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Abstract

This thesis is concerned with the analysis of dynamical systems in the presence of model
uncertainty. The approach of robust control theory has been to describe uncertainty in terms
of a structured set of models, and has proven successful for questions, like stability, which
call for a worst-case evaluation over this set. In this respect, a first contribution of this thesis
is to provide robust stability tests for the situation of combined time varying, time invariant
and parametric uncertainties.

The worst-case setting has not been so attractive for questions of disturbance rejection,
since the resulting performance criteria (e.g., H,) treat the disturbance as an adversary and
ignore important spectral structure, usually better characterized by the theory of stochastic
processes. The main contribution of this thesis is to show that the set-based methodology
can indeed be extended to the modeling of white noise, by employing standard statistical
tests in order to identify a typical set, and performing subsequent analysis in a worst-case
setting. Particularly attractive sets are those described by quadratic signal constraints,
which have proven to be very powerful for the characterization of unmodeled dynamics. The
combination of white noise and unmodeled dynamics constitutes the Robust H, performance
problem, which is rooted in the origins of robust control theory. By extending the scope of the
quadratic constraint methodology we obtain a solution to this problem in terms of a convex
condition for robustness analysis, which for the first time places it on an equal footing with
the H., performance measure.

A separate contribution of this thesis is the development of a framework for analysis of
uncertain systems in implicit form, in terms of equations rather than input-output maps.
This formulation is motivated from first principles modeling, and provides an extension of
the standard input-output robustness theory. In particular, we obtain in this way a standard
form for robustness analysis problems with constraints, which also provides a common setting

for robustness analysis and questions of model validation and system identification.
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Chapter 1
Introduction

The field of control has evolved over this century from its origins in the study of feedback
amplifiers, into a broad discipline concerning issues of modeling, dynamics, optimization and
feedback. On one side lie complex engineering problems, such as regulation in chemical pro-
cesses, trajectory tracking for robot manipulators, stabilization of high performance aircraft,
or dynamics of queueing systems. On the other side lie tools from virtually every mathe-
matical discipline, from dynamical systems and differential geometry to stochastic processes
and operator theory. In the middle of this, the task of the control theorist is to abstract a
problem of significance in engineering, cast it in an appropriate mathematical setting, and
derive a solution, by which is meant a practically computable method of evaluation of the
problem at hand. This eclectic mix of disciplines has made control theory the home of peo-
ple, like the author, who have found it difficult to choose between the fascinating worlds of

engineering and mathematics.

While engineers are mainly concerned with real-world problems, and mathematicians
with the logical consistency of their abstractions, it is the job of those who attempt to
apply mathematics to the real world to deal with the fundamental gaps between theory and
practice, which reflect themselves in uncertainty about the behavior of a real system when
one is given a mathematical prediction. This is particularly the case for control theory, which
treats the question of feedback, a technique used by both natural and artificial systems to
obtain reliability in spite of faulty predictions. A properly design feedback compensator
will effectively reduce the sensitivity of the system to certain sources of uncertainty, but at
the expense of increased sensitivity to other unmodeled effects, e.g. in another frequency
band. Consequently, a theory of feedback must provide means to quantify these tradeoffs,
which can only be achieved if in addition to a mathematical model, one utilizes some form

of quantification of model uncertainty.

This thesis is concerned with the analysis of dynamical systems from the point of view

of the effect of uncertainty. The fundamental challenge in this area has been to refine as
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much as possible the uncertainty description in a model of a complex system, compatible
with the possibility of a tractable evaluation of its effect. Two competing strategies have
appeared for the characterization of uncertainty: to describe a set of models and perform
worst-case analysis, or to assign a probability distribution to the errors and pursue analysis
via expected values. The former, the method of choice in robust control, has been successful
in quantifying the effects of unmodeled dynamics and its impact on the question of stability
margins. The latter, pursued by stochastic control, has had success in the non-conservative
evaluation of the effects of noise, and has also been the method of preference for system
identification based on data. The historical difficulties in the combination of the two, which
is required in practical problems, highlights one of the shortcomings of a research field based
on such a diverse set of mathematical tools, and constituted by communities which speak

different languages.

One of the main contributions of this thesis is to provide a set of tools for these kinds of
problems which call for a combination of worst-case evaluation over sets of systems, simulta-
neously with evaluation of the effects of white noise. The most relevant example in control
theory is the so-called “Robust H,” problem, which originates in the efforts in the 1970s to
provide stability margins for the so-called LQG regulators, designed from the point of view of
white noise rejection. The lack of a tractable solution fueled the development of robust con-
trol theory with regard to other, more conservative methods of performance evaluation, like
H, control, which were deemed more compatible with evaluation of margins; for a historical
account see Chapter 6. In this thesis we provide a solution to the Robust H, problem, based
on a combination of statistical tests for white noise, and characterizations of uncertainty in
terms of quadratic signal constraints. We reduce the problem to computationally tractable
conditions which are of the same nature as those in mainstream robust control, thus closing

a cycle of research originated in the 1970s.

From a broader perspective, the mathematical effort involved in the solution of this
problem may appear excessive if the only application were to a specific feedback control
problem; for this reason we investigate in this thesis which more general problems can be
addressed with this type of tools. In particular, the uncertainty modeling techniques can
be applied beyond the confines of the traditional feedback control configuration, and into
questions of component modeling and system design. For these problems we introduce
robustness analysis in implicit form, where systems are described in terms of uncertain
equations. This approach yields a very general analysis theory for linear, uncertain system
involving constraints, and in particular contributes to a more unified approach to robust

control and system identification.



1.1 Organization of the Thesis

In addition to the present introductory Chapter 1, and Chapter 9 which contains the
concluding remarks, the main body of the thesis is developed in seven Chapters 2 through
8, and two Appendices, A and B. All the material is strongly interrelated in that similar

problems are treated with similar techniques. Some separate units of interest can be isolated,

however, as represented in the diagram of Figure 1.1.

3) Combined

Uncertainty

2) Preliminaries

Y

4) White Noise
Modeling

Y

5) Quadratic

Constraints

\ 4

6) Robust H,
Analysis

A) Math

Complements

T~ |

7) Implicit

Systems 1

Y

8) Implicit
Systems II

A

B) Causal

Perturbations

Figure 1.1: Organization of the thesis

Chapter 2 contains general background material on robust control theory, with a re-
view of previous work related to this thesis. The remaining chapters have been divided in
three columns in Figure 1.1, corresponding to areas of common interest which are largely

independent. The arrows represent the strongest interrelations between the chapters.
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Chapter 3 covers robust stability analysis under a combination of time invariant, time
varying and parametric uncertainty classes, and is mostly separate from the subsequent
material. It is included at this point since the methods employed are the most closely

related to those reviewed in Chapter 2.

The sequence of Chapters 4, 5 and 6 contains the main results of this thesis. In Chapter 4
a methodology for modeling of white noise signals based on sets is introduced, and analyzed
in relation to the more standard stochastic approach. These descriptions, as well as charac-
terizations of unmodeled dynamics, rely on the Integral Quadratic Constraint formulation
which is studied in Chapter 5, extending the methods introduced in [94, 50] to more gen-
eral constraints. The approach leads to the solution of the Robust H, performance analysis

problem which is obtained in Chapter 6.

Chapters 7 and 8 develop a framework for analysis of uncertain systems described in
implicit form. Chapter 7 discusses the motivation for this approach; in this respect an
important reason for the generality of this setting is the close relationship between implicit
uncertain systems and quadratic constraints as in Chapter 5. In Chapter 8, robustness

analysis methods are obtained for these implicit systems.

Appendix A summarizes some results from mathematics (mostly convex analysis) which
are used in different points of the thesis. In Appendix B we have collected some of the more

technical proofs, in particular those referring to the construction of causal perturbations.



Chapter 2

Preliminaries

This chapter contains background material for the entire thesis. The aim is to give
engineering motivation, to establish general notation, and to provide a summarized review

of previous work on which the presentation will rely.

2.1 The Robust Control Framework

2.1.1 Modeling and Uncertainty

Any discipline which deals with mathematical models for physical reality is sensitive to
the issue of the potential mismatch between the model and the real system, usually referred
to as model uncertainty.

In the physical sciences, very accurate models are the objective in themselves. To obtain
these “physical laws” one often distills the phenomenon to its simplest form. In this context,
uncertainty is interpreted in a narrow sense as referring to the limits in the predictive power
of the best available models. For example, the uncertainty associated with prediction in a
chaotic systems, or the Uncertainty Principle in quantum mechanics refer to fundamental
limitations in predictability.

Models play a different role in engineering science; they are tools employed in analysis,
simulation and design of complex, artificial systems. Consequently, model fidelity must be
traded off with the complexity of the modeling process and the tractability of the resulting
mathematical and computational problems. From this point of view the best model is the
simplest summary of the main aspects of the physical system which are relevant to the engi-
neering question at hand. Correspondingly, the term “uncertainty” is used here in a broader
sense: it not only describes what one is fundamentally unable to predict, but also, and often
predominantly, many aspects of the system which one has chosen to neglect or simplify.

For uncertainty in this broad sense, there is by definition no detailed model, but often the
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modeling process yields a crude description which allows one to assess its implications on the
overall system. These descriptions of uncertainty appear commonly and in various forms in
engineering models, whether they result from “black box” system identification techniques,
from “first principles” models obtained by application and simplification of physical laws, or
a combination thereof.

As remarked in Chapter 1, the issue of uncertainty is at the heart of control engineering,
since a feedback configuration can significantly affect the sensitivity of the system behavior
to uncertainty at the component level. This is the main motivation for the construction of
feedback systems, but also the main potential danger as unmodeled effects can, for example,
lead to instability. Consequently, to perform good designs, the control engineer must be
furnished with rich descriptions of uncertainty and tools to assess their impact in a complex
system. It should be clear from the nature of these descriptions that no hard “guarantees”
can result from this assessment; ultimately, the control engineer must be the final mediator

between the mathematics and the real system.

2.1.2 A Survey of Uncertainty Descriptions

Traditional methods for uncertainty characterization in dynamical systems include para-
metric uncertainty, disturbance signals, and system perturbations to account for unmodeled

dynamics. We now describe how these typically arise in modeling. For more motivation we
refer to [21, 98, 15].

Parametric Uncertainty

Parameters are present in most engineering models, representing a physical quantity
which can be assumed to be a real constant within the range of validity of the model. The

following are some reasons for uncertainty in the value of a parameter:

e It could be obtained directly or indirectly from experimental data, which leads to

statistical deviations.

e It could represent a standardized component (e.g. electrical resistor) subject to man-

ufacturing tolerances.

e It could represent an operating condition which varies in an unforeseen way. A con-
stant parameter is a reasonable model when this variation is very slow (e.g. ambient
temperature). In other cases the rate of variation of the operating condition is compa-
rable to the modeled dynamics (e.g. aerodynamic coefficient of an airplane executing

a sharp maneuver). In this case a time-varying parameter may be preferred.
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The most straightforward representation of parametric uncertainty is in terms of an interval
of the real line, such as p = pg + k,6, 6 € [—1,1]. In models of linear dynamical systems, it is
common to encounter rational dependence of a transfer function on an uncertain parameter.
This dependence can often be represented in terms of a system block diagram. For example,
the configuration of Figure 2.1 represents the transfer function ——, where p varies as above.

s+p?
In Section 2.1.3 we introduce more general feedback configurations which allow for higher

b}
‘l_ 1
TN

s5+po

order rational dependence.

J §

7
3

A

\ 4
Y

Figure 2.1: Block diagram representation for parametric uncertainty.

Disturbance Signals

Another commonly used method to account for model uncertainty is the injection of
disturbances, which are thought of as generated by an external process. Some ways in which

they arise are

¢ To account for microscopic fluctuations which are not included in a large scale model

(e.g., wind turbulence, thermal noise in a circuit).

e To describe more systematic effects which are neglected in a simplified model (e.g.

ripple in a voltage source, quantization error in an A/D converter).

e In identified models, frequently used as an error signal needed to account for the data.

The two standard choices for characterization of disturbances are in terms of a stochastic
process, or in terms of a set of signals. These two competing methodologies will be further

discussed in Chapter 4.

Unmodeled Linear Dynamics

The most commonly used dynamical system model for purposes of control is a linear, finite

dimensional time invariant system, which is equivalent to a set of linear ODEs, preferably of
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low order. Assuming for now that nonlinear effects are negligible, a low order approximation
amounts to neglecting linear dynamics, in particular distributed effects.

One example where this may arise is in system identification in the frequency domain
(see, e.g., [45]): Figure 2.2 shows points in a Nyquist plot obtained empirically, and a
corresponding low order transfer function G(jw) which approximates the data. A convenient
way to express the remaining uncertainty in this model is to cover the points by a set of

transfer functions of the form
Gje)(1 + W (je) AGe)), (2.1)

where A(jw) can be considered to be unmodeled dynamics , i.e. an unspecified transfer

function normalized such that |[A(jw)| < 1, and W(jw) is a frequency weighting function.

13 ] 10

o 5

— .
Re[G(Gw)]

Figure 2.2: Characterization of unmodeled dynamics.

This kind of uncertainty description can also appear in models derived from first principles

which are subsequently reduced to lower order, with a bound on the model error (see [38]).

Unmodeled Nonlinear Dynamics

If nonlinearities are very significant in the range of operation, the model itself must be
chosen to be nonlinear. Uncertainty descriptions for nonlinear models are not very well
developed, and are one of the main open challenges for a satisfactory theory of robust
nonlinear control. There is, however, an intermediate situation, in which a linear model
provides a reasonable approximation but one wishes to have bounds on the linearization
error. This procedure is depicted in Figure 2.3 below, where a nonlinear static relationship
between the variables X and Y is linearized around the operating point (Xg, ¥5). To bound
the linearization error one can employ a “conic sector” description of the nonlinearity (see
[96, 20, 89]) by the following bound on the incremental variables y = ¥ — Y, # = X — X,

ly — ma| < k,
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This imposes that the characteristic falls in the cone of Figure 2.3, which is valid for some

range of z, y.

&
T

O =N W R U N®

28 03 0.32 034 0.36 0.38 0.4

Figure 2.3: Linearization and conic sector bounds

The previous bound is a static constraint, which holds for every time instant, and is

usually difficult to analyze. It is common to use instead the constraint

[PTel < [Pl (2.3)
where PT denotes truncation in time (see (2.11)), and e = y—]{lm:c. (2.3) is equivalent to
n
€= by, (2.4)

with &, a contractive, causal nonlinear operator with memory, rather than static. This
weaker assumption can be given a conic interpretation in signal space [96], and may be
useful to account for dynamic effects which are not described in the static equations.
Remark:

In many important robust control problems, the analysis of such a description can be
pursued with linear techniques, by replacing &, by a linear time-varying operator. Suppose

we wish to answer a question of the type

Q: Does there exist a operator 6, ||§]| < 1, and nonzero signals x, ¢ satisfying

e = 6z in addition to some other system equations?

If one shows the answer to Q is negative over arbitrary causal linear operators, the same
must hold for a nonlinear operator 6, as considered in (2.4). The reason is that for each pair
of signals e, z such that condition (2.3) holds, one can find a linear time-varying, causal and
contractive operator which maps = to e (see [65], and also the related result in Lemma 5.1).

Many robustness analysis questions can be cast in the form Q (see Chapter 7), therefore

this reasoning applies.
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2.1.3 A Unified Framework for Uncertainty and Control

When modeling a complex system built from various components, the most natural ap-
proach is to construct smaller scale, subsystem models, and subsequently interconnect them
to obtain the full system model. The various descriptions of uncertainty outlined above arise
naturally at the component modeling stage; when these are combined together, they yield a
highly structured description of the overall model uncertainty.

As an example, consider the block diagram of Figure 2.4 which is a model of a control
system. The plant is given by a nominal model H, an uncertain parameter &, represented as
in Figure 2.1, and an unmodeled dynamics perturbation, represented by A,. The output is
measured by a sensor F, which adds some sensor noise n. r is the reference signal, and the
tracking error is fed into the controller K, which acts on the plant. The block A; describes

uncertainty (e.g. nonlinearities) in the actuator.

W A, Wy A,

Figure 2.4: Control system with uncertainty

Given such a configuration, one wishes to address the question of robust control, i.e.
controller design with satisfactory performance in the presence of the various uncertainty
sources. At this level of description, it is not clear how to proceed with this task, and it
appears that a solution would be specific to this configuration. In order to obtain more
systematic and general tools, it is necessary to obtain a standard form, unifying the control
problem and the various uncertainty sources in a common mathematical language.

We have already made the fundamental step in that direction, by representing both

uncertainty and control in block diagram form; the final step is to isolate the uncertainty
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blocks and the controller and redraw the block diagram in the standard configuration [54, 98]

of Figure 2.5.

q » A P
€ 4— G fe—— ¥
Y » K U

Figure 2.5: Standard robust control configuration

In this diagram, the generalized plant G contains the plant H, the sensors F and the
description of the overall system interconnection, including the weighting functions Wy, W.
K is the controller as before, and the external signals v include in this case the reference r

and the noise signal n. A is a structured uncertainty operator of the form

A, 0 0
A= 0 A, 0. (2.5)
0 0 6,

This spatial structure (which originates in the work of Safonov [74] and Doyle [28]) represents
the different locations in which the blocks arise in Figure 2.4, by assigning them different
signal channels. Also the blocks are of different nature: in the example, §, is a real parameter,

and Aj, A, are dynamic perturbations which could be linear time invariant, or nonlinear.

The configuration of Figure 2.5 provides a general framework for linear robust control,
flexible enough to encompass most theoretical results in this area.

The controller K is chosen to provide internal stability and performance, for all values
of the perturbation A. The notion of performance typically considered in this setting is
some measure of rejection of the signals v: the outputs e are chosen as error variables, and
performance means that the gain from v to e is small in some sense, to be made precise
in Section 2.2. Robustness analysis is the question of whether the desired properties are

satisfied for a given controller. Robust synthesis is the task of obtaining the controller in
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regard to these objectives. After providing a formal mathematical setting for these problems

5

we will review the most significant results on robustness analysis and synthesis.

W ] Gll G12 l——

G2 G

o

=

Figure 2.6: The controller feedback loop

It will be useful to extract two reduced configurations from Figure 2.5. The first one
is obtained by removing the uncertainty and leads to the system of Figure 2.6, where w, =z
represent the joint signals (¢,e) and (p, v) respectively. The closed loop map from z to w is

denoted by M; its dependence on K is given by a lower Linear Fractional Transformation

(LFT, see [69, 98]), defined as

M =G+K := Gy + GpK(I— GK) 'Gy;. (2.6)

Replacing M back into the uncertain system of Figure 2.5, we obtain the robustness analysis

configuration of Figure 2.7. The closed loop map from v to ¢ is given by the upper LFT
AxM:= M22—|—M21A<I—M11A)_1M12. (27)

Conditions for these operations to be well defined will be given in Section 2.2.

q M;; My, p

€ +— My, My —

Figure 2.7: Robustness analysis configuration
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2.2 Mathematical Formulation and Notation

This thesis adopts the discrete time setting for dynamical systems. A significant portion
of the material can, however, be extended to continuous-time systems, as will be remarked

throughout the presentation.

2.2.1 Signals and Operators

In this thesis, a signal is a vector-valued sequence, and for simplicity considered in gen-
eral to be complex-valued (in C"); the restriction to real sequences will be indicated when
necessary. The time index varies in the set of integers Z, or sometimes in the non-negative
subset Z*. We will use I, signal norms: [3 denotes the Hilbert space of square summable

sequences over Z or Z*, with the inner product

(u,v) := Zu*(t)v(t), (2.

teZ

o
oo
~—

where vector signals are represented in column form, and * denotes conjugate transpose.
The Fourier transform
v(e) = X:v(lf)ej’“‘”5 (2.9)
teZ
provides an isomorphism between the complex space 15(Z) and the space of square integrable
functions on the unit circle T, with respect to the normalized Lebesgue measure —‘;% This

permits an identification between a signal v(t) and its Fourier transform v(e’*), with

ol = S ot = = / o) P, (2.10)

f)
teZ T
In many situations one does not want to impose a priori that signals are norm bounded;
one way to allow signals which “blow up at +00” is to introduce as in [96, 20, 89] the space
e =A{v(t): PTv € {§ YT}, where PT denotes the truncation operator

) it t<T |
PT . (¢ o =0 11
“()H{ 0 if t>T (2.11)

We now introduce operators between the signal spaces. Three important properties of
these operators are causality, boundedness and linearity. An operator H on /3 or [y, is causal
if PTHPT = PTH for all 7.

An operator H : [,—/; is bounded if there exists a finite v such that |Hvll2 < 7||v||2 for
all v € I;. A bounded operator on / which is causal can always be extended to ls,, satisfying
the boundedness property |PTHo|| < 7||PTv|| for all v € Iy, and all T'.
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Linearity is defined in the usual vector space sense. From now on we will only consider
linear operators (see the Remark on Section 2.1.2). These can be given an infinite matrix
representation

hoo ho1  hoz
hio hii hag

H = e (2.12)

hzo ]221 h22

where each h;; € C™*™ ((2.12) is for a time index in ZT, for Z a doubly infinite matrix is
used). Causality corresponds to a matrix of lower triangular form.

The class of linear, bounded operators H : [5—I5" is denoted £(17,15") or simply L(l5).
The subset of causal operators in L(l;) is denoted L.(l5). Every operator in L.(l3) can be
extended to ly.; we will denote L.(l3.) when the extended domain must be made explicit.

The l3-induced norm of an operator in L£(13,[3') is given by

|Elyi, o= sup o], = sup & (Hy), (2.13)
lloflo=1 Tezt

where & denotes maximum singular value, and Hr is the truncation of the infinite matrix to

the interval [—T, T for a time index in Z, or to [0, 7] for Z*. For example, in the latter case

hoo : hOT
Hr = : el . . (2.14)

hro -+« hpr

The adjoint H* of an operator H € L(I,) is defined to satisfy the identity
(u, Hv) = (H"u,v) . (2.15)

An operator H is linear, time invariant (LTT) if HA = AH, where X is the unit delay
operator. For an LTI operator, the infinite matrix representation is constant along diagonals,

with k¢, = h(t — 7). Equivalently, the operator is described by a convolution kernel h(t):

o0

(Hv)(t) = Z h(t — )v(7). (2.16)
In the frequency domain, a bounded LTI operator H € L(I3,15') can be identified with a
multiplication operator (Hv)(e) = H(e/*)v(e?*) by a matrix transfer function H(e/*) in

the space

L7M(T) = {F : T-C™", such that | F||. = ess sup & (F(e™)) < oo}. (2.17)

7Y eT
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Also, ||H||i,—1, = ||H]|eo- The causal subspace L£.(I%,15") can be identified with the Hardy
space HZ*" C L2*™(T) of matrix-valued functions on T which admit an analytic continu-
ation to the unit disk D. Background on Hardy spaces can be found in [34] and references

therein. If H()X), A € D is such an analytic function, the Taylor expansion is given by
H(A\) =) h(1)\, (2.18)

where the function h(t) is the convolution kernel (impulse response matrix) in (2.16) cor-
responding to H. The delay operator A in [} has transfer function A. We denote by RL..
(RHoo) the subspace of L, (Hs,) consisting of rational functions; the corresponding opera-

tors are called finite-dimensional LTI.

In some robustness analysis questions to be considered, we will find it useful to introduce
classes of operators that lie in between £(/3) and the LTI subset. Based on [64], we define

the normalized set
BY :={A € L(L): ]|A]| < 1, []AA = AX|| < v} (2.19)

The parameter v provides a natural way of measuring the time variation of an operator. For
v =0, BY is the unit ball of LTT operators; for v = 2 it includes arbitrary contractions. For

intermediate values we will say that the operators in BY have time variation slower than v.

2.2.2 Systems, Feedback, Stability and Performance

This thesis is concerned with dynamical systems, which can be abstracted mathematically
as a relationship between signals, i.e., variables evolving in time. The prevailing viewpoint in
system and control theory is to consider this relationship to be of the cause-effect kind: some
input variables, which are free to be manipulated, determine the evolution of the remaining
output variables. In other words an (Input-Output) system is an operator as considered in
Section 2.2.1. In the final chapters of this thesis we will consider an alternative viewpoint
for systems, which does not take the input-output partition as a starting point. For the time
being, however, we adhere to the standard formulation.

For the special case of a finite dimensional LTI system, one can also write an internal

state-space representation, given by the difference equations
z(t+1) = Azx(t)+ Bu(t),
y(t) = Ca(t)+ Du(t). (2.20)
Its transfer function is denoted by

A|B
C|D

=D+ CAMI—MA)"'B =\« 5.

——~

2.21)
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The rightmost expression in (2.21) is another example of an upper LFT, of the same form
as (2.7), with S = [ O g } . The state space system is called internally stable if the spectral
radius p(A) < 1. In this case the transfer function is in RH...

Figure 2.8 depicts a standard feedback configuration between two input-output systems.

The interconnection, with injected disturbance signals d;, d3, is equivalent to the equations

EaIHEH] =

We now introduce the concepts of well posedness and stability of the interconnection: these

are simplified versions of those given in [89] for more general nonlinear systems.

Definition 1  The feedback interconnection of Figure 2.8 is well posed if for any

di, dy in lye, there exist unique solutions u, y to the equations (2.22), which depend
causally on dy, dy. Fquivalently, the operator K ~IH has a causal inverse on
lye. If in addition this inverse is bounded, i.e., in L.(lz.), the feedback interconnection

18 said to be stable.

(2

K

Figure 2.8: Feedback interconnection

The concept of stability applies analogously to other feedback configurations. For the
one in Figure 2.6, we inject disturbance signals d, dy at the interconnection points between
G and K, and require that the map between d, dy, z and all the remaining signals be in
Le(lse). In particular, the LFT M = G « K of (2.6) is well defined and in L.(13).

In the sequel, assume that G and K are LTI and the interconnection is stable; then
M(A) is in Ho,. We now give a more precise description of the performance objectives for
the design of K. As remarked before, it is standard to specify the performance as a measure

of disturbance rejection.
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One such measure is the Hy performance criterion. The Hy norm of an LTI system H is

defined as

Wi

|H][2 == (% /02 trace(H(ej“’)xH(ctj“’))dw) : (2.23)
This norm captures the response of the system to signals of flat spectrum (white signals),
which arise from stationary white noise or from impulsive signals. The H, control problem
(also known as LQG control) consists of designing a stabilizing K for the configuration of
Figure 2.6, which minimizes the H; norm of the closed loop M = G « K.

The main alternative for disturbance rejection is to consider an induced operator norm,
i.e. the worst case gain of a system in some signal norm. In our case of /; signal norms, the
requirement is that the /;-induced norm of M be small; in the LTI case this corresponds to
the H., norm defined in (2.17). The H., control problem, motivated by Zames [97], is to
find a stabilizing K, minimizing the H,, norm of M = G « K. The other standard choice
is £y control (see [15]) which arises from the /., norm for signals. These induced norm
alternatives have been more popular in the robust control literature, since they combine
more transparently with system uncertainty. A general discussion of the relative merits of

these performance measures will be given in Chapters 4 and 6.

In the absence of uncertainty, these optimal control problems have been completely solved
in the literature (see [3, 34, 26, 15]); this means that given a generalized plant G, there is
a computationally tractable method for constructing the controller K in regard to these

performance measures applied to G « K.

2.2.3 Uncertainty and Robustness

Returning to the system of Figure 2.5, we now characterize the perturbation A which
encompasses the system uncertainty. The motivation of Section 2.1 leads us to consider a

structured A of block diagonal form,
A = diag [6117“, e 75LInL7 AL+1, ey AL+F] . (224)

The notation of (2.24) represents the fact that the blocks act independently on the spatial
components of a vector-valued signal. More precisely, if ¢ = col(¢y,...,q,,r) denotes the
partition of the column vector signal ¢ in dimensions compatible with the blocks in A, then
(2.24) means that p = Aq = col(8:1,,¢1, .., ALirGrir).

The blocks in A can in general represent real parameters or dynamic (LTI, linear time-
varying, nonlinear) perturbations. Two types of uncertainty blocks are included in (2.24):
full blocks A, ; which are general multivariable operators, and repeated scalar blocks 6.1,

where the same scalar operator acts on each of the channels. These repeated perturbations
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are useful for representing rational dependence on an uncertain parameter, or for the case

when the frequency variable A is represented in LFT form as in (2.21).

The results in this thesis are based on linear techniques and apply in principle to linear
perturbation structures alone. Many of the results admit extensions to the case of nonlinear
operators, following the general Remark made in Section 2.1.2. This issue will not be pursued
further in this thesis; from now on, all perturbation structures will be a subset of the class

of structured linear operators, given by
Af\;l(;v = {A S L:(ZQ) tA = diag [6117117 e ,5LInL, AL_|_17 ey AL+F]}. (225)

The subscript NC means that the class contains non-causal perturbations. In robustness
problems, we will usually restrict perturbations to be causal (an exception is in Chapter 7,

see also the discussion in Appendix B), writing
ATV — {A - Ec(lz) A= dlag [611n1, N 76LI”L7 AL-I—17 BN AL—}-F]}- (226)

The superscript LTV (linear, time varying) is included to highlight the distinction with the

subset of LTI structured operators,
AMTE={A € A"V 1 DA = AN} (2.27)
In correspondence with (2.19), we introduce the intermediate class
AY = {A € A*TV : |]AA — AX| < v} (2.28)

Other uncertainty classes will also be considered, with different combinations of these opera-
tor classes, or some blocks restricted to be real parameters, always with the spatial structure
(2.24). The generic notation A will be used for the class under consideration, which will be

made clear in each case. The normalized ball of uncertainty, in the sense of the ly-induced
norm, is denoted by By = {A € A : ||Al[,—, < 1}.

Assume now that K has been chosen, and stabilizes the system in the absence of uncer-
tainty, so that the closed map M = G+ K, between the inputs z = col(p, v) and the outputs
w = (g, ¢)isin L.(ly). The resulting robustness analysis configuration is given in Figure 2.7.

The first question to address is whether stability is preserved in the presence of uncer-

tainty; this leads to the following definition:

Definition 2 Suppose that M € L.(l;). The system of Figure 2.7 is robustly stable
if I—AMy;:lh—1y has a causal, bounded inverse for all A € By. Robust stability
is uniform if

sup [[(I— AM;y;) ™| < . (2.29)
Ac By
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The previous definition of robust stability is equivalent to requiring stability in the sense
of Definition 1 for all perturbations in the normalized ball of uncertainty; this follows from
the fact that M and A are themselves bounded operators. Some technical results require
the mild strengthening of uniformity given in (2.29); in most cases, however, this condition
is no stronger than robust stability (see Appendix B).

If robust stability holds, the closed loop map from v to e is well defined for all A and
given by the upper LFT A%M as in (2.7). A performance specification can then be imposed
on the map A*«M. The system will have robust performance if the specification holds for all
A € Bja. For the case of H, performance, the robustness problem is the subject of Chapter
6. The following definition applies to the more established H.. case.

Definition 3 The uncertain system is said to have robust Ho, performance if it is

robustly stable, and

sup ||A*M]|,—, < 1. (2.30)
Ae By

Remark: Strictly speaking, the /; induced norm can be called H.. only in the case where

A M is LTI Definition 3 involves therefore a language abuse for non-LTI uncertainty.

2.3 Robustness Analysis

Robust stability and performance analysis under structured uncertainty has been the
focus of extensive research; this section contains a (by no means exhaustive) summary of

previous work related to this thesis.

2.3.1 The Small Gain Theorem

The small-gain theorem was obtained by Zames [96] and Sandberg [75] in the 1960s
as a criterion for assessing stability of nonlinear feedback systems based on input-output
information. This point of view has proven to be particularly adequate for analysis of
uncertain systems, as was already suggested in [96]. In fact variations of the small-gain
argument lie at the heart of most methods for robustness analysis.

Consider the feedback configuration of Figure 2.9, where we assume that M and A are
in £(l2)!. The small-gain theorem states that if |M]|||A]| < 1, then I— AM is invertible in
L(l2) and therefore the feedback interconnection is stable. The result holds for any induced

system norm, in our case for the /;-induced norm.

' Nonlinear systems could also be considered, see [96].



20

ds

&

M

Figure 2.9: Setup for robust stability analysis

In the case where A is representing uncertainty, normalized to ||A| < 1, then a conse-
quence of the small gain theorem is that ||M]|| < 1 is a sufficient condition for robust stability,
regardless of the structure of the uncertainty. The condition corresponds in fact to the case
of unstructured uncertainty, but may be conservative if there is structure in A.

One standard consequence of the small gain theorem is that robust H., performance
can be converted to robust stability with an additional uncertainty block. If the system in
Figure 2.10(a) has robust H., performance, then for every A € Ba, ||A«M]|;,_;, < 1; from
small-gain, the configuration of Figure 2.10(b) is robustly stable, where Ap is an arbitrary
contractive operator in £.(l5).

If M is LTI, the converse implication also holds under fairly general assumptions on A.
If robust performance fails on Figure 2.10(a), Ap can be chosen to violate robust stability

in Figure 2.10(b). In the case of A LTI, this follows from a frequency domain argument (see
[98]); for the LTV case see [43, 76] or the results in Appendix B.

A
A A
M M

(@) ()

Figure 2.10: Robust performance restated as robust stability

As a consequence, a robust stability theory under structured uncertainty, directly encom-

passes the corresponding robust H., performance theory.



2.3.2 Constant Matrix Analysis and p

As we have seen, robust stability analysis amounts to testing the invertibility in £.(l3.)
of an operator I — AM, where M is LTI and stable, and A is a structured operator as in
(2.24). Also, robust H., performance reduces to a similar condition.

The objective is to provide non conservative tests for robust stability which take in to
account the structure (2.24). The natural starting point is to study the constant matrix case
M, A € C**"; as a convention, the boldface font is reserved for operators, and normal font
is used for matrices. For example, A = {diag[611,,,...,60ln;, Aps1,. .., Apyr]} C CW°
denotes the set of structured matrices, and we investigate the invertibility of 7 — M A with
A € A. This leads to the definition of the structured singular value g, introduced by Doyle
in [28] (see also [55, 31, 95]):

Definition 4  The structured singular value pa(M) of a matriz M with respect to a
structure A is defined as pa(M) :=0 if no A € A makes [ — AM singular, otherwise
1

Ha(M) = min {7 (A): A€ A det(l — AM) =0} (2:3)

Thus I — AM is invertible for all A € B, if and only if ia(M) < 1. Two different cases
are of interest: complex s [55] for complex A, and real or mixed g [31, 95, where some of
the blocks in A are restricted to be real (see (2.38) below). We shall use a common generic
notation p; the distinction will be made explicit whenever is necessary. Complex y is always
a continuous function of M; mixed y is not always continuous, but continuity can be shown
(see [57]) if there is complex uncertainty entering the problem in a non-trivial way. The

following basic property relating u to LFTs is known as the main loop theorem (see [55)):

Lemma 2.1 Given a block structure A = diag[Ay, Ay] and a matriz M, suitably

» My, M
partitioned as M = 1 ' , then the following are equivalent:
My My,
pa(M) < 1; (2.32)
pa, (M) < 1, &&%il pa, (DA x M) < 1; (2.33)
Ha, <M22) < 1, “(HAla)il Ha, (M*AQ) < 17 (234)

where Ay« M and M x Ay are defined as in (2.7) and (2.6), respectively.
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Another useful property (see [55]) is that in the case of complex perturbations, the maxima in
(2.33) and (2.34) are achieved for unitary A;; this resembles the maximum modulus theorem

for analytic functions.

We now introduce an upper bound for the structured singular value, based on a small-
gain property refined by scaling matrices which commute with the structure A. The set of

matrices with this property is denoted by
X={XeC" : X =diag[X1,.... X1, Top1lnys - Trgrlmy]}- (2.35)

The subsets of invertible, hermitian and positive definite matrices in X will be denoted
respectively by X', X#, and X*. Define
(i = inf 5(XMX™ ") = inf 6 (XMX™'). 2.
fia(M) Juf & (XMX™) Jnf o (XMX) (2.36)
Then pa(M) < jta(M). Equivalently, the Linear Matrix Inequality (LMI) condition
X eX': M"XM—-X <0 (2.37)

is sufficient for pa(M) < 1. This convex feasibility condition is attractive for computation,

as will be discussed below. It can also be refined for the case of mixed uncertainty structures.

If A is of the form
A= dlag [51], .. ‘76LRI76LR+1]' . '76LR+LCI7 AL«}-l, Ce 7AL+F} s (238)

where 6;...6r, € R (i.e. the first Lp scalar times identity blocks are real), then condition
(2.37) can be tightened (see [31, 95]) to

IXeX", GeG: M XM—X+j(MG—GM)<0, (2.39)

where the matrices G are of the form G = diag[G1,...,G1,,0,....0] with G; = G=.

2.3.3 Robust Stability Tests

With the notation developed from the constant matrix case, we now summarize known
conditions for analysis of the robust stability question in Figure 2.9, where M is assumed to
be always a finite dimensional LTI, stable system.

i Conditions

The first result (see [55, 98]) is that robust stability over the set Barrr is equivalent to

the complex p-test across frequency

max pa(M(e™)) < 1. (2.40)
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An analogous condition holds if the uncertainty structure consists of a combination of real
parametric and LTI perturbations, with complex u replaced by mixed p.
Condition (2.40) involves a test across frequency; given a state space realization of

M(X) = A x S as in (2.21), an equivalent p-test on a single matrix given in [55] is

pa(8) < 1, (2.41)
where the matrices in Ag are of the form Ag = diag[Al, A]. This condition follows from
applying Lemma 2.1, and the maximum modulus-type property of u, to the test (2.40).
Convex Conditions and their Interpretation

We now apply the p-upper bound to conditions (2.40) and (2.41). In the case of (2.40),
we have the option of using constant or frequency dependent scaling matrices. This gives

the following two tests from [55]:

inf maxa (XM(e)X ™) <1, 2.42
)glelxjmg*ca( ()X < (2.42)
max fia(M(e’*)) = max inf & (X(e")M(e?) X ()71 < 1. (2.43)

w  X(edw)eX!
Alternatively, (2.43) can be written as
inf [XMX™'. <1, (2.44)
Xe X’

where we define the set of scaling transfer functions
X = {X:T-C™": X(&*) € X for each w}. (2.45)

It can be shown (see [64]) that without loss of generality, the functions in X can be restricted
to be rational functions X () such that X and X! are in RH... The test (2.42) is a special

case of (2.44) when we additionally impose that X is constant.

The state-space test (2.41) gives the upper bound

Xi;gga (XsSX3') <1, (2.46)
where the matrices in Xg are of the form Xs = diag[X,, X], with X, a full matrix of the
dimension of the state space, and X € X.

It is shown in [55] that (2.46) is equivalent to (2.42); also, (2.42) implies (2.43) which
in turn implies (2.40), so conditions (2.42, 2.43, 2.46) are all sufficient for robust stability
under LTT uncertainty. Also, for mixed real parametric/LTI perturbations, these conditions

can be tightened by use of G-scales as in (2.39).
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Recent results have shown that the constant scales test (2.42), or equivalently (2.46) has a
very natural interpretation, as a necessary and sufficient condition for robust stability under
the class Barrv. The necessity was shown independently by Shamma [76] and Megretski
[50] for the case of full blocks; for the case of 61 blocks see Chapters 5 and 8.

Turning to the frequency dependent test (2.43) Poolla and Tikku [64] have recently shown
that (2.43) is necessary and sufficient for robust stability against the class of arbitrarily slowly
varying structured perturbations, in the sense introduced in (2.19). More precisely, (2.43)
holds if and only if there exists » > 0 such that the system is robustly stable with uncertainty
in Bav. This result is striking because it is known that for a sufficient number of uncertainty
blocks, conditions (2.40) and (2.43) are different: robust stability conditions are in some sense

discontinuous at v = 0.

Remark: All the frequency domain tests presented above have direct counterparts for the
case of continuous time systems. As for the state space tests, (2.41) and (2.46) apply only to
discrete time since they rely on the fact that A varies in the unit disk, but state-space tests

in continuous time can be obtained by a bilinear frequency transformation.

Computational Issues

The practical value of a mathematical condition such as those presented above is largely
determined by the tractability of the resulting computation. In regard to robustness analysis,
it can be generally said that the more specialized the uncertainty structure, the harder the
computation.

In particular, conditions in terms of the structured singular value y have been shown
to be NP hard, in the sense of the theory of computational complexity [36]. This is well
established (see [11]) for real and mixed p, and recent results [84] suggest that this also
applies to purely complex . It is generally accepted (see [36]) that NP hardness means that
the condition cannot be computed exactly in the worst case without entirely unacceptable
growth in computation cost with problem size. Hence for moderately large problems, one is
forced to relax the requirement for exact computation and rely on upper and lower bounds.

Efficient lower bound algorithms for both complex and mixed 1+ have been developed by
many researchers (see [55, 95, 53, 5]); although they have no guaranteed performance, they

appear to behave well on empirical tests.

The upper bounds for p of a constant matrix can be stated in terms of the Linear
Matrix Inequality (LMI) conditions (2.37) or (2.39). The evaluation of such conditions is a
convex feasibility problem which has been extensively studied in recent years [10, 35]; efficient

interior point methods are available, which have moderate growth with problem size. This
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means that a robustness test which is equivalent to a single LMI, such as (2.46) for robust
stability over Barrv, can be evaluated efficiently for moderate problem sizes.
In comparison, the frequency dependent test (2.43) is equivalent to an infinite dimensional

convex feasibility problem, given by the LMI across frequency
Vw, 3X () € XP 1 M(e) X (/) M(e’) — X (&) < 0. (2.47)

There are two standard approaches for handling the infinite dimensionality of this type of
conditions, and turn them into finite dimensional LMIs. One way is to impose (2.47) at a grid
of frequencies; this yields a series of decoupled LMI problems. Although this approximation
offers no hard guarantees, since it is based on the frequency domain it allows for engineering
judgement to be used in choosing the number and location of the grid-points.

The alternative is to select a finite set of rational basis functions for X (e’*) and restrict
the search to the span of these functions. Condition (2.47) will then depend linearly on a
finite number of unknowns, and fixed rational functions of frequency. An application of the
Positive Real Lemma (see, e.g. [10]) converts this condition to a single LMI in state space;
this procedure offers a guaranteed sufficient condition for (2.47), but is computationally
intensive since the problem is coupled. For more details see [4].

Given these computational properties, and the interpretation for the test (2.47) in terms
of arbitrarily slowly varying uncertainty, it may be questioned whether g-analysis conditions
such as (2.40) should be used at all. There are still good reasons, however, to formulate
a problem in terms of g. In the first place, although the upper bounds have guaranteed
polynomial-time computation, the size of the problems can be very large and render the
computation impractical. In these cases one often relies heavily on lower bound algorithms
to compute the analysis. More importantly, if there is parametric uncertainty in the problem,
the upper bounds may be substantially conservative (there is no corresponding slowly-varying
interpretation). Lower bound algorithms provide a fast method to obtain “bad” parameter
values, and can be further employed to assess this conservatism and, if desired, pursue a

more refined analysis by branch and bound techniques (see [53]).

2.4 Robust Synthesis

In this section we briefly discuss the synthesis problem of designing the controller K
to achieve robust performance in Figure 2.5. The standard theory refers to robust M.,
performance, which, given the results of Section 2.3.1, reduces to robust stability. Therefore
we will only discuss robust stabilization: finding K such that the system of Figure 2.9 is

robustly stable, where M = G x« K.
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A first condition for synthesis is provided by the small-gain theorem: if K is designed to
give ||G* K|« < 1, then it is robustly stabilizing. This implies that the H., control problem

can be used for robust synthesis.

If one wishes to exploit the structure of the uncertainty, however, then the synthesis

problem becomes harder. For example, (2.44) leads to the synthesis problem
inf 1 X(Gx K)X o - (2.48)

No efficient algorithm is available for the global minimization in (2.48), which is not a convex
optimization problem, except in very special cases (see e.g. [68, 18]).

In the general case, there is strong indication that this problem is hard since it is closely
related to bilinear matrix inequalities (BMIs) which are known to be NP hard. The main
general procedure for attacking this problem is by iteration (see, e.g., [80]) between the

following two tractable problems:

1. For fixed X, optimize in K which is an H,, control problem.

2. For fixed K, obtain new scales by solving the analysis problem. In the constant scales
case (2.42), this amounts to solving an LMI. In the case of (2.43), one must find a
rational scaling function: this is done by fitting points obtained from a grid, or in

terms of basis functions.

This procedure is guaranteed to reduce the cost at every step, provided there are no re-
strictions in order of X(A) for the frequency-dependent case, but not to converge to the
global minimum. Therefore it is best seen as a tool to improve initial designs, rather than a

procedure to obtain blindly a robust controller.

Given the difficulties in the structured synthesis problem, it is questionable whether such
a specialized design methodology is warranted in a practical system. At this point in time, it
appears that the methods of robust control theory under highly structured perturbations are
best employed as analysis tools, to validate designs based on simpler uncertainty descriptions

or more heuristic methods.



Chapter 3

Robustness Analysis of Combined

Dynamic Uncertainty Classes

Different classes of uncertainty description were introduced in Chapter 2 and motivated at
the component modeling stage. When a full system model is constructed from subsystems
as exemplified in Section 2.1.3, one obtains a decentralized perturbation as considered in
Section 2.2.3. In addition to the spatial structure, it is natural to expect a combination of
the various types of uncertainty blocks: real parameters, linear time invariant (LTT) dynamic
perturbations, and linear time-varying (LTV) parameters or operators.

Most of the robust stability tests reviewed in Section 2.3 refer to uncertainty structures
(AT ATV AY) where all the blocks are of the same dynamic type. The only excep-
tion to this considered in Section 2.3.3 is the case of combined real parameters and LTI
perturbations, which is captured by a mixed-u test [31, 95].

This chapter will consider the general case of mixed linear uncertainty classes, in par-
ticular where LTV blocks are also present in the combination. The inclusion of time-
varying uncertainty precludes a straightforward frequency domain p-analysis as in mixed
LTI/parametric problems. For this reason, we propose an augmentation procedure across a
number of frequencies, which is related to a lifting technique for y analysis by Bercovici et
al. [7], and to a power distribution lemma from Poolla and Tikku [64].

The main result in this chapter, presented in Section 3.1, is to show that this augmented
ft test is a necessary and sufficient condition for robust stability under combined LTV /LTI
uncertainty. The augmentation also provides an alternative for the formulation of convex
upper bounds, discussed in Section 3.2. Real parametric uncertainty can also be incorporated
in this procedure, as shown in Section 3.3. Some examples which demonstrate the results
are given in Section 3.4.

As before, we will concentrate on the question of robust stability. The same conditions

apply to robust H, performance problems, for the reasons explained in Section 2.3.1.



3.1 A ;1 Test for Mixed LTV /LTI Analysis

3.1.1 A Power Distribution Lemma

The following lemma from Poolla and Tikku [64] provides a useful characterization of

time varying perturbations, which will be used in this chapter.

Lemma 3.1 Let 0 <wy < ... <w, <7 be distinct frequencies. If the vector signals
(1) = g p(t) = pret (3.1)
k=1 k=1

satisfy the power inequality >, |gx|* > D i_, |pel?, then there exists a linear time-
varying, causal operator A € L.(1y.) such that

(@) lal=<t
(i1) |AA = AX]| < v =2sin(Z),

Z

(¢i1) Ag=p+p", p" € L.

Heuristically, this lemma says that provided that the total power of ¢ is greater than that
of p, a contractive LTV operator can rearrange the power between frequencies, mapping ¢
to p in steady state. In contrast, for a contractive LTI operator to verify (i77) would require
an inequality in power at every frequency (i.e. |gx| > |pi| for every k). Also, the lemma
provides a bound on the required time variation v in terms of the amount of frequency

shifting performed, an issue which will be reconsidered later in Chapter 5.

3.1.2 Problem Formulation and Augmented Structures

Sections 3.1 and 3.2 refer to the system of Figure 2.9, where M is, as usual, a finite
dimensional LTI, stable discrete time system. The uncertain perturbation A is now assumed
to contain a combination of LTV and LTI blocks. We will write

Ms Mgy
Moo M, |’

® 0

0 s (3.2)

?

where @ is a causal LTV operator in a structured class Bgrrv C Lo(I7'), and 6 is a causal
LTI operator in Borr: C L.(l). As in Chapter 2, the corresponding constant matrices and
their structures will be represented by the same symbol in normal font, rather than boldface.

X?, X% will denote the sets of scaling matrices corresponding to each structure.
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An important integer parameter determined by the structure is the dimension d of the
real vector space X2¥ of hermitian scaling matrices in X®. In the most common case where

@ consists only of full blocks, d is the number of blocks.

The objective is to obtain an extension of the exact x4 condition (2.40) for LTT analysis,
to the case of mixed LTV /LTI perturbations. Since LTV structures are usually characterized
by tests (2.42), (2.46) in terms of [, rather than g, it is not obvious that a p test would
exist for the mixed LTV/LTI case (and in particular, for the LTV case). The main idea to
obtain this  condition is inspired in work by Bercovici et al. [7], where an augmentation or
lifting in the structure converts the upper bound ji to p of a larger matrix. The results in
[7] apply to constant matrices and are based on operator-theoretic methods, but can also be
obtained as a corollary of the more general dynamic results to be presented in this chapter,
which will be proved by convex analysis techniques.

We first consider the augmented matrix

M(wy, ... wq) = diag[M(e’), ..., M(e'*)] (3.3)

which represents the system M at a fixed number d of frequencies. Next we introduce the

following augmented structures in the space of complex matrices:

[ o .. ol
d = : Lo, dVed, ij=1...d, (3.4)
oS K
[ AL Al )
Adl Add AY = diag[®", 0], i # ;

The augmented structures @, A, are d times larger than the corresponding @, A. For
the case of ®, it is obtained simply by considering d* copies of ®, in matrix form. A, which
contains ® as a submatrix, is obtained in a similar fashion, the only difference being that
the time invariant blocks 6 are only copied along the diagonal, and the rest of the entries
are set to zero. As an illustration, Figure 3.1 (a) contains the augmented configuration for
the case d = 2.

These structures have a “frequency shifting” interpretation which relates to the remarks
made in regard to Lemma 3.1: the augmentation corresponds to considering a system at a
number d of frequencies, and the different treatment of LTI and LTV blocks is due to the fact
that only the time-varying perturbations are allowed to transfer power between frequencies;

this is represented in @ by the off-diagonal terms.
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@11 0 @12 0
1e2 0 929 -
0 0 0 02 @21 @22
M(ejw:l) 0 F(W1701) 0
] < 0 F(wg, 02)
0 M(e*?)

(a) ()

Figure 3.1: Augmented representations

It is also convenient to consider the configuration of Figure 3.1 (), where the LTI portion

is included along with M. Define the matrix function
F(w,0) := M(’*) % 0 = Mg + Mag0(I — My0)™* Myg. (3.6)
For this LFT to be well defined for § € By, the following condition must hold:
muzjxxug(]\lg(ej”)) < 1. (3.7)

Under this condition, F'(w,#) is continuous for w € [—=, 7], §# € Bg. For given (wy,8),
k=1...d, the matrix

Flwiy .. wg, 0%, ..., 0% := diag[F(wi,0") . .. F(wg, 07)] (3.8)
is obtained by LFT between the § portion of A and the matrix Mlwn,. .. ,wq). Figure 3.1

(b) represents F' and the remaining matrix ®, in the case d = 2.

3.1.3 Main Result

The main result in this chapter is to show that u conditions on the augmented matrix
structures provide an exact characterization for robust stability of the system (3.2). The
proof will rely on Lemma 3.1, techniques from p-analysis, and some convex analysis proper-
ties which can be found in Appendix A.
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Theorem 3.2 In reference to the system (3.2), the following are equivalent:
(a) The system is uniformly robustly stable.
(b) Condition (3.7) holds, and with wy, varying in [—7, 7], and 0* € Be,

max pg(F(wr, .. wa, 08 0%) < 1. (3.9)

max pi(M(wi,...,wq)) < 1. (3.10)

Proof: The equivalence of (b) and (¢) is a simple consequence of the main loop theorem

(Lemma 2.1). In fact, for each wy,...,wq, Lemma 2.1 implies that

~ M@(Mg(ejwk))<1, k=1...d
(M (wr,y. .. w)) <1 <= b 3.11
#a(Mlwn wa)) { maxg ga fg(F(wr,. .. wg, 00, ..., 0%)) <1 (3:11)
Maximization over wy, ..., wy gives (3.10) on the left hand side, and (3.7) and (3.9) on the

right hand side; the maxima are achieved due to the continuity of complex .

The proof of the equivalence of (a) and (b) will be written for simplicity in the case of
LTV uncertainty with only full blocks, of the form ® = diag[®,...®,]. The extension to
the case of 6/ blocks in @ mimics other proofs in this thesis (see Lemma 5.2, the remarks

after Theorem 6.6, and Theorem 8.4).

The following lemma gives an interpretation of the uncertainty structure @.

Lemma 3.3 Assume (3.7) holds. Given wy,...,wy, 04,...,0% the following are

equivalent:

(i) ﬂq”s(F(wlw..,wd,917...,0d)) > 1.
(i) Ip',... ,pd € C™, not all zero such that

Proof (Lemma): (¢) is equivalent to the existence of ® € &, 5(®) < 1 and a column vector
p =col(p',...,p%) # 0 such that (I — (T)F(wl, w01 0%))p = 0, or equivalently

p! ot .. Y Flwy,0h)p!
p? o . pn F(wg, 0%)p?
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Each ®7 in (3.13) is in turn block diagonal with d subblocks, which impose a partition on
the column vectors p*, F(wy, 0%)p*. The elements in this partition are henceforth denoted
by the subindex [. The equations and variables in (3.13) can be reordered, putting together
ply.. o, pd and (F(wy, 0YpY), . .., (F(wg, 8)p®) for each [, which reduces the structure of ®
to d full blocks in this new order. Now a(®) < 1 is equivalent to the norm inequalities (3.12).

n

(a)==(b)
Condition (3.7) is clearly necessary for robust stability; if it did not hold, the stan-

dard result (2.40) implies that the system could be destabilized by LTI perturbations alone.

Therefore F(w,#) is well defined and continuous.

Assume by contradiction, that there exist wy,...,wy € [ w7, 01,....09 € Bg with
pa(Flwr,. .. wg,0,....6%) > 1. Lemma 3.3 ylelds pt, ..., p? satisfying (3.12).
Fix € > 0; by continuity of F' we can perturb the ',...,6% to have 5(*) < 1 (strict
inequality), and the wy,...,wy to make them distinct, satisfying
d d
D (F(wr, )P = (1= | =1...d (3.14)

k=1 k=1

Since o(0%) < 1, we are in the conditions of an interpolation result given in [29], which
states that there exists a causal, stable, rational LTI perturbation 8 € Bg !, satisfying
(e?¥r) = 0%, Introduce

d
Zpk T g() = ) (F (e, 0F)pF) e, (3.15)

k=1

and define F = Mx#8, which has transfer function F'(w, 8(¢’*)) from (3.6). Then Fp = ¢ +e,
where e(1) € [; is a transient term. For any [, (3.14) implies that the power of the [-th
component of ¢(t), is greater than the power of the /-th component of p(¢) times (1 — ¢).
We can invoke Lemma 3.1 to show the existence of a causal time-varying operator ®; which
maps ¢(t); to (1 — €)p(t);, up to a transient term. Constructing ® = diag[®; ... ®,], we
obtain

(I-®@F)p=ep+e, (3.16)

where €() € [, is transient. This implies that

I(T—®M=0))7"|| = (I- ®F)~' =

N | o

(3.17)

1129] constructs a perturbation in the disk algebra A(T) interpolating a countable number of frequencies;

in the case of a finite number of frequencies it can be chosen to be rational.
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Now, it follows routinely from (3.2) that

-1
I-®Mx0 0 I &Mgy(I—0M;) !
(I— AM)~! = (M 6) a6 2 (3.18)
—0Mys I-6M;, 0 I
Also, condition (3.7) implies that
sup [[(I—60M;)™'|| < oo, (3.19)

OGB@

which implies that the second term on the right hand side of (3.18), and its inverse, are
uniformly bounded in norm.
Letting e—0, the norm in (3.17) goes to infinity, which implies sup 5 [|[(I—- AM)™}|| = oo,

violating uniform robust stability.

(b)==(a):

We introduce some more notation. For w € [—7,7], 8 € Bo C CP*?, p € C™, define

oi(w,0,p) = |(F(w,0)phl* — Ip>, [1=1...4d, (3.20)
Aw,8,p) = (o1(w,0,p), ..., 04w, 0,p)) € R, (3.21)
V= {Aw,0,p): w e [-m7], 0€ Bo, pe T, [p = 1). (3.22)

From (3.7), A(w,0,p) is continuous in its 3 variables, therefore V is compact in R?, and so

is its convex hull co(V).

Claim: If RY is the set of nonnegative real numbers,
co(V) N (R = 0. (3.23)

In fact, if (3.23) does not hold, then we can find a point A in the boundary of co(V),

which falls inside (R)?. Invoking Lemma A.2, A is a convex combination of d points in V.

Therefore there exist wy,...,wy, 81,...,6%, p', ..., p? such that
d d
A= apMwr, 0%,p%) € (RE)Y, ay >0, Y ap =1 (3.24)
k=1 k=1

Substitution in (3.24) with the definitions (3.20), (3.21) leads to

d d
Dl (F(ws, 05)ph) | > el 1=1...4, (3.25)
k=1 k=1



34

which is the same as (3.12) with p* substituted by \/axp”. This violates (b) by Lemma 3.3,

so the claim is proved.

co(V) and (R{)? are disjoint closed convex sets in R?, and co(V) is compact. Therefore,
by Lemma A.3 there exists z = (z1,...,24) € RY, o, 3 € R such that

(2,A) Sa< B < (ey) YAEV.ye (BRI (3.26)

Given the special structure of the cone (Rg)d, we can choose =0 and a1 > 0,...,24 > 0.
Using (3.21), we have

rio(w,0,p) + ...+ 2404(w,0,p) <a <0 Vwe[—7,7],0€ Bo, peC™, |p|=1. (3.27)
Define X = diag[z1/, ...%aly,] which belongs to X?®, then (3.20) and (3.27) give
])('%1‘7(w./0)p|2 - |X%p|2 <a<0 VYo, b, p. (3.28)

It follows that v := max, 40 (X%F(wvé)X'%) < 1. For any LTI 8 € Bg, and any LTV
® ¢ Bg, we obtain

IXZ@(Mx 0)X 5| < [|B[|[| X5 (M*8)X 5[] < || X3 F(w, 0(e™) X5 <. (3.20)

This implies

I (x X%Q(M*Q)X"%)_l | < — (3.30)

=1 5 » .
which leads to a uniform bound on || (I—®M%8))™" |. This, together with (3.18) and
(3.19), gives a uniform bound on ||(I— AM)™!]. |

Remarks:

e Condition (3.10) plays the role of the test (2.40) for purely LTI uncertainty, and is of a
similar complexity, although there is a price paid for the inclusion of structured LTV
blocks, in terms of the size of the problem and the number of frequency variables in

which to search.

e If there is only one LTV block, the condition is the same as if all the blocks were LTI,

which can also be shown directly in terms of the small gain theorem for LTI systems.

e If there is no LTI uncertainty, the previous theorem gives a u test for LTV perturba-
tions. The augmented y condition (3.10) is therefore equivalent to condition (2.42) in
terms of the y upper bound. In particular, if M is a constant matrix with no dynamics,
the frequency sweep disappears and we obtain jig(M) = /1,@(]\7[). This is precisely the
lifting result from Bercovici et al. [7], except that the size of the augmentation is the

number d of blocks, rather than the dimension of the matrix.



3.1.4 State-Space pu Condition

Theorem 3.2 provides a necessary and sufficient test for robust stability in terms of a u-
condition (3.10) which involves a search in d frequency variables. Using a stable state-space
realization M(A) = Al x S as in (2.21), a state-space test in terms of u of a single constant

matrix can be derived. This is analogous to Condition (2.41) for LTT uncertainty.

1

Corollary 3.4 The system has uniform robust stability if and only if fa (5) <1,
where S = diag[$, ..., 5], and
AL Al
As=| + .. ], (3.31)
AL AY
g = diag[\'], ?”7 0, <I>“ ed,i=1...d ‘ (3.32)
AY = diagl0, &7, 0], 9 € &, i £, i j=1...d '

Proof: Since M(A\) = Al xS, we can apply the main loop theorem (Lemma 2.1) succes-
sively to obtain

,uAS(S') <l<= max px(M(A,..., ) <1, (3.33)
Mo hg€ D

where M(\y, ..., Ag) = diag[M()1),..., M(\;)]. The maximum modulus-like property [55]
of complex y implies that the maximum in (3.33) occurs for \; at the boundary of the disk,
therefore the left hand side of (3.33) coincides with (¢) in Theorem 3.2. ]

3.2 Convex Tests for the Mixed LTV /LTI Problem

The conditions of Section 3.1 are necessary and sufficient and reduce the LTV /LTI robust
stability problem to the computation of a finite dimensional object. As remarked in Chapter
2, however, exact p computation is hard, so practical use of these conditions will involve
employing bounds such as those in standard software packages such as p-Tools [5].

In particular, we analyze in this section the upper bounds for this problem (sufficient
conditions for robust stability) which lead to convex optimization. For this purpose, the p
conditions obtained in Section 3.1 can be bounded by use of the constant matrix upper bound
jt. We focus here on the upper bound ,&A(M) over the frequencies wy, ..., w,, which follows
from (3.10). An examination of the augmented structure A shows that the corresponding

commuting matrices X are of the form
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X = diag[X®, X7 X® X0, ..., X% X7, 3.34)
g 1 2 d ,

where X? € X?, X¥ € X,

An alternative way of deriving a sufficient condition is to directly apply scaled small-gain
conditions to the original problem. In the case of mixed LTV/LTT analysis as in (3.2), the
natural scaling set is of the mixed form where the portion X? which corresponds to the LTI
blocks @ is allowed to vary in frequency, and the portion X? corresponding to the LTV blocks

is constant. Define
Xm = {X(e) = diag[X?®, X°(e™)], X® € X®, X?(e¥) € X? for each w} . (3.35)

Without loss of generality the functions in X, are assumed to be continuous over frequency.

The notation X refers to the subset of positive elements in X,,,.

We now show that the two approaches are equivalent.

Proposition 3.5 Given the system (3.2), the following are equivalent:

max fix(M(w,...,wg)) < 1, (3.36)
W1 y.enlg
I X(e’) € XP: maxo (X()M()X(e)7!) < 1. (3.37)
Proof: If an X satisfying (3.37) is found, then for any choice of frequencies wy, . .., wy,

setting

X = diag[X?, X0(e’™), ..., X, XO(e¥)]

PRCIEED

will result in & ()N(M(wl, . ,wd)X_1> < 1, and therefore jiz (M) < 1, implying (3.36). For
the converse, (3.36) implies that

max inf G(XM(wy,... . w) X" < 1. (3.38)
W yeeny wWq X
For fixed wy, ..., wy, clearly there exists e(w;,...,wy) > 0 such that
inf  F(XM(wi,...,w) X7 ") < 1. (3.39)
LI>X>el

Since the wy,...,wy vary in a compact set, and M is continuous, it follows that a fixed € can
be found satisfying (3.39) across wy,...,ws. Now assume that (3.37) does not hold. This

means equivalently that the LMI conditions across frequency

X(e) >0, M (e)X(e’)M(e’) — X(e/) < 0 (3.40)
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do not have a solution X € X*, i.e. they cannot be satisfied with the X® part constant

across frequency. As a consequence, the family of sets

X% .= {X‘I’ € X?:3X = diag[X®, X (w)], el < X <

w

| =

L My XM(e?™) — X < o}

(3.41)
have empty intersection for w ranging in [—#, 7]. These sets are convex and compact, and by
normalizing the last block of X® to I, they are in a d — 1 dimensional space. From Lemma
A.1, there exist d such sets with empty intersection.

Therefore there exist d frequencies wy,...,wy such that & (XkM(ej“”“ )‘X,v_l) < 1 cannot
be satisfied with matrices el < X < % which share a common X® part. Equivalently, given
(3.34), we have that & ()N(M(wl, e ,wd)):"1> < 1 cannot be satisfied with ¢/ < X < % for
these frequencies, which is in direct contradiction with the fact that ¢ satisfies (3.39) for all
frequencies wy, ..., wy.

As a corollary of Proposition 3.5 and Theorem 3.2, condition (3.37) is sufficient for robust
stability under mixed LTV /LTI perturbations; this could also be shown via standard small-

gain arguments.

From a computational point of view, (3.37) has the advantage of involving a search over
only one frequency variable. A direct approach would be to grid the frequency axis and
convert (3.37) to an LMI condition?®. Note, however, that the common scale X?® introduces
a coupling in the problem, so one is left with a large LMI condition, with size growing with
the number of frequency grid-points.

In comparison, (3.36) tells us that in fact, d frequency values suffice, and we must only
solve a coupled LMI problem of this size. However, since these frequencies are not known
a priori, one has to grid a d dimensional space of frequencies. Therefore (3.36) reduces the
size of the coupled LMI at the expense of more gridding. For low values of d, this alternative

may be convenient.

Regarding the conservatism of these conditions, the results of [64] in relation to condi-
tion (2.43) suggest that (3.37) becomes necessary if the LTI perturbations are replaced by

arbitrarily slowly varying uncertainty.

Theorem 3.6 The conditions in Proposition 3.5 are satisfied if and only if there
exvists v > 0 such that the system (3.2) is robustly stable for A = diag[®,8], ® €
Bgrrv, 0 structured operator in BY.

? Another approach would be to parametrize X? (w) by basis functions.
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A proof of this result can be obtained through an essentially routine (though quite in-
volved) extension of the techniques of [64], as was done in [61]. A more elegant proof will
follow as an application of the techniques in Chapters 5 and 6; we therefore postpone this

topic until then.

3.3 Combination with Real Parametric Uncertainty

In this section we take a further step in the analysis under combined uncertainty struc-
tures; in addition to LTV and LTI blocks, we include real parametric perturbations. In
the robustness analysis setup of Figure 3.2, H is an LTI stable system, and the combined
LTV /LTI/parametric uncertainty is denoted by ¥. The name A is reserved to represent
jointly the LTV /LTI portions of ¥, to provide consistency with the previous sections. There-
fore A is defined as in (3.2). The additional structured perturbation g consists of real

parametric blocks (e.g. ¢ = diag[oi1,...,0.1], 0; € R).

® 0 0 He He¢s Hs,
A0 H, H,,
‘I’: o 9 o = B H: Hg@ Hg HQQ = .
o o HQA HQ
0 O 4 HQ@ Hgg HQ
(3.42)
q
v
dl (12
H
p

Figure 3.2: Robust stability under LTV /LTI/parametric uncertainty

We wish to obtain a necessary and sufficient condition for robust stability in this class,
extending the results in Section 3.1. Since real parameters are a special case of time invariant
uncertainty, at first sight it would appear that Theorem 3.2 applies directly, vielding a mixed-
p condition on H(wy, ..., wy) = diag[H(e*), ..., H(e/“4)], analogous to (3.10) but with the
copies of p in the augmented structure constrained to be real.
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This augmentation would not capture, however, an additional property of real parametric
uncertainty: in addition to taking real (rather than complex) values, a real parameter has
no dynamics and therefore is constrained to be constant across frequency’. This suggests a
modification of the augmented uncertainty structure for the case of real parameters, where

they are forced to be constant across the augmentation. Consider the structure

gt g

U =

{ diag[®", 6", o], ¢ @ (3.43)

v g | LW dingov 0.0 i
where ®7 ¢ ¢ and #' € O as before, but we constrain the copies of p to be repeated across
the augmentation. The d = 2 case is depicted in Figure 3.3 (a).

10 0 ®20 0

0 610 0 0 0
00 200 0 20 @0
o210 0 @20 0 Jo 6t 0 o
00 0 0 620 0 ¢ 0
00000 o 0 0 0 @
H<€jw1) 0 M(e? 9) 0
) 0 ]V[(ej’“”?,g)

0 H(e!?)

(a) (b)

Figure 3.3: Augmented representations for the real parametric case.

It will also be useful to close the loop on the real parametric part, which will reduce the

problem to the situation of Section 3.1. Assume that the real s condition
max p,(H,(e’*)) < 1 (3.44)
holds, then for any fixed ¢ € B, we can define M = H * p, with transfer function

M(e™, 0) == H(e!*) % o= Ha + Hapo(I — Hy0) " H,a, (3.45)

3This fact does not come into play in standard mixed p with LTI/parametric uncertainty, where only one
frequency is involved in the destabilization.
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which is a stable time invariant system. We also define as in (3.3) the augmentation
M(wl, o wa, 0) = diag[M(e?¥1,0)... M(e?¥¢, p)] for given wy,...,ws, which can be ob-
tained by LFT between the matrix f{(wl, ...,wy) and the o portion of ¥. The uncertainty
structure corresponding to M is A as in (3.5), which is depicted in Figure 3.3 (b) for the

case d = 2. We now provide the extension of Theorem 3.2.

Theorem 3.7 In reference to the system (3.42), the following are equivalent:
(a) The system is uniformly robustly stable.
(b) Condition (3.44) holds, and with wy, varying in [—w, 7], 0 € B,,

max  p;(M(wr, ... wg0)) < 1. (3.46)

WlyeensWq, Q

(¢) With wy varying in [—7, 7],

max M@(H(wlv'--vwd)) < 17 (347)
Wi,y
where 1y 1s the mized (real/complex) structured singular value with respect to the
structure (3.43).

Proof: The equivalence of (b) and (¢) is a direct application of Lemma 2.1.
Also, (a) implies condition (3.44), otherwise the real parameters o would destabilize by
themselves. Given (3.44), we observe that for fixed g € B,,

I-9YH =

I —AH,,(I-oH,)™" } { I- A(H+xp) 0 (3.48)

I —oH,n, I-pH, |

It follows that the (uniform) robust stability of system (3.42) is equivalent to the fact
that for every ¢ in B,, the system (M, A) is (uniformly) robustly stable. Since A has the

mixed LTV/LTT structure of Theorem 3.2, this is equivalent to condition (3.46) in (b). m

The previous result has reduced the robust stability problem under LTV, LTI and para-

metric uncertainties to a mixed-u condition across d-frequencies. We remark the following:

e In analogous manner to Corollary 3.4, a state-space condition can be derived from

(3.47), which is equivalent to a single mixed x problem.

¢ Asusual, practical computation of a g-condition such as (3.47) must be approached by
upper and lower bounds, and possibly branch and bound techniques. Upper bounds
will have the form given in (2.39); analogously to the situation in Section 3.2, we

have the choice of writing these conditions in the original problem or in the augmented
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problem. In this case, however, these are not equivalent, and the augmentation provides
in principle a tighter bound. The reason for this is that the augmentation introduces
repetition in the real uncertainty, increasing the freedom of the scaling matrices X2,
(G¢ corresponding to these blocks. This provides a way of imposing the condition that
o is constant across frequency, which is not imposed by an upper bound in the original

problem.

3.4 Examples

In this section we illustrate the results of this chapter with a series of examples. These
have been deliberately constructed so that there is a direct way to answer and interpret
the robust stability question, thus providing more insight into the conditions given in the

previous sections.

3.4.1 A System with LTV Uncertainty

We consider the interconnection of Figure (3.4), where Fy, Fy are LTI single input/output

systems, and ®,, ®; are uncertain perturbations with ||®;|| < 1.

2

— b ____1(0
o
1

L

Figure 3.4: Example of analysis of LTV uncertainty

o If ®,, ®, were LTI perturbations, then they would commute with Fy, F, and from the

small-gain theorem the robust stability condition would be
[ F1F]|oe < 1. (3.49)

e From now on we consider the more interesting case when ®,, ®, are LTV perturbations.
It turns out that in this simple configuration, the necessary and sufficient condition for
robust stability is

[F 1 ool [ P2l < 1. (3.50)
This condition is in general stricter than (3.49), since the two transfer functions Fy(e/)

and F(e’*) need not achieve their peak gain at the same frequency.
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The sufficiency of (3.50) is clear from small-gain. To explain why it is also necessary, let

us particularize in the example

0.1 ~0.1 |
BN =g N = 1500x (3.51)

Figure 3.5: Transfer functions Fy(e’*) and Fy(e/).

Here both systems have H., norm equal to one, achieved respectively at frequencies 0, =.
Their magnitude frequency response plots are depicted in Figure 3.5 below. Condition (3.50)
is therefore not satisfied. Let us show that the system can be destabilized by contractive LTV
operators. In this case it suffices to consider the time-varying gains ®4(¢) = ®(¢) = (—1)*.

In reference to Figure 3.4, consider a constant signal v(¢) = 1 at the input of F;. Since the
transfer function Fj(e?*)is 1 at w = 0, the steady state output will be the same signal. The
time-varying gain ®1(t) modulates this signal to w(¢) = (—1)!, which has all its frequency
content at w = 7, where Fy(e’*) has value 1. This implies the steady state output of F, is
w(t), which is demodulated back to v(t) by ®5(t). We have a steady state signal in the loop,
which violates robust stability. This informal argument can be formalized and extended
to arbitrary Fy, Fy, and it illustrates strongly the “frequency shifting” properties of LTV

perturbations.

We should recover the same answer if we do the analysis using the results in Section 3.1.
For this purpose, we first rearrange Figure 3.4 to an M-A setup, where A contains in this

case only the LTV portion

®, 0
®,

A== M:[O E}. (3.52)

F, 0 '

Since d = 2, we must compute the augmentation of Theorem 3.2 over two frequency vari-

ables wi, w,. Figure 3.6 contains the resulting function /LA”(;ZV{(wl,CUQ)), computed using the
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software package u-Tools [5]. We find that the maximum is 1, achieved when the pair of
frequencies is (0, 7) or (7,0), which is consistent with the previous analysis. Similar results

can be obtained using the state-space condition in Corollary 3.4.

Figure 3.6: /LZ\(M) as a function of wy, wy

3.4.2 Including LTI Uncertainty

We now modify the previous setup to include LTT uncertainty; Fy, Fy arve replaced by
. 0.1 o —0.1

T 1-(06+030)X 7T 1+4(0.6-0.30,))
which are LFTs F; = T; = 6; on the LTI perturbations §;, as depicted in Figure 3.7.

g o<t (353)

Ty
I
@1 (1)2
L, }
> T2

Figure 3.7: System with LTV and LTI uncertainty

From (3.50), it is clear that the worst-case 6; are those which achieve maxy; || Fil|sc-

The values in (3.53) have been chosen so that the worst-case perturbations are f; = 1,
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05 = —1 , which produce F; as in (3.51). From the previous analysis the smallest destabilizing
perturbation is of norm 1: 6, =1, 0, = —1, &; = &, = (—1)".

These results are verified when we do the analysis of Theorem 3.2. After rearranging
Figure 3.7 in the standard setup, and performing the augmentation, the p computation
gives a value max,, o, pt4(M(w1,wz)) = 1, achieved at w; = 0, wy = 7.

If the 6, in (3.53) correspond to real parameters instead of LTI perturbations, we still ob-
tain the same answer from the robust stability analysis, since the worst-case values obtained

above happen to be real.

3.4.3 Real Parametric vs LTI Perturbations

To produce an example where real and LTI perturbations give a different answer, one
can use the same structure as in (3.53), but impose 8, = 0, =  (repeated perturbation). In

other words,

B 0.1 o ~0.1
T 1—(0.6+030)A7 "7 1+(0.6—030)\

If 0 is LTI, the repetition does not alter the results in Section 3.4.2, since an LTI pertur-

£

(3.54)

bation can take the values 1 at w = 0 and —1 at w = 7. An example is 0(e’“) = ¢/“ (8 is the
delay operator A), which turns the F; into second order systems with ||| = || F2|l = 1.

The same answer is obtained from the augmented u test (3.10) which gives

max pi 4 (M(wy,ws)) =1, (3.55)
wWi,wW2
achieved at wy = 0, wy = 7, and a destabilizing perturbation with #* = 1, 6? = —1, as

expected.

We now change 8 for a real parameter p € [—1, 1], repeated in Fy, F,. Since it is constant
across frequency, it cannot maximize both || F;||.. simultaneously. In fact, straightforward

calculations show that .

Fil|oo || F2]|co = ————
IFi Il = 5=

(3.56)

which has a maximum of % for p € [~1,1]. This implies by (3.50) that the overall system is
stable for ||®;]] <1, p € [-1,1].
Proceeding by augmentation, (3.47) gives a value
max g (H (wy,w;)) = 0.7906 < 1. (3.57)
Wi, )
which yields the same stability conclusion by Theorem 3.7. In this case we can show directly

that the smallest destabilizing perturbation for o € R and ®; LTV, has norm 5 71906 = 1.2649.
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For this purpose, choose g € [—7v,7] and ||®;|| < 4. From (3.50), the full system will be

i

stable as long as

| =

1 | |
= max ([|F|e||F2llee) <
607 e (|| Filleo [ F2]l-c) n

which is equivalent to v < 1/8/5 = 1.2649, as expected.

: (3.58)

(&)

To recapitulate, in this chapter we have shown that a combination of different classes
of uncertain perturbations (LTV, LTI, parametric) can be analyzed for robust stability or
H.. performance with the same mathematical tools as non-mixed problems. Structured
singular value conditions were obtained, applicable to any combination of these uncertainty
classes. Also, we remark that all the frequency domain conditions which were obtained can

be extended directly to the continuous time case.

These new results raise a number of computational questions which are open for future
research, regarding the most efficient approach for practical problems of this sort. In regard
to the convex upper bounds which lead to coupled LMI problems across frequency, two
alternatives (3.36) and (3.37) have been discussed and should be further explored. In relation
to lower bound computation, the repeated structure of the augmented systems may be

exploited in the algorithms.
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Chapter 4

A Set-Based Methodology for White
Noise Modeling

4.1 Motivation

In Chapter 2 we motivated the need for descriptions of uncertainty associated with engi-
neering models. FEssentially two approaches are available to describe uncertainty: one is to
consider a set of allowable perturbations and perform worst-case analysis over this set; the
other is to assign a probability distribution to the uncertainty and perform analysis in the
average.

Most of the uncertainty descriptions presented in Section 2.1.2 were in terms of sets.
This is the the simplest, most natural characterization for systematic errors due to under-
modeling, which is a dominant factor in most control engineering problems; also, the issue
of stability provides an incentive to take the worst-case point of view.

In robust control theory, the methodology based on sets is also applied to disturbance
signals, by modeling them in terms of a ball in a signal space (e.g. Iy, l.), which motivates
the H., or L, criteria for worst-case disturbance rejection. The main motivation for these
disturbance models is mathematical convenience, since these performance specifications are
easily combined with set descriptions of system uncertainty to analyze robust performance,
as explained in Section 2.3.1.

This approach for disturbance modeling is pessimistic, however, since the worst-case sig-
nals which dominate the designs (e.g., sinusoids for H., performance) are very unlikely to
arise as empirical disturbances. These usually exhibit broadband spectral characteristics
(white noise, or some filtered version), especially when they describe the cumulative macro-
scopic effect of very high dimensional fluctuations at the microscopic level. The statistics of
these phenomena have been very accurately modeled by the theory of stochastic processes.

The systematic study of the properties of dynamical systems under stochastic noise, pursued
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by stochastic control theory, often leads to tractable results, the most notable being the so-
lution of the optimal Hz (or LQG) control problem (see, e.g., [3]). The main limitation to
its applicability is that noise is rarely the prevailing source of uncertainty, and the others do
not fit easily into a stochastic description.

The desirable design specification, from both the performance and uncertainty points
of view, appears to be in most cases Robust H, performance: rejection of white signals in
the worst-case over a set of plants. The historical difficulties (see Chapter 6) in obtain-
ing a mathematical solution to this problem stem from the combination of two disparate
methodologies: average-case analysis based on probability, and worst-case analysis based on
functional analytic tools.

Another example of the difficulty of combining these frameworks is the relation between
robust control and system identification. In mainstream system identification (see [45]),
models are obtained in the style of time series analysis, by fitting parameters to data and ex-
plaining the errors in terms of random noise; the resulting models are, consequently, difficult
to relate to those employed for robust control design. A more unified approach was sought
recently by posing the identification problem in a worst-case setting; work in this area has,
however, once again used a pessimistic view of disturbances, resulting in worst-case iden-
tification with weak consistency properties ([39, 85]) and high computational complexity
([16, 64]).

In this chapter we propose a new methodology for white noise modeling, aimed at re-
solving these difficulties.

The starting point is the following question: how does one decide whether a signal can be
accurately modeled as a stochastic white noise trajectory? Deciding this from experimental
data leads to a statistical hypothesis test on a finite length signal. In other words, one will
accept a signal as white if it belongs to a certain set. The main idea of our formulation is
to take this set as the definition of white noise, and carry out the subsequent analysis in a
worst-case setting.

For this approach to be successful, these sets should:

o Exclude non-white signals (e.g. sinusoids) which are responsible for the conservatism

of the H., and £, performance measures.

e Include likely instances of white noise. Here stochastic noise will be used as a guidance

for the choice of a typical set, but not for average case analysis.
¢ Have simple enough descriptions to allow for tractable worst-case analysis.

With these objectives in mind, we will first analyze in Section 4.2 the case of finite

horizon signals, and present set descriptions of white signals based on both the time and the
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frequency domain points of view. Various tools from statistics and time series analysis are
applied and developed to obtain a compromise between the stated objectives. In Section 4.3
we demonstrate the application of these ideas to worst-case system identification.

With the insight gained in Section 4.2, the case of infinite horizon signals is considered
in Section 4.4. Two different settings are discussed, and one alternative which is most useful

for robust control applications is developed in more detail.

Some Additional Notation

The following are some notational conventions and facts which are relevant only for the
material in this chapter. H denotes an LTI system in £.(/); most of this chapter will consider
for simplicity scalar signals and single input/single output (SISO) systems; the multivariable
case is considered in Section 4.4.3. In the SISO case we will assume that the impulse response
h(t) is in [y, i.e.

D [h(t)] < oo. (4.1)

We now introduce the autocorrelation sequence of H,
ru(t) =Y h(t+7)h(t) (4.2)
=0

which is well defined, and itself a sequence in [y, i.e. 377 |ru(7)] < oo. If H(e’*) is the

transfer function of H, the spectrum sg(w) := |H(e’*)]? coincides with the Fourier transform
of ry(7). Also, the H; norm of H satisfies

LIS = ra(0) = 3 100 = 5 [ suleo)d (4.3

For some of the frequency domain bounds obtained in this paper, we will further assume
that sg(w) is a function of bounded variation in [0, 2x]. This class is denoted BV[0,2x]; see
Appendix A for more details, including the definition of the total variation 7'V of a function.
The time domain condition > |7 ru(7)| < oo is sufficient for sy(w) € BV]0, 27].

Finally, in the stochastic material presented, P denotes probability, and “I1.D.” is syn-

onymous with independent, identically distributed.

4.2 The Finite Horizon Case

A reasonable starting point for white noise modeling is the case of a scalar valued, finite
horizon, discrete time sequence v(0),...,v(N —1) of length N. The infinite horizon version

will be considered in Section 4.4, which also covers the extension to vector-valued signals.
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To analyze the response of a system with memory over a finite horizon, some convention
must be made on the “past” values of the input signals. The two simplest choices are either
to assume the system is initially at rest, or that it is in periodic steady state of period N.
We will adopt the latter, since it leads to a more tractable spectral theory: the sequence
v(0),...,v(N—=1) will be identified with the periodic signal v(t) of period N. This procedure
is justified for analyzing stable systems with time constants which are small compared to N,
so that the system is not sensitive to long range correlations in the input signals; this will
be a standing assumption in this section.

The discrete Fourier transform (DFT) V(k), £ =0,...,N —1 of the sequence v(t) is
defined by the relations

=

N-1
-2 1 27
— —i5rkt — {1 pd Skt
V(k) = v(t)e ., u(t) = N g:O Vi(k)e : (4.4)

t

I
o

The circular autocorrelation sequence of v (correlogram) is given by

N

ro(7) = v(t+r(t), T=0-N-1, (4.5)

i

—

and the sequence power spectrum (periodogram) by s,(k) = |V(k)|*, k=0--- N — 1.
The sequences r,(7) and s,(k) form a DFT pair. For an N-periodic signal v(), we will use
as norm the energy over the period, |[v||*> = r,(0) = % s (k).

The following relations follow immediately from the definitions.

Lemma 4.1 Let H be an LTI, SISO system, with h(t) € ly. If v(t) is an N-periodic
input to H, and y = Hv is the corresponding steady state (periodic) output, then

() ()= 3 rultin(t — 1), (4.6)
(i) s, (k) = sul2)s, (k). (4.7)

4.2.1 White Noise Descriptions in the Time Domain

We wish to characterize white signals among sequences of length N; when faced with the
problem of deciding whether an empirical signal is a sample of white noise, a statistician will
perform a hypothesis test in terms of some statistic. A common choice (see [6, 45]) is the
sample correlogram, which should approximate a delta function, the expected correlation

for white noise. In other words a scalar signal is v(t) categorized as white if r,(7) is small,
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relative to ||v||? = r,(0), for 7 in a certain range (e.g. 1 < 7 < T). For example, one can
choose to specify that the correlogram (normalized to r,(0) = 1), must fall inside a band

around zero, of width v, as depicted in Figure 4.1.

3 i) is 36 33 36 EE] A0

T

Figure 4.1: Correlogram of a pseudorandom sequence

From the classical statistical point of view, the choice of 7 is associated to a level of
significance of the test, which in turn depends on some stochastic model. But regardless of
the reasoning behind this choice, ultimately the “whiteness” of the signal is decided in terms

of whether it belongs or not to a parametrized set. This motivates the following:

Definition 5 The set of signals v = (v(0),...,v(N — 1)) of length N which are

white in the time domain sense, with accuracy v, up to lag T, is defined by

Wy 1= {v ERY (7)) <41 (0), T=1,... ,T}. (4.8)

Remark:

Other statistical tests can also be applied to the correlogram. The most commonly used
choice in the statistical literature is the y? test obtained from a sum of the squares of a
fixed number of correlogram values [6]. The choice used in Definition 5 is preferable in our
context, since it involves quadratic constraints on the signal v, which lead to more tractable
worst-case analysis. Moreover, this test provides a very tight characterization of stochastic

noise, as shown below.

The response of an LTI system to signals in such sets will now be analyzed from a worst-
case perspective. The worst gain of the system under signals in Wy, r (a seminorm on
systems) will be denoted

[yl

IH|lwy,, = sup {—— y=Hv, ve Wy,r,

[v]]

o # o} . (4.9)
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Theorem 4.2 Suppose the conditions of Lemma 4.1 hold, and v € Wi, v. Then

ro(r)
2 (<1 Y )+ Y ra(t)]. (4.10)
ro(0) S B

Furthermore,

=l — <5 Z ra()]+ Y Ira(t)], (4.11)
) H>T

and for H of finite impulse response h(t) supported in [0,T],

N5 < IH [y, < THIR1 =) + 7 Z ra(T) - (4.12)

Proof: Equation (4.10) follows immediately from Lemma 1, and the definition of Wy . 7.
Applying (4.10) at 7 = 0 gives (4.11). The upper bound in (4.12) follows from (4.11), the
lower bound from the fact that the delta function is always a signal in the set Wy, 7.

|

The role of v in this worst-case approach is to parametrize the freedom allowed in the
disturbance signal.

Concentrating momentarily on the finite impulse response (FIR) case, it follows from
(4.12) that for v = 0, the worst-case gain is the H; norm of the system. As ~ is increased,
more input signals are allowed, and for v = 1 there are no restrictions in the input signals
(since |ry(7)] < r,(0) holds always), and therefore the induced norm approaches for large N

the H., norm of the system, which in the FIR case is equal to

WO

w

T
sup (7’H(0) +2 ZTH(T) COS(.UT) . (4.13)

T=1

Note that the bound (4.12) is conservative for v = 1; it is shown in [58] that it is exact for
v < 7 and large N.

In the general, infinite impulse response case of (4.11), the parameter T also plays a role;
for the constraints to be effective 7" must be at least comparable to the time constants of
the system; the choice T = N — 1 gives the smallest sets, which are further studied below.

At this point in the discussion it would seem that if the purpose is to analyze white noise
rejection, we could use the most restrictive choices (y = 0, 7= N — 1) which correspond to

ideally white sequences. If these tools are to be used in a finite horizon setting, however, one
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cannot expect that a realistic signal would have exactly zero autocorrelations; this would
mean trading pessimistic disturbance modeling for an overly optimistic alternative.

There is no absolute answer as to what is a “realistic” white signal, but the strongest
motivation for these disturbances comes from high dimensional fluctuations (e.g. particle
agitation). These have been classically modeled as stochastic processes, or could also be
interpreted in the context of deterministic chaos (see [72]). In any event, stochastic noise
is known to provide a good model, regardless of whether the probability measure is due to
chance or is the ergodic measure of a chaotic system. Therefore, a natural requirement for
a realistic white noise set Wy, 7 is that it should have large probability for stochastic white
signals. In the statistical language, this refers to the level of significance of the hypothesis
test for white noise. We will analyze this asymptotically, when the length of N of the data

record goes to infinity and ~, T are functions of N.

Theorem 4.3 For each N let vy = (v(0),...,v(N—1)) be a vector of .1.D. random

variables, with zero mean and finite variance, and vy > 0.

N~rco

1. If T is fized, and yx VN Noge oo, then P vy € W) — 1.
2. If the v(t) are bounded, and vy , /% N oo, then P (vy € Wnn_1) Nzee

3. If the v(t) are Gaussian, and vy 1 \(/NV); N=% oo, then P (vy € Win-1) N—co |
Ogi: <

The previous theorem provides a very tight “typical set” for stochastic white noise: we
argue that for many purposes, we can now ignore the probability measure and perform worst-
case analysis over this set. One such case is disturbance rejection: by choosing vy N=20 at
a sufficiently slow rate, we find that the set Wy, ny-1 has asymptotically probability 1 and
also ||H|lwy  y_, iy |H||2. We have therefore reinterpreted the H; norm (asymptotically)
as the worst-case gain over a typical set, rather than the average gain. Another situation
where the probabilistic assumption can be replaced by a typical set is in the context of
system identification, as will be discussed in Section 4.3.

This approach to disturbance modeling based on sets can, of course, also be applied when
there is no stochastic model to begin with. What matters is the statistical information, which
may be obtained directly from empirical correlograms, not the generating mechanism. In
fact the bounds of Theorem 4.2 can be used even if the correlograms do not agree with the

~ levels of stochastic noise.

Proof of Theorem 4.3

These statements fall in the realm of probability theory, and involve substantially different

tools from the rest of the material in this thesis. Part 1 follows in fact from well known
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results on asymptotic normality of the correlogram. We are not aware, however, of a proof
of Parts 2 and 3, since such a test has apparently not been of interest to statisticians. Since
these consistency results are instrumental in the application of these methods to system
identification considered in Section 4.3, we will provide a proof below; this proof is, however,

quite involved and not essential to the comprehension of the subsequent material.

Part 1: For the case of a fixed time lag 7, the distribution of the autocorrelation r,(7)

has been extensively studied in the statistical literature [6, 2]; exact expressions for the

distribution of r,(7)/r,(0) when v(t) is Gaussian are obtained in [2], and it follows that
VN is asymptotically normal N(0,1). Since yv/N — oo, and T is fixed,

74 (0)

T
Tl T N—co
Pveg Wyar) < 273 (‘\/N EO))‘ > YV N) =52, (4.14)
Ty
T=1

n

In parts 2, 3 of the theorem, the number of correlation constraints grows with the sample
size, and the argument with the normal approximation cannot be used: even though each
ro(7) for fixed 7 is asymptotically normal, the joint distribution of (r,(1),...7,(N — 1)) is

defined on a space of increasing dimension, where no global averaging occurs. Our proof

relies on a Hoeffding inequality for sums of bounded random variables, [40]:

Theorem 4.4 (Hoeffding) Let zo,...2n-1 be LLD. random variables, of mean
and bounded by a < z, < b, define z = % ZnNz"Ol Zn. Then for e >0,

~2Ne2

P(z—p>¢€) <el-a?, (4.15)

We want to apply this inequality to the sum r,(7) = S o(t)o((t + 7)modN), with

v(0)...v(N —1) LID. The terms in this sum do not satisfy the independence requirement
of Theorem 4.4, but their dependence is very slight, so the sum can be reduced to three sums

of independent variables, as shown in the following sequence of Lemmas'.

Lemma 4.5 Let {a1,...,ay} be a permutation of {1,...,N}. Then the set of or-
dered pairs S = {(1,a1),...,(N,an)} can be partitioned into three disjoint sets Sy,
Sa, Ss, of respective cardinality Ny, Ny, N3, such that:

1. No two pairs which fall in a single S; have a common element of {1,... N}
(i.e., if (n,an),(m,a,) € S;, n#m, then n # a,, and m # a,).
2. N;>% i=1,2.3.

59

'The author acknowledges Geir Dullerud for pointing out this more elegant proof.
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Proof: We perform the classification by induction. For a given n, assume that the pairs
(1,a1),...,(n,a,) have been classified in disjoint sets Sin), S;n), S:E,”) which satisfy condition
1. Now consider a new pair (n + 1,a,+1). Since there are at most two pairs in S with an
element in common with (n + 1, a,41), at least one of the three Si(n) will have none of these
pairs and therefore condition 1 is maintained if (n + 1, a,41) is added to it. This implies by
induction that it is possible to partition S into sets S7, S9, S5 satisfying condition 1.

Now consider their cardinalities Ny, N;, N3. Assume that 2V; < N; for some 7, 7. Since
there are 2N; elements in the pairs of S;, and S; has more pairs, then at least one pair in
S; shares no elements with those of S;. Therefore this pair can be moved to S;, maintaining
condition 1. Repeating this procedure will lead to a partition S, Sy, S3 satisfying condition
1, and in addition 2N; > N; Vi, 5. If Ny is, for example, the minimum of the N;, then

N = Ny + Ny 4+ N3 < Ny +2N; + 2Ny = 5N;  which implies condition 2 is satisfied.

Lemma 4.6 Let N > 3, and v(0),v(1),...,0(N — 1) be independent identically
distributed random variables. Fiz 1 < 7 < N. Then r,(7) can be expressed as

ro(7) = X1 + Yo + X3, where each ¥; is the sum of N; 1.1.D. random variables, and
N > E

Proof: For the permutation {ay,...,ay} given by the circular shift a, = (n + 7)modN,

perform the classification into sets S, Sy, S3 of Lemma 4.5. Then for each ¢ choose
Sio= Y w(n)u(an). (4.16)
(n,an)€S;

By construction of the sets S;, the terms in the sum ¥; are L.1.D.

Now we return to the rest of Theorem 4.3.

Part 2: Assume v(0),...,v(N — 1) are bounded random variables, |v(¢)] < K. Pick
1 <7 < N. From Lemma 4.6, r,(7) = ¥; + ¥y + X3, where each ¥; is the sum of N;
LLD. random variables, with zero mean and bounded in [—K? K?]. Invoking Hoeffding’s
inequality and N; > %, we have

. ro(T) < 2 > < e -Ne .7 ‘
'—1—7\7.— >e€] < - P ﬁz > €] < Z vt < JerorT (417)

The same argument can be employed to bound P (—T”]if) > 6), for each value of r. This

implies

i (1?7% szfT . ) < 6Ner = 65V (- Tt (4.18)
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Now choose 0 < p < E(v(t)?). The complement of Wy, x_; can be written as

N-1
c _ (7)) (7)) 1 2 ,
Wy No1 = {1?72}% o (0) > fy} C {12%\ N >p U ~ tgzo v(t)* <pp. (4.19)

The probability of the first set is bounded by (4.18), setting ¢ = ~p. The probability of

the second set can be bounded by another use of the Hoeffding inequality, applied to the

bounded IID random variables v(t)?. We arrive at

__ NA%p? —2N(B(v2)—p)2
log(N)(1 101\'4105(N)> +e A £

P (WY, no1) < 6e ke (4.20)

The second term clearly goes to to zero as N—oo, and the same happens with the first term
N—oco

: . N’y?\f
since by hypothesis oe(hy —— ©©

Part 3: Assume v(0),...,v(N — 1) are Gaussian random variables, v(¢) ~ A(0,1).
Choosing K(N) = y/2log(N), define the random variables u(t),t = 0,..., N — 1 by trunca-

tion:

) owu(t) if fu(t)] £ K(N) ;
ut) = { 0 otherwise ’ (4.21)
P(v(t) #u(t)) =P(Jv(t)] > K(N)) ¢ e#ﬁ = —C————— (4.22)

=KW NZog )

The inequality in (4.22) follows from a standard bound to the tail of the normal distribution
(Cis a constant). Denoting u = (u(0),...,u(N —1)), v = (v(0),...,v(N —1)), we conclude

that
C N—oco

Observing that
P (U ¢ WN;%N_l) S P (U ¢ WN,A/,N—I) + P (U, # 2)) s (424)

it remains to show that P (u & Wy, y_1) also vanishes as N—oo. Since the variables u(t)
are bounded by K(N), (4.20) gives

72 2
log(N) <1 - —N—E——) —2N(B(u? )~ p)? _
P(u ¢ Wyyn-1) < 6e 108 (V) ) | e i . (4.25)

The second term clearly has limit 0 as N—oo. The first term also goes to 0, since by
1’\77202 02 N,Y2

hypothesis Tog(N) = T log(V}? 80€s to infinity.




4.2.2 Frequency Domain Descriptions

As the name implies, a white signal has flat distribution of energy across frequency,
which in the finite horizon case would correspond to a flat periodogram, the DFT of a
delta-function correlogram. The “raw” periodogram is typically very erratic, however, as
demonstrated in Figure 4.2. This fact has been recognized for a long time (see, e.g. [6,
13]) in the statistical spectral analysis literature; correspondingly, the standard methods
for power spectrum estimation are based on smoothing the periodogram, by some form of
local averaging that reduces the fluctuations. This smoothing is most commonly done by
convolution of the periodogram with a window function; an abundant literature (see [42])

has studied shapes and properties of these windows.

Sy
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k

Figure 4.2: Periodogram of a pseudorandom sequence

In our context, we are interested in defining a set of typical periodograms, which is a
hypothesis testing problem. Of course, the image of Wy, 7 under the DFT is such a set,
but it does not have a simple description in terms of the frequency domain coordinates. We
will therefore use a different characterization for the frequency domain which relies entirely
on periodogram properties. One alternative is to specify that a “windowed” version of the
periodogram be flat (this was pursued in [58]) but it is preferable to have a test which does

not depend on a choice of window.

A very convenient alternative is provided by the Bartlett cumulative periodogram test (see
[6, 42]), which consists of accumulating the periodogram and comparing the result to a linear
function. Figure 4.3 contains the result of the accumulation process on the periodogram of
Figure 4.2. As we see, the fluctuations have been smoothed by this integration and the
result approximates a linear function in a uniform sense; this is the essence of definition

which follows.
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Figure 4.3: Cumulative periodogram and bounds for Wy .

Definition 6 The set of white signals of length N in the frequency domain sense,
with accuracy n is defined by

I/i/v]v,77 = {U & RN .

k=0

m—1
1 .
5 3 sulhk) — el <nmw,1SmSN}- (4.26)

We will now analyze the frequency domain definition and exhibit properties which parallel
those in the time domain. The worst-case induced norm of a system H under signals in the
set Wi, will be denoted HHHWJ\”7

Theorem 4.7 Consider a stable LTI system H, with su(w) € BV|[0,27]. Then

1 ; ;
L = HG,, | < (5 + 0TV (sm), (4.27)
Proof: Fix v € Wy, |[v]|> = 1.
Define T'(k) by I'(0) = 0, T'(m) := £ S0 su(k), 1 < m < N. Note that I'(N) = 1.
Let ¥ = Huv, and for simplicity denote su(k) in place of SH(zj:,}”) From (4.7) we have
| N N-1
[ Y sulk)sy(k) =Y salk)(I(k+1) — T(k)) =
k=0 k=0
N-1
= V= )4 S (nlk — 1) — suk))T(E), (1.28)
k=1

Similar calculations show that

3 (k) = su(N = 1)+ S (sulk = 1) — (k). (4.29)
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From (4.28), (4.29) we obtain (note that v € Wy, implies |I(k) — £l <n)

N-1
1
9l = % 3 sulh)
! k=0
dw

Also, by bounding the difference between the integral [[H||3 = fozw sp(w)5z and a step

N-1

< Z lSHU» - 1) - SH(k)
k=1

i{ <pTV(sw).  (4.30)

]
Fa

IT(k) —

function approximation, it follows that

N-1
1 1 ‘
‘HHH% 2 S sk < 5 TV(sw) (431)
k=0
which together with (4.30) leads to (4.27). N

In reference to the properties of the set WNm in the case of stochastic noise, these have

been studied in the statistical literature. We state the following result:

Theorem 4.8 Let v(0),...,v(N — 1),... be LI.D., zero mean, Gaussian random
variables. If ny VN =g 00, then

N

P ((0(0),...,v(N = 1)) € T, ) =51 (4.32)

Remarks on the Proof:

The fact that a uniform bound is being applied to the cumulative periodogram means
that we are imposing a number of constraints of the order of the sample size, as in Theorem
4.3 parts 2, 3; this again precludes simple arguments based on averaging.

The key observation, which led Bartlett [6] to propose this test, is to notice that the
stochastic properties of the cumulative periodogram are similar to those used for tests on
empirical distribution functions. The maximum deviation between an empirical distribution
and the true distribution function forms the basis of the Kolmogorov-Smirnov test (see
[12]), which has well known asymptotic properties. The connection with the cumulative
periodogram can be seen as follows: in the case of Gaussian white noise, the periodogram
values are independent and exponentially distributed (see [13]), which implies ([12], Prop.
13.15) that the normalized cumulative periodogram values g—’s = NTI%W " (k) have
the same joint distribution as an ordered sample of uniform (0, 1) variables. From these

arguments it follows that
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converges in law to a fixed distribution. Since . 3/7\7 — 0, then
N

m=1

1 1 .
—  sup ———Z&U(k) — % N 0,

My 1zmen | NJvl? =

which proves the theorem.

An additional remark is that although this proof is valid for Gaussian noise, there is

indication in [6] that the asymptotic properties are insensitive to the noise distribution.

These asymptotic properties show that the frequency domain definition is adequate from
the point of view of the objectives stated in Section 4.1: provided 7, Nz 0, nyvVN Rl s
the worst case disturbance rejection measure approaches the Hy-norm of the system, while
the class of signals contains asymptotically all typical instances of stochastic white noise.
Thus the families of time and frequency domain sets have asymptotically the same properties,

although they are different for any fixed N.

4.3 Application to Worst-Case System Identification

In the previous section we have provided set descriptions of finite horizon white signals
aimed at worst-case analysis, and have shown that this procedure is sound and gives re-
sults which are consistent with the alternative stochastic setting. A first application of this
approach is to worst-case system identification.

The classical literature on system identification (see [45] and references therein) char-
acterizes model errors as due to stochastic noise; system identification in this setting is a
special case of an estimation problem in statistical inference. From this perspective, the
main requirement for an identification scheme is that if the true system is in the model class,
the estimates are consistent, i.e. they converge to the true values in a stochastic sense, as
the length of the experiment goes to infinity.

In contrast, robust control theory has relied on error models based on sets, e.g. a ball of
systems in some norm. The desire to make identification and robust control more compat-
ible has stimulated a research direction (see e.g. [39, 85, 16, 64]) which treats the system
identification problem from a worst-case point of view, and seeks “hard” bounds on the iden-
tification error. In this formulation noise plays the role of an adversary; if, as is standard in
robust control, it is allowed to vary over a large class (e.g. a ball in l~), then consistency of
the estimates can no longer be ensured.

We now discuss these issues in the simple situation of a SISO model structure

y=h*u+d, (4.33)
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where the impulse response h = (h(0),..., (T — 1)) is finite, and d is noise. Given data for
y, u of length IV, the problem is to estimate the system h. The equations in (4.33) can also

be written in matrix form as

y=Uh+d, (4.34)

where y, h, d are column vectors and U denotes the N x T Toeplitz matrix with first column
u. The 2-norm will be used for signals here; the input is normalized to ||ul]2 = N. To
simplify the analysis, assume that the experiment was started at time —(7" — 1), with values
of u which are N-periodic.

In the classical theory, d is assumed to be stochastic white noise: IID random variables,
with zero mean, variance o®. In this linear regression problem the minimum variance estimate

for h is given by the least squares solution
h=UU) Uy, (4.35)

where invertibility of U*U (persistence of excitation) is assumed. The estimator (4.35) is
unbiased, and its covariance matrix o*(U*U)™! will converge to zero as N—oo, under sta-
tionarity assumptions in u. This implies that in the stochastic sense, the estimator will be
consistent.

For worst-case identification, we first follow the usual approach which is to restrict d
only in norm; suppose ||d||5 < N (noise to signal ratio g). Since there is a linear relation
(4.34) between h and d, the set of h values compatible with the data and the constraint
ld||3 < 0*N will be an ellipsoid. It follows that if one wishes to minimize the maximum
error in the 2-norm in %, the optimal choice is the center of the ellipsoid, which once again
corresponds to the least squares solution (4.35). Assuming now for simplicity that u is purely

white (i.e. U*U = N1, this is also the optimal choice) the worst-case estimation error
N 1 ,
1 = hllz = | @e) " U dllo = <= [Ud]), (4.36)

has a value of g, corresponding, for example, to d = pu.

We therefore find that although both points of view lead in this case to the same optimal
estimate, they attach to it a different interpretation. In particular, consistency is lost in the
worst-case setting: the estimation error cannot be made smaller than o, no matter how long
the data record is. The same was found in [39, 85] for other system norms. The reason for
this pessimistic interpretation is that the noise, which plays an adversarial role, is allowed
to vary in a class where it can “conspire” to have a high correlation with the input. This
suggests that the desirable consistency interpretation can be recovered if the disturbance is

constrained in the style of this paper to have low cross correlation with w.
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One way of doing this was studied recently by Venkatesh and Dahleh [36]: the input is
chosen to be periodic of period 7' (this allows for persistence of excitation of order 7T'), and
the set Wy, n-1 is used? to restrict the disturbance d. The main observation from [86] is

that in this case (assuming N is a multiple of T')

N-1
edl3 =" ra(r)rl(r), (4.37)
=0
where rq(7) is the correlogram of d (length N) and rI(7) is the correlogram for u of length

T, repeated periodically. For a purely white u, we would have

T . (4.38)
0 r#kT, 1<7t<N—1

U

r )_{T for r = kT, k=0,..., Y —1

Imposing that d € Wy, n-1, (4.36), (4.37) and (4.38) give

N/T-1 .
) T | T, N , T

k=1
(4.39)
We now consider another way to constrain the identification problem, which is to directly
impose low correlation between u and d. For example, we can impose that (ou,d) is a
white signal in the set W _ ., which is the multivariable version of Wy, 7. This set is
defined analogously to (4.63) (see Section 4.4), and in particular imposes the cross correlation

constraints
ol (N, d)] = (N ou, )] < A(floull® + [dI?) = 296*N, 7=0, T  (440)

Since the elements of U*d are (A"u,d), 7 =0,...,T — 1, these bounds can be applied to
(4.36) giving

. 1 , 1
17 = Ry = wlurd]: < TV—Q’YQN\/T = 270VT. (4.41)

In both cases ((4.39) and (4.41)) if vy—0 as N—o0, we obtain the consistency property
by 257 h,

By choosing an appropriate decay rate for v (e.g. v = ]ﬁ a < %), the chosen disturbance
set has high probability from the stochastic viewpoint. Theorem 4.3 applies to the case d €
Wi ~y,n-1; a similar argument can be used for the multivariable case, or applied only to the

constraints (4.40). Therefore, our class of disturbances is still rich enough to accommodate

*In [86] a variation of this set is used; it leads nevertheless to similar bounds as those given here.
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classical identification. In addition, the errors in (4.39) and (4.41) will decay to zero in
polynomial time, in contrast to the complexity results of [16, 64].

As those in [85, 16, 64], these results for FIR identification are mainly of conceptual value,
and contribute to understand the properties of the identification problem from a worst-case
perspective. In this simple case we have proposed no new identification algorithm, and have
only discussed different interpretations of the least squares solution. We extract, however,
important practical guidelines as to how a more general identification problem should be
posed when worst-case guarantees are sought, as in cases of identification involving noise
and set descriptions of unmodeled dynamics. To avoid conservatism the disturbance must
be constrained explicitly, and correlation constraints are an adequate tool for this. These

more general problems are a topic of future research.

4.4 The Infinite Horizon Case

The role of infinite horizon signals in mathematical modeling is that of an abstraction to
describe the behavior of signals and systems over a long, but unspecified horizon; the chosen
mathematical framework must extend naturally the finite horizon properties and lead to
tractable analysis.

Two frameworks arise naturally for the study of deterministic spectral analysis: bounded

power signals and bounded energy (/) signals.

4.4.1 Bounded Power Signals

There is a long historical tradition in a non-stochastic theory of white noise, going as far
back as Wiener (see [88]), who considered ergodicity properties to build a spectral theory of
stationary signals, motivated by problems of communication theory where noise is combined
with deterministic signals. These ergodicity properties can be motivated in the theory of
stochastic processes [12], as well as in the context of deterministic chaos [72].

For disturbance rejection problems, this approach was followed in Zhou et al. [99], who

considered the class of bounded power signals (see also [98]), defined for discrete time by

N

) 1 ‘ X ;

BP = {v(t) try(7) = ]\;1_{20 SN tZ v(t+ 7)v(t) exists for each 7'} : (4.42)
The function r,(7) is the autocorrelation of the signal, and the power norm lvllp =

(r,(0))% plays the role of a seminorm (with some restrictions, see below). The positive

definite nature of the function r,(r) implies from Bochner’s theorem (see [12]) that there

exists a spectral distribution function S,(w),w € [0,27] such that ry(7) is recovered from



63
the Stieltjes integral (see Appendix A)

27
ry(7) = —1——/ e7dS, (w). (4.43)
0

T or

Equivalently, there exists a positive spectral measure which is the Fourier transform of r,(7);
this allows for periodic effects, which correspond to atoms of this measure, or discontinuities
in S,. It also includes the case of an absolutely continuous spectrum, with the corresponding

spectral density s,(w) = =5, (w).
The set of white signals in the class BP is defined by

Wo={veBP:r,(r)=|v|[pé(r)} = {v e BP: S, (w) =wl|v|2], (4.44)

where §(7) is the Dirac function (1 at 7 = 0, 0 elsewhere). The signals in W, are exactly

white, and furthermore Wy is “typical” in the stochastic context:

Proposition 4.9 Let v = (v(0),...,v(t),...) be a sequence of I.I.D. random vari-

ables, with zero mean and finite variance. Then P (v € W) = 1.

Proof: For a fixed 7 # 0, referring to [12] (proposition 6.31), we find that the random
process z(t) = v(t)v(t + 7) is ergodic, so with probability 1,

N

D w(t+r)o(t) = Elo(t+ m)o(t)] = 0. (4.45)

t=—

.
Nom 9N £ 1

Therefore Wy has probability 1 (countable intersection of probability 1 sets).
n
We now analyze the worst-case response of a system to signals in Wps. For an LTI single

input/output system H, we write the following input-output relationships:

(1) ry(r) = Z ra(t)r,(t —7), (4.46)
(i1) dS,(w) = [H(e™)|*dSy(w). (4.47)

If these are satisfied, then the gain of H in power is |H||5 for every signal in Wy. Also,
the gain in power under unrestricted inputs is the M. norm of H. This would make the
bounded power class an appealing setting from the point of view of the objectives set forth
at the beginning of the chapter; a similar approach was used in [99, 98].

The definition of the class BP, however, raises a number of theoretical difficulties:
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o In the first place, the relationships (4.46-4.47), which are easily proved for FIR systems,
raise a number of mathematical problems for general LTI systems, since they involve
changes of order in limiting processes. A partial result stated in [99] is that if v € BP,
v € lo, and H is exponentially stable, Hv is in BP and (4.46-4.47) hold.

e These mathematical difficulties are even more dominant if one wishes to use this class

together with LTV operators, as motivated in Chapter 2.

¢ The continuous time generalization has greater problems, as noted in [99], since ideally

white signals with flat spectrum would escape the bounded power class.

e Most importantly, there is little mathematical structure to the class BP. In particular,
it is not a vector space (not being closed under addition, see [48]), which greatly restricts
the applicability of functional analytic tools. Consequently, it is not a seminormed
space, and there is no inner product to go along with the quadratic structure of the

definitions.

Although there may be ways around these mathematical difficulties, we argue that for the
study of disturbance rejection problems, the theory is best developed in the space I, of
bounded energy signals, which has the structure of Hilbert space. At first it may seem
unnatural to consider white noise signals which decay to zero as time goes to infinity, rather

than being stationary. We remark, however, the following:

e The asymptotic behavior should never be the determining factor in any sensible engi-
neering model. From a practical point of view, the response of a system is adequately
described by a long enough truncation in time. The problem with the BP class is
precisely this: only the asymptotic behavior matters, and any finite horizon signal can,

for example, be the truncation of a white noise signal.

o All the mathematical difficulties with the class BP arise because of this asymptotic
behavior. It seems that the infinite horizon abstraction should help, rather than hinder,

the treatment of phenomena over long time intervals.

e Actually, the same considerations apply to standard H.. theory. While the ‘H.. norm
is most naturally motivated [99, 98] by the gain in power for bounded power inputs,
since this class includes sinusoids, most technical results on M., are obtained by using
l; as a signal space, which does not contain these signals, but captures the same system

properties since it contains signals of arbitrarily narrow bandwidth.
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4.4.2 [, Setting

For the reasons explained above, we now discuss set characterization of white noise in
l2 space. For [y scalar sequences, the autocorrelation is defined by r,(7) = (v, A7v). The
corresponding spectral measure as in (4.43) is absolutely continuous; the spectral density is
defined by s,(w) = £5,(w) = [v(e?*)|?, where v(e/) is the Fourier transform of v(#). In the
case of /5 signals conditions (4.46-4.47) are satisfied, for example, for h(t) € 1;.

The set of white, scalar [, signals can be defined as
Wo={v€ely:r,(r) = |[v]|38(r) )} ={vel:wEe) = v} ae. in [0,27]} . (4.48)

We will find it useful to introduce classes of approximately white signals in /5; the following

definitions are inspired on the finite horizon case. For the time domain version,
Wori={vel:|r,(r)] <r,(0) 7=1,...,T}. (4.49)

In the frequency domain, Definition 6 extends by considering the difference

/ oo — o (4.50)

between the cumulative spectrum and a linear function. Define

W,={vel: sup |F,(s)] <n}, (4.51)
s€[0,27]

which imposes a uniform bound on this difference. The width 5 of this band could also be
normalized by a factor ||v]|3, as in Definition 6; we have not done this in (4.51) to streamline

some of the proofs in Chapter 6, but this change is not essential.

As in Section 4.2, the worst-case gain of a system H under signals in W, r is denoted by
[Hllw, ;= sup{[[Hvll2 : v € W1, [Jv]l2 < 1}, (4.52)

and analogously for ||[H|lw,. We now provide bounds for these quantities, in the case of an
LTI system H. As a consequence of (4.46), we find that

I3 < 1HIE , < HE+5 > FalD)]+ > [ralt)]- (4.53)
r=T [t|>T

For the frequency domain bound we assume as in Section 4.2.2 that su(w) is of bounded

variation.
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Lemma 4.10 Let Y(w) € BV[0,2x]. Ifv € W,, then

W

2 0 2T s ) .
| vl - [ v <atven. @sy
0 L 0 Fal

Proof: Defining F,(s) as in (4.50) (F,(0) = F,(27) = 0), an integration by parts (see (A.5))

yields
2w

/o ’ Y (w)(Jo(e?)|? — HvH%);Z—LT: = —[) Fo(w)dY (w). (4.55)

Since v € Wy, then || Fy(w)||e = sup,, |Fy(w)| < 7, so (A.3) implies that the right hand side
of (4.53) can be bounded by n TV(Y").

Picking Y (w) = |H(e?*)]? we conclude that
IEL)S < [y, < [[H[;+ 9 TV(H). (4.56)

As a consequence of these bounds, the system H; norm can be motivated as the gain

under signals in Wy, or equivalently by the limit norms

i [Hlbw, . T [[Hl, (157)
T—oco

4.4.3 Multivariable Extension

This section explains how the previous methodology can be extended to deal with vector
valued white signals. We only consider infinite horizon I, signals, which demonstrates all
the necessary extensions; the same ideas could be applied in a finite horizon setting. For

v(t) € I;(R™), treated as a column vector, the matrix autocorrelation is given by

o0

Ry(m) = > v(t+7)0'(t). (4.58)

t=—o00

A spectral (matrix) distribution function S, (w) is defined as before, verifving a matrix version

of (4.43). In this Iy case,

) — o f0) = (e (e). (4:59)

The 2-norm of the signal verifies

[v|l3 = trace( R, (0)) = % /0~' trace(s, (/) dw. (4.60)
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If H is an LTI system with inputs v € [J* and outputs y € 1, then under mild assumptions

Ry(r) = D Y h(s)Ru(r+1t—s)k'(t), (4.61)

t=0 s=0

sy(w) = H(e™)s,(w)H ()", (4.62)

Vector valued white signals correspond, ideally, to a spectrum s,(w) = I, or an autocor-
relation R,(7) = 6(7)1, where [ is the identity matrix. This means that the components of
the vector are individually white signals, and are mutually uncorrelated.

For [, signals, however, the spectrum (4.59) is always a rank 1 matrix, so there is no
multivariable extension, inside I, of the set Wy given in (4.48)%.

This difficulty disappears if one considers approximately white signals, extending the
definitions (4.49) and (4.51). To measure distances between matrices we will use the matrix
norm ||All. = max;; [A;|; this choice is convenient, but not essential.

For the time domain case, define analogously to (4.49) the set

= {U(t) el ’ {

W}T’gRU(T) - 6(7‘)—1—

m

<q, |l < T}. (4.63)

To interpret the normalizing factor = in (4.63), note that if B,(0) = L1, then [jv]|? = 1 from

m

(4.60). For the corresponding definition of HHHW?‘W we scale the input norm by this factor,

1 ;
B, = sup{ [Hvl| s v € W2, — o]} < 1. (4.64)

This normalization is equivalent to assigning norm 1 to the ideal unit spectrum s,(w) = 1,
and is convenient to match the standard definitions for the H, norm. With this definition,
a bound similar to (4.53) can be obtained from (4.61), leading to

lim [[EL ]y, = ] (4.65)
T—c0

For the frequency domain case, consider

s dw s ||v])?
F,(s) = o e T .0
(s) /o v(w)v(w) 5 T 5 I (4.66)
and define the set
T/i/;” = {v €L(R"): sup [|Fy(s)|le < 7]} ) (4.67)
s€[0,27]
with the corresponding system norm
o1
H g = sup{IHS | - 0 € Wi, —[Jo[l5 < 1}. (4.68)

The following is an extension of Lemma 4.10

3This set can be defined in the class BP, but this advantage is not very significant.



Lemma 4.11 Let Y(w) be a matriz function with components in BV|[0,27].
Ifve W, then

Using Y (w) = H(e’*)*H(e?*), Lemma 4.11 leads for an LTI H to
[ Hllgirp —

™)+ TV(Yi;)).

(4.69)

77—'>0 ‘

|H||2. (4.70)

Remark:

If one is interested in analyzing white noise rejection for LTV systems, the H, norm as
in (2.23) is no longer meaningful, but it is natural give a definition based on this approach.
In fact, (4.68) can be applied to any H € £(l3), and (4.70) can be taken as a definition of
||H||2. This system measure (a seminorm) captures the response to signals of flat spectrum,
the interesting object from the point of view of applications, and extends the LTI definition.
Alternatively, (4.64) and (4.65) could be used.

Conclusion

We have presented a non-standard approach for the characterization of white signals in
discrete time. This methodology is motivated by the desire to combine white noise with the
methods of robust control theory. So far we have shown that the approach is sensible and
provides answers which agree with the more established methods.

The main pending question at this point is the tractability of the resulting worst-case
analysis problems. This issue will only be settled in the subsequent chapters, but its con-
sideration has in fact affected the choice of these definitions among many others which were
explored. In particular, we have opted for signal sets based on Integral Quadratic Constraints
(IQCs), which are the topic of the next chapter. Although the I, definitions could have been
introduced without relation to the finite horizon theory, we will find that the choices which
yield the most powerful analysis, are precisely those like Wn which are well grounded in the
finite horizon statistical theory.

A natural question is to what extent these methods can be applied to continuous time
white noise, which is known to be a complicated mathematical object. For disturbance
rejection problems, the approach of frequency domain-based sets over /; can be extended
to continuous time L£; signals, by constraining the cumulative spectrum to accuracy n only
over a finite band B. By taking limits in the induced system norm with 7—0 and B—oo,
the response to continuous time white noise is adequately described. This approach will be
developed in detail in the future.
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Chapter 5

Integral Quadratic Constraints

In the decades of the 1960s and 1970s a large body of results was developed to analyze
the stability of feedback configurations based on input-output descriptions of components,
often referred to as “absolute stability theory”. In this category fall the small-gain theorem,
the passivity theorem, and numerous extensions based on multipliers (see [20, 89] and refer-
ences therein), all of which characterize the possibly nonlinear components in terms of some
constraint between the external signals.

In particular, the most powerful results arise when these signal constraints are quadratic
in nature, as in the case of the passivity theorem. These Integral Quadratic Constraints

(IQCs) can be written in the general form
27 ) ] ]
(z2,I1z) = / z(e?) I(e’)z(e/¥) dw >0 (5.1)
0

in the case of discrete time, where z is a vector signal in ly and II is an LTI, self adjoint
operator in L£(ly), with transfer function II(e?*) = TI(e/*)*.

In the case of LTI nominal systems subject to nonlinearities or uncertainties which can be
described by IQCs, powerful frequency domain and state-space tools are available to analyze
stability. The central role of IQCs was promoted in the Russian school by Yakubovich [93,94],
who also proposed the use of the so-called S-procedure (see Section 5.1.1) to analyze systems
subject to several nonlinearities or uncertainties. From this approach a complete frame-
work for robustness analysis has developed, which to some degree parallels the “western”
development of robust control theory summarized in Chapter 2, encompassing parametric,
time-varying and nonlinear perturbations. For a recent survey see [52].

In particular, IQC-based methods are attractive because they result computationally in
convex optimization problems. Generally speaking, it can be said that any robustness anal-
ysis problem which admits a convex characterization, corresponds to uncertainty described

by IQCs. One recent example supporting the previous statement is given by the results
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of Megretski [50, 49] which use IQC techniques to exactly characterize the constant scales
condition (2.42) for robustness analysis under structured perturbations.

In this chapter we will give an overview of these results, and extend IQC techniques in a
number of directions, including the characterization of slowly varying perturbations, and the
use of IQCs in set descriptions of white noise. These characterizations, and some properties
which are obtained at the end of the chapter, will provide a natural framework for the robust

‘H;, performance problem which is the subject of Chapter 6.

5.1 1IQCs and LTV Operators

In this section we establish a correspondence between IQCs and linear time-varying oper-
ators, which implies an equivalence between two ways of thinking about system uncertainty:
one is to write an LFT in terms of an LTV perturbation as in Section 2.1.3, the other is to
write an IQC involving the corresponding signals. Once again we remark, as in Section 2.1.2,
that the restriction to linear operators may be relaxed: contractive nonlinear operators can
also be described by an I1QC.

We will show that scalar IQCs on Iy such as (5.1) are in direct correspondence with
non-causal, contractive operators on L£(l;). This makes IQCs a natural tool for extended
robustness analysis questions where the perturbations are allowed to be non-causal. The
material in Appendix B shows, however, that for the standard cases considered the causality
issue can be dealt with separately. For this reason we will ignore questions of causality in
this chapter.

5.1.1 IQCs for Arbitrary Operators

The simplest case of IQC is obtained by choosing

L0 |«
)l e

which makes (5.1) equivalent to the norm inequality ||¢||2 > ||p||2. We now represent this

constraint in terms of a normalized operator perturbation:

Lemma 5.1 Letp €', q €13. The following are equivalent:

(5) llalls = 19113 = 0. (5.3)
(1) IA € L{, 1), JA[ <15 Ag=p. (5.4)
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Proof: (i7) = (¢) is immediate, for (¢) = (ii) choose

{¢,u)

lal?”

Ay (5.5)
|
Lemma 5.1 provides a translation between two types of specifications on a pair of system

variables p, ¢: one is to impose that they are related by a contractive non-causal LTV

operator, the other one is to specify that they satisfy the IQC (5.3).

This is a first example of the duality between the language of robust control as was
presented in Chapter 2, and the IQC formulation. Although (5.1) appears to be more
general, we will show in Chapter 7 that a complete duality can be obtained with a moderate

extension of the standard robust control framework.

S-Procedure and Robustness Analysis

The 1QC formulation can be used to address the question of robustness analysis under
structured, time-varying uncertainty; the method which we now describe is due to Megretski
and Treil [50]. Consider the robust stability analysis problem of Figure 5.1, which is a special
case of Figure 2.9 for the case where the uncertainty is comprised of full blocks. The last

block could also be used to describe H,, performance as in Figure 2.10.

A0 0
10 a,
0o A,
q M < p

Figure 5.1: Robust stability analysis under structured uncertainty

We partition the signal p as p = col(pi,...,p,) in accordance with the blocks A, ..., A,

and similarly for ¢ = Mp. Consider the following set of quadratic forms:

9

oi(p) = (Mp)i > — [Ipl%, i=1...n. (5.6)



72

If the o; are all non-negative at a certain p # 0, then from Lemma 5.1 there exist
A; € L(I), |[Adl £ 1,4i=1,...,n, satisfying A;q; = p;. Setting A = diag[A4,..., A,]
gives (I — AM)p =0, so I — AM is not invertible. If, as convened, we ignore the issue of
causality of A, this would violate robust stability.

The previous reasoning indicates that robustness analysis reduces to studying a simulta-
neous sign condition on a finite number of quadratic forms o, ...,0,. The main method of
analysis is to convert this condition to a single quadratic inequality by means of multipliers.
This is known as the “S-procedure” [94], and in this particular case Megretski and Treil
[50] have shown that the S-procedure is “lossless”. Specifically, they show that given shift

invariant quadratic forms oy,...,0, on [, the following are equivalent:
1. There does not exist p € I, such that o; >0 ¢ =1,...,n.
2. There exist ; > 0, ¢ = 1,...,n, not all zero such that a0y + ...+ 2,0, < 0.

In the case of (5.6), simple manipulations reduce the second condition to

Y wioip) = (p,(M"XM — X)p) <0, (5.7)
=1
where X = diag[z1/,...,2,1] > 0 is a scaling matrix of the form X considered in (2.35),

corresponding to the uncertainty structure of Figure 5.1.

Now (5.7) is equivalent to condition M (e )*X M (e/“) — X < 0 across frequency, which
(almost) corresponds to the LMI version of condition (2.42). Thus the previous argument
has provided a sketch of the proof of the necessity of (2.42) for robust stability in the class
ATV, Some refinements are required to obtain strict inequalities in the LMIs, and to take

care of the causality issue; these will follow as a special case of the more general results of
Chapter 6 and Appendix B.
Extension to 61 Perturbations

The first extension to the previous method for robustness analysis, is to provide an 1QC
characterization of 81 where & is an arbitrary operator in L(13). It is now shown, following

an idea of Doyle, that these operators are characterized by matriz-valued 1QCs.
Lemma 5.2 Let p,q €%, The following are equivalent:

(4) /0 g()q(e™)" = p(e™)p(e)" dw > 0, (5.8)

(i1) ¥¢ e C[I¢7qlla = [I¢7pll2 (5.9)
(i51) 36 € L(1), ||6]| < 1: 6Ig = p. (5.10)
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Proof: (i) & (i1) is immediate. Note that (i) is a matrix inequality.

(212) = (44) follows from the linearity of §. Let us show (i7) = (217).

If ¢1,...4¢r, is an orthonormal basis of the subspace of /; spanned by the coordinates
q1,--.4q of q, we write ¢ = Rq, where R is an invertible matrix, ¢ = col(¢s,...G,0,...0) .

Let p = Rp, then (¢7) implies p = col(p1,...p,,0,...0), and

ICigr + oo+ GGl = [Gpr + -0+ Gpe|| Vi, .. ¢ e C. (5.11)

Now define )
6:um— Z(q},u)ﬁz (5.12)

=1

Then 6 : ¢;+— pi,s =1...7, so 61 § = p which implies 61 ¢ = p.
Also, by (5.11) and the Bessel inequality, [|u| < || S°7_, (G, u)d:|| < ||u|l, so ||8]] < 1.
|
The above characterization can be used to show the necessity of the constant scales
condition (2.42) for the case where A contains I blocks. To do this, the quadratic form o;

in (5.6) must be replaced by the matrix valued quadratic function

Si(p) = / T [(Mp)i(e) (Mp): () — pi(e™)pi(ei)] &

I

(5.13)

The corresponding S-procedure argument is given in Chapter 8.

5.1.2 1IQCs for Slowly Varying Operators

The previous characterization for LTV operators in terms of IQCs is closely related to
the availability of convex robustness analysis conditions such as (2.42).
If we look for a similar characterization of LTI uncertainty, and once again ignore the

issue of causality, we find that for ¢, p in I,
JA € L(h), LTL [[A] <1: Ag=p <= |q(e™)]* > p(e™))? ace., w € [0,27].  (5.14)

Unfortunately, this quadratic constraint is not an IQC, since there is no integration over fre-

quency. The strong properties of IQCs to be presented in Section 5.3, depend fundamentally
on this integration.

One can think of approximating the ideal constraint (5.14) by an IQC, by integrating
lg(e’*)]* — Ip(€?*)[* over a small frequency interval. It turns out that such constraint char-

acterizes the class B of slowly varying perturbations, in the sense introduced in (2.19).
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To show this, we begin by considering signals which are supported in a frequency interval,
and satisfy a norm inequality. The following lemma is closely related to Lemma 3.1 for

sinusoidal signals.

Lemma 5.3 Let p, q be signals in ,(Z) with Fourier transforms supported in
common interval [s,s + h], and ||q]|> > ||p||*. Setting v = 2sin(L), there ewists

A e BY, ||Al| <1, such that Ag = p.

Proof: Without loss of generality, ||¢|| = 1. We use the same operator A from Lemma 5.1,
A :u — (g, u) p, which satisfies Ag = p and ||A]] < 1. We now calculate [AA — AX|.

s+h
IO = AN)ulld = g Ap = 0. M) ol = 5= [ o) — (0, X) Pl P
(5.15)
The first factor inside the integral can be bounded by
. sth . , - - do
(o (7 =2 < [ Ja@)] e = e ju(e) 2. (5.16)

It 1s easily verified that for w,@ € [s, 5+ &), |/ — /| < 2sin g = v . Substitution back into

(5.16), and the Cauchy-Schwarz inequality give

. sth ,, - do
o = M) | <o [ eSS < vlalblll = slulls (517)
Now (5.17), (5.15) and ||p|| < 1 lead to
IAA — AN < . (5.18)

n
We consider now the general case of signals which are not necessarily narrow-band, but

satisfy an energy inequality at every band of a certain width h.
Lemma 5.4 Let h be fized, v = QSiH(%). If the signals p,q € I3(Z), satisfy
s-+h . ]
/ (lg(e™)* = [p(e™)[F)dw > 0 (5.19)
Jor every s € [0,2x], then there exists A € B”, |A| < 1, such that Ag=p.

Proof: The idea, illustrated in Figure 5.2, is to decompose p and ¢ in terms of a filter
bank of enough resolution, apply Lemma 5.3 to each pair of components, and assemble

together the resulting operators.
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Figure 5.2: Hlustration to the proof of Lemma 5.4

To make this precise, first choose an integer N > 27, and define Fy,...,F, to be ideal

R : A
bandpass filters, i.e. F;(e’*) is the indicator function of the interval [%(A{;U, 2], Assuming

for simplicity that the ¢ and p are of the same vector dimension, define

Fi1 01 P
F = I . | =Fq, . | =Fp. (5.20)
Fyl L ax ] L px
By definition, F is LTI and F*F = I. This implies ||F|| = ||F*|| = 1.

Each pair of signals ¢;, p; have Fourier supports in a common interval of length , and by
hypothesis |[¢;|| > ||p:||. Applying Lemma 5.3 we can find a contractive operator A, € BY,
with A;q; = p;. Define A = diag[Ay,...,A,], and A = F*AF.

Then ||A|| <1, and since F is LTI,

IAE*AF — F*AFA| = |[F*(AA — AXNF| < [[AA — AA| < 1. (5.21)

|

As a consequence of Lemma 5.4, we have characterized slowly varying perturbations in

terms of a family of IQCs parametrized by a frequency variable s € [0,27]. This suggests

an extension to the approach of Section 5.1.1 for the analysis of robust stability in the
configuration of Figure 5.1, when the uncertainty is assumed to be in BY.

Given p € [, we associate with it, for each 7, the function @i(p) of frequency

dw

s+h ' ,
[%(P)](S)=/ (ICMp)i(e™) = [pi(e)") o (5.22)
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Instead of the scalar valued 1QCs of (5.6), we now have “function-valued IQCs” given by
the maps ¢; : [,—=CRr[0, 27] which assign to every p € [ a continuous real function (5.22) of

the frequency variable s.

In an analogous way to Section 5.1.1, the robustness analysis problem will reduce to

finding a signal p % 0 which satisfies

[i(p)l(s) 20, i=1,...,n. (5.23)

If such a signal is found, then a structured perturbation A € B sy, can be constructed from
Lemma 5.4, with (I— AM)p = 0.

From here on an “S-procedure”-type argument may be performed on the inequalities
(5.23), and leads to an alternative proof of the result of Poolla and Tikku [64] regarding the
necessity of the frequency-dependent scales condition (2.43) for robust stability over the class
B¥. This proof is postponed until Chapter 6 where the extension to Robust H, performance
is also considered.

Remark: For perturbations of the form 61, and § € B”, a natural combination of the

ideas in Lemmas 5.2 and 5.4 gives a characterization of the form

/ ) ) — p()p(e) de >0, s € [0,27]. (5.24)

5.2 IQCs and Set Descriptions of White Signals

In Section 5.1 IQCs were employed to describe a relationship between two signals; they
can also be used to specify properties of individual signals. An important example of this
second use is for the characterization of white noise.

The descriptions of white signals presented in Chapter 4 were based on the autocorrelation
and the spectrum, which depend quadratically on the signal. This makes it possible to define

the sets so that they correspond to IQCs, as is now discussed.

5.2.1 Autocorrelation Constraints

We first consider the definition of the set W, 7 in terms of a finite number of autocorre-
lation constraints. It was already pointed out by Megretski in [51] that IQCs could be used
to constrain the signal autocorrelation. In fact, the set W, 7 over I, is defined in (4.49) for

scalar signals, by the inequalities

yro(0) 2> ry(7)| 7=1,...,T. (5.25)



77
These can be rewritten, for real signals, in terms of the scalar [QCs
E(0) = |lo £ AT0]|2 = 2(1 — y)|jv||2 > 0. (5.26)
oE(v) i= o+ A3 Dol >

This observation allows for the constraints to be combined with IQCs characterizing uncer-
tainty, such as the o; introduced in (5.6) for the configuration of Figure 5.1. We can then
pose a robust performance analysis problem where the disturbance signal is constrained to

be in the set W, 1, as the problem of finding p # 0 verifying simultaneously

oi(p) = [(Mp)ill* — [lp:* = 0,
ot(p,) > 0, 7=1,...,T. (5.27)

v

To interpret (5.27) assume that the disturbance signal is p,, and the IQC o, is a performance
specification (equivalently, A, is included as the block Ap in Figure 2.10). The constraints
(5.27) test whether the performance can be violated using contractive A; and a disturbance
signal p, € W, r.

Once again, an S-procedure argument can be applied to the IQCs (5.27), leading to
conditions with multipliers. We will not develop this approach here, since the problem of
robust performance analysis under a finite number of additional IQCs in the disturbances
will be reconsidered in Chapter 8 from a different (although equivalent) point of view. The

application to robustness analysis over W, 7 will be included at that point as an example.

5.2.2 Frequency Domain Constraints

From the point of view of robust performance problems under white noise disturbances,
we will find in Chapter 6 that more powerful results can be obtained from the frequency
domain sets W, which do not correspond to a finite number of scalar IQCs.

The definition (4.51) of Wn can, however, be represented by a constraint on a quadratic
function which takes values on a function space, similarly to the situation of Section 5.1.2.
For the case of scalar signals, consider the function p : l,—CR[0,27], which associates to

each signal v the function F,(s) from (4.50). Specifically, we have

. * wnpdw s ;
o)) = ) = [ () PG = ol (5.25)
0 &7 LT
which yields from (4.51) the characterization
v € W,<=p(v) € B(0,7). (5.29)

In (5.29), B(0,n) is the ball centered in 0 of radius 5 in the space C'z[0, 27], with the standard
supremum norm.
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7
In the case of multivariable noise signals v € 7', (4.66) indicates the natural definition
of the map p, as
s , . dw
o)) 1= Fs) = [ o(e)oe) 52
0

In this case p takes values in the space of continuous, hermitian matrix-valued functions
defined on the interval [0, 27].

(e (5.30)

77rm

These characterizations are used in Chapter 6 for robustness analysis over the set I/Vn.

5.3 Properties of Shift-Invariant Quadratic Functions

We have introduced several quadratic maps on I3, which can be scalar-valued (5.6)-(5.26),
matrix-valued (5.13), or function-valued (5.22)-(5.28). The key common property to all these
definitions is that these maps are shift invariant, i.e. they take the same value on a signal p
as on Ap. This fact, together with the behavior of I, signals under arbitrary long shifts, will
provide a basic property which is fundamental for future results. We now state this property

for the scalar case.

Lemma 5.5 Let IT be an LTI operator in L(15), and o(z) = (z,TLz). If z, f € I,
then

o(z+ A" )2 o(2) + o)) (5.31)

Proof: From the time invariance of II, we have ITA* = A*IT which implies
(z+ ATz + AR ) = (2,T0e) + (£, ILf) + (A TL2) + (2, NTIf) (5.32)

The last two terms converge to 0 with k, since they are the inner products of a fixed I, signal

with another one which is being shifted to infinity. This completes the proof.

]
The simplest case of Lemma 5.5 (for IT = T) is

2+ XEFI2 23 =02 + 1 £ (5.33)

More interesting examples for which (5.31) holds are for the o, of (5.6) and the o of (5.26).
Also, an analogous property to (5.31) holds for the matrix-valued quadratic functions ¥;
introduced in (5.13). The easiest way to show this is to observe that each entry in the

matrix 3; is a scalar quadratic function of the form considered in Lemma 5.5.

We will require a similar property for the function-valued quadratic maps considered in

(5.22) and (5.28). This property is covered by the following lemma.
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Lemma 5.6 Let II be an LTI, self adjoint operator in L(l,), and 3 : l;,—Cg[0, 27]
be defined by

[B(2)](s) = /Os 2(e) () 2( e ) dw. (5.34)

If z, f € I3, then
Bz + X1 =2 (=) + B, (5.35)

where (5.35) means convergence in the topology of Cr[0,2x] (uniform convergence).
Proof: Starting from (5.34), some algebra gives
B+ A5) = B(2) = BU] () = 2 [ (M) (o (536)
It therefore suffices to show that the sequence of functions
Buls) = [T M) ) (5.37)
0

converges uniformly to 0 as k—oo. Pointwise convergence follows from the fact that fp(s) =
<Hsz, /\kl—If>, where H, is the ideal filter H,(¢/¥) = lj,g- If convergence were not uniform

we could find € > 0, a subsequence k; and points sz, with |8y, (s, )| > €. By compactness,

2

taking a partial subsequence we can assume Sk % 5. Now
s / jwk jwN £ W
Br, (sk,) = Br, (s0) + / () N TI(e) f( ) d, (5.38)
S0

=0 < e < [Bg;(s5,)| < |5k, (s0)| +

/ P e | (5.30)

The right-hand side of (5.39) converges to 0 from the pointwise convergence of Br;, and the
fact that since » and ILf are I, functions, |2(e/*)||II(e*) f(e/*)| € £4]0,27] from Cauchy-

Schwarz. This is a contradiction. ]

As a consequence of Lemma 5.6, we find that if ¢; is defined as in (5.22), then

iz + X F) EF 0i2) + 0l f) (5.40)

in the uniform topology. In fact such ¢; is defined as the difference between two quadratic

functions of the general form of Lemma 5.6.

Similarly, for the white noise constraint p(z) in (5.28), Lemmas 5.5 and 5.6 give

p(z+ X F) 25 p(2) + p(f) (5.41)

in the space Cg[0, 27].



Remark: The previous properties can routinely be extended to the sum

JO) L NkL) L kN1 (V=) (5.42)
of relatively shifted versions of N signals 2@, ..., :0N=1) ¢ [,. In particular, we state the
properties

N-1 N-1

(IR PN El (5.43)

r=0 r=0

N-1 N-1
A (Z AkTZ(T)> piniiy > AN, (5.44)
r=0 r=0

where in (5.44), the function A can be chosen to stand for o; as in (5.6), ¥; as in (5.13), ¢; as
in (5.22), or p as in (5.28-5.30), and the convergence is in the topology of the corresponding
range space.
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Chapter 6

Necessary and Sufficient Conditions

for Robust Hy Performance

The results of this chapter show that H; (LQG) performance specifications can be com-
bined with structured uncertainty in the system, yielding robustness analysis conditions of
the same nature and computational complexity as the corresponding conditions for H.. per-
formance. These conditions are convex feasibility tests in terms of Linear Matrix Inequalities,
and are proven to be necessary and sufficient under the same conditions as in the H., case.

With these results, the tools of robust control can be viewed as coming full circle to treat

the problem where it all began: guaranteeing margins for LQG regulators.

6.1 Historical Perspective

The advent of modern control in the 1960s brought a substantial transformation in con-
trol theory, with state-space methods and optimal control offering the promise of tractable,
systematic methods for multivariable control design. This era was epitomized by the solu-
tion of the LQG control problem (see, for example, [3]), which provides an elegant, easily
computable method for a well-motivated multivariable control design problem: optimizing
the rejection of white noise disturbances for a closed loop system. It became increasingly
clear in the late 1970s that modern control unfortunately provided limited tools to further
treat model uncertainty, a fundamental requirement for a practical feedback theory and an
issue which was often better addressed by the otherwise more primitive frequency domain
techniques of classical control [41].

While LQ state feedback was shown to provide stability margin guarantees, further re-
search [73] led to a counterexample showing that full LQG controllers had none [22]. This
motivated efforts to reconcile LQG with classical methods [23], with some initial success

Y

in providing a robust LQG-based methodology [14]. The most popular development was
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LQG/LTR [24, 1, 79], a multivariable version of classical loopshaping using LQG machin-
ery. The problem of adding plant uncertainty directly to LQG remained unsolved, however,
and ultimately these efforts pointed in other directions [24], particularly toward (structured)
singular values and related methods ([28],[80]).

At about the same time as the critique of LQG robustness was becoming widely accepted,
the new performance paradigm of H., was being put forth [97]. It had close ties to the
frequency domain and allowed singular value robustness conditions to be treated directly.
More importantly, it allowed for the first time a very natural and relatively transparent
analysis of robust performance ([25],[55]). While H,, soon replaced LQG (now referred to
as Hs) as the centerpiece of modern control, and research on H,, flourished in the 1980s,

several developments helped bring H, back into the picture.

The main weakness of H,, is that modeling signals using weighted norm balls ignores
important structure, typically expressed in terms of spectral or correlation properties, as
discussed in Section 4.1. The recognition of this conservatism has led to a resurgence of
interest in the H; performance measure. The desirable design specification, from both the
performance and uncertainty points of view, appears to be in most cases Robust H, perfor-
mance: rejection of white signals in the worst-case over a set of plants. (The £; theory is

an attractive alternative to H.o, but still suffers from a similar conservatism [15]).

Renewed interest in H; performance was also stimulated by the striking fact that the most
powerful computational solutions for the H., control problem ([37],[26]) relied on the same
state-space tools as LQG. This led to combining both performance measures (mixed H,/Hoo
control, see e.g. [8, 44, 99, 27, 62]), and to various upper bounds for the H; cost over a set
of plants (e.g., [81, 63, 99, 32, 82]). In spite of these developments, the robust Hs problem
lagged substantially behind Ho, (or £;), where a sophisticated set of tools is available for
the analysis of robust performance under structured uncertainty (see e.g. [55, 95, 5, 15]),
including several results that exactly analyze robust performance with structured uncertainty
in terms of computationally attractive convex conditions ([55, 43, 76, 50, 64]). No such results

have previously been available for robust H, performance.

In this chapter we provide the final step in the return of the H, performance paradigm,
casting it on an equal footing with H.,. We present a convex condition for robust H, perfor-
mance analysis under structured uncertainty, of a very similar nature to the the correspond-
ing condition for robust H., performance, and with analogous properties. Computationally,
it reduces to a Linear Matrix Inequality (LMI) over frequency which can be handled with
analogous tools as in the H,, case. From a theoretical point of view, the condition is shown
to be necessary and sufficient under the same assumptions for the uncertainty as in the

corresponding H., conditions.



Organization of this chapter

Section 6.2 contains a review of the convex conditions for robust H,, performance. Section
6.3 presents the robust Hy performance condition and states the corresponding theoretical
results. Section 6.4 contains the proofs of sufficiency of these conditions, and Section 6.5
the necessity proofs, which rely on the IQC formulation of Chapter 5. In Section 6.6 we
remark on the computational properties of this test. Section 6.7 compares these results to
the previous work in the mixed Hy/H,, literature. Some remarks on robust H, synthesis

are given in Section 6.8. An example is given in Section 6.9.

6.2 Review of Robust H. Performance Tests

P

q My My, t« p

€ = My My [+ v

Figure 6.1: Robustness analysis configuration

To facilitate the comparison with the robust H, performance conditions to be presented
in Section 6.3, we give here a summary of the convex conditions for robust H., performance
analysis. These were already stated in Section 2.3.3 in the context of robust stability analysis;
in this section we explicitly state them as robust H., performance tests for the system of
Figure 2.7, which is reproduced in Figure 6.1, and denoted by (M, A).

As in Chapter 2, A is an uncertainty operator with the structure (2.24); X denotes the
corresponding set of commuting matrices, defined in (2.35), and X? the positive subset. The
set of frequency functions X (e’*) which take values in the set X is denoted, as in (2.45), by
X (analogously, X corresponding to X7).

The convex tests for robust H,. performance can be summarized as follows:

Condition 1 There exists a function X (/) € XF such that for all w € [0,2x]

’

M(ejw)* l X(S]w) 3 J j\l(ejw) - [ ){(;J“’) 3 } < 0. (6.1)
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Condition 1 is in fact the LMI version of the test (2.44) which was presented in Section
2.3.3. In this case the last block in the scaling matrix is normalized to be the identity
matrix; this block corresponds to the performance block Ap which appears if we convert

Ho, performance to robust stability as in Figure 2.10.

The inequality in (6.1) has been stated pointwise in frequency, which is appropriate since
we are assuming a finite dimensional LTI system M. In that case M(e/*) is continuous,
and without loss of generality X(e’) can be chosen continuous, or even rational (see [64],
or Lemma 6.7 below). The inequality (6.1) can be interpreted equivalently in the operator
sense,

H<0 < Je>0: (z,Hz) < ¢|z||* Vz €L

We now summarize the known results for this test, in reference to Definition 3 of robust
Ho performance. For the general case of frequency dependent scales, we can state the

following result:

Proposition 6.1 If Condition 1 holds for a function X (¢'*) € X ¥, then the system
(M, A) has robust H,, performance for A € Brrr.

Condition 1 is in general conservative for LTT uncertainty; the exact tests involving y were
given in Chapter 2. It remains, however, as an attractive condition since exact computation
of p is not tractable. Also, computational experience with lower bounds such as those used
in [5] shows evidence that the two tests are not far apart, at least for full block structures.

Another indication that Condition 1 has small conservatism in the LTI case is the fact
that it is exact for perturbations with an arbitrary small amount of time variation, in the
sense of (2.19), as shown in [64]:

Proposition 6.2 There exists v > 0 such that the system (M, A) has robust H.
performance for A € Baw if and only if there exists a function X(e’*) € XP satis-
fying Condition 1.

Finally, if we allow an unrestricted time variation, robustness analysis is obtained from

Condition 1 by imposing X (e’*) to be a constant function, as shown by [76, 50]:

Proposition 6.3 The system (M, A) has robust Ho, performance with A € B rrv
if and only if there exists a constant matriz X (') = X € X satisfying Condition 1.
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6.3 Robust H,; Performance Tests

In this section we provide conditions for Robust H, performance for the uncertain system
of Figure 6.1, which are analogous to those presented in Section 6.2 for Robust H,. perfor-
mance. In the sequel, m is the dimension of the input signal v. We now state an analysis

test, which is a convex feasibility condition on the unknowns X, Y.

Condition 2 There exists X(e’*) € X®, and a matriz function Y (&) = Y*(e/)

taking values in C™*™ | such that

JW(ejw)* I: X(gjw) 3 :! M(ejw) N [ X(gjw) )/,<Sjw) <‘ <0 (62)

holds for all w € [0,27], and

27
/ trace(Y(ejw))gu—J < 1. (6.3)
0

m

This condition is in fact very similar to Condition 1 for Robust H.. performance. The
only addition is the incorporation of the function Y(e/). Heuristically, for m = 1, Y(e¥)
allows for the gain to be larger than 1 at some frequencies, provided that it is compensated
at other frequencies by keeping the total effect [V (e/*)dw less than 1; this imposes an

“average over frequency” performance which corresponds to the H, norn.

Remark:
To make Condition 2 precise we must specify the classes of functions X(e¥), Y(e*)

which are being considered.

o We will concentrate on the case where M is finite dimensional LTT; here the functions

can be chosen to be rational without loss of generality, as shown in Lemma 6.7 below.

e The necessity proofs given in Section 6.5 are valid also for infinite dimensional M, and
yield functions X, ¥ of bounded variation (in BV[0, 27], see Appendix A). In this case

(6.2) must be interpreted as an operator inequality.

The main result of this chapter is that this test answers the robust M, performance
problem. As in the case of Condition 1, different results can be stated in accordance with

the nature of the perturbations in A, which exactly parallel Propositions 6.1, 6.2 and 6.3.
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For the first one involving LTI perturbations, the LE'T A« M is an LTI system so the
result can be stated using the standard definition (2.23) of the Hy; norm, and proved with

elementary frequency domain tools.

Theorem 6.4 Suppose Condition 2 holds for matriz functions X (e/*),Y (e/¥). If
A € Barrr, then the system is robustly stable and

sup  ||A*M]; < 1. (6.4)
Ac Bjrrr

We now show that Condition 2 has the same necessity properties as Condition 1 for the
Hoo case. To state the following results for which include non-LTI systems, we adopt the

approach of (4.70) and give the following definition:

Definition 7 The uncertain system (M, A) with input v € I3 has robust H, per-
formance if it is robustly stable, and there exists n > 0 such that

sup HA*NIHW?;,1 < 1. (6.5)
Ac B,

The following necessary and sufficient conditions exactly characterize Condition 2 for both

the frequency dependent and constant scales cases.

Theorem 6.5 There exists v > 0 such that the system (M, A) has robust H,
performance for A € Bav if and only if there exist bounded variation functions
X(e/*) € XP, Y(e/) satisfying Condition 2.

Theorem 6.6  The system (M, A) has robust Hy performance for A € Barrv, if
and only if there exists a constant matriz X € X, and a bounded variation function
Y (€¥), satisfying Condition 2.

Discussion

o These results are exact counterparts of Propositions 6.1, 6.2 and 6.3. In fact, Condition
2 can be regarded as a summary of tractable exact conditions for robustness analysis.
Setting the blocks in X to be either constant or frequency-varying selects between LTV
or LTI (slowly-varying) uncertainty. Selecting either a constant or frequency varying
Y chooses between maximum over frequency or average over frequency performance
(roughly, H, or H; performance; in rigor, for the multivariable case the norms also

differ spatially, so for H., the trace must be removed from (6.3)).
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e Of these choices, it appears that the most natural “pairings” are H., performance with

LTV uncertainty, and H, performance with LT1/slowly varying uncertainty.

In the former, one has no information on the frequency content of the disturbance, or on
the frequency domain properties of the uncertainty, which is allowed to transfer energy
between frequencies (see Chapter 3). Correspondingly, the necessary and sufficient

condition involves only constant scalings.

In the latter, we have information on the spectral content of the disturbance, and also
we are narrowly specifying the uncertainty in the frequency domain; the corresponding

test involves frequency dependent scalings.

o Still, there may be situations which call for the other combinations of performance spec-
ifications and uncertainty. Also, combined uncertainty structures as those in Chapter
3 can be characterized by the corresponding combination of constant and frequency
dependent X scales, and combinations of H; and H., performance can be studied ( see
Section 6.7) by including Y terms only for the signals which are assumed white. For
any of these combinations, we can state an exact characterization of the robust perfor-
mance problem for which Condition 2 is necessary and sufficient, using the methods

developed in the rest of this chapter.

e Theorem 6.5 gives indication that there is mild conservatism involved in using Condi-

tion 2 for LTI uncertainty, analogously to Proposition 6.2 for H., performance.

In the H,, case there was also supporting empirical evidence with computation of
lower bounds for the LTI case based on g, which is not available for H,. In fact, the
restriction on causality of the LTI perturbations will provide an additional gap for H,
performance. To see this, consider the case of unstructured uncertainty, where the H..
conditions are known to be exact [55]. In the H; case, with scalar inputs, it is easy to
show that Condition 2 is exact for non-causal LTI perturbations, by simply choosing
A(e’) to produce the worst gain at every frequency; this interpolation is in general
only possible with non-causal A. The gap due to causality has not been quantified in
general, but the results of [99] (see Section 6.7) suggest that it is not significant.

In any case, the only necessary conditions available for the H,, and the H, frequency
dependent scales tests are Proposition 6.2 and Theorem 6.5, both indicating that these

gaps are a modest price to pay for a convex characterization.
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6.4 Sufficiency

In this section we prove the sufficiency of Condition 2 for robust H, performance in the
different cases of Theorems 6.4, 6.5 and 6.6.
A useful fact for the case of finite dimensional M is that without loss of generality, the

frequency dependent scales may be assumed to be rational functions:

Lemma 6.7  Suppose Condition 2 is satisfied by bounded variation functions X (e),
Y (). If M()) is rational, there exist rational functions D(X\), E(X\) such that:

e D, DY E, E7 are in RH.,.
o D()) has the structure X.
o Condition 2 is satisfied with X (&%) :FD(ej“’)*D(ejw), Y(e¥) = E(e?*)*B(e/).

Proof: First, a topological argument implies that the scales X (¢/“), Y'(e/*) can be chosen

to be continuous on T. A sketch of this argument is the following:

1. Construct a finite open covering {B;} of T such that in each open set B;, (6.2) is
satisfied by a constant X; > 0, Y;. This is possible by continuity of M(e?*), and
compactness of T. Also, the B; can be chosen to be frequency intervals with a hound

on their maximum length, and on the amount of overlap.

2. Consider a continuous partition of the unity {f:(e/*)} for T, subordinate to the B;.
This means that f; > 0, continuous, supp(f;) C By, and Y. fi(¢’*) = 1. Then choose
X(e7) := 3, file™)X; and Y (&) := Y. fi(e’)Y; which satisfy (6.2) by convexity.

3. By the choice of the B; , [trace(Y) = > trace(Y;) [ f; approximates a Riemann sum
for the integral [ trace(Y'); if B; is fine enough, ¥ will satisfy (6.3).

Next, approximate the continuous scales uniformly on T by rational functions; due to
Mergelyan’s theorem [71] this can be done to an arbitrary precision, and therefore rational
X(e’*) > 0, Y(e/¥) are found satisfying (6.2) and (6.3). Note that from (6.2), Y(e/*) > 0.

Finally, perform spectral factorizations (see [98]) to obtain D, F satistying the require-
ments above (the factorization of X is done block by block to preserve the structure X).

u

For the sufficiency proofs to follow we assume always that X is rational and factored as
in Lemma 6.7. D is the system with transfer function D(}). In the case of Theorem 6.6, X

is constant so we take D = X3.
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Figure 6.2: Equivalent system with D scaling

The robustness analysis setup of Figure 6.1 is equivalent to the configuration of Figure

6.2, where A = DAD™!. Incorporating the D, D™ together with M, define

M:lDO}M{DJO}. (6.6)
01 0 1

Clearly, robust stability for (M, A) and (M, A) are equivalent, and the same happens with

performance since

AxM=A M. (6.7)

Also, (6.2) implies that for some ¢ > 0, and all w,

1 0

M () M (/) — [ () } < —el. (6.8)

6.4.1 Proof of Theorem 6.4

In this case, D and A are both LTI operators which commute, so A = A. The first
block of the inequality (6.8) gives HI\A/IHHOO < 1, which implies from small gain the robust
stability of (M, A), hence of (M, A).

To analyze the performance, consider a fixed frequency and the signal denominations of

Figure 6.2. Then (6.8) gives

[e* + 14> < (1 = )[p]* + vV (7)o — efo]*. (6:9)

g

Since A(e/) = A(e#) is LTI, contractive we have 1p|* < |¢]?, which leads to

q

V(A x M) (Ax M) () = |e* < v Y (/)0 — elv]?. (6.10)
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Since this holds for any v, we have
(A s M)(e™) (A% M)(e™) <Y (&) — el (6.11)

for each frequency. Computing the trace and integrating gives from (2.23) and (6.3)

) 27 iy dw , ‘
I|A M2 < trace(Y (e’))— — me < 1. (6.12)
0

s

6.4.2 Proof of Sufficiency for Theorem 6.6

In this case the scaling D = X7 is a constant matrix, and from its spatial structure it
commutes with the class A*TY, so once again A = A. Then the small gain theorem implies

robust stability, and we can write (6.9), which can be integrated across frequency to give

27
; 12 juykyr( gwy, (o & 2
el + 141 < (1= I+ [ oY@ & —dl. (613
0 i
Since |[A|| = ||A]| < 1, then |[p|| < |l4]|, leading to
i 4 . - dw
M < [ oy (@ )o(e) 52 ~ el (6.14)
0 T

Fixnp > 0; forv € an7 we invoke Lemma 4.11 to bound

) 2 2 ) loo
<nC(Y)+ %/ trace(Y(eJ“’));]—F, (6.15)

Fa

/Oﬁv(ejw)*Y(ejw)v(ej“)g@-

T
where C'(Y) depends only on Y. Substituting (6.15) into (6.14) and using (6.3) we arrive,
2
for ol <1, to
m
[(A*M)v|]? <1—me+q CY). (6.16)

By choosing small enough 7, the right hand side of (6.16) can be made less than 1; the bound
holds for all A € Byrrv, v € ‘W;n, %ﬁ < 1. Then from (4.68) we have

sup |](A*M)HW$ < 1. (6.17)

A€ Barrv '
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6.4.3 Proof of Sufficiency for Theorem 6.5

If the perturbations are in A¥ they do not commute with general LTI scalings D(}),
so A is different from A. This necessitates a modification to the above proofs, which is
analogous to the one provided in [64] for robust H., performance.

Start with D(A) € RHs from Lemma 6.7, and write the Taylor expansion

- me (6.18)
=0

where the impulse response D; converges exponentially to zero. In fact, substituting the
frequency variable A by the delay operator A, (6.18) provides a series expansion for the

corresponding operator D. Given A € AY, we have

AD - DA =) D,(AX - XA, (6.19)
t=0
where we use the fact that the constant matrix D, € X commutes with A. It is simple to
show that if A € B¥, then ||AX — A*A|| < vt, which gives the bound

|AD — DAH<Z (D) |AX — ,\Ag|<yZth (6.20)

t=0 t=0

where the series converges due to the exponential decay of D;. Consequently
|A - Al = |(AD -—DA)D™Y|| < v||D7Y| Zi 7 (D), (6.21)
t=0

which implies that for A € Bas,
JA[| < 1+ v #(D), (6.22)
with k(D) depending only on D.

We now return to the sufficiency proof. Since My o < 1 from (6.8), then (6.22) implies
that (M, A) is robustly stable for sufficiently small v, using small gain; therefore (M, A) is
robustly stable for this value of v. Also, from (6.8) we derive (6.13) as in the previous proof;
in this case (6.22) <

dw

lell? + 14117 < (1 = &)1 + w12 + /Omv(e”)"Y(ej”)v(ej”)g—6II'UHQ- (6.23)

By choosing v small enough so that (1 — ¢)(1 + &v)* < 1, (6.14) follows; from here on the

proof continues exactly as in the case of Theorem 6.6, leading to

sup (A« M)y < 1. (6.24)
AE BAU K
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6.5 Necessity

The converse implications for Theorems 6.5 and 6.6 are based on the IQC formulation of
Chapter 5, and require an extension of the “S-procedure losslessness” argument which was

introduced in Section 5.1.1 for robust H,, performance.

For the purpose of Hs performance analysis, the signal sets VVW will be characterized by
function-valued IQCs; correspondingly, the proofs below will rely on an infinite-dimensional
convex analysis argument.

For simplicity we will first prove both Theorems in the situation of scalar inputs v € 13,
and for uncertainty A = diag[Aq,...,A,] consisting only of full blocks. At the end of the
section we will explain the modifications required for the cases of multivariable noise and §1

perturbations.

6.5.1 Proof of Necessity in Theorem 6.6

In reference to Iigure 6.1, let z = col(z1,...,2,+1) be the vector of all inputs to the
M system, where z; ...z, partition p in correspondence with the blocks A4,..., A,, and
Zpn+1 = v. Analogously (Mz);,7 = 1...n +1 denotes the partition of the output of M. Now

consider the quadratic forms on [,
oi(z) = H(l\/Iz)ZH2 —|zl?, i=1...n4+1. (6.25)

From Chapter 5 we know that for i = 1,...,n the IQC o; > 0 represents the LTV pertur-
bation A;, if we ignore the restriction on causality. Also, the constraint o, > 0 tests the
performance specification by comparing ||e||* and ||v]|?. If these were the only IQCs consid-
ered, we would be in the situation of Section 5.1.1 for robust H,, performance analysis. By

adding the function-valued constraint

p(ZTH-l) € B(Ovn)v (626)

where p : [;,—Cg[0,27] is defined in (5.28), we impose that the disturbance v = Zpa1 18I0

the set W,. We now put together all the quadratic functions in

A(z) == (o1(2), ..., ong1(2)s p(20g1)) (6.27)

which maps /; into the real Banach space V = R & ([0, 27].
If for some z # 0 we found that

Az) e Ko:={(r1,...,Tug1,9): 15 >0, Ng(s)|lee <}, (6.28)
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then all the IQCs would be satisfied simultaneously and a contractive, non-causal, structured
A could be found such that the closed loop gain is at least 1 for a certain signal v € W’m
implying || A * :[\/IHm2 > 1. This reasoning leads to the following statement.

Proposition 6.8 Suppose (M, A) has robust Hy performance for A € B rrv. For
the fized n given in Definition 7 and € > 0, define

]Ce = {(Tla o '7rn+17g) LTy > _627 Hg(S)HOC < 77} C V. (629)
Also, with A as in (6.27), define
V={Az):z€ly|z|| =1} C V. (6.30)

Then there exists € > 0 such that VN K, = 0.

Proof: See Appendix B. The main strengthening required to the previous argument is
to include the causality of the perturbations, which is quite involved. Also, we have replaced
the set Ky by the slightly larger set K..

Proposition 6.8 reduces robust performance to a geometric separation condition in the
space V. To bring in techniques from convex analysis (see Appendix A), we note that K. is
open and convex in V, and that

Lemma 6.9 The closure V of V is convez in V.

Proof (Lemma): Consider Ag € co(V) (convex hull of V, see (A.6)):

N-1 N-1
Ay = Z aTA(z(T)), a, > 0, Z a, =1, Hz(T)H = 1. (6.31)
=0 r=0

Define f* = Zi\;—ol Jar A2 (), Recalling the property (5.44) which applies to every compo-

nent of A, and the quadratic nature of A, it follows that

N-1
A 5N AV =) = Ay, (6.32)
r=0
where the convergence is in the topology of the space V. Also, || f*||? pmis SV la, =1 from
(5.43), therefore A(ﬂji%”) e Ag, 50 Ag € V.

We have shown co(V) C V. This implies that co(V) C co(V) C V, so V is convex. |
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We are now in a position to apply the geometric version of the Hahn-Banach theorem
stated in Theorem A.4, by choosing Ky = V, Ky = K. Noting that VNK, =0 from
Proposition 6.8 since K, is open, we obtain the corresponding I' € V* I' £ 0, o € R. The
structure of V and the Riesz representation theorem (see Appendix A) imply that I' can be
represented by (z1,..., 2,41, V), where z; € R, ¥ € BV[0,27]. Then (A.9) yields

2m
inoi(z)—i—/ plzns)d¥V < a, Vz €l |z =1, (6.33)
i=1 0

s o v, > —€?
Z xr; + / gd¥ > «, for ' . (6.34)
1=1 0

gl <7

Concentrating on (6.34), we conclude that z; > 0, i = 1...n + 1; also, since K, contains a
ball of 0, and I' # 0, then o < 0. Now turning to (6.33), since o;(z) are bounded functions
it is possible to perturb the z; to make them strictly positive, with (6.33) still holding for a
new value o < 0. Similarly, x,,41 can be normalized to 1.

It only remains to rewrite (6.33) using the definitions of o;, p. In the first place,

%xim(z) — <z (M [}0( @ m- {}0( ‘I)D> (6.35)

=1
follows from (6.25), where X = diag[z1/,...,z,I] > 0 is a constant scaling in X7,

Secondly, we treat the term corresponding to p(z,41) = F.,,, from (5.28); an integration

In+1
by parts (note F , (0) = F, ., (27) = 0) gives

27 2 2
’ 15\ |4 ds
| Fanoave) == [T w6, s = = [ 06 ) D
0 0 0 77
(6.36)
Defining Y (/%) = 1 + ¥(w) — fO% W(w)%2, the right hand side of (6.36) is equal to

o jw juoy 20 0 0 .
- (Y(e) = 1) |zns1(e?)] 5o =% lo1-Y|7) (6.37)
Combining (6.35) and (6.37) into (6.33), we obtain

<2<M*[§ (I)}M— [}5 %}>z>§a<0, Vz ely, ||2]] = L. (6.38)

This implies (6.2) holds. Finally, from the definition of Y (e/*), we have f;ﬂ )”’(ejw)g—’j—;- =1

and a small perturbation in ¥ will preserve (6.2) and yield

3

2T y dw )
V() == < 1, (6.39)
0

27

which is (6.3) for this scalar case. ]
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6.5.2 Proof of the Necessity for Theorem 6.5

We are given v > 0 such that the system has robust H, performance over A¥.
The main modification to the argument in Theorem 6.6 is to replace the o; of (6.25), suit-
able for arbitrary LTV operators, with the function-valued quadratic maps ¢, : L—Cg[0, 27]

introduced in (5.22) to characterize the class B¥. We write

o Jw\ 12 Jwy |2 dw .
e = [ (M = ) ) L i= 1o, (640)
where A > 0 is defined such that 2 sin% < v.
The quadratic form o,41(2) = [[(Mz),41]|*> — || zn+1||* for performance, and the constraint

p(zn41) for “whiteness” remain unchanged from Theorem 6.6. Correspondingly, define

Az) = (p1(2), - on(2), Ongr(2), p(2041) (6.41)

which maps [, into the real Banach space V = (Cg[0,27])" & R & Cg[0, 27].

The following proposition, analogous to Proposition 6.8, is proved in Appendix B.

Proposition 6.10 Suppose (M, A) has robust Hy performance for A € Baw. For
the fized n given in Definition 7 and ¢ > 0, define

Ke:= {(7’1(3), s 7rn(3)7rn+179(3)) P> "627 ”g(S)HCO < 77} C V. (642)
Also, with A as in (6.41) define
V={A(z):z€ly|z|| =1} C V. (6.43)

Then there exists € > 0 such that VN K, = .

In (6.42) the constraints ri(s) > —€* for ¢ = 1,...,n are uniform bounds for s € [0, 27].
This makes K. open and convex in the topology of V.

Also, the closure of the set V in (6.43) is convex. This follows from the same proof as
Lemma 6.9, relying on the basic property (5.44) which was proved in Chapter 5 for any of

the shift invariant quadratic maps.

Once again, we apply Theorem A.4 and obtain the corresponding functional I' € V*,
I' # 0, and o € R. In this case the functionals have the form (&1, &0, 20a1, ¥) where

i

(i € BV[0,27], 2,41 € R, and ¥ € BV[0,27]. We have the following:
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n 2m 2T

2/ goi(z)dfi—{—xn+1an+1(z)—l—/ plzns)d¥ < a, Yz el |z =1, (6.44)

=1 0 0
n oaon or ri(s) > —€*, i <n
Z/ ridfi—l—anrnH—}-/ gd¥V > «, for Pppy > —€ . (6.45)
=10 ’ l9llee <7

Concentrating on (6.45), we conclude that x,4; > 0, and that & are non-decreasing
functions (d§; are non-negative measures) for ¢ = 1,...,n. Without loss of generality we can
choose £;(0) = 0, which makes &;(w) > 0.

Also, since K, contains a ball of 0, and ' # 0, then o < 0. This allows 7,41 to be
perturbed and made strictly positive, and subsequently normalized to 1, satisfying (6.44)
for scaled ¢;, ¥, and some a < 0. To interpret this condition, we concentrate on one of the

terms

/O% wi(2)dE; = /O% [/:M ((M2)i() 2 = |2:(e)?) dw déi(s). (6.46)

27

It is a routine exercise to transform (6.46) by an integration by parts into

/0~7T i(2)dE; = /O 7raci(ejw) (J(M2):(e™))* - |2:(e")?) oo (6.47)

where the function x;(e’*) is defined as

= =" (6.48)

2i(e) = G27) —&(2r +w —h) + &(w) for 0<w<h
Z - Li(w) —&(w— 1) for h<w<2r

Since & is non-decreasing, and & > 0, z;(e’¥) is a non-negative function of frequency.
Defining the frequency dependent scaling X(e*) = diag[z(e*)1,... 2, (e’*)]] € X we
obtain from (6.47)

= o[58 (1)) o

which is analogous to (6.35) except that the scale X (e/¥) is frequency dependent. From here
onwards the proof proceeds exactly as in Theorem 6.6 to take care of the term f;" pzpe1)dV,
and leads to the inequalities (6.38) and (6.39).

We have ensured X(e) > 0, but strict inequality can be obtained at the end from

continuity since a < 0 in (6.38).



97
Remarks:

e If the whiteness constraints p are not included in the problem, this exact argument
shows the necessity of Condition 1, with frequency dependent scales, for robust M.,

performance in A”. This is an alternative proof to the one given in [64].

o If a combination of arbitrary LTV blocks and B” blocks is present, the proof follows
exactly in the same way, by including the corresponding combination of ¢ and ¢
constraints. Thus we prove the necessity of the corresponding “mixed scales” condition

for robust H, performance (Theorem 3.6) or for robust H, performance.

6.5.3 Extensions to the proofs

We now indicate briefly how the previous proofs must be modified to allow for multi-
variable white noise signals, or for 6 perturbations. We explain the changes in the simpler

setup of Theorem 6.6, but analogous changes apply to Theorem 6.5.

Multivariable noise

If v € [, then from (4.68) the performance quadratic constraint is changed to

Tusa(2) = (M) = vl (6.50)

This amounts to a renormalization in the input, which is included for the reasons discussed
in Section 4.4.3. Then (6.35) turns into

%xi0¢(2)2<z, (M*[O (I)}M— [%‘ fID> (6.51)

=1

P4

Also, (5.30) indicates the definition for the whiteness constraint p(z,4,):

dw

[P(5ns)](5) = Fap,u(s) = / e ()2 ()2

27 7"m

— |01 L

p now takes values in the space of continuous, hermitian matrix-valued functions; the dual of
this space can be identified with the space of hermitian, bounded variation matrix functions

¥ on [0,27] (up to a constant matrix, for convenience we choose W(2r) = 0), with the

21
Polo) = [ tracelg(s)av(s) Z/ G5V, (5).

convention
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The multivariable extension of (6.36) is

27 27
/ trace(FL,,, (s)d¥(s)) = —/ trace(W(s)F,  (s))ds =
0 0
27 , dw |zl [T dw .

-—/O zn+1(e“)*\11(w)zn+1(ew)é—7-r-+%/0 trace(\ll(w))zw. (6.52)

Now define , s p
V()= — + ¥(w) — —/ trace(W(w)) —. (6.53)

m Toom 2m

This makes the final expression obtained in (6.52) equal to

2 . I o deo 0 0

4

Combining it with (6.51) leads to (6.2). Also, from the definition of ¥ we have

2
/ trace(Y(ej“’))d—w— =1, (6.55)
0

2T

so (6.3) follows by perturbation.

61 operators in A

If the i-th block of A is 81,,, then the scalar quadratic function o; must be replaced as

in (5.13) by a matrix-valued function

dw

27

5i(z) = / T I(M)(e) (M) () — 2(e)23(e)]

which takes values in the space of hermitian n; X n; matrices. The functionals in this space
are of the form I'x,(A) = trace(X;A), where X; is a full, hermitian matrix. The argument
then proceeds in a similar fashion, X; becoming a sub-block of the scaling matrix X € X.

More details on this case are given in the proof of Theorem 8.4.

6.6 Computational Issues

A test has been developed in the previous sections which characterizes robust H, pertfor-
mance analysis of an uncertain system. This test is an infinite dimensional convex feasibility
condition on the unknowns X and Y, specified as a Linear Matrix Inequality (LMI) across
the frequency axis, of a similar complexity as Condition 1 for robust M., performance.

In Section 2.3.3 we mentioned two standard approaches for handling the infinite dimen-

sionality of these conditions: gridding the frequency axis, or parametrizing the scales in
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terms of a basis of rational functions. Both approaches can indeed be applied to Condition
2, and involve minor modifications to their counterparts for Condition 1. We demonstrate
this by commenting on the gridding approach for this problem: Condition 2 is approximated

by considering frequency points 0 = wy < w; < - -+ < wy = 27, and leads to the LMI problem

- X, 0 . X; 0 : . .
M(e?)” [ 0 1 } M) — 0 v < 0, i=1...N, (6.56)
X, > 0, i=1...N, (6.57)
1 N
py ; trace(Y;)(w; —wi—1) < 1, (6.58)

where the unknowns Y; are hermitian matrices and the X; structured matrices.

For the LTV test, X; = X is constant across the w;, which makes conditions (6.56-6.58)
intrinsically coupled across frequency. For the LTI/slowly varying test, we use different
variables X;, 1 = 1...N. Although (6.58) still involves all frequency points, the following

strategy can be used to decouple the problem across frequency:

o For each fixed frequency point w;, pose the problem:

Minimize trace(Y;)

subject to

- X; 0 X, 0 ,
M(ewi)*{ . ]}M(GM)_ { 0 YJ < 0, (6.59)

X, > 0. (6.60)

The problem of minimizing a linear function of the unknowns, subject to an LMI
constraint, falls in the class of eigenvalue problems (EVPs) considered in [10], and can

be computed efficiently.

o Given all the solutions Y; ... Yy, compute % >

the answer to 1. More directly, this sum will provide an approximation to the square

i]\il trace(Y;)(w; — w;—1), and compare

(3

of the worst-case H; norm of the system; this follows from the fact that to test if the

worst-case Hz norm is less than v, it suffices to change 1 for 4% in (6.3) or (6.58).
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6.7 Connections to Mixed H,/H,, Performance

In this section we relate these results to earlier work in the so-called mixed Hy/H.,
problem. There are many versions of this problem in the literature (a few are [8, 44, 99, 62]),
all of which attempt to get a handle on robust H, performance by studying first the situation
where there is no uncertainty, but the performance specification is a combination of the H,
and H., norms.

A mixed Hy/H performance problem can in fact be cast naturally in our setting, and
leads to an analysis test which looks exactly like Condition 2, except that the scaling matrix

X (e’*) does not appear and is fixed to be the identity.

Proposition 6.11 Consider a system M = [M; M,] where the input = is parti-

tioned in the vectors z1, zo € C™. The following are equivalent:

: 1 i : .
(i): In>0: sup {Hl\/IzH2 ]+ 7—7;||z2||2 <1, € Wn} <1; (6.61)

(ii) :  There exists Y (/) = Y (&) € C™X™
I 0
0 Y(e¥)

2m
/ trace(}’(ej“’))f)l—w < 1. (6.63)
0

LT

M7y M (™) — <0 Vwel0,27], (6.62)

This result is proved along the same lines as Theorem 6.6, only that since there is no
uncertainty, one only considers the whiteness constraint p(z) = F,,, and the performance
quadratic constraint o(z) = [[Mz|[* — ||z1]]* = L||2||*, with [|za][* weighted by L for the

reasons explained in Section 4.4.3.

Conditions (6.62) and (6.63) are therefore interpreted as a mixed performance problem
where a portion of the input signal is constrained to be white. Various problems like this
were considered in [99] for continuous time, with different assumptions on the relationship
between z1 and z;. It is shown in [99] that the performance costs are not substantially
different for these alternatives, and subsequently the attention is concentrated on the case
where 2, is restricted to be causally dependent on z,. State-space methods for both analysis
and synthesis for this alternative are given in [99] and the sequel paper [27] (a stochastic
version appears in [62]).

Our condition, in contrast, corresponds to the case where there is no such causality
restriction, which is only treated summarily in [99]. While at the level of the mixed perfor-

mance problem it is not obvious which alternative to prefer, the version considered here has



101

advantages from the point of the robust H; problem, since it is allows for the inclusion of X

scales in a convex condition with the strong interpretation given in Theorems 6.5 and 6.6.

Remarks:
o These causality issues are strongly connected to the remarks of Section 6.3 regarding
the causality of LTI perturbations. A possible conclusion from the results in [99] is
that gaps due to this are not very significant, although this issue warrants further

investigation.

e Analogously to the case treated in detail in [99], the mixed conditions (6.62-6.63)
reduce to a finite dimensional test if M(e?*) is rational. In fact, a Schur complement

operation and some algebra shows that (6.62) is equivalent to

Myl < 1, (6.64)
M;(I = MyM;)™ "My < Y, Ywe0,27]. (6.65)

This implies that (6.62-6.63) can be tested by first checking (6.64), and then imposing
that [|[N"'Ma||; < 1, where N is the inversely stable spectral factor (see, e.g., [98])
satisfying [ — My M = NN*. Both these operations can be computed efficiently by

the same state-space techniques used in the mixed Hy/H.. literature.

6.8 Robust H,; Synthesis

Having obtained conditions for robust H, performance analysis under structured uncer-
tainty, it is natural to consider the problem of controller synthesis. If the nominal system
M is obtained as the closed loop G+ K in a feedback configuration, the problem is to design
K such that M satisfies the robust H, performance conditions.

It is unlikely that a tractable global solution will appear for this problem, since none
is known for the case of H,, performance. As discussed in Section 2.4, the only general
method for robust H., synthesis is the so-called “D-K” iteration, where an an analysis step
(Condition 1) is alternated with H., synthesis.

Such iteration schemes can easily be extended to robust H, synthesis, as is now described.
Assume that the functions X (e’) and Y (/%) are as in Lemma 6.7: X = D*D, Y = E*E
with D, E, D7', E7' in RH.,, and satisfying Condition 2. In practice, they could be
obtained by fitting frequency points, or using basis functions. It follows that (6.2) can be
rewritten as

D 0
I

which leads to the following iteration procedure:

Dt 0

M P

<1, (6.66)

o0



e Lor fixed D, E, reduce the norm in (6.66) by H., synthesis.
e For a fixed controller, solve the analysis problem for D, E.

As for the standard D-K iteration, each step in this “(D,E)-K” iteration can be shown to
improve the robust performance cost, but there is no reason to expect convergence to the

global optimum.

The previous iteration was based in H,, synthesis. An alternative is suggested by the
discussion in Section 6.7, where at the synthesis step one only includes the D scales with
the plant as in (6.6), and employs the design schemes for the mixed H;/H., problem. As
remarked before, the techniques in [27] correspond to a slightly different mixed problem, and
it is not clear whether they extend to the situation of Proposition 6.11. The approximate
method presented in [19] could also be used.

Therefore a number of issues remain open for future research, regarding this second

iteration and the comparison between the two alternatives for practical problems.

6.9 Example

We consider the standard single input/output feedback system of Figure 6.3, where the
plant H is subject to multiplicative, unstructured uncertainty A, weighted by W. We wish

to analyze the sensitivity of the tracking error e to a white disturbance appearing in v (which

e i
ol L

~—ODe— U

could be due, for example, to sensor noise).

Figure 6.3: Rejection of sensor noise

Assuming K is nominally stabilizing, we redraw the uncertain system in the standard

configuration of Figure 6.1, with

WT WT
S S

M = (6.67)

where S = 1T1177«T and T = lf]{}Ix are the nominal sensitivity and complementary sensitivity
functions (see, e.g. [21]).
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Suppose now that A is LTI uncertainty, and we wish to compute the worst-case H, norm
of the system. For this purpose we use frequency dependent scales z(e’*) > 0, and at each
frequency compute the minimum of y(e/*), subject to the LMI (6.2), which in this case will

have the form
c(|WT)E—1)+ |S]? c|WTP+1S)?

‘ R < 0. 6.68
AWTP 4 ISP 2l WT 4 |52 — y (6:68)

We have omitted the dependence on the frequency variable ¢/“. For (6.68) to be feasible,
we must have |WT| < 1 at each frequency, which is in fact the robust stability test: also, a

Schur complement operation reduces (6.63) to

|SF? (z[WT]* + |S]*)x

IS wTE YT da = wWTp) = 5P

(6.69)
Now if y is minimized subject to the constraints (6.69), some algebra leads to the value

Yrin = (%)2 (6.70)

Therefore the integral in (6.3) has a minimum value

i . dw S
PRI | B
/0 Ymin( ") 52 Hl—{WT|

which is an upper bound for the worst-case Hy norm for LTI uncertainty, and is exact for

2

(6.71)

’
2

arbitrarily slowly-varying uncertainty, by Theorems 6.4 and 6.5.

In this particular problem, there is a direct way to corroborate this value and show that
indeed it is exact for LTI (non-causal) uncertainty. To see this, write the sensitivity function

for the uncertain system,

1 S

SA:1+H]((1—{—W’A):1+WTA' (6.72)
Assuming that [|[W T, < 1, we have
' oIS |
S’max ) = S Jy = — . .
)= B3 el = WT(ev)| (6.73)

This fact has been typically used (see [21]) to show that the worst case H., norm of the
system is

ﬁﬁ"—l R By choosing the maximizing A(e’*) at each frequency (an element of

L) we arrive at the value (6.71) for the worst-case H, norm.

Of course, this simple alternative method is not available for general multivariable systems

and structured uncertainty; the adequate generalization is given by Condition 2.
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Chapter 7

Implicit Uncertain Systems I:

Motivation and Definitions

In the predominant viewpoint in systems and control theory, a system is an input-output
(I/O) entity, where the external variables are clearly separated in two groups, and a cause-
effect relationship is established between them. This approach entails a “signal flow” con-
ception, adequate for systems which are deliberately built to match the I/O philosophy,
such as computers and amplifiers. For the standard automatic control configuration where
the controller is one of these devices (typically a computer), it is very natural to adopt the
input-output point of view, and represent the feedback configuration by a cascade of blocks
as in the diagram G-K of Figure 2.6. If one considers control theory to be confined to the

study of such configurations, then the I/O point of view is completely satisfactory.

Control engineering is, however, a much broader discipline which addresses the general
issues of modeling, system identification, system design, simulation, and optimization of com-
plex systems from the point of view of their dynamical properties. In this larger perspective
the computer control problem is a small piece which often has secondary technological im-
portance, since very commonly dynamic performance is mainly determined by the design of
the “hardware” G, and few degrees of freedom are left for a subsequent design of K. From
this broader point of view the main challenge on the theoretical level is to provide a more
unified theory, in which a common language of mathematical and computational machinery

is used to perform the previous range of activities.

For these more general problems the input-output point of view often appears artificial,
and sometimes inconvenient. As discussed in Section 7.1, when performing modeling of
components in a large system it is more natural to specify the model in terms of a set of
equations between variables which are a priori on an equal footing. The recognition of this

fact has led Willems [91] to propose an alternative formulation for system theory where
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the central concept is the behavior, a set of allowed signal trajectories, and no input-output
partition is a priori established between the variables. The corresponding theory of finite

dimensional linear systems has been extensively developed ([91], [92]).

This philosophy is even more natural for nonlinear systems, since many nonlinearities
(e.g., hysteresis) do not fit the I/O concept, or can only be solved locally into I/O maps. For
this reason, much of the theory of absolute stability referred to in Chapter 5 was formulated

in terms of relations, rather than I/O maps (see, e.g. [96]).

The same considerations apply, correspondingly, to uncertain systems; if the relationship
between the variables is not precisely known, the cause-effect point of view is itself suspect,
and it is more natural to think of a relationship between variables. For example, descriptions
of uncertainty based on IQCs such as (5.1) are completely symmetrical and do not require

an I/0 interpretation.

In Section 7.2 we will follow this point of view and introduce uncertain systems in implicit
form, which generalize the LFT formulation for uncertainty. We show that in addition to
the standard theory, implicit descriptions allow for a complete mapping of general IQCs, in
the sense that the signals satisfying the IQC are parametrized as solutions to an uncertain
equation. This extension of the LF'T framework reduces a large class of robustness analysis

problems to special instances of the general question

Q: Given a family of equations parametrized by uncertainty, do there exist values

of the uncertainty in a given class such that the equations have a solution?

Stating Q at this general level has the advantage of highlighting the connection between
robustness analysis and system identification. In fact, when the equations come from substi-
tution of experimental data into a model which includes uncertainty (e.g. noise), Q@ amounts
to the model validation question “is the model consistent with the data?”. Also if we con-
sider a model involving parameters, Q is closely related to the problem of finding parameter

values which agree with the data, which is the system identification question.

The connection is, however, more concrete: it will be shown in Section 7.3, that, in
particular, the implicit version of the LFT formulation provides a natural setting for posing

model validation and system identification problems in the linear case.

Having established the motivation for implicit uncertain systems, in Section 7.4 we will
develop a natural framework in which questions such as Q can be addressed, and reduce the

general problem to a canonical case which will be studied in detail in Chapter 8.
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7.1 Modeling and Implicit Descriptions

In order for a theoretical framework to be a useful tool for the modeling of complex sys-
tems, it must provide a transparent procedure for building large models based on subsystem
models. In this way one “zooms in” on each particular component, obtains a mathematical
description, and these are subsequently combined. One could think of creating a library
of component models, and automating the combination stage by a routine which takes the
subsystem models plus a specification of the interconnection, and outputs the full system

model.

The only candidate method for this which has been considered so far is the block dia-
gram representation, discussed in Chapter 2. This is in fact the method of choice in some

commercial software products for modeling and simulation.

The block diagram representation models an interconnection as a cascade of input-output
maps; the restriction to this type of interconnection poses a number of difficulties as a
modeling technique. The most basic one is that an input-output representation must be
chosen a priori at the component modeling stage, and at this level it is not always clear
which variables should be regarded as inputs or outputs. For example, the model v = Ri for
a resistor can be thought as voltage driven or current driven, and the adequate choice will
depend on its location in the full circuit. The need to commit to an I/O partition makes

this method unsuitable for modularizing the modeling.

— \
m Y S "Avavav

Z1 22
kl k?
my | my f——— AN\
—
21 = 22

Figure 7.1: Interconnection of two mass-spring systems

As a further example, consider the interconnection of two mass-spring systems depicted
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in Figure 7.1. Each corresponds to the differential equation

d*z; : :
mz—f—f-]@zz:f“ = 1,2, (71)

which is typically modeled as an [/O system with input f;, and output z;. Now if we wish to
model the interconnection of Figure 7.1, where the two masses are bolted together, this would
call for identifying the inputs, and the outputs of the two systems, which is not a cascade
interconnection. A cascade interconnection could be obtained by changing the signal flow
direction in one of the systems, say the first, and considering z; as an input and f; as an

output. We observe, however, that

¢ Once again this goes against modularization; the component model must be changed

before interconnection.

o The “cause-effect” concept which one typically associates with input-output models is
lost; there is no justification for breaking the symmetry as to which is the cause, and

which the effect, in each system.

e The new model involves differentiation, a feature which is typically considered unde-

sirable in cascade interconnections.

Of course, there is no problem with the given interconnection, and a full system model can

easily be obtained by adding to (7.1) the interconnection equations

21 = 22, (72)

The difficulties arise only if we insist on building models by cascade interconnection of input-
output subsystems. If, as is typical in engineering modeling, one maintains the subsystem
models at the level of equations, this difficulty disappears.

Similar considerations apply to the issue of feedback. Although conceptually the signal
flow point of view is very appealing to understand feedback (hence its name), it is only
strictly appropriate when the feedback interconnection is “buffered”, as for example in the
case of a computer connected to the system via A/D and D/A converters.

Other feedback interconnections, like those which are commonplace in electronic ampli-
fiers, do not convert transparently to the G-K diagram of Figure 2.6. Although the signal
flow concept is still used as a heuristic or approximate tool in the designs, for more precise
modeling a more convenient approach is to write down and manipulate the corresponding

equations.
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These issues are even more predominant in the case of nonlinear systems. Often, nonlinear
models are derived form physical laws such as mass or energy balances which are expressed
as equations between the variables and have global validity. Obtaining an input-output
representation involves solving nonlinear equations, which is not a tractable problem and
leads to input-output descriptions which are only valid locally.

From this discussion it appears that a theory of systems which attempts to have a general
impact in technology beyond the restricted case of the G-K configuration, should rely on a
more flexible modeling technique than that provided by cascades of input-output systems. It
seems natural, in its place, to formulate a theory based on the most commonly used modeling

technique, namely representations in terms of implicit equations. A formal definition follows.

Definition 8 An implicit system (W, E, R) is defined by two vector spaces, the vari-
able space W and the equation space E, and an equation operator R : W—E.
The behavior of the implicit system is the set B = Ker(R) = {w € W : Rw = 0}.

The system is called linear if R is a linear map.

The definition above is closely related to the behavioral approach to system theory, introduced
by Willems [91]. In this type of formulation, all variables in a system are a priori on an equal
footing, without a distinction between inputs and outputs. The system laws are constraints
in the possible values of these variables, which define a set: the behavior. For further
discussion of the features of this modeling paradigm, see [91].

In Definition 8, we give priority to descriptions of the behavior in terms of implicit
equations. These will play a central role in the analysis. Interconnections of subsystems in
this setting reduce to superimposing equations.

An important special case of Definition 8 is the class of dynamical implicit systems, where
the sets W and E are vector-valued signal spaces. As an example, if B(}) is a polynomial
matrix, the differential equations R(%)w = 0 define an implicit system, where R is the
differential operator R(%), and W, E can be chosen as spaces of smooth functions, or alter-
natively distribution spaces. The choice of the defining elements W, E, R depends on the

type of analysis to be performed. In this chapter we use linear R, discrete time and:

e Finite dimensional spaces of signals will be used for problems involving data.

e For stability issues, the extended spaces W = I3, E = [}_ are used. In this case for the

map R to be well defined we will require it to be causal.

o To formulate quantitative performance specifications, we use the [, space W = 13,

E =15, with R € £(I).
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7.2 Implicit Uncertain Systems

We now incorporate into the implicit paradigm set descriptions of uncertainty in the style
of robust control. In the mass-spring example of Figure 7.1, one could for example have the
situation where there is uncertainty in the mass, e.g. represented by m; = m;, + &,,,, which
would translate directly into uncertainty in the equation operator R corresponding to (7.1).
This motivates the inclusion of uncertainty in implicit descriptions by using an equation map
R(A), where A is an uncertainty operator.

Based on the experience of standard robust control, it is clear that a very flexible
parametrization is obtained by choosing A to be a structured operator as in (2.24), and
the equation map to be a be a Linear Fractional Transformation A x H, as depicted in Fig-
ure 7.2, where H = [ 11\\-/1 g ] is an LTI map. This kind of representation was first considered

in [17].

A

&

M
N

P
Q | —w

0 «—rHo

Figure 7.2: Implicit LFT system

A remark regarding Figure 7.2 is that it contains remnants of the “signal-flow” approach,
since the perturbation A is depicted as an input-output map. This is done to highlight the
connection with the standard LFT paradigm, but from an implicit point of view the system
in Figure 1 is simply characterized by the equations (A x H)w = 0, or by an “internal”

description where the z signals are included in the variable space W, writing

I-AM —AP
N Q

The parameterization R(A, H) in (7.4) is affine in the parameter A. This simple form allows

: (7.4)

R(A,H) [ } =0, where R(A,H):= {

w

for the representation of a rich variety of uncertain systems. A standard input-output LET

uncertain system can be easily converted to this implicit form (see (7.8) below).

An implicit LF'T representation can also be used to represent general Integral Quadratic
Constraints; we recall from Lemma 5.1 that special classes of IQCs were in direct corre-
spondence with non-causal operators in an LFT representation. The following construction

shows that in fact Lemma 5.1 covers all cases of scalar valued IQCs, of the general form

(z,11z) > 0.
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For this purpose, given II(e/*) = II(e/“)* € L, one can obtain a representation
I=VVv-UT, (7.5)

where U(e'*), V(e/) can be chosen in Hy, (RHa if II(e/*) is rational). This is done, for
example, by choosing U = kI such that U*U+1I > 0, and then using a spectral factorization
(see [98]) to obtain U*U + I = V*V.

The factorization (7.5) reduces (5.1) to ||[Vz|[3 > ||Uz||2. From Lemma 5.1, for each =z
satisfying (5.1) there exists an operator A¢, ||Ac|| <1 such that Uz = AgVz. So the set
of z € [, satisfying (5.1) can be described as the union over A, |[|A¢| < 1 of the behavior
of the uncertain implicit system

(U= AcV)z = 0. (7.6)

Remarks:

o Although Ker(U — A¢V) is a linear subspace for each Ag |, the union of the parame-

terized behaviors describes a more complicated set given by (5.1).

e {|]A¢|| < 1} includes arbitrary time-varying non-causal operators. In this respect,

implicit systems obtained from this procedure are a priori considered with W = /,.

e A finite number of IQCs can be given a representation (7.6), where A¢ is now a

structured uncertainty operator.

o Analogously, the set U||5C”<1 Ker(U —8¢1IV) for scalar §¢ can be shown by means of

Lemma 5.2 to correspond to the matrix-valued constraint

/— V(e™)z(e)z(e) V() — U(e®)z(e)z(e/ ) U(e*)* dw > 0. (7.7)

We have provided a complete mapping of IQCs into uncertain equations. As a conse-
quence, an uncertain system and additional constraints on the signals can be represented
simultaneously by an implicit LE'T system. To illustrate how these implicit descriptions
might be used for robust performance analysis, consider the uncertain I/0 system of Figure
7.3, where it is known that the disturbance input v satisfies a finite number of restrictions
in terms of IQUs as in (5.1). We want to determine whether there exist signals v in the

allowed class, and perturbations A, such that the system /5 gain is 1 or larger. This last

requirement is captured by the performance IQC [|y||? — |[v]|* > 0.

The implicit equations for the system, the IQCs on v and the performance 1QC are
captured respectively by
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Y T21 T22 oo ———

Figure 7.3: Input/Output LFT system

I-A,T; 0 —A,Ty, i 78)
T21 —"I T22
v
(U=AcV)v =0, (7.9)

| Ar 1] [ﬂ:o, (7.10)

v

where Ag and Ap are norm bounded LTV operators, and A¢ is in general structured.
The superposition of (7.8), (7.9) and (7.10) gives an implicit description for the robust

performance analysis problem, which reduces to the question:

Q: “Does there exist a perturbation (A, A¢, Ap) such that (7.8-7.10) have

non-trivial /; solutions?”

In Q the input/output partition has been eliminated from the problem, and the analysis
1s posed in terms of equations and solutions, rather than maps and gains; this allows for a
natural incorporation of the constraints (7.9). Questions of this type will be analyzed in the

sequel.

Remark: The transformation from the constrained I /O problem to the implicit version
is mainly a notational change, and any result which is obtained from this new version can also
be obtained with the original objects. The advantage of this new form is that it provides a
canonical representation for these over-constrained problems, for which results can be derived
and then applied to a variety of special cases. Also , this generality is helpful in establishing

connections with other problems, as is done in the following section.



7.3 Model Validation and System Identification

As discussed in the Section 7.1, the implicit formulation is a natural setting for mod-
eling systems from first principles, since physical laws are typically specified as equations
between the system variables. The other main method of obtaining models is “black-box”
system identification from experimental data. We will argue in this section that system iden-
tification is conceptually a similar problem to robustness analysis, and that implicit LFT

representations provide a way to formulate both of them in a consistent language.

The connection comes from the question of model validation, which inquires if a model

is consistent with data. Take for example the model structure (see [45])
y =G 0)u+ H(X 0)d, (7.11)

where X is the shift operator, § is a vector of parameters, (G and H are discrete time systems,
and d is a disturbance. Assume the parameter § has been chosen, and we are given data
u and y. The model validation question is to check whether the model can account for the
data with a plausible (e.g. small enough) instance of d. This question clearly fits into the
general form @ stated in the introduction: given the equations, the parameters and the data,
we must check whether there exist values of the uncertainty (in this case d) in a given set

(e.g. ||d|] <) which verify the equations.

If the parameters are also taken to be uncertain, then @ amounts to looking for values of
the parameters and noise which satisfy the equations, which is the type of question asked in
system identification. Also, one can imagine a generalized model validation or identification
setup where in addition to noise and parameters, there is some representation for unmodeled
dynamics in the style of Chapter 2. This is especially relevant to establish closer connections
between identification and robust control, which remains as a fundamental challenge. Once
again, the basic problem can be cast in the form Q, where now the uncertainty includes

noise, unmodeled dynamics, and possibly parameters.

Making the description of Q more concrete, we will now show that in particular implicit
LEFT systems as those considered in Section 7.2 provide an attractive setup for a general
class of model validation/system identification-type questions (henceforth denoted MV /ID).
The following development is closely related to some recent work in [78, 53] where model val-
idation problems where related to extensions of the structured singular value y. In addition
to providing a conceptual framework in which to relate robustness analysis and identifica-
tion, this formulation suggests that computational tools developed to deal with the implicit

robustness analysis formulation could be applied to system identification.
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7.3.1 Model Validation as Implicit Analysis

Figure 7.4 shows a generic input-output MV/ID structure, where all the elements in
the diagram are constant vectors and matrices. This setup is directly applicable to static
problems, where there is no explicit time variable. If, however, we are dealing with a dynamic
model over a finite time horizon, a static representation can be derived by stringing out the
time horizon, and representing signals by vectors and linear systems by matrices (see [83]);
also, this static approach can be used for model validation in the frequency domain, where
the data comes as the response of the system at a number of frequency points (see [33]).
From now on we only refer to the static question.

In Figure 7.4, d is a vector of unknown inputs (disturbances), constrained by ||d|| < 1;
A is a structured matrix in a certain normalized class Ba; v and y are the measured inputs
and outputs. The MV/ID problem is to find values of A and d consistent with Figure 7.4.

> A

Ty Ty, T
— d

Yy =—— Ty Thy Tos u

7 3

Figure 7.4: A standard input-output MV/ID setup.

This LFT structure captures a rich variety of linear identification problems. As a simple

example, consider the standard linear regression
y =UYJ+d, (7.12)

where ¢{ and y are known, 6 is a vector of unknown parameters and d is a vector of unknown

errors. These equations are of the form of Figure 7.4, with

0 0 1 (713
U I o 13)

In Figure 7.5, the equations of Figure 7.4 are represented in implicit form, with v and y

combined into the vector v which includes all the known data:

U
=
[

, T = {Tm 0}7 Tyy = {Tza -]}- (7.14)
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- A

Ty Ty Tis

B d
0 =—— 1oy Ty Ty +=— v

Figure 7.5: A standard MV/ID setup in implicit form.

Note that the input-output partition has been eliminated from the model. In fact, it
could well be that we wish to validate some model based on observations of a system where
this distinction is not available. Then we would arrive directly at Figure 7.5. For example,

in the linear regression above, the “input” in (7.13) is an artifice of the representation.

A\ 4

A

Tn AT T13U

« d

0 -—— 1% 15 Tz:ﬂ) — 1

Figure 7.6: The MV/ID setup with data inside the matrix.

We can now incorporate the data v into the matrix by considering a fictitious scalar

“input” of value 1. This results in Figure 7.6.

The representation has up to now two different sources of uncertainty: A and d. This
distinction disappears and the constraint ||d|| < 1 is included in the problem by introducing
the uncertainty block Ay = d, ||A4|| <1, and writing d = Ayl. This is shown in Figure 7.7;
Ay is just a new name for d which reflects its location in the diagram. The representation

of Figure 7.7 corresponds to a constant matrix version of the implicit LFT system (7.4).

The MV/ID question is now of the form : “Does there exist a nontrivial signal satisfying
the implicit equations of Figure 7.7 for A € Bo 77 The fact that one signal is constrained

to be 1 is irrelevant since everything can be normalized by linearity.

This question corresponds exactly to the robustness analysis question Q posed in Section

7.2, so the same theoretical and computational methods can be applied to both situations.
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Figure 7.7: MV/ID as an implicit analysis problem.

7.4 Stability in Implicit Systems

As in the case of /0 systems, many important issues in the analysis of an implicit system
hinge around the question of stability. In this section we introduce this concept and develop

the basic framework which will be further analyzed in Chapter 8.

7.4.1 Stability and /;-Stability

We first introduce the stability notion for an implicit system with no uncertainty
Rw = 0. (7.15)

Informally, the system (7.15) is stable if the equations disallow any unbounded behaviors
w (e.g., in l.\l3). This requires, in particular, that there are no degrees of freedom left in w,
so there must be at least as many equations as variables; in the language of [91], the system
is autonomous. We wish, however, to allow the possibility of over-constrained problems,
with more equations than unknowns, such as the example considered in (7.8-7.10). These
requirements are met by the following definition.

Definition 9 Let (W,E,R) be an implicit linear system over lr,: W =13, E =1
R : W—E causal map . The system is said to be well posed if R has a causal left
inverse L : E—=W. The system is stable if it is well posed and in addition, L is
bounded on the range of R, i.e. 3y > 0 such that for every ¢ = Rw, and every T,
[PTw| < v[[PTe|].
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Remarks

e The restriction to causal maps is included so that objects are well defined over the

extended spaces.

o We use the equation error e as a way of testing the sensitivity of the equations, in
analogous way as injected disturbances were used for the standard I/O configuration
of Figure 2.8.

o In reference to Figure 2.8, leaving out the injected disturbances an implicit represen-

Sl

which is of the general form (7.15). Applying Definition 9, stability implies that

[_IK _IH} has a causal, bounded left inverse on L.(/3.). This is slightly weaker

tation is given by

=0, (7.16)

than Definition 1, where full invertibility was required; in Definition 9, the operator R
is not required to be onto, in other words the equation errors need not be free to span
the whole of [,,.

The reason for this weaker definition in the case of implicit systems is to be able to
extend the notion to systems which are over-constrained, with more equations than
variables, such as the example considered in (7.8-7.10). In these cases, the operator
will not be onto in general, and this should not be required. The equation errors are
not physical noises, which should be included in the w variables; they just provide a
means of testing sensitivity of the equations. For the case of H, K LTI in (7.16), the

definition is equivalent to the standard one, as will follow from Proposition 7.3.

e As an immediate consequence of the definition, if ¢ € /, and ¢ = Rw for a stable

system R, then w must be in /5.

Definition 9 can also be interpreted in terms of the infinite matrix representation (2.12)

of the equation operator R, and its truncations Ry as in (2.14).
Proposition 7.1 The implicit system (W, E,R) over ly, is stable if and only if
:}*ngfog(RT) > 0, (7.17)

where o (+) denotes minimum singular value of a matriz, g (A) = minjg=; | A€|.
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Proof: From Definition 9, stability implies |Rpé| > 2[€]| from which (7.17) follows.
Conversely, let € = infrsoo (Rr) > 0. Then a causal left inverse L can be constructed

by induction over T: given a lower triangular left inverse Lt of Rp, consider the matrix

RT+1 - [R?:T 0

. } Since g (Rpy41) > 0, 7y 1y, has left inverse [y, 74y, then
T41,T+1

L 0
LT+1 - [ T

_ZT+1,T+1FLT ZT+1,T+1

is a left inverse of Ryiy. This procedure produces a causal operator L : E—W. If ¢ = Ruw,
then PTe = RyPTw therefore ||PTe|| > ¢||PTLe| so L is bounded on the range of R.
|

In Definition 9 we restricted the attention to causal equation maps R, which is the natural
setting to view these equations over the extended spaces l,.. The representation of IQCs
in terms of uncertain equations discussed in Section 7.2 calls, however, for introducing non-
causal maps. For this purpose one must restrict the analysis a priori to the space [; where
these maps are well defined. In this setting, we wish to provide a definition which captures
the analysis question Q discussed in Section 7.2. It turns out that such definition is closely
related to Definition 9, with the modification that the causality restriction is removed, and
the maps are restricted to /. Due to this analogy we will name this notion “/;-stability”,

although the terminology is not necessarily very descriptive.

Definition 10 Let (W,E,R) be an implicit linear system over ly. The system is
lo-stable if R is left invertible in L(15), i.e. L € L(ly) such that LR = 1.

An equivalent characterization is
Proposition 7.2 Rw = 0 is l,-stable if and only if

inf{||Rw||; : w € Iy, [|[w|2 =1} > 0. (7.18)

Proof: For the necessity, note that since LR = I, ||L||||Rw]| > |[w]||. For the sufficiency,
condition (7.18) implies that R is injective, and its range is closed. An application of the
open mapping theorem (see [71]) implies that R has a bounded inverse on its range, which
can be extended to a bounded operator on E, resulting in a left inverse for R.

n

Interpreting the definition, ly-stability implies that the I, behavior of the system is the
trivial space, and that this property is not “sensitive” to equation error: an arbitrary small

equation error e does not allow solutions w, ||w|| = 1, to the equation Rw = e.
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To illustrate these definitions, we will consider the case of an “autoregressive” system
(see [91]) defined by linear time-invariant equations of the form R = R(A), where R()\) is a

p X q polynomial matrix.

Proposition 7.3 Let R(\) be a p X ¢ polynomial matriz. Then

(i) The system R(X)w = 0 is stable if and only if R(\) has full column rank for all
X in the closed unit disk D.
(ii) The system R(XA)w = 0 is ly-stable if and only if R(\) has full column rank for all

A in the unit circle T.

Proof:

(i) If R(0) has a kernel, then R(A) cannot have a causal left inverse, so well posedness
fails. If R(Ao)w = 0, 0 # |Xo] < 1 then the signal w(t) = (%)%, t > 0i1s in .\, but
R(X)w € 1y, violating stability.

If R(A) has full column rank over the closed unit disk, then the theory of coprime fac-
torizations over the stable ring (see e.g. [87]) implies that R()) has a left inverse in RH..
This gives a causal left inverse which is bounded (over all l5.) so stability is satisfied.

(ii) If R(e’*° ) = 0, we can construct Iy signals w® with norm 1 and ||R(A)w®| %0,
violating l;-stability. Conversely if R(e’*) has full column rank, mingeer o (R(¢/%)) > 0, so
there is a left inverse L(e/*) € L, for R(e/*), i.e. a bounded left inverse L to R(X).

|
Remark: The same argument carries through if R()) is a rational, rather than polynomial

matrix, with no poles on the unit disk (respectively the unit circle).

Example: Consider R(A) =1 —2A. Setting W = E = [, the implicit system is not stable,
since the signal w(t) = 2*,¢ > 0, which is in l;.\l; gives ¢ = Rw € [5.
The system with W = E = [, is [,-stable, however, since inf|ju=1 [[Rw]| = L.

7.4.2 Robust Stability and /,-Stability

In this section we refer to the implicit uncertain system of (7.4). When the notion of
stability over /5. is being considered, H is assumed to be a causal, LTI operator in Le(lse),
and the uncertainty A is in the structured unit ball B4 as in Section 2.2.3. The implicit
system (7.4) is said to be robustly stable if it is stable for every A € B.

For the notion of /,-stability we will allow non-causal LTI maps H, and perturbations over
the class Bay, without the restriction on causality. The implicit system (7.4) is robustly
ly-stable if it is [;-stable for every A € By,,.
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The constrained 1/O robust performance problem posed in Section 7.2 converts to robust
[o-stability of the corresponding implicit system: a negative answer to Q implies a trivial
lo-kernel for every A. Left invertibility is technically slightly stronger, but conceptually the

same type of condition.

As an initial step in the analysis of robust stability (or lo-stability) of implicit systems,

the configuration of (7.4) will be further reduced to a canonical case.

Proposition 7.4  The implicit system (7.4) is robustly (ly) stable if and only if
(i) Q is (I3) stable, with bounded left inverse L.

(t1) The implicit system [I *1$M] z =0, is robustly (l5) stable, where
M=M-PLN, N=DN-QLN. (7.19)

Proof: Consider first the case of /y-stability.

[Necessity]
If (7.4) is robust l-stable, then in particular R(0,H) = [Ii' (%} has a bounded left

inverse, therefore Q has bounded left inverse L. We now write the identity
R(AH)S =T R(A,H), (7.20)

which holds for any A € B4, with the invertible operators S and T defined as

s—| I o 5_ L -APL | o, L o) |1 aPL
~LN I

9

0 I LN I 0 I
(7.21)
and ) )
N M 0O . I-AM O
H = . , R(AH) = . ) .
[N Q} N [ 4 Q} 12)

By hypothesis, R(A,H) is left invertible, hence so is R(A,I:I) from (7.20), which implies

the left invertibility of Ry (A, H) := [I *NéM } .

[Sufficiency]
IfYX(A) = [Y; Y3]is a bounded left inverse for R;(A., H) then (note that LN = 0 by
definition of N)
T, Yo(I-QL I-AM 0
v Ya(1-QL) - =1, (7.23)
0 L N Q

therefore R(A, H) is left invertible, and so is R(A, H) by (7.20).



120
Now turning to the notion of stability over /5. :

[Necessity]:

By hypothesis R(0,H) = [1{1 (%} has a causal left inverse, which is bounded over its
range. Since it is an LTT map in £.(lz.), from Proposition 7.3 we know that the left inverse
can be chosen in H,, and therefore bounded over the whole of l5., not just the range. Let L
be the corresponding left inverse for Q. Then S, T S™!, T~!, defined as in (7.21) are maps

in £.(l2.). From here on the argument follows analogously to the [; case.

[Sufficiency]:
Fix A € By, let [ Y1 Y3 ] be a causal left inverse of Ry(A, H), bounded on its range,
and construct a causal left inverse for R(A,H) as in (7.23). The lower portion [0 L] is

bounded on /5. as discussed above. The top portion is

1 0
- = 2
[ T-Qu) | = | T TQMO (I_QL)}, (7.24)
where LI) (1 —OQL) } is bounded and maps a vector in the range of R(A, I:I‘}7 to the range

of R(A, I:I) where [ X1 Y] is bounded, therefore the top portion is bounded on the range
of R(A,H).
|

The previous result shows that for robustness analysis, it suffices to consider the canonical

[I_l\?M}zzo, (7.25)

implicit system

where M, N are renamed as M, N for simplicity. This case will be analyzed in Chapter 8.
It is useful to compare this setup with the question of robust stability in standard robust
control, which specifies the invertibility of (I — AM). The main difference is that (7.25)
allows for additional constraints defined by the N equations. A problem with more equations
than variables such as the one considered in (7.8-7.10) will result in the presence of these
additional equations. A problem where the N equations do not appear will be termed the
“unconstrained” case. For example, if the IQCs (7.9) are eliminated from (7.8-7.10), the

problem can be reduced to the equations

(]—{A“ 0 }T){Z}zo (7.26)
0 Ap v ‘

which are in the standard form (I - AM)z = 0.
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In an unconstrained problem, our definition of robust stability imposes left invertibility
of (I— AM) over A € Ba. It can be shown (see [60]) that in this case full invertibility

holds, so there is no difference with the standard definition.

Remark:

The notions of stability and l;-stability and this canonical representation have been de-
veloped in the context of dynamical systems. The results in Section 7.3 have also motivated
the appearance of representations such as (7.4), where the defining elements are constant
matrices. The analysis question Q for these constant matrix representations is to test for the
existence of nontrivial solutions, which corresponds exactly to left invertibility. Correspond-
ingly, the development of the canonical representation (7.25) also applies to these constant

matrix analysis problems, which will be further discussed in Chapter 8.



Chapter 8

Implicit Uncertain Systems 11I:
Analysis

In Chapter 7 we introduced a framework for analysis of systems in implicit form. This
approach was motivated from first principles modeling where implicit equations are the
natural object, but was shown to have advantages for a more general class of problems.
In particular, it was shown that an implicit version of the LFT formulation provides a
standard setup in which to cast a variety of analysis questions involving constraints, including

robustness analysis under IQCs and a model validation problem.

It was further shown that the analysis of these implicit uncertain systems could be reduced

to studying the canonical case

{I—l\?M}z:o, (8.1)

where M and N are LTI maps, and A a structured operator. The robustness analysis

question is to test for the existence of solutions to (8.1), or, more technically, to test the left

I-AM

invertibility of the operator { N . This question is a generalization of the standard
“unconstrained” case where the N equations do not appear.

In this chapter we consider this analysis problem in a number of cases. We begin in
Section 8.1 by studying constant matrix problems; these lead to a generalization of the
structured singular value p; the upper bound theory is developed in detail. In Section 8.2
we analyze LTV perturbation structures, and prove convex conditions extending those in
the standard theory. Section 8.3 discusses the case where M, N are described in state-
space. Section 8.4 contains examples to demonstrate the application of this theory in two
directions: robust performance analysis under constrained disturbances, and a review of the

least squares identification problem from this perspective.
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8.1 A Structured Singular Value for Implicit Systems

In many important cases, robustness analysis can be conducted in a constant matrix

representation. In the implicit framework, these have the form

I —AM

v 2=0, A€AcC™, (8.2)

where M € C"*" N € CP*" and the structure A is still of the form (2.24), but with blocks

which are constant, complex matrices rather than dynamical operators. A could also have

blocks restricted to be real. By analogy with the dynamic case, we will say that the implicit

system (8.2) is stable if

I—AM
N

Ker =0 VA€ Ba. (8.3)

Equivalently, stability implies left invertibility of {i[ _NAZW] over B,. Condition (8.3)

strongly resembles the PBH test in standard system theory. In fact, for the special case
A = 61, stability is equivalent to detectability of the pair (N, M).

Standard robust stability analysis for constant matrices is provided by the structured
singular value p [28, 53], as reviewed in Section 2.3.2. In the constrained case of (8.2), the

natural extension is given by the following:

Definition 11  The structured singular value pa(N, M) of the implicit system (8.2)
is defined as follows:

If Ker {I ——]\%AM} =0VA € A, define ua(N, M) := 0, otherwise

1
min{&(A):AEA,Ker{I_A%M} 740}

MA(N, M) =

A restatement of this definition is to say that (8.2) is stable if and only if pa(N, M) < 1.

Before considering the corresponding theory for “implicit p” we remark on which prob-

lems will reduce to this representation.

o A first simple example, analogous to the standard theory, is that if the uncertainty in
(8.1) is LT1, then the robust stability tests reduce to a constant matrix analysis across
frequency. In particular, a direct application of Proposition 7.3 implies that the condi-

tion pa(N(A), M(X)) < 1 over the unit circle |A\| = 1 characterizes robust I, stability,



124

and the same condition over the unit disk |A] < 1 characterizes robust stability. Note
that in the general case (dynamic N), the “maximum-modulus” property no longer

holds; the maximum of p4(/N(X), M(X)) need not occur on the circle.

e The previous case has not been very well motivated, since we argued for the consid-
eration of over-constrained problems based on the representation of IQCs, which yield
LTV blocks in A. If, in the situation of Figure 7.3, the uncertainty A, is LTI, then
the implicit description (7.8-7.10) will have a combined LTI/LTV uncertainty structure,
exactly as those considered in Chapter 3. Most of the theory of Chapter 3 can, how-
ever, be extended to the implicit case, reducing these combined problems to implicit x
analysis problems in augmented uncertainty structures, thus providing an application

of the previous definition.

e The model validation question considered in Section 7.3 reduces directly to a con-
stant matrix problem. The corresponding test pa(N, M) < 1 is equivalent to model

invalidation.

8.1.1 Bounds for Implicit p

Definition 11 translates the analysis problem to the computation of pa(N, M); as in the
standard case, exact computation is in general hard and one must rely on upper and lower
bounds. We will only comment briefly here on the lower bound problem, and develop in
detail the upper bound theory.

The lower bounds algorithms for the standard unconstrained case (no N equations) are
based on the fact that pa(M) = maxaep,(p(AM)), where p(-) denotes spectral radius.
Algorithms which resemble the power iteration for spectral radius have heen developed [55,
95], with good performance on typical problems.

For the constrained case, only eigenvalues with eigenvectors in the kernel of NV are rel-
evant. In the following, it will be convenient to parameterize this kernel by a matrix N7,
whose columns form a basis for the kernel of N. This leads to

I—-AM

Ker =0 < Ker[N] — AMN]]=0. (8.5)

Denoting p9(A, B) = max{|3] : Ker(84 — B) # 0} (maximum modulus of a generalized

eigenvalue of A, B, the notation is not standard), we have

pa(N, M) = max p*(NT, AMN?). (8.6)

AeB,
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These observations will presumably lead to an extension of the standard p lower bound
algorithms, although work in this problem is still premature, and it is not obvious that these
algorithms would inherit the typical performance of the standard p lower bound. Some
initial work on a special case of this extension is documented in [53].

We will now consider the upper bounds for this version of the structured singular value.
The following theory strongly parallels that of [55] for the standard case. X denotes the set
of scaling matrices defined in (2.35), X#, X* the subsets of hermitian and positive matrices,

respectively. X¥ is in fact a real vector space, and
L F
(X, X) = trace(X; X)) + Y wreidre (8.7)
=1 7=1

defines an inner product in X#. X* and its closure X7 are convex in X*.

Lemma 8.1 For fized 8 > 0, the following are equivalent:

(1) 3IXeX": M"XM - B3*X —-N*N < 0 (8.8)
(1) IX € XP: N (M"XM - B*X)N; < 0. (8.9)

Proof: Since NN =0, (¢) implies (7).

If (i¢) holds, there exists X € X such that M*XM — 3?°X < 0 on the kernel of N.
By continuity, there exists € > 0 such that (M*XM — 52X )v,v) < 0 for all v, |v| = 1,
|Nv[? < e. Now choose > 0 such that Ay (M*nXM — 3% X) < e.

This gives (M*nXM — 3*nX — N*N)v,v) < 0 for all v # 0, so n.X solves (7).

]

The previous conditions are both LMIs (strictly speaking, (i) is affine rather than lin-
ear). While version (z) is more directly related to robustness analysis tests, (i7) is of lower
dimensionality and therefore preferable from a computational point of view. We define the
upper bound for p,

pa(N, M) :=inf{3 > 0: (8.8) is satisfied}. (8.10)

The fact that pa (N, M) < fis(N, M) is a consequence of Theorem 8.2 below.

Remarks:

o LMI (8.9) for 3 = 1 has appeared in previous work [46] on stabilization of input-output
LFT systems, where it characterizes the so-called Q-detectability of the pair (N, M)
(this reinforces the connection with the PBH test mentioned earlier). It is shown in

[46] that it is equivalent to the existence of an output injection matrix L such that

infyexra (X(M + LN)XY) < 1.
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o If the structure includes real 61 blocks (corresponding to parametric uncertainty), the

upper bound can be improved in the same manner as in (2.39) for the standard case.

For the analysis of the upper bound we introduce a set V° which is closely related with
the corresponding method for standard p (see [55]) and to the IQC methods to be used in
Section 8.2. For ¢ € C", let

SUQ) = (MOU(MO); — Gi¢fy i=1... L,

U%-{—j(C) =(MQ)1;(MQ)pyj —CajCiyis J=1...F,

A°(¢) = diag [7(C), -+, BL(Os 0La (O s o5 0L p (O] (8.11)
Define V% = {A°(¢) : N¢ =0, |¢] =1} C X¥; co(V?) denotes its convex hull.

Theorem 8.2
1. ua(N,M) <1 if and only if VO NX? = 0.
2. The following are equivalent:
(1) pa(N, M) <1,
(12) IX eX": M"XM-X - NN <0, (8.12)
(1i1) co(VO)NXF = 0.
Proof:
1. Assume pa(N,M) > 1. Then there exists A € By such that (8.2) has nontrivial
solutions, say ¢ of norm 1. Then N¢ = 0, AM(¢ = (, which gives
6l(MC)i = G = (MQi(MQ); =G = XN(O)>0, i=1...L,

Api(MQ)ryi = (v = (MO 2 [Cril* = 0,00 20, j=1...F
(8.13)

Therefore the matrix A%(¢) is in VN XP. The converse follows similarly.

2. The equivalence of (i) and (iz) is just the definition of is(N, M).
Let X > 0 solve (8.12). For any ( € C", N = 0, some algebra shows that

L F
(X,AY(Q)) = trace(XiN0(0) + Y wz4j08, () = C(M*XM — X — N*N)¢ < 0.

(8.14)
Also, (X,Y) > 0 for all Y € X?. Therefore the hyperplane (X,Y) =0 in X# strictly
separates the sets V® and X?, which implies their respective convex hulls co(V?) and X7
are disjoint, proving (227). Conversely, if co(V°), X7 are disjoint, a strictly separating

hyperplane can be found from Lemma A.3 leading back to (12). [
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8.1.2 p-Simple Structures in the Implicit Case

The upper bound for implicit p will be strict in general; equivalently, LMI (8.12) is not

a necessary test for stability. In a similar manner as in the standard case [55], we now pose

the question as to which special A structures give equality of p and fi.

Definition 12 The structure A is p-simple in the implicit case if ua(N, M) =
pa(N, M) for any matrices M, N.

Theorem 8.3 The following structures are p-simple in the implicit case:
(i) A={6l:6€ C};
(1) A = {diag[A1,...Ap] : A; € R™>™} with F < 2, for M, N real;
(1it) A = {diag[Aq, ..., Ap] : A; € C™X™ ) with F < 3.

Proof:

(i) In the case A = 61, if pa(N, M) < 1 then (N, M) is detectable in the usual system
theoretic sense, so there exists an output injection L such that p(M + LN) < 1. From
Lyapunov theory this implies there exists X > 0 such that

(M + LN)*X(M + LN) — X <0. (8.15)

Multiplying on the left and right by N, N} gives N (M*XM — X)N; < 0 which implies
,&A(N, M) < 1.

(ii) The only nontrivial case is F' = 2. Let M, N, A = diag[A;, A;] be real matrices.
To analyze this case we must consider a real version of the V° set, with the same definition
as before but with ¢ € R™. Consider the n x r matrix N| parameterizing the kernel of N

(¢ = N'v), and assume it is isometric. Then V° can be rewritten as
V0= {A(v) = [o1(v),09(v)], 0 € R, Ju| = 1}, (8.16)

where 0;(v) = v'Hjv, and H; = (MN):{(MN); — (Ny);(N}); is a real, symmetric matrix
for j = 1,2. To prove that this structure is g-simple is equivalent, by Theorem 8.2 to the
fact that

VOINX?P =0 = co(VO)NXF =) (8.17)

for any M, N, or equivalently for any symmetric H;, Hy. In this case X2 = (RT)2, the closed
first quadrant in R?. We have therefore restated the problem as a geometric condition on
the range of two real quadratic forms, which is equivalent to an “S-procedure losslessness”
theorem from Yakubovich [94]; since this literature is not easily accessed we include a proof

which is based on some modifications to the parallel results of [28].
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Let P = A(vp), @ = A(vg), be two distinct points in V° (vp, vg € R", Jop| = |ug| = 1).
Define

!
Vo= lgf][”P v ] >0, (8.18)
Q
A 1 / 1 )
H = V2 [U?] H;[vp vo |V ™2, 3 =1,2, (8.19)
e,
& = {[n’ﬁm, n'Hyn lin € R, |n| = 1}. (8.20)

Then

e £ C V°. This follows from the fact that if || =1, |[vF v ]V "2y =1 from (8.18).

e Qe E. For Psetgp = V2 [(1)},Which verifies [np|* = [1 O}VHJ = |vp|* = 1,

and analogously for Q.

e & is an ellipse in R? (which may degenerate to a segment).

Parametrize 5 = (cos(),sin(0)), 6 € [—x,7]. If H; = {Cé] g] }, then
J

J

' a; + ¢ a,—¢; 20 : _,
Wl =959 [ama ] [gfﬁgw;] i=12 (8.21)

F

This implies that &€ is the image of the unit circle by an affine map, an ellipse.

We have shown that given two points in V°, there exists an ellipse & C V° through those
points. Now we return to (8.17). If co(V°) N (R*)? # @, since V° is bounded and (R*)? is a
cone, there exists a point in the boundary of co(V?) which falls in the first quadrant. Using
Lemma A.2 there exist two points P,Q) in V° such that the segment P() intersects the first
quadrant. But then the corresponding ellipse £ will intersect (R1)?; (the geometric picture
is given in Figure 8.1(ii)). This implies VO N (R1)? £ (.

P 0 s
Q T R

) U

iy i)

Figure 8.1: Ilustration to the proof of Theorem 8.3
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(iil).
We consider the case F' = 3, the others follow similarly. The same procedure as in (74)
yields
VO = {A(v) = [01(v), 02(v), a3(v)] € R% 0 € T, o] = 1}, (8.22)

where 0;(v) = v*H;v, and H; are complex hermitian forms in C". Similarly, we must show
the geometric result

VO (RY)? = § = co(V°) N (RH)? = 0 (8.23)

for any Hi, H,, H3. Once again, this result appears in the “S-procedure” formulation [33].
The following proof is based on [28]. In particular, it is shown in [28] (analogously to (8.21))
that for the case r = 2, the set V° is the image of the unit sphere in R® by an affine map
g : R®->R? This gives an ellipsoid € (with no interior) in R?, which could also degenerate
to a projection of such an ellipsoid in a lower dimensional subspace.

Given two distinct points P = A(vp), @ = A(vg) in V°, an analogous construction as the
one given in (8.18-8.20) (with analogous proof) shows that there is such an ellipsoid £ ¢ V°
through the two points.

Assume now that co(V°) N (R*)® # (. Picking a point in the boundary of co(V?),
Lemma A.2 implies that there are 3 points P,Q,R in V° such that some convex combination
S =aP + BQ 4+ ~R falls in (R*)?. Geometrically, the triangle PQR intersects the positive

“octant” at S.

Claim: S lies in a segment between 2 points in VY.
This is obvious if P,Q), R are aligned or if any of a,f3, 7 is 0. If not, consider the following

reasoning, illustrated in Figure 8.1. Write

S=aP+BQ+vR=aP+(4+ wg—fr—;wcz AR =P+ B+, (8.24)

where T' lies in the segment QR. Now consider the ellipsoid & ¢ V° through @) and R. If
it degenerates to 1 or 2 dimensions, then T € & C V° and the claim is proved. If not, 1" is
interior to the ellipsoid €. The half line starting at P, through 7' must “exit” the ellipsoid a
point U € £ C V° such that T is in the segment PU. Therefore S in the segment PU, and

P,U € V°, proving the claim.

To finish the proof, we have found two points in V° such that the segment between them
intersects (R*)® . The corresponding ellipsoid & C V° between these points must clearly
also intersect (R*)%. Therefore VO N (R1)% £ (.
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In reference to structures with only full blocks, we have shown that the situation is
analogous to the standard case of [35]: the upper bound is exact for a maximum of 3
complex full blocks or 2 real full blocks. The only notable difference in the implicit case
is the fact that the structure A = {diag[é;7, As]} is no longer u-simple, as shown in the

following example.

Example:
Let A= dlag {61]2,A2], 51 < C, AQ €« (CZXQ,

Nt = MN7; =

O = O =
= O = O
N W O
Y WO

The top half of N7 — AMN? is ! _0251 1 —0361 }, so the kernel is nontrivial only for

61 = 1/2 or 6; = 1/3. In the first case, the kernel must be the span of {(ﬂ therefore

[ 3‘] = A, [ ;’ ] This can be achieved with & (A;) of at least 4/v/13.
A

similar argument with 6; = 1/3, shows that for a nontrivial kernel, & (A;) > /2. The
first perturbation is smaller so pus(N, M) = /13/4 < 1.

For the LMI, write X = diag[Xo, l], with X, = [gf*

[

J. Some algebra gives

3z—1) ! 2
NL(M XM - X)N; = | 31 5+2) (8.25)
5y +2) 8(z—1) ‘
For (8.25) to be negative definite, and X > 0, we must have
) , 24 | |
O<az<l; O<z<ly |yl <az |y+27° < =(1—-2a)(1-2). (8.26)

25 ’

This implies |y| < 1, [y + 2| < 1 which is impossible, so there is no solution to LMI (8.9)
with 8 = 1. Consequently, ua(N, M) < ia(N, M).

We have developed the basic theory of the structured singular value for implicit analysis.
Given the fact that this problem is NP-hard, the main open challenge is the development of
heuristics to compute the answer in typical cases, avoiding unacceptable growth rates with
problem size. This requirement is particularly important in the case of problems involving

data, as those discussed in Section 7.3.
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8.2 Implicit Analysis with LTV Uncertainty

In this section we return to dynamic problems, and study the analysis configuration
(8.1) for the case where M, N are LTI maps, and A is a structured, LTV operator. Given
the relationship between IQCs and LTV operators, this is a natural situation for an over-
constrained analysis problem. As in Chapter 7, we address separately the conditions for
stability and /, stability; in Section 8.2.3 we discuss how both cases apply to a constrained

robust performance problem.

8.2.1 A Necessary and Sufficient Condition for Robust /,-Stability

We first consider analysis in the I, setting; M ,N, A are in L(l3); M, N are LTI, and A

varies in the set
BAK%‘V = {A = ﬁ(lg), A = dlag [6117117 e ,(SLInL7 AL+1, RPN AL+F}} s (827)

where we include non-causal structured operators. X is the set of constant scales as in (2.35).
The following result is an extension of the constant scales condition (2.42) for standard robust

stability analysis.

Theorem 8.4 The system (8.1) is robustly ly-stable if and only if

IX €X’: MXM-X-N'N<0. (8.28)

Remark: The inequality in (8.28) is interpreted in the sense of operators on lo, i.e.
IT < 0if (z,z) < —¢||2||? for some € > 0. For the case where M, N are finite dimensional,
(8.28) reduces to an the LMI across frequency

IX €XP: M()YXM(2¥) — X — N(&)N(e™) <0 Vwel,27]. (8.29)

Proof:
[Sufficiency]:
Fix X > 0 which solves (8.28). Without loss of generality it can be assumed that X = I.

This results from the fact that invertible operations yield

X5 0
0 I

where M := X3MX~3, N := NX~% verify (8.28) with X = I. The notion of negative
definiteness allows by continuity to find 4? < 1 such that

8.30
N N ( )

I—AM} i [I—-AM}

M*M — ~+*I — N*N < 0. (8.31)



Let e,z € Iy, ||z|| = 1, and A € B, satisfy

{I—l\?M}z:e:tl} (8.32)

From ||A|| <1 and (8.31) we have
JAME|? < [Me])? = (MM, 2) < 42z 2) + (NN o) = 2 4 el (339)

Therefore ||AMz|| < v+ |le2||, and |les|] = ||z — AMz|| > (1 — 7) — |lezl]. This leads to
lle|| > 1\;—-27, which proves robust l5-stability by Proposition 7.2.
[Necessity:]

The proof is based on an S-procedure losslessness argument similar to those used in
Chapters 5 and 6. Some minor modifications are required to account for the additional
constraints N. We will also use this opportunity to explain in more detail the proof for the
case where A includes 81 operators, which was only mentioned briefly in Chapter 6.

Analogously to (5.6), and (5.13), we characterize the uncertainty by the following IQCs:

zi(z).—_—/gW[(Mz)i(eiW)(Mz);(ef‘w)—zi(eJ'W)z;(efw)] -ffi i=1...1L;

2
o14+i(2) = [(M2)oil* = llzrill®, G =1... F;

A(z) = dlag [E1(2), ..., X0(2), opp1 (), ooy orsrm(2) I, - (3.34)

The ¥; characterize the 61 blocks, and the opy; the full blocks. As usual, the IQCs are

collected in A which takes values in X¥. Define a subset of X¥,
Ve={A(z): ||z|| = 1,||Nz|| < €}. (8.35)
We make the following statements:

Lemma 8.5 The closure V¢ of V¢ is convex and compact in X,

Proposition 8.6 If the system (8.1) is robustly ly-stable, there exists € > 0 such
that

VenXe = . (8.36)

Proof: Lemma 8.5 follows from the methods in Chapter 5, in an analogous way to Lemma

6.9. Proposition 8.6 is covered in Appendix B. N
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V¢ and X7 are disjoint convex sets in the real, finite dimensional vector space X¥, where
we use the inner product (8.7). V¢ is compact and X? is closed. From Lemma A.3 there
exists X € X¥, o, 4 in R such that

(X,A) <a<f<{X,X) VAeV:, XeXr (8.37)
Since X7 is a cone, 3 can be chosen to be 0. It is easy to show that
(X, X)>0VXeX" X>0 = X >0. (8.38)

A small perturbation of X ensures X > 0 (X € X”), and by continuity and compactness of

V¢ we can modify « to achieve for the new X

(X,A) a<0 VAeV- (8.39)
Furthermore, by scaling down X (and a) we can ensure (8.39) holds and

IM*XM — X|| =+* < ¢ (8.40)

Let ¥ = M"XM — X — N*N. Now for any z =, ||z]| = 1,
Ztrace X:%i(2)) + Z$L+jO'L+] = (z,(M"XM — X)z). (8.41)

If [Nz]| < ¢, then A(z) € V€ so from (8.39) we have
(2,02) < (2, (M"XM — X)2) = (X,A(z)) < o < 0. (8.42)
If || Nz|| > €, then from (8.40) we have
(z,¥z) < (z,(M"XM — X)z) — |[Nz[|* <~* = € < 0. (8.43)

We conclude that (z,¥z) < max(a,v? —€?) < 0 for ||z|| = 1, which implies ¥ < 0.

8.2.2 Necessary, Sufficient Conditions in the [,, Setting

The motivation provided in Chapter 7 for over-constrained problems refers mainly to the
l; setting. As seen in Chapter 2, however, in the standard case the condition M* XM — X < 0
is necessary and sufficient for robust stability in the sense of /.. It therefore seems natural

to explore this issue in the constrained case of (7.25). We first consider necessity:
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Theorem 8.7 Let M, N be LTI in L.(lo.), A € Barrv. If the system (8.1) is
robustly stable then (8.28) holds.

The proof can be derived exactly as in Theorem 8.4. The only consideration is that in
the proof of Proposition 8.6, causality of perturbations must be imposed; given the results
of Appendix B, this is of no consequence.

Regarding the issue of sufficiency of condition (8.28), we consider the following example.

Example:
Let M =2 N=1-2X. A € L.(l3). For any X > 0,

(M"XM = X = N'NJo,v} = 3X[Jol” = [[(1 - 2A)o[* < BX — )[ol’,  (8.44)

so for 0 < X < 1, (8.28) is satisfied.
But the perturbation A = A gives [ I —1\?1\/{ } = [ % o

[NRN

i ] which is unstable.

This example shows that in general, condition (8.28),

—

or (8.29)) is not sufficient for
robust stability, even for time invariant perturbations: (8.28) does not provide information
of the behavior outside l,. One could think of strengthening condition (8.29) to include
frequency points inside the disk; this would eliminate the previous counterexample, and in
fact guarantee robust stability with LTI perturbations, but it is still not sufficient for the
LTV case. A counterexample for this is the system M = 4X — 8A%, N = 1 — 4X + 4A%;
we omit the rather lengthy verification. This difficulty can be related to a situation in [90],
involving a frequency domain condition over the right half plane.

We can state, however, a partial result which is applicable in many cases.

Theorem 8.8 Let M be LT1 in L.(l5.), and N be a static map. If (8.28) holds,
then system (8.1) is robustly stable over Byrrv.

Proof:
Analogously to Theorem 8.4, assume without loss of generality that X = I, and let v

satisfy (8.31). Let T be fixed, z,e satisfy (8.32), with truncation P*z of norm 1. From
causality

I-AM
N

PT (8.45)

Since PTz € [, from (8.31) we obtain

IMPT2|? < *|PT2)? 4 NPTz (8.46)



Since N is static, NPTz = PTe,; also |PTAMPTz||? < ||[MPT:|?, leading to
[PTer]| = [PT(I— AM)P 2] > 1 — 5 — [[PTey]. (8.47)

We conclude that [|[PTe|| > ¢ for a fixed ¢ > 0, independent of T', A, which implies robust
stability from Proposition 7.1. [

8.2.3 Application to Constrained Robust Performance Analysis

To conclude this section we review the problem considered in Section 7.2, of robust
performance analysis under constrained disturbances. Referring to (7.8-7.10) and Figure 7.3
we assume that T, U and V are causal, LTI, stable maps. We recall from section 7.2 that
without loss of generality in the analysis, U can be chosen to be a static map £I. Also the
perturbations Ap, A¢ vary in the class of arbitrary time-varying operators.

The reduction procedure from Proposition 7.4 yields a system of the form (8.1), where

A, O o Ty, T2 O
A=| 0 Ap 0 |, M=|Ty Tp 0|, N= {o U —I}. (8.48)
0 0 Ac¢ 0 vV 0

If U is static, we observe that N is static, as in the assumption of Theorem 8.8. Therefore

it A, is LTV uncertainty, condition (8.28) is necessary and sufficient for
e robust /;-stability in the case A,, Ap, A in L(13),
o robust stability in the case A,, Ap, Ac in L.(ls),

If we review the problem statement that let to equations (7.8-7.10), the case we are
interested in testing for is a hybrid of the two cases considered above. A, will typically be
a causal perturbation, and it must be guaranteed in the first place that the z variable does
not “blow up” (it remains in /; if v and the equation errors are in /5). Once this is known,
the analysis can be restricted to /; and the (possibly non-causal) perturbations Ap, Ac can
be considered, casting the robust performance analysis as a robust I, stability question, as
argued in section 7.2.

This hybrid question is also answered by the test (8.28); in fact, since the first block of
N is zero, the upper portion of M"XM — X — N*N is T3, X, Ty, — X, which provides the
standard robust stability test in the z variables, in addition to the robust /y stability test on

all the variables.
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8.3 Analysis of State-Space Systems

In the previous sections the LTT systems M, N were treated as operators and the convex
analysis conditions are infinite dimensional, involving a search in the frequency domain. We
now consider the case when M, N are finite dimensional, causal LTT systems, described by

the joint state-space realization

M A B
{ }: il 8.49)
Cy | Dy

The state equations are of the form z = A(Ax + Bz), with A the delay operator, and «

the state. By adding these equations in implicit form to (8.1) we obtain

[ | AT 0 a B N\[«] _,
0 A CM Dy, i z ] a 7
oo T =0 (8.50)
L <
which will be represented by
I —AM :
[ S} [ﬂ:m (8.51)
NS Z

with Ms, Ns constant matrices, and the delay-uncertainty operator A, := diag[X, A]. Note
that (8.51) has once more the form (8.1). In this section we consider causal operators A and

the corresponding notion of robust stability.

If A is LTI, then the robust stability test is an implicit # condition pa,(Ns, Ms) < 1; a

more useful test is, however, the corresponding upper bound
M;XSMS —Xg — N;NS < 0, (852)

where X5 = diag[Xo, X] is defined to commute with Ag, as in (2.46) for the standard
case. A remark is that this upper bound is conservative for pa,(Ns, Ms) < 1 even for an

unstructured A (recall the characterization of p-simple structures in Section 8.1).

Condition (8.52) can be related to LTV A: if follows from Theorem 8.8 that (8.52) is
sufficient condition for robust stability of (8.51), for any A, := diag[A, A], and A in Brrv.
It is not clear, however, whether the condition is necessary, as it is in the unconstrained

case. A special case where this holds is when the constraints Ng do not involve the state
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variables x: consider the state space implicit system of Figure 8.2(a), which corresponds to
the case C'y = 0 in (8.50). The corresponding system (8.1), depicted in Figure 8.2(b), has
static N constraints. As remarked in Section 8.2.3, a general robust performance problem

with a finite number of IQCs in the disturbance variables can be cast in this special form.

A
A
A
A B m
Cy Dy M i
0~— 0 N 0-— N
(a) (b)

Figure 8.2: State space formulation of the robust stability problem

Theorem 8.9 [n the notation of (8.50), assume that Cy = 0 and that A varies in
B,rrv. The following are equivalent:

(z) (8.52) holds.

(22)  The implicit system (8.51) of Figure 8.2 (a) is robustly stable.

(¢41) p(A) <1, and the implicit system (8.1) of Figure 8.2 (b) is robustly stable.
(ev) p(A) <1, and IX € X : M*"XM — X — N*N < 0. (8.53)

Proof: (i) = (it) This follows from Theorem 8.8, as discussed before.

(i1) = (i13). From (), { =AM, } has a left inverse in £,(1y,) for every A, = diag[AZ, A,

A € Barrv. Setting A, = diag[A7,0] implies that (I — AA) has a left inverse in Le(lze), so
p(A) < 1. Now for any fixed A;, the identity

I 00 I-AA 0
T—AM, | [T (@T-x4)"2
AC,I-AA)"TI0 I=ATABL 1 5 1AM
N, 0 I
0 01 0 N

(8.54)
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implies that the right hand side of (8.54) has a left inverse in £.(l.). So [ ! _1\?M } has

a left inverse in L. (lz.).
(221) = (v) This is a direct application of Theorem 8.7.
() = (7).
Let the columns of N} form a basis for the kernel of N; (iv) leads to

NiM(e™)* XM(e™)NT < NN XNT Vo € [—x, 7). (8.55)

Since Ny X N7 > 0, pre and post multiplication by (N, XN¥)~7 gives |M(A)]|o < 1, where
M()\) = X%M()\)NI(NLXNI)‘%. We will now change notation, redefining NI(NJ_XNI)—%
as N7, since it still spans the same column space. So Ny XN = I, and M()\) = X%ZV[(/\)NJ*_,
which has state space realization

A ' B
G D,

(8.56)

A | BNy
X3Cy | X2DyN; |

It is well known (see, e.g. [55]) that the H., condition p(A) < 1, [[M(A)|| < 1 implies the
existence of a solution Xy > 0 to the LMI

*

Xo 0

A B
0 I Cy Dy 0 I

—-[A% O} < 0. (8.57)

Substituting the expressions for A, B,C\,, D,, , and using NiXNT =1, (8.57) leads to

I " X, I 0
0 M| 7° Ul g - | <o.
0 N, 0 X 0 N:

Since Ng = [0 NJ], Ng; = [ N, }, so setting Xg = diag[Xy X] gives

Xo O
0 X

NS_L(IM;XSAMS — Xs)Ngj_ < 0, (858)

which implies (¢) from Lemma 8.1.

To conclude this section we develop state-space conditions for the problem of robust
performance analysis under constraints in the disturbance, considered in Section 7.2. For
convenience, the problem is represented in Figure 8.3, and summarized as follows.

We are given an uncertain input-output system given as an LFT between an LTI map T
and a structured uncertainty operator A,. The question is to test whether the worst-case

I; gain from v to y in the presence of uncertainty A, is less than 3, when the input signal
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Ap
Ay
t J Y T vl
0 A% g
0+~ 1 U

Figure 8.3: Robust performance analysis with disturbance 1QCs

v is forced to satisfy a finite number of IQCs represented in implicit form by the equations

(7.9), and shown pictorially in the left of Figure 8.3. The performance condition is captured

by the block Ap as in (7.10).

In Section 8.2.3 we reconsidered this problem and showed that if A, varied in the class
Brrv, it reduced to a convex test (8.28), with the definitions of (8.48). Also, in this case
the constraints N can be chosen to be static. This means that they are in the conditions of
Theorem 8.9, and therefore the problem is equivalent to an LMI (8.52) in state-space. To

obtain the matrices Mg, Ns we write the state-space realizations

Av | By

T\ = | Cr | Dryy D . V() =
(M) 1| Drii Dri (A) oo Dy

Ar I Bri  Bry {
Crz | Dror Draa

The corresponding equations (8.51) have A, = diag[AL, AL A,, Ap, Agl,

[ Ar 0 B 1B 0
0 Ay 0 %Bv 0
Ms = | Cri 0 D 5Driz 0,
Cra 0 Driz 5Drss 0
L0 v 0 1Dy 0|
Ns = | 0 0o o i -1} (8.59)

Let Bopt be the infimum of the values of the parameter 3 such that LMI (8.52) is feasible;

this is a measure of the worst-case gain under A, € Bjzrv and v satisfying the IQCs.
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8.4 Application Examples

In this section the implicit analysis methods are applied to two different problems: least
squares system identification, and robust performance analysis under white noise.

For both cases there are better solutions available: the standard least squares solution,
and the robust H; performance conditions of Chapter 6. The objective here is to demonstrate
the potential of the implicit analysis framework, which has much more generality and applies

in particular to these two problems of very different nature.

8.4.1 The Least Squares Identification Problem

A canonical example of a computationally easy problem in system identification is the
least squares problem: in the linear regression setup y = U4 +d of (7.12) we wish to find the
values of § which satisfy the equations and minimize the 2 norm of the vector d. Assuming
U is full column rank, this problem has an explicit solution § = (UU)Y Uy, which gives a
minimum ||d||* equal to

% =y (L =UUU)T Uy, (8.60)

We will now reformulate this problem as an implicit analysis question, as was suggested
in Section 7.3. The purpose of this is to try the implicit analysis methodology in a simple
case, and to show that the simplicity is not entirely hidden in the new formulation.

We first specialize the MV/ID setup of Figure 7.7 to the linear regression case. This is
done by following the steps in Section 7.3, and yields the diagram on Figure 8.4.

g 0
0 Ay

Y

Y

d

T oo
S )
A

0 ~—o —y — 1

Figure 8.4: The least squares problem.

The only modification to the setup in Figure 7.7 is that scalings &, v are added to fix the
allowable sizes of 6, d respectively. For the least squares problem, we will later on attempt

to minimize v and let k—o0 to make 8 unrestricted.
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In reference to the discussion in Section 7.3, the corresponding analysis question Q is
to test whether there exist non-trivial solutions to the equations of Figure 8.4. For y # 0
(assume |y| = 1), the reduction method of Proposition 7.4 applies and produces a constant
matrix problem in the canonical form (8.2), with
kyUd  ky*
WU YT

M =

}, N:(J—yy*)[u 1}. (3.61)

There will exist solutions § and d, with |0] < k, |d| < v satisfying the equations of Figure 8.4,
if and only if pa (N, M) > 1. In this case the block structure A consists of two real blocks,
and M, N are real. This means we are in one of the pu-simple cases of Theorem 8.3, and the
question is equivalent to ga(NV, M) > 1, which can be tested by the LMI (8.9), for 8 = 1.
This fact is already indication that our problem remains tractable in the new formulation,
although a solution based on LMIs will be less efficient than the least squares solution.

To make the point clearer, we can show explicitly that the LMI approach gives the least
squares solution as k—oco. Consider the LMI (8.9) with 3 = 1; the X scaling in this case
consists of two scalar parameters, one for each of the full blocks. Let us call the first one

z > 0, and we can normalize the second one to 1. Some algebra gives Nt = [ _Iu 2}

—(al +UU) —U*y

Ny (M XM - X)N7| = ~ . 8.62
-‘-( ) L _y*u kz‘l? + 72 —1 ( )

A Schur complement operation reduces (8.9) to
o+~ =1+ y Uzl +UU) Uy < 0. (8.63)

As k—o0, the unknown z will have to go to zero if (8.63) is to be satisfied; this implies that

(eI +UU)" = (U U)" and the LMI will be feasible for large k if and only if
V<1 =y UU U Uy =2, (8.64)
where v, corresponds to (8.60). Recapitulating,

e For v < 4o the LMI is feasible and therefore fis(N, M) = pa(N, M) < 1, which in

turn implies that the answer to Q is negative (no solutions with ||d|| < 7).

e For v > 4 and large enough k the LMI is not feasible, jia(N, M) = pa(N, M) > 1
and therefore there exist solutions to the MV /ID problem.

So again we find that v, from (8.60) is the minimum norm for d. We have not shown
how to solve for  and d, but this information can also be obtained from the LMI approach.
Of course, we are not advocating this method for a least squares problem; this is a method
suitable for a large class of problems. We have simply shown that it remains tractable in

this simple case.



8.4.2 Robust Performance with Disturbances in W,

In Section 6.9 we considered an application of the Robust H, performance conditions
of Chapter 6 to a problem of rejection of sensor noise, which we reproduce below. In this
diagram v is scalar white noise, and we wish to quantify the gain from v to e (sensitivity) in

the worst case over the unstructured perturbation A,,.

\%4 Au
€ ’1

Figure 8.5: Rejection of sensor noise

The conditions of Chapter 6, which were specifically developed for the robust H, perfor-
mance question, are of course the best way to address this problem. We will use, however,
this problem to demonstrate the more general tools for analysis under disturbance con-
straints which were developed in this chapter. In particular, the white noise disturbance will
be described by means of the sets W, r based on autocorrelation constraints. It was shown
in Section 5.2 that for scalar noise these are scalar IQCs, therefore they can be converted to
the implicit description (7.9)'. This means that robust performance analysis under signals
in W, r falls in the general class of problems for which state space conditions were derived

in Section 8.3; these conditions correspond to the case of LTV uncertainty.

The procedure for robust performance analysis is the following:

e For a fixed T, consider the IQCs oF of (5.26) (in what follows we choose v = 0).

Obtain a representation of the form (U — A, V)v = 0, with U constant, and find a

state space realization for V().

o Using a state space realization for the generalized plant compute the matrices Mg and

Ns of (8.59), for a given j.
o Check for feasibility of the LMI (8.52), and minimize over /.

This procedure was applied to the numerical example K = 2, H()\) = ﬁ?}\:*\‘g, and W =
0.25. These values were chosen so that the uncertainty affects the sensitivity in a significant

way; this is exhibited in Figure 8.6, where the lower curve indicates the nominal sensitivity

'For multivariable noise, an analogous description with 87 blocks is available, see [59].
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function S, and the upper curve is the worst-case sensitivity function S,,,, obtained in (6.73).
The values
| Smaz]|ee = 6.50, || Sinazll2 = 2.39, (8.65)

correspond to the worst-case H,, and H; norms of the system under (possibly non-causal)

LTT uncertainty, as shown in Section 6.9.
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Figure 8.6: Nominal and worst-case sensitivity functions (magnitude)

We now apply the procedure described above for analysis over Wy and obtain the

value B, as a function of T'. Asymptotically, as the number of constraints increases, Bopt

converges down to a robust H, performance measure over the class Barrv. The plot of
Bopt(T') (obtained using the LMI Control Toolbox [35]) is given in Figure 8.7.

ﬁ opt

T
Figure 8.7: Worst-case induced norm of uncertain system over Wy 1

For T' = 0 (no constraints) Bops corresponds to the worst-case H., norm under A, €
Barrv. As T increases, we approach the worst-case H,; norm. Both values appear to
coincide in this example with those in (8.65) for LTI uncertainty. This is not, however, a

general fact; other examples (see [59]) exhibit a gap between LTI and LTV uncertainty.
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Chapter 9

Concluding Remarks

To conclude, we first summarize the contributions of this thesis:

In Chapter 3 we provided non-conservative tests for the evaluation of robust stabil-
ity and He, performance in the case of combined time varying, time invariant and
parametric uncertainty structures. These are structured singular value conditions ob-
tained by frequency augmentation. We also analyzed the convex upper bounds for

these combined problems.

The methodology of Chapter 4 for white noise modeling based on sets provides a useful
technique for situations involving a combination of “hard bounds” and white noise, by
describing the latter in terms of a typical set. We have shown its potential for questions
of white noise rejection and worst-case system identification, but this line of thinking

may prove useful in other engineering contexts.

The most significant result is Condition 2 in Chapter 6, for analysis of Robust H,
performance. This result to some extent completes the picture of linear robust control
theory, since we now have convex conditions for the evaluation of robust performance
with all the disturbance rejection criteria (H,, H., £1). In fact, as remarked in
Chapter 6, Condition 2 provides a summary of the analysis problems involving [, signal
norms which lead to a convex characterization, including H, and H.. performance, or

combinations thereof.

The implicit analysis framework developed in Chapters 7 and 8, connects robustness
analysis more directly with first principles models which take naturally an implicit
form. It has also been shown to be a flexible tool for the consideration of various
analysis questions involving equations subject to uncertainty, and signal constraints
which can be reparametrized in this way. In particular, it provides a common language

for the formulation of robustness analysis and system identification questions.
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The following are some directions for future research:

¢ Regarding the results of Chapter 6, we remark that although the theory was developed
for discrete-time systems, Condition 2 extends verbatim to the continuous time case,
with analogous results. This extension requires a generalization of the set descriptions
of white noise for continuous time, and of the notions of slowly varying uncertainty as

suggested in [64]; the details will be reported in the future.

e A future research question is the study of state-space methods for the robust H,
problem. In particular, in Section 6.7 we remarked that that the mixed performance
problem admits a state space evaluation. This may lead to a single LMI test for
Condition 2 in the case of constant scales, as will be investigated in the future. Also,
controller synthesis for this version of the mixed problem has not been considered and

would be instrumental in developing iteration schemes for robust H, synthesis.

e A reasonable follow-up on the results of this thesis is a complete development of com-
putational tools for these convex conditions, at the level of existing software tools [3]
for the H, performance measure. Once these are in place, the theory can be tried out

in engineering problems and develop experience on the judicious use of these tools.

e Other problems have led to p conditions which are in general NP-hard; the most
important example of this are the problems reduced to implicit z, which includes the
model validation question of Section 7.3. The possibility of the implicit formulation
to provide a practical (and not only conceptual) unification of tools for robustness
analysis and identification, rests on the development of heuristic algorithms, such as
the p lower bound, which should be able to compute the answer in “typical” instances

of the problem. These issues must be pursued at the computational level.

Many signs appear to indicate that linear robust control is a mature field, conceptually
well developed, and where the main theoretical results have been obtained. This thesis has
contributed to complete the picture in robustness analysis. The robust synthesis problem

still does not have a global solution for any of the criteria, but is likely to remain this way.

One of the fundamental open challenges lies in the extensions of the robustness theory to
the case of nonlinear systems, which by its nature will involve very different tools from those
described in this thesis. Perhaps a lesson can be carried through, however, to this open area,
namely that these problems should be approached by a creative combination, without rigid

boundaries, between diverse mathematical techniques.
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Appendix A

Mathematical Complements

The following mathematical facts are collected here for ease of reference. This material

can be found, for example, in [47], [77], [70].

A.1 Bounded Variation Functions, Stieltjes Integrals
and the Riesz Theorem

First we introduce the space BV|[a, b] of real-valued functions of bounded variation in the
interval [a,b] C R. A function ¥(¢) is of bounded variation if

N
TV(W) :=sup »  [W(t;) — W(tig)| < oo, (A1)
=1
where the supremum is taken over partitions (¢o,...,#x) of [a,b]. TV (W) is called the total

variation of W.
We will also use the space Cg[a, b] of continuous, real-valued functions on [a,b], with the
norm ||g|feo := supyep, 4 l9(1)]-

Given U € BV(a,b] and g € Cg[a, b], we introduce the Stieltjes integral

b
/ g(t)du (1), (A.2)

In the case considered, which is the only one needed in this thesis, the integral (A.2) can
be defined (see [77]) as a limit of Riemann sums analogously to standard calculus. A more
abstract version is to consider ¥ to be the distribution function of a regular, signed measure
pon [a,b], ¥(t) = p([a,t]), and interpret (A.2) as a Lebesgue integral.

A basic property is that

/ g(t)d\vmj < lglloTV(w) (A3




This bound implies that the map I'y : Cgla, b]—R given by

Fu(g) = / g(1dw (1) (A4)

defines a bounded linear functional on the space Cg[a,b]. The Riesz representation theorem

states that every functional in the dual space Cg[a, b]* is of this form.
We will also use the formula of integration by parts for the Stieltjes integral,
b

/ g(H)dW (1) = g(b)B(b) — ga)¥(a) — / W(t)dg(t), (A5)

a

which holds, for example, for ¥ € BV[a,b], g € Cgla, b]. Furthermore, if ¢ has an integrable
derivative ¢'(t), the integral on the right can be written as f; U(t)g'(t)dt.

A.2 Convex Analysis Results

Given a set K in a vector space V, its convex hull is defined as the set

N N
co(K) = {Zakvk: NeZt o> O,Zozk =1, v € IC} (A.6)

k=1 k=1
of convex combinations of elements in K. The set K is convex if co(K) = K.

We first state some lemmas from convex analysis in finite dimensional space.

Lemma A.1 (Helly) Let {K,}ueq be family of convexr closed sets in R?, of which
at least one is bounded. If (), cq Ko = 0 then there exist d+1 sets Koy,,i=1...d + 1
with empty intersection.

Lemma A.2 IfK CR?, every point in co(K) is a convex combination of d4+1 points
in K; for K compact, every point in the boundary of co(K) is a convex combination
of d points in K.

Lemma A.3 Let K1,K; be disjoint conver sets in R?, where Ky is compact and K,
is closed. Then there exists a vector x € RY, and «, B in R such that

<CU,]€1> S o < ﬂ S <CC,,I‘82> Vkl & }Cl, ]CQ & }CQ. (A?)
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Remarks on the Proof: Lemmas A.1 and A.3 can be found in [70]. The first part
of Lemma A.2 is a classical result of Caratheodory (see [70]), and implies that for every

v € co(K), there exists a simplex of the form

d+1 d+1
S(v1, .. vg41) = {Zakvk:akZO,Zakzl} (A.8)
k=1 k=1

with vertices vy € K, which contains v.
The refinement for points in the boundary can be shown as follows. First note that if
K c R? is compact, co(K) is compact so it contains its boundary. For a point v in this
boundary, pick the corresponding simplex from (A.8). If the v; are in a lower dimensional
hyperplane, then d points will suffice to generate v. If not, then every point in S(v1,.. ., Vi)
corresponding to aj > 0 Vk will be interior to S(vy,...,v441) C co(K). Since v is in the
boundary of co(K), one of the a;’s must be 0 and a convex combination of d points will
suffice, completing Lemma A.2.
]
In regard to the hyperplane separation result of Lemma A.3, we emphasize the strict

separation obtained in this finite dimensional version, which is used in several of the proofs.

We also use an infinite dimensional hyperplane separation result, which is a geometric

version of the Hahn-Banach theorem, taken from [47):

Theorem A.4 Let Ki, K, be convex sets in a real normed space V, such that K4
has non-empty interior, and Ky contains no interior points of Ky. Then there exists
a bounded functional T € V*, T' # 0, and a real number o such that

P(kl) S « S F(k2)7 fOT’ all ]Cl & }Cl, kg € }CQ (Ag)

In this case the separation in non-strict; note also the technical assumption on non-empty
interior for the set Ks.
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Appendix B
Destabilizing Perturbations and the

Issue of Causality

In this chapter we provide the proofs of some technical results in the thesis which require
a construction of a perturbation which destabilizes, or violates robust performance. In
particular, we pay attention to the possibility of achieving this with a causal perturbation,
an issue which is non-trivial since many of the results are based on IQCs, which as shown in

Chapter 5 correspond directly to non-causal operators.

Before embarking in the very technical material which follows, it is useful to discuss the

reasons for the causality requirement.

The most straightforward answer is that choosing a causal A in a well-posed LFT in-
terconnection ensures the causality of the input-output model, which is a requirement in
order for these to be physically realizable. Note, however, that there are many other consid-
erations which make a model “realistic”, other than causality; in fact the perturbations A
constructed in this Appendix are quite complicated and involve long memory shifts, aspects

which do not arise naturally in physical models.

Why, then, insist on causality of A? The most important reason is that uncertainty
descriptions are used to assess questions of stability. These are only meaningful when there
is a chosen direction in time, and signals are not known a priori to have bounded norm.
Causal operators are the only mathematical setting to accommodate time directionality
and the extended spaces [;. of unbounded signals. Also, the LFT formulation relies on
“pulling out the A” and treating it as a system. Although one may choose to ignore other
considerations which make a model realistic and cover them by a larger set, causality of A

appears to be a basic restriction for a sound theory of robust stability in the LFT framework.

The material in this Appendix should be viewed, accordingly, as completing a consistent

mathematical framework for the results based on the IQC formulation.
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We will show that for the classes of uncertainty which correspond directly to IQCs, such as
ATV and A, the robust performance tests remain necessary under the causality restriction:
if robust performance can be violated with non-causal A, it also fails under causal A. The
development is based on a construction due to Shamma [76], which is extended to a larger
class of problems.

For simplicity we will work in the space I(Z) with bidirectional time, where the shift
operator A is unitary, A™' being the backward shift. An interval of integers is denoted by
[t1,02) = {t € Z: t; <t < ty}; PE2) is the projection operator into the time interval [ty, ¢5).

Sections B.1 and B.2 introduce some basic tools. These are applied to the issue of uniform
robust stability in Section B.3, then to the proofs of Chapter 6 in Section B.4, and to the
proofs in Chapter 8 in Section B.5.

B.1 Operators with Finite Support
An operator A € L(ly) is supported on the interval [ty,t,) if
A = Pl Aplnt), (B.1)

Equivalently, the infinite matrix representation as in (2.12) is only nonzero for entries (k,t)
such that k,% € [t1,13). The operator is therefore effectively represented by a finite matrix

on that interval. No causality assumptions are made in this section.

Theorem B.1  Given an operator M € L(1y), and ¢ > 0, suppose there exists z € I,
Izll2 =1, and A € B srzy such that [[(I- AM)z|l; < e.

Then there exists an operator A € Barzy supported on a finite interval [t1,1,),
and z, supported on [t1,13), such that ||z|l; = 1, |[(I— AM)Z||, < e. Furthermore:

Lo If[[AA; — A < v for some block A; in A, then the corresponding A; can be
chosen to satisfy [|AA; — A || < v.

2. If||Nz||2 <€ for N € L(l2), then z can be chosen to satisfy |Nz||; < e.

3. If a portion z, of the signal = is in an’ then z, can be chosen in Vi/g”

Proof: The natural approach is to proceed by truncation of z and A to a finite interval.
This will work except that the truncation does not preserve the B¥ property (heuristically,
it imposes an abrupt time-variation). To obtain a truncation which preserves slow time
variation, one must multiply signals by a time-varying gain which slowly decreases to zero.

For each T, consider a real-valued function a”(t) such that
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o a” has finite support.
o al(t)y=1fort € [-T,T],and |a"(1)| < 1V i€ Z.
o sup,|a’(t+1) —a?(t)| = a.

Introduce the operator AT : [;—1l; of multiplication by a7, i.e. AT : v(t) — a’(t)v(t). Then
|[AT|| =1, and
[(AAT — AT ))(t) = (a¥(t—1) =™ () v(t — 1), (B.2)

which implies that |AAT — ATA|| = sup, [« (1 + 1) — ()| = o
Now define AT = ATAAT, of finite support. The identity

AAT — ATA = (AAT — ATXN)AAT + ATOAA; — AXNAT + ATA;(AAT — AT
which holds for any sub-block, gives
[AA] — ATA| < |AA; — AA|| + 20 (B.3)
Hence AT provides a way to truncate A at a moderate cost in terms of time variation.

It follows directly from the definition of AT and AT that

AT:=F . ATMAT: 2% AM:, (B.4)
T—o0

with convergence in the sense of [5. Therefore |ATz]]; =51, and

[(T— ATM) ATz, =5 [(T— AM)z||; < e. (B.5)
This means that the condition [[(I— AM)z||; < ¢ will be satisfied if we choose the finitely
supported A = AT and 7 = 37 .= HIAT-T;Z}E, for large enough 7.

We now show that the remaining properties can also be satisfied.

L If [[AA; — AyAl| < v, then for small enough o we have |AA; — A | < v from (B.3).

TT

2. Since 27 =5 z in Iy, then |[Nz7||, < € for large enough 7.

3. Since zI oy zp in Iy, the third property will follow if we can show that whenever

T—c0 . T 00 . . . .
vT =5 v in 5%, F,r — F, in the sense of uniform convergence of functions, where

dw s ol

F,(s):= /Osv(w)v(w)* 1, (B.6)

27 21 m



as defined in (4.66). We now prove it for the scalar case m = 1, writing

[Fur = B)(s) = (Ho"oT) = (Hoooo) + o= (RIE=713). (B)

where H; is the ideal filter H (/) = lio,5]- The last term in (B.7) converges uniformly

to 0, and the first two terms can be bounded by writing
[(Hoo™ 0" —v) + (H (0 = v),0)] < o7 [of|o” = vll2 + [[o" = v]ls[Jv]]

which converges to zero. n

B.2 Causal Operators

The previous result provides a general truncation scheme, but still does not address

causality. To consider this question, we restrict the attention to causal LTI systems M.

Theorem B.2 Given a causal, LTI system M € L.(l3), and € > 0, suppose there
exisls z € by, ||z][2 = 1, and A € Barzy such that |[(I— AM)z||, < .

Then there exists a causal operator A € Barrv supported on a finite interval
[0,7), and 2, supported on [0,T), such that

more;

~

o =1, [[(T— AM)Z|; < €. Further-

Lo IF XA — A < v for some block A; in A, then the corresponding A; can be
chosen to satisfy ||AA; — A || < v.

2. If |[Nz||z < € for an LTI system N € L(l3), then % can be chosen to satisfy
||N7:‘ 2 < €.

3. If a portion z, of the signal z is in VAVnm, then Z, can be chosen in VV;“,

Proof:
The first step is to apply Theorem B.1 and obtain the finite support A and Z; since M

is LTT we can assume the support is in [0,#). Now we choose an integer N such that

1 _
S =AMz < ¢ (B.3)
For k > tg, define
1 N-1
ok kr —
= 1 A “ B 9
1 Z (B.9)
N-1
AF = AT ANTH-L) (B.10)
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The signal 2* is obtained by adding N relatively shifted copies of %, in a similar fashion
to (5.42), with a normalizing factor to obtain ||2¥|| = 1.

The definition of A* is best interpreted with the infinite matrix representation of Figure
B.1. The matrix Ay is the truncation of the infinite matrix for A, to the interval [0, k) which
contains its support. Thus A* is made of N — 1 shifted copies AFUTHANTFO-D) of A, with

an extra shift A* ensuring that the result is causal (lower triangular matrix).

0 0
0| Ay
0| A
A,
0 0

Figure B.1: Infinite matrix representation of the operator A*

We will now show that for sufficiently large &, A% and 2* satisfy the required conditions.
We start by computing

-1 N-1 1 N-2 N-—
AkT A—k r—1) AMM" . Z AkrAAk(l+1—T)M57 (Bll)
[

;
r=1 1=0 21:0r1

l\')
)_A

Ak

where the first equality uses the time invariance of M. For the second equality, observe that
M?Z is supported on [0, c0), therefore for + < I, AF+1="IMz is supported on [k, ), and A
in [0, %) which implies AX*"#1=Mz = 0 for these terms. We now rewrite (B.11) as

-3 N-1
(Z MY AMz + Z DA ANV ) (B.12)

[=0 r=][42

AF M

Denote the second sum in (B.12) by S;. For each term in this sum, ¥~ is a backward
shift of at least k. Since A is supported on ¢ > 0, it only operates effectively on the “tail”
signal PF>)Mz, Whlch converges to 0 as k—oc. Since the number of terms is fixed, we
conclude that S "2% 0 in l,. Now (B.12) leads to

. 1 N-1 N-2
(I-AFM)F = (Z ATz =N AHDAM:E — S’k) (B.13)

r=0 [=0
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N-1
1 k < -
= - | z+ AT(I-AM)z - S, |. B.14
M( Y- AT (I- AM) ) (B.14)

=1
The support of A and Z in [0, %) implies that if we leave out S, the remaining terms in

(B.14) are mutually orthogonal, so they have collectively a norm

1 N -1 -
=+ (1= AM)z|2

which is less than € because of (B.8). Since S} 2% 0, we now that for sufficiently large ,

[(I— A% M)2H|| < e (B.15)

It remains to show that the additional properties stated in Theorem B.1 can also be sat-
isfied. Properties 2 and 3 follow immediately from the results in Chapter 5; by construction
of 2%, we find from (5.44) that

INZH2 =% | INz|, (B.16)
PR "EX p(z,), (B.17)

where p(-) is defined in (5.30). Finally, for the i-th block we write
X ) N-1
AAF = AFA =) A" (AA = AA) ATH0TY, (B.18)
r=1
Denote Y; = AA; — A;; this operator has its support in [0, %+ 1) C [0, k), which means
that Y; = PORY POF . Then for v € I,

N-1 N-1
(AAZC . AfA)U — Z )\krP[O,k)YiP[O,k)A—k(T—l)v — Z P[kr’k(rql—l))AkTTiA_k(T_I)P[k(r_l)’kT)U.
r=1 r=1
(B.19)
Due to the orthogonality of the projections on disjoint intervals, we have
) N-1 2
”(AAf _ AfA)UH2 — Z P[kv‘,k(r—i—l))A/wTiA—k('r—l)P[k(r~l),k‘7'),U
r=1 2
N-1
_ Z HTiA-k(T_l)P[k(T_l)’kT)v”3
r=1
N-1
< P Y IPROTDE 12 < o 2. (B.20)
r=1
We conclude that [[AA% — ARX|| < || Y]] = [[AA; — AN, so if a prescribed rate of

variation v holds for Ai, the same holds for Aﬁ”



B.3 A Uniformity Property for Robust Stability

In Definition 2 we introduced the concept of uniform robust stability, which slightly
reinforces the definition of robust stability. In reference to an M-A configuration such as
Figure 2.9, with M, A in £.(l), this property means that in addition to I — AM being
invertible for each A € By, there is a uniform bound on the inverse norm across By4.

For robust stability problems in the class Bjrrr, it follows from p-analysis that this
uniformity requirement is automatically guaranteed. In this section we show that the same
happens for the class Barrv, and essentially also for Baw.

We start with the following result, which is stated in the more general setting of the

implicit formulation of Chapter 8.

Theorem B.3 Given LTI systems M, N € L(l3), suppose there exists a sequence of

operators A* € Bazzy, and a sequence of signals z* € Iy, ||2%|| = 1, such that
I-A'M | koo
” { } == 0. (B.21)
N
Then there exists a unique A € Barzv, and a sequence of signals 2* € ly such that
I- AM ~k |l k—oo
Z— 0. B.22
Furthermore:

1. For M causal, A can be chosen to be causal.

2. If |IAAF — AEX|| < v for the i-th block A¥ in A*, then the corresponding A,
can be chosen to satisfy || AA; — AA|| < v.

Proof:

The following construction was suggested by Dullerud [30]. First note that applying
Theorem B.1, we can assume AF, z* have finite support, say [0,Ty). If, in addition, M is
causal, A* can be assumed causal from Theorem B.2.

By enlarging the definition of T}, we can ensure ||P[Tk*°C)Mzk||2 250, Let 7 be defined

by 70 =0, Tee1 = 7 + Tx + 1 for £ > 0. Introduce the operator
A=) AFARATT (B.23)
k=0

which has the infinite matrix representation of Figure B.2, where A’”fk denotes the truncated

matrix as in (2.14) corresponding to A*. Note that if A¥ is causal, so is A.
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0 0 0
0 | AZ,
0
A%,
Tt
0 0

Figure B.2: Infinite matrix representation of the operator A

An analogous reasoning to the one which led to (B.20) implies that if || AAf — A¥A|| < v
for every k, then |AA; — A;A|| < v. Similarly, it follows that since ||A*|| < 1, [JA|l < 1.

Defining the sequence 2% := A™ 2% it only remains to show that (B.22) holds. We write
MzF = N Mz* = AmPOTIMF 4 ¢F| (B.24)

where eb = A*PITee0) M ¢ F2% 0 from the choice of the T} above. This leads to

AMZ = Aef + Z,\ml,\-ﬂ AFPOTIMF = Aek + A APMF (B.25)
(=0
Consequently
[(I—AM)Z* ||, = |[A™(I - A*M)2* — Ack|], (B.26)

k—o0

converges to zero as k—oo, using (B.21) and ||e], == 0. Also, since N is LTI we have
INZ*|| = ||N2z*| “=% 0. Therefore (B.22) is satisfied.

|
The result is now applied to the question of uniform robust stability in the class B zrv.

Corollary B.4 Suppose M is a causal LTT system in L.(I2) , and T — AM is in-
vertible in L.(1) for each A € Barrv. Then

sup  |[(IT—AM)™| < oo (B.27)
A€ Barrv
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Proof: If (B.27) does not hold, then for any ¢ > 0 we can find A € Barrv such that
(- AM)™}|| > 1/e. Therefore there exists z € [; such that ||z|l = 1, (I - AM)z|; < e.
Since this holds for any e, there exist sequences z*, ||z*]]; = 1, A* € Bzrv such that

(I — AFM)F||, =2 0. (B.28)

Applying now Theorem B.3, we find a single, causal A € Bjrrv and signals 2%, ||2%]] = 1
k—00

satisfying [|(I — AM)z*||; == 0. This contradicts the hypothesis.
n

Turning now to the case of A, we show that if robust stability holds for a certain class,

uniform robust stability holds for any class of smaller time-variation.

Corollary B.5 Suppose M is a causal LT1 system in L.(l3) , and T — AM is in-
vertible in L.(13) for each A € Bav. If U < v, then

sup [|((I—AM)™!|| < oc. (B.29)
AEBAE?

Proof: If (B.29) does not hold, then for any ¢ > 0 we find A € Bz and z € [, such that
llzll2 =1, |(I— AM)z||z < e. This gives a sequence A*, z* satisfying (B.28). Additionally,
[AA* — ARX]| < v,

Now Theorem B.3 gives A € Byae, %, [|7¥|| = 1 satisfying |[(I — AM)3*||, "% 0. This
contradicts the hypothesis.

|

B.4 Proofs for Chapter 6

This section contains the proof of Propositions 6.8 and 6.10. The notation is taken from
in Chapter 6.

B.4.1 Proof of Proposition 6.8

By hypothesis the system is robustly stable; using Corollary B.4 we can write the bound

sup  |[(T— AM;) ™| = 8 < . (B.30)
Ac By

We also know by hypothesis that

sup (1A% My, =5 < 1. (B.31)

A€ Bjiry
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Given € > 0, suppose VN K, # 0. Then there exists z = col(p,v), ||z|] = 1, such that
A(z) € K, with A defined in (6.27). This implies that p(z,41) € B(0,7), so v € W, and

oi(z) = [[(Mz);|l5 = ||lz]l5 > —¢€, i=1...n+1. (B.32)

We are now in the situation of Lemma 5.1, except for the term €?; it is shown analogously

that there exist contractive operators A; € £(l) such that
|zi — A;(Mz)ills <e¢, i=1...n+1 (B.33)

Therefore we obtain a structured operator A = diag[Ay,..., A, 4] € B szzy such that
(I - AM)z|| = O(e). From Theorem B.2, a causal operator A = diag[Ay,...,A,4,] and

a signal 2, ||Z||2 = 1 are found satisfying

(T~ AM)z

We now isolate the first n components from the (n + 1)-th in (B.34), using the notation
2 = col(p,d) and M2 = col(4, é). Note that from Theorem B.2, & can be chosen in W,. The

last component in (B.34) gives

2 = O(e), (B.35)

v — An+1é

and the first n components give
pi=Ai+d, i=1,... n, (B.36)

where the signal d, of norm O(¢€) can be viewed as a disturbance injected at the intercon-

nection, as depicted in Figure B.3.

A,
A, A
C‘:' d
q My My fe p
€ < M,y My [#—— 0

Figure B.3: Uncertain system with injected d
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We now state the following bounds:

2 < BIMar|lld]l2 +]18]l2- (B.37)

é

18]z — O(e) <

The lower bound is a direct consequence of (B.35). The upper bound is obtained by writing
¢ as the superposition of the contributions of the inputs d and & € ﬁ/ﬂ in Figure B.3, and

using the bounds (B.30) and (B.31).

If K.N'V #£ 0 holds for every e, take ¢ "y 0, and generate the sequences AF,
25 = col(p*,9%), and d* with |||, = 1, ||d*|]z = O(ex). From the bounds (B.37) and

v < 11t follows that we must have ||6%|| 2% 0; also, | d* |2 "% 0. Now from (B.30) the

k—00

ék?‘—éov

gain from (cz,{;) to % can be uniformly bounded across A, which implies that
which is a contradiction.
Therefore there must exist € > 0 such that K. NV = 0.

B.4.2 Proof of Proposition 6.10

This proof requires very minor modifications of the previous one. By hypothesis we have
robust stability under the class Bav. Choosing 7 such that 'ZSin% < v < v, Corollary B.5
implies that

sup  ||(I— AMy) ™' || =3 < . (B.38)

AEBAV

We also know by hypothesis that

sup A x My, =7 <L (B.39)
A€ Ba~

With V, K, defined in (6.43-6.42), suppose V N K. # (). Then there exists z = col(p,v),
|2l2 = 1, such that A(z) € K¢, with A defined in (6.41). This implies that p(z,.1) € B(0,7n),
sov € W, and

st+h N o
[wi(2)](s) = / (](]V[z)i(e““")]2 — |Zi(ej‘”)|2) 5 > ¢ i=1,...,n, (B.40)
Onp1(2) = [[(Mz)onall3 = |20 |3 > —€ (B.41)

We can now apply Lemmas 5.4 and 5.1 to obtain contractive operators, A;, satisfying
IAA; — A < QSil’l% fori=1,...,n, and A,4; € L(ly) such that

HZZ—Az(MZ)zHZ <e, 1=1...n+ 1. (B42)
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-~

Once again we can obtain from Theorem B.2 a causal operator A = diag[Ay,..., A, 1] and

a signal 2, ||2|]; = 1 satisfying

IXT— AM)Z[, = O(e). (B.43)
Note that from Theorem B.2 we can ensure that the blocks A, ... A, are in B?, and the
signal v is in Wn. From here on the proof carries on exactly as in the case of Proposition 6.8.

B.5 Proof of Proposition 8.6

For a given € > 0, assume that V<-NX? # . Choose 2 € ly, such that ||z|| = 1, |Nz]| <,
and A(z) + ¢*I > 0. This implies that

Yi(z) = /o ’ [(Mz);(e7)(M2); (") — zi(e")z] ()] Cj—w >—¢’l, i=1...L, (B.44)

ZT
2

onai(z) = [(Me)nplP =zl > =€ j=1...F (B4)

We can now apply Lemmas 5.2 and 5.1 to obtain contractive operators §;1,2 = 1,..., L, and
Ay, such that

|zi = 6 I(Mz)|l. < O(e), i=1...1, (B.46)
lz04j — Ar4i(Mz)ryjll2 <6, j=1...F. (B.47)
Constructing A = diag[é:1,...,6.1, Artq,...,8, AL r] leads to H [I_ﬁM} ::H = Ofe).
Since this holds for any ¢, there exist sequences of signals 2", ||z*|| = 1 and perturbations
AF such that
N
[ I 1‘;‘ M } P | Rimee) (B.48)
Now we invoke Theorem B.3 to find A, and z* ||2¥|| = 1 such that
I-AM oo
} [ } | =% o, (B.49)
N ‘

which contradicts robust [y-stability.

|
Remark: The same technique can be used for the proof of Theorem 8.7, since from
Theorem B.3, A can be chosen to be causal when M is causal.
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