in BICAP in the 1T7 testbed are all due to a
multitrain bidder who had the high redemption value on two conflicting trains. These
agents did not place certain pivotal bids, instead allowing the mechanism to terminate.
These cases also correspond to the only three trials where there were outcomes that

were not 100% efficient.

Given these facts about the BICAP experiments, it would not be suprising to learn

that multitrain agents cause difficulties in the BICAP+CPDA experiments.

By classifying the cases where non-NE1 behavior according to HVC, a large step
forward is made in explaining the NE1 puzzle. Table 8.14 shows the proportion of
cases (trains times periods) where agents failed to submit pivotal bids, broken down
to give the number of cases for each possible value of HVC(i). Figure 8.6 displays
the foregone increase in potential profit in these cases, again using HVC(i) as the

explanatory variable.

Total environmental complexity increases whenever multitrain-agent complexities
increase, e.g., when agents have the highest redemption values on more trains, and

when overall computational difficulty for the economic environment increases.
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Observation 8.9. Under BICAP+CPDA, increasing either the interdependence of

train scheduling or increasing HVC(i) will tend to increase the propensity of an agent
to leave pivotal bids unsubmitted at the mechanism close.

Support. From Table 8.14 it is seen that the proportions tend to increase in going
from either 3ST7 to 3NST7 testbeds or in increasing the number of trains for which

an agent holds the highest redemption value. e

Observation 8.10. Under BICAP+CPDA, HVC(i) is positively correlated with the
potential profit value of pivotal bids that agents leave unsubmitted at the mechanism
close.

Support. From Figure 8.6 it is seen that the foregone potential profit values tend to lie
along an ascending path in the number of trains for which an agent holds the highest
redemption value. About two-thirds of cases (13/17) where forgone potential profit

is greater than 100Fr come from the 3NST7 testbed environments. ®

These observations suggest that the NE1-puzzle is at least partially explainable in
terms of multitrain-agent phenomena. Whether this occurs because of increased
computational complexity to the agent or because of strategic considerations is
unknown because there is no way to observe whether it is the case that agents did not
know pivotal bids existed (computational complexity) or if they knew the bids existed
but did not wish to submit them (strategic complexity). If the multitrain-agent

phenomena is computational in nature, then means may exist to obtain better
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performance in the mechanism. If the multitrain-agent phenomena is strategic in

nature, then there is no reason to believe that better performance can be obtained

given the pattern of values V.

The increase in the computational difficulty of the overall environment from the 3ST-
7 experiments to the 3NST7 experiments does enhance the effects. If these are
computational effects, then it might be diminished in environments where agents had
access to computer assistance in determining their bids. In a field application one
expects that this would be the case: agents would provide themselves with whatever
equipment was most cost effective in helping them bid effectively. In the
experiments agents were restricted to use of pencil and paper and calculator to
determine their bids. The multitrain agent may find it cumbersome to search for
pivotal bids in this manner. This suggests that the NE1 puzzle may be largely a
computational effect, but additional experiments would be necessary to confirm that

this is the case and for now it is an open question.
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8.6 Conclusions

This chapter began with the question of whether BICAP+CPDA could pass a proof of
principle test. That is, did removing the centralized computation of potential
allocations from BICAP and replacing it with a system of decentralized incentives,
CPDA, result in a mechanism that worked well? Would the BICbAP+CPDA
mechanism allocate resources efficiently, and elicit computational work from th¢
agents effectively? Would these changes result in a mechanism where the bidding

behaviors observed in BICAP are preserved or would there be large differences?

The answers to most of these questions are positive. BICAP+CPDA does allocate
resources fairly efficiently. It is effective in eliciting the computational work from the
agents: agents found the bid maximizing potential allocations and provided them at
low cost. For the most part BICAP+CPDA produces similar outcomes to BICAP in
terms of closing bid prices and allocations when the mechanisms are operated in
comparable economic environments. All of these positive results occurred in an
environment that contained all the economic issues that existed in the BICAP train
experiments, which included elements that critics of decéntralized allocation thought
were problematic in the rail environment. Therefore, the effectiveness of
BICAP+CPDA was not merely tested in an environment where it would necessarily
be successful, but in an environment with known, problematic allocational and

computational issues that must be overcome.
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Mixed results enter when the design consistency tests for BICAP are applied to
BICAP+CPDA: BICAP+CPDA does not seem to produce NE1 outcomes. Some
conjectures are offered that might suggest certain elements in the environment are
problematic, i.e., multitrain-agents. More experiments should be conducted to try to
ascertain whether the failure is absent in the absence of multitrain-agents and whether
the failure is due to computational or strategic issues when multitrain-agents are

present.

On the whole, BICAP+CPDA would appear to pass a proof-of-principle test.
BICAP+CPDA was designed to automatically adjust to problems of computational
scale, and tests towards larger and larger scales would now appear to be appropriate.
Problems will be encountered and could be addressed by different modifications to

the mechanism.
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Figure 8.1 Efficiency of the Maximal Allocations vs. Allocation Rank.

3NST7-1 Experimental Testbed, Period 1.
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Figure 8.2: Proposal Efficiency in 3ST7-1 Experiment
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Figure 8.3 : Proposal Efficiency in the 3ST7-2 Experiment
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Figure 8.4: Proposal Efficiency for SNST7-1 Experiment.
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Figure 8.5: Proposal Efficiency for 3NST7-2 Experiment
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Figure 8.6: Missed Pivotal Bidding Opportunities at Closing: Possible Increase in
Potential Profit vs. HVC for Each Agent
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Table 8.1: Summary of Experiments Performed with Three-Track Testbeds

Experiment | Environment Proposers P Date Periods | Subjects

38T7-1 38T7 all buyers 772094 |3 10 Caltech students
(separable)

38T7-2 38T7 3 completely 7/23/94 |3 13 Caltech Student
(separable) independent

agents

3NST7-1 3NST7 all buyers 8/9/94 3 10 Caltech Students
(interdependent)

3NST7-2 3NST7 all buyers 8/10/94 | 2* 10 Caltech Students
(interdependent)

*Time did not allow running period 3.




Table 8.2: Efficiencies of Final Allocations in the Three-Track Testbed Experiments
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Experiment | Period Optimal System Allocation { Allocation
System Allocation Efficiency | Rank in
Allocation realized in Maximal
Experiment Allocations
3S8T7-1 01 ADFIJLORT BCEIJLP*QS 0.824 37.22/125
02 BCEHKMPQS | BCEHKMPQS 0.976 1.59/125
03 ADFHKMPQS | ADFHKMPQS 1.0 1/125
35T7-2 01 ADFIJLORT A*DFIF*LP*Q*S | 0.674 108.97/125
02 BCEHKMPQS | BCEHKM*PQS 0.962 1.95/125
03 ADFHKMPQS | ADFHK*MPQS 0.971 1.62/125
3NST7-1 01 BCEHLORT ADFILPQS 0.970 2/139
02 BCEHLORT GHKMPQS 0.936 3.75/139
03 DFHKMPQS ADFNPQS 0.769 74.7/139
3NST7-2 01 BCEHLORT BCEHLORT 0.946 3.34/139
02 BCEHLORT BCEHLORT 1.0 1/139

* .- An agent overbid (bid higher than his/her redemption value) on this project and purchased it,

causing an allocation with lower efficiency than the optimal allocation.
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Table 8.3: Overbidding at the Final Allocation

Experiment Period | Project | Project Agent Agent’s Agent’s
Awarded Overbidding Project Project
in Bid Redemption
Outcome Value
Allocation

3ST7-1

01
P Y 9 1000 109
02
D N 8 512 499
3ST7-2
01
A Y 0 2000 332
J Y 2 500 335
P Y 0 650 365
Q Y 0 1226 360
02
M Y 5 600 175
U N 6 1600 1340
03
K Y 3 1000 662
3NST7-1
02
D N 2 766 385
N N 3 2411 1039
U N 3 1800 214
3NST7-2
02
E Y 4 1331 1300
N N 6 2000 1999




Table 8.4: Time Series of Bid Maximizing Allocations vs. BICAP+CPDA Potential
Allocations, 3ST7-1 Experiment

Experiment Bid Potential ID# of Agent | Bonus

Time(sec) Maximizing Allocation Who Changed | Percentage
Potential [PA] BMPA or PA when
Allocation Improvement
[BMPA] Submitted

PERIODO1

1756 BENU 5

1759 AHU 3

1763 A 0 6

1765 ANO 3

1772 AO 0 11

1773 AO 3 0

1775 AHU 2

1789 ANO 2

1792 BCFNOT 7

1800 ADFIJLPQS 4 0

1805 CHL 5 6

1806 BCENPQT 2

1807 BCENPQT 7

1811 BCFNPQT 7

1818 BCENU 2

1819 BCFHMU 1

1823 ADFIJLPQS 4 6

1826 BCFHL.U 1

1839 BCEHLU 0 15

1842 BCFIJLU 7

1859 BCFHKMU 7

1860 BCFIJLU 4

1867 BCFHKMU 7

1870 BCFIJLU 3

1880 BCEHKMU 0 6

1890 BCFHKMU 2

1962 BCEHKMU 5

2071 GHKMU 0

2078 GHKMU 0 1

2128 GNU 0

2151 GNU 0 6

2205 BCENU 8

2212 BCENU 8 11

2588 BCENPQS 7

2607 BCENPQS 8 20

2721 BCEULPQS 8

2730 BCEIILPQS 8 8
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Table 8.5: Proposal Efficiency Lags, 3ST7-1 Experiment

Time (sec) Proposal ID# of Inside ID# of Agent
Efficiency Lag Bidder Proposing
(sec) Improvement
PERIODO1
skipped 19
2078 7 0 0
2151 23 0 0
2212 7 8 8
2607 19 7 8
2730 9 8 8
PERIODO2
skipped 10
3659 19 7 0
skipped 1
3706 20 5 0
3771 3 9 9
3782 4 5 5
3811 18 0 0
4219 37 6 8
4265 14 9 9
4455 115 6 8
4520 5 4 4
4581 12 1 4
4669 2 9 6
4776 3 2 3
4821 1 8 8
4833 3 9 3
PERIOD03
skipped 9
5553 58 7 5
skipped 13
5861 18 9 5
5898 7 3 3
6074 36 4 3
6228 36 6 5
6279 6 2 5
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Table 8.6: Proposal Efficiency Lags, 3ST7-2 Experiment

Time (sec) Proposal ID# of Inside ID# of Agent
Efficiency Lag Bidder Proposing
Improvement

PERIODO1

skipped 8

1656 13 2 21

skipped 5

1864 83 1 23

skipped 4

2154 23 4 22

skipped 1

2222 59 4 21
PERIODO02

skipped 6

3195 3 7 21

skipped 5

3364 67 6 22

3561 81 6 21

skipped 5

3760 3 5 21
PERIODO03

skipped 11

4981 2 3 23

5204 12 4 23

skipped 2

5369 1 1 23

5381 2 2 23
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Table 8.7: Proposal Efficiency Lags, 3NST7-1 Experiment

Time (sec) Proposal ID# of Inside ID# of Agent
Efficiency Lag Bidder Proposing
Improvement
PERIODO1
skipped 5
2287 59 1 3
2389 17 2 3
2494 10 5 5
2664 46 3 4
2907 3 3 3
2941 2 0 0
2981 11 3 3
3082 3 0 0
3108 5 3 4
3154 7 0 0
3209 13 8 6
PERIOD02
skipped 7
3715 2 6 2
skipped 1
3960 104 5 5
skipped 4
4429 32 9 0
4563 166 9 1
4606 2 3 4
4915 7 2 1
5042 3 5 1
PERIODO03
skipped 4
5434 4 2 0
skipped 5
5621 13 9 5
5673 48 8 5
skipped 2
5739 3 6 4
skipped 1
5777 12 1 1
5865 12 2 2
5927 9 6 6
5957 16 1 7
6051 3 6 6
6070 7 9 1
6177 12 6 0
6205 2 4 2
6251 2 6 1
6266 1 4 5
6455 9 7 3
6502 1 4 9
6554 27 7 6
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Table 8.8: Proposal Efficiency Lags, 3SNST7-2 Experiment

Time (sec) Proposal ID# of Inside ID# of Agent
Efficiency Lag Bidder Proposing
Improvement
PERIOD(1

skipped 2

2604 21 0 5
skipped 8

2849 32 5 5
2942 17 8 8
skipped 1

3041 22 2 5
3089 4 5 5
skipped 5

3371 74 3 4
3475 3 4 4
skipped 1

3896 324 3 8

PERIODO02

skipped 5

4392 36 2 4
skipped 4

4620 - 30 5 5
5167 577 5 4
skipped 2

5874 320 6 5
5885 4 5 7
5906 1 4 4
5934 4 2 7
5944 1 1 3
6049 3 0 8
6095 2 4 4
6103 3 6 7
6129 1 4 4
6137 3 3 7
6158 1 4 4
6167 3 0 7
6526 296 6 8
skipped 2

6771 4 3 8
6809 1 0 7
6857 1 5 0
6897 1 7 4
6940 4 3 0
7003 4 6 6.
7087 1 5 8
skipped 1

7282 3 3 8
7330 1 6 7
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Table 8.9: Agent Earnings v for Submission of Improvements by Period and

Experiment.
Experiment | Period | id0 |id1 |id2 |id3 |id4 |id5 |id 6 id7 |id8 |id9 [ Total
3ST7-1 > 184 10 0 0 11 6 0 0 » 31 0 232
38T7-2 21 17 1 39
3NST7-1 95 69 {0 123 | 5 28 30 0 0 0 350
3NST7-2 0 0 0 0 12 67 12 0 40 |0 131
02
3ST7-1 75 1 0 0 75 0 0 0 18 |10 169
3ST7-2 5 0 7 12
3NST7-1 0 44 134 100 {1 O 14 8 0 0 114 | 314
3NST7-2 0 0 0 4 10 12 23 0 32 |3 84
3ST7-1 > 43 0 8 18 127 23 0 0 0 0 119
3ST7-2 0 14 29 43
3NST7-1 35 13 |4 9 1 22 2 1 4 15 106




205

Table 8.10: Comparison of Bid Revenues Generated in the 3ST7-1 and 3ST7-2
Experiments with Predictions Using Bid Revenues from the BICAP/1T7
Experimental Data

PERIOD Avg. Standard 38T7-1 38T7-2
Predicted Deviation Revenue Revenue
Revenue, Across
Based on BICAP/1T7
BICAP/1T7 Experiments
Experiments
01 7581 199 7734 8413
02 6727 179 7247 6753
03 6898 159 6803 7174
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Table 8.11: Final Bid Prices in the 3ST7 Testbed Environments vs.

BICAP/1T7 Results
3ST7 Avg.Price Std. Prices Prices
PERIOD BICAP IT7 | Dev. 38T7-1 38T7-2
01 [Centralized | BICAP [Buyers | [Special
Opt.] 1T7 Propose] | Proposers]

A 1367 115 900 2000

B 547 47 526 520

C 1234 208 1410 1405

D 1090 178 1000 1020

E 981 216 1012 950

F 900 100 359 645

G 2605. 8 2610 2527

H 1063 55 630 850

| 462 54 525 720

J 651 36 600 500

K 338 8 300 250

L 1030 30 1030 1032

M 440 121 500 475

N 1627 29 1625 1616

0 908 203 440 1000

P 448 131 1000 650

Q 1058 38 1030 1226

R 714 85 235 920

S 550 50 601 620

T 364 32 350 400

U 1743 159 1678 1840
38T7 Avg Price Std. Prices Prices
PERIOD BICAP 1T7 | Dev. 38T7-1 38T7-2
02 [Centralized [Buyers [Special

Opt.] Propose] | Proposers]

A 1017 125 1320 1100

B 625 91 600 600

C 773 38 1000 800

D 671 220 512 400

E 1150 131 1250 1104

F 520 276 800 812

G 1797 308 2057 2057

H 1307 200 1500 1200 .

I 524 4 236 438

J 956 169 572 800

K 603 72 520 640

L 767 76 500 800

M 360 0 357 600

N 1861 236 1900 1999

0] 700 1 500 600

P 411 13 400 400
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Q 709 38 820 676
R 348 47 231 321
S 790 10 800 733
T 387 23 232 320
U 1213 186 1000 1600
Final Bid Prices in the 3ST7 Testbed Experiments vs. BICAP Results.
3ST7 Avg Price Std. Prices Prices
PERIOD BICAP 1T7 | Dev. 38T7-1 3S8T7-2
03 [Centralized [Buyers | [Special
Opt.] Propose] | Proposers]
A 1473 20 1450 1450
B 540 27 614 614
C 619 25 1000 650
D 400 50 330 400
E 642 81 518 700
F 400 26 419 420
G 848 247 700 900
H 908 203 1100 1000
I 448 131 350 400
J 1058 38 1100 1070
K 714 85 670 1000
L 550 50 490 500
M 364 32 370 390
N 1743 159 1732 1730
o) 1017 125 1000 1200
P 625 91 605 600
Q 773 38 799 824
R 671 220 550 499
S 1150 131 1060 1090
T 520 276 800 812
U 1797 308 1700 2057
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Table 8.12: Classification of bids (Counts, with Percentages in Brackets) in Three-
Track Testbed Experiments

Period Experiment BICAP BICAP- BICAP-
-PIVOTAL NEUTRAL DOMINATED
01
3ST7-1 254 [0.799] 53 10.167] 11 [0.035]
3ST7-2 270 [0.465] 239 [0.411] 72 [0.124]
3NST7-1 84 [0.506} 78 [0.470] 4 [0.024]
3NST7-2 80 [0.362] 130 [0.588] 11 [0.050]
02
3ST7-1 212 [0.721] 68 [0.231] 14 [0.048]
3ST7-2 269 [0.536] 216 [0.430] 17 [0.034]
3NST7-1 138 [0.414] 191 [0.574] 4 [0.012]
3NST7-2 229 [0.512) 189 [0.423] 29 [0.065]
03
38T7 196 [0.613] 121 [0.378] 3 [0.009]
3ST7-2 256 [0.540] 195 [0.411] 23 [0.049]
3NST7-1 129 [0.373] 210 [0.607] 7 [0.020]
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Table 8.13: Unsubmitted Pivotal Bids at Close in Three-Track Testbed Experiments.

3S8T7-1 Period Agent Train Pivotal Bid Increase in
Potential Profit

01

0 - . -

1 - - -

2 - - -

3 - - -

4 - - B

5 - - -

6 - - -

7 - - -

8 - - -

9 - - -
02

0 - - -

1 - - -

2 - - -

3 - - -

4 - - -

5 - - -

6 - - -

7 K 521 352

8 - - -

9 - - -
03

0 - - -

1 E 585 118

2 - - -

3 - - -

4 - - -

5 - - -

6 S 1061 6

7 - - -

8 - - -

9 - - -

3ST7-2

01

OfoverbidPQ] | T 577 884

1 - - -

2 - - -

3 0] 1177 681

4 - - -

5 - - -

6 . - -

7 - - -

8 - - -

9 - - -

02
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0 D 593 1
1 ; ; N
2 - - )
3 ; - 5
4 - . R
5 S 734 51
6 - ) -
7 - - N
8 - 3 5
9 : - -
03
0 R 503 91
1 - ) )
2 - - 5
3 ; - -
4 - . R
5 ; ) -
6 ; ) ;
7 R - -
8 ; ) -
9 ; ) .
3NST7-1
01
0 - ) -
1 ; - )
2 N ; -
3 0 1642 418
4 . - -
5 ; _ ;
6 R - -
7 D 831 143
8 Q 1023 2
9 R . ;
02
0 - . -
1 - - N
2 - 5
3 ; . .
4 E 1057 243
5 - i -
6 F 614 175
7 K 556 317
8 N ; N
9 } ) 5
03
0 } ) :
1 N 1754 482
2 A 1608 29
3 - A -
4 D 308 1173
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5 - - -
6 S 753 306
7 M 573 201
3 - - -
9 P 856 249
Experiment Period Agent Best Response | Amount to Bid | Change in
Bid on Project Potential
' Profit
3NST7-2
01
0 G 2694 108
1 - - -
2 - - -
3 R 526 136
4 A” 1346 819
5 - - -
6 - - -
7 - - -
8 - R -
9 - - -
02
0 - - -
1 - . -
2 - - -
3 - R -
4 - . R
5 - - -
6 G 2053 4
7 K 748 125
8 - - -
) - - -
03

53

By bidding on A , agent 4 can change his allocation to A,D,Q.
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Table 8.14: Number of Cases Where Agents Fail to Supply All Pivotal Bids, vs.

Agent High Value Count

- High Value | 0 1 2 3 4 6
Count =
Experiment
]
38T7-1 0/5 (0%) 1/5 (20%) 1/10 (10%) 1/4 (25%) 1/5 (20%) 0/1 (0%)
35T7-2 0/5 (0%) 1/5 (20%) 1/10 (10%) 1/4 (25%) 1/5 (20%) 0/1 (0%)
3NST7-1 0/5 (0%) 2/5 (40%) 5/10 (50%) 1/4 (25%) 3/5 (60%) 1/1 (100%)
3NST7-2 0/3 (0%) 0/3 (0%) 1/7 (14%) 1/3 (33%) 3/4 (75%) 0/0 (------ )
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- CHAPTER 9. Concluding Remarks

This thesis began with the goal of providing a demonstration that a decentralized
mechanism exists for allocating the right to access tracks on a railroad. Specific
issues concerning rail allocation were enumerated in Chapter 3 and experimental
laboratory testbeds were created that included each issue. The remainder of the
chapters develops and tests the BICAP and BICAP+CPDA mechanisms in laboratory

testbed environments from Chapter 3.

The performance of the mechanism in the laboratory testbeds provides the desired
demonstration: a practical, efficient, decentralized mechanism does exist for
allocating the right to access tracks on a railroad, at least in the experimental
laboratory railroad environments. If it were impossible to create such an allocation
mechanism because of one or more issues in Chapter 3, then either the search for such
a mechanism or the laboratory experiments involving the BICAP mechanism would
have failed. Because the experiments show that high efficiency allocations were
achieved, the burden of proof is shifted to opponents of decentralization to provide
additional issues not present in the Chapter 3 testbeds in order to argue that

decentralized mechanisms are, nevertheless, impossible in the field.

While the efficiency of the allocations and the design consistency tests show that a

mechanism exists that performs well in spite of all the issues of Chapter 3, it is useful
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to briefly review each issue and note where in the analysis it was addressed and

solved. In this way some insight into the process of mechanism design and testing is
provided. Some issues were essentially design constraints on the feasible set or on the
rules of the mechanism and were solved through specification of the feasible set or
the mechanism. Other issues required experimental evidence of performance. Some

issues are of a mixed variety and involve both specification and performance.

Size. Size and computational issues related to size were resolved by modifying the
BICAP mechanism to the BICAP+CPDA mechanism defined in Chapter 7. The
modifications change responsibility for difficult computational tasks: while BICAP
involves difficult optimization tasks being performed by the mechanism authority,
BICAP+CPDA involves a series of approximations to the optimum being computed
voluntarily by the agents through the CPDA incentive system. Computation stops
when agents no longer find a sufficient incentive for continuing. Therefore,
computation can not hold up the mechanism, as in BICAP. The BICAP+CPDA
mechanism was tested in Chapter 8. It produced high efficiency allocations and
bidding behavior mostly similar to BICAP, although there were some puzzling design
consistency problems. The BICAP+CPDA mechanism can not fail to produce
allocations because of size and related computational difficulties, and since it

performs comparably to BICAP, size alone can not.be an issue.
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Non-Track Constraints. The issue of non-track constraints involved the fact that not

all infeasibilites occur because of collisions between trains on the track. This issue
was revolved by including all such constraints when the set of feasible allocations for
the tracks was defined. Essentially this problem can be solved with the use of the
binary conflicts methodology for representing feasibility. Because the non-track
constraints are included in the binary conflicts representing infeasibilities that BICAP

is designed to avoid, the non-track constraints are always considered.

Schedule Interdegendency. All testbeds contained considerable schedule
interdependency. Interdependency is an essential feature of the railroad environment
and can not be assumed away in the specification of feasible sets of allocations or in
the design of mechanisms. Therefore, it is a performance issue: did it cause problems
obtaining efficient allocations? Schedule interdependency was not seen to be a
problem in producing efficient allocations when agents have the high value for only a
few trains. In cases described in Chapter 6 and Chapter 8, certain agents who had the
high bid on several trains that involved interdependencies sometimes did not bid high
enough on certain trains to obtain an efficient allocation. However, this would appear

to be more of a type of network monopoly problem than a problem with schedule

interdependency per se.

Revelation of Values. The principles of operation of the BICAP mechanism detailed

in Chapter 5 suggest that revelation of values should be high. The experimental
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analysis of BICAP in Chapter 6 show a trend in the data towards full revelation of

train value in the bids of excluded agents. The agents included in the allocation tend
to be the high value agents. Therefore, a theory of revelation of values is designed

into the BICAP mechanism and seems to be occurring in the experiments.

Resource and Market Fragmentation. If a classical market process of multiple,

independent markets for small slots of track time is to be used, then the number of
potential markets would be large. Such a process was avoided. Instead, in BICAP
simultaneous, interdependent auctions existed for the rights to run each train. This
kept the number of markets small and ensured that agents always obtained usable

track time slots.

Strong Complements. If the “multiple independent market” approach mentioned in
the paragraph above is used, then strong complements will be present and, as a result,
prices may not exist that support a Pareto-optimal outcomes as a competitive
equilibrium. It is the act of splitting up the resources into the necessary small chunks
to create multiple independent markets that introduces strong complements. The
existence of the strong complements problem is, therefo're, a function of the design of
the allocation mechanism, and in the BICAP mechanism the problem was avoided by

only allowing bidding on resources associated with running a complete train.
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Competitive Equilibrium Existence. It is known that competitive equilibria may fail

to exist in environments containing indivisibilities and non-convexities. However,
issues regarding competitive equilibria in the sense of Walrasian equilibria are only of
direct relevance in a market or market-like mechanism. They not important for the
BICAP allocation mechanism, that is not a market but an auction. Walrasian
equilibria and Edgeworth box type constructions do not apply and are not appropriate
for its analysis. In a market-like mechanism the existence of competitive equilibria
would be crucial to showing that the mechanism would eventually terminate. By
choosing a mechanism that was auction-like instead of market-like, the problem that

competitive equilibria might not exist was avoided.

Non-existence of the CE signals a type of difficulty present in the underlying
environment. In some sense, it is useful to show that the mechanism can perform
allocations in circumstances in which a market could not perform. Although
competitive equilibria are not an issue for BICAP, the existence of Nash or Nash-like
(NE1) equilibria is an issue. The existence and properties of NE1 equilibria for the
BICAP mechanism are established in Chapter 5°* and whether the mechanism reaches

such equilibria in the experiments is investigated in Chapters 6 and 8.

The next three issues turn on the operation of priority systems. Decentralization

advocates claim that the current system of priority has consequences that can be

* In particular it is shown that BICAP always has many NE1 equilibria. The optimal allocation is

supportable as a NE1 equilibria. Conjectures are offered concerning bidding processes that might lead
to selection of NE1 supporting the optimal allocation.
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avoided by a decentralized system. A demonstration that such consequences can be

avoided is necessary.

Priority and Substitution Between Users or User Types. Suppose any agent is given

priority. If G was the most valuable route to any user with priority, then it would be
implemented. For example, if agent 0 was given the right of priority for a single
train such as G then, as can be ascertained from Table 2.1, train G would operate at a
value of 1604. But there are many options that have greater value than G. In
particular, trains B, C, and E, held by agents 1, 0 and 2 respectively, have a combined
value of 3022. Given such a priority system, there is no incentive for the three trains
run by different users to be substituted. In the BICAP mechanism agents 1 and 2 have
an incentive to bid high enough so that agent 0 would prefer to run train C rather than

train G. In the experiments this can be observed to be the case.

Priority and Combining Trains. Suppose that fast trains have priority over slow

trains and that agent O is operating fast trains but had no priority for a slower train
such as G. As can be seen from the Table 2.1, the value for G to agent 0 is 1604
while the value of the best feasible fast trains to this agent is the set of three trains B,
C, and E that total to 1134. The agent has no inceﬁtive to combine trains if the result
is a slower train because priority and thus the trains would be lost. In the BICAP

mechanism such peculiar incentives for an agent, due to retaining priority, are
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eliminated and the agent is free to attempt to maximize his profit by bidding on

whatever trains are desired.

Priority Gives no Incentive to Wait. If agent 7 has priority with north to south fast
trains, then the agent has no incentive to delay and wait. Given the preferences of
Table 3.1, agent 7 would operate train A even though another agent such as agent 0
must delay and run train D rather than train C. Agent O values train C by a difference
of 337 over D while agent 7 values A (that forces agent O to delay) to train B (where
agent 7 waits) by only a margin of 102. Thus an allocation where Agent 7 waits as
opposed to Agent 0 would increase total value by 335. With priorities there is no

incentive for this to take place.

Priority Systems Do Not Respond to Changing Circumstances. The criticism that

"access to track is not allocated to the users who value it the most" seems to directly
attack the ability of the track authority to gather information needed to assign priority
using the current administrative processes. Changing circumstances in the
experimental testbeds are introduced by varying the train redemption values from
period to period. BICAP is designed so that it is in agent’s interest to reveal enough
information concerning train values to identify the optimal allocation, and the
experiments show that bidding is in fact responsive to changes in the train

redemption values from period to period.
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Certainly, issues do exist in the field that were not covered in Chapter 3. For
example, the demonstration involved train values that were additive and separable for
each agent. Interesting types of rail network externalities exist indicating that this is

not always the case, and future experiments should be performed now to address such

issues.

In closing, this thesis opens opportunity for dialogue between proponents and
opponents of decentralization and both theoretical and experimental economists to
further define other important features of rail allocation that should be included in
testbeds. Theoretical economists might try their hand at designing mechanisms that
would perform at higher efficiencies or would be more robust to new problems and
issues. Experimentalists could conduct additional tests incorporating the new testbeds
or new mechanism features. Eventually, through a series of such dialogues, a
mechanism could be obtained that would be appropriate for the Swedish problem and

rail allocation in general.
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APPENDIX A. EXPERIMENTAL INSTRUCTIONS. BICAP. 7/7/93.
1ST7 TESTBED

Introduction

This is an experiment in the economics of market decision making. The
instructions are simple, and if you follow them carefully and make good decisions you
might earn money which will be paid to you in cash.

In this experiment, we are going to conduct a computerized market over a
sequence of trading periods. The items to be sold are called projects, and are
designated by letters of the alphabet (project A, project B, project C, etc...). You may
try to purchase any number of projects as you wish. The value to you of any particular
project is detailed on an attached set of redemption value sheets. Notice that these
sheets are labeled period.1, period.2, etc... Notice that the redemption values vary
from period to period. During the experiment, pay careful attention to make sure you
are using the correct sheet in evaluating which project(s) you wish to purchase. [note:
the information on the redemption sheets is your own private information. do not
reveal it to anyone.] At the end of each period, project(s) you have purchased are
redeemed by the experimenter for the amounts indicated on these sheets.

Your profits in a period, then are determined by the difference in the

redemption amount you receive for the projects you purchased and the amount you
paid for them.

ie.  your profit = (total project redemption value) - (total purchase price)

Each project can be sold to one and only one buyer during each period. The
projects are sold via an auction, carried out using the computer terminals. You will
have an opprotunity to bid on each project as many times as you wish. To bid, follow
the instructions at the bottom of the screen. Bids are not binding until the SEND key
is hit. Bids which are lower than the current bid on the screen are ignored. Once your
bid for a project is sent into the system, and becomes the current bid, you are
obligated to honor it until someone else bids higher on the same project, at which
point it is deleted from the system.

There is an additional complication. Not all combinations of projects are
possible. For example, it could be that if X is sold, that Y or Z can not be sold.
Incompatible groups of projects are detailed on an attached sheet. The computer will
use the bidding information to determine which group of projects to sell to maximize
the amount of money collected from buyers. The set of high bids which would
actually be accepted by the computer at any particular time is displayed on the
computer screen and updated along with any new bids.
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At the end of each period, the computer notifies each buyer of any successful
bids. Unsuccessful bids are not displayed. At this time, buyers should fill out their
BUYER RECORD SHEET and calculate any profits (or losses) from the period.

Currency:

The currency used in these markets is "francs.” At the end of the experiment
francs will be

converted to dollars at the rate of; francs equals one dollar.
[the exchange rate is also private information. do not reveal it to other participants. ]
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None of the following pairs are feasible, nor is any combination containing one or
more
of these pairs:

AB
AC
AG

B,A
B.D
B.G

CA
CD
CG

D,B
D,C
D,E
D,G

E,D

EF

E,G

G,A

G,B

G,C

G,D

G,E

GJF

H: nothing conflicts with H. H is allways feasible.
I: nothing conflicts with I I is allways feasible.
Examples:

{A,D,F} is feasible since neither A,D, A,F or D,F are listed above.

{B,D,F} is not feasible since B,D is listed above as being impossible
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ID NUMBER: | LIST TOTAL TOTAL PROFIT OR
PROJECTS PURCHASE REDEMPTION LOSS(-)
PERIOD# PURCHASED PRICE VALUE
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APPENDIX B. EXPERIMENTAL INSTRUCTIONS. BICAP+CPDA.
7/20/94,7/23/94. 3ST7 TESTBEDS

Introduction

This is an experiment in the economics of market decision making. The
instructions are simple, and if you follow them carefully and make good decisions you
might earn money which will be paid to you in cash.

In this experiment, we are going to conduct a computerized market over a
sequence of trading periods. The items to be sold are called projects, and are
designated by letters of the alphabet (project A, project B, project C, etc...). You may
try to purchase any number of projects as you wish. The value to you of any particular
project is detailed on an attached set of redemption value sheets. Notice that these
sheets are labeled period.1, period.2, etc... Notice that the redemption values vary
from period to period. During the experiment, pay careful attention to make sure you
are using the correct sheet in evaluating which project(s) you wish to purchase. [note:
the information on the redemption sheets is your own private information. do not
reveal it to anyone.] At the end of each period, project(s) you have purchased are
redeemed by the experimenter for the amounts indicated on these sheets.

Your trading profits in a period, then are determined by the difference in the
redemption amount you receive for the projects you purchased and the amount you
paid for them.

ie. trading profit = (total project redemption value) - (total purchase price)

Each project can be sold to one and only one buyer during each period. The
projects are sold via an auction, carried out using the computer terminals. You will
have an opprotunity to bid on each project as many times as you wish. To bid, follow
the instructions at the bottom of the screen. Bids are not binding until the SEND key
is hit. Bids which are lower than the current bid on the screen are ignored. Once your
bid for a project is sent into the system, and becomes the current bid, you are
obligated to honor it until someone else bids higher on the same project, at which
point the lower bid is deleted from the system.

There is an additional complication. Not all combinations of projects are
possible. For example, it could be that if X is sold, that Y or Z can not be sold.
Incompatible groups of projects are detailed on the blackboard.

The computer will accept proposals for which objects should be sold. To make
a proposal, use the [F5] key, type in the proposal by listing the object letters which



231

should be accepted, then hit the [F1] key. You may propose any set of projects that
you wish, but there must not be any incompatibilities, and the value of the proposal,
given the current bids, must exceed the value of the current proposal. The period
begins with the current proposal being to sell nothing.

You are paid a bonus for making proposals. This bonus is equal to a
percentage of the amount by which you improved the value of the current proposal.
The percentage varies and depends on the time left on the period timer. This
percentage is displayed on your screen.

At the beginning of each period, a period timer is set to seconds and
is reset to this value whenever an acceptable bid or proposal is made. When the timer
reaches 0, the period closes.

At the end of each period, the computer notifies each buyer of any successful
bids. Unsuccessful bids are not displayed. At this time, buyers should fill out their
BUYER RECORD SHEET and calculate any profits (or losses) from the period.
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Currency:

The currency used in these markets is "francs.” At the end of each period of

the experiment francs will be converted to dollars. This will occur according to the
following formula:

Losses: $0.02 * francs
1-10 francs: $0.20 * francs, or 5 francs = $1
10-infinity francs: $1.80 + 0.02 * francs .

Therefore , if you gain 10 francs either formula gives $2.00
Gain 100 francs, $3.80.

Gain 500 francs, $11.80.

If you lose 50 francs, then thats $1.

Remember, conversion to dollars occurs at the end of each PERIOD of the
experiment.
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APPENDIX C. EXPERIMENTAL INSTRUCTIONS. BICAP+CPDA 8/9/94,
8/10/94. 3NST7 TESTBED

INSTRUCTIONS

This is an experiment in the economics of market decision making. The
instructions are simple, and if you follow them carefully and make good decisions you
might earn money which will be paid to you in cash.

In this experiment, we are going to conduct a computerized market over a
sequence of trading periods. The items to be sold are called projects, and are
designated by letters of the alphabet (project A, project B, project C, etc...). You may
try to purchase any number of projects as you wish. The value to you of any particular
project is detailed on your attached set of redemption value sheets. The redemption
values vary from period to period and from person to person. You must pay careful
attention to make sure you are using the correct period number sheet in evaluating

which project(s) you wish to purchase. [note: the information on the redemption
sheets is your own private information. do not reveal it to anyone.] At the end of each

period, project(s) you have purchased are redeemed by the experimenter for the
amounts indicated on these sheets.

Your trading profits in a period are determined by the difference in the
redemption amount you receive for the projects you purchased and the amount you
paid for them.

ie. trading profit = (total project redemption value) - (total purchase price)

For example, if BUYER 43 purchases project C in the market for 500 and
project N for 200 and her redemption value from her sheet is 750 for C and 300 for N
, then BUYER 43's trading profit is

750 (value of C) - 500 (payment for C) +300 (value of N) -200( payment for N) =
350 (profit) .

Each project can be sold to one and only one buyer during each period. The
projects are sold via an auction, carried out using the computer terminals. Buyers will
have an opprotunity to bid on each project as many times as they wish. To bid, follow
the instructions at the bottom of the screen. Bids are not binding until the SEND key
is hit. Bids which are lower than the current bid on the screen are ignored. Once a bid
for a project is sent into the system, and becomes the current bid, the bidder is
obligated to honor it until someone else bids higher on the same project, at which
point the lower bid is deleted from the system.
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There is an additional complication. Not all combinations of projects are
possible. For example, it could be that if X is sold, that Y or Z can not be sold.
Incompatible groups of projects are detailed on an attached sheet.
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The computer will accept proposals for which objects should be sold. The
PROPOSERs earn profit for making proposals which are ACCEPTED for
consideration. At the end of the period, the computer will use the best proposal
submitted to determine which projects it will sell.

A PROPOSAL consists of a list of proposed objects to be sold by the
computer. The computer allways keeps the current proposal on display. Projects
included in the proposal are green on the display and items which were not included

are red. At the beginning of the period, the current proposal is the proposal that none
of the projects are sold.

A new proposal is ACCEPTED if there are no incompatible groups of projects
in the proposal, and if the value of the new proposal given the current bids is higher
than the value of the current proposal.

The proposer earns profit for ACCEPTED proposals. For each ACCEPTED
proposal, a PROPOSAL BONUS is paid. Bonuses accumulate over the period.

PROPOSAL BONUS = amount of improvement X bonus percentage.

The bonus percentage starts at 0% and rises as time left on the PERIOD
TIMER decreases. When the timer indicates half the time left, the bonus will be 50%,
and when the timer indicates 1 second left, the bonus will be close to 100%.

If you wish to make a proposal, type in the proposal by listing the object
letters which should be accepted, then hit the [F1] key. You may propose any set of
projects that you wish, but it will not be ACCEPTED unless it meets the criteria
above (no conflicts, improves sum of bids). The period begins with the current
proposal being to sell nothing.

It is important to emphasize the difference between Proposals and Bids.
Remember that a PROPOSAL is a recommendation to the computer concerning
which projects it should sell, given the BIDS already entered into the system. These
bids might be your own, or they might be another BUYERS bids. Since projects are
sold to the highest bidder, it is allways necessary to BID on projects which you are
attempting to purchase. The projects you wish to purchase must also be in the best
proposal received by the end of the period in order for you to actually purchase the
projects. However, this proposal does not need to be made by the same person who is
bidding on the projects.

At the beginning of each period, a PERIOD TIMER is setto __60___ seconds
and is reset to this value whenever an acceptable bid or proposal is made. When the
timer reaches O, the period closes.
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~ At the end of each period, the computer notifies each buyer of any successful
bids. Successful bid(s) must be paid, and the bidder receives the indicated projects.

Unsuccessful bids are not displayed. Unsuccessful bidders pay nothing, and
receive nothing.

At the end of the period, buyers should fill out their BUYER RECORD
SHEET and calculate any profits (or losses) from the period. The total bonus from
proposals is also displayed on the screen when the period closes, and this should be
included in the profit calculation.
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Currency:

The currency used in these markets is "francs." At the end of each period of

the experiment francs will be converted to dollars. This will occur according to the
following formula:

Losses: $0.02 * francs

1-10 francs: $0.20 * francs, or 5 francs = $1

10-infinity francs: $1.80 + 0.02 * francs .

Therefore , if you gain 10 francs either formula gives $2.00
Gain 100 francs, $3.80.

Gain 500 francs, $11.80.

If you lose 50 francs, then thats $1.

Remember, conversion to dollars occurs at the end of each PERIOD of the
experiment.
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INCOMPATIBLE PROJECTS.

Any proposal that contains an incompatible pair is not feasible.
The incompatible pairs of projects are shown via the following graph(s).
An incompatible pair of projects are directly joined by a line. For instance ACisan

incompatible pair because a line directly connects A and C, but A and E are
compatible because there is not a line between A and E.

Q R S

Examples:
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{A,D,F} is feasible since neither A,D, A,F or D.F are connected by lines in the
figures above.

{B,D,F} is not feasible since B,D is connected by a line.



