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Abstract

In the heavy quark and large N, limit, heavy baryons can be identified as
bound states of heavy mesons and light baryons. The binding potential can be
calculated under chiral perturbation theory, and is simple harmonic when N, — co.
The spectra and properties of these bound states agree reasonably well with the
observed heavy baryons. In this framework, some non-perturbative quantities, like
the orbital excitation energy and the slope of the Isgur—Wise form factor, can
be evaluated. Moreover, the same universal Isgur-Wise form factor describes the
semileptonic decays Ay — A, and El(;*) — EE*). The formalism can also be used to

study the spectra, stabilities and decay modes of exotic multiquark states.
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I. Introduction

It has been more than twenty years since the firm establishment of the standard
SU(3)exSU(2) xU(1)y model as the appropriate description of particle interac-
tions for energies below 100 GeV. The predictions of the standard model agree
well with the results of accelerator experiments. On the other hand, due to the
non-perturbative nature of QCD at low energies, a full understanding of hadron
properties is yet to be achieved. The strong coupling constant a; becomes larger
than unity for energies below Aqcp =~ 250 MeV, and the perturbation series breaks
down. The absence of a true expansion parameter makes the first principle calcu-

lations of hadron spectra and dynamics from first principles intractable.

This, however, does not prevent physicists from investigating the theoretical
aspect of hadron properties. One direction is to build tractable models which
capture the “essential” physics of the systems. From such models concrete predic-
tions of hadron properties can be made, which can be compared with experiments.
Notable examples of such schemes include the non-relativistic quark model, bag
models, and potential models, and they often provide valuable insights to our un-
derstanding of the systems. Yet these models are not logically connected to any
fundamental theories (like QCD). Different models give different results, and there
are no theoretical resolutions of such disagreements. In this light some more general

approaches to the study of hadron physics are necessary.

Better connected to the underlying theory of QCD are the symmetry-induced
schemes. For example, the well-known chiral perturbation theory is based on chiral
symmetry SU(Ny) [ xSU(Ny)g, which is a symmetry of QCD Lagrangian with N
light flavors. The symmetry is explicitly broken only by the small (compared to
Aqep) but non-zero light quark mass terms, and spontaneously broken to SU(3)y

by the vacuum expectation values of quark bilinears.

As a result, hadrons fall into different multiplets of SU(3)y, where the lowest lying



ones are the (7, K, ) pseudoscalar octet and the (p, K*, w) vector octet in the
meson sector, and the (N, A, ¥, E) spin-% octet, and the (A, ¥, E, Q) spin-
% decuplet in the baryon sector. In chiral perturbation theory, the interactions
between different hadrons are dictated by the tranformation properties under chiral
symmetry. This provides severe constraints on the dynamics of the hadrons. The

explicit symmetry breaking effects can be incorporated as small perturbations.

Another symmetry-induced scheme, heavy quark effective theory, is very sim-
ilar in spirit. When the masses of the heavy quarks (heavy when compared to
AqQcp) go to infinity, a new SU(2Ng) spin-flavor symmetry arises, where N is the
number of heavy flavors. This new symmetry, commonly known as heavy quark
symmetry, relates the decay rates and form factors of different channels of heavy
hadrons decays. The effect of finite heavy quark masses are again incorporated as

small perturbations.

Another possible direction of investigation calls for alternate expansion param-
eters. The famous large N, expansion is an expansion about N, = oo, where N, is
the number of colors. It has been proven that a certain class of Feynman diagrams,
known as the planar diagrams, dominates when N, — oo. Though the set of planar
diagrams is still too complicated to be summed explicitly, it can reproduce many
qualitative features of low energy hadron interactions like the Zweig’s rule. Since,
however, the color gauge group SU(/V,) itself is being changed when N, — oo,
the gauge degrees of freedom A, of this many-colored QCD keep changing. As a

result, no one has yet succeeded in writing something like

1 1
L =L+ —L1+ — e .
QCD 0+NC 1+N3£z+ (1.2)
The situation is even worse when we consider baryons in the large N, limit. Baryons

are Nc-quark hadrons under color SU(N,), and when N, — oo, there is an infinite

number of degenerate baryon representations of isospin and spin.

Still, we can study large N, baryons under different approaches. For the past

few years, | have been studying the application of one of these approaches, the



chiral soliton approach, in the investigation of the properties of heavy hadrons.
Chiral solitons are topologically non-trivial pion configurations carrying a topo-
logical charge which can be identified with baryon number. By identifying heavy
baryons as bound states of chiral solitons to heavy mesons, we can examine their
properties through the usual pion-heavy meson Lagrangian, which is given by chi-
ral perturbation theory and heavy quark effective theory. Some of the properties
are independent of the couplings in the chiral Lagrangian and these are thought

to be predictions of the large /N, limit.

In this thesis, I shall summarize my studies [1-6] on heavy hadrons properties
through this rich interplay of chiral perturbation theory, heavy quark effective
theory and large N, limit. We will begin with a brief review on heavy quark
symmetry in section II. In section III, we will discuss the chiral soliton model
of baryons in the large N, limit. The bound state picture will be introduced to
describe heavy baryons, and various properties of heavy baryons will be studied
within this framework. Multiquark exotic states will be examined in section IV,
and lastly, we will conclude in section V with a discussion of possible directions of

further investigations.



II. Heavy Quark Effective Theory

Due to the existence of several excellent review papers [7-9] on heavy quark
symmetry and heavy quark effective theory, I will not attempt to make a compre-
hensive summary here. Instead I will focus on the issues relevant to this thesis,
namely the universality of the Isgur—Wise form factors and their intepretations
under the “atomic” or “source and brown muck” picture. In this picture, we can
interpret the well known Bjorken and Voloshin sum rules as statements of conser-
vation of probability and energy respectively. We will also obtain a new sum rule
from conservation of parity, which gives non-trivial constraints on the behavior of

Isgur-Wise form factors.

1. Heavy Quark Symmetry

The physics of a heavy hadron is very similar to that of an atom, which can
be viewed as an electron cloud residing in the electromagnetic field of a massive
nucleus. The mass of the nucleus M can enter the Hamiltonian in two ways. In
the electro-kinetic part of the Hamiltonian, it may appear in the combination of

the reduced mass g,

11 1
PRy + p— (2.1)

On the other hand, in the magnetic part of the Hamiltonian, M enters through

the nuclear magneton iy,

Ze

Hn = m (22)

When M — oo, g = me, pn = 0 and M drops out. Hence the Hamiltonian
will be simply that describing an electron cloud in the static electric field of the
nucleus, and the hyperfine Hamiltonian vanishes. Moreover, the spin of the nucleus,
which enters only through the hyperfine Hamiltonian, also disappears from the

Hamiltonian when M — oo.



Since the physics is independent of the mass and the spin of the nucleus, we
can replace the nucleus with another of the same charge, but different mass and
spin, without affecting the state of the atom. In fact the old and new masses can
be widely different as long as both of them are large enough (compared to the

2

typical mass scale of the problem, which is a*m..) In this way we have got a

“heavy nucleus symmetry” which relates nuclei with different masses and spins.

Can we carry this analogy to the physics of heavy hadrons and prove that the
non-perturbative QCD Lagrangian should be independent of the masses and spins
of any heavy quarks present? N. Isgur and M.B. Wise [7, 10-12] were among the
first to explore this possibility and the result is the now well known heavy quark

effective theory.

The part of the QCD Lagrangian density that contains a heavy quark Q is

£ = QD —mQ)Q. (2.3)

In the limit where mg — oo, we can write

Q(z) = exp(imgv - x)hy(z), (2.4)

where h,(z) satisfies the constraint

Then the Lagrangian is simplified to
L = hyiv - Dhy,. (2.6)

Note that the mass and the spin of the heavy quark has dropped out as expected.

The effective Lagrangian above exhibits the “heavy quark symmetry” which
applies to heavy quarks with masses much larger than the typical energy scale of
hadron physics, which is Aqep. In the real world two of the quarks, the ¢ quark
and b quark, satisfy the criterion. Each heavy quark has two spin states, up and

down. Hence the heavy quark symmetry is an SU(4) spin-flavor symmetry.



Just like the electron cloud has different eigenstates in the electric field of the
nucleus, the “brown muck” (light degrees of freedom) around a heavy quark will
also have different eigenstates in the color field of the heavy quark. Such eigenstates
are, of course, the hadronic resonances. In the heavy quark limit, different hadrons
related by heavy quark spin symmetry should be degenerate. For example, the
B and B* mesons have the same “brown muck” with spin—% aligned anti-parallel
and parallel respectively to the heavy quark spin. They are, therefore, degenerate
in the heavy quark limit. In the baryon sector, the ground state Ay is a spinless
“brown muck” in the color field of the b quark, while the degenerate ¥ and X

have the same spin-1 “brown muck.”

2. Isgur—Wise Form Factors

One of the most important consequences of heavy quark symmetry is the re-
duction of the numbers of form factors describing exclusive & — ¢ decays like
B — D™ and Ay — Ac. As it will be shown below, each of these decays can be
described by just one form factor. Since N. Isgur and M.B. Wise were the first to
discover this reduction [10-12], these universal form factors are commonly known

as Isgur-Wise form factors.

As our first example, we will consider Aj, which is a ground state spinless
“brown muck” in the color field of a b quark. When a b-quark in a Ay with velocity
v decays into a c-quark with velocity v/, all the “brown muck” notice is the change
in velocity. The ground state |0) in the color field of a heavy quark with velocity v is
in general not an eigenstate of the color field of a quark with a different velocity v'.
In the special case of v = v', however, the color field is unchanged and the “brown
muck” stay in the same state. This gives the normalization of the Isgur-Wise form

factors at the point of zero recoil.

Denote the eigenstates of the “brown muck” in the color field of the charm
quark with velocity v’ by |n'), with |0') the ground state A.. The decay amplitude
M(Ap(v) = XP (v')eD) is proportional to the overlap of the initial and final states



@ni(w) = (n'|0), where w = v- v’ and the “brown muck” of X is in the state In').
This clearly hints that ¢p/(w) are closely related to the weak form factors, and
indeed 1t is the case. For example, consider the baryonic Isgur-Wise form factor

n(w), defined by [12-15]

(Ao(v', s LBl Ay(v, 8)) = n(w)a(v', ") Tu(v, s). (2.7)
With
[As(v, ) = [b(v,5)) ® [0) (2.8)
and
[Ac(v,81)) = le(v', s)) @ [0), (2.9)
we have
(Ae(v, s)|eb|Ay(v, 5)) = (0'|0)a(v’, s ) Tu(v, ) 210,
= oo (w)a(v', s Tu(v, s).
Immediately we get
por(w) = n(w), (2.11)

i.e., the Isgur-Wise form factor is the overlap of initial and final “brown mucks” as
expected. As mentioned before, the initial and final “brown mucks” are identical

!

when v = o', i.e., w = 1. The complete overlap of wave functions gives the

normalization of n(w) at the point of zero recoil.
n(l) = 1. (2.12)
One would expect that, due to final quark masses, this normalization will receive

corrections of order 1/mq. Luke’s theorem [16], however, states that the 1/mg

corrections vanish and the leading corrections start at the order of 1/ mé.



Weak form factor of excited baryons can also be obtained in a similar way. In

particular, for P-wave baryons,
oni(w) = (w + 1)20™ (w). (2.13)

Where a"/(w) is defined in Ref. [18]. In general, for a state with orbital angular
momentum I > 0, @p(w) ~ [v/ —v|' ~ (w =12, For I = 0, pp(w) ~ (w—1)° for
the ground state and ~ (w — 1)! for excited states. This determines the behavior

of ¢ near the point of zero recoil.

Similar analysis can be made for the meson sector. For a b-quark, the ground
states with s, = -;— are the B and B* mesons. The formulas are more compli-
cated, however, as the mesonic Isgur—-Wise form factor {(w) traditionally defined

by [10,11]

< D(v")|ey,b|B(v) >
VmBmp
< D*(V', €)|eyuvsb| B(v) >
V/mBmp~
< D*(v', €)|ey,b| B(v) >

/M Bm px

= &(w)(v + Ul)u , (2.14a)

= &(w)((1 +w)e, — (¢"-v)v,) , (2.14b)

= §(w)icuuAae*”v"\v“ : (2.14¢)

is not exactly ¢y(w). In fact, it turns out that

fev(w)f = (25 ) etw) (2.15)

Again, due to the complete overlap of initial and final “brown mucks” at the point

of zero recoil, we have
§(1) =1, (2.16)

and the leading corrections start at order 1/ m2Q by Luke’s theorem [16].



For the P-wave excited mesons,

DT w) 2 = 2w — 1) (w) 2, (2.17a)
PG W) = (w = 1)(w + 12 )] (2.17b)

where the 7’s are defined in the Ref. [19].

(Note that the ¢¢ in Eq. (2.11) and Eq. (2.15) are different objects. It will
be wrong, for example, to conclude that |p(w)]? = (—“—’—'z-tl)lé(w)lz)

We have established the interpretation of the Isgur—-Wise form factors as over-
laps of initial and final light degrees of freedom. Due to the intractability of non-
perturbative QCD, we cannot calculate these form factors from first principles. On

the other hand, the completeness of |v'; n')
> nly(n'] =1 (2.18)
can lead to sum rules like

> lew(w)? = (0]n')(n'[0) = (0]0) =1, (2.19)

n’ n’

which relate different ¢(w) and which in turn can give us non-trivial information

about the form factors. These sum rules will be the topic of the rest of this section.

3. The Bjorken Sum Rule

Traditionally [17-19], the Bjorken sum rule is based on consideration of the
four-point function of b, bl'c, ¢l'b and b, where I' = y#(1 — v5). The four-point
function may be evaluated in quark language by perturbative QCD, or in hadron

language in the framework of heavy quark symmetry. By duality the two results
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should be equal. Hence,

R (w) = A (w) (2.20)

where

B (w) = > (Mp(0)Ble| X2 (o), WX (o), )bl Ag(v)),  (2.21)

s’

where X" are multiplets in the heavy quark symmetry, and

BP0 (w) = > (b(v, s)[blclc(v’, s')) (c(v', s')|elblb(v, s)). (2.22)

s,8'

Since the bI'c and él'b in the definition of A" act on heavy quarks but not on the
light degrees of freedom, we expect A" can be factorized into contributions from
the heavy quark sector and those from the light degrees of freedom. The heavy
quark sector will just reproduce ¢, while the contribution from the light degrees

of freedom can be expressed in terms of ¢,,. Hence we end up with

1

B (w) = B¢ (w){0ln")(n'|0) = A%~ (w) o (w) 2, (2.23)

After summation over all n’ and canceling the common factor of A9~ off both

sides of Eq. (2.23), we end up with
1= Y low(w) (2.20)

which is just Eq. (2.17) reproduced. Replacing ¢’s with the weak form factor, the

equation becomes

L= ()]’ + (w’ = 1) Y " loW(w)* + O*(w - 1) (2.25)

which is just the usual Bjorken sum rule.
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Expanding about the point of zero recoil, the Bjorken sum rule can be simplified

to

PP = leW)P (2.26)

where the charge radius p of n(w) is defined by
n(w) =1—p*(w—1) + ... (2.27)

Similar analysis can be made in the meson sector. Eq. (2.23) still follows
from the completeness of states. The relations between ¢,/ (w) and the mesonic
Isgur-Wise form factors as shown in Eq. (2.15) and (2.17) are, however, more
complicated than the baryonic counterpart Eq. (2.11) and (2.13). In this case,
Eq.(2.23) becomes

1:(w+1)|§( )+ (w— 1{22171/2 )2+ (w+1) 213/2 w) 2| +O*(w—1).

(2.28)
Defining the charge radius p of £(w) by

E(w)=1—=p*w—1)+ ... (2.29)

and the Bjorken sum rule is simplified to
g

The extra 1 in Eq. (2.30) when compared to Eq. (2.25) is intriguing. In this
formalism it is clear that the i results from the “uncanonical” definition of £(w)
[8]. If the factor of ¥ in Eq. (2.15) is absorbed into the definition of £(w), the
equation will have the same form as Eq. (2.11), and the i— will not appear in the

expansion.
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4. The Voloshin Sum Rule

Returning to Eq. (2.18), it is noted that a more general sum rule holds for an

arbitrary operator X:

> (0X|n')(n'[0) = (0]X]0). (2.31)

n’
In particular, if we put X =1 in Eq. (2.31), Eq. (2.19) is recovered.

Another case of interest is when X = H' the Hamiltonian in the color field
of a heavy quark with velocity v'. Without loss of generality we choose the final
velocity ' = (1,0). Then Ep = Amy = My —Me are just the excitation energies
of the resonances X;’i. For the ground state, Amg = A = mp — m. in the meson
sector and A = my, — m, in the baryon sector. The right-handed side (0|H'|0) is
the energy expectation for a moving ground state “brown muck” under the color
field of a stationary heavy quark of velocity v'. By dimensional analysis we know

that

(0[H'|0) = Amok(w), (2.32)

where k(w) is a kinematic factor which depends on w only. Hence the whole sum

rule reads as

> Amplon(w)? = Amgk(w). (2.33)

The functional form of k(w) can be obtained in some definite scenarios. For
example, if we can regard H' as completely kinetic, then k(w) is just the Lorentzian
boost factor v, which is just w. A more realistic scenario sees H' with two parts:
the mass of the “brown muck” in v’ frame and the potential energy of the “brown
muck” in the color field of a heavy quark with velocity »'. If we ignore the quantum

fluctuation of the color field, i.e., the heavy quark is a classical, static source, we
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can choose the color potential of the heavy quark such that
AL(x) = A%(r)v,. (2.34)
The potential energy is of the form
U= /d3x 7 (x) A (x), (2.35)

where j*#(x) is the color current density of the “brown muck” and @ being the

SU(3) index. By symmetry we have
JHE) = g4 ()" + t4(r) (2.36)

where t#(r), the component of j*#(x) transverse to v*, is radially symmetric. On

integration, this transverse term vanishes by radial symmetry, and
U= w/d3x () AY(r). (2.37)

Hence when the “brown muck” is boosted from o' to v, the potential energy is
increased by just the Lorentzian factor w. Since the mass of the “brown muck”
also increases by the same factor under boost, we have (0|H'[0) = (0'|H’|0")w, i.e.,
k(w) = w if we assume the color field of the heavy quark is purely classical. It is
probable that the statement is still valid if we take into account the effects due to

quantum fluctuation, though the author has not yet succeeded in proving it.

If we assume k(w) = w, then Eq. (2.33) becomes
Z A |on (w) ]2 = Amow (2.38)

which can be recast into

Amg(w —1) = > (Amp — Amg)|pw (w) [, (2.39)

nl
The quantity En = Amy — Amyg is just the mass difference over the ground state.
In particular it is zero for n' = 0, i.e., the term proportional to the Isgur-Wise

form factors vanishes.
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For the meson sector, Amg = A = mp — my. Substituting in the weak form

factors, we obtain

)= 22 B2 DI D+ 37 By (Dt Py DI+ 0% w-1),
(2.40)

Canceling (w — 1) off both sides, and putting w = 1, the sum rule becomes

2
A:ZQ /2’71/2 ]+Z4 /2|3/2 (2.41)
q

which is just the Voloshin sum rule derived in Ref. [21]. On the other hand, in the

baryonic sector, Amgy = A = my, — my, and the sum rule reads as

A=Y 2B 1)2 (2.42)

I am not aware of any appearance of this sum rule in the literature before Ref.
[3], where this sum rule is obtained in the large N, limit. In fact, the results of
Ref. [3] can be reproduced in our formalism by choosing a definite potential energy
function, namely the isotropic harmonic potential V(r) = %fi?‘z. We are going to

see more about this in following sections.

5. The Parity Sum Rule

In this section, we will consider the case when we put X = P’  the par-
ity operator in the v’ frame, into Eq. (2.31). The left-handed side becomes
S (—=1)™'|pns(w)|?; where 7,/ are the intrinsic parities of |n'). P’|0) up to a phase
is a ground state “brown muck” in the color field of a heavy quark with veloc-
ity v = (w, —wv); hence the right-handed side of Eq. (2.31) becomes (0|P'|0) =
(=1)™" o (W), W = v - 0. As result, Eq. (2.31) is simplified to

D (=D T fow (w) = oo (W), (243)
Y
This sum rule is remarkable in the sense that it relates form factors at two different

kinematic points, w and W.
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Together with the Bjorken sum rule Eq. (2.24), we have

+
23" fpuw(w)P = 1 = o (W), (2.44)

The + above the summation means that the sum runs over the states with the
same parity as the ground states only. Denoting the contribution to the sum from

excited states as R(w), the sum rule reads
208/ (w) — 14 R(w) = o (W). (2.45)

Since @o/(w) is the Isgur-Wise form factors up to possibly a known kinematic
factor, a bound on R(w) may give a model-independent bound on the Isgur—-Wise

form factors.

Since R(w) is a sum of absolute squares, R(w) > 0, and
208 (w) = 1 < @or (W), (2.46)

We will change the independent variable from w to the “boost angle” «, which is
related to w by w = cosh(a). We will also change the dependent variable from
wor(@) to f(a), which is related to o (a) by o (a) = cos(f(a)a). This greatly

simplifies the equation as

W = 2w? — 1 = cosh(2a) (2.47)
and
200 (@) — 1 = 2cos’(f(a)a) — 1 = cos(2f(a)a). (2.48)
Hence Eq. (2.46) becomes
cos(2f(e)a) < cos(2f(2a)e). (2.49)

We expect g to be a decreasing function. Hence Eq. (2.49) implies

fla) > f(2a). (2.50a)

Since Isgur-Wise form factors are continuous, this simply states that f(«) is also a
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decreasing function. Moreover, since g is expected to be nodeless and approaches

zero as w — oo (a — 00), we have

f@)S%; (2.500)
fla) — %, o — 00. (2.50¢)

Finally, the boundary condition at w = 1 (@ = 0) can be given in terms of the

derivative of the Isgur—-Wise form factor at the point of zero recoil.

fla=0) =5 (2.50d)

The unique maximal f(«) satisfying the conditions above is

2, o <
fU(a) = { . v (2.51)
ey O > 2%

Putting into the original form of ¢¢/(w), a model-independent lower bound for

wo(w) can be obtained.

cos(pcosh™(w)), w < cosh(r/2p);

0, w > cosh(w/2p). (2:52)

%@@0={

This is a lower bound for all possible forms of ¢o/(w) with the same p.

Since n(w) = ¢o/(w) in the baryon sector, the lower bound above can be applied
to the baryon case directly. Plots of nmin(w) for different p are shown in Fig. 1.
This lower bound rules out some particular forms of n(w) like the piecewise linear

model

nwﬂ—{l_ﬁ%w—l% wel+p (2.53)

o, w>1+p7%

We shall see in later sections that, in the large N, limit, the baryonic Isgur-Wise
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form factor has an exponential form [3,55],

n(w) = exp(—p*(w — 1))

_2 F; ) (2.54)
=1-p (w—1)+f2—(w~1) + ..
while our lower bound, in a Taylor series, is
- prp
™ (w) = l—ﬁz(w——l)—i—(—(i-—i—%-)(w—l)z—i- ...... (2.55)

In the large N, limit, p? ~ Nf” is large, and the bound is satisfied.

On the other hand, the mesonic Isgur-Wise form factor £(w) is given by the
slightly more complicated Eq. (2.15). Hence, the lower bound for £(w) is

- (£25) "7 cos((p* = H)Y? cosh ™ (w)), w < cosh(r/2(p? — })1/2);
Emin () = i
0, w > cosh(w/2(p* — ;1-)1/2).
(2.56)
Plots of £™" (w) for different p are shown in Fig. 2.
Expanding in a Taylor series, we have
‘ 2t
£ () = 1 — p*(w — 1)+(§+—6~)(w—1)2+ ...... (2.57)

When compared with the Isgur-Scora—-Grinstein-Wise (ISGW) [23], Bauer-Stech-
Wirbel (BSW) [24,25] and pole [26] parametrizations of the mesonic Isgur—Wise

form factor,

Eisaw (w) = exp(—pisaw (w — 1))

4 (2.58)
14
:1-P%SGW(w—1)+—IS§C1ﬂ(w—1)2+ ...... ,
2 w—1
{psw(w) = exp ((1 — QpZBSW)—-———-)
1 1
vt o7 (2.59)

2 1 phsw | Phsw 2
=1=pswlw —1) + (=7 + =+ S (w = 1) + ..
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2 2ppole
érote0) = ()
w1 (2.60)
Poole | Ppole
=1—plope(w = 1)+ ( ‘Ze + —%——)(w — 124
We found that, in order to satisfy the lower bound, we must have P%SGW > 1,
71 1
Phsw = \/:1 , and Pgole =

Last of all, it’s also worth mentioning that the Bjorken—Suzuki upper bound

of £(w) [17,22]
1/2
< (5) 261

can be recovered by putting the obvious inequality |po/(w)| < 1 into Eq. (2.15).
The counterpart of this upper bound in the baryon sector is the trivial statement

n(w) < 1.

We have discussed the Bjorken, Voloshin, and parity sum rules within the same
framework. This is not meant to be a rigorous derivation (as in Ref. [18,19,21])
but just an intuitive picture making the relationship between the sum rules and
the conservation laws behind them more transparent. We have treated the case for
heavy mesons and the Ag-type baryons, but similar analysis can be made in the

¥g-type baryon sector [3,20] as well.
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I1I. Heavy Baryons In The Large N, Limit

1. A Historical Review of the Large N, Limit

The large N, limit was discovered in 1973, when G. 't Hooft published his classic
essay “A Planar Diagram Theory For Strong Interactions” [27]. In this paper, it
was observed that the numbers of color degrees of freedom grow at different rates for
quarks and gluons when N, — oco. A quark, which transforms in the fundamental
representation of SU(N;), can fall in any of the N, color states, while a gluon
lives in the (N2 — 1) ~ N? dimension adjoint representation. By counting the
multiplicity of Feynamn diagrams in this way, 't Hooft had shown that a certain
class of diagram, known as the “planar diagrams” dominates in the large N, limit.
Although the set of planar diagrams are still too large to be summed explicitly, the
theory is quite successful in reproducing meson phenomenologies like the Zweig’s

rule, Regge phenomenology and the absence of ¢gGg exotics.

Due to reasons related in Section I, the description of baryons in the large
N, limit is more subtle. In Ref. [28], E. Witten initiated several approaches to
this problem. The discussion of baryon large N, counting rules was recently dis-
cussed by R. Dashen, E. Jenkins and A.V. Manohar [29] in the “current algebra
approach,” where non-trivial constraints are derived from the preservation of uni-
tarity in scattering precesses like 7 + N — 7 + N. The “Hartree-Fock approach,”
in which the complicated interactions between the N, quarks in a baryon is ap-
proximated by a mean Hartree-Fock field, was also lately pursued by C. Carone,
H. Georgi and S. Osofsky in Ref. [30]. Lastly, the suggestion made in the last
section of Ref. [28] that regards “baryons as monopoles of QCD” are furthered by
G.S. Adkins, C.R. Nappa and E. Witten [31-34] himself in relation to the Skyrme
model [35-38], resulting in the “chiral soliton approach.” The present direction
of the field is to study the relationship between these different approaches, and
to make approach-independent predictions. In particular, an SU(2N £) light quark
spin-flavor symmetry has arisen in all these approaches and is now expected to be

the essence of the large N, limit in the baryon sector.
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Since most of my previous studies of the large N, limit has followed the chiral

soliton approach, this thesis will proceed with a brief description of its formalism.

2. The Chiral Soliton Model

Meson dynamics in the large N, limit is a weakly coupled theory, with the
meson-meson coupling of order 1/N,. Weakly coupled theories sometimes have
states whose masses diverge, for weak couplings, like the inverse of the couplings.
For example, the Polyakov—"t Hooft monopoles have masses of order 1/« where o
is the fine structure constant. In the closing lines of Ref. [28], E. Witten conjec-
tures that baryons can be understood as monopoles of QCD, with masses of order
1/(1/N¢) = Ne. In fact, the analogy goes much deeper. Both the monopole and
the baryon arise from non-perturbative interaction and do not appear at all orders
in the perturbative expansion. Both of them carry quantized conserved charges
(magnetic and baryonic charges respectively). And even in the weak coupling limit,
the S matrices of processes involving a baryon or a monopole will have non-trivial
limits. In the case of monopoles, all these properties can be traced back to the fact
that monopoles are topological solitons. Naturally we are led to ask: can baryons

be regarded as topological solitons as well?

The chiral soliton model [32] studied the possibility of identifying baryons as
topological solitons in a non-linear sigma model. For example, consider two-flavor

QCD where chiral SU(2);xSU(2)g is spontaneously broken into SU(2)y,. The
Goldstone bosons, which are the pions, live on the SU(2) manifold.

2T

U = exp ( ) € SU(2), (3.1)

where the 7% are the SU(2) generators and f, the pion decay constant.

The Lagrangian of the non-linear sigma model reads

L = Liin + Lstab- (3.2)
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with

2
Liin = f8—Tr (0,U0"U), (3.3)

where f = 132MeV is the pion decay constant. L4 is a stablization term which
will be discussed later. The finiteness of energy implies that, for a stable configu-

ration,

U(r — oo) = Uy, (3.4)

and without loss of generality we will take Uy = 1 € SU(2).

The pion field U is a mapping from three-dimensional space R? to the pion
field manifold SU(2), which is homeomorphic (topologically equivalent) to S®. On
the other hand, Eq. (3.4) compactifies the R? also to S3. As a result, we have

U:S%— 83, (3.5)

Such mappings can be classified in the homotopy theory. In this particular case,
73(S®) = Z implies that pion configurations can be characterized by an integer,
which can be interpreted as the winding number of the field manifold around the
spatial S3. Such a topological charge is conserved under continuous deformation
of the field, and hence a constant of motion. Consequently, a pion configura-
tion of non-zero topological charge cannot decay into the vacuum, which has zero
topological charge. Moreover, the topological charge has been shown, through the
anomaly-induced coupling of the baryon current to Goldstone bosons, to be noth-
ing but the ordinary baryon current [39,40]. Such a baryon can be quantized as a
fermion when Ny = 2 [41], and must be fermionic when Ny > 2 as long as N, is
odd [32] and a Wess—Zumino term is included [42]. Such results invite the identifi-
cation of the ground state baryons like N and A as the ground state configuration

of these chiral solitons.
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Let U(x) € SU(2) be a ground state configuration of the chiral soliton. It can

be easily seen that a field invariant under rotation
i(x x V) U(x) =0, a=1,2,3 (3.6)

or invariant under isorotation

Ta

{__, U(x)} =0, a=1,2,3 (3.7)

cannot carry any topological charge, as they can be continuously deformed into the
vacuum configuration U(x) = 1. Hence the topological soliton is invariant under
neither the rotational SU(2); nor the isospin SU(2);. The maximum symmetry it
can enjoy is the diagonal subgroup G' =diag[SU(2);® SU(2)1], i.e., a rotation can

be compensated by an isorotation.

2 U()] — i(x x V)al(x) =0, (3:8)

Solutions satisfying Eq. (3.8) are of the form

U(x) = exp (M) (3.9)

T

with the profile function (also called the chiral angle in some literature) F'(r)

satisfying the boundary conditions:
F(r —o00) =0, (3.10)

as demanded by Eq. (3.4). Such solutions are said to obey the hedgehog ansatz.
Continuity of U(r) at the origin leads to

F(r=0)= B, (3.11)

where B is the topological charge, i.e., the baryon number. In particular, configu-

rations with unit topological charge have F/(r = 0) = —n.
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(For flavor symmetry SU(Ny) with Ny > 2, there are solutions of Eq. (3.8)
which are inequivalent to a hedgehog configuration. Such new solutions, however,
are of higher topological charge. The H di-baryon, which will be discussed in later

parts of this thesis, can be interpreted as such a soliton state.)

Hedgehog configurations are extraordinary as the spatial index of z, is con-
tracted to the isospatial index of 7,. Rotations and isorotations are related, and
hence when quantized, the chiral solitons have K = 0, where K = I+ J. The state
with I = J = % can be identified with the nucleon N, and the I = J = % state a
Delta A.

Note that the results obtained above (the existence of topological solitons, the
identification of the topological charge as the baryon number, the spin-statistics,
the hedgehog ansatz, etc.) are independent of the underlying dynamics. Nowhere
have we used the Lagrangian in Eq. (3.2). The dynamics, however, is crucial
when the stability of the topological soliton is considered. Just by considering the
stability of a hedgehog configuration under scale deformations, R.H. Hobart [43]
and G.H. Derrick [44] proved that the Lagrangian £ = L;;, + Ly, where Ly is
an arbitary potential of the pion fields, cannot support stable soliton solutions.
To stablize the soliton, terms of higher power in field derivatives must be added

[43,45]. The most notable example of such stabilization terms is the Skyrme term:
1
Lotab = Lok = 55T [0V, (8,U)UT, (3.12)

where e is the Skyrme parameter [36].

The Skyrme term is well-discussed in the literature. It is the unique term with
four derivatives which leads to a positive Hamiltonian, and also the unique term
with four derivatives which leads to a Hamiltonian second order in time derivatives.
Moreover, starting from a meson Lagrangian with pions and p mesons, the kinetic
term for the p meson becomes exactly the Skyrme term when the limit m, — oo is
taken and the p degrees of freedoms are integrated out [46,47], with € = gprr. In

the Skyrme model, where £ = Ly;, + Ls}, is assumed, one can calculate the static
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properties, like the mass relations, magnetic moments and axial couplings of the
chiral soliton (called a skyrmion in this context) as a function of f and e [33]. The
predictions agree with experimental results in the order of magnitude. The typical

deviation is about 40%.

In general, however, the low energy effective Lagrangian in the large N, limit
may be much more complicated than that of the Skyrme model. Integrating out
other mesons like w and ¢ may produce other terms in L;,3, which may have
significant effects on the dynamics. Our ignorance of the exact form of L, does
not prevent us from using the chiral soliton model in making predictions of heavy
baryon properties, since it will be shown below that the dynamics will just depend
on a few parameters, which can be viewed as generic functional of L. We will

now proceed to see how one can study heavy baryons in the large N, limit.

3. The Bound State Picture

Different approaches to baryons in the large N, limit have different generaliza-
tions to accommodate heavy baryons in their framework. For the “current algebra
approach” [29], a suitable representation of the SU(2Ny) spin-flavor group can be
chosen to describe heavy baryons. For the “Hartree-Fock approach” [30], wave
equations for light quarks living under the combined influence of the Hartree—Fock
mean field and an extra color field due to the presence of a heavy quark are con-
sidered. And for the “chiral soliton model,” heavy baryons are described as bound

states of heavy mesons and chiral solitons.

The bound state picture was first suggested in Ref. [48,49] to describe hyperons
as bound states of nucleons and K mesons. Naive attempts of using the same
formalism to describe heavy baryons like Ay as bound states of the B mesons and
nucleons [50-52] are not valid, as the inclusion of B and exclusion of B* violates
heavy quark symmetry. The remedy is, of course, to include both B and B* in
the framework [53-55]. We will see below that such an attempt yields a reasonable

heavy baryon spectrum.
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Recall that a chiral soliton is a pion configuration satisfying the hedgehog
ansatz. The interactions between a chiral soliton and a heavy meson should be
derivable from the effective theory describing the interactions of heavy mesons
with pions. Such an effective theory must respect chiral symmetry, which is a
symmetry of the underlying theory of QCD when light quark masses are ignored.
It turns out that, under this constraint, the leading term of the effective Lagrangian

in a derivative expansion is unique up to an unknown coupling constant.

Eq. (3.1) can be recast in the following way.

U =exp (22;;W> , (3.13)

AT AVO RN
M:( i _7?0/\/5)‘ (3.14)

Under chiral SU(2)r xSU(2)r

where

U — LUR', (3.15)

with L € SU(2); and R € SU(2). Under parity
U(x) — UT(—x), (3.16)
as pions are pseudoscalars.

M(x) — —M(—x). (3.17)

Similarly, we can study the transformations of the heavy meson fields. Under
heavy quark symmetry, the ground state meson fields D and D* can be combined

into a bispinor field

e = 4 ;ﬁ) (D% — D], (3.18)

where v# is the heavy quark four-velocity, and v? = 1. Similarly H®) can be defined
by the B and B" fields. The transformation property of H under SU(2); xSU(2)g
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chiral symmetry has an arbitrariness associated with field redefinitions. We will

follow the choice made in Ref. [54].
H — HR'. (3.19)

This unusual choice (only SU(2) g generators are involved) dictates an also unusual

transformation law of H under parity.
H(x) — ~"H(—x)y"UT(—x). (3.20)

It 1s also convenient to introduce the field

-E(C) _ ’;/OH(C)]L’}’O _ [D;’f,),u + DT'yg,] (1 ; ﬁ) (3.21)

The interaction Lagrangian respecting chiral symmetry and parity is [56-58)
L=—iTr Ho*0yH + £ Tr HHv*U0,U + & g Tr HHAP U9, U + ..., (3.22)

where the ellipsis denotes the contribution of terms containing more derivatives.
Neither the first nor the second term is invariant under parity, and requiring their
sum to be parity invariant fixes the ratio of their coefficients. This Lagrangian can
describe many processes in heavy meson phenomenology. For example, the decay

D** — D% is determined by the last term,

1 92
I'(D* — D% = é;;ﬁ]pﬂ‘[;;? (3.23)

where g is a coupling constant of unspecified value. Present experimental measure-
ments on D* width and Br(D** — D%r%) give I'(D*t — Dzt) < 72 keV and
hence g% < 0.4 [59]. The constituent quark model predicts that g 1s positive.



27

In general, processes involving only heavy mesons and low energy pions can be
described by the chiral Lagrangian in Eq. (3.22). Another of its many applications
is predicting the corrections to the mesonic Isgur-Wise form factor £(w) due to
soft pion loops. This has been done at the point of zero recoil by L. Randall and
M.B. Wise [101] and away from the point of zero recoil by M.B. Wise and the
author [1]. (Corresponding calculations for baryons are done by M. Savage in Ref.
[102].) This work, however, is not closely related to the theme of this thesis and

hence will be covered in the Appendix.

Returning to the bound state picture, one can, using the chiral Lagrangian,
calculate the binding energy of a heavy meson due to a hedgehog configuration of

background pion field. This has been done in Ref. [53-55], and the results can be

summarized as follows:

1) The binding potential V is a function of K = I + sy, where I is the
isospin and sy is the spin of the light degrees of freedom of the bound state. The

dependences of V on I and sy enter solely through its dependence on K.

2) In general the binding potential can be expanded as a Taylor series in
z, the relative distance between the heavy meson and (the center of) the chiral

solitomn.

Vie; K) = Vo(K) + Le(K)a? + .. .. (3.24)

It is found that the terms of quartic or higher powers in z of the potential (the
ellipsis in Eq. (3.24)) are subleading in 1/N,. Hence, the potential is ezactly simple

harmonic in the large N, limit.

3) When the higher-derivative terms are neglected, the truncated chiral La-
grangian (3.22) gives

Vo(K = 0) = —3¢gF'(0), (3.254)

and

#(K =0)=x =g [3[F(0) - 2F"(0)], (3.25b)
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where F'(0) and F"'(0) are respectively the first and third derivative of the profile
function F(r) at r = 0. We expect F'(0) > 0and F""'(0) < 0, giving Vo(K = 0) < 0,
k > 0 and hence stable bound states. The exact shape of the profile function
depends on the stabilization Lagrangian L4, and the expression for « in general
changes when more terms are added to the Lagrangian (3.22). We may, however,
regard Vo(K = 0) and x as parameters of the theory, which are functionals of
F(r). In particular, under truncated chiral Lagrangian, V5(K = 0) and & are odd
functional of F'(r). In general, however, when more terms are included in the chiral
Lagrangian, V(K = 0) and « have no definite symmetry under ¥ — —F. The
exact form of these functionals depend on how exactly the large N, limit is realized
but are independent of the heavy quark species (by heavy quark symmetry) and
the baryon spin (by the large N, limit). The value of the spring constant « can be
determined to be (530MeV)? in the Skyrme model and (440MeV)? from A¥ — A,
splitting. The ground states have orbital momentum L = 0 and I = s;. They can
be identified as Ag, with / = s, = 0 and E(*), with [ = sy = 1.

4) For states with K = 1 the potential is opposite in sign:
Viz; K =1) = -1V (z; K = 0), (3.26)

and the resulting states are unbound.

The successful prediction of the spins and isospins of ground state heavy
baryons (point (3) above) is a huge triumph for the bound state picture with the
truncated chiral Lagrangian. Moreover, the simple harmonicity of the potential
makes the calculation of many non-perturbative quantities possible. For example,
the Isgur-Wise form factors for Ay — A, and ¥ — Eﬁ*) can be evaluated in this

framework, as shown in the section below.

4. Evaluation of the Isgur—Wise Form Factors

Recall that, in the heavy quark limit, the semileptonic Ay — A, decay depends
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on a universal form factor n(w).

(Ac(v', 8] eTb|Ay(v, 8)) = n(w) @y, (v, s") Tuy, (v, s), (3.27)

Similar results hold for the semileptonic Zl(;*) — Eg*) decay. In this case we

have two Isgur-Wise form factors, (1(w) and (2(w) [12-15].

(Zg*)(vl, s')| el'b |EI(;*)(U’ 8)) = (G(w)guw + Cg(w)vva) ﬂgﬁ*)(v,’ T u;g*)(v, s),
(3.28)
where uﬁg(v',s') is the Rarita—Schwinger spinor vector for a spin-2 particle, and

ugs, (v, s) is defined by

I
uf, (v,5) = Q%T)%uzb(v,s) (3.29)

and similar for u;(c*)(v', ).

(*)

As mentioned above, Ag and X’ can be viewed as the bound states of chiral
solitons (N, A) to heavy mesons. We will describe the light degrees of freedom of
a heavy baryon by |1, a; sg, m), where I and s; are the isospin and spin of the light
degrees of freedom, while ¢ and m are their 3-components respectively. Hence
the light degrees of freedom of Ag is denoted by |0,0;0,0), while that of Ty is

I1,a;1,m).

Following the example of Ref. [53], the light degrees of freedom of a chiral
soliton is denoted by |R,b; R,n). A nucleon N has R = % while A has R = 3.
On the other hand, the light degrees of freedom of a heavy meson is denoted by
|35 ¢ 3.0}

Since we are working in the K = I + sy = 0 sector, the binding potential

between the chiral soliton and the heavy meson is independent of both the isospins

and the spins of the particles. We will denote the ground state wavefunction in
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momentum space as ¢(q). Then we have these decompositions:

10,0;0,0(v)>=/d3q¢(q)(% b:1,c]0,0) (,n; 1,p10,0)

13,6 5,0 (v —a/Mp)) |3, ¢ 5, p (v + q/My)},

(3.30)

ll,a;l,m(v)>=/d3q¢(<1){ 3(3:bi3,¢]1,0) (3,753,011, m)

5.0:3,n (v —a/Mg)) 15,65, p(v+a/Mg)}

+ /2 B e a) (3 ns L p 1, m)

13,5;3,n (v — a/Mp)) l%,C;%,p(Vqu/MH)}}

(3.31)
The (31, m1; 52, m2 |J, M)’s are the Clebsch-Gordon coefficients. Mg and My are
the masses of the chiral soliton and the heavy meson respectively. (Note that in

the K = 1 sector an I = sy = 1 state also appears. This state is orthogonal to
that described by Eq. (3.31).)

The spin—% Ag is composed of a heavy quark with spin——zl— and light degrees of

freedom with spin-0. Hence
(Ac(v', 8" elb|Ap(v,s)) = (0,0;0,0(v')]0,0;0,0 (v)) G I us. (3.32)

Comparing with Eq. (3.27), we get [54]
n(w) =(0,0;0,0(v')[0,0;0,0 (v))
- [¢d [ ¢as @) s
(3,853,¢10,0)* (3,7':3,9'10,0)* (3,65 2,¢10,0) (1,n;1,p]0,0)
(3.0 3,7 (V' = q'/Mp)|%,b; 1, n (v — q/Mp))

{3:¢s5:0 (V' +d'/Mp)l5. ¢ 5,0 (v + a/Mp)}.

(3.33)

Both the chiral soliton and the heavy meson matrix elements in Eq.(3.33) can



31

be evaluated.

( bla%v ,(VI_qI/MB)]%Sb;%7n(v_q/MB)) :61}5'6““'63(‘,_",-(qﬁq,)/MB%

(3.34)

{;l_ll

3¢50 (V + o [Mp)l5, 05,0 (v + a/Mp)} = Scobpp. (3.35)

In Eq. (3.35) there should be an extra factor dependent on ¢(w), the meson Isgur-
Wise form factor. £(w), however, is a slowly varying function and can be set to

unity.

The Kronecker delta’s make all Clebsch—~Gordon coefficients vanish, and hence

7(w) = / d*q 8" (q) 6(a + Mp(v — V') (3.36)

and the result in Ref. [54] is reproduced.

Similarly, we can evaluate (;(w) and (2(w). For concreteness we will focus on
the decay ¥; — ¥7. The spin—% Y is composed of a heavy quark with spin—% and
light degrees of freedom with spin-1. Hence,

(Eg*)(v', s elb [Zg*)(v, s)) = (1,d51,m' (v)|1,a;1,m (v)): T up. (3.37)
The light matrix element can be evaluated in a way similar to Eq. (3.33).
~ [@d [aas@) s

%(_ blaza ’ll,a')* (%a ,Z,P Il m) (% §27 ]1 a) (za ,Z,Pll m)

(1,d";1,m' (v")

(5,85 3,0' (v —=d/Mp)|},b; 1, n (v — a/Mp))
{5:¢;3.0 (V' +d/My)|t, e, p(v+ a/My)}

+%(_ bl’z’ Ill a) (

,2,p|1m) (3 727 ]1 a)(27 ’27p}1 m)

(3,0 5.0 (v = d'/Mp)[3,b;3,n (v — a/M3p))
{5.¢55.0' (V' +d/Mu)l}, c; 3, p (v + a/Mp)}

(3.38)
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The cross terms vanish as
(3,03 3,0' (v' = o M) [}, b5 1, n (v — a/Mp)) = 0. (3.39)

As before, the chiral soliton and heavy meson matrix elements can be calculated

using Eq. (3.34), Eq. (3.35) and

(3,03 3.7" (v' = /Mp)I3,b;3,n (v — a/Mp)) = 8p6un6*(v —v' = (a — q') [ Mp).

(3.40)
By the identities
(J1.ma; g2, ma |, M')* (j1,ma; g2, ma |J, M) = Sy, (3.41)
Eq. (3.38) can be simplified to
(o 1o o)1, 2) = a6 (@) st Mpte =)

= bga' Ommn(W).
Notice that n(w) has reappeared. The expected 8447 is just a consequence of isospin
conservation in the weak decay. On the other hand, the é,,,, demands that the
initial and final light degrees of freedom are in the same spin state. In terms of the

polarization vectors ¢ and ¢/, we have

(Zr(, €, s elb|Zf (v, €, 8)) = —P—:ﬁu—) [(1 + w)guy — v,,vL} el Tuy.  (3.43)
w

The combination in the square brackets should be familiar as it also appears in the

B — D* decay.
(D", e B(0) = €(6) 1+ ) = wf] €. 2
Comparing Eq. (3.43) to Eq. (3.28), we conclude that, in the large N, limit,
((w) = —(1 4+ w)(e = n(w). (3.45)

This is the main result of Ref. [3]. The same universal form factor 5(w)

describes the weak decays of A and X¢. An equivalent result has been obtained in
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Ref. [60] under different assumptions. Our formalism is applicable in the kinematic
region w — 1 < N§/2, through which 5(w) drops from unity to a small quantity.
Outside this kinematic region anharmonic terms in the binding potential may be

significant, and the universality may be broken by such corrections.

In the real world, Zé*) decays strongly and the decays El(;*) o Eﬁ*) are hardly
ever observed. On the other hand, €3, the chiral SU(3) partner of %3, does decay
weakly to Qﬁ*). Then chiral SU(3) predicts that the Q, — Qﬁ*) decay is also
described by the same universal form factor n(w). This statement may be put to
experimental test in the future. The deviation from Eq. (3.45) is an indication of

how good the large N, limit is.

The exact form of n(w) depends solely on ¢(q). As shown above, the binding
potential between a heavy meson and a chiral soliton is simple harmonic in the
large N, limit. Hence ¢(q) is just the ground state momentum wave function.

M) = —r—r exp (~a/2/Mr) (3.46)

(72 Mpk)3/8

With this particular form of ¢(q), n(w) can be calculated [3,55].

(w—1) M%

(w) = exp |~y (2B (3.47)

This form factor satisfies the lower bound given in Eq. (2.52) when N, is large.

Expanding 7 about zero recoil
nw)=1-p(w—-1)+..., (3.48)
we see that

p* = SIM ) (3.9

It should be noted that Eq. (3.45) does not depend on any particular form of
#(q) or n(w). It does depend, however, on the crucial assumption that the binding

potential is independent of the isospins and spins of the particles.
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We have proved that, in the large N, limit, a new universality appeared for
the baryon weak form factor n(w). This same form factor describes weak decays
of both Ag and {)g in the exact chiral SU(3) limit. In the real world, where chiral
SU(3) is broken, the leading correction is expected to come from kaon loops. In

particular, it is expected that, near the point of zero recoil

2 A2 m2.
C1(w) — n(w)] ~ (jjr’?)z, i (25). (3.50)

where A is the Q*Q — Q¢ splitting, u the subtraction point and g3, the Yg¥gn
coupling constant [61]. The correction is expected to be about 1%, but the relevant
loop integrals must be calculated and the counterterms known to get the exact

magnitude of the correction.

5. Excited Baryons In The Bound State Picture

Experimental evidence for a doublet of excited charm baryons has recently
been obtained at ARGUS [62], CLEO [63] and E687 [64]. (For a summary on
excited charm states, see Ref. [65].) They have masses 340 MeV and 308 MeV
above the Ac. It is natural to interpret these states as the spin 3/2 and 1/2 isospin
zero members of a doublet that has spin parity of the light degrees of freedom,

T __ -
Sy =1".

Properties of these excited A, baryons can be estimated using the nonrelativis-
tic constituent quark model [66]. In this phenomenological model the observed
excited A, baryons have quark content cud with the ud pair in an isospin zero and
spin zero state like the ground state A.. However, unlike the ground state, in these
excited A baryons the ud pair has a unit of orbital angular momentum about the

charm quark.

In the bound state picture, a Ag-type excited baryon is a nucleon harmonically
bound to a heavy meson in an excited bound state. When the orbital angular

momentum of the bound state is non-zero, they occur (in the mg — oo limit)
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in degenerate doublets that arise from combining the orbital angular momentum
of the bound state with the heavy quark spin. The harmonic oscillator potential
in Eq. (3.24) gives rise to an infinite tower of Ag-type baryons with excitation

energies

E((T?l),nz,na) - (?’Ll +nz + n3) \/ K/:“Q7 (351)

where () is the reduced mass

1 1 1
—— (3.52)
pg mq@ Mg
In Eq. (3.51) (n1,n92,n3) are the quantum numbers that specify the bound states

when the Schrédinger equation is solved by separating variables in cartesian coor-

dinates.

For states with the same quantum numbers (n1,n2,n3), but different heavy

quarks, Eq. (3.51) gives

@/ np®) _ (LEMp/me\?> . 1/Mp Mg
AE\YIAE <1+M3/mb _1+2 e +.... (3.53)

Eq. (3.51) was obtained by solving the Schrodinger equation including the kinetic
energy of the heavy meson. This corresponds to taking simultaneously the limits
mg — oo and N, — oo with the ratio Mp/mg held fixed (recall Mp is of order
Ne). If mg was taken to infinity first, then effects of order Mp/mg are neglected,
and heavy quark flavor symmetry determines the ratio of excitation energies in Eq.
(3.53) to be unity. In the large N, limit, the leading corrections to heavy quark
symmetry [10,11] arise from including the kinetic energy of the heavy meson in the
Schrodinger equation for the soliton-heavy meson bound state [55]. This violates
heavy quark flavor symmetry but leaves heavy quark spin symmetry intact. Despite
the fact that Mp/m, is not particularly small, the ratio of excitation energies in

Eq. (3.53) differs from unity by less than 20%.
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The excitation energies given in Eq. (3.51) are of order NC—I/Q. The first
excited states have quantum numbers (1,0,0), (0,1,0), (0,0,1). There is another
basis of quantum numbers [N,¢,m], N = n; + ny + n3, that is also useful. Here
¢ is the orbital angular momentum of the bound state and m is the component
of the orbital angular momentum along the spin-quantization axis. In this basis
N > { and even values of £ occur for N even while odd values of £ occur for N odd.
The first excited states have N = 1, £ = 1, and m = 0,41, ~1 giving s;* = 1~
for the spin parity of the light degrees of freedom. Combining this with the spin
of the heavy quark gives a doublet of negative parity states with total spins 3/2
and 1/2. For () = ¢ these states correspond to the observed doublet of excited A,
states. Comparing Eq. (3.51) with the experimental value of the excitation energy

(~ 340MeV) gives & ~ (440MeV)?.

In general, Ag-type states have total spins s = £ 4+ 1/2 formed by combining
the spin of the heavy quark with the orbital angular momentum ¢. We label them
by the quantum numbers {N,¢; s,m}, where now m is the component of the total
spin along the spin-quantization axis. In this notation the ground state Ag baryon
has quantum numbers {0,0;1/2,m} and the first excited Ag doublet contains the
states {1,1;1/2,m} and {1,1;3/2,m}.

Semileptonic decay amplitudes of the Ay to excited A, baryons are determined
by matrix elements of the vector and axial vector heavy quark currents. These
matrix elements can be calculated using the bound state picture we have outlined

above. It is found that

<A£N,Z;,g”ml}(v,)[ i}f}f)'y”hgb) IA§0,0;1/2,m}(U)>

_£i,0 P t N[N m'—m] (354&)
=6M°(l,m' —m;1/2,m|s',m")F (w)

and

(AT W) Dy 1A )
k] Z(E’ m — m”; 1/2, mu[Sf7 ml) [XT(m")UjX(m)] F[N,Z,m'_m:,](w)7

m!

(3.54b)
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where FLI¥ ’Z’m](w) is an overlap of momentum space harmonic oscillator wave func-

tions

FEml ) / &g o™ (q) " (q — Mp(v = v')). (3.55)

In Eq. (3.54b) x is a two-component Pauli spinor. The sum over m” in Eq.
(3.54b) collapses to a single term since x'(m")a®x(m) vanishes for m" = —m
and xT(m")ob2x(m) vanishes for m" = m. In Eq. (3.55) ¢é\f£m( ) denotes the
normalized momentum space harmonic oscillator wave function. Its dependence
on the type of heavy quark arises from the dependence of the reduced mass pg on

the heavy quark mass.

Egs. (3.54) and (3.55) are valid in the kinematic region (w — 1) < O(N, —3/2)
For recoil velocities greater than this, the overlap FWV ’é’m](w) is very small and
terms subdominant in N, that we have neglected may be important [55]. When w #
1 the operator ng) thb) requires renormalization [67]. However, in the kinematic
regime very near zero recoil where Eqgs. (3.53) and (3.55) apply, the subtraction

point dependence of ﬁg?)thb) is negligible.

It is easiest to evaluate FLIV:6m](1)

in the case where v — v’ is directed along
the spin-quantization axis. The expression is particularly simple when the limit

mg — oo is taken first so that ug = Mp independent of heavy quark type. Then

Fi ey >_5m0§N_[MB/n1N/4(w DY exp (——[MW”Z( 1)) (3.56)

where

oV~ / ¢ M0 () 00N q). (3.57)

The ground state A, — A, transition corresponds to the case N = 0, £ = 0

and Eq. (3.57) is reduced to Eq. (3.47). Transition matrix elements to excited A,
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states with £ = 1 are constrained by heavy quark symmetry to have the form [18]

J(N)(w)

V3

(A2 (1 R D A (001 2mb )y a(v',s')ys($ + w)lu(v, ),

(3.58a)
AR RETRD AT 0)) = oW )i (o), 8o Tu(v, ).
(3.586)
Comparing these expressions with Eqgs. (3.52), (3.53), and (3.54) gives
CNl

) = el M 0= ) e S [ME /R P w —1)] . (3.59)

Note that fractional powers of (w — 1) do not occur in Eq. (3.59) because N must

be odd. In particular for N =1,

AU w) = [ Pagila)sla+ Malv - )
X (3.60)
= [Mp/4s)* (w — Dexp |~ [M/s]/*(w — 1)),

where ¢1(q) is the momentum wavefunction of the first orbital excited state of the

simple harmonic potential.

At zero recoil o¥ (1) is zero for N > 1, while for the first excited state
oM(1) = (M} /462, (3.61)

using C1' = 1.

For simplicity we have derived our expressions for the Isgur-Wise functions
o™)(w) by taking the limit mg — oo followed by the limit N, — oo. However,
Egs. (3.52) and (3.53) can be used to include corrections to the heavy quark limit
to all orders in Mp/mg. As we have noted, these corrections do not violate heavy
quark spin symmetry. Therefore, the form of the matrix elements given in Egs.
(3.58) still holds, but the functions ¢{¥)(w) become dependent on the heavy quark

Imasses.
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The fact that o(¥)(1) is zero for N > 1 means that in the large N, limit
the Bjorken sum rule (2.26) for the slope p* of the Isgur-Wise function 5(w) and
Voloshin sum rule (2.42) for the mass of the light degrees of freedom A are saturated
by the first doublet of excited A, states. In fact, the Bjorken sum rule

7t = oW (1)) (3.62)

is reproduced when Eq. (3.49) and (3.61) are combined, where the Voloshin sum

rule is reduced to

A= Mg (3.63)

which is true in leading order of 1/N,.

It is straightforward to repeat the exercise for ) decays. Heavy quark sym-
metry allows four independent form factors for €2 decays into the first excited €2,
pentalet [20]. Yet in the large N, limit, all of them are expressible in FIH10(w),
Likewise, both the Bjorken [20] and the Voloshin sum rules are again saturated by
this pentalet.

In this section, we have discussed how heavy baryons arise as bound states
of heavy mesons and chiral solitons, and how Isgur-Wise form factors can be
evaluated for ground state and excited baryons. There are other properties of
excited heavy baryons that can be examined in the large /N, limit. For example,
at the leading order in chiral perturbation theory [61], the strong couplings of the
ground state Ag to X7 or Eaﬂ' are of order Ncl/2 and can be related to the
pion-nucleon coupling [53]. However, because of the orthogonality of the harmonic
oscillator wave functions, the analogous couplings for excited Ag states [68] are

only of order Nc—l/z.
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IV. Heavy Multiquark Exotics In The Large N. Limit

One of the early triumphs of the quark model is its success in describing the
hadron spectrum. By regarding hadrons as ¢§ or gqq configurations, their quantum
numbers (charge, spin, isospin, strangeness, etc.) are well accounted for. On the
other hand, the question of the existence of exotics has attracted more attention
in recent years. In particular, since R.L. Jaffe’s classic papers [69-71] on di-meson
and di-baryon states in the quark-bag model, the existence of multiquark states

has been investigated through many other approaches.

In this section, we are going to investigate the existence of multiquark states
containing one or two heavy quarks (for N, = 3). In the large N, limit, they are
states with one or N, — 1 heavy quarks. Two types of interactions are going to
play important roles in our discussion. They are the heavy meson-chiral soliton
binding, which has been introduced in the previous section, and the Coulombic

attraction between heavy quarks.

In the heavy quark limit, the color potential between two heavy quarks are
Coulombic. As the result, N, — 1 heavy antiquarks can form a small colored
complex of size (N, as(mg)mg) ™! which transforms just like a heavy quark under
color SU(N;). (Note that we keep NV a5 constant when taking the large N, limit;
the size of this “fake heavy quark” has a finite limit when N, — o0o.) Hence, for
any hadron with one heavy quark, we can replace the heavy quark with this “fake
heavy quark” to obtain another hadron [72,73]. We will see below that some of

these states are exotics.

We will begin this section by reviewing the Coulombic attraction by considering
the properties of normal baryons with N. — 1 heavy quarks. After that, hadrons
with 2N, — 2, N; +2 and 2N, quarks, which for brevity will be called tetraquarks,
pentaquarks and hexaquarks respectively, will be investigated. Last of all, the
validity of the results for finite quark masses and possible generalizations of this

framework will be discussed.
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1. Heavy Baryons With N, —1 Heavy Anti-Quarks

As discussed before, N, — 1 heavy antiquarks can form a small colored object
Q<=1 which transforms just like a heavy quark under color SU(N,). As long as
Neas(mg)mg > Aqep, the light degrees of freedom cannot resolve the individual
heavy antiquarks within this “fake heavy quark.” Hence, for any heavy hadron
containing a single heavy quark, we can replace this heavy quark with the “fake
heavy quark” and obtain another hadron which contains N, — 1 heavy antiquarks.
In particular, by replacing the heavy quark @ in the heavy meson Qg with Q~Ve—1,

we get the non-exotic baryon QN-—1g.

Q"1 has binding energy of the order of N;a%(mg)mg. When mg — oo,
the binding energy grow to infinity. The heavy antiquarks are very tightly bound
in the heavy quark limit, and Q"1 is safe from dissociations like Q71§ —

Qq + QY2gg. As a result, Q<=1 must decay weakly.

To describe the weak decays, again we need an Isgur-Wise form factor. For
the decay Ba,..ay,_»b — Bai..an.—sc, Where Ba, an. b = Qa; - - Qay,_,Qs¢ and
Buai..an, ¢ = Qay -+ - Qan,_»Qcq, the Isgur-Wise form factor Nay...an,—a(b—c) (W) 18
dominated by the overlap of the Hartree-Fock wave functions, which describes
the interaction of @y or Q. with the other N, — 2 heavy antiquarks [28]. In the
real world, N, = 3 and the Hartree-Fock wave functions become Coulombic wave
functions [74]. Hence we can calculate the Isgur—Wise form factor Na(b—c)(w) for the
Qa@q — QaQcq transition by evaluating the overlap of Coulombic wave functions.
(Note that nyp—cy(w) is called ngpe(w) in Ref. [74].) For B = pqp as(pap) and
C = pac @s(pac), we have

Na(b—e)(W) = /d3pv*(0;p)¢(3;p+q), (4.1)

where
q = mg(v— v'), (4.2)

and ¥ (B;p) is the ground state Coulombic wave function with Bohr radius B~!
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and similar for ¢(C;p 4+ q). The exact form of nyp—.c)(w) is given in Ref. [74].
Note that in general the Isgur-Wise form factor is not normalized at the point of

zero recoil. In fact,

3
2\/§€> | (3)

Ua(b—w)(l) = (B +C
which is not equal to unity unless B = C, i.e., my = m.. This is very different
from the normalization of n(w), which holds regardless of the size of my — m. as

long as both my and m. > Aqcp.

In our calculations of 74(3—.), we have neglected the overlap of the “brown
muck,” which includes the single light valence antiquark and the quark-antiquark
sea. Including that would lead to an extra factor of {(w). The meson Isgur—-Wise
form factor £(w) is a slowly varying function as its slope at the point of zero recoil
is of the order of unity. On the other hand, (B, p) has a short range of the order
of B ~ mgas(mg). Hence, near the point of zero recoil, the slope 74(_.) is of the
order of a;?(mg). In the heavy quark limit, this slope is large (a;?(my) ~ 22.5)
and the w-dependence of 7,3;_.) does overwhelm that of £ (w). This justifies the

neglect of the £(w) factor in our calculations.

Unlike n(w) the normal Isgur-Wise form factor, which is non-perturbative in
nature, the form factor n,, 4y, _,(6—c)(w) results from the perturbative attraction
between the heavy antiquarks. As we will see below, to describe the semileptonic
decays of the multiquark exotics, we need just the two form factors we have dis-

cussed, namely n(w) and 0,4, a4y _,(p—c) (0)-

2. Tetraquarks

The large N, analog of tetraquark states Q@Qqq is ambiguous. Both QQgq and
QNe=1gNe=1 reduce to Q@Qqq when N, = 3. In his classic paper on baryons in the
1/N, expansion [28], E. Witten showed that QQqq states are absent in the large N,
limit. On the other hand, stable Q¥-=1¢™Ve—1 states, which he called “baryonium”

states, exist. In this section, we will discuss their properties and decay modes.
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We can obtain a “baryonium” Q%+~1¢"<=1 by replacing the heavy quark Q in a
heavy baryon Qq¢™Ve~! with the “fake heavy quark” Q¥<~!. In the real world, where
N = 3, it is just the di-meson, or tetraquark hadron QQqq which Jaffe discussed
in Ref. [69,70] in the context where all the quarks are light, and subsequently

discussed in Ref. [5,28,75-80].

Since non-perturbative QCD cannot resolve the individual heavy antiquarks in
the “fake heavy quark,” the tetraquark has similar spectroscopic properties with
the normal baryon. In particular, the lowest-lying configurations will have (1, S;) =
(0,0). These states are safe from dissociations like QVe=1gNe=1 — QNe—1g 4 gNe

and hence must decay weakly.

(4)

ai ...aNC_g(b—rc)

Wea’k deca’ys Tal...aNC_gb - Tal...aNC-.zm Where Ta;[...aNc._gb = Qal et QGNC_Qquq a‘nd

The Isgur-Wise form factor 5 (w), which describes the tetraquark
Tay..an,—sc = Qa, ...QaNc_chqq, can be expressed as the product of two terms
with different physical origins [5]. A perturbative term comes from the overlap
of the initial and final “fake heavy quark” wave function. Since this “fake heavy
quark” transition is identical with what happens in the By, ay._,56 = Bay...ay,_sc
decay, the perturbative term is exactly 74,. .y, _,(3—c)(w). On the other hand,
a non-perturbative term describes the overlap of the initial and final light de-
grees of freedom under the color field of the “fake heavy quark.” Since the light
degrees of freedom of a tetraquark is identical to that of a normal baryon, the

non-perturbative term is just n(w). As a result, we get

Tor-nesre) () = 109 T a0 (). (4.4)
When N, = 3 we have

M1y () = 1() sy (), (4.5)

which has been proved in Ref. [5]. Note that the normalization of n((llfl)Hc)(w) is
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given by the normalization of each of its factors.

3
2 (1) = (%%‘) . (16)

We will see this factorization of perturbative and non-perturbative contributions
also in the case of hexaquark decays. Also note that this factorization is purely a
consequence of the decoupling of the dynamics of the heavy and light degrees of
freedom in the heavy quark limit and does not depend on the large N, limit [5].
In particular, Eq. (4.5) is still valid away from of large N, limit. In such cases,
however, n(w) is also expected to be slowly varying and the behavior of ni%l))ﬂc)(w)

is dominated by that of n,_)(w).

3. Pentaquarks

In Ref. [54], the authors have remarked upon the possibility of the existence
of exotic bound states of heavy mesons and chiral anti-solitons. In the large N,
limit, a chiral anti-soliton, which has baryon number —1, is also a configuration of
the pion field satisfying the hedgehog ansatz. The profile function satisfying the
boundary condition F'(0) = 7 and F(oco) = 0. In other words, a chiral anti-soliton
is obtained when we flip the sign of F'(z) of a chiral soliton, and wice versa. Since
the binding potential V(z) is odd in F(z), the binding of a chiral anti-soliton to
a heavy meson will be the same in magnitude but opposite in sign with that of a
chiral soliton. Denoting the binding of a chiral anti-soliton to a heavy meson by

V(z; K), we have

Viz; K) = -V(z; K). (4.7)

Hence K = 0 states are unbound and the K = 1 states are bounded. The stable
bound states are those with (1,5,) = (0,1), (1,1), (1,0) and etc. In the quark
model, such states are exotic Q7"**t! multiquarks. When N, = 3, these Qgqqq
states are just the pentaquarks discussed in Ref. [78,81-85].
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Combining Eq. (3.26) and Eq. (4.7), we get the relation

V(z;1) = 3V(2;0), (4.8)

which means that the binding energy of the pentaquark is just a third of that
of a normal heavy baryon. Still, the pentaquark is below the Qg¥t — Qg +
g™ threshold and hence must decay weakly. Here again the Isgur-Wise function
1) (w) is given by the overlap of simple harmonic wave functions qZ)(p) The only
difference is that for the pentaquark system the spring constant is just %/{, ie., a
third of that of a normal heavy baryon. Since the natural unit for momentum of a

simple harmonic oscillator is (mg&)'/%, we have

4(p) = #(3"/*p). (4.9)
With
1w) = [ 98 (p) bl +10, (4.10)
we finally obtain
n®(w) = n(v3(w —1) +1). (4.11)

We have succeeded in relating the Isgur-Wise form factors of pentaquarks and
that of normal heavy baryons. Like 5(w), 7(®)(w) also non-perturbative in nature.

It obeys Luke’s theorem and is normalized at the point of zero recoil,

(1) = 1. (4.12)

We can also consider the hadron obtained by replacing the heavy quark in a
pentaquark system by a “fake heavy quark.” The resultant hadron is the famous
H-dibaryon, which is also known as the hexaquark. This will be the topic of the

next section.
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4. Hexaquarks

As suggested above, when we replace the heavy quark inside the pentaquark

e=1gNet1 has baryon

system with a “fake heavy quark,” the resultant system Q~Ve—
number 2. When N, = 3, the hadron QQggqq is just the H particle first suggested
by Jaffe [71] in the context of a uuddss complex, and subsequently discussed by Ref.
[28,78,83,86-97]. It is one of the most well-discussed exotics as it arises in many
different scenarios like the bag models, large N, Hartree-Fock model, AA molecule,
Skyrme models, potential models and lattice gauge calculations. Noteworthy are
Ref. [86], [89] and [93], in which H arises as topological chiral solitons under
( )px SU(3)R chiral symmetry. Under light flavor SU(3) generated by {A,

=1,...,8}, the G-invariance equation (3.8) which expresses the equivalence of

a rotation in real space and that in the flavor space becomes
[Ag, U(x)] — i(x x V) U(x) =0, (4.13)
where {A, : @ =1,2,3} is an SU(2) subalgebra of light flavor SU(3), i.e.,
[Aa, Ap] = teqpcAc. (4.14)

There are two inequivalent sets of {A,}’s satisfying Eq. (4.14). The trivial choice
is {A.} = {& 5 ,—21, 2}, where the solutions to Eq. (4.13) are hedgehog-like and
can be identified with the normal chiral solitons (N and A). The non-trivial choice
{Aa} = {X2, A5, A7} leads to non-hedgehog soliton solutions [86,89]. Due to this

relation between the structure constants of SU(3),

Jost = § f123, (4.15)

the baryon number of H is twice that of a normal chiral soliton. This SU(3) group
theoretical approach is applicable when there are three light flavors and H can be
viewed as a uuddss complex in the quark model. It is interesting to see that, in
our formalism, heavy hexaquarks also arise as bound states of normal SU(2) chiral

solitons to heavy mesons.
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Since the light degrees of freedom of a hexaquark is identical to that of a
pentaquark, we have K = 1 stable configurations. The discussion on the stability
of the hexaquark runs parallel to that of the tetraquark. The large chromoelectric
binding energy prevents the dissociation Q¥ 1gVetl — Qge=14+Q¥-=2gq or other
decay modes which involves the splitting up of the “fake heavy quark” system. On
the other hand, the stability of the pentaquark system guarantees the stabililty
of the hexaquark against QVe=1g"Vet1 — QNe—1g 4+ Ve, Hence the hexaquark is

stable with respect to strong interactions and decays weakly.

Just like its tetraquark counterpart, the hexaquark Isgur—-Wise weak form fac-

tor 17( )

Hal---aNc—2b = Qal e QaNc—zéquc_H and Ha1...aNc-2C = Qal cee QaNC~2 QC‘_Z-NC—H can

also be expressed as the product of a perturbative factor and a non-perturbative

e (b_w)(w) of the hexaquark decay Hg, a4y 56 — Hay..ay._rc, Where

factor. The perturbative part, which results from the chromoelectric attraction
between the heavy antiquarks, is again given by Wal...aNc_z(b—»c)(w)- The non-
perturbative part, which describes the overlap between the initial and final light
degrees of freedom, is given by 77(5)(10) as the light degrees of freedom of a hex-

aquark is identical with that of a pentaquark. As a result,

T rme0) () = 1) Wy (10) (4.16)

When N, = 3 we have

11—y (@) = 10 () 1y (). (4.17)

Last of all, we again have the normalization condition

3
i?z),_ﬁc)(l) = (2@) : (4.18)
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5. Discussion

In summary, the following results have been obtained.

1) In the large N, limits, there exists heavy tetraquark, pentaquark, and hex-
aquark exotic states which are stable with respect to strong interactions. It is
noted that the stabilities of tetraquarks depends simply on the heavy quark limit
and the stabilities of normal Ag baryons, while the stabilities of pentaquarks and
hexaquarks have been shown in the context of the chiral soliton model, which is a

crucial assumption in our discussion.
2) The (I, sy) of these multiquark states are known.

3) The “heavy to heavy” weak decay of each of these multiquark states are
described by a single Isgur-Wise form factor. Moreover, these Isgur-Wise form

factors can be expressed in terms of the Isgur—-Wise form factors of normal baryons.

Naturally the question of whether in this framework one can generate higher
multiquark states like heptaquarks and octaquarks arises. To answer this question,
note that all the hadrons considered in this paper can be reduced to two-body
bound states, of either a heavy meson or “fake heavy meson” in one hand, and
a chiral soliton or anti-soliton in the other. It is exactly the possibility of such
reduction to a two-body problem which simplifies the systems and enable us to
get the results listed above. When we move on higher multiquark states, such
reductions are impossible. For example, the heptaquark is a “fake heavy meson”
QQq bounded to two chiral solitons gqq, and the octaquark is a heavy meson g
bounded to two chiral anti-solitons ¢gg. In general, such three-body systems are
intractable. Hence we do not expect a simple generalization of our framework to

describe these higher multiquark states.

Our discussion on hadrons with N, — 1 heavy antiquarks depends crucially on
the assumption that the light degrees of freedom cannot resolve the “fake heavy
quark” or equivalently N.as(mg)mg > Aqep. In the real world, since the top

quark does not live long enough to form hadrons, we just have two “hadronizable”
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heavy quarks, the b quark and the ¢ quark. The assumption above, however, holds
for neither of them, and our results cannot be applied directly. Still, it is possible
that the picture above is at least qualitatively correct and can serve as the starting
point of quantitative investigations of the heavy multiquark systems by including

the effects of 1/mg corrections.
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V. Conclusion

In previous sections, we have seen how the bound state picture provides a
useful framework for the studies of heavy hadrons. The basic ingredients of our
formalism are: chiral symmetry, heavy quark symmetry, and the large N, limit.
It is instructive to review how these different ingredients simplify the physics, and

examine the scope of applicability of our framework.

The most crucial simplifications come from the simplest observations. In the
heavy quark limit, heavy hadrons are infinitely massive. Similarly, in the large
N limit, baryons are also infinitely massive. Pair productions are infinitely sup-
pressed, and the corresponding Fock spaces become disjoint Hilbert spaces with
conserved particle (heavy quark or baryon) numbers. In other words, the quantum
field theory can been reduced to quantum mechanics! In the heavy quark and large
N¢ limit, heavy mesons and light baryons are quantum mechanical entities. And in
this thesis, we have been studying the Hilbert space with both heavy quark number
and baryon number equal to unity. It must be emphasized that this suppression of
pair productions is the consequence of the infinite massiveness of the heavy mesons

and baryons, and has nothing to do with the spin symmteries.

The next step is the bound state model, which proposed that a heavy baryon
can be treated as the bound state of a heavy meson to a light baryon. Hence the

Hilbert space H can be decomposed into the product of several subspaces.

H=Hy, @ Hy @ Hy. (5.1)

Hp and Hy are respectively the Hilbert spaces of the heavy mesons and light
baryons at rest, and Hy is the quantum mechanical Hilbert space for their relative
motion in a given binding potential V(x). This decomposition is a consequence
of the conservation of heavy meson and baryon number mentioned above, and is

independent of the origin or form of the binding potential.
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The physics of heavy hadrons in the large N, limit is simple because the relevant

Lagrangians (or Hamiltonians) are block-diagonal under decomposition (5.1).
L=Lh+Ly+Ly. (5.2)
For example, the mass M of a heavy baryon can be written as
M = My + My + My (5.3)

where M}, and M, are the masses of the heavy meson and the light baryon respec-

tively, and My is the eigenenergy of the particle in the potential V(x).

Similar decomposition happens for interaction Lagrangians. For example,

heavy baryons couples to pions through the axial current,
La=0,mA", (5.4)
where the heavy baryon axial current is defined in Ref. [61].
AP = igo et G 0,5y + g3[TS* + 5T, (5.5)

with T"and S denoting the Ag and ¥ fields respectively. (For the exact definitions,
please see Ref. [61].) In the bound state picture [53], the heavy baryon axial current

can be decomposed as

9i = (gi)n + (gi)s + (gi)v, i=2,3, (5.6)
with

(92)n = —\/§<gs>h =1, (5.7a)

(92)s = —\/§(93)b = -394, (5.76)

and (g;)y = 0. In this way, heavy baryon axial couplings are expressed in terms of

g, the heavy meson axial coupling constant defined in Eq. (3.22), and g4 ~ 1.25,
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the axial coupling for nucleons. Similar decompositions are applicable to electric

charge and magnetic moments of heavy baryons.

In this thesis, we are mostly interested in the weak decay of heavy baryons. In
other words, we are interested in the matrix elements of .J, = ¢['b between different
states of heavy baryons. Since J, acts only on the heavy meson Hilbert subspace,

we have this decomposition:
(A, 21IA, B = (DOl BY) (N, AN, A) (6sl8s)  (5:8)

The second term, the matrix element between baryons, is identically equal to unity.
For a normal b — ¢ decay, the variation of the overlap of the initial and final spatial
wave functions over different values of w dominates over the variation of the meson
decay matrix element, which is essentially a slow-varying mesonic Isgur-Wise form

factor. Hence
(A 217,08, 280y = (6414). (5.9)

On the other hand, for the decay of a “fake heavy quark,” both the first term and
the last term of Eq. (5.8) are important.

The spin symmetries simplify the dynamics within the Hilbert subspaces. For
example, there exists an SU(4) spin symmetry in the baryon sector when N, — oo,
and this leads to the degeneracy of N and A as well as relations between the axial
couplings gxNN, gxNaA and graa. (All of them can be expressed in terms of g4
[33].) Similarly, the SU(4) heavy quark spin symmetry leads to degenerate meson
doublets like B and B* [10,11], and their axial couplings are described by the same
coupling constant g [56-58]. We can still decompose the heavy baryon Hilbert space
‘H into subspaces without the spin symmetries, but the results will be much more
complicated as more coupling constants are involved. Moreover, without the spin
symmetries, the binding potentials of different spin states of heavy mesons and
light baryons are in general unrelated. Only the universality of coupling constants
gives a universal binding potential, and hence the universality of the baryonic

Isgur-Wise form factor [3].
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Only at the calculation of the binding potential does chiral symmetry come into
play. In the calculation in Ref. [3,55], only pion-heavy meson couplings are taken
into account. I will discuss further the validity and possible improvement of this
assumption. Finally, the large N, limit is used to truncate the binding potential
into a simple harmonic one, enabling us to calculate some non-perturbative quan-
tities, like the orbital excitation energy \/;/ﬁb and the slope of the Isgur-Wise

form factor p.

In this way, through the interplay of chiral symmetry, heavy quark symmetry
and the large N, limit, we have succeeded in obtaining a reasonable description of
heavy baryons. In the real world, none of these symmetries are exactly obeyed.
Both the large N, corrections O(1/N;) = 0.33 and the heavy quark corrections
O(Aqcp/me) ~ 0.2 may be significant. Ultimately we have to rely on experiments
to tell if the bound state picture is a useful framework for the investigation of the

properties of heavy baryons.

We will end this thesis by a discussion of possible directions for further explo-

rations.

One possible improvement of our framework can be done by inclusion of other
light mesons, like p, w, ¢ and a1, in the dynamics. As mentioned above, in our
treatment the chiral soliton is regarded as a purely pionic configuration, and the
effects of other light mesons are neglected. In view of the non-perturbative nature
of our problem, this approximation is reasonable as the pions are the only hadron
with mass below Aqcp. The agreement of predictions of the chiral soliton model
with experiment at the 40% level supports the validity of this treatment. On the
other hand, it is expected that the agreement will improve when more light mesons
are included [31]. In particular, there are reasons for us to expect p meson to play a
significant role in the chiral soliton model. Being one of the lightest hadrons, the p
mass is not very much above Aqcp (m, = 770 MeV). In the non-relativistic quark

model, 7 and p fall into the same SU(4) multiplet. The strongest hint comes from
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the identification of the Skyrme term as the m, — oo limit of the p meson kinetic
term [46.47]. All these provide motivations to incorporate these light mesons into

the chiral soliton model.

The most straightforward way [98] to incorporate the light mesons is to describe
the configuration of each meson by a different profile function. Then the energy is
minimized with respect to most general chiral invariant Lagrangian to obtain the
ground state profile functions. The binding with heavy mesons can be calculated
by summing the interaction of the heavy meson with each of these background
meson configurations. This method is straightforward but can only be done at
the expense of including more coupling constants, which may lead to a decline of

predictive power.

A completely different approach is suggested by H. Georgi in Ref. [99]. A
new symmetry, which is usually referred to as vector symmetry, is introduced to
relate pions to (the longitudinal component of) the p meson. The symmetry is
badly broken in the real world, but may be restored at the large N, limit. Under
this symmetry, pions and p mesons are degenerate and are both massless in the
chiral limit. No new coupling constant is needed to describe p dynamics. On the
other hand, there is no evidence that the vector symmetry will yield a reasonable
description of the real world. After all, my = 140MeV and m, = 770MeV, differing
by a factor of 5. Hence, the applicability of the vector symmetry to the studies of

hadron dynamics remains questionable.

Secondly, we must try to estimate the effects of large but finite heavy quark
masses. A possible line of attack is to see how to connect our formalism, where
the b quark is infinitely massive, to the flavor SU(3) limit, where the “b quark”
becomes a massless light quark. This is especially important in the understanding
of baryons containing an s quark, as neither the chiral nor the heavy quark limit
is directly applicable. Pioneering work in this direction has been done in Ref.
[100]. Moreover, as mentioned before, the realistic heavy quark masses are not

large enough to form “fake heavy quarks” unresolvable by non-perturbative QCD.
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For realistic quark masses, multiquark states may arise as molecules, i.e., bound
states through pion exchange in an attractive channel. Tetraquark molecules have
been studied in Ref. [80] and it is of interest to repeat the exercise for pentaquark

and hexaquark molecules as well.

The chiral soliton model and the bound state picture is the most intuitive
among the different approaches to the large N, limit. However, it cannot be read-
ily extended to include 1/N. and Aqcp/meq corrections. It is important to see
how our results may arise in the other approaches. In fact, in all the approaches
arises the SU(4) spin-flavor symmetry, which is now recognized as the crux of our
understanding of large N, baryons. Some of the results of the chiral soliton model,
like the mass degeneracy of Ag and Eg) and the universality of the pion couplings,
are clearly just consequences of the SU(4) symmetry, while the status is not clear
for some other predictions, like the exponential form of the Isgur—Wise form factor.
Ultimately we would like to formulate the large NV, limit as a controlled expansion,
where symmetry breaking effect can be studied order of order in 1/N,. It is my be-
lief that studies in this direction can lead to a better understanding in both heavy

flavor physics and the non-perturbative aspects of non-Abelian gauge theories.
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Appendix:

The Application of the Chiral Lagrangian
in Calculating The Corrections From Low Momentum Physics

to the Mesonic Isgur—Wise Form Factor

This appendix is essentially a reproduction of Ref. [1], in which the correction
to the mesonic Isgur-Wise form factor due to pion loops are calculated under
an SU(2);x SU(2)g chiral Lagrangian. It will end with a discussion on related
calculations [102,103]. It is logically unrelated to the rest of this thesis and can
be skipped without any loss of completeness. Also, no effort have been made to

change the notations in conformation to the rest of the thesis.

Semileptonic B — D™*) decays provide an interesting arena to test the validity
of heavy quark symmetry. They may also give a very accurate determination of the
element, V3, in the Cabibbo-Kabayashi-Maskawa matrix. Heavy quark spin-flavor
symmetry implies that as my and m, — oo the hadronic matrix elements needed

for semileptonic B — D) decay have the form [10,11]

< D(v")|ey,b|B(v) >

— !
mpmp =B +v)u, (A.la)
< D*(v', €)|ey,vs5b| B(v) > , . /
D, = A1+ w)e, = (" v)v),) (A.1b)
D*(v', €)|y,b| B
< Dw, o)levubl Blo) > = Bie o0 07 . (A.lc)

/T BIM p«

In Egs. (A.1) 8 depends on w = v- v’ and it has a calculable logarithmic
dependence on the heavy ¢ and b quark masses that arises from high momentum
perturbative QCD effects [67,104-106]. Furthermore, the value of 8 is known at

zero recoil, i.e., w = 1 [10,11,107,108]. In the leading logarithmic approximation
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[104-106] (valid for my > m¢ > Aqcp)

B(1) = [%(mb) (A.2)

—6/25
as(\mc}}

Perturbative QCD corrections to Eqs. (A.1) and (A.2), suppressed by powers

of as(m.) and as(my), are calculable and don’t give rise to any loss of predictive

power [67]. Since at zero recoil there are no 1/mg corrections to eqs. (A.1) and

(A.2) [16], the exclusive semileptonic B — D*) decays may lead to a very precise

determination of V.

Recently chiral perturbation theory has been used to examine, at zero recoil,
the power (1/m.)?T™™ n = 0,1,2,... corrections to the matrix elements of Egs.
(A.1) [101]. It was found that these corrections have a nonanalytic dependence on
the light up and down quark masses of the form ¢nm?% when n = 0 and (1/m,)"
when n = 1,2,3,.... These corrections arise from one-loop Feynman diagrams

with virtual momenta small compared with the chiral symmetry breaking scale.

In this paper we extend the work of Ref. [101] away from zero recoil. The
corrections of order (1/m.)"*% n = 0,1,2,... that have a nonanalytic dependence

on the light up and down quark masses are calculated for all w.

Unfortunately, away from zero recoil there are power corrections of order 1/m,
and 1/my that are not calculable using chiral perturbation theory. These must
be estimated using phenomenological models (e.g., the nonrelativistic constituent
quark model or QCD sum rules) or lattice QCD methods. Although the corrections
of order 1/m, and 1/my are larger than those we can calculate, it is still interesting
that some power corrections are calculable, and it is important to verify that they

are not anomalously large.

The ground state heavy mesons with Qg, flavor quantum numbers (here a =

1,2 and q) = u,q2 = d) have s;* = %—, for the spin parity of the light degrees of

freedom. Combining the spin of the light degrees of freedom with the spin of the
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heavy quark gives (in the mg — oo limit) two degenerate doublets consisting of
spin zero and spin-one mesons that are denoted by P, and P} respectively. In the
case Q = ¢, P, = (D°,D%) and P} = (D*°, D**) while for Q = b, P, = (B, B°)
and P} = (B*7,B*°). It is convenient to combine the fields P, and P, that

destroy these mesons (v Py, = 0) into a 4 x 4 matrix H, given by

Ho= (51) (o = P (43)

(This is a compressed notation. In situations where the type of heavy quark Q
and its four-velocity v are important, the 4 x 4 matrix is denoted by H,EQ)(’U).) It

transforms under the heavy quark spin symmetry group SU(2), as
H, — SH, (A.4)
where S € SU(2), and under Lorentz transformations as
H, — D(AH,D(A)™! | (A.5)

where D(A) is an element of the 4 x 4 matrix representation of the Lorentz group.

It is also useful to introduce

Ha - 0H170
(1+7) (46)
tr)

= (P;J’Y“ + PJ%)

For H, the transformation laws corresponding to those in Eqs. (A4) and (A.5)
become H, — H,S™! and H, — D(A)H,D(A)™'.

The strong interaction also has an approximate SU(2) x SU(2)g chiral sym-
metry that is spontaneously broken to the vector SU(2)y isospin subgroup. This
symmetry arises because the light up and down quarks have masses that are small

compared with the typical scale of the strong interaction. (If the strange quark is
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also treated as light, the chiral symmetry group becomes SU(3)1 x SU(3).) Asso-
ciated with the spontaneous breaking of SU(2)x SU(2)g chiral symmetry are the
pions. The low momentum strong interactions of these pseudo Goldstone bosons
are described by a chiral Lagrangian that contains the most general interactions
consistent with chiral symmetry. The effects of the up and down quark masses are
included by adding terms that transform in the same way under chiral symmetry

as the quark mass terms in the QCD Lagrangian.

The pions are incorporated in a 2 x 2 unitary matrix

% = exp (”}”) (A7)

where

ryﬂ m } (A.8)

™ —x/\/2

and f =~ 132 MeV is the pion decay constant. Under a chiral SU(2); x SU(2)g

transformation

¥ — LR, (A.9)

where I € SU(2)7 and R € SU(2)g. It is convenient when discussing the interac-

tions of the 7 mesons with the P, and P} mesons to introduce

{ = exp (%) : (A.10)

Under a chiral SU(2);x SU(2)z transformation

¢ - Leut = ueRt (A.11)

where typically the special unitary matrix U is a complicated nonlinear function of

L, R and the pion fields. However, for transformations V = L = R in the unbroken
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subgroup U = V. We assign the heavy meson fields the transformation law
Hy — HyU, (A.12)

under chiral SU(2); x SU(2)g. (In Eq. (A.12) and for the remainder of this paper,

repeated subscripts @ and b are summed over 1,2.)

The low momentum strong interactions of pions with heavy P, and P} mesons

are described by the effective Lagrange density [56-58]

£ = —iTrH,0,0"H, + %i%ﬁﬂw“(é%é + €06 e

biaTr Honys (€10 — 671 + . (4.13)

where the ellipsis denote terms with more derivatives. This Lagrange density is the
most general one invariant under SU(2)r x SU(2)p chiral symmetry, heavy quark
spin symmetry, parity and Lorentz transformations. Heavy quark flavor symmetry
implies that g is independent of the heavy quark mass. Note that in eq. (2.11)
factors of \/mp and \/mp+ have been absorbed into the P, and P fields so they

have dimension % Present experimental limit gives g% < 0.5.

It is possible to include the symmetry breaking effects of order my and 1/mg
into the effective Lagrangian for pion heavy meson strong interactions. In our cal-
culations explicit chiral symmetry breaking effects enter only through the nonzero
pion mass. Other chiral symmetry breaking effects are suppressed relative to the

leading corrections which we calculate.

The 1/m¢ terms that break the spin-flavor heavy quark symmetry give rise to

the additional terms
(2) o )‘2 [
0LV = —=TrH,o" Hyopy + —=TrH,H, + ... (A.14)
mqQ

in the Lagrange density. The second term in Eq. (A.14) violates the heavy quark

flavor symmetry but not the spin symmetry, and the first term violates both the
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heavy quark spin and flavor symmetries. The ellipsis denotes terms with deriva-
tives. Included in these are, for example, the 1/mg correction to g. The second
term in Eq. (A.14) can be removed by a spacetime dependent phase transformation
on the heavy meson fields. Therefore, at the leading order in chiral perturbation
theory, it is only the first term in Eq. (A.14) that produces violations of heavy
quark spin-flavor symmetry in the low energy heavy meson Lagrangian. The effect

of Ay is to shift the mass of the pseudoscalar relative to the vector meson by
A(Q) = Mpw@) —MpQ) , (A-15)

which distinguishes the heavy meson propagators. Explicitly, A(@) = —8), /mq,
which determines Ay ~ (170MeV)?. Heavy quark mass suppressed operators in
which the pion couples can be neglected at leading order in chiral perturbation

theory.

Lorentz invariance and parity invariance of the strong interactions implies that
the hadronic matrix elements needed for semileptonic B — D(*) decay have the
form

< D(v")|ey,b|B(v) > - x
mpBmp
< D*(V', €)|eyuvysb| B(v) >
N

= fe; + a4 (e v)(v+ ), (A.160)

+a— (e - v)(v =),

< D*(v', €)|eyub| B(v) >
A/ BM D*

= igeuywe*"v"\v” (A.16¢)

The operator ¢I'b is a singlet under SU(2)7, x SU(2) g and in chiral perturbation
theory its B(v) — D®)(v') matrix are given by those of

b = —B(w)Tr A (W YTHD (0) + ..., (A.17)

where the ellipsis denote terms with derivatives, factors of m, and factors of 1/mg.

Evaluating at tree level B — D*) matrix elements of the right-hand side of Eq.
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A7) for T = v, and ' = 7,75 gives egs. (A.1). This implies the relations
T @

f-’r:ﬁa f—:Oa

6~l++&_:0, &+_&—:"67

f=QAQ+w)s, g=48, (A.18)

for the form factors in Eqs. (A.16).

The leading corrections to Eqs. (A.18) that have a nonanalytic dependence on
the light quark masses arise from the one loop Feynman diagrams in Fig. 3 and
wave function renormalization. In Fig. 3 the shaded square denotes a vertex from
Eq. (A.17) and a dot is a P*Pr or P*P*r vertex proportional to g from the chiral
Lagrangian density in Eq. (A.13). Explicit calculation of these Feynman diagrams

gives that their contribution to the form factors is

o2 = =228 o 4 a2, 0 + 07 - 118, 0)
- %Ig(A,w) _ 2—13(0,10)} (A.19a)
6f- =0 (A.19b)
. 1q?
§f = —3?2ﬂ[w + 1]{]1(—A,w) - —;—Ig(—A,w)
+ [w + 1]11(0, w) + [w? — 1]I2(0, w)
- gzg(o,w)} (A.19¢)
’ 2
S —a_) = 3]325{ ot 1] (—A, w) — %13(—A,w)
+ [w + 2] 11(0, w) + [w? 4+ w]I2(0,w)
_ glg(O,w)} (A.194)
6(as +a_) = —-3—2—?—22&{ — Li(—A,w) = [w+ 1]L(—A, w)
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+ 11(0,w) + [w + 1]12(0, w)} (A.19¢)
6gz—§%§{h(zxwyw4a—Aﬂ@

+ [w + 111 (0, w) + [w? — 1]15(0, w)

—-;Lﬂ@,w)} | (A.19f)

In Eqgs. (A.19) the integrals Iy, I2 and I3 are

k2
=t /da/dﬁ/ a? 4+ B2 4 2afw + 2Aa + m2) +ie]? (4.20)
n d"k af
b /da/dﬁ/ —(a? 4+ 8?2 + 2afw + 2Aa + m2) + 16]3\A'21)
4 n ak?
/da/ PERE Y Wpr—ey g (A.22)

where 4 is the subtraction point and A = mp+ —mp. For simplicity we have taken
myp — 00, so that corrections suppressed by factors of (1/my) are neglected. Note

that f_ receives no corrections and §f/f = 0G/g,6a4 = —63/2.

In calculating the Feynman diagrams, the amplitudes were reduced to scalar
integrals using four-dimensional algebra (e.g., Tt vu7, = 4gu, kuky — %kzgu,,,
etc). The resulting scalar integrals were then continued to n dimensions. This
regularization procedure is similar to that used in supersymmetry. It is easy to
see that it preserves the heavy quark spin-flavor symmetry when A = 0. Then
the corrections in Eqs. (A.19) can be absorbed into the redefinition, 3 — 3 + 68,

where

5ﬂ:—%§5Hw+mhmﬂg+@ﬂ—nbmwo—yxmwﬂ. (A.23)

Furthermore, since /3(0,w) = I,(0,w), 63 vanishes at zero recoil.
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In Egs. (A.19) the terms containing /3 result from wave function renormaliza-
tion. The integrations over « and 8 arise from combining denominators using the

trick introduced in Ref. [67].

The integrals have the form

12, 0) = Tglme A (w) + A In(m /4Gy ()

+A?FH (A g, w)] + ... (A.24)

where F;(0,w) = 0 and the ellipsis denotes terms that are independent of A or
have an analytic dependence on the light up and down quark masses. Evaluating

the integrals gives

Fi(w)=7n/(w+1), (A.254q)
Ea(w) = —n/(w+1)*, (A.25b)
E3(w) =7, (A.25¢)
G1(w) = —m[w — r(w)] (A.26a)
Ga(w) = 2(le_l—)E[wz + 2 — 3wr(w)] (A.26b)
Gs(w) = -1, (A.26¢)

where

1 ,
r(w) = \/7—_:_—i—ln(w +vVw?—1). (A.27)

For F1 2 the expressions are more complicated and we leave them as one-

dimensional integrals,

Fi(z,w) = — / da(——“———j{w (Vi—a- )

1+ wsin 20
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—2 <\/1_i? arctan (\/11—52) - a) } : (A.28q)
/2 '
e, w) = 5;15 / Y :EZ?QG)Z{ B 53_22 (Vi-ai-1)
0
+§—7r\/1_—‘i_2—-73- + ([\?’/—i;f——“a_z} arctan ( \/1_“__?) - Sa) } , (A.285)
where
a= \/1—1_%%_2—2-9- . (A.29)

Figs. 4, 5, 6 and 7 present plots of F1(1,w), Fi(—1,w), Fo(1l,w) and Fo(—1,w).
Finally

F3<x,w>:§{w(m_1)_z(m wetan () _)}
(4.30)

At z = £1 the above becomes F3(1,w) = (2 — 7) and F3(—1,w) = (2 + 7).

Combining these results gives the correction to the form factors that have a non-

analytic dependence on the up and down quark masses. For the corrections of

order (1/m.)"*? n =10,1,2,... we have

B 3¢5 3w+1-—2r
6fy = (4r )2 A2{ (7;7“) In(m2 /p*)

+(w + 2)F1 (A /mr, w) + (w? — 1) F2(A/mg,w) — g—Fg(A/mmw) + } (A.31a)

6f = (iff‘j A(w +1){%<1_ (ﬁ—_r1>>1n(mgr/#z)
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Fy(=Afma,w) — %Fg,(—A/m,r,w) + } (A.318)
232 w w2 - JWT
b(as —a) = — Ll nr {3 (1= LD 3 D )

—(w + 1) Fa(=A/mg, w) — %Fg(—A/mw, w) + } (A.31c)

232A2 r(2w? w — (w? w

oy +) = 2P {%( 2w +3 Z{;)_ 1()2 Ld. “))m(mi/uz)
—Fi(=A/mz,w) — (w4 D) F(—A/mg,w) + ... } (A.31d)
and

§f— =0, 65=06f/(w+1). (A.31e)

Egs. (A.31) are the main results of this paper. In these equations the ellipses
denote terms that are less singular as the light quark masses go to zero. The
subtraction point dependence of these terms cancels that in the logarithm. Terms
independent of A have been absorbed into a redefinition of S.

We have also computed the corrections of order (1/m,) that depend on the

/

light up and down quark masses as m; 2 They are

= 3¢%BmeA [3(w—1)
6fy = — Tor 2 ( — ) (A.32a)
" 2B8m.A
6f:§%%%7%w—1) (A.32b)
. Loy 3¢2fm.A [w—1
Slag —a—) = — Ton /2 <w m 1) (A.32¢)
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§ay +d) =0 (A.32d)

and

§f— =0, 85=26f/(w+1). (A.32¢)

These corrections are less important than the 1/m, corrections that are indepen-
dent of m4. Note that eqs. (A.32a) and (A.32b) are consistent with Luke’s theorem
1/2

since they vanish at w = 1. In fact at order 1/m., the my'" corrections to all the

form factors vanish at w = 1.

Experimentally A is larger than my. The B — D* form factors have imag-
inary parts but because A is close to my, they are negligible. It is a very good

approximation to evaluate the functions F; at A/m, = 1.

In the limit m., mp — oo heavy quark symmetry implies that the form factors
for semileptonic B(v) — D™ (v') decay can be expressed in terms of a single
universal function of w = v - v and that the value of this function at w = 1
is known. Here we examined, using chiral perturbation theory, corrections to the
heavy quark symmetry relations that arise from the finite value of the charm quark
mass. We calculated corrections of order (1/m)"*? n = 0,1,2, ... that go as Inm?2
when n = 0 and as (1/m,)" whenn = 1,2, 3.... These arise from physics well below
the chiral symmetry breaking scale. The factors of 1/m, occur from insertions of
the D* — D mass difference A. In our calculations other sources of heavy quark

symmetry breaking are less important for very small up and down quark masses.

Since the value of A is close to my, all the corrections of order (1/m.)"+? n =
1,2,3,... are equally important. In Eqs. (A.31) these corrections occur in the
functions F;. Our calculation of the effects of this order is enhanced by a factor of

(1/my) over terms we neglected.

At order 1/m? the terms we calculated are only enhanced by In mZ over those
we neglected. The pion mass is not small enough to have complete confidence in

our calculation of the 1/m? corrections to the semileptonic decay form factors. For
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example, other effects that don’t arise from the operator 7;5)0) gsa“”TAhgc)Gf,, may

be more important.

At zero recoil there are no 1/m. or 1/my corrections and Ref. [101] used chiral
perturbation theory to compute the corrections to f+ and f of order (1/me)" 2 n =
0,1,2,.... At w = 1 our expressions for these form factors agree with those in Ref.
[101]. This paper contains the extension of the results of Ref. [101] away from zero

recoil.

We also computed the order 1/m, corrections that have a non-analytic de-

1/2

pendence on the light quark masses of the form my However, the dominant
corrections (away from zero recoil) are those of order 1/m, (and 1/myp) that are
independent of the light quark masses. These are not calculable using chiral per-
turbation theory and must be estimated using phenomenological models [109] or

lattice Monte Carlo methods.

For g% = 0.5 (the present experimental limit) the corrections we calculated are
typically a few percent. The constituent quark model suggests that ¢ is around

unity but it is certainly possible that it is much smaller [110].

We have used chiral SU(2)x SU(2)g so the effects discussed in this paper are
associated with small virtual momenta of order the pion mass. It is possible to
extend the calculations to chiral SU(3) x SU(3)r; however, the kaon mass is too
large to have confidence in such calculations [111]. For example, at momentum
scales around the kaon mass, it is difficult to justify the neglect of contributions

from excited heavy mesons [112] in the loop of Fig. 3.

Above we have calculated the low momentum corrections to the mesonic Isgur—
Wise form factor. The correction depends on two symmetry breaking parameters,
the mass of pion m,; which measures the deviation from the chiral limit, and the

D*-D mass splitting A which quantifies the heavy quark spin symmetry violation.

The same method can be applied to calculate the low momentum corrections

to the baryonic Isgur-Wise form factors [102]. The situation is more complicated,
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however, as axial couplings mix Ag and ¥ states. As a result, the corrections to
the Ag Isgur-Wise form factor n(w) are not proportional to n(w) itself but have
pieces proportional to (1(w) and (2(w), the X Isgur-Wise form factors. Here the

symmetry breaking parameters are m, and A, the ¥*-X, mass splitting.

Despite the large kaon mass discourage a naive extension of our calculations to
chiral SU(3)zx SU(3) R, we can use the same framework to estimate the size of the
light quark dependence of the Isgur-Wise form factors. Under light flavor SU(3),
B — D and B; — D, should be described by the same Isgur-Wise form factor,
le., {(w) = &(w). Kaon loops, however, break the symmetry and near the point

of zero recoil [103]

— ()] ~ g°A? . mi
o) = €] ~ £ (ﬂz), (4.33)

which is about 1%. Due to its larger complexity, similar calculations have not been
done in the baryon sector. The form of the correction, however, is expected to be
similar and this was used in Eq. (3.50) to estimate the difference between n(w)
(describing Ay — A, and ¥ — EE*)) and (1 (w) (describing Q — QE*)) in the large
N¢ limit.
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Figure 1:

nmin(w) for different values of p.

From top to bottom p? = 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50.
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Figure 2:

fmin(w) for different values of p.

From top to bottom p? = 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50.
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Figure 3:

Feynman diagrams that give corrections to form factors fi, f ,a4, .
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Figure 4:

Plot of Fy(1,w) versus w.
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Figure 5:

Plot of F1(—1,w) versus w.
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Figure 6:

Plot of Fp(1,w) versus w.
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Figure 7:

Plot of Fa(—1,w) versus w.



