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Computer-Aided Design of

Low Noise Microwave Circuits

Abstract

Devoid of most natural and manmade noise, microwave frequencies have
detection sensitivities limited by internally generated receiver noise. Low-noise
amplifiers are therefore critical components in radio astronomical antennas, com-
munications links, radar systems, and even home satellite dishes. A ,generai tech-
nique to accurately predict the noise performance of microwave circuits has been
lacking. Current noise analysis methods have been limited to specific circuit
topologies or neglect correlation, a strong effect in microwave devices. Presented
here are generalized methods, developed for computer-aided design implementa-
tion, for the analysis of linear noisy microwave circuits cornpriséd of arbitrarily
interconnected components. Included are descriptions of eﬁ'iciex__lt algorithms for
the simultaneous analysis of noisy and deterministic circuit parameters based
on a wave variable approach. The methods are therefore pa,rticula,rly suited to
microwave and millimeter-wave circuits. Noise contributions from lossy passive
components and active components with electroﬁic noise are considered. Also
presented is a new technique for the measurement of device noise characteristics

that offers several advantages over current measurement methods.
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Chapter 1

Introduction

Microwave frequencies occupy a portion of the electromagnetic spectrum
that possesses an unusual quality. Lower frequencies are plagued by urban,
galactic, solar and atmospheric noise, while higher frequencies suffér from at-
mospheric attenuation. In the microwave band, falling between 300 MHZ and
30 GHz, nearly every type of natural and manmade noise is absent. This low-
noise nature permits the detection of very faint signals; a tremendous advantage
for the wireless transmission and/or reception of energy. Exploitation of this
property has led to successful terrestrial, satellite and deep-space communica-
tions, ultrd—sensitive radio astronomy, and accurate radar detection, tracking,
and guidance.

In order to take full advantage of the noise absence at microwave frequencies,
receivers require front-end amplifiers that contribute little of their own noise. In
recent years, a considerable amount of research has been pursued specifically
toward the development of microwave and millimeter-wave transistors with im-
| proved noise performance [1]. A summary of the current state-of-the-art is given
in Fig. 1.1, where noise temperature for microwave transistors is plotted with
respect to frequency. A room temperature bipolar transistor is shown in compar-
ison to room temperature and cryogenic gallium arsenide field effect transistors
(GaAs FET’s) and high electron mobility transistors (HEMT’s). Also included

in the figure are sources of external noise in and about the microwave band that
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place a fundamental limit on receiver noise temperature. At low frequencies,
galactic noiée dominates. At high frequencies, the atmospheric absorption ef-
fects are evident, due primarily to oxygen and water vapor. In much of the
microwave band the only limitation to low noise performance is a small amount
of atmospheric absorption and the 3 K cosmic microwave background radiation:
a remnant of the intense radiation associated with the Big Bang. The cryogenic
HEMT stands out as a superior device for low-noise amplification. R provides an
alternative to 4 K masers at an enormous reduction in cost [2]. Refrigeration is
impractical in most microwave systems, so room temperature HEMT operation
near the background radiation limit is the objective of ongoing reseafch.

Recent years have also witnessed dramatic increases in the development and
use of microwave computer-aided design (CAD) tools. This has had a profound
effect on microwave circuit design strategies. Lab bench tweaking in both the de-
velopment phase and on the production line have become forbidden in the pursuit
of cost effective engineering. Experimentation and development now take place
using computer simulations. Efficient algorithms and more accurate i_:omponent
models are continually sought to ensure fast and precise performance prediétion.
The advent of monolithic microwave integrated circuits has also hastened the
development of CAD tools. These allow little on-chip testing and .cannot be
tweaked or repaired to correct poor performance. Accurate CAD is needed to
insure successful first-time chip designs.

While tremendous accomplishments have been made in low-noise transistor
technology and microwave CAD development, noise analysis has long been a miss-
' ing aspect in computer-aided design. When it has been offered, it has typically
been restricted to circuits with speciﬁc topologies [3], or the effects of correlated
noise have been neglected [4]. As a result, the noise performance of many ampli-
fiers could not be accurately predicted prior to fabrication. Only recently have

noise analysis methods emerged with the ability to analyze microwave circuits
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Figure 1.1 Noise temperatures for state-of-the-art microwave transistors compared to
natural noise limits.
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comprised of arbitrarily interconnected components [5]. Presented here is a new
wave vaxiabie approach. It is particularly suited to microwave and millimeter-
wave circuits which are characterized in terms of wave variables. An integfa.l part
of the noise analysis process is the characterization of active microwave devices
by both modeling and measurement [6]. New methods to accomplish this us-
ing wave variables are also presented. These methods are shown to offer several

advantages over current techniques.

1.1 Introduction to Microwave Computer-Aided Design

Predicting the performance of a low noise microwave circuit involves a linear
frequency domain analysis. The basic problem is illustrated by Fig. '1_.2: given a
collection of components, depicted in the figure as S1, S, ..., Sm, the objective
1s to determine the response of the aggregate network, shown as Sye¢, based on
knowledge of the circuit’s topology (i.e. the interconnection of the components),
and its excitations. The typical computer algorithm obtains a solution by describ-
ing the network in terms of Kirchhoff’s voltage and current laws and component
constitutive relations. This description is used to form one large, é.lthéugh often
sparse, matrix equation which when solved gives all values for valtage and cur-
rent at every node and branch. The large matrix equation is called the tableau.
Sparse matrix mee;né for its solution are referred to as sparse-tableau methods [7]-

" A microwave circuit has physical dimensions comparable fo a wa{relength.
Under such conditions voltage and current behave as traveling wave quantities,
with impedance mismatches resulting in reflections and standing waves. Voltage
~and current variations within a circuit can therefore be quite dramatic. Con-
sequently, sparse-tableau methods using voltage and current variables are often
numerically unstable. A preferable procedure uses traveling wave variables [8].
In the wave approach, scattering parameters are derived from complex ratios of
the wave variables. These parameters form scattering matrices whose manipula-

tion is computationally stable. In the simple example of a one-port element with
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Figure 1.2 A collection of components, S, S3, ..., Sm, interconnected to form network
Snet. Solid lines depict external connections; dotted lines, internal connections.

impedance Z(w) terminating a transmission line with normalizing impedance Zj,

the scattering parameter S(w) is given by

Z(w) — Z, _
—_Z(w) Tz | | (1.1)

If the impedance Z(w) is from a passive component, its value will lie inrthe half-

S(w) =

plane given by Re(Z(w)) > 0. The bilinear transform (1.1) maps this half-plane
into the unit circle |S(w)| < 1. If Z(w) was the impedance of a parallel LC circuit,
~ 1t would pass through a resonance where |Z(w)| tended to infinity. This would
result in considerable numerical difficulties if an impedance representation were
used. Mapping into the unit circle causes scattering parameters, in comparison,

to be well behaved. Since resonances are common in high frequency circuits, the

improved numerical stability is welcome.
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Scattering matrices have the additional advantage of existing for nearly all
‘networks. Exceptions are caused only by the presence of specific values of nega-
tive resistance. In voltage-current methods, nonexistence is a frequent problem
and has led to the increased complexity of the modified nodal approach [9]. Sim-
plification is possible using graph theoretic derivation of the tableau [10]. Yet,
even simpler graphical methods are possible in the wave approach using Ma-
son’s theory of signal-flow graphs [11]. It shall be shown that Mason’s theory
leads to powerful methods for network reduction and subsequent calculation.
These advantages, combined with the fact that scattering parameters are ob-
tained directly during the measurement process, have made the wave approach
the preferred method for both microwave component characterization and net-
work analysis [12].

The superiority of the wave approach has led to the hypothesis that a compa-
rable means for performing noise analysis would share its benefits. vNoise analysis
using wave variables has appeared only recently [13,14]. Much improvement in
these methods is possible through application of the connection theory presented
here. Connection theory has been shown to result in considerable reductions in
computer time and memory allocation needs [8]. Historically, it may be traced
to Murray-Lasso-[15] who conceived the idea of dividing admittance networks
into smaller subcircuits to simplify the calculation of the aggregate»network.
The promise of this idea may be understood by a second look at Fig. 1.2. The
connections internal to the network S,e¢ are shown with dotted lines. Those con-
nections external to the network, accessible by terminals, are shown in solid lines.
~ Connection theory obtains simplification by avoiding storage and direct calcula-
tion of variables associated with the internal connections. Internal and external
variables are separated to form a tableau whose solution is derived from a lower

order matrix inversion. Such a method using wave variables is given here. It
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allows the efficient and simultaneous calculation of both deterministic and noise
parameters for interconnected microwave networks of arbitrary topology.

Some of the research described here is based on the author’s contributions
to the interactive microwave circuit analysis package PUFF [16]. Since 1987, this
software and accompanying manual have been distributed to over 8000 users in

40 countries. PUFF is used to synthesize, analyze, and lay out microstrip and
stripline circuits. It is limited, however, to the analysis of deterministic circuits,
and cannot perform noise analysis. The features of PUFF, plus a noise wave
analysis capability, have been combined to form another circuit simula.tor named
DRACO. The programs are quite similar, the primary difference being DRACO’s

ability to perform noise analysis.

1.2 Organization of the Thesis

Given in Fig. 1.3 is a simplified, generic, computer-aided analysis algorithm
for the calculation of signal and noise parameters for a network. The two major
steps involved are calculation of noise and deterministic parameters for each com-
ponent, and the application of connection theory to solve for the parémeters of
the aggrega.fe network. Detailed descriptions of how these steps are accomplished
are the subject of this work.

In chapter 2,A wave representations for signals and noise are discussed. De-
fined here is the noise wave correlation matrix used to characterize the statistics
of noise sources. Basic manipulations of correlation matrices aré described, as
well as relationships to two-port figures of merit.

Chapter 3 presents linear connection theory applied to both signal and noise
calculations using wave representations. A detailed description of the subnetwork
growth method is given: the process wherein calculation of a network is made by
repeated connection calculations.

Chapter 4 is concerned with the derivation of signal and noise parameters

for the basic components used in microwave circuits. These include single and
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coupled transmission lines, and microwave transistors. It is shown that in many
cases the noise wave parameters can be derived directly from scattering param-
eters. |

The current methods used for the measurement of noise parameters for mi-
crowave devices are known to have several limitations [6]. Presented in chapter 5
is an alternative technique used to make direct measurement of noise wave pa-
rameters. |

Proposed in chapter 6 are research directions in noise analysis and measure-
ment that should be addressed. These areas concern the modeling of microwave

devices for noise, and new measurement approaches.

Start

-

Calculate noise
and deterministic
parameters for
each component

Increment
A 4 frequency
3

Apply connection
| theoryto compute
parameters for
aggregate network

!

Done?

No

Yes

Stop

Figure 1.3 Generic computer-aided analysis algorithm for linear frequéncy domain anal-
ysis. .
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Chapter 2

Representation of Noisy Circuits

A large body of work has been devoted to noise representations for two-port
circuits. Hartmann [1] surveys twelve different methodé, showing that each re-
quires four noise and four complex signal parameters per frequency. The use of
multiple representations is common because each offers a simple noise calculation
for components connected in a specific manner. The computer-aided noise anal-
ysis strategy has been to use the appropriate noise representation for the type of
connection to be made [2]. The advantages are akin to deterministic methods:
admittance matrices allow a simple calculation for parallel circuits, impedance
matrices simplify the series connection, and the chain represelitﬁation simplifies
the cascade connection. This approach works well for interconnected two-ports.
For arbitrarily interconnected multiports, however, the types of connections and
hence the number of definable representations are essentially unlimited;

For the analysis of arbitrarily complex circuits, the representation must be
applicable to any number of ports. The chain representation, for example, uses
_ both noise voltage and current sources and has a multiport equivalent only when
an even number of ports is considered [3]. The deterministic and noise proper-
ties of a circuit must be characterized in a compatible manner. Noise modeling
with an admittance matrix, for example, requires noise current sburces, while
noise voltage sources would be used with an impedance matxjijc. As discussed

in chapter 1, these representations use ratios of voltage and current that can be
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numerically unstable in microwave circuits. Scattering matrices are considered
superior. Iﬂ contrast to the traditional use of noise voltage and current sources,
a representation compatible with scattering parameters shall be developed here
using noise wave sources. Wave representations for noise are not new. Bauer
and Rothe [4] and Penfield [5] gave examples soon after Rothe and Dahlke pub-
lished their definitive theory of noisy fourpoles [6] using correlated voltage and
current sources. Bosma [7], using a noise wave approach, has rewor.ked‘the Haus
and Adler [3] optimum noise performance problem. The noise wave definitions
given here are similar to those used by Bosma. They allow generalized analysis

methods, and parameterization based on statistical properties.

2.1 Scattering Parameters and Traveling Noise Waves

Given in Fig. 2.1 is a transmission line of characteristic impedance Z; ter-
minated in an impedance Z(w). A deterministic voltage wave V., traveling in
the positive z direction, is incident from the left. It is scattered, resulting in
the voltage wave V_ traveling in the opposite direction. In phasor notation, the

deterministic voltage waves V. and V_ have the form
Vi = Aei®+mif=  (21a)

V_ = Bel?-¢IP* .' : - (2.1b)

where A and B are rms magnitudes, 3 is the propagation constant, and ¢4 and
¢ are phases. The scattering parameter representation is made in reference to

normalized values of these voltage waves, given by

Ve o,V
Ve V& (22)

where Z, is the real characteristic or normalizing impedance of the line, a is the

a =

incident wave, and b the scattered wave. This normalization results in the power

propagating in the positive and negative z direction to be given by |a]? and |b|?,
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respectively. The scattering parameter S is the ratio of the two traveling waves,

and the one-port circuit of Fig 2.1 is represented by the simple expression

where S may be found from (1.1).
O O—
V,—> ~ —V, _
V. 0 Z(w)
O O—

Figure 2.1 A transmission line with characteristic impedance Z; terminated in an
impedance Z(w). Voltage wave V, is incident, causing scattering wave V_. Wave V,,_
is due to noise.

The above result does not account for noise that could be produced by the
terminating impedance. For example; a passive Z(w) would produce an output
wave due to its thermal noise. This wave will be a random variable, but if
confined to a small bandwidth Af about a mean frequency f, it may be written
with a phasor defined at @ = 27 f in a manner similar to the deterministic waves,
namely ‘

Va(t) = C(t)e/*n (Ve3P (2.4)

~where f is the mean propagation constant at f. Random variables C(¢) and

¢n(t) describe the rms amplitude and phase, respectively, of the wave envelope.
Assuming Af < f, these will be slowly varying functions. This leads to the
definition of a normalized noise wave c given by

Va_(1)
VZy

c=c(t) = (2.5)
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Since V,,—(%) is given in terms of an rms phasor, |c|? will have units of power, as in
the case of |a|? and |b[2. Although c is a time varying complex random variable,
its randomness and time dependence are removed by its characterization in terms

of time averaged power W given by [8]

+T
[oF = Jim / le(ot (2.6)

T—o0

In general, the value of W will be a function of both f and Af.
Based on these definitions, it is now possible to rewrite (2.3) to include the
effects of the one-port termination’s noise. This is done by adding a wave source

term c:

b= Sa+ec. - (2.7

The output wave b now includes contributions from both the scattered wave Sa,
and the noise wave. A complete representation for the one-port now includes
the scattering parameter S and the noise power |c|? that is available from the
termination. V
The result of (2.7) can be generalized to the case of an arbitrary rﬁulti-
port network. Given in Fig. 2.2 is a multiport network S with incident waves
a,as,...,a, and-output waves by, b,,...,b, present at each terminal. As in the
case of the one port, these are normalized traveling Waires deﬁned as-in (2.2).
Elements of the scattering matrix, or S-matrix, are defined in terms of complex
ratios of these waves
Sij = L3 ' | | (2.8)

aj lay=0
Vk#j

where noise sources are neglected and the restriction that a; is the only incident
wave implies that all other ports are terminated in the normalizing impedance Zp.
The diagonal elements, s;;, of the S-matrix thus represent reflection coefficients,

while the off-diagonal elements, s;;, represent either gain or isolation.
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Figure 2.2 A multiport network S with incident waves a;,az,...,a,, output waves
b1,b2,...,b,, and noise waves ¢, ¢z,...,cy,, present at each port.
To model the effects of noise, Fig. 2.2 includes wave sources ¢;,cp,...,Cn

that repfesent contributions to the output waves due to the multiport’s internal
noise. These noise waves are outwardly directed correlated sources present at
each port, defined as in (2.5), and represent the noise originating in the network
that is deliverable to its terminations. For the general multiport elemenﬁ, the
relation between incident and output waves is therefore given: by the matrix
equation |

b=Sa+c : : - (2.9

where a and b are vectors denoting incident and output waves, ‘respectively, S
is the scattering matrix, and the noise waves are given by vector c. A physical
interpretation of the noise waves is in order. Based on the definition of (2.9) they

| may be found mathematically by satisfying
c=b| . (2.10)
a=0 .
It is therefore tempting to define ¢ as those waves the network S delivers into non-

reflective terminations in the absence of input. Yet, physically such an absence is
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unrealizable: the multiport would have to be terminated in non-reflective loads
(i.e. cha.racferistic impedances Z,) that produce no noise, implying resistive
terminations at 0 K. Noise emanating from the terminations will always yield a
nonzero a vector which in general will be scattered by S and contribute to b.
The noise wave vector ¢ is therefore best interpreted as the ezcess noise wave

‘that the multiport delivers to its terminations.

2.2 The Noise Wave Correlation Matrix

As in the case of the one-port, the components of ¢ are complex random
variables. Parameterization is required in terms of their statistical properties.
This is accomplished through definition of the noise wave correlatioh_ matrix Cs
given by o

C, = cct (2.11)

where the dagger indicates Hermitian conjugation, and the overbar indicates

statistical averaging. The components of the matrix are the correlation products

K
Cicj

T—o0

1 +T ‘
c,-c; = lim -ﬁ/T c,'(t)c;(t)dt , (2.12)

where, as before, Eg is in general a function of both f and A f. For the arbitrary

multiport of Fig. 2.2, the noise wave correlation matrix is written

lei]? ciel ... cck
2 |e2|? ... cpck :

C.=| ' " . (2.13)
CnC} CpCh ... |cnf?

For each noise-wave c¢; the correlation matrix yields values for the noise power
deliverable to the terminations, given by W, as well as a correlation product
with each of the other ports, given by m An n-port linear compbnent’s signal
and noise properties are completely described by n x n scattering and noise wave

correlation matrices.
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Specific conditions must be met in order for the noise wave correlation matrix
to exist. Néise waves are defined in a bandwidth Af about a mean frequency
f, so a frequency domain representation of the statistics of the waves must be
possible. This is guaranteed by considering only noise processes that are wide-
sense stationary. When more than one process is considered (i-e. cross-correlation
between noise waves) these must be jointly wide-sense stationary. The processes
must also be ergodic to ensure that the time limits given in (2.6) and (2.12) exist
and correspond to ensemble averages. When two noise processes c; and ¢; meet
these conditions, the correlation product E,c_;‘ can be represented approximately
by

cic] = 2AfWi;(f) ' (2.14)

where W;; is the self (i = j) or cross (: # j) power spectral density~ of the
two processes, assumed to have little variation over the bandwidth Af. The
factor of two accounts for the two-sidedness of the spectral density function. The
a’ppr"oximatién may be made arbitrarily close by letting Af approach zero. For
the purpose of numerical manipulation the Af is often dropped. An assumption
is made either that Af = 1 Hz or that the correlation terms are power density. A
power density interpretation changes approximation (2.14) to an exact relation.
In either case, the values of the correlation matrix are referred to as spot noise
values.

Values of Af can be significant when related to measurement of the noise
waves. Coherence length and time will be set by the measurement system. A
- system with group velocity v, will have a coherence length given by Al = v, /A f
and coherence time At = 1/Af. The dimensions and bandwidth of the mea-
surement system must be such that the random variables of (2.4) are sufficiently
slowly varying to allow noise wave comparisons. A transmission line system will

typically have multiple reflections that must be taken into account. Requiring
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phase changes due to coherence length and time to be much less than 27 results

in the criteria

nL < Al (2.15)

where n is an integer accounting for the number of reflections, and L is thli.e phys-
ical dimension of the measurement system that accounts for wave delays. A typ-
ical spectral density measurement of a microwave circuit will have Af ~ 4 MHz,
and easily satisfy (2.15). This is often combined with a long integration time to

improve the estimation of (2.12).

2.3 Transformations

A noise wave correlation matrix will undergo a transformation upon oper-
ation by a linear system. For example, a noise wave vector ¢, may be modified
by a transformation T resulting in a vector ¢’ = Tec. The original noise wave
correlation matrix C, = cct will therefore undergo an Hennitiaii congruence

transformation to a new matrix given by
C., = TC,T' (2.16)

The general form of (2.16) is apparent in any transformation 6f a correlation
matrix. Such transformations occur when components are added to a network,
and shall be considered in detail in the next chapter.

Changing from one noise representation to another is the eqﬁivdent of op-
eration by a linear system. Such a change may be made for computational
advantage or to avoid singularities. In addition to the wave approach, admit-
tance and impedance representations have applications. All three are compared
in Fig. 2.3 including their respective circuit diagrams and matrix relations for
voltage, current, and wave quantities. Methods using impedance matrices and

noise voltage sources have been described by Haus and Adler [9], while noise
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analysis using admittance matrices and noise current sources has been discussed

by Rizzoli and Lipparini [10]. The correlation matrices are defined similarly

Cy = inih (2.17a)

C, = vpvh (2.17b)

where 1, is the noise current vector of the admittance representation and v, is
the noise voltage vector of the impedance representation.

Relations between wave, voltage and current quantities for both signals and
noise are necessary to derive transformations. The signal traveling waves used
to define the scattering matrix are related to the terminal voltage and current of
the multiport by

a=1(v+i) (2.18a)

b=1l(v—i (2.18b)

where normalization to the characteristic impedance has been assumed. These
identities allow derivation of the signal matrix transformations given in Fig. 2.3.
Comparison of noise quantities is assisted by defining the following waves in

terms of the multiport’s short circuit noise current and open circuit noise voltage

an

LH{Va +in) (2.19a)

bn = 3(Va —in) (2.19b)

where again normalization to the characteristic impedance is assumed. The noise
wave vector is then given by

¢ = b, — Sa, (2.20)

where S is the scattering matrix. Relations (2.19)-(2.20) lead to the family of

noise correlation matrix transformations, also listed in Fig. 2.3.
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2.4 Indefinite Multiport Representations

Signal matrix and noise correlation matrix data derived from swept fre-
quency measurements are often used in the computer-aided design process. Of-
ten these data are unsuitable for direct numerical manipulation. Active devices
are generally measured with one ter}minal grounded, and the resulting definite
parameters, so named because a clearly defined ground connection exists, char-
acterize the N terminal device in terms of an N — 1 multiport. In the case of
transistors, two-port common source or common emitter measurements charac-
terize the three terminal device. These definite parameters must be converted to
a form that allows the device to be placed in any configuration, and not simply
the common source or common emitter configuration in which it was measured.
Indefinite parameters provide the solution. The indefinite parameters of an N
terminal device may be derived from its definite parameters by mathematically
changing the grbunded terminal into an accessible terminal. This yields the
desired N-port characterization of the N terminal device.

An indefinite multiport is defined as one in which no internal coﬁnection to
ground exists. The terminal currents then satisfy Kirchhoff’s current law (KCL)

N

Y i;=o. (2.21)

=1
At microwave frequencies this condition is not assured. Currents to ground
résulting from stray capacitance would not pass through a terminal, and would
result in errors. When KCL is valid, the use of an impedance representation is
_ precluded; indefinite impedance matrices do not exist. In terms of admittance
and scattering parameters, KCL results in useful properties. For an indefinite
admittance matrix, (2.21) causes the sum of any row or column in the matrix to

equal zero, the components satisfying

N N | |
Z Yik = Zyjk = 0. (2.22)
j=1 k=1 _
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This result facilitates the conversion from definite to indefinite parameters. Con-
‘necting a términal of a multiport admittance to ground will reduce its matrix
by one row and one column, but will not affect the remaining components. The
definite and indefinite matrix components y;ir will be identical for j,k# < N.
The definite parameters fill most of the indefinite matrix; only a single row and
column need be generated, and this is possible using (2.22).

In the case of scattering parameters, the enforcement of KCL.resdlts in the
sum of any row or column in the indefinite scattering matrix to equal unity; the
components satisfying _

N N

Dosik=3 sjk= | (2.23)

j=1 k=1 :
Since definite and indefinite scattering matrices generally do not share common
components, (2.23) does not allow a simple conversion between the two. Instead
it permits N — 1 port scattering parameter measurements to be used to fill
an N port indefinite matrix if the N’th port of the device is termmated in the
normahzmg impedance during measurement [11]. Parameters can then be shared,
and the N’th row and column of the indefinite matrix would be filled using (2.23).
When measurements are performed with the N’th terminal connécted to ground,
however, the conversion to an indefinite scattering matrix is best made using
transformations to and from the admittance representation given in Fig. 2.3.

‘ Multiport noise correlation matrices may also be converted from definite
to indefinite forms. Based on the general identities given in Fig. 2.3, the noise
currents in an indefinite multiport admittance must also satisfy KCL. It then fol-
- lows that the sum of any row or column in an indefinite noise current correlation

matrix C, is equal to zero:

N N

Y tnjing = injing =0. | (2.24)

7j=1 k=1
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As in the case of the deterministic admittance matrix (for j, k < N) the values
injis, are the same for definite and indefinite matrices. The indefinite noise
current correlation matrix is therefore easily filled using (2.24) and the values
from the definite matrix.

In the case of the indefinite noise wave correlation matrix, KCL and the

relations in Fig. 2.3 lead to the result that

N
CjCL = E (&14

1 k=1

=0. (2.25)

t ok
»*

N

J

The sum of any row or column in C, equals zero, as well. As with scattering
parameters, conversion from a definite to an indefinite noise wave correlation ma-
trix is difficult since they do not share common components. As before, fxowever,
if N —1 port noise measurements are performed with the N’th port terminated in
the appropriate normalizing impedance, these measurements and (225) can be
used to fill the indefinite matrix. When the noise measurements are performed
V\.rith‘the N’th terminal grounded, the generation of the indeﬁnité noise wave

matrix is best made using the transformations given in Fig. 2.3.

2.5 Analysis of Noisy Two-Ports

Although a microwave circuit may consist of a complicated arrangement of
various components, the result is often a two-port device. A noise performance
appraisal for the two-port is made using well known figures of merit. These may
be calculated using values of the scattering and noise wave correlation matrices.

Noise figure (F') has been defined by Friis [12] as a measure of the degradation
in signal-to-noise ratio. It may be written as

Na

F=1+&F,

(2.26)

where NV, is the noise power added by the two-port that is available at its output,

G, is the available power gain, and N, is the thermal noise power available from a
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source assumed to be at temperature To = 290 K. This definition can be applied
to the two-p.ort amplifier represented by scattering parameters and noise waves as
given in Fig. 2.4(a). An input signal source is shown as reflection coefficient T,.
The two-port has outward directed noise waves c; and c;. The noise waves are
shown as source terms in the signal-flow graph of Fig. 2.4(b) [13]. The nodes on
the graph denote traveling wave variables while the branches represent transfer
(i.e. scattering) coefficients. Mason’s theory [14] is used to solve for the needed

quantities. The available gain of the two-port is

|21 2(1 — |T,|?)
|1 — Tys11{2(1 — |shy[?)

where s5, is the equivalent reflection coefficient seen at the output of the two-port

Ga =

(2.27)

given by
s1200s821

—————, 2
1-— F,Su (2 8)

'
S99 = 822 +

The thermal noise power available from the source is known from Nyquist’s
formula to be
N, =kT, (2.29)

where k is Boltzmann’s constant and a 1-Hz bandwidth is assumed. The available
noise power added by the two-port is also found by evaluation of the signal-flow
graph. The noise power at the output is found by adding contributions to node

by due to ¢; and ¢;. This gives

( T sS21 ) + e
[s811
N, = (2.30)
1 —|sg[?
Substitution of the above expressions into (2.26) results in
1-T S11 2
all's +c (T)
F=1+ (2.31)

kTO(l - |Pa|2)
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Figure 2.4 Schematic (a) and signal-flow graph (b) diagrams for a noisy two-port com-
ponent.
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The numerator can be expanded and written in terms of the two-port’s noise
wave correlation matrix C,. Doing so and writing the result in terms of noise

temperature T, = To(F — 1) gives

BC.f! \
kT, = ———— 2.32
aA-I.p) (232
where 3 is the 1 x 2 row matrix given by
g=(r, l—iﬂ) . (2.33)

321

Haus and Adler [3] have defined the figure of merit known as noise measure
which determines the best cascade order of two amplifiers with respect to the
noise performance. It takes into account the amplifier gain that, if small, would
cause poor cascaded noise figure. Applying the definition given by Fukui [15]

gives
1— 1 7 kT,A(1-SSt)at

a

M =

(2.34)

where S is the scattering matrix of the two-port, and again a 1-Hz bandwidth
has been assumed. v

Equations (2.32) and (2.34) demonstrate that if the noise correlation ma-
trix of the two-port is known, then its noise figure, noise temperature, and noise
measure can be predicted as a function of the source reflection coefficient. It
is not typical, however, to make direct measurement of the components of Cs.
Instead, two-port measurements are commonly made to extract the noise pa-
- rameters known as Ti,;, (minimum noise temperature), I',p; ‘(optimum source
reflection coefficient), and R, (noise resistance). These parameters satisfy the
noise temperature relation

4 TO Rn IFs - 1-‘opt|2

Tn = Llpmin + .
Zy |1 + I‘opt|2 (1 - |P,|2)

(2.35)
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By comparing (2.35) and (2.32), conversion formulas between the above noise

parameters and elements of the noise wave correlation matrix may be derived.

These are
kt|1 — 891 Tope)? )
le1]? = kTmin (|511|2 - 1) + ||1 n ;,;tl,ftl (2.36a)
kt|Tppe)? '
[ea = [s31 % (kTomim + |1—+_1‘L;|3)  (2.36b)
__ =spDikt | KTl |
AT T4 Ty T 01152 (|1 T ¥ i)  (2:36¢)
where
kt = %%&. - (2.37)
The inverse relations are
14351y ?
kt = |cy —c2( — ) (2.384)
_ea]? = lersar — e2s11 2T ope[? '
kTmin = (2.38b)
|s21[2(1 + |Topt[?) '
4
Fopt = g(l - 1- m‘i ) v‘ ; , (2386)
where
_ leaf? +lersan — Czsulz_ (2.39)

|c2|2511 — exc3sm
. These relations are rather complicated, but some insight can be gained by defin-

ing the denominator of 5 as a parameter { given by

¢ = le2?s11 — e1c3s21. (2.40)
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This parameter represents a measure of the correlation between ¢; and ¢y refer-

enced at an input node. The following relations exist between I's,¢ and (:

lim |Tope| = .
. ITopt| =0 ‘(2 4la)
arg(lope) = —arg(() (2.410)

i.e., when the correlation term ( vanishes, T}, has been obtained, and a 180°
phase difference exists between ( and I',p;. The search for an optimum noise
match using the noise wave correlation matrix thus involves finding a network
that gives ( = 0. Since impedance matching is also of concern, this can be
interpreted as a search to make E =0 and s11 = 0.

The complexity of the conversion formulas given above is due to differences
in the nature of the noise parameter definitions, each being a function of I',. As
apparent in (2.35), the noise parameters I'yps, Trmin, and R, are defined in such
a way as to lead to a simple expression for T,, when I'y = I',,;. The noise wave
correlation matrix parameters, however, lead to a simple expression for I'y, = 0.

Substitution of I'y = 0 into (2.32) and (2.34) results in

ez |?
M= 2 (2.42)
for noise temperature and
2
M= lez| (2.43)

 Jsa1 |2 4 [s92]2 — 1

. for noise measure. The single output noise power ]cTP of the two-port is the sole
indicator of noise performance with a non-reflective (Z,) input termination.
Using noise parameters referenced to Z, terminations permits a new low
noise design process. The traditional procedure is to create a matching network
that transforms a I'y = 0 load to Iy = I'yp;. This network is then connected

to the input of the device to realize T,;,. This is an inside-out approach: the
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matching network and the device to be matched have been divided and analyzed
separately. Noise waves permit an outside-in approach. The complete circuit,
including matching network and device, is built up and analyzed as a whole.
Each change will, in general, cause a change in the correlation matrix, and lead
to new values for T}, (2.42). The T},;, design is known to be realized when ¢ = 0,
or alternatively, when ¢;c} and s;; are nulled. The approach is compatible with
deterministic amplifier design using scattering parameters, where a typical ob-
jective is to null s,y and 322 for good input and output matching. In chapter 5,
methods shall be shown for the direct measurement of noise waves in a Z;, sys-
tem. In general, the outside-in approach has the advantage that the parameters

calculated are also those that are measured.
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Chapter 3

Linear Connection Theory

In the wave approach to network analysis, direct application of Kirchhoff’s
laws is inappropriate. Alternatives are sought that allow sufficient mathemat-
ical circuit descriptions to permit network solution. These come in two forms:
wave equivalence based on network connections, and signal-flow graphltheory.
Combined, these form the basis of linear connection theory.

As with any approach, a network is solved based on knowledge of its com-
ponents and its topology. Both brute force and elegant means of solution are
typically possible. For the computer, the brute force method involves placing all
network information in a large matrix called the tableau. Solution is then accom-
plished by matrix inversion. In this chapter, the brute force method shall first
be examined. This is followed by pursuit of more elegant means to simplify the
matrix inversion problem to reduce computer time and memory space require-
ments. This leads to the subnetwork growth method: a numerical application of

signal-flow graph theory.
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3.1 Multiport Wave Variable Connection Methods

The basic network analysis problem is illustrated by Fig. 3.1(a). A group
of components Sy, S, ..., Sy, have been combined to form network Spet. In
the wave variable interpretation, these components are represented by scattering
matrices. Associated with each multiport scattering matrix Sy shall be an input
wave vector ag, an output wave vector by, and an output wave source vector c.

All of these variables may be placed into a tableau equation given by 7

b] Sl 0 e 0 ag C
b2 0 52 . 0 as C2

N i - 2 B B (3.1)
bm 0 0 ... S, an, Cm

This may be simply rewritten in the form of a standard wave variable equation
b=Sa+c - (3.2)

keeping in mind that a, b, and ¢, are now composite wave vectors, and S is a
block diagonal matrix whose submatrices along the diagonal are the scattering
matrices of the components.

The connections that exist between the m elements of the network will
impose constraints on components of the vectors a and b. Namely, where a
connection exists, there will be an equality established between incident and
output waves. This is demonstrated by the waves at a single connection shown

in Fig. 3.1(b). These waves must satisfy
a=b  a=b. | (3.3)

Similar relations are apparent at every connection. This allows construction of a

connection matriz I satisfying

b=Ta (3.4)
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(b)

Figure 3.1 An aggregate network, Spet, consisting of many interconnected components,
each characterized by scattering parameters. Schematic diagram of the network (a), and
detail showing an incident and output wave for components S; and S; at a connection
(b).
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The components of I' are all zeros, except those entries that correspond to a
connection, and have a value of unity. Application of (3.2) and (3.4) gives the

solution for the output wave vector [1]
b=0IT-S) . - (8.5)

‘The composite network is therefore solved solely in terms of the component S-
matrices and knowledge of the interconnections. This is a brute-fbrce‘method.
The (T' — S) matrix, albeit sparse [2], can be quite large, and its inversion leads
to long computation times. The solution (3.5) comes in terms of the composite
wave vector b, giving output waves for the aggregate network, and also those
for each component within the network, although the latter are generally of no
concern. In addition, (3.5) cannot be applied directly to the source free (¢ = 0)
case. This type of method may be used to perform noise analysis, as recently
proposed by Dobrowolski [3). These problems, however, inspire the need for an
alternative.

Improvement is possible through application of connection methods.‘ The
idea is to divide the network to be solved into subcircuits to simplify the overall
calculation. Such an approach was first described by Murray-La.sso_ [4] using
indefinite admittance matrices, and has also been described using wave variables
in the absence of sources [5]. The first step is to separate internal and external
variables of the network. In Fig. 3.1(a), connections internal to the network Syet
are shown with dotted lines. Those connections external to the network, and
accessible by terminals, are shown in solid lines. Simplification is obtained by
- avoiding outright calculation of internal variables.

The process begins, as before, with tableau equation (3.1). Next, those
waves which are external to the network are separated from those internal. This

results in the partitioned form of (3.2):

) -G+ oo
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where the external waves are denoted by subscript e, and those internal by sub-
script ¢. The topology of the network is based on connections between internal

elements, so the connection matrix I' may be redefined using
b; =T a;. | (3.7)

As before, I designates equality between internal incident and outward waves, so
its elements are either 1 or 0 for components with consistent definitions of nor-
malizing impedance. Desired is the scattering matrix for the aggregate network
Snet defined as the ratio of external incident and outward deterministic waves,

and the equivalent source wave for the network cpet that satisfy:
bc = Snet Ae + Cpet- 4 (38)

This is sufficient information to calculate the source free S-matrix for the net-
work. Setting the source terms to zero and solving equations (3.6)-(3.8) yields

the cbnnection formula:
Snet = See + Sei(r - Sii)—lsie (39)

Solving the problem with sources included is accomplished by defining cpet

as the waves that exit the network in the absence of input:

Chet = be (310)

, leading to :
o = [1 | SulP = 8u)] (&) (3.11)

where I is an identity matrix with order equal to the number of external ports,
T is the same connection matrix defined by (3.7), and the bar (|) denotes matrix
augmentation. If the source terms ce and c¢; are due to noise, then the solution

must be put in terms of a noise wave correlation matrix. Using the partitioning
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method of (3.6), a noise wave correlation matrix may be defined in terms of

internal and external noise waves

cect cecf ’
C,= : - (312)

t
C;Ce ¢ C;

This matrix is filled with values from the known noise wave correlation matrices
of the components. The connection formula for the new correlation matrix is

found by applying Cpet = CnetClo and (3.11)
Cnet = [I | Sei(r - Sii)_l] Cs [ I I Sei(r - Sii)_l]t . V (313)

This result, combined with (3.9), gives a complete noise and signal character-
ization of the aggregate network. Several improvements have been made over
the approach leading to (3.5). A direct calculation of the new scattering matrix
is now possible using (3.9). In addition, the order of the matrix to be inverted
has been reduced by an amount equal to the number of external ports. A very
dramatic advantage also comes from the similarities in the expressions for St
and Cpet. Both share the (T — Sii)~! matrix in their calculations. It is this
matrix inversion that requires most of the computational effort. vSurprisingly, in
approximately the same time required for performing a lone signal analysis, both

signal and noise analyses may be performed.
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3.2 Network Reduction by Subnetwork Growth

Unfortunately, for a circuit comprised of many components, the computer
time and memory required to perform even the simpler (I —S;;) matrix inversion
can be prohibitive. It does tend to be a sparse matrix, however, so appropriate
methods are in order. General methods have been described elsewhere [2,6],
yet an alternative sparse matrix approach is available for this specific problem.
Known as subnetwork growth [1], it involves a repeated application of connec-
tion formulas. Computation time is reduced by building up large networks by
connecting smaller subnetworks together, two at a time, reducing the size of the
matrix to be inverted. In the simple subnetwork growth procedure described
here, only one connection is made at a time, reducing the size of the (I' — Sj;)
matrix to a 2-by-2. This process is illustrated in Fig. 3.2 for a branch-line coupler.
The coupler is a network comprised of eight parts: four quarter-wave transmis-
sion lines, and four tees. These are labeled A through H in the figure, and the
external ports are numbered from 1 to 4. In the first step, the parts are joined
in pairs forming four three-port subnetworks. Next, these three-ports are com-
bined in pairs forming the two four-ports, ABCD and EFGH. Finally, the two
four-ports are joined to make the complete branch-line coupler. |

Subnetwork growth for deterministic analysis has been studied by Monaco
and Tiberio (7] and Filipsson {8]. Since no intermediate results are stored, the
method has a fundamental difficulty in that the entire process must be repeated
for multiple analyses. However, in a comparison to a more standard sparse ma-
trix method that included pre-processing for fast fe-a.na.lysis, subnetwork growth
~ was shown to be superior in speed for analyses numbering less than 120 [5]. Ex-
ecution time is sensitive to the order in which the joints are made, so a search
for the connection that results in a new subnetwork with the smallest number of

parameters is needed.
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Figure 3.2 The subnetwork growth process applied to a branch-line coupler.

analysis begins with the coupler considered as eight distinct components.
connected in pairs to form four three-port components. These, in turn, are connected in
pairs, and two four-port components result. Joining the two four-ports, and then making

the final connection, results in a single four-port network.

These are
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The subnetwork growth process can be applied to perform simultaneous
7deterministi.c and noise analyses. Connection formulas, equivalent to specific
applications of (3.9) and (3.13), are needed to perform this task, and shall be
derived using signal-flow graphs. Performing noise analysis in such a way is
similar to a summation method recently described by Kanaglekar, et al. [9].

In the example of Fig. 3.2, it was evident that only two basic types of con-
nections are needed during the subnetwork growth process. These are depicted
in Fig. 3.3. Shown in Fig. 3.3(a) is the intra-connection. This occurs when two
ports of the same network must be combined, resulting in a reduced number of
ports. Shown in Fig. 3.3(b) is the inter-connection. This is used to combine
ports of two different networks, resulting in a reduced number of subnetworks.
Separate intra- and inter-connection formulas are needed for deterministic and
noise analyses. Those required for the deterministic case shall be examined first.

Given in Flg 3.4 is the reference diagram and corresponding signal-flow
graph for the deterministic intra-connection. This graph, and those that follow,
are independent of the number of ports possessed by the networks beiﬁg reduced.
Indices k and ! denote the ports being reduced by the intra-connection. Indices
¢ and j denote any two other ports possessed by the multiport'S. Solving the
signal-flow graph gives an expression for the new scattering parameters modified

by the connection:

3kjSit(1 — sik) + 8158ik(1 — Sk1) + SkjSusik + S1SkkSi1

(1 —sx)(1 = s1x) — Skrsu (3.14)

U — ..

- The indices ¢ and j are varied over each of the other ports to generate a new
scattering matrix. If the initial order of the square scattering matrix S was n,
the process reduces it to order n — 2.

Given in Fig. 3.5 is the reference diagram and corresponding signal-flow

graph for the deterministic inter-connection. Indices k and ! again denote the
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(a)

(b)

Figure 3.3 The two basic types of connections that occur during the subnetwork growth
process: (a) the intra-connection, (b) the inter-connection.
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Figure 3.4 Reference connection diagram (a) and signal-flow graph (b) for the deter-
ministic intra-connection. The network S is an arbitrary multiport with indices  and j
denoting any two ports other than the joined ports k and [.
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ports being reduced. Indices 7, j, and m denote other ports possessed by S and

T. Solving the signal-flow graph gives

' Skitusik
= sy RSk (3.1
8;j = 8ij + 1= seetn ( 5a)
o .= Skitml (3.15b)
™1 — sptu '

The indices are again varied over all ports other than k and [, resulting in a single
subnetwork scattering matrix. If original scattering matrices S and T had order
n and m, respectively, then the new combined matrix will have order n+m-2.

A subnetwork growth procedure, using the connection formulas given above,
has been implemented in thé microwave computer-aided design program named
PUFF [10]. Using the three connection formulas from (3.14) and (3.15), op-
timized for speed, the equivalent of the matrix inversion of (3.9) is performed.
Linked lists are used in the program to keep track of components and connections.
To perform the analysis, PUFF collapses the lists by repeatedly forming inter-
mediate subnetworks using single connections. When every connection has been
made, the complete network has been formed. The success of the PUFF imple-
mentation [11,12] has inspired a similar procedure for performing noise analysis
to simplify (3.13). Given in Fig. 3.6 is the reference diagram and correspond-
ing signal-flow graph for the noisy intra-connection. Indices are used as before,
and also designate the outward directed noise waves present at each port. The
signal-flow graph is different from that in Fig. 3.4, and now contains only those
nodes and branches that result in changes to the noise waves. Solving the graph

" gives

P = e+ cifsi(1 — sk1) + SkkSit] + crfsa(l — Sik) + susik]

— 3.16
“ (1 — sk)(1 — sax) — Skxsu (3-16a)
¢ =ci+ cifsje(1 — ski) + sersji] + ck{sjif(1 — six) + susj] (3.16b)

(1 = sk)(1 — ik ) — Skrsu
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Figure 3.5 Reference connection diagram (a) and signal-flow graph (b) for the deter-
ministic inter-connection. Networks S and T are arbitrary multiports with indices 4, j,
and m denoting any two ports other than the joined ports k and /.
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where ¢; and ¢ are found by summing the contributions from the noise waves to
nodes b; and b i, respectively. Since noise waves c; . ..c; are random variables, the
above equations give no direct information. They must be related to elements
of the noise correlation matrix of network S. This is accomplished by taking a

correlation product of equations (3.16). The result is

7w _ —, —(Sik(1 = ska) + sexsit)(8(1 — six) + susjx)*
c;c; = cicj + e (1 —sx)(1 = Sik) — SkkSul?
+ Eﬁ(sil(l — su) + susik)(sj(1 — skt) + skxsjn)*
(1 = se)(1 — su) — sksul?
+ W(Sik(l — ski) + skrSit)(8k(1 — sk1) + skks;t)*
(1 = sk)(1 = sux) = sursul?
+ !c_kl—f(st'z(l — 31k) + susik)(8i(1 — sik) + susje)*
|(]_ - 3“)(1 — 81k) — Skksul?
(3.17)
IN(1 = sk)(1 = six) — skxsu

—_— sit(1 — su) + susik )
+ cxc* (
k% (1 = se)(1 — s4x) — skrsu

85k(1 — sk1) + skxsji )*
+ cic} 2
! ((1 —sk1)(1 — sik) — SkkSu

—_— s;1(1 — sie) + susjx )*
+ cicy . .
k ((1 —sp1)(1 — sik) — Skisu

As in the deterministic case, indices ¢ and j are varied over each port to generate
a new noise wave correlation matrix. _

- The procedure is similar for the case of the noisy inter-connection. The con-
nection diagram and signal-flow graph are as given in Fig. 3.7. In this case, two
noise wave correlation matrices, one for S and another for T, must be combined
. to form a solitary correlation matrix. Summing the contributions to b;, b;, and

bn, from the signal flow graph gives

t oo 4 Sik(tuck + )

3.18a
1 — sity ( )

sik(tuck + ci)

3.18b
1 —skty ( )

,— -
cj—cJ—I—
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Figure 3.6 Reference connection diagram (a) and signal-flow graph (b) for the noisy
intra-connection. The network S is an arbitrary multiport with indices ¢ and j denoting
any two ports other than the joined ports & and [.
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t
¢ = cm+ ml(skkcl+ck)‘

3.18¢
1 — sgrtu ( )

As before, correlation products of these variables must be taken, resulting in |

x
Siktu _ Siktu
cﬁc;-* = c,-c;f + cicy, gk + ckc; AL L1
1 — spitu 1 — skrtu

s,-ks]"-‘k

—_— 2 4 1tul®lexl? ' - (3.19
* T el fulle (3190
c' c’* =c c* —__S]k— ) + c c __tml_
J ™1 - Skktu *I\1 = sxtu
T et 22— (skklcil? + tlexl?). _ ‘(3.19b)

As before, indices are varied over all ports other than % and I, resulting in the
new noise wave correlation matrix.

The complexity of the connection formulas for noise, (3.17) and (3.19), is
misleading. Many of the terms present in the equations are shared by the de-
terministic subnetwork growth formulas (3.14) and (3.15). Indeed, very few
additional computations are required to perform noise analysis in addition to
the deterministic analysis. This is a benefit of the similarity between general

equations (3.9) and (3.13).



48

ool § o o T

O “m
v 1
tml
> O
bm
1
— O €

(b)

Figure 3.7 Reference connection diagram (a) and signal-flow graph (b) for the noisy
inter-connection. Networks S and T are arbitrary multiports with indices i, j, and m
denoting any two ports other than the joined ports k and I.
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3.3 Embedded Network Connections

Connection formulas different from those derived in the previous sections
result when a network is embedded entirely within another. This case is illus-
trated in Fig. 3.8, where a multiport S with noise wave correlation matrix C, is
embedded entirely within a network T with correlation matrix C;. The objective
is to find the resulting scattering and correlation matrices S,e¢ and Cpet-

The procedure is similar to that followed in section 3.1. First, the embedding

network T is partitioned such that

T Tei '
T = o & 3.20
( Tie Ti ) ) ( )
where subscripts e and i denote a reference to external and internal waves, re-
spectively. The internal waves are those shared at connections between networks

S and T. The external waves are those seen at the Syt terminals. The compo-

nents of this partitioned matrix will satisfy

GG m) (@)« e

where a are incident, b are output, and ¢ are outward noise Wé.VGS, present at
either internal (i) or external (e) ports relative to T. Noise waves cg and cjet
are now defined as those produced by network S and S, ¢, and used to define
thé noise wave correlation matrices C, = c,_cl and Cpet = m Matrices S

and S, will satisfy

a;=Sb;j+c, - (3.22&)
be = Sneta, + Cnet- (322b)

Setting the noise waves to zero in (3.20)-(3.22) allows solution of the deterministic
matrix

Snet = Tee + A S Tie (3.23)
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Figure 3.8 A multiport network S with noise wave correlation matrix C, embedded
within network T with correlation matrix C¢. The result of the embedding is scattering
and correlation matrices Sye¢ and Cpet. Network T is partitioned in the manner shown,
where subscript e denotes reference to an external wave, and ¢ denotes reference to an

internal wave. Internal waves are defined as those shared at the connections between T
and S.
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where

A=Ty;(I-8STy)™! (3.24)

and I is the identity matrix. Invoking (3.10) leads to a solution for the new noise

wave correlation matrix
Chet =AC,A'+ [I | AS] C, [I| AS]" (3.25)

where, as before, a bar (]) is used to designate matrix augmentation.

As in section 3.1, there are similarities in the expressions for S,et and Cpet
that can lead to computational advantage, especially since the mat:ix inversion
required for A is shared by each. Since it is possible to interpret any network as
a series of embeddings, connection formulas (3.23) and (3.25) may be used for .
the entire computer-aided analysis process. Such an approach using admittance
matrices has been described by Rizzoli and Lipparini [13]. However, expressions
(3.9) and (3.13) are generally simpler to evaluate, especially using subnetwork
growﬁh. The embedding equations here have proven to be more useful in analyz-

ing the effects of adding parasitics to a network.
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Chapter 4

Component Modeling

Chapter 3 has provided methods for computing the characteristics of an ag-
gregate network based on knowledge of its components and its connections. In a
CAD program, knowledge of the connections comes essentially from bookkeeping
during the generation of the layout or net-list. Each of the n-port comi)onents
in a network require a representation in terms of n x n scattering and noise-wave
correlation matrices. These are generally calculated from theoretical models,
although it is also common to include parameters found by direct measurement.

Considerable similarity was achieved in the equations used for noise and de-
terministic ‘ana.lyses due to the compatible noise and signal representations. A
similar advantage exists with components: their noise wave correlation matrices
may often be calculated directly from their scattering matrices. For passive com-
ponents, a simple relationship exists between the two. .Referred to as Bosma’s
theorem, it comes readily from the principle that a passive muitiport in ther-
modynamic equilibrium with non-reflective terminations produces uncorrelated
output waves [1]. The noise generated in passive components is due to losses
that give rise to thermal noise, so accurate loss modeling is desirable. For mi-
crowave transistors, deterministic modeling has long been accomplished using
linear equivalent circuits. It is possible to perform noise analysis in a similar
manner by assigning temperatures to resistors in the equivalent circuit to ac-

count for electronic noise in the device.
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4.1 Noise Waves and Passive Components

Relationships between passive components’ thermal noise and their deter-
ministic parameters may be derived using thermodynamic arguments [2]. The
simplest passive component is the one-port. It is completely characterized by a
scattering parameter S and noise wave F:-IE These satisfy the scalar equation
b = Sa + c. To solve for [c[?, the one port is terminated in the normalizing
impedance Zj, allowing no reflections. The incident wave a will be dué to noise
emanating from the termination, and will be uncorrelated with the noise wave c.
Power flow is therefore given by [b]2 = |s|?]a[? +[c[2. With a non-reflective termi-
nation, the incident noise power |—¢;z|_2 in a 1-Hz bandwidth is the available noise
power kT, where k is Boltzmann’s constant, T is the temperature, and quantum
effects have been neglected. Thermodynamic equilibrium requires a balance in

power flow such that [a|? = |b]? and therefore

lel? = kT(1 - |sf?). (4.1)
For the one-port, the correlation matrix is the single parameter TCF An equiva-
lent to (4.1) shall now be derived for the case of an arbitrary passive multiport,
beginning with the examination of a two-port passive component. In all noise
calculations, a 1-Hz bandwidth will be assumed.

Shown in Fig. 4.1 is a two-port passive component S with reflectionless
terminations. Thermodynamic equilibrium is assumed; the terminations and
two-port having reached a common temperature T. Since no external sources
are present, the incident waves a; and a, are dﬁe solely to the thermal noise
waves emanating from the two terminations. These waves will be uncorrelated,

and from the derivation of (4.1) it is known that

a1 = [az® = kT (4.2a)

aza} = 0. (4.2b)
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Figure 4.1 A passive two-port network S with reflectionless terminations, all a.ssumed
to be at temperature 7. All waves are due to thermal noise.

Thermal noise waves generated by network S, and the scattering of noise
waves a; and a3, contribute to output waves b, and b;. Yet, in thermodynamic
equilibrium the net power flow must be balanced, so these output waves must
satisfy

6112 = [b2|? = kT. (4.3)

As yet unknowﬁ is the value of the correlation product bz_bf, but it may be
measured. Given in Fig. 4.2 is the network of Fig. 4.1 with a directional coupler
inserted between the two-port and its terminations. The primed wave variables
are those that should be effected by the insertion‘ of the coupler which is assumed
. to be an ideal (lossless and matched) 3-dB 180° hybrid. The effects on b, and b,
are found by applying the coupler equations

= Z5(b1 + by) | (4.4a)

by = 22(b1 — by) (4.4b)
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b1 > b1 > %
b, —s
b)—> 2T %

Figure 4.2 Directional coupler inserted between the passive two-port network S and its
terminations.

resulting in

B = 4 (Il + [52F) + Re(5:57) . (450)
Bl = 1 (01 + T6al?) — Re(5:55) (4.5b)
67 =} (0 = bal?) + SIm(B55). (4.5¢)

A measure of byb] is possible by comparing these values. Similar expressions are
obtained for aj and aj, but since (4.2) remains valid for Fig. 4.2 as well as for

Fig. 4.1, application of (4.5) results in

@ = [ = &T - (46a)

dar =0 (4.6b)

demonstrating that insertion of the directional coupler has had no effect on the

statistics of the noise waves originating from the terminations. Thermodynamic
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equilibrium then requires that (4.3) remain valid, as well. This allows (4.5a) and
(4.5b) to be simplified to

B2 = kT + Re(5;5%) (4.7a)

[6]2 = kT — Re(5;57). (4.75)

Correlation between output waves from the two-port would cause power levels
other than kT to be delivered to the terminations. This would be a violation
of equilibrium and cannot be the case. The continued validity of (4.2) requires
that W = W = kT, and indeed the power in all waves must be kT The only
conclusion is that Re(byb}) = 0.

The same reasoning may be repeated with a 3-dB 90° coupler substituted
for the 180° hybrid. The result is then that Im(3;7) = 0. The statistics of
all waves considered are unaffected by the insertion of the directional couplers,
leading to the conclusion that

B2b% = 0. (4.8)

This result is true for all passive two-ports since no restrictions other than pas-
sivity have been placed on the network. |
This result can be generalized to the case of any passive multiport with

reflectionless terminations described by the wave variable equation
b =Sa+ec. (4.9)

~ The terminations will produce uncorrelated waves with thermal noise power kT,

written in vector form as

aal = kT1 (4.10)

where I is the identity matrix. For the multiport, the directional coupler test
can be applied to any two ports at a time. The result is the same. For any ¢

and j, [5;2 = |bj|> = kT and m;‘— = (. As before, correlation between b; and b;
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would result in power delivered to the loads differing from k7" and is not possible.

Writing this result in vector form gives
bbf = kT1. (4.11)

This lack of correlation is a rather remarkable outcome. Although input noise
waves a will be scattered, generating correlated waves Sa that contribute to the
output wave b, the net correlation in the output waves must vanish. This puzzle
is solved upon considering the noise wave correlation matrix for the multiport.

Equation (4.11) allows a simple derivation. From (4.9)

bbt = (Sa + ¢)(atSt + ct)
. . (4.12)

= Saa’St + cct :
where act = cal = 0 since the noise waves produced by a multiport and its
terminations are uncorrelated. Solving for C, = cc by substitutions from (4.10)

and (4.11) yields _
C, = kT(I — SSY) - (4.13)

known as Bosma’s theorem [3]. The noise waves contributed by the network are
simply those necessary to cancel the effects of correlation present in the scattered
waves Sa in order to maintain the lack of correlation in output waves, and to
achieve balance in power flow, both required for thermodynamic equilibrium. It
is well known [e.g., 4] that the fraction of power absorbed by a passive multiport
is given by (I — S'S); lossless networks satisfying the unitary condition S'S = I.
. Many passive networks are reciprocal and symmetric for which StS = SSt,
Equation (4.13) may be considered as a calculation of the power absorbed by
the network that is available for radiation. A means is therefore provided to
calculate the noise wave correlation matrix for any passive multiport in terms of

its scattering matrix and temperature.
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4.2 Passive Component Parameters

Models ‘used to derive scattering parameters for most microwave components
have been available for some time, although there is continual work to improve
their accuracy and frequency range of validity. A distinction can be made between
models for distributed microwave components: some are used for analysis, others
for synthesis. In the case of analysis, the shape of the component is given and
the job is to derive useful electrical parameters, such as electrical length and
propagation constant. For synthesis, the desired electrical parameters are used
to calculate component dimensions. Synthesis procedures used for microstrip
and stripline single and coupled transmission lines have been summarized by
Compton, et al. [5]. Synthesis models do not include effects due to losses and
dispersion. The noise generated in passive components is due to loss, so a loss
analysis must follow the synthesis procedure.

Given in Table 4.1 are the expressions used to calculate the scattering pa-
rameters for typical passive components: a two-port lumped element (lumped),
a single transmission line (tline), and coupled transmission lines (ciines). In
the table, z is the normalized impedance, y is the normalized admittance, ¢ is
the length of the component, and v is the complex propagation constant given
by

T=a+jp (4.14)

where « is the attenuation factor, and 3 is the (real) propagation constant. In
the synthesis procedure, the impedance or admittance is specified, along with
~ the electrical length 6§ = B¢ at a specific frequency. This allows calculation of
component dimensions. In analysis, the dimensions are specified, from which the
impedance and electrical length must be calculated. In both cases, a calculation
for the real and imaginary parts of the propagation constant v must be made

based on either given, or synthesized dimensions.
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Each of the components listed in Table 4.1 is reciprocal (s;; = sj;) and
symmetric (s;; = s;;). For the two-port with p = s;; and 7 = s;;, the noise
correlation matrix simplifies to:

1—|pl* = || —2Re(pr*) |
C, = kT(I-8SSH) = kT . (4.15)
—2Re(pr*)  1—|p|* ~|r)?
Reciprocity and symmetry cause each of the terms to be real. Applying (4.15)
to the lumped element of Table 4.1 gives:

_4kTRe(z) { 1 -1
C, = W (_1 1) . (416)

A numerical advantage is seen here. For Re(z) > 0, the components of C./kT lie
on the real line segment between :l:%, and stability of the matrix is ensﬁred. In
a noise voltage representation, the noise power is proportional to 4kT Re(z) and
takes on large values at resonance. The noise wave representation gives stability
comparable to the scattering parameter representation: the only unstable point is
in the vicinity of 2 = —2. Negative resistance is often used to simulate parametric
amplifiers, masers, and tunnel diode amplifiers. Noise generated by these devices
can be modeled by assignment of a negative temperature to the device, making
the diagonal coniponents of C, positive.

The calculation of the scattering matrix, and then the noise correlation ma-
trix, for a distributed element requires knowledge of its & and 8. These can be
complicated functions of frequency. The models described in the following sec-

tions for dispersion and loss have been implemented in a new version of PUFF [6].
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Part Sij
z f . -
= or 1 =71,
z+2 142y’ I
lumped 9 0
Y . .
= for 1 .
2+2 1+2y 73
(z — y)sinh £ .
- , fori=yj;
2coshyf + (z + y) sinh 4¢
tline 0
for 1 # j.
2coshyf + (z + y) sinh v£’ 7
(ze—ye) sinh v.£ (2o—Yo) sinh v, ¢ .
Tcosh v, 42(z. Fy2) sinh 7.l T Tcosh v, £ 2(z, +52) simh 7,7 for i = j;
(2e—ye)sinh v L (2o —¥o) sinh v, ¢ 1 d
- — ] I't;
clines 4cosh . £+2(ze+ye)sinh vl — b ol +2(zo+70) sinh 7ot coupled po
- 1 1 . h )
2cosh v.€+(z.+y.) sinh ~.¢ + 2 cosh v, 84+ (z,+y, ) sinh v, £? t rough port;
1 1 .
2cosh v, 0+ (z.+y.)sinh 7. ~ 2cosh v,4+(zo+yo) sink v, ¢ ° isolated port.

~ Table 4.1 Expressions used to calculate the scattering parameters for common mi-
crowave passive components: a two-port lumped element (lumped), a single transmission
line (tline), and coupled transmission lines (clines). In the table, z is the normal-
ized impedance, y is the normalized admittance, v is the complex propagation constant
¥ = a+ jB3, and £ is the length of the component. The subscripts e and o refer to even
and odd modes of the clines. For the clines, the ports are labeled in a way that is
appropriate for a directional coupler: the through port is on the same line as the input
port, but at the opposite end. The isolated port is the port diagonally across from the
input, and the coupled port is at the same end as the input, but on the other line.
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4.2.1 Dispersion

Microstﬁp is the most common microwave transmission line structure. It is
inhomogeneous, causing the fundamental mode of propagation to be other than
TEM. This is modeled by a relative effective dielectric constant €., that is a

function of frequency. The real propagation constant 3 then follows

B(w) = VVere(w)ko | (4.17)

where kg is the TEM propagation constant for the equivalent transmission line
with an air dielectric ko = w,/epfip. Typically, as frequency is increased, e,
increases in a non-linear manner, approaching an asymptotic value. For single
and coupled microstrip transmission lines, €., may be modeled using Getsinger’s

expression [7,8]
€r — €re.(0)
1+ Fiy(w)

where ¢, is the relative dielectric constant of the substrate material, €,¢,(0) is the

(4.18)

€re;(w) = € —

low fi'equency quasi-static value, and F;(w) is an increasing function of frequency.
The subscript ¢ is used to distinguish between the functions and values used for
single microstrip, and for even and odd modes in coupled microstrip. Accurate
closed form expressions for Fj(w) are complicated, and have been given for single
and coupled microstrip transmission lines by Kirschning and Jansen [9,10]. Dis-
pei‘sion affects characteristic impedances in a similar way. It is modeled using
Bianco’s expression [11]

Z('),‘. - Zon(o)

ZO;(w) = Z(;.- - 1+ F(w)

(4.19)

where Z3, is twice the characteristic impedance of an equivalent (single or cou-
pled) stripline with twice the thickness of the microstrip, and Z,(0) is the quasi-
static impedance. The functions F;(w) used in (4.19) are the same as those used

in (4.18).
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4.2.2 Losses

For distﬁbuted components with propagation constants given by (4.14), C,
takes on nonzero values when the attenuation factor « is nonzero. This loss factor
includes contributions from a dielectric attenuation factor ag and a conductor
attenuation factor a, where

a=a.+ ag. (4.20)
The calculations for conductor attenuation have the similar form given by

: R
a:: = Z:";ft KiFsr , (421)
where Z; is the line impedance (even or odd mode for couplers), W is the effective
width of the line (taking into account finite strip thickness), and K; is the current

distribution factor. The subscript and superscript i again designates differences

for a single line, and even and odd modes in a coupled line. The surface resistance

R,=\/”aE I

at frequency f, permeability x, and conductivity o. The substrate surface rough-

ness factor Fj, has been evaluated by Hammerstad and Bekkadal 4[12]. They find

R, is given by

it well approximated by the expression

2) '
F,, =1+ %a.rcta.n {1.4 (?) } - (4.23)

where A is the rms surface roughness and §, is the skin depth at the operating
- frequency. This factor is necessary to account for an asymptotié increase seen in
the apparent surface resistance with decreasing skin depth. Expressions for the
current distribution factor K; have been given by Pucel, et al. [13] and Gupta, et
al. [14] for single microstrip. Expressions for coupled microstrip have been given
by Garg and Bahl [15] and Hammerstad and Jensen [16]. In most cases, K; is

derived from an application of Wheeler’s incremental inductance rule [17].
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Accounting for dielectric loss is done by including the effects of finite loss
tangent tan§. For the inhomogeneous line, an effective dielectric filling fraction
is used to give that proportion of the transmission line’s cross section not filled

by air. For microstrip lines, the result is [18,19)

7r€r ere'- - 1 tarlé

€p — 1 \/ere.- /\0

where again : has been used to distinguish between values for single and coupled

ay =

(4.24)

lines. For the homogeneous transmission line, (4.24) simplifies to its well known

value

“tané |
ad=1f%3L. (4.25)

The attenuation factors typically exhibit regular behavior; conductor loss
increasing as the square root of frequency, dielectric loss increasing proportion-

ately. In a dispersive line, the changes in impedance and dielectric constant affect

(4.21) and (4.24), and can lead to more complicated behavior.

4.2.3 Quality Factor

The definition of the quality factor, or @, for a transmission line is the same
as with other components. It is the well known figure of merit for the ratio of

stored energy to dissipated energy. In terms of group velocity, it is written [20]

energy per unit length  wP/v, w

Q=w (4.26)

power loss per unit length =~ P, 2v,a

where Py, is the power loss per meter, and power'ﬁow P equals the product of the
. energy density and the energy transport (group) velocity v,. Dispersion affects

the group velocity according to

1 efyere(w)
T dBfdw 1+ wdlnepe(w)” (4.27)
2 dw

Uy
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The quality factor for the dispersive line is therefore given by

Q=%(1+§%“Q). (4.28)

This expression often results in complicated frequency dependencies. ~In the
absence of dispersion, Q becomes the widely used expression

B

Q=L (4.29)

This has much simpler frequency behavior. In a line dominated by dielectric loss,
both § and a will increase proportionately to frequency, and the Q is therefore
constant. For the line dominated with conductor loss, both a and Q havé \/}
behavior. |

The quality factor is useful in evaluating the effects of loss on the genera- -
tion of noise waves. Values for the noise wave correlation matrix, derifred using
(4.15), (4.29), and the equations from Table 4.1, are given in Figs. 4.3 and 4.4 for
a constant @ transmission line at temperature Ty. Plots in each ﬁgur_e are with
respect to length in wavelengths (¢/)). The transmission line used has normal-
ized impedance z = 2, and values have been plotted for discrete  values from 5
to 100. The normalized noise wave power (|c;[2/kTp), plotted in Fig. 4.3, is seen
to increase steadily with electrical length. Periodic bumps in the plot are due
to impedance mismatches in the line that modulate the available noise power.
With increasing @ values, the behavior is similar, but the reduced loss lowers
noise production. The normalized correlation (¢yc}/kTp) is plotted in Fig. 4.4.
- At a quarter wavelength, and every half wavelength thereafter, the correlation
is seen to vanish. This occurs at frequencies where s;; is imaginary and s;; is
real, resulting in orthogonality between the noise waves. Two competing effects
control the envelope of the correlation plots. The lower Q’s have noise waves of
larger magnitude, and initially give higher correlation peaking évery half | wave-

length where both s9; and s, are real. Yet, as electrical length is increased,
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transmission losses become so large that eventually the line looks like a single
resistive terxhination. When this occurs, correlation vanishes. The plot for Q = 5
therefore has the highest first peak, yet the peaking diminishes with electrical
length due to the line loss. The second positive peak (¢ = 1.5)) is the highest
for @ = 10. The electrical lengtvh has increased enough to make the noise more
pronounced, yet is small enough to allow transmission. The highest third posi-
tive peak (£ = 2.5)) is for Q@ = 20. The higher Q values have steadﬂy increasing
peaking, indicating that transmission losses have yet to have an effect. For a
matched transmission line (2 = 1) no internal reflections are present and there
is no correlation. The basic correlation behavior described above, however, is
demonstrated by all other lossy transmission lines. Consequently, it is important

to include correlation effects for even passive circuit noise calculations.

4.3 Active Device Modeling

The two most commonly used active devices for low noise microwave am-
plification are the gallium arsenide field effect transistor (GaAs FET) and the
high electron mobility transistor (HEMT). Small-signal deterministic. modéling
of these devices is performed using linear equivalent circuits. These characterize
the device for only a single bias point, but may be used to generate scattering
parameters over é. broad frequency range. The small-signal equivalent circuit
used for chip form microwave GaAs FET’s and HEMT’s is given in Fig-. 4.5.

Conventional methods for noise modeling of these devices have been sum-
marized by Cappy [21]. In addition to the equivalent circuit, they require the
~ determination of three dimensionless quantities that are proportional to values
of a low frequency noise current correlation matrix

Ci = ( ‘o "9,_"3) (4.30)

K -* 2
Zdzg zd

where subscripts g and d refer to the gate and drain of the transistor, respec-

tively. Work has been done to develop empirical expressions for these ‘qua.ntities



68

1.0
— 5
S 10
————— 20
0.8 -~~~ %0
- -~ 100
0.6 | . /,«-\\\ '.’I I,
2 /: AN _ . //
lC]-I //, \\\ ‘//
— — - , N
kTO N
/I oL
0.4 ' /’\\ ,I
’ N ’
/ ~_~
// //
— // N /’ /’\ ,
I ~- N\
J ’ - / N /
S ’ / \\ / ./
0.2 , o~ // - - » J
7 s~ ; N - Y
,, - , ~ - _ p N ) X
/! , ~ _ - _ v N o~ ~
[ - P —
o /// /,-\_.// .~ 4 -
,'/,’// — e _ -
g - -
0.0 K=="1 1 L I |
-0 1 2 3

Figure 4.3 Plot of the normalized noise wave power |¢;|2/kT, versus length in wave-
lengths for a tline with z = 2. Plots are given for discrete values of Q from 5 to
100.
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Figure 4.4 Plot of the normalized noise wave correlation ¢; c;/kTo versus length in

wavelengths for a tline with 2 = 2. Plots are given for discrete values of Q from 5 to
100.
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Figure 4.5 Equivalent circuit used for microwave transistors including the GaAs FET
a.nd HEMT. ’
in terms of material parameters [22], but the results bear no physical significance
in relation to the equivalent circuit. Podell [23] first suggested that some noise
information could be obtained directly from the equivalent circuit. He gave a
very simple model using two uncorrelated noise sources present at the input of
the device. Improvements to this model were made by Gupta, ét al. [24], who
obtained good results by adding correlation effects. They also showed that a
frequency independent output noise current source could be used to rhodel un-
correlated drain noise. Its value could be determined from a single low frequency
spectral density measurement. Pospieszalski [25] then showed that this noise cur-
rent, and indeed all values for C;, could be modeled from the equivalent circuit
by assigning temperatures to the circuit resistors to account for electronic noise.
A straightforward implementation of Pospieszalski’s model is possible follow-

ing the noise wave approach. The first step is to simplify the equivalent circuit
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of Fig. 4.5. The gate, source, and drain leads each have a parasitic resistance
and inductance that is removed. Next, the parasitic feedback capacitance Cyq is
removed. The result is the intrinsic equivalent circuit shown in Fig. 4.6. Detail
has been added showing how input voltage across capacitance C,, is amplified by
transconductance g,,. Also added to gate-source resistance R,, and drain-source
resistance R4, are equivalent gate and drain temperatures T, and Tj.
Derivation of the noise wave correlation matrix is made djreétly from the
intrinsic equivalent circuit using the methods described earlier. With the source
considered grounded, the noise waves ¢; and c; are considered to emanate from
the gate and drain, respectively. The value of |c1_|2 is due only to the temperature

and input resistance R,, of the gate and is therefore given by

|c1|2 = kTg(l - |811|2). » (431) ’
Gate Drain
Oo——— o)
1t
Cgs o ds Cas
Rgs ngiQ> —
T
Tg d
Source

Figure 4.6 Intrinsic equivalent circuit for GaAs FET and HEMT transistors. Gate
temperature T, is the equivalent temperature of R,,. Drain temperature Ty is the
equivalent temperature of R4,. Noise voltage generated by R,, will appear at v; and
result in correlation between input and output noise waves. .
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Noise voltage produced by R,, will appear across Cy,. This gate voltage is

transferred to the drain, resulting in a noise correlation term given by

626: =

le1]2. (4.32)

For the intrinsic equivalent circuit this correlation term will be purely imaginary.
The output noise power results from the correlated noise from the gate, as well
as the noise present in the output resistance R4, with equivalent temperature

T4, and is therefore given by

|s21

1= 112 lex]? + kTa(1 - Js22f?). ' (4.33)

le2|? =

'The scattering parameters s;1, 321, and s2; used in (4.30)-(4.33) may all be found
from the equivalent circuit of Fig. 4.6.

As an example of noise wave modeling using the techniques developed to
this point, a Fujitsu FSX02X GaAs FET and an FHR02X HEMT have been
analyzed for the complete equivalent circuit of Fig. 4.5. The analysis procedure
is as follows: (a) determine the scattering and noise wave correlatioﬁ ma’tﬁces
for the intrinsic equivalent circuit (Fig. 4.6) with source lead shorted to ground;
(b) convert the resulting definite matrices to indefinite forms (chapter 2); (c)
use linear connection theory (chapter 3) to solve for the noise and scattering
matrices for the complete equivalent circuit of Fig. 4.5; (d) convert .néise wave
values to standard two-port noise parameters (chapter 2). This procedure was
followed using the equivalent circuit values for the GaAs FET and HEMT listed
_ in Table 4.2. Measured noise parameter data were provided by the manufacturer
and are shown here for comparison.

Given in Fig. 4.7 are Smith chart plots for theory and measurement of the
optimum reflection coefficient T',p, for the Fujitsu FSX02X GaAs FET from 2-
18 GHz. Agreement is exceptional. The theoretical plot was made with ga,tve
temperature T, = 290 K, suggesting that this noise is truly thermal in nature.
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The drain temperature used was Ty = 1375 K. This high value is used to simulate
'high-ﬁeld diffusion noise and hot electron effects. Theory and measurement for
the noise figure minimum F),;, and noise resistance R, are shown in Fig. 4.8
and Fig. 4.9, respectively. All three theoretical plots were made under the same
conditions. Noise figure minimum predictions are quite good considering mea-
, suremeht accuracy typically on the order of 0.25 dB. Noise resistance is slightly
underestimated. Given in Fig. 4.10 are Smith chart plots of modeled and mea-
sured Iy for the Fujitsu FHR02X HEMT from 2-26 GHz. The theoretical plot
was made with Ty = 290 K and T; = 1100 K. Graphs showing comparisons of
Fynin and R, are shown if Fig. 4.11 and Fig. 4.12, respectively. As_ before, pre-
dictions are quite good with the exception of R, which deviates from theory at
lower frequencies. |

In the analyses above, the same equivalent circuits from which scattering
parametérs are derived were used to find noise wave parameters: the only addi-
tional information needed was the drain temperature for the device. Accurate
ﬁredictions were obtained by assuming all other equivalent circuit components
at 290 K. This is the general advantage of the noise wave approach: noise anal-
ysis, for both active and passive devices, requires knowledge of: only scattering

parameters and temperature.
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Element FSX02X FHRO02X
gmo(mS) 42.5 55
T(psec) 2.0 0.85
Cys(pF) 033 0.2
Cqa(pF) 0.033 0.025
Cuas(pF) 0.115 0.049
R,,(Q) 3.5 2.5
R4,(R2) 270.0 188.7
R,(Q) 0.3 1.3
Ry(9) 1.8 1.3
Ry() 3.0 1.3
Ly(nH) 0.12 0.1
L,(nH) 0.05 0.08
L4(nH) 0.12 0.1
Ty(K) 290 290
T4(K) 1375 1100

Table 4.2 Component values for elements in the equivalent circuit of Fig. 4.5 used to
model the Fujitsu FSX02X GaAs FET and FHR02X HEMT. The transconductance g,
has an associated transit time 7 such that g,, = gmoe~7“". Gate temperature Ty is the
equivalent temperature of Ry,. Drain temperature Ty is the equivalent temperature of
Rg,. Values for both devices are for I35, = 10 mA. The FSX02X values correspond to a
bias voltage Vg, = 3 V, while V;, = 2 V for the FHR02X.
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Figure 4.7 Smith chart comparison of theory (a) and measurement (b) of optimum
reflection coefficient T'op; for the Fujitsu FSX02X GaAs FET. The theoretical plot was
made with T; = 1375 K. Plots are from 2-18 GHz, running counterclockwise over fre-
quency, with points shown in 2 GHz increments.
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Figure 4.8 Comparison of theory and measurement of noise figure minimum F,;, for
the Fujitsu FSX02X GaAs FET. The theoretical plot was made with T; = 1375 K.
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Figure 4.9 Comparison of theory and measurement of the noise resistance R, for the
Fujitsu FSX02X GaAs FET. The theoretical plot was made with T; = 1375 K.
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Figure 4.10 Smith chart comparison of theory (a) and measurement (b) of optimum
reflection coefficient I, for the Fujitsu FHR02X HEMT. The theoretical plot was made
with Ty = 1100 K. Plots are from 2-26 GHz, running counterclockwise over frequency,
with points shown in 2 GHz increments.
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Figure 4.11 Comparison of theory and measurement of noise figure minimum F,,;, for
the Fujitsu FHR02X HEMT. The theoretical plot was made with T; = 1100 K.
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Figure 4.12 Comparison of theory and measurement of the noise resistance R, for the
Fujitsu FHR02X HEMT. The theoretical plot was made with Ty = 1100 K.
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Chapter 5

Noise Wave Measurement

To make use of the analysis methods developed in chapter 3, the noise wave
correlation matrix for each component must be determined. For passive compo-
nents, or microwave transistors represented by equivalent circuits, the methods
of chapter 4 may be employed. When these methods are inappropriate, noise
parameters may be found from direct measurement.

The standard technique for two-port noise parameter extraction is to mea-
sure the variation in noise figure F as a function of source reflection .coefficient
T,. The variation follows |

&l_ ira - ]--‘optl2
Zo |1+ Tope*(1 = T, [*)

F=FpLin+4 (5.1)

and it is therefore possible to solve for noise parameters Fin, [opt, and R,.
Thése parameters may be converted to a two-port noise wave correlation matrix
using the formulas given in chapter 2. This is referred to as the tuner method,
since a tuner is required to generate values of I',.

The wave interpretation of noise suggests a new approach. As mentioned in
the derivation of Bosma’s theorem (chapter 4), it is possible to measure the corre-
lation of noise waves using directional couplers. This knowledge, combined with
simple noise power measurement steps, makes possible the direct measurement

of the noise wave correlation matrix.
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5.1 Tuner Extraction of Noise Parameters

The apparatus for carrying out noise parameter extraction using the tuner
method is shown in Fig. 5.1. A tuner at the input of the device-under-test (DUT)
generates reflection coefficient I',. The noise source is otherwise matched to Zo.
A low-noise amplifier (LNA) is used to boost the noise signals, and a mixer and
local oscillator downconvert the noise to a lower frequency to allow a radiometric
measurement to be made by the noise figure meter. Determination of noise figure
is made by making measurements with the noise source at equivalent hot and
cold temperatures. Associated gain of the device may also be found using a

second tuner at the output of the DUT.

Noise Figure
Meter LNA

Local
Oscillator

I :
Slj)?llrsfe * - @ Tuner b Tuner
—AMA— : VW~

Figure 5.1 Tuner method for noise parameter extraction. One tuner is used to generate
the reflection coefficient I'; seen at the input of the device-under-test (DUT). At the
- DUT output, a second tuner is often used to find the associated gain.

Tuning procedures to solve for the noise parameters have been debated for
some time. The standard approach [1] is to adjust the tuner until the best
noise figure is obtained. The tuner is then removed from the system and the

I's generated is measured using a network analyzer. This gives both I',,¢ and
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Frin. By then making an additional noise figure measurement at I'y = 0 and
applying (5.1), a value for R, is determined. Lane [2] pointed out that this
method could be inaccurate. He argued that the partial derivative of F was
zero at Fiin, and that it was therefore difficult to pinpoint Iyp:. He advocated
multiple measurements of F at various I', values and then a least-squares fit
to (5.1). However, application of this technique was found to often result in
erroneous results. A host of various procedures then surfaced [3-6], all basically
recommending that data for the least squares fit be taken in the vicinity of T',p;.

There are problems with the tuners themselves. Each has loss, and repeata-
bility errors. Mechanical tuners must be precision machined and have microm-
eter adjustments to reduce these problems. Even then, each tuner setting must
be characterized with full two port measurements to allow removal of tuner in-
troduced errors [7]. Electronic tuners offer a tremendous speed advantage over
their mechanical counterparts and permit automatic characterization of devices.
However, they generate discrete values in a restricted range for I',, and applying
the required least squares fit to the derived data often gives meaningless results.
The electronic tuners also require frequent calibration, have a limited frequency
range, are lossy, and can cause low frequency oscillations in some microwave

transistors [8].
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5.2 One-Port Noise Wave Measurements
In section 2.5 it was shown that the measurement of noise figure at I'; = 0
could be related to the noise wave c, by

ez |?

—_kTo|821 7 (5.2)

F=1+

The value of the gain [s9;|? also results from the noise figure measurement pro-
cess, suggesting that it is possible to derive noise wave values from noise figure
measurements taken with I'; = 0. This would be a great advantage. Microwave
measurements of scattering parameters are performed under these conditions,
leading to stability and accuracy. However, (5.2) gives only one value in the
noise wave correlation matrix. Modifications must be made based on rethinking
the measurement process in terms of noise waves. The first step is to consider a
one-port noise wave measurement.

By folding the apparatus of Fig. 5.1 upon itself, the system of Fig. 5.2
is realized. As with the noise figure measurement, the noise source is capable
of taking on two equivalent temperatures. A circulator is used to inject the
noise from the source into the one-port and to terminate noise originating in the
LNA. The one-port reflects some of the noise from the source, and adds its own
noise. These combine to form noise wave d. Since the noise source and ¢ will be

uncorrelated, the power in d is given by
147 = | + KTy s, (5:3)

. By making measurements of |d|? at two known values of T, values for both le?
and |s|> may be derived. In order to account for system noise, calibrations are
made with |s| = 1 and |s| = 0. This procedure was followed to produce the
graph of Fig. 5.3. Noise spectral density measurements were made using a slide
screw tuner to generate various values of s. These values were later measured on

an HP8510 network analyzer. The measured noise waves are shown compared
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to the theory that [c[2 = kTy(1 — |s|?). The measurement plot is derived from
network analyzer values of |s|, and |¢|? values from the noise wave measurement.
The differences shown are therefore due to compounded errors in both |s]? and
W. The errors are small, and are most likely due to inaccurate estimates of the

noise source temperatures.

Noise Power
Meter

Local
Oscillator

LNA
Noi ‘ I ¢
c
KTy ./

Figure 5.2 Measurement apparatus for a one-port noise wave measurement. Noise wave
c emanates from the one-port termination with scattering parameter s. The noise source
with power kT generates hot and cold equivalent temperatures.
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Figure 5.3 Theory compared to noise wave measurements for a one-port. The values
of |s| were generated using a slide screw tuner, and measured on an HP8510 network
analyzer. The normalized noise wave power |c|2/kT is shown compared to the theory
that |c]2/kTp = (1 - |s]?).
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5.3 Two-Port Noise Wave Measurement

The instrumentation used for the one-port measurement can be extended
to the two-port case. Given in Fig. 5.4 is a two-port with scattering matrix S
with noise injected at both of its terminals. Noise waves ¢; and ¢, emanate from
the network and combine with scattered noise from the sources to produce noise

waves di and d; given by

dy =cy + VkT1311 + VkT2812 (5.4a)
d2 = Cg + kT] 321 + vV kT2822. (546)

These waves will have measurable power densities

d1‘2 = |61|2 + kT1I811|2 + kT2|812'2 (55(1)

|d2|2 = |c2|? + kT |s21|* + ko222 (5.5b)

Four measurements are made of both |d;|? and |d3|? using two values for each
T; and T;. Sufficient information therefore exists to solve for the six unknowns
ferl?, Teal, s11f?, |s12l?, |s2a|?, and |ss 2.

The above measurement gives no information concerning the noise correla-
tion c;cj. As discussed in the derivation of Bosma’s theorem, directional couplers
are used for this purpose. Shown in Fig. 5.5 is the measurement system of Fig. 5.4
with a directional coupler inserted at a point prior to the noise power measure-
ment. With a lossless 0°/180° 3 dB hybrid, the noise waves that exit are given

by

e} = %(d] + d2) (560)
€y = 715(d1 - dg) (566)

The noise power measurement will give the following values for |e;|? and |e |2

e = L [|d1|2 + ] + 2Re(d1d;)] (5.7a)
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Figure 5.4 Measurement apparatus for the two-port wave measurement of ]c1|2 and
|cz|2 Noise waves ¢; and ¢, emanate from the network with scattering matrix S. Two
noise sources are used with equivalent temperatures 77 and T3, each capable of taking
on hot and cold values. The switch shown is a non-reflective microwave type.
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[ea? = 1 | ThT? + &1 — 2Re(d;d5) | . (5.75)
Taking the difference in these measured power levels yields

|61|2 - |62l2 = 2R6(d1d;) g

—_ - (5.8)
=2 [Re(clc;) + kT Re(s1183,) + szRe(Slz.S;z)]

where consistent values of T} and T3 have been used in the comparison. Solutions

for unknowns Re(c; ¢} ), Re(s1183; ), and Re(s12335) are then found by performing

such comparisons for different values of T} and T5.

Next, the 0°/180° hybrid is replaced with a 90° 3 dB hybrid; positioned in

the same location of Fig. 5.5. The noise waves at the coupler output are then

given by
e = %(d] +]d2) ~ (59a)
€y = 715((11 —jdz). » (59b)

Taking the difference in powers now results in

fer[? = Jea[? = 2Im(dyd3) '
~ | (5.10)
= 2 [Im(c,c3) + kTyIm(s11s3,) + kToIm(s12s3,)] -
Measurements at two values for Ty and T; give the imaginary components, which
when combined with the result of (5.8) provide solutions for the three complex
quén_tities El_cg, 811831, and $1283,.

This technique of two-port noise measurement shall be referred to as the
wave method. It not only measures all values for the noise wave correlation
- matrix, but also gives the magnitude of the four scattering pafameters and the
complex quantities sy153;, and sj283,. As in the case of the one-port, it is pos-
sible to remove noise contributions from the apparatus by following a simple
calibration procedure. In addition, the system of equations that is manipulated

is typically over-determined, and lends itself to statistical analysis.
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Figure 5.5 A 3 dB hybrid coupler inserted into the measurement apparatus of Fig. 5.4.
A 0°/180° coupler allows measurement of Re(cyc}), while a 90° coupler allows measure-
ment of Im(c;c3).
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~ In order to evaluate the wave method, a system was constructed for op-
eration at 4 GHz. A simple calibration procedure was used, and a series of
measurements were made on a GaAs FET amplifier over a range of bias cur-
rents. For comparison, measurements were made at the same bias points using
the tuner method described previously. A mechanical slide screw tuner was used
and the additional measurements and corrections recommended by Strid [7] were
performed. For compatibility, the results are compared in terms of sAtandard noise
parameters. Presented in Fig. 5.6 are the results for |I',,;| shown on an enlarged
scale. Agreement over most of the range is within 0.05. Some of this disparity
is due to lack of repeatability in the tuner. The results for Fy,;, are given in
Fig. 5.7. The total uncertainty in the noise figure measurement is 0.25 dB, and
the majority of the data falls in this range. Data for R, are shown in Fig. 5.8,
and the behavior of the two plots over bias current is very similar.

The agreement between the three comparisons is remarkable considering
the différences in the measurement methods. It is impossible, in fact, to specify
which of the plots are “correct.” Measurements made with the tuner method,
in addition to its aforementioned problems, were seen to cause unstable bias
conditions. These have no doubt contributed to some of the errors. In the
application of the wave method, uncertainty in temperatures T; and T, could
have led to errors. One point is clear. The wave method has a considerable
number of advantages. It does not require network analyzer calibration and does
not have “moving parts” as in the case of the mechanical tuner. Since the device-
under-test is always presented with impedance Z,, the measurement procesé is
" much more stable. The networks used for measuring correlation are simple,
and can be constructed with off-the-shelf components. They are also available
into millimeter-wave frequencies, whereas mechanical and electronic tuners are
currently limited to 18 GHz operation. The wave method also provides scattering

parameter information equivalent to a scalar network analyzer.
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Figure 5.6 Comparison of the tuner and wave measurement methods for determining
the optimum reflection coefficient I',p; for a GaAs FET amplifier. The measurements
were performed at 4 GHz with amplifier bias current varied from 10-60 mA.
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Figure 5.7 Comparison of tuner and wave measurement methods for determining the
noise figure minimum Fi,;, for a GaAs FET amplifier at 4 GHz with varying bias current.
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Figure 5.8 Comparison of the tuner and wave measurement methods for determining
the noise resistance R, for a GaAs FET amplifier at 4 GHz with varying bias current.
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Chapter 6

Conclusions and Suggestions for Future Work

The wave approach has been shown to be a powerful means for the character-
ization and analysis of noise in microwave circuits. It permits scattéring matrix
and signal-flow graph theory to be used for noise calculations, simplifying the
microwave computer-aided design process. Derivation of the noise wave proper-
ties for many microwave components is a straightforward process, requiring only
scattering parameters and device temperature. The wave approach has also led
to new measﬁrement techniques that offer advantages over current methods and
yield comparable results.

Although many theoretical aspects of computer-aided noise analysis have
been considered here, there is still considerable work to be done in the area.
Only linear methods have been discussed, but many nonlinear circuits require
noise analysis, as well. Successful methods have been developed to spéciﬁcally
analyze noise in nonlinear microwave diode mixers {1,2], yet moré general anal-
ysis techniques are needed. Some promising new methods have recently been
- proposed [3].

Improved noise modeling of components is also in demand. The models
presented here have given good results, but they are based on bias dependent
equivalent circuits. Needed are expressions that relate the equivalent tempera-
tures used in GaAs FET and HEMT models to bias and device properties. It was
Podell [4] who first demonstrated that this could be done, yet his models must
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be upgraded to include the effects of correlated noise. Noisy nonlinear transistor
models are also needed to accompany new nonlinear analysis methods [5]. Fur-
ther work in the area of passive circuit modeling is also needed. In chapter 4,
methods were discussed for modeling dielectric and conductor losses and surface
roughness effects. Not considered, although important in some circuits, aie noise
contributions due to radiation loss.

The promise of the wave method for noise parameter extraction needs to be
exploited. The method discussed in chapter 5 requires the swapping of directional
couplers. Preferred is a single network that allows parameter extraction from
noise power measurements at its outputs. This is possible using the six-port
network described by Engen [6]. This network has been used successfully to
make accurate scattering parameter measurements. It may also be used for
noise-parameter measurements. A potential measurement system is shown in
Fig. 6.1. The six-port network consists of three 90° 3-dB quadrature hybrids
(each denoted by a ‘Q’), and a single 180° 3-dB coupler (denoted by an ‘H’).
When two input noise waves d; and d; are incident on the network, the output

powers Pj—P, are given by:

P =|dd: - %dzlz | (6.1a)

Py = |:21 [dl n l\%d,] |2 (6w
. . 2

Py = ‘:,} [dl _ 17-5Ld2” (6.1¢)

Py =|Hdy|". (6.1d)

Comparison of these power measurements gives

|d1l2 =P+ P+ P;—3P, (620)

|d3|2 = 4P, (6.2b)
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Re(d d3}) = V2(P; — Ps) (6.2¢)

By making measurements at two noise source temperatures, and employing the
methods deseribed in chapter 5, it is possible to derive the noise wave correla-
tion matrix for the device-under-test, as well as substantial scattering parameter

information.
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Figure 6.1 A noise parameter analyzer using a six-port circuit. The components of the
six-port are a single 0°/180° 3 dB hybrid coupler, labeled as H, and three 90° 3 dB

quadrature hybrids, each labeled as Q. The six-port shown operates at an intermediate
frequency.
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